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1.1 Introduction  
 

Most  research undertaken on t imetabling problems to  date is concerned with 

the scheduling o f universit y courses.  As t radit ionally defined, a t imetabling 

problem is a general constrained assignment  problem applicable to  var ious 

areas o f allocat ing jobs to  machines in such a way that  minimum costs are 

incurred or maximum returns are realized,  or jobs are completed within the 

shortest t ime. Timetabling problems have numerous pract ical applicat ions 

in many industries such as: a ircraft ,  missile,  communicat ion,  sport  and 

recreat ion,  computer techno logy, food, mining, petroleum and t ransport . 

Over the years,  construct ing a t imetable at  a universit y has become more 

and more complex, ma inly due to  the growing number o f students and 

courses under limited resources such as staff and lecture rooms [De Sousa 

et al  (2007) ; De Palma & Lindsey (2001) ; Freling et al  (2001)].  In the study 

of universit y t imetabling problems several related termino logies have been 

used. These inc lude:  educat ional t imetabling problems, c lass-teacher  

problems,  course t imetabling problems, student  scheduling problems,  

classroom ass ignment  problems and teacher assignment  problems.  

Applicat ion of t imetabling problems in the area of t ransportat ion is the 

focus o f our study. We focus part icular ly on the models and so lut ion 

techniques that  have been successfully applied to  universit y course and 

examinat ion t imetabling to  so lve real wor ld problems o f taxi industry.  
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1.2 Geography  

South Afr ica,  on southern t ip o f the Afr ican cont inent ,  is bordered by the 

At lant ic  Ocean on the west  and by the Indian Ocean on the south and east .   

South Afr ica has nine provinces (see Figure 1.1),  each with its  own 

legislature,  premier and execut ive council -  and dist inct ive landscape,  

populat ion,  economy and climate.  The provinces are the Eastern Cape, the 

Free State,  Gauteng, KwaZulu Natal,  Limpopo, Mpumalanga, the Northern 

Cape, North West ,  and the Western Cape.   

 

Limpopo is South Afr ica 's northernmost  province,  lying within the great  

curve o f the Limpopo River.  The province borders the countr ies o f 

Botswana to  the west ,  Zimbabwe to  the north and Mozambique to  the east .  

Limpopo is the gateway to  the rest  of Afr ica,  with it s shared borders 

making it  favourably situated for economic cooperat ion with other parts of 

southern Afr ica . Each o f the nine provinces of South Afr ica is further  

demarcated by dist r ict  munic ipalit ies,  and within each dist r ict  are some 

local munic ipalit ies.  Limpopo has five dist r ict  munic ipalit ies and twenty-

four local munic ipalit ies.  The Capr icorn dist r ict  municipalit y is t he busiest  

dist r ict  in Limpopo since it  houses t he provincial government  departments 

and main business establishment s.  Po lokwane is  the Central Business 

Dist r ict  (CBD) o f Capr icorn and the busiest  c it y in the ent ire province.  
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Figure 1.1: The South Africa Map 

 

 
According to  Stat ist ics South Afr ica (Stats SA),  in 2001 the Limpopo 

Province had a total o f 4,995,535 people (Census 2001, Stat ist ics South 

Afr ica).  While t he first  democrat ic census o f 1996 demarcated the province 

into six dist r ict  municipalit ies,  the cross-boarder re-demarcat ion o f 

December 2005 reduced this number to  five.  The 4,995,535 people in 2001 

indicated above have been re-adjusted to match the new demarcat ion.  The 

populat ion o f Limpopo was est imated at  5,402,900 in 2007 (Mid-year  

populat ion est imates 2007, Stat ist ics South Afr ica).  
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Table 1.1 gives the est imated populat ion o f the Province by dist r ict  

munic ipalit y and sex,  in 2007. The results o f the community survey o f 

February 2007 by Stats SA have been employed to  generate the data in 

Table 1.1.  

 

Vhembe and Capr icorn dist r ict  municipalit ies have the highest  populat ion 

(23.7% each),  while Waterberg has the least  number o f people (11.4%). 

 

Table 1.1:  Population of  the Limpopo Province by district municipality and   
      sex,  2007 
Distr ict  Municipalit y Male Female Total % Total 

Mopani 496959 571620 1068579 20.4 

Vhembe 564752 675295 1240047 23.7 

Capr icorn 572693 670449 1243142 23.7 

Waterberg 291635 304455 596090 11.4 

Greater Sekhukhune 492835 597590 1090425 20.8 

Total Populat ion 2418874 2819409 5238283 100.0 

Source: Community Survey 2007, Statistics South Africa 
 

 

The Capr icorn Dist r ict  Municipalit y has five local munic ipalit ies.  Greater  

Sekhukhune dist r ict  a lso has five local munic ipalit ies; Mopani and Vhembe 

dist r icts have four local munic ipalit ies each; and Waterberg has six local 

munic ipalit ies.  The Province’s demarcat ion by dist r ict  and loca l 

munic ipalit ies is displayed in Figure 1.2.  Most  commuters to the Capr icorn 

dist r ict  come from all dist r icts and munic ipalit ies within the province,  

Gauteng, Mpumalanga and Zimbabwe. Booming mining industr ies and 

tourism at t ract ions in Limpopo br ing a lot  of vis itors to  the province.  
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Businesses in Po lokwane, and the Universit y o f Limpopo, Mankweng 

Hospital and new modern shopping complexes in Mankweng have led to 

many people t raveling to  and between these areas.  

 

Figure 1.2: The Limpopo provincial map  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3 Problem statement 

In South Afr ica,  taxis are the most  popular mode of t ransport and are  used 

by the major it y o f the people.  These taxis in t he South Afr ican context  are 

the minibuses t hat  often carry 10-15 passengers.  They are more popular  
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than big buses since they take a  shorter t ime to  fill up with passengers,  

thereby reducing the wait ing or idling per iod,  alt hough the lat ter are 

generally cheaper.  They are also more popular than the cabs (the so-called 

4+1’s) because they are cheaper than the cabs.   

Taxis in South Afr ica are pr ivately owned by individuals,  but  usually the  

owners do not  drive them. Year after year news headlines portray the 

industry as being  at  war result ing in deaths o f dr ivers,  taxi owners and 

commuters.  Even though associat ions have been established to  reso lve these 

problems, lit t le success has been achieved. Even more worrying about  the 

taxi industry in South Afr ica is  that  many lives are lo st  as a result  o f lack 

of proper  maintenance,  dr iver fat igue due to  long working hours,  a rush to 

make quick bucks by over load ing, and commit t ing other road o ffences.  

Lit t le do these taxi dr ivers realize the damage result ing from their wayward 

act ion.   

The operat ional requirements for the taxi industry in South Afr ica are 

generally d ifferent  from those o f other modes o f t ransport  such as t rains 

and buses.  The lat ter fo llow schedu led ar r ival and departure t imes and stop 

only at  predetermined stat ions or bus stops.  Unlike t rains and buses,  taxis 

do not  operate according to any specific  pre-arranged schedule and could 

stop at  any po int  along the route.   

The main object ive o f taxis is  to  maximize pro fit ,  which they achieve by 

ensur ing that  all seats are occupied at  each t r ip.  This leads to  passengers 

wait ing long t imes for taxis dur ing non-peak t imes.  Dur ing  busy t imes 
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passengers have an advantage o f wait ing shorter periods,  even though taxi 

dr ivers have a tendency to  make an over load of passengers.  At  taxi ranks 

there are people called  Queue Marshals who are respons ible for secur ing 

posit ions for  the taxis,  controlling the who le process at  the rank and 

ensur ing that  the daily schedule is obeyed. Taxi dr ivers have to  book for the 

lines or posit ions every morning before they can start  with their  daily 

dut ies.  With t rains or buses,  passengers usually buy t ickets before 

embarking on a t r ip,  but  with taxis passengers pay after they are seated 

ins ide the taxi.  

While it  is acknowledged that  the taxi industry plays an important  role in  

the economy consider ing that  the major it y o f South Afr icans depend on 

public t ransport ,  proper management  and planning need to  be put  in place in  

order to  reduce or prevent  losses of lives.  

Taxi t imetabling inc ludes drawing up a schedule to  ensure that  

( i)  there is  good management  in terms o f maint enance o f vehic les,  

and proper t ime schedu ling,  and 

( ii)  there is no conflict  between taxi associat ions and taxi owners,  

as well as among taxi dr ivers,  while minimiz ing the number o f 

road accidents.  

Passengers o ften wait  at  taxi stops without  having any idea of when the 

taxis w ill arr ive.  I f t here is  a well-planned taxi schedule,  passengers wil l 

know when to  expect  a taxi at  their  taxi stop.   This will a lso benefit  
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passengers between stops,  who usually wait  for long per iods,  and most  

often taxis pass them because there is  no  more room left ,  or else the taxis  

are over loaded with passengers.  Proper taxi management  and  schedules can 

be helpful espec ially for large and busy taxi ranks anywhere in the country.   

This research will part icular ly focus on two taxi ranks,  one in t he City o f 

Polokwane and another in the Mankweng Township.  These are t he busiest  

ranks in Limpopo Province - with hundreds o f passengers t raveling on a 

daily basis from as ear ly as 05H00 to  as late as 23H00, depending on the 

season. The distance between these two ranks is about  30 km. Most  

passengers who t ravel between the two ranks are the communit ies around 

the City o f Po lokwane and Mankweng Township; the staff and students o f 

the Universit y o f Limpopo – Turfloop Campus (UL); and the staff o f 

Mankweng Hospit al t hat  is about  1 km from the UL.  

It  is worth not ing that  South Afr ica,  unlike most  Afr ican countr ies,  has a  

relat ively good road infrast ructure,  with most  networks having tarred roads.  

While Limpopo is considered as one of the poorest  provinces in the country,  

the road link between Po lokwane and Mankweng is a tarred road that  is  

maintained at  all t imes due to  heavy t raffic  in the Capr icorn dist r ict  as 

indicated in Sect ion 1.2 above. The nat ional road (N1) that  st retches from 

Cape Town all the way to  Mussina in Limpopo with the main boarder with 

Zimbabwe, passes through Polokwane City.  
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1.4   Objective of the study 

It  is believed that  some o f the reasons for  the high rate o f taxi accidents are 

the fo llowing:  

( i)  taxis are not  well maint ained; 

( ii)  taxi dr ivers do not  abide by road t raffic rules.  

 

At  present  the taxi industry is  run according to  availabilit y o f passengers,  

hence passengers o ften suffer in their wait ing.  The aim o f the project  is to 

study and mode l a scheduling problem for  the taxis,  to  minimize the wait ing 

t ime o f passengers,  and in order to  provide a bet ter service to  the public.  

The main object ive o f this study is  to  develop a model that  would improve 

the service level o f the taxi industry while minimiz ing costs incurred.  

In tackling the problem o f taxi industry,  we use different  opt imizat ion 

techniques t hat  have been successfully applied in universit y t imetabling 

problems to  tackle the problem o f taxi industry.  

 

1.5 Preliminary data 

A structured quest ionnaire was developed to  collect  preliminary data from 

the Greater Mankweng Taxi Associat ion (GMTA), an associat ion that  

operates between the City o f Po lokwane and Mankweng Township.  The aim 

of the quest ionnaire was to  obtain informat ion about  the operat ions o f taxis 

at  the chosen locat ions,  the number and sizes of taxis,  operat ing hours,  

est imated number o f passengers (dur ing both peak and non peak hours),  as 
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well as informat ion that  would be useful when construct ing the constraints 

in t his research.  Table 1.2,  summar izes the informat ion. A total o f 505 taxis 

operate in the Po lokwane and Mankweng ranks from 06H00 to  21H00. Each 

taxi makes three t r ips daily.  

 
Table1.2:  Information about the operations of  taxis in the Polokwane 
              –   Mankweng ranks 

Item Polokwane Mankweng 

1. Number of taxis (505) 

1.1. During rush hours 

1.2. During off peak 

 

250 

70 

 

256 

90 

2. Starting time 06H00 06H00 

3. Ending time 21H00 21H00 

4. Floating taxis at rush hours 0 30 

5. Number of round trips per taxi 3 3 

6. Idling time 

6.1. During rush hours 

6.2. During off peak 

 

3 minutes 

5 minutes 

 

3 minutes 

10 minutes 

 

 

Figure 1.3 illust rates the flow o f passengers on a daily basis at  both ranks 

(Polokwane and Mankweng).  Dur ing peak per iods,  part icular ly in t he ear ly 

morning hours (06H00 – 09H00),  and in the late afternoon hours (15H00 – 

18H00),  the number o f passengers is  high at  both ranks alt hough the flow o f 

passengers from Mankweng to  Polokwane is  relat ively lower t han from 

Polokwane to  Mankweng in the afternoon rush hours.  Around midday 

(10H00 – 15H00),  the flow o f passengers from Mankweng to  Polokwane is  

much lower than that  from Po lokwane to  Mankweng.  
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Figure 1.3: Estimated number of passengers transported daily between Mankweng and          
        Polokwane 
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Informat ion sought  on the number  o f accidents s ince 1994 is displayed in 

Figure 1.4.  Most  acc idents are caused by high speed dr iving, part icular ly in  

1995, and from 1999 to  2003. However,  drunken dr iving appears to  be the 

major cause o f accidents in 2005. Over loading was the ma in cause o f 

accidents in 1996 and 2004, and loud music is  featured mainly in 1995,  

1997 and 1998. The informat ion may have been duplicated since in some 

cases an accident  may have been caused by a combinat ion o f factors.  For 

instance,  drunken dr iving and high speed could have been responsible for a  

single accident .  

Given the findings above it  is  c lear that  there is  need to  put  proper 

management  and planning in place.  
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 Figure 1.4: Number of accidents according to the factors 
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1.6 Organization of the report  

The rest  of the dissertat ion is organized as fo llows: In Chapter 2 we present  

a detailed literature review. In Chapter 3 we present  the linear programming 

and integer programming models,  and other models commonly used to solve 

t imetabling problems. In Chapter 4 we present  the computat ional analys is  

and propose the use of Genet ic Algor ithm.  Chapter 5 gives conclus ions.  
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2.1  Introduction  

This chapter aims at  reviewing t imetabling problems in relat ion to  the 

problem under study. So lut ion techniques and models applied to  var ious 

types o f t imetabling problems with special int erest  to universit y (course and 

examinat ion) t imetabling problems are also discussed in t his chapter.  

Sect ion 2.2 provides a general definit ion and character ist ics o f a  

t imetabling problem. Sect ion 2.3 provides the ma in classes o f a universit y 

t imetabling problem studied in the t imetabling literature.  Sect ion 2.3 

examines the main types o f public t ransport  t imetabling,  and Sect ion 2.4 

provides the so lut ion techniques applied to  t imetabling problems, in 

general.  

2.2  Timetabling problem 

According to  Burke et al (2003),  “A general t imetabling problem inc ludes 

assigning a set  of events (exam, courses,  sports,  matches,  meet ings,  etc) to 

a limit ed number o f t imeslots while sat isfying a set  of constraints”.   

2.2.1 Hard and soft  constraints  

The constraints are categorized into two types,  namely: hard and so ft  

constraints.   

Hard constraints are those that  cannot  be vio lated under any circumstances 

and must  be r igidly fulfilled.  In general,  this means that : 
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( i)  No resources ( lecturers,  students,  rooms, etc) can be assigned 

to  different  events at  the same t ime.  

( ii)  Events ( lectures) o f the same academic per iod (same semester) 

must  not  be assigned to  different  resources at  the same t ime.  

The examples o f the hard constraints:  

( i)  No student  attends for more than one lecture at  same t ime.  

( ii)  In the classroom, there must  be enough space to  accommodate 

all the students.  

( iii)  No lessons share one room at  the same.  

( iv)  No lecturer can teach more than one class at  same t ime.  

(v)  Any class cannot  be taught  by more than one lecturer at  same 

t ime.  

Sof t constraints are desirable but  not  essent ial.  Somet imes it  is  not  possible 

to  find so lut ions that  sat isfy all t he so ft  constraint s.  Soft  constraints can 

somet imes be vio lated and this fact  is reflected in the value o f the fit ness 

funct ion.  The fit ness funct ion is a funct ion that  should be minimized in 

order to  obtain the best  solut ion.  Since so ft  constraints are preferences 

only,  more constraints can be imposed without any lo ss o f generalit y o f the 

problem. However,  the imposit ion o f a constraint  will force a so lut ion to 
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respect  it ,  and hence,  the so lut ion may get  altered by imposit ion o f each 

so ft  constraint  [Datta  & Deb  (2007)].  

 

2.2.2  Feasib le so lution  

Solut ions are said to  be feasible if t hey do not  vio late any o f the hard 

constraints,  while the vio lat ions o f t he soft  constraints must  be minimized 

as much as possible.  The value o f a feasible so lut ion is  t he total number o f 

so ft  constraint  vio lat ions in the so lut ion,  and a so lut ion with a low value 

means a good solut ion.  Normally a  cost  is assigned to  each type o f 

constraints,  with the hard constraints having higher associated costs than 

the so ft  constraint s [Ranson  & Ahmadi (2006)].  The core o f the t imetabling 

problem is to assign a suitable t imeslot  to  each event  such that  all 

constraints are sat isfied and the number of so ft  constraint  vio lat ions is  

minimal.  Burke et al  (1995) define good feasible t imetable as t he t imetables 

that  are pract ical and with which the user is sat isfied.   

 

The general t imetabling problems are known to be NP-hard or a class o f 

hard-to-solve constrained opt imizat ion problems, due to  a mult iplicit y o f 

constraints that  differ from one t imetabling environment  to  another.  There 

is no general model for t imetabling problems because o f the t ype of 

constraints.  The t imetabling problems are classified as constraint  

sat isfact ion problems. Hard constraints must  be sat isfied and these are 

modeled as the constraints o f the problem and so ft  constraints are to  be 
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minimized and these are mode led as t he object ive funct ion o f the proble m 

[Mushi (2006)].  In some cases,  the t imetabling problem is formulated as a  

search problem, while in other cases the problem is formulated as an 

opt imizat ion problem.  That  is,  what  is required is  a  t imetable t hat  sat isfies 

all the constraints and opt imizes a given object ive funct ion that  embeds the 

so ft  constraints [Schaerf  (2007)].  Dat ta  & Deb (2007) ment ion that  though 

a class t imetabling problem is tackled as an opt imizat ion problem, it  does 

not  have any fixed object ive funct ion to  opt imize.  An object ive funct ion in 

this problem is just  an arbit rary measure of t he qualit y o f a so lut ion.  

 

Figure 2.1 presents an extensible model or framework for general 

t imetabling problems proposed by Ranson  & Ahmadi  (2006) based on the 

constraint  sat isfact ion problem.  Figure 2.1 is divided into two sect ions by a 

dotted line: an upper part  illust rates the constraint  sat isfact ion problem as 

the lowest  level o f the model built -up in  layers.  The who le idea has been 

inspired by an idea o f ontology for construct ing scheduling systems, which 

is st ructured around a constraint  sat isfact ion model where act ivit ies are 

assigned resources to  constraints.  Table 2.1 provides the descr ipt ion o f the 

classes found in the general t imetabling model.  
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Figure 2.1: The classes in the general timetabling model  
 

 

 

 

 

 

 

 

 

 

 

 
Table 2.1:  Descript ion of  the classes found in the general timetabling  
  Problem 

Class Descr ipt ion 

1.  Act ivity 

2.  Timetabling 
Constraint  

 
3.  Container  

 
4.  Capacity 

Container  
 

5.  Timeslot  
Container  

 

Any act ivit y that  is to  be t imetabled  

Constraint s that  access the t imetabling resources 
 
 
A container where an act ivit y can be t imetabled 
 
A container with a limit  to  the number of resources 
that  can be added 
 
An ordered container with a specified durat ion 

 

T imetabling problems ar ise in many real situat ions,  including educat iona l 

inst itut ions (schoo l and univers it y t imetabling),  employment  inst itute 

Evaluator 

Resource Constraint Satisfaction Problem Constraints 

Solution Timetabling Problem Timetabling Constraints 

Container  Activity 

Capacity Container Timeslot Container 
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(employee/ staff t imetabling),  sports (t imetabling o f sports act ivit ies) and 

t ransport  (t rain,  a ir line and bus t imetabling) etc.  This study is  focused on 

the applicat ion o f universit y t imetabling problems part icular ly on universit y 

course and examinat ion t imetabling to  the taxi industry.  

 

2.3  University t imetabling problems 

The universit y t imetabling problem (UTP) is  about  finding an opt ima l 

dist r ibut ion o f classrooms and academic staff dur ing a fixed per iod o f t ime.  

Daskalaki  & Birbas  (2005) define a university timetabling  problem  “as the 

process o f assigning universit y courses to  specific t ime per iods throughout  

the five working days o f the week and to  specific  classrooms suitable for  

the number  of students and the needs of each course”.  The modelling o f 

universit y t imetabling problems depends on the object ives and constraints.   

A UTP is a combinator ial opt imizat ion problem that  has a  huge number o f 

possible so lut ions.  

The two main classes o f UTPs are t he course t imetabling problems (CTP) 

and the examinat ion t imetabling problems (ETP).  These t imetabling 

problems are related to  each other but  can be quite different .  The main 

difference between these two is based on availabilit y o f rooms and capacity 

of the rooms.  CTP requires t hat  no two courses be scheduled in one room 

at  the same t ime, while in ETP two or more examinat ions could be 

scheduled in one room. Often a student  is not  expected to write one 
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examinat ion immediately aft er another,  hence examinat ions for the same set  

of students are not  scheduled consecut ive ly,  but  for course scheduling 

problems o ften double (or more) lecture per iods are scheduled.  For the 

purpose of our study both problems are considered.  

 

2.3.1  University course t imetabling problem 

Chiarandini et al  (2006) define the universit y course t imetabling problem as 

an opt imizat ion problem in which a set  of events (courses and lectures) has 

to  be scheduled in t imeslots and located in suitable rooms subject  to a set  of 

constraints.  The object ive is to  find a feasible assignment  that  minimizes 

the number of so ft  constraint  vio lat ions.  The general CTP is known to be 

NP-hard,  as are many o f the sub-problems associated with addit ional 

constraints.  However,  severa l so lut ion techniques have been employed,  

inc luding graph co lour ing heur ist ics,  Integer Programming, Tabu Search,  

Simulated Annealing,  and Genet ic Algor ithm.  

Although there are var ious formulat ions of the CTP which differ from each 

other most ly for the hard and so ft  constraint s they consider,  for the sake o f 

generalit y,  a basic version o f the problem is descr ibed as fo llows:  

A basic  version o f CTP can be generally descr ibed as the problem that  

consist s of a set  of n  events,  E ,  to be scheduled in a set  of t imeslots 

},,,{ 21 ktttT L= ,  a set  of rooms R  in which events can take place (rooms 
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are o f a certain capacity),  a  set  of students S  who at tend the events,  and a 

set  of features F  sat isfied by events.  Each student  is  already pre-assigned 

to  a subset  of events.   

A feasible t imetable is  one in which all events have been assigned a 

t imeslot  and a room so that  the fo llowing hard constraint s are sat isfied.  

( i)  No student  attends more than one event  at  the same t ime.  

( ii)  Only one event  is taking place in each room at  a given t ime.  

In addit ion,  a feasible candidate t imetable is  penalized equally for  each 

occurrence o f the fo llowing:  

( i)  A student  has a class in the last  slot  of the day.  

( ii)  A student  has exact ly one class dur ing a day.  

( iii)  A student  has more than two classes in a row. 

Many constraints may be added as course t imetabling problems vary from 

one inst itut ion to  another.  The above ment ioned constraints are regarded as 

the common constraints in CTP. The object ive is to  minimize the number o f 

so ft  constraints vio lat ions or maximize the number o f so ft  constraints.  

Schaerf (2007) formulated the universit y course t imetabling problem 

similar to  the above problem with same descr ipt ion as opt imizat ion 

problem.  
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The object ive is to find 

 iky    ),.....,1;,.....,1( pkqi ==  

  Subject  to: 

   iik

p

k
ky =∑

=1
  ),....,1( qi =                (2.1) 

   kik

p

i
ly ≤∑

=1
   ),....,1( pk =              (2.2) 

   1≤∑
=∈

ik
Si

y
i

  ),....,1;,....,1( pkrl ==             (2.3) 

   0=iky  or 1  ),.....,1;,.....,1( pkqi ==         (2.4) 

where 1=iky  if a lecture of course ik  is scheduled at  period k ,  and 0=iky  

otherwise.  q  is the number o f courses,  and p  is t he number o f per iods.  

Constraint s (2.1) impose that  each course is composed o f the correct  

number of lectures.  Constraints (2.2) enforce that  at  each t ime there are no  

more lectures than rooms. Constraints (2.3) prevent  conflict ing lecturers to 

be scheduled at  the same per iod. The object ive funct ion is given by  

   Max ik

p

k
ij

q

i
yd∑∑

== 11
          (2.5) 

where ikd  is  the desiderabilit y o f having a lecture of course ik  at  the per iod 

k .  
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The so ft  constraint  t ypes can be fitted in eit her single object ive 

opt imizat ion problem whereby the minimizat ion o f total so ft  constraint  

vio lat ions are taken as the only one object ive or mult iple object ive 

opt imizat ion problems [Dat ta  & Deb (2007)].  In order to  fit  so ft  constraint  

types in a sing le object ive funct ion,  the not ion o f unit  o f penalty for each 

constraint  and it s weight  should be defined [Gaspero & Schaerf  (2007)].  

Chiarandini et al (2006) consider a combined object ive funct ion for ( i)  a  

student  has a class in t he last  t imeslot  of the day, ( ii)  a student  has more 

than two consecut ive classes,  ( iii)  a student  has to attend a sing le event  on 

a day. Mushi  (2006),  in his object ive funct ion,  included both hard and so ft  

constraints,  but  higher penalt ies are assigned to  hard constraints than so ft  

constraints to  discourage hard constraints from select ion.  The object ive 

funct ion is stated as fo llows:  

Given a so lut ion s  and a set  of k  constraints,   

 Minimize ( ) ( )sfsf i

k

i
i∑

=

=
1
λ            (2.6) 

Each funct ion if  represents one o f the constraints and each iλ  is the weight  

given to constraint  i  depending on it s importance.  
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2.3.2  University examination t imetabling problem 

The universit y examinat ion t imetabling problem is one o f t he difficult  

combinatorial opt imizat ion problems that  have been well studied by several 

researchers over the years.  A lot  of vers ions have been cons idered varying 

from inst itut ion to  inst itut ion.  Burke et al  (1995) ment ion the fo llowing two 

constraints t hat  are generally accepted to  any t imetabling problem and 

define the feasible t imetable.  

( i)  No ent it y must  be scheduled to  be at  more than one place at  a  

t ime. In examinat ion t imetabling this would mean: no student  can 

sit  for more than one examinat ion at  any one t ime.  

( ii)  For each per iod in the resource demands made by the event  

scheduled for the per iod must  not  exceed the resource available.   

Batenberg & Palenst ijn (2007) define the ETP as the problem that  consists 

of allocat ing a number o f examinat ions in which students part icipate to 

t imeslots in such a way that  no student  has two or more examinat ions in the 

same t imeslots.  The object ive is to  minimize the number o f t imes a student  

has examinat ions in two consecut ive t imeslots,  weighted by the t ime 

between the two consecut ive slots.  The fo rmulat ion is as fo llows:  

Suppose that  there is  a t imetable T .  Let  ijd  be the weight  for the t ime 

between examinat ions i  and j  in T ,  ( 2=ijd  if events i  and j  are on the 
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same day, 1=ijd  if they are consecut ive days,  0=ijd  otherwise).  Then the 

penalty for T  is given by 

  ×+= ∑
≠

5000

,

ij

ji
ji

ijdcT  (number o f unscheduled events)     (2.7) 

For each pair  o f examinat ions ( )ji, ,  ijc  is  the number o f part icipants t hat  

they share.  The problem is to  minimize this penalty funct ion over al l 

t imetables that  sat isfy t he hard constraints.  

Gaspero & Schaerf (2007) define the basic  version o f universit y 

examinat ion t imetabling problem as the problem of assigning examinat ions 

to  t imeslots by avo iding the over lapping o f examinat ions having the 

students in common. The assignment  is represented by a binary matr ix pnY ×  

such that  1=iky  if and only if the examinat ion ie  is assigned to per iod jk . 

The corresponding formulat ion is the fo llowing.  

The object ive is to find  

     iky   ),.....,1;,.....,1( pkqi ==  

  Subject  to: 

  1
1

=∑
=

ik

p

k
y  ),....,1( qi =                      (2.8) 

   1
1

≤∑
=

jhihjkik

q

h
ccyy  );...,,1,;,....,1( jinjipk ≠==    (2.9) 

       0=iky  or 1 ),.....,1;,.....,1( pkqi ==     (2.10) 

where q  is the number of examinat ions,  and p  is the number of per iods.  
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Constraint s (2.8) state that  an examinat ion must  be taken in exact ly one 

t imeslot .  Constraints (2.9) state that  no student  takes two examinat ions 

scheduled at  the same t imeslot .  From these constraints it  is c lear that  one 

common hard constraint  ment ioned ear lier  that  no events that  are in conflict  

could be scheduled in t he same t imeslot ,  i.e.  the examinat ions for the 

common students,  should be separated.  

The object ive funct ion is  based on the so ft  constraints with different  

weights.  

( i)  Second-order conf licts:  A student  should not  take two 

examinat ions in consecut ive per iods.  

( ii)  Higher order conf licts:  A student  should not  take two 

examinat ions in consecut ive per iods at  distance three,  four or five.  

( iii)  Preferences:  These can be given by lecturers and student  for 

scheduling examinat ions to  given per iods.  

Gaspero & Schaerf (2007) present  a family o f so lut ion algor it hms that  are 

based on Tabu Search (TS) to  a problem. However their result s were not 

sat isfactory in all instances aft er these TS-based algor it hms have been 

compared with t he exist ing literature in the problem, but  they planned to 

improve their algor ithms.  

Soft  constraint  ( i)  second-order conflicts,  is the most  common type o f so ft  

constraints cons idered in the literature on examinat ions t imetabling.  
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Schaerf et al  (2007) consider in the object ive funct ion the examinat ions 

belonging to  the same group lS  scheduled at  adjacent  per iods.  The object ive 

funct ion is given as    

    1

1

1 1 ,

  Minimize +

−

= = ∈
∑∑ ∑= ik

p

k

r

y Sji
ik yyz

l

     (2.11) 

2.4  Public t ransport scheduling problem 

The public t ransport  scheduling problem is increas ingly receiving at tent ion 

in the lit erature.  Several t ransport  t imetabling problems have been 

approached as vehic le scheduling problems, so t imetabling and scheduling 

are synonyms in this paper.  It  is well known that  t imetabling can be seen as 

a form o f scheduling,  where the task is to  allocate act ivit ies to  available 

slots respect ing some constraints [Sangheon (2004)].  The three classes o f 

public t ransport  t imetabling problems that  have been most ly given an 

attent ion by many researchers are: the t rain t imetabling problem (TTP),  the 

vehicle t imetabling problem (VTP),  and the air line t imetabling problem 

(ATP).  

The two sub-problems in VTP are:  vehicle and crew scheduling .  

Tradit ionally,  these two problems have been approached separately,  so that  

vehicles are first  assigned to  t rips,  and in a second phase,  crew are assigned 

to  vehicle block (a set  of two consecut ive vehic le revenue t r ips to be 

operated,  including the t ime taken to  leave and return to  the rank, where all 

vehicle t r ips originate and end) calculated before [Gintner et al  (2006)].  
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Freling et al  (2001) define vehicle scheduling as the process of assigning 

vehicles to  a set  of predetermined t r ips with fixed start ing and ending 

t imes,  while  minimiz ing capital and operat ing costs.  The types o f 

operat ional costs that  might  be invo lved are layover ( idle t ime) and dead 

running (relocat ing the bus between locat ions with passengers,  t his includes 

leaving and returning to  the depot). Different  instances o f vehic le 

scheduling problems have different  t ypes o f object ive funct ions.  For 

example,  to  minimize the total sum o f vehicle and crew costs such that  both 

the vehic le and the crew schedu les are feasible and mutually compat ible 

[Wren  & Wren (1995)].  In genera l,  the object ive funct ion tends to be more 

complex in crew scheduling,  it  being a combinat ion o f fixed cost  items,  

such as wages,  and var iable cost  items, such as extra duty t ime. As a result ,  

crew scheduling is usually harder to so lve than vehicle scheduling 

[Sangheon  (2004)].  

A vehicle schedule is feasible  if:   

( iii)  All t r ips are assigned to  exact ly one vehicle,  and  

( iv)  Each t r ip is  assigned to  a vehicle from a depot  that  is  

allowed to  drive this t r ip.   

The vehicle scheduling is a step in t he operat ional planning process in 

public t ransport.  The start ing po int  is  a  t imetable,  which defines the so-

called t imetabled t r ips.  In any t ransport  company,  t imetabling,  vehic le 

scheduling,  crew scheduling and crew roster ing are the most  important  steps 
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in operat ional planning process.  Most  of these steps are t reated separately 

due to  their inherent  complexity.  A typical example is t he Bus Scheduling 

Problem (BSP) for  which the operat ions planning and scheduling start  off 

with the designing o f a t imetable o f t rips that  have to  be served by buses.  

Each t rip has a start ing t ime or locat ion and dest inat ion t ime or locat ion.  

BSP invo lves assigning a set  of t r ips to  a set  of buses such that :  

( i)  The sequence of the t rips for each bus is feasible: no t rip  

precedes an ear lier t rip in the sequence.  

( ii)  Each t rip is served by exact ly one bus.  

The crew scheduling problem consist s in at t ribut ion to  the dr ivers and 

co llectors (crews),  the job o f dr iving the vehicles in such way that  the t r ips 

of the different  lines assisted by the company are executed with the 

smallest  possible cost .  This process o f att ribut ing tasks to  the crews, also  

called a process o f dr iver scheduling,  is the construct ion o f a group of legal 

shifts  that  cover all o f t he schedule blocks o f a  vehic le that  is  part  o f a  

large scale o f vehicles reflect ing all the operat ions o f an organizat ion.  The 

crew scheduling problem is known as dr iver scheduling problem. Maur i & 

Lorena (2004) descr ibe it  as the one of fo rmat ion of a matr ix,  where dr ivers 

appear in co lumns and tasks in rows. Each element  { }1,0∈ija ,  },...,1{ mMi =∈  

and },...,1{ nNj =∈ ,  where m  is the number  o f tasks ( rows),  and n  the 

number of dr ivers (co lumns) of matr ix A ,  and 1=ija  if the task i  belong to 

j  dr iver ’s shift  and 0=ija  otherwise 
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This matr ix will be used to  solve the following set  part it ioning problem 

(SPP). 

  Minimize j

n

j
j xcz ∑

=

=
1

      (2.12) 

  Subject  to: 

    1
1

=∑
=

j

n

j
ij xa    mi ,.....,1=   (2.13) 

    ]1,0{∈ijx    nj ,.....,1=   (2.14) 

where jc  is  the cost  of co lumn j  and 1=jx  if column j  belongs to  the 

so lut ion and 0=jx   otherwise.  

In bus crew scheduling problem (BCSP),  generally t he ma in aim for  

developing any bus crew schedule is  to  achieve opt imum and dynamic 

schedule.  Opt imum schedules mean that  resultant  schedules should 

minimize the operat ional cost  whilst  dynamic means it  is able to  maint ain 

such opt ima lit y t hroughout  the schedule durat ion.  However,  t he ma in 

obstacle o f keeping such opt imalit y t hroughout  day-to-day operat ion is  

unpredictable events such as late crew or sick while on duty.  Bus service 
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usually operates in an unpredictable environment .  Whenever  an 

unpredictable event  occurs,  it  affects bus operat ions even for other routes 

as well [Schaerf  (2007)].  

The BCSP is an extremely complex part  of the operat ional planning process 

of t ransport  companies.  The planning process starts by the definit ion o f 

vehicle schedules,  a iming at  minimiz ing the number o f vehicles required.  

The constraints considered in t he construct ion o f a feasible BSCP so lut ion 

can be divided into hard and so ft  constraints.  The cho ice o f the constraint s 

to  impose to  a part icular problem depends on the st ructure of the problem 

and on the operat iona l planning rules of the company [De Sousa et  al  

(2007)].   

De Palma & Lindsey (2001) consider VTP that  is defined as fo llows:  

There is  a  given number o f ind ividuals who t ravel by t ransit  on a  single 

link.  Preferred t ravel t imes and unit  schedule delay costs for arr iving ear ly 

or late differ from person to  person. Service on the route is provided by a 

fixed number o f vehicles.  Vehicle capacity constraint s are ignored, so that  a  

vehicle can carry any number o f passengers with any congest ion.  

Sangheon (2004) considers t he problem of rout ing vehicle through single 

depot  or mult iple depots.  He defines the problem o f vehicle scheduling 

problem as fo llows: Vehicle with a  fixed capacity Q  must  deliver  order 

quant it y ),...,1( niqi =  of goods from a sing le depot  )0( =i  to  n  customers.  

Knowing the distance ijd  between customers i  and j  ( )nji ,...,0, = ,  the 
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object ive of the problem is to  minimize the total distance t raveled by the 

vehicles in such a way that  only one vehic le handles the deliver ies for a  

given customer and the total quant it y o f goods that  a single vehic le delivers 

is not  larger than Q .   

Sangheon (2004) formulates this problem as fo llows: Let  ( )AVG ,=  be a  

graph with a set  V  of vert ices and a set  A  of arcs.  NV ∪= 0 , where 0  

corresponds to  the depot  and nN ,...,1=  is the set  of customers.  For the set  

of arcs,  })0{()}0({ ×∪∪×= NINA ,  where NNI ×⊆  is  the set  of arcs 

connect ing the customers,  N×}0{  contains the arcs from the depot  to  the 

customers,  and }0{×N  contains the arcs from the customer to  the depot . 

Every customer  NI ∈  has a posit ive demand iq .  For each arc ( ) Aji ∈,  there 

is a cost  ijc .  

Furthermore,  it  is assumed that  the vehic les are ident ical and have the 

capacity Q .  All t he above ment ioned factors are assumed to  be known in  

advance.  The factors have the fo llowing var iables: For each customer  

iyNi ,⊂  is the load o f the vehicle when it  arr ives at  the customer.  Now the 

problem is to  determine which o f the arcs ( ) Aji ∈, ,  are used by routes.  For 

each arc ( ) Aji ∈, ,  the decis ion var iable 1=ijx  if arc ( )ji,  is used by a 

vehicle,  and 0=ijx  otherwise.  Formally 

  Minimize  
( )

ij
Aji

ij xcz ∑
∈

=
,

                (2.15) 
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  Subject  to: 

     1=∑
∈

ij
Vj

x    Ni ∈∀     (2.16) 

    1=∑
∈

ji
Vj

x    Ni ∈∀     (2.17) 

    jiiij yqyx =−⇒= 1   ( ) Iji ∈∀ ,     (2.18) 

    Qyq ii ≤≤    Vi ∈∀     (2.19) 

    }1,0{∈ijx    ( ) Aji ∈∀ ,     (2.20) 

The problem is to  minimize the total cost that  consist  o f t ravel costs and a 

fixed cost  c  of vehicles ( included in the t ravel cost  0c  between depot  and 

first  customer).  The object ive is,  first  minimize the number o f routes or 

vehicles,  and then the total distance of all routes.  By equat ions (2.16),  

(2.17) and (2.20),  we require that  every customer be vis ited exact ly once.  

Equat ions (2.18) and (2.19) enforce the condit ion that  the loads o f the 

vehicle when arr iving at  the customer are feasible.  

 

2.5  Solution techniques o f t imetabling problems 

Over the past  few years the universit y t imetabling problem has been studied 

widely and several different  algor ithms have been developed to  solve it .  

Local search approaches (Genet ic Algorit hm (GA), Simulated Annealing 
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(SA), Tabu Search (TS)) play an important  role in t he universit y 

t imetabling lit erature.   Local search is the common name for the group of 

methods that  (on the who le) iterat ively repeat  the replacement  o f the 

current  so lut ion by a new one (Wren & Wren [1995]).  Alvaraz-Valdes et al  

(2002) have developed the so lut ion procedure based on TS. 

Many authors have emplo yed a hybr id method that  cons ists o f two or more 

phases or stages of the t imetabling problem. Local search a lgor ithms such 

as: GA, SA and TS appeared as effect ive algor ithms for the second phase of 

the hybr id method. Liam et al  (2002) presented a new hybr id algor ithm for  

the examinat ion-t imetabling problem, with the fo llowing three stages:  

( i)  Constraint  Programming: to  obtain a feasible t imetable.  

( ii)  Simulated Annealing: to improve the qualit y o f the t imetable.  

( iii)  Hill Climbing: for further refinement  of the t imetable.  

SA is used to  improve the qualit y o f the t imetable in t he second phase.  TS 

introduced by Glover (1988) turned out  to be one o f the most  powerful tools 

for so lving hard combinatorial problems.  

Sangheon (2004) has combined GA and TS to  develop Hybr id Meta-

Heur ist ic methods to  solve the Vehicle Scheduling Problem. Claessens et  al  

(1998) present  an algor it hm that  solved to opt imalit y an allocat ion line 

problem by t ransforming it s nonlinear  int eger programming formulat ion 

using programming methods.  The algor ithm is based upon constraint  

sat isfact ion and branch-and-bound procedures.  
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Some algor ithms were constructed part icular ly for universit y class 

t imetables.  Nthangeni (1986) suggests an algor it hm on the construct ion o f 

universit y class t imetable that  is  programmable on eit her the main frame or 

a microcomputer.  

We review some techniques that  have been frequent ly employed to  solve 

var ious t imetabling problems with the aim o f designing an appropr iate 

model for our own problem.  

 

2.5.1  Graph co louring technique 

De Werra (1985) emplo yed the graph colour ing technique in so lving 

t imetabling problems. The problem is presented as a network of arcs and 

nodes,  and the so lut ion invo lves finding a minimal set  o f co lours such that  

no two adjacent  nodes or edges have the same co lour.  While these 

techniques adapt  well to  small-scale problems, they fail to  scale up to  large 

ones.  In a  case where t he problem is to  schedule a  course at  the universit y 

with a fixed number o f t ime slots,  such a problem can be modelled as a  

graph co lour ing one.  For large size problems, heur ist ics are needed in order  

to  obtain appropr iate so lut ions.  Yanez & Ramirez (2003) int roduced robust  

co lour ing that  can be considered as an extension o f a graph co lour ing 

problem.  Scheduling problems can be modelled as Robust  Co lour ing 

Problems (RCPs) so that  the graph-based heur ist ics could be applied to 

so lve them.  
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2.5.2  Integer programming 

Daskalaki et al  (2004) have modeled a UTP as an int eger programming 

problem using 0-1 var iables.  The model provides constraints for a large 

number o f different  rules and regulat ions that  exist  in academic 

environments.  More specifically,  the model succeeds in creat ing t imetables 

that  are free from co llision between courses and complete from all aspects.  

Moreover,  it  supports the scheduling o f courses that  require consecut ive 

t ime per iods as well as courses that  require sessions that  are repeated 

several t imes to  accommodate different  groups of students.  

A major source o f complexity in the complete Integer Programming (IP)  

model has been the constraints for consecut iveness.  The relaxat ion is  

per formed in a  two-stage procedure.  This so lut ion approach suggests the 

relaxat ion o f consecut ive constraints dur ing the fir st  stage and their  

int roduct ion dur ing the second stage after all courses have been a lready 

assigned to  days.  Then the only concern is to re-arrange the courses o f each 

day so that  consecut iveness is achieved, whenever it  is required.  

2.5.3  Local search  

A local search is  a  metaheur ist ic  fo r so lving computat ionally hard 

opt imizat ion problems. It  can be used on problems that  can be formulated as 

finding a so lut ion maximiz ing a cr it er ion among a number  o f candidate 

so lut ions.  Local search techniques are non-exhaust ive in the sense t hat  they 
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do not  guarantee to find a feasible (or opt ima l) so lut ion,  but  they search 

non-systemat ically unt il a specific stop criter ion is  sat isfied.  

The heur ist ics are generally employed for two different  purposes 

( i)  They can be used within the context  of an exact  opt imizat ion 

algor ithm to speed up the process o f reaching the opt imum.  

( ii)  They are simply used to  find a “good” so lut ion to  the problem.  

The result ing so lut ion is  not  guaranteed to  be opt imum and, in  

fact ,  it s qualit y relat ive to the t rue opt imum may be difficult  to  

measure [Taha (1989].  

Cons ider an opt imizat ion problem, and let  S  be a possible search for it .   

Funct ion N ,  which depends on the st ructure of the specific problem,  

assigns to  each feasible so lut ion Ss ∈  it s neighbourhood SsN ⊆)( .  Each 

so lut ion )(sNs ∈′  is called a neighbour of s  [Schaerf  (2007)].   

A move is the operat ion of taking one event  and move it  to  one of it s  

possible places P  and the move neighbourhood )(sN  of s  consist s ( is a set ) 

of all so lut ions s′  obtainable from s  in one move. The move value is  the 

change in a so lut ion value when moving from s  to s′ .  Thus a move equals 

to  1−  means that  the move improves the so lut ion slight ly [Arntzen (2007)].  
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2.5.4  Genetic a lgorithm 

Genetic algorithm  (GA) is  a heur ist ic search used to  find approximate to 

difficult -to-solve problems through applicat ion o f the pr inc iples o f 

evo lut ionary bio logy (Chromosomes reproduct ion) and Computer Science.  

GA uses bio logica lly der ived techniques such as: inher itance,  mutat ion,  

nature select ion and recombinat ion (or cross-over).  The two main operators, 

namely crossover and mutat ion,  t ransfo rm t imetables to form the next  

generat ion with bet ter t imetable’s qualit y by improving the init ia l 

populat ion o f a feasible t imetable.   

The crossover operator is one o f the most  essent ial genet ic operators.  Its 

task is  the realizat ion o f the determinist ic search and it  t r ies to  advance in  

the problem space by applying the exist ing knowledge [Gyor i et al  (2001)].  

The mutat ion operator int roduces random modificat ions.  It  a lone induces a  

random walk through the search space.  The role of the mutat ion operator in 

the GA is t he assurance o f t he heur ist ic  search.  It  t r ies to  get  to  the 

individuals found in the undiscovered part of the problem space.   

GA is used to  develop some approaches to  create new schedules from other  

exist ing ones (a populat ion o f individuals is  created randomly).  The concept  

is  to  create a fit ness funct ion that  determines the qualit y o f a schedule and 

compares the newly created schedule with the previous one.  Each schedule 

is evaluated according to  a set of cr iter ia that  are included in the fit ness 

funct ion,  for example,  the length o f a schedule,  how many students have to  
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sit  for two examinat ions in a row and the spare capacity in each o f the 

rooms. 

Only schedules that  get  a higher ranking from the fit ness funct ion will be 

fo llowed on. Although this approach is  found to  be powerful,  it  only works 

on a convex so lut ion space.  

The basic a lgor ithm is given as fo llows:  

1.  Randomly init ialize populat ion (t ); 

2.  Determine fit ness of populat ion (t ); 

3.  Repeat  the fo llowing:  

• Select  parents from populat ion (t ); 

• Perform crossover on parents creat ivity populat ion 

(t+1); 

• Perform mutat ion of populat ion (t+1); 

• Determine fit ness of populat ion (t+1); 

unt il the best  individual is  good enough.  

A populat ion o f ind ividuals is  maintained within the search space for a GA,  

each represent ing a possible so lut ion to a given problem.  

2.5.5  Simulated annealing  

Simulated Annealing  (SA) is  a search technique that  t ries to  avo id becoming 

t rapped in a local opt imum by allowing some uphill steps or moves.  This is  

done as fo llows: it  so lves the t imetabling problems by allowing a worse 

http://www.pdfcomplete.com/cms/hppl/tabid/108/Default.aspx?r=q8b3uige22


 41

so lut ion ( lesser qualit y) to  be considered at  t imes.  I f an improved local 

search move is bet ter than it s current  posit ion then it  is a lways accepted.  If 

the move is  worse ( i.e.  lesser  qualit y)  then it  will be accepted based on 

some probabilit y which depends on the relat ive deter iorat ion in the 

evaluat ion funct ion value,  such that  the worse a move is,  t he less likely it  is  

to  accept  it .  Burke et al  (1995),  argue that  SA is similar to  Hill-Climbing 

but  accepts a worse solut ion with a probabilit y dist r ibut ion known as the 

Metropolis dist r ibut ion,  defined as fo llows:  

  
( ) ( )

( ) ( )



















 −′

−

<′

=′

otherwiseexp

if1
),,(accept

T
sfsf

sfsf
ssTp      (2.21) 

where s  is t he current  so lut ion,  s′  is a  neighbour so lut ion and ( )sf  is  the 

evaluat ion funct ion.  The temperature parameter T ,  which contro ls the 

acceptance probabilit y is  allowed to  vary over the course o f t he search 

process.   

2.5.6 Tabu search 

Tabu search  (TS) is a local search metaheur ist ic  that  relies on specia lized 

memory st ructures to  avo id entrapment  in local opt imum and achieve an 

effect ive balance o f intensificat ion and diversificat ion.  Intensif ication  

st rategies invo lve changing the cho ice rules to intensify t he search to 

examine neighbours o f elit e so lut ions.  The idea is  that  if certain regions 
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contained good solut ions in t he past  they may possibly yie ld bet ter 

so lut ions in the future.  The Diversif ication  stage encourages t he search 

process to  examine unvis ited regions and to  generate so lut ions that  differ  

significant ly.   

More precisely,  TS allows the search to  explore so lut ions t hat  do not 

decrease t he object ive funct ion value only in t hose so lut ions that  are not 

forbidden.  

In general,  TS starts with an init ia l solut ion that  has been previously 

constructed,  and runs through an it erat ive process by means of which it  

seeks to  improve the object ive funct ion value o f subsequent  so lut ions 

[Malachy & Sinead (2003)].  This is usually obtained by keeping t rack o f the 

last  so lut ions in terms o f the move used to transform one so lut ion to  the 

next .  When a move is  per formed it  is  considered to  be tabu forbidden for  

the next  N iterat ions,  where N is t he tabu status length.  A so lut ion is  

forbidden if it  is obtained by applying a tabu move to  the current  solut ion.  

At  each it erat ion o f the search,  a neighbourhood is examined to  construct  a 

new so lut ion [Gunadhi et al  (1996)].  According to  the given neighbourhood, 

a move for the t imetabling problem is defined by moving one event  or by 

swapping two events.  A move is forbidden if at  least  one of the events 

invo lved has been moved less than N steps before. 
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2.6   Solution techniques to public transport  scheduling  

Vehicle-scheduling problems are opt imizat ion problems that  have been 

categorized as NP-hard.  (An NP-hard problem  is any opt imizat ion problem 

that  cannot  be so lved in po lynomia l t ime).  Such problems have therefore 

been approached using heur ist ics and meta-heur ist ics due to  the complexit y 

of applying exact  techniques to  global opt ima lit y.  

Heur ist ic methods have achieved good so lut ions to real-t ime t ransport 

(vehicle and t rain) scheduling problems.  Ebben et al  (2005)  present  

heur ist ics for t he dynamic vehic le-scheduling problem with mult ip le 

resource capacity constraints.  A ser ia l scheduling method (a pr ior it y rule 

based on scheduling heur ist ic) consist s of two element s: a schedule 

generat ion scheme and a pr ior it y rule.  A feasible schedule  is generated by 

extending a part ia l schedule.  At  each stage,  an act ivit y that  is not  yet  

scheduled is selected according to  the specified pr ior it y rule.  Each act ivit y 

can only be schedu led once.  Malachy & Sinead  (2003) used heur ist ics 

analogous to  the methods employed in exist ing t rain planner manua l 

methods for many advantages that  inc lude the st ructure of the problem to 

reduce the search space.  Sangheon (2004) developed a Hybr id Meta-

Heur ist ic Method for the vehic le scheduling problem. A so lut ion procedure 

is based on a GA and TS. TS is used to generate the seeds o f a GA 

heur ist ic.  Wren & Wren (1995) provide an example o f GA for public  

t ransport  driver scheduling.  
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De Palma & Lindsey (2001) consider two locat ion models,  namely:  the line 

model and the circle model to  find an opt ima l so lut ion for a given number  

of public t ransport  vehicles on a single t ransit  line.  In their problem,  

first ly,  it  is assumed that  the t ravelers’ desired t ravel t imes are dist r ibuted 

over a segment  o f t he day and rescheduling o f t r ips between days is  

impossible.  Secondly,  it  is assumed that  desired t ravel t imes are dist r ibuted 

around the clock and that  rescheduling o f t rips between days is possible.   
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3.1  Introduction  

In this chapter we present  an applicat ion o f universit y (courses and 

examinat ions) t imetabling models and mathemat ical formulat ion descr ibed 

in the literature review (Chapter 2) to the taxi-t imetabling problem. In 

sect ion 3.2 the applicat ion of universit y t imetabling problem is presented 

and sect ion 3.3 gives t he mathemat ical formulat ion mode ls to  model our 

problem.  

3.2  Application of university t imetabling problem  

In t his sect ion,  we descr ibe how the applicat ion of universit y t imetabling is  

employed to  the taxi-t imetabling problem.  

3.2.1  Problem situation  

We consider a single depot  vehic le-scheduling problem for the Greater 

Mankweng Taxi Associat ion (GMTA) that  operates between the City o f 

Polokwane and Mankweng Township.  We also consider one working week 

schedule o f all t r ips start ing from 05H00 to  20H00 to  the set  of taxis.  The 

ordinary daily duty consists o f more than 1500 t r ips,  from both two ranks 

and served by over 500 taxis,  except  Saturday and Sunday where there will 

be lesser t r ips.  

S ince an associat ion operates from two ranks (control po ints),  the fina l 

t imetable should incorporate all the t imetables from both ranks.  For an 

example,  the taxis will have to  be assigned to  t rips at  both ranks.   
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Let  

 },...,,{ 21 ntttT =  be a finite set  of taxis.  

( )Ati  and ( )Bti  be a  taxi it  at  rank A and B respect ively,  ni ,,2,1 L= .  Every 

taxi is  start ing from and returning to  the same rank.  

( )Ati ,Dep  and ( )Bti ,Dep  denote the departure t imes for taxi it  at  rank A and 

rank B respect ively.  

( )Ati ,Arr  and ( )Bti ,Arr  denote the arr ival t imes for taxi it  at  rank A and rank 

B respect ively.  A taxi t r ip  o f taxi it  is  descr ibed by an ordered pair  

( ) ( ){ }BtAt ii ,Arr,,Dep . A taxi block o f it  is given by a set  of t r ips as,   

Block ( ) ( )( ) ( ) ( )( ){ }AtBtBtAt iiii ,Arr,,Dep,,Arr,,Dep= .  

Figure 3.1 illust rates the fir st  taxi ( )At1  that  starts the day at  06H00 fro m 

Rank A to complete a t r ip to  Rank B at  06H30 and to  complete block back 

to  Rank A, now at  07H00. This implies that : 

( ) 0006,Dep 1 HAt =  

( ) ( )BtHBt ,Dep3006,Arr 11 ==  

( ) 0007,Arr 1 HAt = .  
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Figure 3.1: A vehicle block development  

 
Rank A       Rank B   

( ) 0006,Dep 1 HAt =      ( ) ( )BtHBt ,Dep3006,Arr 11 ==  

    t r ip  

     t r ip      Block 

( ) 0007,Arr 1 HAt =    

 Rank A 

 

Due to  the fact  that  in GMTA individuals  pr ivately own taxis,  every owner  

is  responsible for a dr iver.  Crew (dr iver ) scheduling as a sub-problem o f 

VSP is considered in a  different  way from a case whereby one company 

owns all the vehicles.  In many public t ransportat ion companies a crew may 

leave a vehic le and another takes over and the vehic le cont inues in service,  

unlike in taxi industry a relief o f dr iver is a relief on a vehic le.  In vehicle 

scheduling,  the problem is to  construct  blocks of consecut ive t r ips.  Each 

block must  start  and end at  a depot ,  while  sat isfying appropr iate operat iona l 

rest r ict ion.  

3.2.2  Taxi scheduling  

In general the VSP consist s o f assigning vehic les or iginat ing and 

terminat ing from a central depot  to  t ime tabled t r ips in such a way that  each 

t rip is  carr ied by one vehic le,  a set  of constraints is  sat isfied,  and a cost  

funct ion is  minimized. The t imetabling problem for taxi (minibus) t ransport 

invo lves the scheduling o f several taxis from or igin taxi rank to  t ransport 
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passengers to  dest inat ion rank and return to  the or igin rank. The problem 

data are a set  of t rips,  each one defined by the start ing and ending t imes and 

locat ions.  The t imetable is  built  in  funct ion o f passenger demand 

dist r ibut ion along a day.  The passenger flow is the one o f t he most  

sensit ive factors in t he t ransportat ion scheduling problem to be looked at . 

The analys is o f the historical passenger flow can be used to  predetermine 

the pat tern of peak and o ff-peak durat ion everyday. Figure 3.2 illust rates 

passenger flow dur ing peak and off-peak hours along a day.  

 

Figure 3.2: Estimated number of passengers transported daily 

 

 

Source: Rodrigues et al (2007)  

 

Another sensit ive factor of the t ransportat ion scheduling problem is  

disrupt ions of a  schedule.  Transportat ion systems o ften encounter 

disrupt ions that  prevent  them from operat ing as planned. Severe weather  

condit ions,  accidents,  and the breakdown o f vehic les are examples o f 
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possible disrupt ions that  demand the rescheduling o f vehicles.  In case of 

disrupt ions,  a  schedule can also be adjusted depending on the nature o f 

disrupt ion.  I f it  is  a  ser ious disrupt ion,  it  needs to  be rescheduled to 

complete all the remaining t r ips that  include disrupted one.  Figure 3.3 

descr ibes a t ypical process invo lving both the scheduling and the 

rescheduling of disrupted t imetable . Chang and Chung (2005) so lve the 

rescheduling t imetable problem by using object ive funct ion as t he 

difference between the or iginal t imetable and re-scheduled t imetable.  

Figure 3.3: Scheduling and rescheduling of timetable. 

 

Source: Chang and Chung (2005) 

3.2.3  The hard constraints  

For this study, t he fo llowing are considered to  be hard constraints and must  

be sat isfied:  
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( i)  No dr iver or taxi can be scheduled for more than one t r ip at  the 

same t imeslot ,  and no passenger can be assigned for more than 

one t rip in the same t imeslot . 

( ii)  Each taxi can only take one t rip at  the same t ime.  

( iii)  The capacity o f a  taxi should not  be exceeded ( i.e.  there should 

be no over loading).  

( iv)  Each block o f t rips starts and ends at  the same depot . 

(v)  Each taxi should complete it s block without  any interrupt ion.  In 

order to  do so it  must  be assigned two consecut ive t r ips in 

different  ranks.   

(vi)  Each taxi must  not  be scheduled more than once before a ll taxis 

from a pool are scheduled once.  

(vii)  Only roadworthy taxis can be scheduled for a t rip.  

3.2.4  The soft  constraints  

A t imetable that  sat isfies the hard constraints discussed above is called a  

feasible t imetable.  However,  a feasible t imetable does not  mean a good 

t imetable for business concerns.  There are also a number o f addit ional 

constraints t hat  should be sat isfied whenever possible in order to  make our  

t imetable more pract ica l in the real wor ld.   If any o f these constraints is  
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vio lated,  a penalty is  applied to  the so lut ion.  The so ft  constraints are as 

fo llows:  

( i)  The consecut ive t rip departure t imes in each hour must  be as 

uniformly spaced as possible,  with a t ypical tolerance o f two 

minutes.  

( ii)  The number of t r ips,  in each hour and direct ion,  must  be 

enough to  cover the passenger demand.  

( iii)  No trip with fewer passengers should be assigned.  

( iv)  A dr iver should not  have two blocks in adjacent  t imeslots.  

(v)  Every dr iver has a minimum and a maximum limit  o f weekly 

work-hours.  

3.2.5  The objective function  

Since many taxi dr ivers and owners have hard constraints,  e.g.  they ma y 

need to  maximize profits.  The object ive funct ion in our problem is to 

improve the t imetable with respect  to  passengers’ need. The object ive o f 

this problem is to  minimize the wait ing o f passengers and provide the bet ter 

service to  the public .  The fir st  two soft  constraints (( i)  and ( ii))  discussed 

above address the wait ing t imes o f passengers.  I f the departure t imes are 

not  uniformly spaced, in some cases the length o f wait ing t ime will be 

longer or shorter.  However,  the wait ing t imes might  not  be the same. The 

length o f wait ing t imes depends on the predicted vo lume o f passenger flow.  
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In addit ion,  one other scenar io considered is that ,  from the taxi industry’s 

point  o f view, it  is  preferable to  maximize pro fit  by ensur ing that  all seats 

are occupied at  each t r ip,  imp lying that  if  the passengers are fewer than the 

capacity o f the taxi,  they (passengers) will have to wait  unt il the taxi is  

fully occup ied.  It  becomes the problem o f minimizat ion o f wait ing t imes o f 

passengers against  maximizat ion o f profit .  A so lut ion for this proble m 

should minimize the number o f t r ips with fewer passengers.  However,  in 

some occasions the minimizat ion o f t hese t rips may not  be possible as it  

depends on the vo lume o f passengers.  

3.2.6  Evaluation of the feasib le Schedule  

In our problem, a feasible schedule would be the assignment  o f a  set  of 

t rips to a set  of taxis w ithin the limit ed number of t imeslots such that : the 

passengers should not  wait  for long t ime at  stat ions.  To evaluate whether or 

not  a schedule is  feasible one could consider several factors,  but  in our 

problem we consider a set  of so ft  constraints that  we will t ry to  avo id 

vio lat ing.  A cost  funct ion that  computes a  penalt y for any feasible schedule 

is der ived based on the number o f so ft  constraints vio lated.  

The object ive funct ion in this problem is constructed by minimizing the 

number o f soft  constraint  vio lat ions.  I f the total result ing from vio lat ing the 

so ft  constraints can be minimized so as to  approach zero,  the generated 

t imetable will be close to  the opt imal so lut ion.  An infeasible assignment  is  

considered useless and is therefore discarded [Muller (2002)].  
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3.3  Mathematica l programming model 

In this sect ion,  we present  integer and linear programming models to  model 

our problem.  

The formal mathemat ical definit ion o f the taxi-t imetabling problem we deal 

with in this study is as fo llows:  

The taxi-t imetabling problem (TTP) aims  at  schedu ling a number o f events 

(t rips) to  the available t imeslots,  and suit able taxis while sat isfying a set  o f 

constraints.  For the constraints o f this problem we consider the problem 

instances taken from lit erature [Burke et al  (2006),  Daskalaki et  al  (2004),  

Gunadhi et al  (1996)].  Given a set  of n ,  events E  to  be scheduled in a set  

of t imeslots,  a set  o f rooms R  in which events can take place (rooms are o f 

a certain capacity),  a set  of students (passengers) S  who attend the events,  

and a set  of features F  sat isfied by events.   

3.3.1  Assumptions 

The fo llowing assumpt ions have been made 

( i)  The taxis are ident ical in terms o f capacity.  

( ii)  In a course or examinat ion t imetabling problem, there are a  

number o f enro lled students for that  course,  while  in taxi 

t imetabling the number o f passengers is  not  fixed. So it  is assumed 

that  the number of passengers to  be t ransported per trip is  

determined by the vehic le capacity.  
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( iii)  The t raveling t ime and the distance are known. 

( iv)  The consecut ive t r ip departure t imes at  each rank are uniformly 

spaced. The spacing is  divided into peak and non-peak hours,  with 

asuumpt ion for peak hours it  is  assumed a typical to lerance o f two 

minutes and non-peak with 10 minutes.  Peak hours are between 

6H00 and 9H00 and 16H00 and 19H00.  

(v)    All t r ips start  and end at  the two ranks,  there are assigned around 

float ing taxis co llect ing passengers to  the ranks.  

(vi)  A taxi makes two consecut ive t r ips without  an interrupt ion from 

different  ranks,  thus makes a complete block. (See Figure 3.1).  

3.3.2  Defin it ions  

For any vehic le scheduling there are terms that  are considered in the 

lit erature,  but  in this study we consider some o f them: 

( i)  Trip:  a one-way movement  o f a vehic le between two terminuses 

or ranks.  

( ii)  Block:  a set  of two consecut ive vehic le revenue t r ips to be 

operated,  including the t ime taken to  leave and return to  the 

rank, where all vehic le t r ips or iginate and end.  

( iii)  Layover arc: a length between the end of a t rip and the start  o f 

a ( later) t rip at  the same rank. 
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( iv)  Pool:  a total number o f vehicles in the associat ion.  

(v)  A float ing t r ip  is a t r ip that  a vehicle is  moving to  or from the 

depot  (possibly moving without  passengers).  

3.3.3  Notations 

Parameters  Descript ion 

n    The number  o f t r ips or t imeslots per day that  start  at 

   rank A 

m    The number  o f t r ips or t imeslots per day that  start  at 

  rank B 

p    The total number o f taxis in the associat ion 

iT    A t r ip i  where ),,1{ ni L∈  

jT    A t r ip j  where { }mj ,,1 L∈   

BL    An arr ival t ime at  rank B o f taxi i  minus a  start ing 

   t ime o f daily operat ion 

w    A t ime between t imeslots at  rank A 

1, +iid   A penalty for a durat ion between t rip i  and t rip 1+i  

1, +jjd   A penalty for a durat ion between t rip j  and t rip 1+j  

iδ    A tolerance t ime for dwelling at  rank A 

jδ    A tolerance t ime for dwelling at  rank B 
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We consider a taxi problem with n  tr ips or t imeslots at  rank A, and m  tr ips 

or t imeslot  at  rank B and a set  of p  taxis.  S ince we at tempt  to  assign 

number o f t r ips to  the set  of taxis at  two ranks,  then the var iable definit io n 

is in two separate decis ion var iables.  





=
Otherwise0

ARank at    taxi toassigned is ot or  timesl     tripIf      1
     

k i i
xik  





=
Otherwise0

BRank at   taxi toassigned is ot or  timesl     tripIf      1
     

k j j
x jk  

A set  of hard constraints is generated as follows  

( i)  Each t rip or t imeslot  must  be assigned to one taxi.  

Ainix
p

k
ik ∈==∑

=

,,.....,1          1
1

    (3.1) 

Bim
w
Ljx B

p

k
jk ∈






 +==∑

=

,,.....,1          1
1

    (3.2) 

Bjm
w
Lj

Ainixx

B

p

k
jk

p

k
ik

∈





 +=

∈==− ∑∑
==

,...,1

,,,.....,1          0
11   (3.3) 
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( ii)  A taxi must  be compat ible with a t rip,  i. e.  the number o f 

passengers ass igned to  a t rip must  not exceed each taxi capacit y.  

pkx
Ri

ik ,.....,1          0 ==∑
∈

            (3.3) 

pkx
Rj

jk ,.....,1          0 ==∑
∈

      (3.4) 

where R  is the set  of taxis whose capacity is exceeded by the number  

of passengers.  

( iii)  Each taxi can fit  to  one t rip.  

px
i

ik ,.....,1k          1
1

=≤∑
=

                       (3.5) 

It  is st ill possible that  large and small number o f passengers than the taxi’s 

capacity get  assigned to  a taxi.  To avo id such scenar io,  and dist r ibute the 

t rips fair ly and efficient ly among the available taxi,  we add the fo llowing 

opt imizat ion object ive funct ion:  

          z Minimize
1 11 1

∑∑∑∑
= == =

+=
m

j
jk

p

k
jk

n

i
ik

p

k
ik xcxc  

where iikc δ×= 5  and jjkc δ×= 5  are the unit  costs (tolerance dwelling t ime 

+ penalty) from tr ip i  to  t rip 1+i ,  and from tr ip j  to trip 1+j  respect ively.  It 
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is assumed that  a tolerance t ime for dwelling is  5 .  Tolerances are defined to 

control the minimum and maximum spacing between consecut ive t r ip  

departures.  The penalt ies are defined by 

  








>

≤

=

+

+

51

52

1,

1,

ii

ii

i
dif
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
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+

+

51

52
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jj

jj
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dif
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4.1    Computational experiments and resu lts  

For validat ion o f the proposed algor it hms, we perform tests on randomly 

formed instances based on the real wor ld problem o f taxi industry in South 

Afr ica.  The parameter values for Genet ic Algor it hm Annealing are shown in  

Table 4.1.  The number o f t rips on instances tested is 30 and 50.  

Table 4.1: Genetic Algorithm parameters.  

Number of t rips  30 50 

Populat ion size 30 30 

Maximum generat ions 30 60 

Crossover t ype 2-point  2-point  

Crossover probabilit y 0.7 0.7 

Mutat ion type Design Wise Design Wise  

Mutat ion probabilit y 0.2 0.2 

 

The computat ional result s are shown in Table 4.2.  Our algor ithms are 

implemented in Optworks Opt imizat ion tool with Microso ft  Excel.   

Figures 4.1 and 4.2,  show the average value and best  value in our test , on 

instances o f 30 and 50 t r ips,  respect ive ly.  In both figures 4.1  and 4.2,  a y-

axis is  the object ive funct ion value.  Figure 4.1 shows that  in the init ia l 

stage of the GA process,  the best  value of object ive funct ion is 15,  after 2  

generat ions it  decrease to  –8 as a net  object ive value,  but  the best  o f 

object ive is 8.  Tables 4.2 and 4.3,  show that  the number of vio lated 

constraints is zero for both instances o f 30 and 50 t rips.  
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Table 4.2: OptWorks Optimizer output for instance of  30 trips  

OptWorks Optimizer Outputs 

Algorithm Genetic Algorithm Value 

Best Net Objective Value -8 -8 

Best Generation 7 7 

Final Generation 27 27 

Objective Functions Best Value 8 

Design Variables (1) Best Value 1 

Design Variables (2) Best Value 1 

Constraints (1) Best Value 0 

Constraints (2) Best Value 0 

Constraints (3) Best Value 0 

 

 Figure 4.1:  The objective function for instance of  30 trips 
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Table 4.3: OptWorks Optimizer output for instance of  50 trips  

OptWorks Optimizer Outputs 

Algorithm Genetic Algorithm Value 

Best Net Objective Value  -6.16 

Best Generation  20 

Final Generation  40 

Objective Functions Best Value 6.16 

Design Variables (1) Best Value 1 

Design Variables (2) Best Value 1 

Constraints (1) Best Value 0 

Constraints (2) Best Value 0 

Constraints (3) Best Value 0 

 

Figure 4.2:  The objective function for instance of  50 trips 
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In this paper,  we provided the mathemat ical formulat ion and so lut ion 

techniques that  have been successfully used in most  literatures o f genera l 

universit y t imetabling problems to  generate a pre-planned t imetable for the 

taxi industry in South Afr ica,  focusing on the taxi ranks between Po lokwane 

and Mankweng Township,  in t he Limpopo Province.  New formulat ions o f 

int eger programming for taxi t imetabling problems were presented.  In our 

model a  schedule for a taxi is  composed o f taxi blocks,  where each block is  

const itutes a departure from a specified rank to  another specified rank, and 

back to  the origina l rank. Ideally,  a taxi block comprises of two t rips,  where 

a t rip starts from a specified rank (say A),  to another specified rank (say 

B).   

 

The formulat ion o f our problem is based on informat ion co llected from the 

current  status regarding the operat ions of taxis between the two depots 

(Polokwane and Mankweng Township).  We have proposed a two-phase 

approach that  consist s o f assigning a taxi (vehicle) block at  each rank and 

incorporat ing a ll t imetables from two different  ranks to  make one t imetable.  

In this study the proposed so lut ion methods managed to produce a t imetable 

with a  non-conflict ing set  of taxis and no consecut ive assignment  o f one 

taxi to  the t rips within a durat ion t ime (total t ime t raveled on a return t r ip  

between two locat ions).  The complexity of the var ious stages o f the sub-

problems under considerat ion was determined, based on assumpt ions made 

and related studies in the literature.  The unpredicted events and passenger  

flow were taken into considerat ion.  The current  t imetable becomes 

infeasible due to  huge passenger flow that  causes delay and the unpredicted 

events.  The rescheduling process was considered to  cope with the 

unpredicted events and delay caused by the passenger flow. The 

rescheduling model needs to  adjust  the current  t imetable in an effect ive 
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way. There are several factors that  might  have an effect  on the recovery o f 

the current  t imetable,  and would need more detailed studies.  

Some of the algor ithms that  proved to be successful in so lving genera l 

t imetabling problems use a two-stage approach where feasibilit y o f the 

t imetable was first  obtained, and then opt ima lit y sought  by different  search 

methods.  In part icu lar,  the GA was used in the research,  mainly due to  its  

flexibilit y and power to  produce the best  so lut ion to  t imetabling problems.  

The algor ithm starts with a populat ion of a  feasible search space.  Two 

operators: mutat ions and crossovers were designed in such a way that  they 

do not  produce infeasible o ffspr ing.  The nature of the problem under study 

also required some applicat ions of Integer Programming. Since the 

complexit y o f problems similar  to  the one under study has already been 

proved to  be NP-hard,  it  was also necessary to  consider some heur ist ics 

such as SA.  

While the focus o f our research is  on a single link,  we provided an 

overview on var ious links for future research or other depots elsewhere in  

the country or beyond.  
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Appendix 1 

 
Preliminary data from the Po lokwane – Mankweng Taxi Associat ion.  
 

1.  Number of taxis in the associat ion   

2.  Number of taxis (seat  capac ity):  

 2.1.   10 seater capacity 

 2.2.  15 seater capacity 

 2.3.  Other seater capacity (specify)  

__________________ 

 

  

     3.   Working hours  3.1.  Start ing t ime  3.2.  Ending t ime   

     4.   Do you change dr ivers between these hours No  Yes  

4.1.   If Yes,  How many hours are allocated to  each dr iver per day?  

     5.   Est imate the number o f passengers dur ing rush hour that  take taxi at      
Mankweng taxi rank (e.g.  06:00-08:00, 16:00-18:00)  

 

     6.   Number o f taxis assigned for Mankweng taxi rank dur ing rush hours  

     7.   Est imate the number o f passengers dur ing rush hours that  take taxi at  
Polokwane taxi rank (e.g.  06:00-08:00, 16:00-20:00)  

 

     8.   Number o f taxis assigned for Polokwane- Mankweng taxi rank dur ing rush 
hours 

 

     9.   Est imate the number o f passengers dur ing rush hours that  take taxi at  
int ermediate stops 

 

    10.  Est imate the number of taxis assigned for passengers that  are at  stops dur ing 
rush hours ( float ing taxis)  

 

    11.  Number of t r ips assigned for each taxi per day  

    12.  Traveling t ime between Mankweng and Po lokwane  

    13.  Idling t ime at  taxi rank for taxi to  be 
filled up 

Rush hours  Off peak  

    15.  How long should taxis be scheduled 
before/ after another  

Rush hours  Off peak  

    16.  If taxis operate different ly  Days  No of taxis  

                                                                      16.1.  Monday to  Fr iday  

                                                                      16.2.  Saturday  

                                                                      16.3.  Sunday  

    17. Number o f acc idents that  occurred in the past  twelve years in which taxis were 
invo lved  
1994  1995  1996  1997  1998  1999  

2000  2001  2002  2003  2004  2005  
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  18.  Number of taxi dr ivers who were found guilt y dur ing accidents in the past  twelve 
years 
Year  Reasons (Specifying the number o f acc idents caused by the fo llowing reasons.)  

Drunkenness  Loud Music  Over loading High Speed dr iving  

1994     

1995     

1996     

1997     

1998     

1999     

2000     

2001     

2002     

2003     

2004     

2005     

    19. Number o f members were registered in associat ion each year  
1994  1995  1996  1997  1998  1999  

2000  2001  2002  2003  2004  2005  

 
 
 
 
 

Informat ion provided by:  
 
Name  :________________ 

Signature :________________ 

Date  :________________ 
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