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ABSTRACT 

 
Forecasting electricity consumption is a challenge for most power utilities. In South 

Africa the anxiety posed by electricity supply disruption is a cause for concern in 

sustainable energy planning. Accurate forecasting of future electricity consumption 

has been identified as an essential input to this planning process. Forecasting 

electricity consumption has been widely researched and several methodologies 

suggested. However, various methods that have been proposed by a number of 

researchers are dependent on environment and market factors related to the scope of 

work under study making portability a challenge. The aim of this study is to 

investigate models to forecast short term electricity consumption for operational use 

and medium term electricity consumption for tactical use in the Ferrochrome sector in 

South Africa. An Autoregressive Moving Average method is suggested as an 

appropriate tool for operational planning. The Holt-Winter Linear seasonal smoothing 

method is suggested for tactical planning. 

 

Keywords:  Forecasting, electricity consumption, operational planning, tactical 

planning, ARIMA, Holt-Winter Linear seasonal smoothing, Ferrochrome sector 
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CHAPTER 1: INTRODUCTION 

 1.1 Forecasting: An Overview 
 
Since growth in the energy demand shows an increasing trend over the years, fears of 

energy supply disruptions have triggered much debate geared towards the necessity 

for sustainable energy planning. Accurate forecasting of future electricity 

consumption has been identified as an essential input to this process. However 

forecasting electricity consumption is still a challenge in areas where those forecasts 

are used (Balnac and Bokhoree, 2008). 

 

Electricity suppliers rely strongly on consumption forecast for planning purposes. 

Thus, without the forecast it is difficult to make proper energy plans for the future. In 

his paper on Overview of Forecasting Methodology, Walonick (1993) makes 

reference to the notion that inability to forecast technological futures is a failure of 

nerve. He argues that it is difficult to accept the implications of an unsuccessful 

forecast. It actually takes courage to accept the implications more especially when the 

truth points to an inaccurate forecast.   

Most forecasters use historical behavior to predict the future. This may be considered 

as true due to widely accepted view that the past might not be correct. When 

historians write about the past, they often interpolate their own viewpoint and biases. 

Information becomes indistinct and altered over time. At the end the past is a 

reflection of the current conceptual reference of which time itself comes into question.  

Walonick (1993) further argues that since the future is filled will uncertainty, facts 

give way to opinions. Thus, “the facts of the past provide the raw materials from 

which the mind makes estimates of the future”. All forecasts represent future outlook. 

These (forecasts) are usually surrounded by events that might or might not occur and 

these uncertainties pose severe challenges when predicting the future. Nowadays, the 

rate of change in events is moving more rapidly than in the past and this has made 

forecasting more challenging. Trends are now more uncertain and cannot be sustained 

for a longer period like it was in the past.  
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Hyndman (2008) seconded that advance spreadsheets based systems is a complete 

solution for budgeting, forecasting, what-if scenarios planning, reporting and analysis. 

These capabilities include a built-in financial intelligence and a business rule builds 

the formulas for users ensuring 100 percent accuracy. Another capability is the 

profitability analysis which allows one to create a what-if scenario by modifying sales 

growth rate and all the other relevant accounts measured as a total percentage of total 

sales, and the results change immediately. 

 

It becomes a challenge to operate with this method because of what-if scenarios: 

• they are based on assumed and fixed future conditions, 

• they are highly subjective,  

• they are not replicable or testable, 

• there is no possible way of quantifying probabilistic uncertainty, and 

• this lack of uncertainty statements leads to false sense of accuracy which is 

largely guess work. 

 

On the other hand, data mining prediction methods which include classification and 

regression trees, neural networks and nearest neighbour and naïve Bayes, have both 

benefits and shortcomings. With these methods it is rare to provide uncertainty 

statements about individual predictions leading to “false” sense of accuracy. In 

addition they have limited interpretability of many models and software can be up to 

50 times the cost of comparable statistical software. Due to complex computations 

and automation, basic statistical principles and methods are ignored.  

 

The silver jubilee of the International Institute of Forecasters provided an opportunity 

to review 25 years progress on time series forecasting. De Gooijer and Hyndman 

(2006) reviewed a number of techniques that gave a historical tour of a quarter of a 

century developments in this area. The reviewers state that exponential smoothing 

methods originated from the work of Brown in 1959 and 1963, Holt in 1957 and 

2004, Winters in 1960 and Pegels in 1969. Muth, in 1960, was the first to introduce a 

statistical foundation for simple exponential smoothing methods. This development 

was enhanced by Box and Jenkins in 1970 and later by Robert in 1982. In 1983 and 

1986 Abraham and Ledolter showed that additive exponential smoothing forecasts are 
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special cases of the ARIMA models. Further independent work on simple exponential 

smoothing by Gardner and later by Snyder, in 1985 has provided a basis for state 

space models, (De Gooijer and Hyndman, 2006). Since 1980 work on forecasting has 

gained momentum. Applications of exponential smoothing methods were expanded to 

computer components, air passengers and production planning. 

 

Variations of the original forecasting methods include modifications that deal with 

discontinuity, constrained smoothing forecasts, and normalisation of seasonal 

components (De Gooijer and Hyndman, 2006). One notable variation is the Theta 

method for which further research is still needed. Multivariate versions of the 

exponential smoothing methods were applied to the Israel tourism data by 

Pfeffermann and Allon in 1989. In 1986 Johnston and Harrison studied prediction 

intervals through the equivalence between exponential smoothing methods and 

statistical models. 

 

That “every time series can be regarded as the realization of a stochastic process” is a 

contribution by Yule in 1927 (De Gooijer and Hyndman, 2006). Other scholars joined 

Yule to formulate the concept of autoregressive (AR) and moving average (MA) 

models that have now become known as ARMA models. The existing knowledge that 

emerged from this early work was published by Box and Jenkins in 1970 in their book 

entitled Time Series Analysis: Forecasting and Control, hence the well-known Box-

Jenkins approach to time series analysis and forecasting. It is this approach that has 

integrated and popularised the use of ARIMA (autoregressive integrated moving 

average) models. There are several techniques and methods suggested as criteria to 

minimize one-step-ahead forecast errors in the search process of an ARIMA model. 

These include: Akaike’s information criterion, Akaike’s final prediction error and 

Bayes information criterion. 

 

The vector ARIMA (VARIMA) model, which is a multivariate generalization of the 

univariate ARMA model, was first derived by Quenouille in 1957. Artificial neural 

networks (ANNs) have been successfully applied in forecasting with notable 

successes especially in high frequency financial data (De Gooijer and Hyndman, 

2006). 
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Applications of ANNs have been compared to traditional techniques in forecasting 

such as the random walk. In forecasting daily electricity load profiles, dynamic ANNs 

have been used. The ARCH (autoregressive conditional heteroscedastic) models were 

introduced by Engle in 1982; the generalized ARCH (GARCH) model was studied by 

Taylor in 1987, and later in 1994 by Bollerslev, Engle and Nelson (De Gooijer and 

Hyndman, 2006). 

1.2 Philosophical perspective 
 
“The post-modern world is characterised by rapid and high impact changes. Both the 

frequency and the magnitude of the changes are high. This is further complicated by 

the irregularities in both the high frequency and high amplitude changes” (Maseema, 

2009). Consumption pattern of electricity has been affected by some social, 

economical and environmental factors by which the pattern will form various 

seasonal, monthly, daily and hourly complex variations and these had been leading to 

the extensions of various models. Many attempts have been made to find the best 

estimation for electricity consumption. 

 

According to Keyno, Ghader, Azade and Razmi (2009), studies have tried to forecast 

the consumption in two levels: (1) macro economic decision making and (2) 

engineering and middle management. Over the years, finding the best estimation for 

electricity consumption through forecasting by time series analysis had been 

researched by many authors. 

 

Keller (2005) defines time series as any variable that is measured over time in 

sequential order, and time series forecasting as forecasting that uses historical time 

series data to predict future values. 

 

Univariate time series models make efficient use of available historical records of 

electricity consumption. Conventional forecasting methods generate forecasts with a 

margin of uncertainty, but of late it is imperative that the factors that have impact on 

the input to the forecasted profiles must be incorporated to improve the accuracy of 

the forecast. According to Maseema (2009), “forecasting in this complex environment 

requires past hard data, present hard data and possible future scenarios. The possible 
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future scenarios include both the worst possible and the best possible scenarios. The 

worst and best possible scenarios create limits/boundaries within which the 

forecasting is performed. The boundaries may include financial constraints, legal and 

(political) regulatory requirements, macro socio-economic constraints, etc.  

 

The need for possible inputs from the future in order to make decisions about the 

future makes forecasting more than just a science. It has become a scientific art that 

requires knowledge and experience to translate weak signals starting to form from the 

macro-environment and interpret them accurately and correctly”. On the same note, 

the result of a forecasting exercise is the commencement of a process to respond to 

the high frequency changes. The outcome of the model is a foundation from which the 

process started and should carry on as it is not the final goal since these models should 

take into account the many factors that can influence the forecast significantly. 

Forecasting only sets a direction in which way to go but does not determine the final 

destination. The strategic forecast of the organisation should set the ultimate goal in 

the longest term possible while interim tactical changes based on short-term forecast 

help the organisation deal with immediate changes. 

 

Guerrero and Berumen (1998) suggest forecasting electricity consumption with extra-

model information provided by consumers. When this was developed, the information 

provided by electricity consumers in an energy-saving survey, even though 

qualitative, was considered to be particularly important, because the consumers' 

perception of the future may take into account the changing economic conditions. 

 

Souza, Barrows and Miranda (2007) forecast consumption using double seasonal 

exponential smoothing and interventions to account for holidays and temperature 

effects. Exponential smoothing methods, in particular the Holt-Winters method and its 

variations, have been recommended since they are highly adaptable and robust tools 

to forecast in different horizons. 

 

Mohamed, Bodger and Hume (2004) investigate the influence of selected economic 

and demographic variables on the annual electricity consumption in New Zealand 

using multiple linear regression. The study uses gross domestic product, average price 

of electricity and population of New Zealand during the period 1965–1999. Mohamed 
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et al propose six forecasting models developed for electricity consumption in New 

Zealand. Three of these models (Logistic, Harvey Logistic and Harvey), are based on 

growth curves. A further model uses economic and demographic variables in multiple 

linear regression to forecast electricity consumption, while another model uses these 

factors to estimate future saturation values of the New Zealand electricity 

consumptions and combine the results with a growth curve model. The sixth model 

makes use of the Box-Jenkins ARIMA modeling technique. The developed models 

are compared using goodness of fit, forecasting accuracy and future consumption 

values. The future consumptions are also compared with the available national 

forecasts. The comparisons reveal that the best overall forecasts are given by the 

Harvey model for both domestic and total electricity consumption of New Zealand, 

while a specific form of the Harvey model, that is, the Harvey Logistic model, is the 

best in forecasting non-domestic electricity consumption. 

 

Due to forecasting becoming more challenging because of the changing environment 

in the electricity market as well as other economic contributors globally, Gettler 

(2007) suggests steps to embrace in mind while forecasting. These steps are as 

follows: 

 

“Defining a Cone of Uncertainty  

This incorporates mapping out all the factors, including the relationships between 

them. Distinguish between the highly uncertain and outrageously impossible, the cone 

of uncertainty shouldn’t be drawn too narrowly as it will lead to blindside and omit 

some factors behind which might lead to wrong output. 

 

Looking for the S curve  

Most changes follow an S curve pattern. Change starts slowly, and incrementally 

moves along quietly, then suddenly explodes, and eventually narrows off and drops 

back down. The trick is to define the S curve before the variation starts. One shouldn’t 

expect the opportunities to be the same as those predicted by everyone. 

 

Embracing the things that don't fit 

Keep in mind indicators that don't fit into the data set.  
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Holding strong opinions weakly  

The forecaster should not rely too much on seemingly strong information just because 

it supports the conclusion, good forecasters forecast often, and are always trying to 

prove they are wrong. 

 

Looking back twice as far as you look forward 

The recent past is rarely a good indicator of the future. But what need to be done, is 

to look for the patterns. It has been said that history doesn't repeat itself but 

sometimes it rhymes. The forecaster's job is to find the rhymes, not identical events. 

And it is important not to dismiss past events that don't fit in with one’s view of the 

present and future.  

 

Knowing when not to make a forecast “ 

There are moments when forecasting is impossible. The cone of uncertainty can 

contract and expand and sometimes it becomes so wide, that anything can happen. 

That's when the wise forecaster will refrain from making a forecast at all. 

 

The above steps are useful in providing guidance to the application of forecasting in 

this study. 

1.3 Aim and objectives 
 

The aim of this study is to investigate models to forecast electricity consumption for 

short and medium term for operational and tactical use respectively using well-known 

methods and applying these in a practical situation, in particular, the Ferrochrome 

sector, Keller (2005).   

 

The objectives of this study are:  

• to investigate the market of the Ferrochrome sector and risk exposure 

of industry supplying electricity to this market; 

• to investigate methods of forecasting electricity consumption with the 

aim of understanding the explicit factors that are more likely to affect  

the behaviour of the forecast; 
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• to identify models to forecast electricity consumption in the 

Ferrochrome sector for both short and medium term; and 

• to recommend the best methods for adoption by electricity suppliers to 

the Ferrochrome sector. 

1.4 Motivation for the study 
 

The power utility has a challenge of supplying electricity to its key consumers on a 

continuous basis. In order to meet this requirement, forecasting short, medium and 

long term consumption is a necessity. Due to uncertain events that fluctuate rapidly 

over time, it has become a challenge to determine a proper method of predicting 

future forecasts. Traditional methods no longer handle the demand caused by the key 

consumers. One of the most intensive key consumers of electricity to the power utility 

is the Ferrochrome (FeCr) sector, which is the subject of this study. 

 

This study would be valuable to the power utility because it will identify risks 

pertaining to the key consumers of electricity with respect to the FeCr sector.  The 

study will focus on market analysis for the FeCr sector, statistical analyses of the data 

set and provide methods of forecasting electricity consumption investigated to 

forecast short and medium term for the FeCr sector.  

 

The study seeks to make the power utility aware of factors that stand to affect the 

FeCr market as well as other efficient methods of forecasting consumption in addition 

to the one that is currently used by power utility. The study is also intended to serve as 

future source of reference to the power utility. It will assist in identifying different 

risks associated with the key consumers of electricity as well as other methods that 

can be used to analyse and forecast future electricity consumption for both operational 

and tactical use. 

1.5 Data and assumptions 
 
In this study, data analysis and findings will be based on the data set collected at 

Eskom Key Sales and Customer Service Department through Enerweb and Topline 

system, for electricity consumption in GWh for the period of at least five years. The 

data set is mainly for all the large FeCr customers at Eskom, only those that are in the 



9 
 

Key Sales and Customer Services database. The FeCr sector in this department 

consists of twelve large customers, and the data is collected daily as actual 

consumption is received. 

 

The data set with electricity energy consumption for all the twelve large customers 

was reviewed. It was also noted that some of the customers are new in the system 

while others have been in the system for a longer period.  

 

The scope of the study entails short and medium term forecasts for operational and 

tactical use respectively. Short term forecasts consist of twelve months forecasts 

generated from monthly data which are derived from daily data. Medium term 

forecasts consist of ten year forecasts presented on a yearly basis derived from a 

monthly data. 

 

Assumptions used for each methodology are provided together with the description of 

the method. 

1.6 Model comparison 
 
Different models will be compared using a variety of statistics. There are varieties of 

tools provided for identifying potential forecasting models and for choosing the best 

fitting model. These varieties of tools allow one to decide how much control one can 

have over the process, from a hands-on approach to one that is completely automated 

(SAS user guide, 1989). 

 
Managa (2006) indicates that “the accuracy of any model is measured by the lack of 

fit of the model at hand relative to operating model. The model, which is estimated to 

minimise the expected discrepancy, is the final (“best”) model chosen. The overall 

discrepancy consists of two components: discrepancy due to approximation and 

discrepancy due to estimation”. 

 

Better known model selection methods include, Bayes Information Criterion (BIC), 

residual mean square error (MSE), coefficient of multiple determination (R2), adjusted 

coefficient of multiple determination (AdjR2), stepwise regression and  mean absolute 

percent error (MAPE) (Managa, 2006).  
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1.7 Research report layout 
 
The research report is divided into seven chapters. Chapter 1 gives a brief introduction 

to the problems on forecasting consumption in the energy sector as well as 

philosophical perspective. Aim and objectives, as well as motivation for the study are 

also stated, and how the models will be compared in order to select the best model to 

address the research question. 

  

Chapter 2 gives a comprehensive literature review that seeks to highlight what other 

authors have established in relation to the topic under investigation, methods 

recommended and selection criterion used to select the best model fit. Chapter 3 

studies the market analysis of electricity consumption in the Ferrochrome sector 

industry. In this chapter we give a detailed analysis of factors affecting this market 

and how these contribute to the outcome of the actual and forecasted data. 

 

Methods that are used to forecast electricity consumption for short and medium term 

are found in Chapter 4 with all its derivations and characteristics. Chapter 5 gives the 

detailed analysis and findings of the data based on models explained and derived in 

Chapter 4. A comprehensive study of sensitivity analysis between the models that are 

widely used and those recommended by this study as well as the framework of what is 

accepted as the forecasting procedure in this context is found in Chapter 6. 

 

Finally, in Chapter 7, the study concludes with recommendations, limitations and 

further work.  
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 Forecasting in General 
 

Forecasting has long been in existence and continues to receive extensive attention in 

the literature. A number of authors provide the definition of forecasting in the 

literature based on the environment in which it is applied. Forecasting has been 

evolving over the years and saw many methods being established and some being 

developed.  

 

According to Keller (2005), “forecasting is a tool to predict the future values of 

variables and trends by examining and analysing available information”. Russell and 

Kratowicz (2004-2009), define forecasting as the “process of analyzing historical 

trends and current factors as a basis for anticipating market trends”. The Business 

dictionary, (2007-2009), define “forecasting as the planning tool which assists 

management in its attempt to cope with uncertainty of the future”. The Oxford 

dictionary (2006), define “forecasting as a method of predicting or estimating a future 

event or trend”. 

 

The Business dictionary (2007-2009), also explains that forecasting starts with 

allocating certain assumptions based on the management’s experience, knowledge and 

judgement. The estimates are then projected into the coming months or years using 

one or more techniques such as Box-Jenkins models, Delphi method, exponential 

smoothing, moving averages, regression analysis, and/or trend projection.  Thus, it 

could happen that the assumptions might result in a similar or overstated error in 

forecasting, for which the technique of sensitivity analysis is then used to assign a 

range of values to the uncertain factors. 

  

Some authors define forecasting as a tool, while others describe it as a process. Based 

on Business dictionary (2007-2009) and Oxford dictionary (2006), the definition of a 

forecast can then be adopted as follows: “a forecast is a planning tool which assists 

management in attempting to manage the uncertainty of the future by examining and 
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analysing available information to predict future values through a set of 

assumptions”. Forecasting shows what might happen, which implies that this could be 

coupled by uncertainties. 

 

Any business needs forecasts for planning purposes and these can be categorized into 

three basic types.  According to the article by Robert and Kugel (2008), a business 

needs to undertake the following: 

 

Short term forecast for operational planning – where operational planning is 

defined as a subset of strategic work plan. It describes short-term ways of achieving 

milestones and explains how, or what portion of a strategic plan will be put into 

operation during a given operational period. 

Medium forecast for tactical planning – where tactical planning is defined as the 

systematic determination and scheduling of immediate or short term activities 

required in achieving the objectives of strategic planning. 

Long term forecast for strategic planning – where strategic planning is defined as 

the systematic process of envisioning a desired future, and translating this vision into 

broadly defined goals or objectives and a sequence of steps to achieve them (Business 

dictionary, 2007-2009). 

 

The terms of reference for each type of planning defined above depend on the area of 

study. 

 

Due to uncertainties posed by rapid changes in events surrounding forecasting 

electricity consumption, several authors have suggested methods and analyses 

concerning predicting the future of electricity consumption. 

  

In the 1960s according to Bunn (1996), model building for forecasting remained very 

much in the conventional scientific method of formulating a particular theory, 

estimating its parameters from the available data and then validating its applicability. 

This was coupled with a strong judgemental input and the pragmatic emphasis upon 

estimation. The main purpose of pre-specified model and major thrust of research was 

upon the development of efficient methods of estimation. Examples of these models 
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are linear or exponential growth trends, a product life cycle, or a specific 

macroeconomic relationship. 

 

In the 1970s general classes of models were created to deal with the model selection 

problem. This was such that most models could be seen as a special case of the 

overall class. Examples of such models are ARIMA (autoregressive integrated 

moving average) class of Box and Jenkins, the Bayesian multiprocessing model 

developed and established by Harrison and Stevens and the unified view of state 

space representation like Harvey (Bunn, 1996). 

 

The 1980s saw the general data intensive and theory sparse techniques being 

developed. For the past recent years, this has accelerated more use of data with 

increasingly more emphasis on model specification and less judgemental input. 

Rather than propose one model, or select out of several models, the robustness of 

pursuing a combination possibly with the data determining the relative weights, has 

become well established in practice. Examples of these methods are multiple 

switching, combinations and the neural network techniques (Bunn, 1996). 

 

The recognition of forecasting competitions cited an emphasis on finding methods 

which worked best in a generalisable sense as established by out-of-sample testing. 

Thus, data has to perform three roles: identification, estimation and validation (out-of-

sample testing) (Bunn, 1996). 

 

A number of different methods applied in forecasting such as multivariate forecasting 

methods and univariate forecasting methods can be found in the literature. According 

to Tabachnik and Fidell (1989), multivariate methods have been applied widely in 

economics and much less in other applications in forecasting. It has been proven in 

the literature on forecasting that multivariate models are not necessarily better than 

univariate ones. 
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2.2 Forecasting in the energy sector 
 
Studies in forecasting procedures have been explored recently. Electricity 

consumption forecasting in particular continues to receive attention in the published 

statistical literature. All these are geared toward the elimination of noise, which is the 

main aim of time series analysis that comes as a result of outside disturbances. 

 

The challenge of determining an electricity consumption forecasting model has long 

been of concern to forecasters and continues to receive attention in recent statistical 

literature (Hamzaçebi, 2007). 

 

In real time, maintaining a particular voltage throughout an electricity grid, the 

amount of electricity drawn from the grid and the amount generated should balance. 

Forecasting electricity consumed from the grid is imperative. Short term forecasts 

(one to twelve months) are required to ensure system stability, medium term forecasts 

(one to ten years) are required for maintenance and scheduling, while long term 

forecasts (10 to 35 years) are required for capital planning (Smith, 2003). 

 

Worldwide countries today are faced with challenges in electricity business planning 

due to lack of proper electricity consumption forecast that is lagging behind reality. 

Many models to forecast electricity consumption in different countries have been 

suggested although it can be argued that most of these methods still face challenges in 

minimising the margin of error compared to the actual situation.  

 

The use of these forecasts becomes much more critical during the upswing and down 

swing movements of electricity demand, and this answers why there are numerous 

papers that can support and show the effectiveness of electricity consumption forecast 

in the industrial sector and how much these can influence a country’s economic 

growth, and why models are still being developed even today above and beyond the 

many that have already been established. 

 

According to Hamzaçebi (2007), electricity consumption forecasts are much more 

fundamental today because of the important function they depict in driving decisions 
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on capital intensive investments. They are important also for effective implementation 

of energy policies, price policies, capacity planning and geographical location of the 

plants.  

2.3 Causal methods 
 
Causal methods seek to define the relationship between the variable of interest and the 

value of related explanatory variables (Makridakis, Spyros, Steven and Hyndman, 

1998). Makridakis et al (1998) use the cause and effect relationship between the 

variable whose future values are being forecasted and other related variables or 

factors. The widely known causal method is called regression analysis which is a 

statistical technique that is used to develop a mathematical model showing how a set 

of variables are related. In addition, regression analysis can be used to generate 

forecasts where a variable that is being forecasted is called a dependent variable, and 

variables that help in forecasting the values of the dependent variable are called the 

independent variables. A lot of literature exists where there is only one independent 

variable. 

 

Regression can be divided into simple linear regression and multiple regression 

analysis, defined in the next section. 

 

2.3.1 Simple Linear Regression and Multiple Regression 
 

Simple linear regression is a regression analysis that makes use of one dependent 

variable and one independent variable, and approximates the relationship between 

these two by a straight line, while multiple regression analysis uses two or more 

independent variables to forecast values of the dependent variable (Sahu, 2007). 

According to Baker (2006), multiple regression is a method used to model the linear 

relationship between a dependent variable and two or more independent variables. 

 

Multiple regression is used mainly for prediction and explanation or analysis. While 

simple regression allows one causal factor, multiple regression allows the use of more 

than one factor to make a prediction. Multiple regression also allows separate causal 

factors, analyzing each one’s influence on what is being tried to explain. The model is 
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fit such that the sum-of-squares of differences of observed and predicted values is 

minimized. 

 

Based on Hill and Lewiscki (2006), multiple regression is more to learn about the 

relationship between dependent variable and several independent variables for 

prediction. In recently published literature, multiple regression is one of the 

techniques that have been widely used to forecast electricity consumption. 

 

Al-Ghandoor and Samhouri (2009), study two techniques, namely, multivariate linear 

regression and neuro-fuzzy models for modelling electricity consumption of the 

Jordanian industrial sector. Al-Ghandoor and Samhouri (2009) use the analysis of 

variance that is based on least square method to identify the most important variables 

that affect electricity consumption of the industrial sector, and those key variables 

were used to develop different models that were based on multivariate linear 

regression and neuro-fuzzy analyses.  

 

Besides variables such as energy costs, production levels, number of employees, and 

number of establishments that other research papers have taken into consideration, the 

study by Al-Ghandoor and Samhouri (2009) utilizes advantages of such experience 

and introduces other new important variables such as structural effect (ES), the 

capacity utilization factor (G1/GN), electricity prices (E$), fuel process (F$), 

establishments (EM), capacity utilization (CU) and gross output (G).  

 

After the key variables were used to develop different models that were based on 

multivariate linear regression, the proposed regression model is given by: 

 

ሺEሻtൌ µ0൅µ1,Nሺܩ! ⁄ேܩ ሻ௧ ൅ ሻ௧$ܧଵሺߤ ൅ ሻ$ܨଶሺߤ ൅ ሻ$ܧଷሺߤ ൅ ሻܷܥସሺߤ ൅ ሻܯܧହ ሺߤ ൅

ሻܩ଺ሺߤ ൅  ሺ2.1ሻ ݊݋݅ݐܽݑݍ݁ .………………………………………………………………  ௧ߝ

 

where,  

E is the electricity consumption,  

μ0   is the regression model intercept,  
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μ1,N the regression model coefficient of the gross output ratio between outputs 

 of intensive (I) and non-intensive (N) industrial clusters,  

μj represents the regression coefficients (j = 1,2,3,4,5,6),  

t represents the year,  and  

εt is the difference between the actual and the predicted electricity 

 consumption. 
 

The second model is the neuro-fuzzy which is an associative memory system that 

consists of fuzzy nodes instead of simple input and output nodes, and it uses neural 

network learning functions to refine each part of the fuzzy knowledge separately.  

This model depict that learning in a separated network is faster than learning in a 

whole network. An adaptive neuro-fuzzy inference system (ANFIS) is a fuzzy 

inference system implemented in the framework of an adaptive neural network. By 

using a hybrid learning procedure, ANFIS can construct an input-output mapping 

based on both human-knowledge as fuzzy If-Then rules and stipulated input-output 

data pairs for neural networks training. Rahib, A, Vasif, HA, and Cemal A, (2005) 

present more background on neuro-fuzzy inference system and is cited under list of 

references of this study. 

 

The multivariate model was tested by means of ANOVA for validity and significance 

of the model and was found not to be violating any assumptions. The same was done 

for the other model and it was found that the system is well trained to model the 

actual electricity energy consumption. Al-Ghandoor and Samhouri (2009) recommend 

that these two models be used to predict electricity energy consumption of the 

Jordanian industrial sector. 

 

Bhargava, Singh and Gupta (2009), undertake a holistic view of growth of demand for 

electricity in Punjab, India. They apply multiple regression technique and use 

secondary data for the purpose of analysis. Their study concludes that demand for 

electricity in Punjab was price inelastic but income elastic for the majority of 

consuming sectors. Bhargava et al (2009) also establish that an important policy 

implication thereof is that price hike will be ineffective in regulating and managing 

demand, unless price would be varied in an hourly basis. Thus, Bhargava et al (2009), 



18 
 

recommend that the state resort to other demand-side management (DSM) measures 

such as improving efficiency of electricity use and its conservation.  

 

Bhargava et al (2009), contemplate that the availability of electricity also has a 

bearing on its consumption and recommend that considering the high income 

elasticity of electricity demand sufficient electricity-generating capacity needs to be 

created, since demand is expected to grow at an accelerated rate in future. The study 

further concludes that in the long run, price-demand as well as income-demand 

relationship in case of electricity is likely to remain uncertain especially in the post-

reform era. 

 

Hirschhausen and Adres (2000), adopt a pragmatic approach of Cobb-Douglas 

function, which is based on policy oriented perspective to forecast electricity 

production and consumption for a ten year period at the national, sectorial and 

regional levels. The study introduces different scenarios in order to identify possible 

economic developments such as high growth, medium growth and low growth 

scenarios, to forecast the electricity consumption.  

 

2.3.2 A combination of causal methods 
 

In New Zealand, a comparison of alternative approaches for modelling and 

forecasting the demand for electricity have been suggested and developed by Fatai, 

Oxley and Scrimgeour (2003). The models are based upon either partial general 

equilibrium approach or constructed from spreadsheet models. 

 

Tunç, Çamdali and Parmaksizoğlu (2006), predict Turkey’s electricity energy 

consumption rates with regression analysis for the years 2010 and 2020. In the study, 

Tunç et al (2006), develop a linear mathematical optimization model to predict the 

distribution of future electrical power supply investments in Turkey.  

 

Pao (2008), proposes two new hybrid nonlinear models that combine a linear model 

with artificial neural network to develop adjusted forecast, taking into account 

heteroscedasticity in the models input. He argues that both of the hybrid models can 
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decrease the round off and prediction errors for multi step ahead forecasts, and the 

inclusion of the heteroscedasticity variations in the input layer of the hybrid model 

contribute towards improving the modelling accuracy. 

 
According to Hamzaçebi (2007), literature is enormous and is growing on forecasting.  

There are other techniques which have been developed that have originated from 

causal methods, and these include: Artificial Neural Networks, Artificial Intelligence, 

Neuro-fuzzy, Back Propagation, and the Cobb Douglas function which has been 

largely supported by recently published literature. 

  

Metaxiotis, Kagiannas, Askounis and Psarras (2003), have given a literature review in 

the forecasting for short to medium term electricity consumption forecasts using the 

Artificial Intelligence (AI) technique. The study also review AI techniques used in 

short to medium term load forecasting under expert systems, artificial neural networks 

and genetic algorithms titles. On the same note, Feinberg and Genethliou (2005) 

suggested forecasting load for short, medium and long term using the AI taking into 

account important factors like weather data, the number of customers in different 

categories, the appliances in the area and their characteristics, the economic and 

demographic data and their forecasts, the appliance sales data, and other factors. 

According to Feinberg and Genethliou (2005), the AI technique is defined as “the 

capability of a device to perform functions that are normally associated with human 

intelligence, such as reasoning and optimization through experience. In other words it 

is the branch of computer science that attempts to approximate the results of human 

reasoning by organizing and manipulating factual and heuristic knowledge”.  

 

Feinberg and Genethliou (2005) suggested an additive model that takes the form of 

predicting load as the function of four components: 

ܮ                          ൌ ௡ܮ  ൅ ௪ܮ ൅ ௦ܮ ൅  ௥ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..equation 2.2ܮ

Where,  

L is the total load 

Ln represents the normal part of the load, which is the standardized load shapes for    

each type of the day that has been identified as occurring throughout the year 

Lw represents the weather sensitive part of the load 
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Ls is the special event component that create substantial deviation from the usual load 

pattern 

Lr is a completely random term, the noise. 

A multiplicative model is represented by: 

 L = Ln ൈ Fw ൈ Fs ൈ Fr, .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. equation 2.3 

Where, 

Ln is the normal (base) load and the correction factors Fw, Fs, and Fr are positive 

numbers that increase or decrease the overall load. These corrections are based on 

weather (Fw), special events (Fs), and random fluctuations (Fr) 

 

After comparing several load models from statistical model based learning, Feinberg 

and Genethliou (2005), came to a conclusion that the following multiplicative model 

is the most accurate: 

 

L (t) = F (d (t), h (t) ൈ f (w (t)) + R (t) .. .. .. .. .. .. .. .. .. .. .. .. .. .. ..equation 2.4 

 

where,  

L(t) is the actual load at time t,  

d(t) is the day of the week,  

h(t) is the hour  of the day,  

F(d,h) is the daily and hourly component,  

w(t) is the weather data that include the temperature and humidity,  

f(w) is the weather factor and  

R(t) is the random error. 

To estimate the weather factor, Feinberg and Genethliou (2005) used the regression 

model,  

 

 ݂ሺݓሻ ൌ ଴ߚ  ൅ ∑  ௝ .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. equation 2.5ߚ ௜ߚ

 

where,  

Xj are the explanatory variables which are nonlinear functions of the current and past 

weather parameters and β0,βj are the regression coefficients. 
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Karaelmas (2006) is of the view that in recent studies AI techniques are commonly 

used as a forecasting tool. In order to obtain sectoral electricity energy consumption 

forecasts, Karaelmas developed three different Artificial Neural Network (ANN) 

models which change according to input neuron number. The performance of these 

models is tested using mean absolute errors, root mean square errors, and absolute 

percentage errors criterion.  The model recommended for Turkey electricity 

consumption for industrial sector by ANN is: 

 

 ൦ 
௧ܻ 
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where, 

ttt W,X,Y  and tZ  are the input neurons,  

and 

111 W,X,Y −−− ttt  and 1Z −t , are the output neurons. 

 

The above model was based on one year past observations. In this selected model, 

there were 4 input neurons, 2 hidden neurons and 4 output neurons for sectoral 

consumption forecasting. 

 

Azadeh, Ghaderi and Sohrabkhani (2008), recommend ANN in forecasting electricity 

in high energy consuming industrial sectors for medium to long term purposes.  The 

study reveals a 5-3-2-1 construction and recommend that the ANN approach had the 

better estimated values for electricity consumption in high energy consumption 

industrial sectors compared to regression models after testing the data through 

statistical techniques. 

 

Zhang and Gu (2007) suggest an improvement on the Back Propagation Artificial 

Neural Networks (BP ANN) model for forecasting electricity consumption for the 

sector for China by modifying the standard Back Propagation learning algorithm 

through network connective weights and threshold to make the error function 

descending along negative grad direction. Adepoju G.A, Ogunjuyigbe S.O.A, and 
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Alawode K.O (2007), suggested the application of neural network to load forecasting 

in Nigerian Electrical power system where ANN is referred to a class of models 

inspired by the biological nervous system and the back propagation algorithm as a 

supervised learning algorithm used to change or adjust the weights of the neural 

network. The network inputs were the load of the previous hour, the load of the 

previous day, the load of the previous week, the day of the week and the hour of the 

day which resulted in an total of five ANN input values. When a back-propagation 

network with momentum and with an adaptive learning rate was trained and the 

neural network can forecast future load one hour ahead given the various inputs to the 

network, with a sigmoid transfer function used in the hidden layer while a linear 

transfer function was used in the output layer, the error values translate to an absolute 

mean error of 2.54 percent for the network. 

 

Zhang and Gu (2007) further introduce additional additive momentum and adaptive 

learning which consider the moving trend in modification of ANN weight and not just 

the grad direction. Zhang and Gu (2007) argue that the industry electricity 

consumption is complex with multiple influencing factors which usually result in 

regular prediction model not fitting well for its prediction. The study recommends that 

the BP ANN model fairs better than traditional methods, a recommendation which 

was validated by simulation study. In this study the authors indicate that electricity is 

tightly correlated to the development of an economy. 

 

Causal method has fairly been used in forecasting electricity consumption for both 

short and medium term as shown in the literature. Another commonly used method 

that has also received quite an enormous attention in forecasting electricity 

consumption is time series method. This method is reviewed in the next section. 

 

2.4 Time series method 

One of the most widely used forecasting techniques is the time series method of 

forecasting. According to McClave, Benson and Sincich (2001), the time series 

method relies on historical data and attempts to project historical patterns into the 

future, assuming that the same pattern will prevail. Patterns that appear in time series 

data are random (horizontal or stationary pattern), trend, cyclical and seasonal.  These 
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patterns can be identified by fitting the data and then determining the kind of line the 

data resembles. Time series analysis can be defined as an ordered succession of values 

of a variable at equally spaced time intervals and can be used to obtain an 

understanding of the underlying forces and structure that produced the observed data.  

Time series models, according to McClave et al (2001), can be represented in two 

forms, i.e. the additive and multiplicative models. 

In using time series techniques, Garett and Leatherman (2000), identify several 

essential concepts that need to be considered prior to the selection of the technique. 

These include:  

• Trend: – There are no proven automatic techniques to identify trend 

components in the time series data. However, as long as the trend is 

monotonous (consistently increasing or decreasing) that part of data analysis is 

typically not very difficult. If the time series data contain considerable error, 

then the first step in the process of trend identification is smoothing. 

• Cyclicality: – In time series, cyclicality refers to the extent to which the 

consumption is influenced by general business cycles.  

• Seasonality: – This is typically the case when the observations are monthly or 

quarterly. The mathematical formulas employed can be adjusted to determine 

both the degree of seasonality that may exist as well as whether seasonality is 

increasing or decreasing over time. Seasonality is formally defined as 

correlation dependency of order k between each i'th element of the series and 

the (i-k)'th element Hill and Lewicki (2006); and it is measured by 

autocorrelation (i.e., a correlation between the two terms); k is usually called 

the lag. If the measurement error is not too large, seasonality can be visually 

identified in the series as a pattern that repeats every k elements. 

• Randomness: – This is another factor that affects time series data. 

Randomness refers to unexpected events that may distort trends that otherwise 

exist over the long-term. Events such as natural disasters, political crisis, and 

the outbreak of war can result in temporary distortions in trends. Randomness 

can also result from natural variations around average or typical behaviour. 
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The underlying assumption of time series techniques is that patterns associated with 

past values in a data series can be used to project future values. The data series should 

also be stationary.  

Stationarity is when the data series have a constant mean and variance over time. This 

exists if the data series were divided into several parts and the independent averages 

of the means and variances of each part were about equal. If the averages of each 

mean or variance were substantially different, non-stationarity would be suggested. 

When randomness tends to characterize a data series, time series techniques do not 

perform very well. Performing time series analyses on non-stationary data can often 

result in biased estimates (Garett and Leatherman, 2000). 

With the above in mind, many authors have looked at how these concepts can impact 

on the outcome of the forecast based on different suggested models. For instance, Yan 

and Choon (2009), use the back-propagation algorithm on a multi layered perceptron 

network to model and forecast the electricity consumption in Malaysia. They 

investigate the effectiveness of modelling the time series with both seasonal and trend 

patterns. They also perform data pre-processing which include deseasonilisation and 

detrending, neural network modelling and forecasting. The results are compared with 

the predictions obtained from Box-Jenkins Seasonal Auto Regressive Integrated 

Moving Average (SARIMA) model. The Mean Absolute Deviation (MAD), Mean 

Absolute Percent Error (MAPE) and the Root Mean Square Error (RMSE) were used 

as measurements for forecasting performance.  

 

The simulated series was generated according to the multiplicative model as follows:  

 

X୲ ൌ  T୲S୲ ൅ ε୲    ……………………………………………………………………. ݁݊݋݅ݐܽݑݍ ሺ2.6ሻ 

 

where,  

Xt is the Electricity Consumption 

Tt  is the trend factor at time t 

St  is the seasonality factor at time t 

εt is the error term at time t. 
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After all the technical analysis had been performed for SARIMA models, the 

researchers concluded that errors for ANN models are smaller than for SARIMA 

models, and hence the detrending and deseasonalization of ANN gives the best results 

when compared to SARIMA models. 

Souza et al (2007), recommend using the exponential smoothing methods, in 

particular the Multiplicative Holt-Winters method with double cycles, as the study 

found that the method variations were appropriate in forecasting short term 

consumption forecasts and were highly adaptable and robust tools that forecast in 

different horizons. Factors such as holidays and temperature effects were taken into 

account. The model performed well and did not seem to produce significant 

deterioration of the forecasts as the forecast horizon increases.  

 

Andrews (1994), shows that Holt-Winters exponential smoothing method is similar to 

structural forecasting method. The only difference is that the structural model is based 

on a formal statistical model. The measurement equation is given by: 

 

௧ߛ ൌ ௧ߤ ൅ ௧ߛ ൅  ሺ2.7ሻ ݊݋݅ݐܽݑݍ݁ .……………………………...................................……...... ௧ߝ

 

where tμ is a local linear trend component and tγ  is the seasonal component at time t. 

 

If a white noise disturbance term is introduced, the seasonal component can be made 

stochastic. Thus, 

 

෍ ௧ି௝ߛ ൌ ߱௧

௦ିଵ

௝ୀ଴

 … … … … … … … … … … … … … … … … … … … … … .  ሺ2.8ሻ ݊݋݅ݐܽݑݍ݁

 

௧ߛ ൌ െ ෍ ௧ି௝ߛ

௦ିଵ

௝ୀଵ

൅ ߱௧  … … … … … … … … … … … … … … … . … . .  ሺ2.9ሻ ݊݋݅ݐܽݑݍ݁

  

Al-Saba and EI-Amin (1999), also employ ANN and Box-Jenkins methods to forecast 

Saudi Arabia’s peak load between 1997 and 2006. The study compares the 

performance of these two techniques and recommends that an ANN model is the best 

to use. 
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In some cases, a method that analyses a nonlinear structure is the generalized 

autoregressive conditionally heteroscedastic (GARCH) models. The multivariate 

GARCH models have been evaluated in the Nordic electricity markets by Malo and 

Kanto (2005). Malo and Kanto (2005) consider a variety of specification tests for 

multivariate GARCH models that were used in dynamic hedging in the electricity 

markets. Malo and Kanto (2005) argue that the test statistic included the robust 

conditional moments test for sign size bias along with the introduced copula tests for 

an appropriate dependence structure. In addition, hedging performance comparisons 

in terms of conditional and unconditional ex post variance portfolio reduction were 

conducted, and they consider such effort as worthwhile. 

 

One of the methods that are receiving enormous attention is the use of algorithm 

based procedure where a combination of forecast methods is used. Mohamed et al 

(2004) carried out a comparison of models for New Zealand for forecasting electricity 

consumption. Six forecasting models are developed for electricity consumption in 

New Zealand, and three of these models (Logistic, Harvey Logistic and Harvey) are 

based on growth curves. A further model uses economic and demographic variables in 

multiple linear regression to forecast electricity consumption, while another uses these 

factors to estimate future saturation values of the New Zealand electricity 

consumption and combine the results with a growth curve model. The sixth model 

makes use of the Box-Jenkins ARIMA modelling technique. The results reveal that 

the best overall forecasts are provided by the Harvey model for both domestic and the 

total electricity consumption of New Zealand, while a specific form of Harvey 

Logistic model is the best in forecasting the non-domestic electricity consumption. 

 

The Harvey Logistic model is based on Logistic model. The model is given by: 

  

ln ௧ܻ ൌ 2 ln ௧ܻିଵ ൅ ߜ ൅ ௧ߛ ൅ , ௧ߝ ܶ ൌ 2 … ܶ  … … … … … … … . . . .   ሺ2.10ሻ݊݋݅ݐܽݑݍ݁

 

where,  

Yt= Yt -Yt-1, is the electricity consumption at time t, 

εt is the disturbance term with zero mean and constant variance, 

δ and γ are constants to be found by regression. 
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Final results show that for total consumption forecasts, the best short term forecast is 

given by ARIMA model, the best medium term forecast is given by various logistic 

models (VAL) which is a saturation of logistic model and the best long term forecast 

was given by Harvey model. 

 

2.5 Selection criterion 
 
It is not possible for a forecast to be completely accurate. A forecast will always 

deviate from the actual requirement. The difference between the forecast and the 

actual is called forecast error. The idea in forecasting is that this error should be as 

small as possible. A relatively large degree of error may indicate that either the model 

that is being used is wrong, or the technique needs to be adjusted by changing its 

parameters (Russell and Taylor, 1995). 

 

There is no common way of measuring forecast error and selecting the best model, 

but there are varieties of tools provided for identifying potential forecasting models 

and for choosing the best fitting model suggested in the literature. These varieties of 

tools allow one to decide how much control one can have over the process, from a 

hands-on approach to one that is completely automated (SAS user guide, 1989).  

 

Many researchers have used different model selection tools to select the best method 

for the model recommended. For instance, Al-Ghandoor and Samhouri (2009) tested 

the multivariate model for validity and significance using ANOVA approach. Neuro-

fuzzy model was also tested using the above approach. From the analysis, it was 

found that Neuro-fuzzy model was better in modelling the actual electricity energy 

consumption. However, they recommend that these two models can be used to predict 

electricity energy consumption of the Jordanian industrial sector. 

 

Mohamed et al (2004), test and compare the performance of six models namely 

Logistic, Harvey Logistic, Harvey, multiple linear regression, Box-Jenkins ARIMA 

modelling technique and VAL using (MAPE). 
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Yan and Choon (2009) use MAD, MAPE and RMSE to measure the forecasting 

performance of back-propagation algorithm on a multi layered perceptron network 

compared to Box-Jenkins SARIMA model.  

 

Costantini and Pappalardo (2008) apply the RMSE that shows that the forecast 

encompassing of a given model versus the other non-nested models is a sufficient 

condition for minimising the root mean square of factored error (RMSFE). This is 

used to improve the forecast accuracy to the seven time series models tested by 

ranking the overall forecasting models using RMSFE measure and eliminating those 

that are encompassed by others and combining the remaining forecasts. 

 

There are different varieties of measures of forecast error. Better known model 

selection methods include, Bayes Information Criterion (BIC), root mean square error 

(RMSE), coefficient of multiple determination ( 2R ), adjusted coefficient of multiple 

determination (Adj 2R ), stepwise regression which consists of backward and forward 

selection and mean absolute percent error (Managa, 2006). These statistical measures 

are commonly used by authors in order to select the best model that minimises bias 

and maximises accuracy. The formulas to these methods are highlighted in Chapter 4. 

 

In both regression and time series analysis there are suggested ways of analysing the 

goodness of fit of the model. Garson (2009) suggests how regression and time series 

data analysis can be carried out for model check and to assess goodness of fit of the 

model. These checks are also highlighted in detail in chapter 4.  

 

2.6 Overview 
 

A lot of research around forecasting has been done and a number of conventional 

forecasting methods have been established. These methods (conventional) need to be 

tested against particular environments. The industrial market is surrounded by 

numerous factors that influence it and much is still to be researched and developed. In 

view of all these, from the literature, there is an indication from most of the studies 

suggested by various authors indicating that market dynamics does have an influence 

in the behaviour of electricity consumption in an industrial sector. 
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This chapter has given a comprehensive literature review on what other authors 

studied about forecasting in general, forecasting in an energy sector, causal method 

and time series techniques in forecasting electricity consumption and what they have 

recommended. Selection criterion and standard model checks of both casual and time 

series have also been reviewed.  

 

The next chapter gives a comprehensive market analysis of electricity consumption in 

the ferrochrome sector which includes defining it and analysing factors that affect and 

influence the behaviour of how this sector consumes electricity. 
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CHAPTER 3: MARKET ANALYSIS 
 

3.1 Electricity consumption 
 

Forecasting electricity consumption is of national interest in any country. Future 

electricity forecasts are not only required for short and long term power planning 

activities but also in the structure of the national economy. 

 

Eskom is a state owned supplier of electricity in South Africa, and since 2007 it 

experienced lack of capacity in the generation and reticulation of electricity. This 

resulted in severe electricity blackout all over the country during the first quarter of 

2008 – with damaging effect of the economy. Both domestic and industrial consumers 

were severely affected (Inglesi, 2010). 

 

South Africa is the world leader in ferrochrome production (by both tonnage and 

market value). The ferrochrome industry contributes a significant proportion to the 

country’s gross domestic product and employs a considerable number of people. 

 

Ferrochrome contributes 23.71%, followed by Aluminium with 20.00% and other 

industrial sectors ranging between 0.10% and 13.25%. Since the ferrochrome sector is 

one of the most intensive energy consumer, it is also faced with significant 

consumption challenges like load shedding and outages within the electricity market. 

 

3.2 Ferrochrome sector  
 
According to Silk (1988), ferrochrome (FeCr) is an alloy of chromium and iron 

containing between 50% and 70% chromium. FeCr is a carbothermic reduction 

operation taking place at high temperature. This is covered by the following: 

• The ore (an oxide of chromium) and iron  

– Which is reduced by coal and coke to form an iron-chromium alloy 

called ferrochrome.  
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• The heat for this reaction comes from the electric arc  

– This is formed between the tips of the electrodes in the bottom of the 

furnace and the furnace hearth. This arc creates temperatures of about  

2 800°C.  

– In the process of smelting, approximately 3 500 kilowatt-hours of 

electricity are consumed for each ton of ferrochrome produced. 

FeCr is produced by electric arc melting of chromite, an iron magnesium chromium 

oxide and most important, chromium ore. Most of the world's FeCr is produced in 

South Africa (45%), China (14%), Kazakhstan (13%) and India (10%), all of which 

have large domestic chromite resources (Figure 3.1). These four countries account for 

82% of the world‘s FeCr and the remaining 18% is produced by Russia (5%), Finland 

(4%), Zimbabwe (4%), Brazil (3%) and Sweden (2%). 

The production of steel is the largest consumer of FeCr, especially the production of 

stainless steel with chromium content of 10% to 20%. 

Figure 3.1:   Ferrochrome producers by country 2008 

 
 

The FeCr sector consists of twelve (12) large industries which receive electricity 

directly from the grid and small customers that consume less than 100 GWh which 

receive electricity from the redistributors.  In total, the FeCr sector contributes 

approximately 14% of total key customer sales and approximately 22% of industrial 

category. However, this sector has the most unpredictable market and high levels of 

uncertainties due to many drivers in the market compared to other sectors contributing 

to the total key customer sales. 
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Approximately 90% of the world’s FeCr is used in the production of stainless and 

special steel. Over 80% of the world's FeCr is utilised in the production of stainless 

steel. According to sector analyses 2008, 28 million tons of stainless steel was 

produced in 2006. Stainless steel depends on chromium (an alloy within FeCr) for its 

appearance and its resistance to corrosion. The average chrome content in stainless 

steel is approximately 18%. It is also used when it is desired to add chromium to 

carbon steel. 

FeCr from Southern Africa, known as 'charge chrome' and produced from a chromium 

(Cr) containing ore with a low Cr content, is most commonly used in stainless steel 

production.  

Alternatively, high carbon FeCr produced from high grade ore found in Kazakhstan 

(among other places) is more commonly used in specialist applications such as 

engineering steels, and minimum levels of other elements such as Sulphur, 

Phosphorus and Titanium are important and production of finished metals takes place 

in small electric arc furnaces compared to large scale blast furnaces. 

There are factors that influence the electricity consumption behaviour in the FeCr 

sector:  

• The decline in demand of stainless steel eventually signifies a decline in the 

production of FeCr and will automatically have a negative impact in the 

consumption of electricity.  

• Commodity prices can also have a negative impact on production in that if 

cost of production is higher than the spot price, producers usually intend to 

lower production until the market condition is favourable, this implies a 

reduction in electricity consumption. 

• Growth due to expansion projects increases electricity consumption. 

• FeCr producers that are looking forward to be self reliant and not depend on 

parastatals or anyone else for electricity entertain ideas to generate their own 

power. However, at the present moment only a few of these producers (for 

FeCr) will be able to meet the high and prohibitive costs associated with 

setting up generation units.  
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3.3 FeCr Market Dynamics 

In any market, there are various dynamics that influence the behaviour of sales 

produced. These are mostly the factors that expose the market to risks that can impact 

negatively on sales. Within the FeCr market, the dynamics are explained in the 

sections that follow.  

3.3.1 Demand  
 

FeCr market is highly driven by demand. That means for a smelter to start producing 

FeCr, there must be sufficient orders. These orders are measured by Tons/US dollar. 

Since FeCr is used mostly in the production of stainless steel and precious metals, 

most demand comes from the stainless steel producers. South Africa accounts for 

close to 60% of the world’s FeCr production and exports more than 90% of its FeCr. 

Local companies consume approximately 10% of the total production. Since 30 

September 2008, there has been a decline in the amount of stainless steel produced 

and FeCr demand due to world economic meltdown. The world recession that was 

experienced had a severe negative impact on the demand for FeCr in the export 

market.  

3.3.2 Commodity Price  

 

Another underlying factor that drives FeCr market is the commodity price. Prices of 

FeCr are often quoted in terms of United States cents (US cents) per pound (lb) of 

chrome contained. Although producing companies will generally report production 

and sales in terms of metric tonnes of FeCr sold. In order to calculate the value of a 

metric tonne of FeCr from a price quoted in US cents, the percentage of chrome 

within the FeCr must be known. FeCr prices went down from $0.79/lb in the March 

2009 quarter to $0.69/lb in the June 2009 quarter. 

Price can contribute negatively or positively to FeCr market. On a positive note, when 

the contract price is low and the spot price is high, then the opportunity to make 

bigger profits is wide. This is also underpinned by electricity prices, the more 

favorable they become the more the industry cash flow becomes better. But if the 
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contract price of FeCr is high, and the spot price is low, it affects FeCr production to a 

point that they can switch off furnaces to prevent monetary loss, since it also becomes 

expensive to run furnaces when the market is down. For example, the two previous 

years saw International Ferro Metals (IFM), that is, FeCr producer making no material 

events or transactions in the period from 1 October 2008 to 12 November 2009 as 

reported by IFM analysts. The companies continued to experience extremely low 

FeCr demand as steelmakers suffered the global economic fallout. 

3.3.3 Cost of Production 
 

FeCr production is essentially a carbothermic reduction operation taking place at high 

temperatures. Cr Ore (an oxide of chromium and iron) is reduced by coal and coke to 

form the iron-chromium alloy. The heat for this reaction can come from several 

forms, but typically from the electric arc formed between the tips of the electrodes in 

the bottom of the furnace and the furnace hearth. This arc creates temperatures of 

about 2 800°C. In the process of smelting, huge amounts of electricity are consumed 

making production in countries with high power charges very costly. 

Tapping of the material from the furnace takes place intermittently. When enough 

smelted FeCr has accumulated in the hearth of the furnace, the tap hole is drilled open 

and a stream of molten metal and slag rushes down into a chill or ladle. FeCr 

solidifies in large castings, which is crushed for sale or further processed. 

FeCr is often classified by the amount of carbon and chrome it contains. The vast 

majority of FeCr produced is charge chrome from Southern Africa. With high carbon 

being the second largest segment followed by the smaller sectors of low carbon and 

intermediate carbon material. All these implicate to the cost of production.  

The technology underlying these furnaces is different. Furnaces with new technology 

perform efficiently better than those with old technology. Thus the cost of production 

for producers with older technology becomes expensive. 

If the price of FeCr is low and the cost of production is high, this presents a market 

condition that is unfavorable and that means producers might decide to switch off 

furnaces due to poor market conditions. Contributing to switching off of furnaces can 
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be due to seasonal changes. During winter period, the commodity prices of electricity 

are higher than in summer hence most of the producers will switch off furnaces and 

perform maintenances to the plant so as to contribute in mitigating risk in costs. 

Forecasters need to take these factors into account when forecasting. 

3.4 Global market share of FeCr 
 

As indicated in Figure 3.1, South Africa is by far, the leading manufacturer of 

chromite compared to other countries and a major supplier of FeCr with 45% of 

production. Among South Africa's major producers of chromite and/or ferrochrome 

are Assmang Ltd, Samancor Chrome, Xstrata South Africa and International 

Ferrometals Ltd (IFM). The disaggregation of FeCr market share is shown in Figure 

3.2. 

Figure 3.2:  Estimated global market share 2008 

 

 

Other countries producing FeCr are:  

China - The second leading manufacturer of chromite globally is China with 14% of 

global market share as shown in Figure 3.1. China is a country encircled by high 

population. This is also followed by enormous planned infrastructure for the coming 

years where demand for FeCr is expected to increase. Although 14% of the FeCr 

covers China market share, a significant quantity is its import that mostly comes from 

Turkey. However China also receives imports from other countries such as South 

Africa and others. 
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Kazakhstan – The third leading manufacturer of chromite globally is Kazakhstan. 

The country's top chromite producer is Eurasian Natural Resources Corp (ENRC), 

which operates the Donskoy Ore Mining & Processing unit. The company uses about 

30% of its total chromite output to make chromium chemicals. Kazakhstan has a 13% 

of global market share which makes it one of the largest producers of FeCr as 

illustrated in Figures 3.1 and 3.2. 

India – India is the fourth leading chromite ore producer globally with an output of 

about 3.5 to 4M tonnes making 10% of global market share as indicated in Figure 3.1. 

India recently decided to implement a significant export tax to ensure supply for 

domestic ferrochrome manufacture. In India, chromite ore is mainly produced in the 

state of Orissa, with a large portion of chromite production consumed by local FeCr 

makers.  

Turkey – Turkey is emerging as one of the major suppliers of chromite to China's 

FeCr markets. Figure 3.1 indicates 14% of production of FeCr by China where the 

chromite is supplied by Turkey. Adverse winter conditions allow mining of chromite 

to be conducted only from May to the end of November. Bilfer Madencilik AS is one 

of Turkey's major chromite producers and primarily caters to the needs of the 

refractory and foundry industries. RHIAG sources about 2000 tonnes/y of refractory 

grade chrome for making sliding doors from Bilfer Madencilik.  



37 
 

Figure 3.3:  Ferrochrome market share by company 2008 
 

 

From Figures 3.1 through to Figure 3.3, it can be seen that there is a lot of production 

of ferrochrome that is taking place worldwide. However, South Africa dominates all 

the countries globally in reserves of chrome. South Africa exports chrome to countries 

like China, India, Kazakhstan and Turkey. FeCr as a product also get exported to 

countries where its demand is high. 
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CHAPTER 4: MATHEMATICAL FORMULATION 
 

This chapter reviews the mathematical formulation of the methods used in forecasting 

electricity consumption for both operational and tactical use. The methodology 

applied in this study is Multiple Linear Regression and Time Series analysis which 

are discussed below.  

 

4.1 Multiple and Linear regression (Causal method) 
 

Regression analysis measures the extent of weight of the independent variables on a 

dependent variable. In the case of a single independent variable, the dependent 

variable could be predicted from the independent variable by the following equation: 

  

ݕ ൌ ܽ ൅ ݔܾ … … … … … … … … … . … … . … … … … … … … … … . .  ሺ4.1ሻ ݊݋݅ݐܽݑݍ݁

 

where, 

a is constant, 

b is the parameter estimate, 

y is the dependent variable, and 

x is the independent variable. 

The multiple regression model is given by the following equation:  

௜ݕ ൌ  ܾ଴ ൅ ܾଵݔ௜,ଵ ൅ ܾଶݔ௜,ଶ ൅ ڮ ൅ ܾ௡ݔ௜,௡ ൅ ݁௜ … … . … … .  ሺ4.2ሻ ݊݋݅ݐܽݑݍ݁

where,  

xi,n  is the value of n’th predictor in year i, 

bo is the regression constant,  

bn  is the coefficient on the n’th predictor, 

N is the total number of predictors, 

yi is the predictand in the year i,  and 

ei is the  error term.  
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The predictor equation takes the form:  

ො௜ݕ ൌ  ෠ܾ଴ ൅ ෠ܾଵݔ௜,ଶ ൅ … … … . . ෠ܾேݔ௜,ே  … … … … … … … . .  ሺ4.3ሻ ݊݋݅ݐܽݑݍ݁

where, the variables are defined as in equation (4.2) above, except that the hat denotes 

estimated values. 

 

4.2 Time Series method  
 

Time series method consists of exponential smoothing and Box Jenkins models. 

These can either take a multiplicative or additive form. 

 

Additive form is given by: 

 
௧ܻ ൌ  ௧ܶ ൅ ௧ܥ ൅ ܵ௧ ൅ ܴ௧  … … … … … … … … … … … … … … . … .  ሺ4.4ሻ ݊݋݅ݐܽݑݍ݁

 

and multiplicative form is given by  

 
௧ܻ ൌ  ௧ܶ כ ௧ܥ כ ܵ௧ כ ܴ௧  … … … … … … … … … … … … … … … . …   ሺ4.5ሻ ݊݋݅ݐܽݑݍ݁

 
where, 

Tt  represents the secular trend also known as the long trend, which describes the 

long term movements of Yt 

Ct represents the cyclical trend, which describes the fluctuations of the time 

series about the secular trend that is attributable to business and economic 

conditions. 

St represents the seasonal effect that describes the fluctuations in the time series 

that recur during specific time periods. 

Rt represents the residual effect which is what remains of Yt after the secular, 

cyclical and seasonal components have been removed. 
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4.2.1 Exponential Smoothing model 

Exponential smoothing method consists of the following: 

4.2.1.1 Single exponential smoothing model   

The model is a moving average of forecasts that have been corrected for the error 

observed in preceding forecasts. In the first smoothing model, there is no trend or 

seasonal pattern assumed. The method is given by: 

௧ܨ ൌ ௧ିଵܨ  ൅ ௧ିଵܣሺߙ െ ௧ିଵሻܨ … … … … … … … . … … … … … … … .  ሺ4.6ሻ ݊݋݅ݐܽݑݍ݁

 

where,  

Ft is the forecast at time t,  

At-i is the actual value at time t-i, and  

N is the number of time periods averaged. 

The parameter α is the smoothing coefficient and has an estimated value between zero 

and one. It is referred to as an exponential smoothing model because the value of α 

tends to affect past values exponentially.  

As α approaches one, the forecast resembles a short-term moving average, while α 

closer to zero tends to resemble long-term moving averages.  

Again, α is typically estimated using trial and error to secure the best fitting model 

and to find the model that minimizes forecast error.  

4.2.1.2 The Holt model  

The single parameter smoothing model presented in equation (4.6) can be adapted to 

take into account trends that may be presented in the data. When the trend parameter 

is included in the single parameter smoothing model, this form is called the Holt 

model. The method is given by: 

௧ା௞ܨ ൌ  ܵ௧ ൅ ܶܭ … … … … … … … … . … … … … … … … … … . … … … …  ሺ4.7ሻ ݊݋݅ݐܽݑݍ݁

ܵ௧ ൌ ௧ܣߙ  ൅ ሺ1 െ ሻሺܵ௧ିଵߙ െ ௧ܶିଵሻ … … … … … … … … … … … … . .  ሺ4.8ሻ ݊݋݅ݐܽݑݍ݁
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௧ܶ ൌ ሺܵ௧ߚ  െ ܵ௧ିଵሻ ൅ ሺ1 െ ሻߚ ௧ܶିଵ … … … … … … … … … … … … …  ሺ4.9ሻ ݊݋݅ݐܽݑݍ݁

 

 

where, 

Ft+k is the forecast at time k periods in the future,  

At is the actual value at time t,  

St is the level of the series at time t,  

Tt is the trend at time t, and α and β are smoothing parameters.  

The forecast at time t for k periods into the future equals the level of the series at t 

plus the product of k and the trend at time t. The level of the series is estimated as a 

function of the actual value of the series at time t, the level of the series at a previous 

time, and the estimated trend at a previous time. The parameter is a smoothing 

coefficient. The trend at time t is estimated to be a function of the smoothed value of 

the change in level between the two time periods and the estimated trend for the 

previous time period. The values for the smoothing parameters, α and β are between 0 

and 1. 

4.2.1.3 Damped Trend Exponential Smoothing   
 
While the Holt model takes into consideration the trend that may be inherent in the 

data series, it somewhat unrealistically assumes the trend continues in perpetuity. This 

means it can overshoot estimates several time periods in the future. A variation known 

as damped trend exponential smoothing has the effect of dampening the trend into 

subsequent periods as time continues. Damped trend exponential smoothing includes 

a third parameter,φ , with a value between zero and one that specifies a rate of decay 

in the trend. The method is given by: 

௧ା௞ܨ ൌ ܵ௧ ൅ ෍ ௜׎
௧ܶ  … … … … … … … … … … . … … … . …  ሺ4.10ሻ ݊݋݅ݐܽݑݍ݁

ܵ௧ ൌ ௧ሺ1ܣߙ  െ ሻሺܵ௧ିଵߙ ൅ ׎ ௧ܶିଵሻ … … … … … … . … …  ሺ4.11ሻ ݊݋݅ݐܽݑݍ݁

௧ܶ ൌ ሺܵ௧ߚ  െ ܵ௧ିଵሻ ൅ ሺ1 െ ׎ሻߚ ௧ܶିଵ  … … … … . … … . .  ሺ4.12ሻ ݊݋݅ݐܽݑݍ݁
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where, 

  Ft+k is the forecast at time k periods in the future,  

At is the actual value at time t,  

St is the level of the series at time t,  

Tt is the trend at time t,  and  

α, β, φ  are the smoothing parameters. 

4.2.1.4 Holt-Winter’s Linear Seasonal Smoothing  
 

Holt-Winter’s Linear Seasonal Smoothing model adapts Holt’s method to include a 

seasonal component in addition to a smoothing coefficient and a trend parameter. The 

first variant of the model is additive. This assumes that the seasonality is constant 

over the series being forecast. The method is given by:  

௧ା௞ܨ ൌ  ܵ௧ ൅ ݇ ௧ܶ ൅ ௧ି௣ି௞ܫ … … … … … … … . … … . … . .  ሺ4.13ሻ ݊݋݅ݐܽݑݍ݁

ܵ௧ ൌ  ܵ௧ିଵ ൅ ௧ܶିଵ ൅ ௧ܣሺߙ െ ܵ௧ିଵ െ ௧ܶିଵ െ ௧ି௦ሻܫ … …  ሺ4.14ሻ ݊݋݅ݐܽݑݍ݁

௧ܶ ൌ  ௧ܶିଵ ൅ ௧ܣሺߚߙ െ ܵ௧ െ ௧ܶିଵ െ .௧ି௦ሻܫ … … … … . …  ሺ4.15ሻ ݊݋݅ݐܽݑݍ݁

௧ܫ ൌ ௧ି௦ܫ  ൅ ሺ1ߜ െ ௧ܣሻሺߙ െ ܵ௧ିଵ െ ௧ܶିଵ െ ௧ି௦ሻܫ … . . .  ሺ4.16ሻ ݊݋݅ݐܽݑݍ݁

where,  

Ft+k is the forecast at time k periods in the future,  

At is the actual value at time t,  

St is the level of the series at time t,  

Tt is the trend at time t,  

It is the seasonal index at time t,  

s is the seasonal index counter,  and 

α, β, and δ are the smoothing parameters. 

The multiplicative variant of this model assumes that the seasonality is changing over 

the length of the series. The method is then given by: 

௧ା௞ܨ ൌ  ሺܵ௧ ൅ ݇ ௧ܶሻܫ௧ି௣ି௞ … … … … … … … … … … … … . … …  ሺ4.17ሻ ݊݋݅ݐܽݑݍ݁
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ܵ௧ ൌ  ܵ௧ିଵ ൅ ௧ܶିଵ ൅
ߙ

௧ି௦ܫ
൫ܣ௧ െ ௧ି௦ሺܵ௧ିଵܫ ൅ ௧ܶିଵሻ൯ … … .  ሺ4.18ሻ ݊݋݅ݐܽݑݍ݁

௧ܶ ൌ  ௧ܶିଵ ൅
ߚߙ
௧ି௦ܫ

൫ܣ௧ െ ௧ି௦ሺܵ௧ିଵܫ ൅ ௧ܶିଵሻ൯ … … … … … …  ሺ4.19ሻ ݊݋݅ݐܽݑݍ݁

௧ܫ ൌ ௧ି௦ܫ  ൅
ܵሺ1 െ ሻߙ

ܵ௧
൫ܣ௧ െ ௧ି௦ሺܵ௧ିଵܫ ൅ ௧ܶିଵሻ൯ … … . . …  ሺ4.20ሻ ݊݋݅ݐܽݑݍ݁

 

where,  

Ft+k is the forecast at time k periods in the future,  

At is the actual value at time t, St is the level of the series at time t,  

Tt is the trend at time t,  

It is the seasonal index at time t, s is the seasonal index counter, and 

 α and β are the smoothing parameters. 

4.2.2 Box Jenkins models 
 
Box Jenkins models consist of Autoregressive model AR(p) and Moving average 

model MA(q) . Below is the mathematical representation of the ARMA (p,q) Box 

Jenkins model. 

4.2.2.1 Autoregressive moving average model (p,q) 

The Box Jenkins ARMA(p,q)  model is denoted by the following equation 

௧ݕ ൌ  ߶଴ ൅ ߶ଵݕ௧ିଵ ൅ ڮ ൅ ߶௣ݕ௧ି௣൅ܽ௧ െ ଵܽ௧ିଵߠ െ ڮ

െ ௣ܽ௧ି௣ߠ … … … … … … … …  ሺ4.21ሻ ݊݋݅ݐܽݑݍ݁

Where, 

߶ଵݕ௧ିଵ ൅ ڮ ൅ ߶௣ݕ௧ି௣ represents the autoregressive part of the model (AR) 

െߠଵܽ௧ିଵ െ ڮ െ  ௣ܽ௧ି௣  represents the moving average part of the model (MA)ߠ

߶଴ is the ,model intercept  and 

  ܽ௧ is the “white noise” or error 

߶0,1,...,߶p, ߠ...,1ߠp are the parameters (coefficients) of the model 
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The parameters are determined by the method of moments, least squatters, the method 

maximum likelihood, or some other method that is consistent. The white noise errors 

terms at are assumed to have the following properties: 

1. E(at) =0, ׊௧ ( zero mean assumption) 

2. E(ܽ௧
ଶ) = ߪ௔

ଶ,ݐ׊ ሺconstant varience assumptionሻ 

௧്׊ ,ሺܽ௦ܽ௧ሻ = 0ܧ .3  independence of errors assumption) ݐ

4. ܽ௧ are normally distributed 

Equation 4.21 is referred as the intercept – form of the Box Jenkins ARMA (p,q) 

model. An algebraically equivalent form is as follows: 

௧ݕ                       െµ= ߶ଵሺݕ௧ିଵሻ െ μ ൅ ڮ ൅ ߶௣ሺݕ௧ି௣െμሻ ൅ ܽ௧ െ ଵܽ௧ିଵߠ െ ڮ െ

௣ܽ௧ି௣ߠ                                      … … … … … … … …  ሺ4.22ሻ ݊݋݅ݐܽݑݍ݁

In this form the mean of y denoted by µ, is related to the intercept ߶଴ of equation 4.21 

by the formula  

µ = [ థబ
ሺଵିథభିڮథ೛ሻ

] 

Thus, the most compact way to write the Box –Jenkins ARMA(p,q) model is by using 

“backshift operator polynomials  

(B) = 1- ߶1B – ߶2B – ߶2B2- ...-߶pBp  and 

(B)= 1- 1ߠB – 2ߠB – 2ߠB2- ...-ߠpBp 

Where (B) is called the autoregressive backshift operator and (B) is called the moving 

average backshift operator. Using these polynomials, equation 4.22 can be written as 

(B)( ݕ௧- µ) = ߠ(B)ܽ௧.. … … … … … … … …. equation (4.23) 

In order to be able to estimate Box Jenkins models, stationarity and invertibility 

conditions must hold. 

Replacing the backshift operators B, B2,...,Bp in the autoregressive polynomial and the 

moving average polynomial with corresponding powers of z,z2,...,zp, and set these 
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polynomials to zero, the result is the autoregressive polynomial of the ARMA(p,q) 

Box- Jenkins model  

 

 ߶ሺݖሻ ൌ 1 െ ߶ଵݖ െ ߶ଵݖଶ െ ڮ ߶௣ݖ௣ ൌ 0 … … … … … … …  ሺ4.24ሻ ݊݋݅ݐܽݑݍ݁

ሻݖሺߠ  ൌ 1 െ ݖଵߠ െ ଶݖଵߠ െ ڮ ௣ݖ௣ߠ ൌ 0 … … … … … … …  ሺ4.25ሻ ݊݋݅ݐܽݑݍ݁

Treating the parameters, ߶1,߶2,.., ߶p and ߠ,...,2ߠ,1ߠp as known, let the z1AR,z2AR.,...,zpAR 

denote the p roots ሺzeroesሻ of the autoregressive polynomial ሺ4.24ሻ and 

z1MA,z2MA,...,zqMA denote the q roots of the moving average polynomial ሺ4.25ሻ, for 

the Box‐Jenkins model ሺ4.21ሻ to be stationary ,it must be the case that all of the 

roots of the autoregressive polynomial ሺ4.24ሻ must be greater than one in 

magnitude. For the Box‐Jenkins model ሺ4.21ሻ to be invertible it must be the case 

that all of the roots of the moving average polynomial ሺ4.25ሻ must be greater 

than one in magnitude. 

When the Box‐Jenkins model is stationary, its observations yt satisfy the 

following three properties: 

1. Eሺytሻ ൌ μ  ݐ׊ ሺ i.e the mean of yt is constant for all time periodsሻ 

2. Varሺytሻ ൌ σ2y ݐ׊  ሺi.e. the variance of yt is constant for all time periodsሻ 

3. Covሺyr,yt‐jሻ ൌ γj   ሺi.e. the covariance of yt  and yt‐1 is constant for all 

time periods and fixed j, jൌ1,2...ሻ  

4.2.2.2 Seasonal Autoregressive Moving Average (SARIMA) model  

To account for seasonal effects in the data, for example, when there are long-term 

cycles in the data, one can extend the ARIMA model by adding another set of Orders 

and specifying the seasonal period that results to a SARIMA model. SARIMA of 

equation (p, d, q) (P, D, Q) 12 is represented as: 

߶ሺܤሻΦሺܤଵଶሻሺ1 െ ሻௗሺ1ܤ െ ௧ݕଵଶሻ஽ሺܤ െ ሻߤ ൌ ଵଶሻܽ௧ܤሻΘሺܤሺߠ  … . .  ሺ4.26ሻ ݊݋݅ݐܽݑݍ݁

 

where, 

φ  and θ  are the parameter estimates, 
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Ф and Θ are the seasonal parameter estimates, 

φ (B) is a polynomial of degree p in the backshift operator B, 

Ф (B12) is a polynomial of degree p in (B12), 

θ (B) is a polynomial of degree q, 

Θ (B12) is a polynomial of degree seasonal (Q) in B12 ,  and 

D is the degree of difference. 

 

4.2.3 Diagnostics checking of the models  
 
The following is an overview of standard diagnostics checking to confirm the 

goodness of fit of the model in regression and time series methods. 

 

4.2.3.1 Regression diagnostics (model checks) 
 

In regression, it is important to confirm the goodness of fit of the model and the 

statistical significance of the estimated parameters. Commonly evaluation of goodness 

of fit includes the R2, analyses of the pattern of residuals and hypothesis testing. 

Statistical significance can be checked by an F-test of the overall fit, followed by t-

tests of individual parameters. 

Interpretations of these diagnostic tests heavily depend on the model assumptions. 

Although examination of the residuals can be used to invalidate a model, the results of 

a t-test or F-test are sometimes more difficult to interpret if assumptions of the model 

are violated.  

 

The following are the regression diagnostics to be checked for the goodness of fit of 

the model: 
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4.2.3.1.1 Assumptions 
 

According to Osborne & Waters (2002) and Russell & Mackinnon (1993), when 

assumptions are not met, the results may not be trustworthy, resulting in a Type I or 

Type II error, or over- or underestimation of significance or effect size.  Assumptions 

for the regression coefficient for the j’th independent variable, bj, j= 1,...,m include 

normality, linearity, reliability of measurement and homoscedasticity, and are 

independent and identically distributed meaning the observations are taken from a 

random sample.  

 

4.2.3.1.1.1 Normality Assumption:  

Regression assumes that variables have normal distributions conditional on the 

regressors. Thus, 

ε │X ~ N(0,ߪଶܫ௡)  

Non-normally distributed variables (highly skewed or kurtotic variables, or variables 

with substantial outliers) can distort relationships and significance tests. Visual 

inspection of data plots, skew, kurtosis, and P-P plots give researchers information 

about normality, and Kolmogorov-Smirnov tests provide inferential statistics on 

normality. 

 

4.2.3.1.1.2 Linearity Assumption:  

Standard multiple regression can only accurately estimate the relationship between 

dependent and independent variables if the relationships are linear in nature. Thus if X 

is a random variable, then the regressors in X must all be linearly independent.  

Thus, Pr [rank(X) = p] =1 where p is represents finite moment.  

When this assumption is violated, the regressors become multicollinear. If the 

relationship between independent variables and the dependent variable is not linear, 

the results of the regression analysis will underestimate the true relationship. In 

multiple regression, underestimation carries a risk of Type I errors (overestimation) 
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for other independent variables that share variance with that independent variable. A 

preferable method of detection is to examine residual plots or run regression analyses 

that incorporate curvilinear components. If the relationship is nonlinear, the data 

should be transformed or an alternative statistical model should be considered. 

 

4.2.3.1.1.3 Nonstochastic:  

The errors are uncorrelated with the individual predictors. That is Var [ε│X]=ߪଶIn  

where In is an nൈ ݊ identity matrix, and ߪଶ is a parameter which determines the 

variance of each observation. This assumption is examined by performing residual 

analysis with scatter plots of the residual against individual predictors. Violation of 

this assumption might mean transformation of the predictors. 

4.2.3.1.1.4 Zero mean:  
 

The expected value of the residual is zero. Е[ε│X]=0.  The immediate assumption is 

that the erros have zero mean: Е[ε] = 0, and that the regressors are uncorrelated with 

errors Е[X’ε] =0. This assumption is critical for OLS theory. The regressors are called 

exogenous if this assumption hold; otherwise it is called endogenous. 

4.2.3.1.1.5 Nonautocorrelation:  
 

The errors are uncorrelated between observations. Е[ߝ௜ߝ௝│X]=0 for i് ݆.  

4.2.3.1.1.6 Homoscedasticity: 
 

Е [ߝଶ
j │X] =ߪଶ 

This means that the error terms has the same variance ߪଶ in each observation. It is 

indicated when the residuals are not evenly scattered around the line. This assumption 

can be verified by visual examination of a plot of the standardized residuals (the 

errors) by the regression standardized predicted value. 

  



49 
 

4.2.3.1.2 Regression coefficients 
 

The regression coefficient, b, is the average amount the dependent variable (DV) 

increases when one independent variable (IV) increases by one unit and the other IVs 

are held constant. In other words, the b coefficient is the slope of the regression line: 

the larger the b, the steeper the slope, the more the DV changes for each unit change 

in the IVs. The b coefficient is the unstandardized simple regression coefficient for 

the case of one IV. When there are two or more IVs, the b coefficient is a partial 

regression coefficient. 

 

4.2.3.1.3 Multicollinearity 
 

Multicollinearity refers to excessive correlation of the predictor variables. When 

correlation is excessive (some use the rule of thumb of r >0.90), standard errors of the 

beta coefficients become large, making it difficult or impossible to assess the relative 

importance of the IVs. Multicollinearity is less important where the research purpose 

is sheer prediction since the predicted values of the DV remain stable, but it is a 

severe problem when the research purpose includes causal modelling. 

 

Indicators that multicollinearity may be present in a model are large changes in the 

estimated regression coefficient when a predictor variable is added or deleted. The 

other indicator is insignificant regression for the affected variable in a multiple 

regression but a rejection of the hypothesis that those coefficients are insignificant as 

a group (using F test). 

 

Tolerance, T is given as follows: 

 

ܶ ൌ 1 െ ܴଶ … … … … … … … … … … … … … … … … . . … … … … …  ሺ4.27ሻ ݊݋݅ݐܽݑݍ݁

 

where  R2  is the coefficient of determination. 

 

The tolerance equation above is for the regression of one IV on all the other IVs, 

ignoring the dependent variable. There will be as many tolerance coefficients as there 
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are IVs. The higher the intercorrelation of the IVs, the more the tolerance will 

approach zero. As a rule of thumb, if tolerance is less than 0.20, a problem with 

multicollinearity is indicated. When tolerance is close to 0 there is high 

multicollinearity of that variable with other IVs and the beta coefficients will be 

unstable. The more the multicollinearity, the lower the tolerance, and the more the 

standard error of the regression coefficients.  

 

It should be noted that tolerance is part of the denominator in the formula for 

calculating the confidence limits on the b (partial regression) coefficient. 

 

The VIF is simply the reciprocal of tolerance. Therefore, when VIF is high there is 

high multicollinearity and instability of the b and beta coefficients. 

4.2.3.1.4 Significance testing 
 

One of the most common diagnostic checking in regression analysis is the dynamic 

inference which signifies drawing the interpretation that the DV changes i units 

because the IV changes one unit.  

 

The t-tests are used to assess the significance of individual i coefficients, i.e. 

specifically testing the null hypothesis that the regression coefficient is zero. A 

common rule of thumb is to drop from the equation all variables not significant at the 

0.05 level or better. 

4.2.3.1.5 Standard error of estimate, confidence intervals, and prediction 
intervals 
 

For large samples, the standard error of estimate (SEE), approximates the standard 

error of a predicted value. SEE is the standard deviation of the residuals. In a good 

model, SEE will be markedly less than the standard deviation of the dependent 

variable. In a good model, the mean of the dependent variable will be greater than 

1.96 times SEE.  
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4.2.3.1.5.1 The confidence interval of the regression coefficient  
 

Based on t-tests, the confidence interval is the plus/minus range around the observed 

sample regression coefficient, within which we can be, say, 95% confident the real 

regression coefficient for the population regression lies. Confidence limits are 

relevant only to random sample datasets. If the confidence interval includes 0, then 

there is no significant linear relationship between x and y. We do not reject the null 

hypothesis that x is independent of y.  

4.2.3.1.5.2 The confidence interval of the dependent variable, y 
 

The confidence interval of y (DV) is also called the standard error of mean prediction. 

Some 95 times out of a hundred, the true mean of y will be within the confidence 

limits around the observed mean of n sampled cases. That is, the confidence interval 

is the upper and lower bounds for the mean predicted response.  

4.2.3.1.5.3 The prediction interval of the dependent variable, y 

For the 95% confidence limits, the prediction interval on a fitted value is plus/minus 

the estimated value plus or minus 1.96 times SQRT(SEE + S2
y), where S2

y is the 

standard error of the mean prediction as shown from the equations above. Prediction 

intervals are upper and lower bounds for the prediction of the dependent variable for a 

single case. Thus repeated independent random samples taken from the same 

population in an identical manner will yield confidence intervals that contain the true 

value of the parameter being estimated in 95% of the samples. The prediction interval 

will be wider (less certain) than the confidence interval, since it deals with an interval 

estimate of cases, not means.  

4.2.3.1.6 F test 
 

The F test is used to test the significance of R, which is the same as testing the 

significance of R2, which is the same as testing the significance of the regression 

model as a whole. If prob(F) < α, then the model is considered significantly better 

than would be expected by chance and we reject the null hypothesis of no linear 
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relationship of y to the IVs. F is a function of R2, the number of IVs, and the number 

of cases.  

Thus, F is computed with k and (n - k - 1) degrees of freedom, where k is the number 

of terms in the equation, excluding the constant.  

F is given as follows;
 

ܨ ൌ
൤ೃమ

ೖ ൨

൤ భషೃమ
೙షೖషభ൨

… … … … … … … … … … … … … … . . … … … … …   ሺ4.28ሻ݊݋݅ݐܽݑݍ݁

Alternatively, F is the ratio of the mean square for the regression model divided by the 

mean square for error (residual). 

4.2.3.1.7 Partial F test 
 

The Partial F test can be used to assess the significance of the difference of two R2 for 

nested models. Nested means that one is a subset of the other. Also, unique effects of 

individual IVs can be assessed by running a model with and without a given IV, then 

taking partial F to test for the difference. In this way, partial F plays a critical role in 

the trial-and-error process of model-building.  

Let there be q, a larger model and let p be a nested smaller model.  

Let RSSp be the residual sum of squares (deviance) for the smaller model. 

Let RSSq be the residual sum of squares for the larger model. 

Partial F has df(1) and df(2) degrees of freedom, where 

݀ ଵ݂ ൌ ݀௙ ݂ݎ݋ ܴܵܵ௣ െ ܴܵܵ௤ … … … … … . … … . . … … … … . .  ሺ4.29ሻ ݊݋݅ݐܽݑݍ݁

݀ ଶ݂ ൌ ݀௙ ݂݈݁݀݋݉ ݎ݁݃ݎ݈ܽ ݄݁ݐ ݊݅ ܴܵܵ ݎ݋ … … . … . … … . .  ሺ4.30ሻ ݊݋݅ݐܽݑݍ݁

ܨ ݈ܽ݅ݐݎܽܲ ൌ ൭൫ܴܵܵ௣ െ ܴܵܵ௤൯
൫݀ ଵ݂ כ ܴܵܵ௤/݀ ଶ݂൯൘ ൱ … . . .   ሺ4.31ሻ ݊݋݅ݐܽݑݍ݁
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4.2.3.1.8 Effect size measures 
 

The beta weights are the regression b coefficients for standardized data. Beta is the 

average amount the DV increases when the IV increases by one standard deviation 

when all other IVs are held constant. It is perfectly possible for some or even all beta 

weights to be greater than 1.0. 

The model comparison method, sometimes called the dropping method, of assessing 

the relative importance of IVs is an alternative to the beta weight method. It is often 

preferred when the purpose is to build a model with fewer independent variables that 

add value or have an effect. 

4.2.3.1.9 Correlation 
 

Pearson's r2 is the percent of variance in the DV explained by the given IV when 

(unlike the beta weights) all other IVs are allowed to vary. The result is that the 

magnitude of r2 reflects not only the unique covariance it shares with the DV, but 

uncontrolled effects on the DV attributable to covariance the given IV shares with 

other IVs in the model. A rule of thumb is that multicollinearity may be a problem if a 

correlation is greater than 0.90 or several correlations are greater than 0.70 in the 

correlation matrix formed by all the IVs. 

The intercept, variously expressed as e, c, or x-sub-0, is the estimated Y value when 

all the IVs have a value of 0. Sometimes this has real meaning and sometimes it does 

not, that is, sometimes the regression line cannot be extended beyond the range of 

observations, either back toward the Y axis or forward toward infinity. 

4.2.3.1.10 R2 

 

R2, multiple correlation or the coefficient of multiple determination means that the 

repeated independent random samples taken from the same population in an identical 

manner will yield confidence intervals that contain the true value of the parameter 

being estimated in 95% of the samples. R2 can also be interpreted as the proportion of 

the variation of error in estimating the DV when knowing the IVs. That is, R2 reflects 
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the number of errors made when using the regression model to estimate the value of 

the DV, in ratio to the total errors made when using only the mean of the DV as the 

basis for estimating all cases. 

Mathematically,  

ܴଶ ൌ  ቀ1 െ ൫ܵܵܧ
ܵܵܶൗ ൯ቁ … … … … … … … … … … . … … … …  ሺ4.32ሻ ݊݋݅ݐܽݑݍ݁

ܧܵܵ ൌ  ෍ ቀ൫ ௜ܻ െ ෠ܻ௜൯ଶቁ … … … … … … . … … … … … … … . . …  ሺ4.33ሻ ݊݋݅ݐܽݑݍ݁

where  

SSE is error sum of squares  

Yi is the actual value of Y for the ith case 

iŶ  is the regression prediction for the ith case,  and  

SST is the total sum of squares.  

 

4.2.3.1.11 Adjusted R2 

 

When comparing models with different numbers of IVs, Gujarati (2006) recommends 

that, it is a good practice to find the adjusted R2 value because it explicitly takes into 

account the number of variables included in the model. The latter can be applied even 

when we are not comparing two regression models. 

ଶܴ ݆݀ܣ ൌ 1 െ ሾሺ1 െ ܴଶሻሺܰ െ 1ሻ/ሺܰ െ ݇ െ 1ሻሿ … … … … … … . . .  ሺ4.34ሻ ݊݋݅ݐܽݑݍ݁

 

where  

n is sample size 

݇ is the number of terms in the model excluding the constant.  
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4.2.3.1.12 Residuals  
 

Residuals are the differences between the observed values and those predicted by the 

regression equation. Residuals measure the closeness of fit between the predicted and 

actual values. The method to calculate residual values are indicated below. 

Residuals represent error.  Residual analysis is used for three main purposes:  

(1) to spot heteroscedasticity (i.e., increasing error as the observed Y value increases),  

(2) to spot outliers (influential cases), and  

(3) to identify other patterns of error (i.e., the error associated with certain ranges of X 

variables). 

Five main types of residuals that are analysed in the data are: 

Unstandardized residuals refer in a regression context to the linear difference 

between the locations of an observation (point) and the regression line (or plane or 

surface) in multidimensional space.  

Standardized residuals are residuals after they have been constrained to a mean of 

zero and a standard deviation of 1. A rule of thumb is that an outlier is a point whose 

standardized residual is greater than 3.3 (corresponding to the .001 alpha level).  

Deleted residuals, also called "jacknife residuals," compute the standard deviation 

omitting the given observation prior to standardizing or studentizing the residual. 

Deletion does not apply to unstandardized residuals, so "deleted residuals" are 

actually standardized deleted residuals. Analysis of outliers usually focuses on deleted 

residuals.  

Studentized residuals are constrained only to have a standard deviation of 1, but are 

not constrained to a mean of 0.  

Studentized deleted residuals are residuals which have been constrained to have a 

standard deviation of 1, after the standard deviation is calculated leaving the given 
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case out. Studentized deleted residuals are often used to assess the influence of a case 

and identify outliers.  

The error term from the regression equation is unknown because the true model is 

unknown. Once the model has been estimated, the regression residuals are defined as: 

 ݁̂௜ ൌ ௜ݕ  െ ො௜ݕ … … … … … … … … . . … … … … … … … … … … … . . .  ሺ4.35ሻ ݊݋݅ݐܽݑݍ݁

where  

 yi is the observed value of predictand in the year i  

 ŷi is the predicted value in the year i. 

Thus the regression equation consists of the following variables: 

• The unknown parameters denoted as β or b, may be a scalar or a vector of 

length k.  

• The independent variables X, are the predictor variables in the regression 

equation. Predictors are assumed to be continuous, interval variables, but also, 

it is common to notice the use of ordinal data in linear regression. 

• The dependent variable Y, also known as predictor variable, is the predicted 

variable in the regression equation and is assumed to be continuous, interval 

variable. The regression equation is a function of variables X and β, and it is 

given by 

ܻ ൌ ݂ሺܺ, ሻߚ … … … … … … … … … … … … … … . . … … . . … … .  ሺ4.36ሻ ݊݋݅ݐܽݑݍ݁

The simple regression equation is given by: 

ܻ ൌ ଴ߚ  ൅ ଵߚ ଵܺ௜ ൅ ௜ߝ … … … … … … … . . … … … … … … . . … .  ሺ4.37ሻ ݊݋݅ݐܽݑݍ݁

 

The estimates of beta weights β1  and β0 are given by: 

መߚ ൌ  
∑ሺݔ௜ െ ௜ݕҧሻሺݔ െ തሻݕ

∑ሺݔ௜ െ ҧሻଶݔ   … … … … … … … … … … … … … .  ሺ4.38ሻ ݊݋݅ݐܽݑݍ݁

and 
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መ଴ߚ ൌ തݕ  െ ҧݔመଵߚ  … … … … … … … … … … … … … . … … … … . .  ሺ4.39ሻ ݊݋݅ݐܽݑݍ݁

where  

 x  is the mean (average) of the x values and y  is the mean of the y values.  

Under the assumption that the error term has a constant variance, the estimate of that 

variance is given by: 

 ఛߪ
ଶ ൌ

ܧܵܵ
ܰ െ 2 … … … … … … … … . … … … … … … … … … … .  ሺ4.40ሻ ݊݋݅ݐܽݑݍ݁

This is called the root mean square error (RMSE) of the regression.  

The standard errors of the parameter estimates are given by: 

ොఉబߪ ൌ ොఛߪ  כ ඨቆ
1
ܰ ൅

ҧଶݔ

∑ሺݔ௜ െ … ҧሻଶቇݔ … … … … … … . … . . .  ሺ4.41ሻ ݊݋݅ݐܽݑݍ݁

and   

ఉଵߪ
ൌ ఛߪ  כ  ඨ

1
∑  ሺݔ௜ െ …  ҧሻ ଶݔ … … … … … … . … … … …  ሺ4.42ሻ ݊݋݅ݐܽݑݍ݁

 

In matrix notation, the normal equations are written as 

ሺ்ܺ ܺሻߚ ෡ ൌ ݕ்ܺ  … … … … … … … … … … … … … … … … . . . .  ሺ4.43ሻ ݊݋݅ݐܽݑݍ݁

 

4.2.3.1.13 Stepwise regression 
 

Stepwise regression is also called statistical regression. It is a way of computing 

regression in stages. In stage one, the IV best correlated with the DV is included in the 

equation. In the second stage, the remaining IV with the highest partial correlation 

with the DV, controlling for the first IV, is entered.  
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This process is repeated, at each stage partial-ling for previously-entered IVs, until the 

addition of a remaining IV does not increase R2 by a significant amount (or until all 

variables are entered). Alternatively, the process can work backward, starting with all 

variables and eliminating IVs one at a time until the elimination of one makes a 

significant difference in R2. 

Thus, each variable is entered in sequence and its value is assessed. If adding the 

variable contributes to the model then it is retained, but all other variables in the 

model are then retested to see if they are still contributing to the success of the model. 

If they no longer contribute they are removed. This method ensures we ultimately end 

up with the smallest possible set of predictor variables to be included in the model. 

 

Although several authors have widely used stepwise regression in selecting the best 

regression model while eliminating the insignificant IVs, some authors, however, 

criticised stepwise regression for various reasons. What follows are the criticisms of 

stepwise regression as highlighted by some authors.  

 
 
Criticism of stepwise regression 

Some statisticians criticize stepwise regression although it has been widely used in the 

literature. According to Hocking (1976), Draper and Smith (1981); stepwise 

regression includes regression models in which the choice of independent variables is 

carried out by an automatic procedure. Generally, this takes the form of a sequence of 

F-tests, but other techniques possible are t-tests, adjusted R2, Akaike information 

criterion, Bayesian information criterion, Mallows' Cp, or false discovery rate.  In 

statistics, the coefficient of determination R2 is the proportion of variability in a data 

set that is accounted for by a statistical model. Stepwise regression consists of forward 

selection, backward and a combination of the two. 

Several points about this method have been made: 

1. A sequence of F-tests is often used to control the inclusion or exclusion of 

variables, but these are carried out on the same data and so there will be 

problems of multiple comparisons for which many correction criteria have 

been developed. 
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2. It is difficult to interpret the p-values associated with these tests, since each is 

conditional on the previous tests of inclusion and exclusion and so the p-

values are compromised. 

3. According to Rencher and Pun (1980), and Copas (1983), the tests themselves 

are biased, since they are based on the same data. 

 

4.2.3.2 Model checks in time series method 
 
Time series method consists of Smoothing and Box Jenkins methods which are 

discussed below. 

 

4.2.3.2.1 Smoothing methods 
 

Smoothing methods assess the model fit through various values for the parameter and 

select a value that looks reasonable either from the plot of data and forecasts, or from 

statistics such as the MSE, MPE, and MAPE as explained in the literature review 

chapter.  

 

4.2.3.2.2 Box Jenkins models  
 

4.2.3.2.2.1 Assumptions 
 
Stationarity of the mean assumption: the data varies about a mean level. Another 

assumption in these models is that the variance is constant over the period of available 

data. Further to assume is that there is no strong seasonality present in the data. 

 

Thus if the model is adequate, then it should not show any patterns and the residuals 

should not be seriously auto correlated. This can be checked by plotting residuals 

versus time.  
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4.2.3.2.2.2 Plot of autocorrelation and partial autocorrelation function 
 

The function of ACF and PACF is to check the adequacy of the model. The plots of 

ACF and PACF include lines indicating which of the autocorrelations are significant. 

The ACF of a time series is a bar chart of the coefficients of correlation between a 

time series and lags of itself and the PACF is the plot or the partial correlation 

between a time series coefficients between the series and lags of itself.  That is, ACF 

of a time series Y at lag 1 is the coefficient of the correlation between Y (t) and Y (t-

1), which is presumably also the correlation between Y (t-1) and Y (t-2).  Correlation 

can also be expected in Y (t) and Y (t-2) if Y (t) is correlated with Y (t-1) and Y (t-1) 

is correlated with Y (t-2). The PACF at all lags can be computed by fitting a 

succession of AR (k) where k=1, 2 ...n models with increasing numbers of lags. The 

PACF at lag k is equal to the estimated AR (k) coefficient in an autoregressive model 

with k terms. By inspection of the PACF, one can determine how many AR terms one 

need to use to explain the autocorrelation pattern in a time series.  This is done to test 

if the above assumptions are met. If the assumptions are violated, then the data should 

be transformed either by differencing or by taking logs. 

 

4.2.3.2.2.3 Box-Lyung statistic 
 

Some problems may arise in testing time series plots partly due to many lags being 

tested simultaneously or partly due to the fact that the estimates of the correlations are 

themselves correlated, then the overall test should be done. Box-Lyung statistic is the 

test to be performed for cases like these. Box-Lyung statistic tests whether the 

autocorrelations at the first k lags are in accordance with the null hypothesis that they 

are all zero, that is, are consistent with the residuals forming a white noise process. 

 

4.2.3.2.2.4 t-Statistic 
 

If the model is not just adequate but also parsimonious, then all the parameters 

included in the model should be significant. This may be checked using the t statistic 

provided for each of the parameter estimates. 
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4.3 Summary 
 

The mathematical formulation of the method applied in the data series has been 

reviewed in this chapter.  The multiple regression and the time series mathematical 

representation of these methods have all been reviewed. 
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CHAPTER 5: DATA ANALYSIS AND RESULTS 

 

5.1 Introduction 
 

In this section, several methods are studied for operational electricity consumption 

forecast for the FeCr sector. Of the methods examined, the model that best fits the 

data and meets the assumption will be applied in forecasting electricity consumption 

in the FeCr sector.  

 

For short term forecasting, the recommended model will be responsible for predicting 

daily electricity consumption forecasts for the FeCr sector to inform the monthly 

projection over a twelve month period (one year). For medium term the recommended 

model will be responsible for predicting electricity consumption forecasts for the 

ferrochrome sector over a ten year period. Short term forecasts are for operational 

planning while medium term forecasts are for tactical planning as explained in 

Chapter 1 of this study. 

 

5.2 Data Analysis 
 

The data set available was fitted for both short and medium term purposes. In this 

section, the data is analysed for short and medium term using the best standards of 

analysis explored in Chapter 2. The analysis is based on causal and time series 

analysis. 

 

5.2.1 Short Term Forecasting 
 

An analysis of short term data set is as follows: 
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5.2.1.1 The data set 
 

The electricity consumption data set of the FeCr sector used in this study consists of 

1827 data points collected on a daily basis from April 2003 to March 2008 as 

indicated in Figure 5.1. The period for which the estimation of parameters and other 

specifications are done covers the 1827 observations. In order to achieve 

comparability with the previous actual figures, the year to be forecasted started from 

April 2008 to March 2009. The forecasts produced are for the period of twelve 

months generated from daily outcomes. These forecasts are for short term (one month 

– twelve months forecast).  

 
Figure 5.1: Ferrochrome daily electricity consumption data from 2003 to 2008 

 

5.2.1.2 Descriptive statistics 
 

The descriptive statistics in Table 5.1 and Table 5.2 shows an increasing growth in 

demand of FeCr sector. The FeCr sector started with a consumption of as low as 18 

GWh per day and within a period of five years it had reached a maximum 

consumption of 40 GWh per day (Table 5.1 and Table 5.2).  
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Table 5.1: Summary Descriptive statistics of daily electricity consumption of 

the FeCr sector 

Variable Mean Std.Dev Minimum Maximum N Missing 

Consumption 

FeCr (GWh) 

29.48 4.08 18.94 40.35 1827 0 

The data does not show any significant skewness and kurtosis (Table 5.2). Skewness 

ranges between -1 and +1. Thus skewness of 0.37 is within range and therefore not 

significant. If kurtosis is less than -1.2 then it is significant .Thus in Table 5.2, 

kurtosis is equal -0.44 and thus is insignificant.   

 

Table 5.2: Detailed Descriptive statistics of daily electricity consumption of 

the FeCr sector 

 
  

5.2.1.3 Box and Whisker plot  
 

The average electricity consumption of the FeCr sector per day is 29 GWh as 

illustrated in Figure 5.2. The simple plot in Figure 5.1 also illustrates that 

consumption of electricity by FeCr sector has been fluctuating over the five year 

period in this study. This behaviour is attributable to market dynamics shared in 

Valid N 1827.00
Mean 29.48
Confidence -95% 29.30
Confidence +95% 29.66
Geometric Mean 29.20
Median 28.57
Minimum 18.94
Maximum 40.34
Lower Quartile 26.73
Upper Quartile 32.52
Percentile 10'th 24.87
Percentile 90'th 35.60
Range 21.40
Quartile Range 5.79
Variance 16.61
Std.Dev. 4.08
Standard Error 0.09
Skewness 0.37
Std.Err. Skewness 0.06
Kurtosis -0.44
Std.Err. Kurtosis 0.11

Descriptive Statistics (FeCr Main Data)
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Chapter 3 of this study, which include the demand, outages, commodity prices, cost of 

production, and unforeseen world events. An increasing growth in consumption is 

also due to expansions and the completion of new projects.  

Figure 5.2: Box and Whisker plot of FeCr daily electricity consumption 

 
 

5.2.1.4 Normality 
The data follows a normal distribution as demonstrated in Figure 5.3 and Figure 5.4. 

In this regard, no transformation is required for this data set. 

 

Box & Whisker Plot

 Mean = 29.4803
 Mean±SE 
= (29.3872, 29.5734)
 Mean±1.96*SE 
= (29.2978, 29.6627)

FeCr Consmp GWh
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29.40
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29.50
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29.60

29.65
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Figure 5.3: Distribution of daily electricity consumption for the FeCr sector 

 
Figure 5.4: Normal probability plot for daily electricity consumption of the FeCr 
sector 

 

5.2.1.5 Model checks: Autocorrelation and Partial Autocorrelation functions 
 

The purpose of the ACF (Figure 5.5) and PACF (Figure 5.6) is to identify potential 

models based on the patterns of these functions. ARIMA(2,0,2)(1,0,0), (2,1,1)(1,0,0) 

Variable: FeCr Consmp GWh, Dis tribu tion: Normal
Chi-Square test = 285.04733, df = 9 (ad justed ) , p = 0 .00000
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and (2,0,2)(1,1,0) models have been fitted to the data. D(1), is the first order of 

differencing that has been applied to the models. 

 

From the data analysis section, we noted that the data set is normally distributed 

although there are some small seasonality signs. Thus the analysis shows that the data 

can be used as it is, in coming up with a forecasting model. To select the model that 

best fits the data, several models were tried (Figures 5.5, 5.6, 5.7, 5.8, 5.9 and Figure 

5.10). Most of the residual values are within the upper control limit and lower control 

limit band which implies that they are random and are not correlated. The other two 

models fitted are good but the better estimates emerge from the model 

ARIMA(2,0,2)(1,0,0). 

 

Figure 5.5: ACF of ARIMA(2,0,2)(1,0,0) 

 
 

  

Autocorrelat ion Function
FeCr Consmp KWh: ARIMA (2,0,2)(1,0,0) residuals;

(Standard errors are white-noise estimates)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 12 +.008 .0227

 11 -.091 .0227

 10 -.122 .0227

  9 -.033 .0227

  8 +.041 .0227

  7 +.137 .0227

  6 +.059 .0227

  5 -.012 .0227

  4 -.053 .0227

  3 -.024 .0227

  2 +.006 .0227

  1 -.003 .0227

Lag Corr. S.E.

0

100.5 .0000

100.3 .0000

84.25 .0000

55.34 .0000

53.23 .0000

50.00 .0000

13.66 .0337

 6.97 .2227

 6.68 .1540

 1.18 .7575

  .09 .9542

  .02 .8841

  Q p
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Figure 5.6: ACF of ARIMA(2,1,2)(1,0,0) 
Autocorrelation Function

FeCr Consmp KWh: ARIMA (2,1,2)(1,0,0) residuals;
(Standard errors are white-noise estimates)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 12 -.000 .0228

 11 -.018 .0228

 10 -.033 .0228

  9 +.019 .0228

  8 -.011 .0228

  7 +.036 .0228

  6 -.083 .0228

  5 -.091 .0228

  4 -.031 .0228

  3 +.039 .0228

  2 -.080 .0228

  1 -.179 .0228

Lag Corr. S.E.

0

113.5 .0000

113.5 0.000

112.8 0.000

110.7 0.000

110.0 0.000

109.8 0.000

107.4 0.000

94.15 .0000

78.37 .0000

76.58 .0000

73.65 .0000

61.38 .0000

  Q p

 
 

 

Figure 5.7:ACF of ARIMA(2,0,2)(1,1,0) 

 
 

Autocorrelat ion Function
FeCr Consmp KWh: ARIMA (2,0,2)(1,1,0) residuals;

(Standard errors are white-noise estimates)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 12 -.000 .0228

 11 -.018 .0228

 10 -.033 .0228

  9 +.019 .0228

  8 -.011 .0228

  7 +.036 .0228

  6 -.083 .0228

  5 -.091 .0228

  4 -.031 .0228

  3 +.039 .0228

  2 -.080 .0228

  1 -.179 .0228

Lag Corr. S.E.

0

113.5 .0000

113.5 0.000

112.8 0.000

110.7 0.000

110.0 0.000

109.8 0.000

107.4 0.000

94.15 .0000

78.37 .0000

76.58 .0000

73.65 .0000

61.38 .0000

  Q p
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Figure 5.8: PACF of ARIMA(2,0,2) (1,0,0)  

 
 

Partia l Autocorrelat ion Function
FeCr Consmp KWh: ARIMA (2,0,2)(1,0,0) residuals;

(Standard errors assume AR order of k-1)

Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 12 +.012 .0228

 11 -.081 .0228

 10 -.116 .0228

  9 -.034 .0228

  8 +.040 .0228

  7 +.136 .0228

  6 +.059 .0228

  5 -.013 .0228

  4 -.053 .0228

  3 -.024 .0228

  2 +.006 .0228

  1 -.003 .0228

Lag Corr. S.E.
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Figure 5.9: PACF of ARIMA(2,1,2)(1,0,0) 

 
 

Figure 5.10: PACF of ARIMA(2,0,2)(1,1,0) 

 
 

5.2.1.6 Residual Analysis 

 

Figures 5.11, 5.12, and Figure 5.13 show the residual plot of ARIMA(2,02)(1,0,0), 

ARIMA(2,1,2)(1,0,0) and ARIMA(2,0,2)(1,1,0). It is observed that all the ARIMA 

Partia l Autocorrelat ion Function
FeCr Consmp KWh: ARIMA (2,1,2)(1,0,0) residuals;

(Standard errors assume AR order of k-1)

Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 12 -.041 .0228

 11 -.060 .0228

 10 -.056 .0228

  9 +.006 .0228

  8 -.031 .0228

  7 -.028 .0228

  6 -.134 .0228

  5 -.103 .0228

  4 -.033 .0228

  3 +.003 .0228

  2 -.116 .0228

  1 -.179 .0228

Lag Corr. S.E.

Partia l Autocorrelation Function
FeCr Consmp KWh: ARIMA (2,0,2)(1,1,0) residuals;

(Standard errors assume AR order of k-1)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 12 -.041 .0228

 11 -.060 .0228

 10 -.056 .0228

  9 +.006 .0228

  8 -.031 .0228

  7 -.028 .0228

  6 -.134 .0228

  5 -.103 .0228

  4 -.033 .0228

  3 +.003 .0228

  2 -.116 .0228

  1 -.179 .0228

Lag Corr. S.E.
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methods show residual values that are constant around the mean confirming that the 

data is normal. 

 

Figure 5.11: Residual plots of ARIMA(2,0,2)(1,0,0)  

 
 

Figure 5.12: Residual plots of ARIMA(2,1,2)(1,0,0), 
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Figure 5.13: Residual plots of ARIMA(2,0,2)(1,1,0) 

 
 

Figure 5.14: Plot of FeCr consumption kWh 

 
 

5.2.1.7 Model fit 
 

The goodness of fit for ARIMA and exponential smoothing models is demonstrated in 

Table 5.3 and Table 5.4 respectively.  The goodness of fit test indicate that 

ARIMA(2,0,2)(1,0,0) is the best model when compared to the other two ARIMA 
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models. All the parameter estimates for ARIMA(2,0,2)(1,0,0) are significant.  

Although ARIMA(2,1,2)(1,0,0), has a good Bayes information criterion (BIC),  two 

parameter estimates are not significant, and this can lead to an unreliable forecast. 

ARIMA(2,0,2)(1,1,0) is the worst model in this case with the highest BIC. 

ARIMA(2,0,2)(1,0,0) also shows that there is no autocorrelation between residual 

values since the Durbin Watson (D-W) statistic of 2 is significant.  

 

Thus with MAPE of 2.6% which is significant at α = 5%, BIC of 0.99, R2  of 94.4% 

and Mean Absolute deviation of 0.76 it can be concluded that ARIMA(2,0,2)(1,0,0) 

fits the data well when compared to the other two ARIMA models. 

 

Table 5.3: Fitted Box Jenkins ARIMA Models 

 
 

Table 5.4: Fitted Exponential Smoothing models 

 
 

Forecast Model for FeCrConsmpKWh Forecast Model for FeCrConsmpKWh Forecast Model for FeCrConsmpKWh
ARIMA(2,0,2)*(1,0,0) ARIMA(2,1,2)*(1,0,0) ARIMA(2,0,2)*(1,1,0)

Term          Coefficient  Std. Error  t-Statistic  Significance Term          Coefficient  Std. Error  t-Statistic  Significance Term          Coefficient  Std. Error  t-Statistic  Significance

a[1]           1.4811       0.1038      14.2703       1.0000 a[1]           0.8820       0.1932       4.5658       1.0000 a[1]           1.4388       0.1339      10.7449       1.0000
a[2]          -0.4813       0.0698      -6.8980       1.0000 a[2]          -0.2964       0.1119      -2.6494       0.9919 a[2]          -0.4396       0.0927      -4.7427       1.0000
b[1]           0.7063       0.0517      13.6625       1.0000 b[1]           1.1016       0.1970       5.5917       1.0000 b[1]           0.6634       0.0694       9.5551       1.0000
b[2]           0.1087       0.0327       3.3225       0.9991 b[2]          -0.2688       0.1669      -1.6103       0.8927 <- b[2]           0.1414       0.0413       3.4258       0.9994
A[365]      0.2812       0.0263      10.7023       1.0000 A[365]       0.2614       0.0268       9.7439        1.0000 A[365]        -0.6649       0.0226     -29.4422       1.0000
_CONST         0.0034 Insignificant MA terms are harmless.

Within-Sample Statistics Within-Sample Statistics Within-Sample Statistics

Sample size 1827                 Number of parameters 5 Sample size 1827                 Number of parameters 5 Sample size 1827                 Number of parameters 5
Mean 29.57                       Standard deviation 4.146 Mean 29.57                       Standard deviation 4.146 Mean 29.57                       Standard deviation 4.146
R-square 0.9437                  Adjusted R-square 0.9436 R-square 0.9438                  Adjusted R-square 0.9436 R-square 0.9418                  Adjusted R-square 0.9416
Durbin-Watson 2.002              ** Ljung-Box(18)=229.4 P=1 Durbin-Watson 2.01               ** Ljung-Box(18)=198.5 P=1 Durbin-Watson 1.982              ** Ljung-Box(18)=363.1 P=1
Forecast error 0.9844            BIC 0.9932 Forecast error 0.9842            BIC 0.993 Forecast error 1.002             BIC 1.011
MAPE 0.02596                     RMSE 0.983 MAPE 0.02593                     RMSE 0.9828 MAPE 0.02307                     RMSE 1
MAD 0.7575                      MAD 0.7566                      MAD 0.6801                      

Model: Exponential Smoothing Forecast Model for FeCrConsmpKWh
Forecast Model for FeCrConsmpKWh Simple exponential smoothing: No trend, No seasonality
Exponential smoothing: No trend, Additive seasonality Confidence limits proportional to level

                        Smoothing     Final                         Smoothing     Final
Component           Weight       Value Component           Weight       Value

Level              0.81965      37.994 Level              0.84375      37.699
Seasonal           0.57639

Within-Sample Statistics Within-Sample Statistics

Sample size 1827                 Number of parameters 2 Sample size 1827                 Number of parameters 1
Mean 29.57                       Standard deviation 4.146 Mean 29.57                       Standard deviation 4.146
R-square 0.9419                  Adjusted R-square 0.9419 R-square 0.9356                  Adjusted R-square 0.9356
Durbin-Watson 1.901              ** Ljung-Box(18)=646.5 P=1 Durbin-Watson 1.934              ** Ljung-Box(18)=681 P=1
Forecast error 0.9993            BIC 1.003 Forecast error 1.052             BIC 1.054
MAPE 0.0264                      RMSE 0.9988 MAPE 0.02803                     RMSE 1.052
MAD 0.7725                      MAD 0.8175                      
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Validity of the two exponential smoothing models is tested as shown in Table 5.4. It 

can be observed that exponential smoothing with no trend but additive seasonality fits 

the data better when compared to the other model (exponential smoothing model with 

no trend and no seasonality). Exponential smoothing with no trend but additive 

seasonality exhibits a lower MAPE (2.6%). Furthermore, exponential smoothing with 

no trend and additive seasonality has a lower BIC but comes out with a higher R2 of 

94.2%. 

 

Based on this analysis we can conclude that exponential smoothing with no trend but 

additive seasonality has a better fit compared to exponential smoothing model with no 

trend and no seasonality. This is also re-affirmed by Figure 5.1 which shows no trend.  

5.2.1.8 Results and discussion 
 

From the Box and Jenkins method, ARIMA(2,0,2)(1,0,0) fitted the data well while for 

exponential smoothing models, Winter’s exponential smoothing fitted the data well 

too. We next make a comparative analysis of the two models so that we find the best 

model that best fit the data set. The purpose is to find a model that can produce 

electricity consumption forecast effectively for short term (one to twelve months 

forecast) for operational use in the FeCr sector. 

 

The adequacy of the two models, ARIMA(2,0,2)(1,0,0) and Winter’s exponential 

smoothing is compared as shown in Table 5.5. It is observed that  

ARIMA(2,0,2)(1,0,0) is a better model when compared to Winter exponential 

smoothing as it has a lower BIC criterion (0.993) and also exhibits a lower MAPE 

(2.596%). Above all this, it has a marginally higher R2 (94.4%) compared to the 

Winter’s exponential smoothing model. 

 

The D-W statistic for ARIMA(2,0,2)(1,0,0) is also significant at 2.001.  Based on this 

analysis, ARIMA(2,0,2)(1,0,0) is the best model to forecast electricity in the short 

term for operational use in the FeCr sector. 
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Table 5.5: Findings ARIMA(2,0,2)(1,0,0) Winters Exponential Smoothing 

 
 

Figure 5.15: Daily electricity consumption forecast versus actual 

 
 

Actual values and estimated figures using the two models (ARIMA(2,0,2)(1,0,0) and  

Winter’s exponential smoothing) are shown in Figure 5.15. This also confirms that 

ARIMA(2,0,2)(1,0,0) is more superior than the Winter’s exponential smoothing since 

it exhibits lower deviations from the actual. Based on chapter 4, section 4.2.3.1.5, the 

upper and lower limit of 95% confidence limit calculated from ARIMA(2,0,2)(1,0,0) 

method as the most efficient model, illustrates that the forecasts being estimated, will 

yield the confidence interval that contain the true value in 95% of the samples. 

 

Forecast Model for FeCrConsmpKWh Model: Exponential Smoothing
ARIMA(2,0,2)*(1,0,0) Forecast Model for FeCrConsmpKWh

Exponential smoothing: No trend, Additive seasonality

Term          Coefficient  Std. Error  t-Statistic  Significance                         Smoothing     Final
Component           Weight       Value

a[1]           1.4811       0.1038      14.2703       1.0000 Level                   0.81965      37.994
a[2]          -0.4813       0.0698      -6.8980       1.0000 Seasonal             0.57639
b[1]           0.7063       0.0517      13.6625       1.0000
b[2]           0.1087       0.0327       3.3225       0.9991
A[365]      0.2812       0.0263      10.7023       1.0000
_CONST         0.0034
Within-Sample Statistics Within-Sample Statistics

Sample size 1827                 Number of parameters 5 Sample size 1827                 Number of parameters 2
Mean 29.57                       Standard deviation 4.146 Mean 29.57                       Standard deviation 4.146
R-square 0.9437                  Adjusted R-square 0.9436 R-square 0.9419                  Adjusted R-square 0.9419
Durbin-Watson 2.002              ** Ljung-Box(18)=229.4 P=1 Durbin-Watson 1.901              ** Ljung-Box(18)=646.5 P=1
Forecast error 0.9844            BIC 0.9932 Forecast error 0.9993            BIC 1.003
MAPE 0.02596                     RMSE 0.983 MAPE 0.0264                      RMSE 0.9988
MAD 0.7575                      MAD 0.7725                      
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Figure 5.16: Monthly electricity consumption forecast versus actual 

 
 

The results shown in Figure 5.16 are of one year forecast from April to March (twelve 

months period) derived from applying ARIMA(2,0,2)(1,0,0) model. The model shows 

good performance over the period of twelve months since the forecasts show minimal 

deviations from the actual values and the forecast values are within the lower and 

upper bounds. The noticeable gap between the months of October to December is due 

to immeasurable changes brought by the global melt down that has vigorously 

affected the behaviour of the electricity consumption sector. However after the melt 

down, the model is showing a strong upward trend as the economy picks up.  

 

In Figure 5.17 the monthly MAPE for the forecasts are compared to 5% level of 

significant. Figure 5.17 indicates that during the month of November, the forecast was 

above 5% level of significance. This corresponds to the start of the global melt down. 

Thus, the ARIMA(2,0,2(1,0,0) method is recommended to produce twelve months 

forecasts for operational use in the FeCr sector.  
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Figure 5.17: Monthly MAPE versus significant α = 0.05 

 
 

5.2.2 Medium Term Forecasting 
 

In analysing the medium term forecast, we consider the data set, analyse descriptive 

statistics, check for normality, derive model that fits the data, check model adequacy 

and finally study the results for all the models that are fitted. 

 
In this section, there are two sets of data. The data set available is the yearly data set 

that consists of 29 actual values from 1980 – 2008. The other data set consists of 80 

actual values from 2003 – 2008 captured monthly. Several methods were examined in 

order to find the best model that can forecast electricity consumption for medium term 

use. The methods applied are the Multiple Linear regression using the yearly data set, 

and the Box Jenkins and exponential smoothing using monthly data set. Findings 

from all these models are presented in sections that follow. 

 

5.2.2.1 Multiple Linear Regression 
 

5.2.2.1.1. Data set 
 

Figure 5.18 shows electricity consumed on a yearly basis from 1980 to 2008 by the 

FeCr sector. The data reveals an increasing trend over the period. An attempt is made 

to fit multiple regression model. Regrettably, only 29 data points are considered. 

Other models such as exponential smoothing will be fitted to the same data but 
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monthly data points will be considered. This data set is too small to apply the Box and 

Jenkins method. 

 

Figure 5.18: Yearly electricity consumption for the FeCr sector 

 
 

In applying multiple regression model, electricity consumption was the dependent 

variable while independent variables that affect electricity consumption (EC) were 

identified as follows;  

Independent variable  – Gross Domestic Product (GDP) 

Independent variable  – World Stainless Steel Consumption (WSSC) 

Independent variable  – South Africa Stainless Steel Consumption (SASSC) 

Independent variable  –  World Ferrochrome Supply (WFeCrS) 

Independent variable  –  US dollar (USd). 

 

The independent variables selected to be used in the model are shown in Figure 5.19. 

 

All the independent variables indicate a strong relationship to electricity consumption 

(dependent variable) with respective R2 values well above 50% (Figure 5.19). 

 

Correlation between variables is shown in Table 5.6. It can be observed that there is a 

strong correlation between independent variables and dependent variable. In addition 

there is also a strong correlation between independent variables indicating 

multicollinearity. This means that all the independent variables can be used for 

analysis and prediction of electricity consumption forecast. 
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Figure 5.19: Scatter plot of dependent versus independent variables 
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Some of the independent variables were not normal and had to be transformed so as to 

satisfy the important assumption that the DV and the IVs are linearly related. This is 

done in detail under diagnostic checking (Section 5.2.2.1.2).  

 

Table 5.6: Correlation matrix between variables 

 
 

5.2.2.1.2 Model checks 
 

To check for model adequacy, diagnostic checking using multiple regression analysis 

tools is explored. 

 

The first part of regression analysis is to test if the data does not violate any of the 

assumptions illustrated in the literature review in Chapter 2 of this study. This 

includes normality assumption, constant residuals and homoscedasticity.  

 

5.2.2.1.3 Normality assumption 
 

To test for this assumption for both dependent and independent variables, 

Kolmogorov–Smirnov test was applied. 

Kolmogorov–Smirnov test is used to test the null hypothesis that the data comes from 

a normally distributed set against the alternative hypothesis that the data do not come 

from a normally distributed set. The null hypothesis is rejected if the calculated α is 

less than α=0.05 significant level.  

GDP WSSC SASSC WFeCrS Usd EC
GDP 1.00 0.98 0.90 0.97 0.84 0.95
WSSC 0.98 1.00 0.94 0.96 0.86 0.95
SASSC 0.90 0.94 1.00 0.85 0.80 0.87
WFeCrS 0.97 0.96 0.85 1.00 0.76 0.95
Usd 0.84 0.86 0.80 0.76 1.00 0.86
EC 0.95 0.95 0.87 0.95 0.86 1.00
Means   859025.1 16088.6 334.3 4222.9 4.3 6234.3
Std.Dev. 173483.9 6198.8 315.3 1361.8 2.7 2963.2
No.Cases 29
Matrix  1
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Based on the analysis in Figure 5.13, we reject the null hypothesis (P<0.05) and 

conclude that the data (for the medium term) is normal. 

The data for both the independent and dependent variables were not normal except for 

US dollar. Transformation was applied as follows: 

Dependent variable Electricity Consumption (EC), independent variables World 

Stainless Steel Consumption (WSSC) and World Ferrochrome Supply (WfeCrS), 

were transformed by taking the logarithm function. 

The independent variable Gross Domestic Product (GDP) was transformed using the 

reciprocal transformation (multiplicative inverse). 

 

No transformation was necessary for Usdollar (Usd) as it was normal. 

 

5.2.2.1.4 Test for residuals 
 

The main aim of testing for residuals is so that heteroscedasticity (variance of 

residuals not constant over time) and outliers are spotted, as well as identifying other 

patterns of error. 

The assumption of homoscedasticity is that the residuals are approximately equal for 

all predicted dependent variable scores. Alternatively, the variability in scores for 

dependent variable is the same for all values of the independent variable. 

Heteroscedasticity is usually shown by a cluster of points that is wider as the values 

for the predicted energy consumption get larger.  

The residual plots that have been examined (Table 5.7) show the data is fairly 

homoscedastic. In fact, residual plots show that the data meets the assumptions of 

homoscedasticity, linearity, and normality because the residual plot is rectangular, 

with a concentration of points along the centre. 

The data also depict few outliers that are within range. Thus we can conclude that the 

data do not have worrying outliers that can risk the outcome of the analysis. 
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Table 5.7: Residual test 

 

 

5.2.2.1.5 Correlation and multicollinearity 
 

Correlation coefficient is a statistic that gives a measure of how closely two variables 

are related, and it can vary from -1 indicating perfect negative correlation to +1 

indicating perfect positive correlation. Multicollinearity refers to excessive correlation 

of the predictor or independent variables. 

From Tables 5.6 and 5.9, it can be observed that (after data transformation), there is a 

strong positive correlation between the dependent and independent variables ranging 

between 70% and 94%. 

Based on Table 5.9, there is a high potential of multicollinearity amongst variables as 

the tolerance level (Table 5.8) is less than 0.2. When the tolerance level is close to 0 

there is high multicollinearity of that variable with other independent variables and 

Observed Predicted Residual Standard Standard Std.Err. Mahalanobis Deleted Cook's
Value Value Pred. v. Residual Pred.Val Distance Residual Distance

1 8.128881 8.083519 0.045362 -1.19096 0.29937 0.112097 14.35866 0.100200 0.039888
2 8.032360 8.020243 0.012117 -1.32913 0.07997 0.107795 13.20511 0.024534 0.002211
3 7.747165 7.895129 -0.147964 -1.60234 -0.97650 0.093674 9.73552 -0.239493 0.159123
4 8.097426 7.926081 0.171346 -1.53475 1.13081 0.063869 4.00927 0.208366 0.055995
5 8.331586 8.182181 0.149405 -0.97551 0.98601 0.061995 3.72151 0.179442 0.039126
6 8.322394 8.300935 0.021460 -0.71619 0.14162 0.068306 4.72446 0.026933 0.001070
7 8.388678 8.280548 0.108130 -0.76071 0.71361 0.055594 2.80372 0.124950 0.015256
8 8.427487 8.427363 0.000124 -0.44012 0.00082 0.060436 3.48883 0.000147 0.000000
9 8.475746 8.395995 0.079751 -0.50861 0.52632 0.057053 3.00404 0.092925 0.008886
10 8.504513 8.645535 -0.141022 0.03630 -0.93068 0.070188 5.04225 -0.179546 0.050209
11 8.454253 8.436184 0.018069 -0.42085 0.11925 0.039792 0.96546 0.019408 0.000189
12 8.478453 8.516011 -0.037559 -0.24654 -0.24787 0.046056 1.62122 -0.041382 0.001148
13 7.881560 8.274945 -0.393385 -0.77295 -2.59618 0.059368 3.33269 -0.464724 0.240658
14 7.996654 8.348469 -0.351815 -0.61239 -2.32183 0.044533 1.45297 -0.385076 0.092973
15 8.402905 8.274094 0.128811 -0.77481 0.85010 0.073797 5.67599 0.168865 0.049099
16 8.566745 8.579424 -0.012679 -0.10807 -0.08368 0.059653 3.37409 -0.015005 0.000253
17 8.524566 8.571085 -0.046519 -0.12628 -0.30701 0.044466 1.44577 -0.050903 0.001620
18 8.842894 8.659674 0.183220 0.06717 1.20917 0.045064 1.51101 0.200998 0.025939
19 8.931419 8.829753 0.101667 0.43857 0.67096 0.043911 1.38589 0.110987 0.007509
20 8.995413 8.858474 0.136939 0.50129 0.90374 0.040314 1.01651 0.147371 0.011160
21 9.098962 9.101893 -0.002932 1.03283 -0.01935 0.066670 4.45505 -0.003635 0.000019
22 8.897956 8.932784 -0.034828 0.66356 -0.22985 0.081282 7.09166 -0.048899 0.004995
23 9.062884 9.099126 -0.036242 1.02679 -0.23918 0.106851 12.95784 -0.072088 0.018758
24 9.210140 9.092921 0.117219 1.01324 0.77360 0.050377 2.12938 0.131786 0.013935
25 9.259035 9.120444 0.138591 1.07334 0.91464 0.054867 2.70572 0.159504 0.024215
26 9.124891 9.143014 -0.018123 1.12263 -0.11960 0.067723 4.62772 -0.022647 0.000744
27 9.196850 9.214508 -0.017658 1.27875 -0.11654 0.076377 6.14859 -0.023673 0.001034
28 9.463974 9.524893 -0.060919 1.95652 -0.40204 0.088974 8.68871 -0.092977 0.021636
29 9.392662 9.503228 -0.110566 1.90922 -0.72969 0.071794 5.32038 -0.142573 0.033126
Minimum 7.747165 7.895129 -0.393385 -1.60234 -2.59618 0.039792 0.96546 -0.464724 0.000000
Maximum 9.463974 9.524893 0.183220 1.95652 1.20917 0.112097 14.35866 0.208366 0.240658
Mean 8.628912 8.628912 0.000000 0.00000 0.00000 0.065961 4.82759 -0.002973 0.031751
Median 8.504513 8.571085 0.000124 -0.12628 0.00082 0.061995 3.72151 0.000147 0.013935
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beta coefficients will be unstable. It is common that the variable with the most 

variance inflation factor (VIF) which is calculated by taking the reciprocal of 

tolerance level will be dropped. This is worked out by applying the stepwise forward 

regression to find the most capable independent variables that provides a model that is 

adequate to predict proper forecast for this sector. 

Table 5.8: Tolerance test 

 
 
 
Table 5.9: Multicollinearity test 

 
 

5.2.2.1.6 Autocorrelation 
 
The test for autocorrelation function is based on the D-W Statistic. In simple terms, 

we test the null hypothesis that there is no autocorrelation against the alternative Hi 

that there is autocorrelation. H0 is rejected if the test statistic approaches a value of 2, 

implying that there is no autocorrelation. If the error terms are highly positively 

correlated, the statistic would be less than 1 and could get near zero, which would 

indicate autocorrelation, and hence we do not reject H0. If the error terms are highly 

negatively correlated, the statistic would be greater than 3 and could get near the 

upper limit of 4. 

Based on Table 5.10, the D-W Statistic is equal to 1.44. Thus H0 is not rejected. We 

conclude that there is no autocorrelation between the residual values of energy 

consumption and predictor variables since the D-W Statistic is greater than 1. 

Variable Toleran. R-square Partial Semipart
Cor. Cor.

GDP 0.013684 0.986316 -0.049202 -0.014150
WSSC 0.009446 0.990554 -0.222918 -0.065685
SASSC 0.182314 0.817686 -0.100339 -0.028968
WFeCrS 0.045520 0.954480 0.609668 0.220935
Usd 0.122058 0.877942 0.507907 0.169367

GDP WSSC SASSC WFeCrS Usd EC
GDP 1.000000 -0.983464 0.678153 -0.954585 -0.897040 -0.925672
WSSC -0.983464 1.000000 -0.771496 0.964264 0.891041 0.925943
SASSC 0.678153 -0.771496 1.000000 -0.696578 -0.702653 -0.690423
WFeCrS -0.954585 0.964264 -0.696578 1.000000 0.796504 0.932695
Usd -0.897040 0.891041 -0.702653 0.796504 1.000000 0.863558
EC -0.925672 0.925943 -0.690423 0.932695 0.863558 1.000000
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However, D-W value should be closer to 2 as much as possible so that there is no 

autocorrelation between the variables. 

Table 5.10: Autocorrelation test 

 

5.2.2.1.7 Model Adequacy 

The analysis of the dependent variable with each predictor variable is shown in Tables 

5.11 to 5.16. It can be observed from these tables that all the predictor variables show 

a good adjusted R2 of between 85% and 94%, except for SASSC (with an adjusted R2    

4 6%). This is indicative that the model fits the data well. 

Table 5.11: Regression Results between Dependent  

EC and Independent GDP 

 
 
 
  

Durbin- Serial
Watson d Corr.

Estimate 1.444624 0.270425

  Dependent: EC               Multiple R =  .92567179     F = 161.6374
                                       R²=  .85686825    df =   1,27
  No. of cases: 29            adjusted R²=  .85156708     p =  .000000
               Standard error of estimate:  .184195067
  Intercept: 11.153360126  Std.Error: .2014862  t(   27) = 55.355  p = 0.0000
                                                                                
            GDP beta=-.93                                                 

Beta Std.Err. B Std.Err. t(27) p-level
of Beta of B

Intercept 11 0.2 55.3555 0.000000
GDP -0.925672 0.072809 -2095513 164823.6 -12.7137 0.000000

Effect Sums of df Mean F p-level
Squares Squares

Regress. 5.484005 1 5.484005 161.6374 0.000000
Residual 0.916051 27 0.033928
Total 6.400056

   Multiple Regression Results 
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Table 5.12: Regression results between Dependent  

EC and Independent WSSC 

 
 
 
Table 5.13: Regression Results between Dependent EC  

and Independent SASSC 

 
 
Table 5.14: Regression results between dependent EC  

and Independent WFeCrS 

 

  Dependent: EC               Multiple R =  .92594280     F = 162.3011
                                       R²=  .85737006    df =   1,27
  No. of cases: 29            adjusted R²=  .85208747     p =  .000000
               Standard error of estimate:  .183871899
  Intercept: -2.387371054  Std.Error: .8653917  t(   27) = -2.759  p =  .0103
                                                                                
           WSSC beta=.926                                                     

Beta Std.Err. B Std.Err. t(27) p-level
of Beta of B

Intercept -2.38737 0.865392 -2.75872 0.010289
WSSC 0.925943 0.072681 1.14506 0.089881 12.73974 0.000000

Effect Sums of df Mean F p-level
Squares Squares

Regress. 5.487217 1 5.487217 162.3011 0.000000
Residual 0.912840 27 0.033809
Total 6.400056

   Multiple Regression Results 

  Dependent: EC               Multiple R =  .69042338     F = 24.59411
                                       R²=  .47668445    df =   1,27
  No. of cases: 29            adjusted R²=  .45730239     p =  .000034
               Standard error of estimate:  .352202011
  Intercept:  8.904289973  Std.Error: .0857953  t(   27) = 103.79  p = 0.0000
                                                                                
          SASSC beta=-.69                                                     

Beta Std.Err. B Std.Err. t(27) p-level
of Beta of B

Intercept 8.9043 0.085795 103.7853 0.000000
SASSC -0.690423 0.139219 -32.4889 6.551182 -4.9592 0.000034

Effect Sums of df Mean F p-level
Squares Squares

Regress. 3.050807 1 3.050807 24.59411 0.000034
Residual 3.349249 27 0.124046
Total 6.400056

   Multiple Regression Results 

  Dependent: EC               Multiple R =  .93269470     F = 180.5636
                                       R²=  .86991940    df =   1,27
  No. of cases: 29            adjusted R²=  .86510160     p =  .000000
               Standard error of estimate:  .175596672
  Intercept: -3.687748658  Std.Error: .9171756  t(   27) = -4.021  p =  .0004
                                                                                
         WFeCrS beta=.933                                                     

Beta Std.Err. B Std.Err. t(27) p-level
of Beta of B

Intercept -3.68775 0.917176 -4.02077 0.000419
WFeCrS 0.932695 0.069410 1.48342 0.110395 13.43740 0.000000

Effect Sums of df Mean F p-level
Squares Squares

Regress. 5.567533 1 5.567533 180.5636 0.000000
Residual 0.832523 27 0.030834
Total 6.400056

   Multiple Regression Results 
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Table 5.15: Regression results between Dependent EC and  

Independent USd 

 
 

Table 5.16: Regression results between Dependent variable  

EC and overall independent variables 

 
 

  Dependent: EC               Multiple R =  .86355805     F = 79.18738
                                       R²=  .74573250    df =   1,27
  No. of cases: 29            adjusted R²=  .73631518     p =  .000000
               Standard error of estimate:  .245502228
  Intercept:  7.963151645  Std.Error: .0876107  t(   27) = 90.892  p = 0.0000
                                                                                
            Usd beta=.864                                                     

Beta Std.Err. B Std.Err. t(27) p-level
of Beta of B

Intercept 7.963152 0.087611 90.89242 0.000000
Usd 0.863558 0.097043 0.155251 0.017446 8.89873 0.000000

Effect Sums of df Mean F p-level
Squares Squares

Regress. 4.772730 1 4.772730 79.18738 0.000000
Residual 1.627326 27 0.060271
Total 6.400056

  Multiple Regression Results 

  Dependent: EC               Multiple R =  .95785641     F = 51.15007
                                       R²=  .91748890    df =   5,23
  No. of cases: 29            adjusted R²=  .89955170     p =  .000000
               Standard error of estimate:  .151524956
  Intercept:  2.978279345  Std.Error: 7.917545  t(   23) = .37616  p =  .7102
                                                                                
            GDP beta=-.12          WSSC beta=-.68         SASSC beta=-.07     
         WFeCrS beta=1.04           Usd beta=.485                             

Beta Std.Err. B Std.Err. t(23) p-level
of Beta of B

Intercept 3 8 0.37616 0.710244
GDP -0.120964 0.512015 -273836 1159087 -0.23625 0.815329
WSSC -0.675851 0.616274 -1 1 -1.09667 0.284135
SASSC -0.067844 0.140276 -3 7 -0.48365 0.633207
WFeCrS 1.035533 0.280732 2 0 3.68869 0.001215
Usd 0.484782 0.171439 0 0 2.82773 0.009541

Effect Sums of df Mean F p-level
Squares Squares

Regress. 5.871981 5 1.174396 51.15007 0.000000
Residual 0.528076 23 0.022960
Total 6.400056

Overall

   Multiple Regression Results 
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5.2.2.1.8 Goodness of fit 
 

To check for model adequacy, stepwise regression is applied as explained in the 

literature review chapter. 

 

 Forward selection method is used for selecting variables to include in the model. At 

stage one of this method, the independent variable that correlates best with the 

dependent variable is included in the equation. In the second stage, the remaining 

independent variable with the highest partial correlation to the dependent variable, is 

entered. This process is repeated, at each stage partial-ling for previously entered 

independents. 

Tables 5.11 to Table 5.16 give the analysis of independent variable with the each 

predictor variable electricity consumption (EC). It can be observed from these tables 

that all the predictor variables show a good adjusted R2 of between 85% and 94% with 

the exception of SASSC which shows a poor R2 value of 46%.  

Table 5.16 shows the model with all the independent variables included. The model in 

this case is significant (F=51.2) with a remarkable R2 of 92%.  

The aim of stepwise regression is to eliminate all the variables that when added, they 

do not impact on R2 significantly. 

With stepwise regression, analysis is done by steps until the procedure stops with no 

dependent variable with a better R2 than the previous results. In this section there are 

three steps, and we next provide the analysis of each step. 

 

Step 0 

This step indicated in Table 5.17 has no variables added to the dependent variable 

(energy consumption). Variability between the data is at 0.47 and not influenced by 

any independent variable. 
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Table 5.17: Regression results at Step 0 
   Multiple Regression Results (Step   0) 
 
  Dependent: EC               Multiple R = 0.00000000     F = 0.000000 
                                       R²= 0.00000000    df =   0,28 
  No. of cases: 29            adjusted R²= 0.00000000     p = -0.00000 
               Standard error of estimate:  .478093542 
 
                                                                                 
       Step 0:  No variables in the regression equation                       

 

Step 1 

First predictor variable added is the WFeCrS (Table 5.18). The R2 and its adjusted 

value are at 86% which shows that there is a strong relationship between the 

dependent variable and this predictor variable. The beta coefficient of 0.933 indicates 

that this is a good estimate. The model is also significant (F =180.56), implying that 

the model fits the data well. 

Table 5.18: Regression results at Step 1 
Multiple Regression Results (Step 1) 
 
  Dependent: EC               Multiple R =  .93269470     F = 180.5636 
                                       R²=  .86991940    df =   1,27 
  No. of cases: 29            adjusted R²=  .86510160     p =  .000000 
               Standard error of estimate:  .175596672 
  Intercept: -3.687748658 Std.Error: .9171756  t (27) = -4.021  p = .0004 
                                                                                 
WFeCrS beta=.933                                                  

 

Step 2 

The second predictor variable added is the USd (Rand dollar change). Addition of this 

variable improves the R2 and its adjusted value to 90%. The model is still significant 

at F=131 which implies that the model with these two predictor variables fits the data 

better compared to the previous model with one variable. The beta coefficients are 

0.67 and 0.33 for WFeCrS and Usd respectively as shown in Table 5.19. 

Table 5.19: Regression results at Step 2 
   Multiple Regression Results (Step 2) 
 
  Dependent: EC               Multiple R =  .95380564     F = 131.0367 
                                       R²=  .90974520    df =   2,26 
  No. of cases: 29            adjusted R²=  .90280253     p =  .000000 
               Standard error of estimate:  .149052878 
  Intercept:  -.470592126  Std.Error: 1.228112  t(26) = -.3832  p = .7047 
                                                                                 
WFeCrS beta=.670           Usd beta=.330                    
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Step 3 (Final Solution) 

The last predictor variable entered is the WSSC. This also improves the R2 and its 

adjusted value to 91%. The overall model is still significant at F=91.55 while the beta 

coefficient has improved to 1.01 for WFeCrS, the USd beta is 0.49 and WSSC beta is 

now at -0.49 (Table 5.20). Between the residual values of the dependent variables and 

predictor variables there is no autocorrelation (Table 5.22). 

Thus step three presents the simplest possible set of predictor variables that is 

included in the model. 

From this final step, it can be observed that two variables were dropped namely, the 

Gross Domestic Product (GDP) and the South Africa Stainless Steel Consumption 

(SASSC) due to high multicollinearity impact and normality assumption not met. 

Table 5.20: Regression results at Step 3 
   Multiple Regression Results (step   3, final solution) 
   no other F to enter exceeds specified limit 
  Dependent: EC               Multiple R =  .95737474     F = 91.54648 
                                       R²=  .91656639    df =   3,25 
  No. of cases: 29            adjusted R²=  .90655435     p =  .000000 
               Standard error of estimate:  .146147844 
  Intercept:   .718273807  Std.Error: 1.463408  t(25) = .49082  p =  .6278 
                                                                                 
         WFeCrS beta=1.01           Usd beta=.494          WSSC beta=-.49  
 

 

Table 5.21: Regression results summary of the final results 

 
 

Table 5.22: Autocorrelation between variables residuals 

 
 
From Table 5.23, the model is significant with F=91.5. Therefore the three 

independent variables namely, WFeCrS, USd and WSSC are the best variables to 

predict electricity consumption for FeCr sector for medium term. 

Step Multiple Multiple R-square F - to p-level Variables
+in/-out R R-square change entr/rem included

WFeCrS 1 0.932695 0.869919 0.869919 180.5636 0.000000 1
Usd 2 0.953806 0.909745 0.039826 11.4728 0.002257 2
WSSC 3 0.957375 0.916566 0.006821 2.0439 0.165196 3

Durbin- Serial
Watson d Corr.

Estimate 1.384488 0.302621
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Table 5.23: Overall goodness of fit 

 
 

Table 5.24 indicates that WSSC is not significant when applying multiple regression 

model to the data. Therefore WFECRS and USd are the best predictor variables for 

predicting electricity consumption for medium term using multiple linear regression 

for the FeCr. The R2 of 92% also shows a strong relationship between the predictor 

variables with the independent variables. 

 

The regression equation provided by these results will be used to predict future 

electricity consumption for the FeCr sector and the results will be evaluated in the 

results section with other model estimations. 

 

 

Table 5.24: Parameter estimates for Multiple Regression Model 

 

Effect Sums of df Mean F p-level
Squares Squares

Regress. 5.866076 3 1.955359 91.54648 0.000000
Residual 0.533980 25 0.021359
Total 6.400056

Forecast Model for EnergyConsumptionActual
Regression(3 regressors, 0 lagged errors)

Term               Coefficient       Std. Error        t-Statistic       Significance
----------------------------------------------------------------------
WFECRS        1.035102         0.439490         2.355236         0.973664
USD               456.793858     143.606689      3.180868          0.996222
WSSC             0.003105         0.141282         0.021974          0.017364 <-

Marked regressors are insignificant.

Within-Sample Statistics
Sample size 29                   Number of parameters 3
Mean 6234                        Standard deviation 2963
R-square 0.9163                  Adjusted R-square 0.9099
Durbin-Watson 0.9613             Ljung-Box(18)=28.17 P=0.9405
Forecast error 889.5             BIC 1002
MAPE 0.1295                      RMSE 842.2
MAD 625.7
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5.2.2.2 Exponential Smoothing 
 

Several models for exponential smoothing were tried in order to select the one(s) that 

best fit the data. The analysis is provided in the sections below. 

 

5.2.2.2.1 Data set and descriptive statistics 
 

Time series analysis is applied in order to arrive at the model that best fit the data. The 

data set consists of 80 (Table 5.25) data points. Figure 5.20 illustrates monthly 

consumption data used to forecast consumption for medium term. The sector 

consumed an average electricity of 868.09 GWh per month. For a period of seven 

years, the FeCr sector consumed maximum electricity of 1160.82 GWh and a 

minimum of 217 GWh, the latter being attributable to the global economic meltdown 

that affected the FeCr sector between October 2008 and August 2009. The 95% 

confidence interval is assumed for upper and lower limits. This data set is not normal 

and is transformed using logarithms. 

 

Figure 5.20 : Monthly electricity consumption for the FeCr sector 

 

Monthly electricity consumption for the FeCr sector
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Table 5.25: Descriptive statistics of the monthly FeCr  

electricity consumption data 

  
 

5.2.2.2.2 Model checks: Assumptions and data analysis 
 

Distribution of the monthly electricity consumption data after transformation follows 

a normal distribution as shown in Figure 5.21.   

 

Figure 5.21: Distribution of the monthly electricity consumption 

   
 

The residual plot in Figure 5.22 shows a constant mean and variance over time. This 

indicates that the data is stationary after transformation and hence confirms normality.  

 
 
 
 
 

Valid N 80
Mean 868.09
-95% Confidence 824.19
95%Confidence 911.99
Minimum 217.69
Maximum 1160.82
Variance 38920.44
Std.Dev. 197.28
Skewness -1.20
Kurtosis 2.45

Discriptive Statistics

Histogram; variable: TransFeCr Energy Consumpt
Exp.smooth.resids.;

 Expected Normal
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Figure 5.22: Residual plot of the monthly electricity consumption 

 
 

All exponential smoothing models that were considered here are shown in Table 5.26. 

Exponential smoothing with multiplicative seasonality and trend is the best model 

compared to other exponential smoothing models. It has the least MAPE (2.5%). 

Model adequacy and goodness of fit is examined in Table 5.23.  

 

Table 5.26: Parameter estimates for all fitted exponential smoothing models 

 

Plot of variable: TransFeCr Energy Consumpt
Exp.smooth.resids.;
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Exponential Smoothing Simple exponential smoothing: No trend, No seasonality
Forecast Model for FeCrEnergyConsumpt
Exponential smoothing: No trend, Additive seasonality

                         Smoothing     Final                          Smoothing     Final
Component           Weight       Value Component           Weight       Value

Level              0.93562      1003.8 Level              1.00000      1003.0
Seasonal           0.99948

Within-Sample Statistics Within-Sample Statistics

Sample size 80                   Number of parameters 2 Sample size 80                   Number of parameters 1
Mean 868.1                       Standard deviation 197.3 Mean 868.1                       Standard deviation 197.3
R-square 0.7557                  Adjusted R-square 0.7525 R-square 0.7383                  Adjusted R-square 0.7383
Durbin-Watson 1.495              Ljung-Box(18)=18.05 P=0.5473 Durbin-Watson 1.612              Ljung-Box(18)=12.85 P=0.1995
Forecast error 98.14             BIC 102.4 Forecast error 100.9             BIC 103.1
MAPE 0.03041                     RMSE 96.91 MAPE 0.03416                     RMSE 100.3
MAD 60.59                       MAD 65.
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5.2.2.2.3 Model Adequacy of the Fifth model 
 

Most of the residuals are within the upper and lower control limits, based on Figure 

5.23 and Figure 5.24. Therefore, it can be concluded that no autocorrelation exists 

within the residuals of the data series. This model fits the data well compared to all 

the others that were tested in this study. 

Holt exponential smoothing: Linear trend, No seasonality Additive Winters: Linear trend, Additive seasonality

                        Smoothing     Final                       Smoothing     Final
Component           Weight       Value Component           Weight       Value

Level              0.99960      1003.1 Level              0.99995      1003.0
Trend              0.00016    0.063617 Trend              0.00000  0.00017852

Seasonal           0.00861

Within-Sample Statistics Within-Sample Statistics

Sample size 80                   Number of parameters 2 Sample size 80                   Number of parameters 3
Mean 868.1                       Standard deviation 197.3 Mean 868.1                       Standard deviation 197.3
R-square 0.7383                  Adjusted R-square 0.7349 R-square 0.7383                  Adjusted R-square 0.7315
Durbin-Watson 1.611              Ljung-Box(18)=13.34 P=0.2288 Durbin-Watson 1.612              Ljung-Box(18)=13.52 P=0.2405
Forecast error 101.6             BIC 105.9 Forecast error 102.2             BIC 108.9
MAPE 0.03418                     RMSE 100.3 MAPE 0.03416                     RMSE 100.3
MAD 65.36                       MAD 65.35                       

Exp. smoothing: Multipl. season (4) S0=6.692 T0=1.000 (Yearly 
Data FeCr 2003_2008 monthlynew.sta)�
Expon.trend,mult.season; Alpha= .700 Delta=.200 Gamma=.008�
TransFeCr Energy Consumpt

Summary of Error Error
Mean error 0.002
Mean absolute error 0.100
Sums of squares 3.020
Mean square 0.038
Mean abs. perc. error 0.025
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Figure 5.23: ACF of residuals of the monthly electricity consumption 

  
 

Figure 5.24: PACF of residuals for monthly electricity consumption 

  
 

5.2.2.2.4 Goodness of fit  
 

Multiplicative exponential smoothing model with trend and seasonality is observed to 

fit this data well. Therefore, this method can be used to forecast electricity 

consumption in the medium term.  

Autocorrelat ion Function
TransFeCr Energy Consumpt: Exp.smooth.resids.;

(Standard errors are white-noise estimates)

Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 -.041 .0995

 14 -.057 .1003

 13 +.004 .1011

 12 +.029 .1018

 11 +.039 .1026

 10 -.030 .1033

  9 -.117 .1040

  8 -.117 .1048

  7 -.074 .1055

  6 -.078 .1062

  5 -.199 .1069

  4 -.316 .1076

  3 -.208 .1083

  2 +.087 .1090

  1 +.576 .1097

Lag Corr. S.E.

0

48.29 .0000

48.11 .0000

47.79 .0000

47.79 .0000

47.71 .0000

47.56 .0000

47.48 .0000

46.22 .0000

44.98 .0000

44.48 .0000

43.94 .0000

40.49 .0000

31.88 .0000

28.19 .0000

27.55 .0000

  Q p

Partia l Autocorrelat ion Function
TransFeCr Energy Consumpt: Exp.smooth.resids. ;

(Standard errors assume AR order of k-1)

Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 +.025 .1118

 14 -.094 .1118

 13 -.011 .1118

 12 -.097 .1118

 11 -.077 .1118

 10 +.026 .1118

  9 -.023 .1118

  8 -.102 .1118

  7 -.143 .1118

  6 -.099 .1118

  5 +.073 .1118

  4 -.124 .1118

  3 -.114 .1118

  2 -.366 .1118

  1 +.576 .1118

Lag Corr. S.E.
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5.2.2.3 Box Jenkins models 
 

5.2.2.3.1 Data set  
 

The data set applicable here is the monthly data from 2003 to 2009 (Figure 5.20) and 

the analyses of the data follows that of exponential smoothing in Section 5.2.2.2. 

 

Model 1 

 

Table 5.25: Parameter estimates for ARIMA(2,0,0) model 
       Variable: Consumpt  
 Transformations:   
           Model: (2,0,0) 
 No. of obs.:80  Initial SS=6336E4  Final SS=1411E3 (2.227%)  MS=18094. 
  Parameters (p/Ps-Autoregressive, q/Qs-Moving aver.); highlight: p<.05 
              p(1)   p(2) 
   Estimate: 1.1324 -.1387 
   Std.Err.: .11295 .11396 

 

Figure 5.25: Residual plot of ARIMA(2,0,0) model 
Plot of variable: Consumption(GWh)

ARIMA (2,0,0) residuals;
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Figure 5.26: ACF for ARIMA(2,0,0) model 
Autocorrelation Function

Consumption(GWh): ARIMA (2,0,0) residuals;
(Standard errors are white-noise estimates)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 -.016 .0995

 14 -.088 .1003

 13 +.040 .1011

 12 +.020 .1018

 11 +.049 .1026

 10 -.049 .1033

  9 -.063 .1040

  8 -.029 .1048

  7 -.015 .1055

  6 -.036 .1062

  5 +.014 .1069

  4 -.099 .1076

  3 +.004 .1083

  2 -.051 .1090

  1 -.000 .1097

Lag Corr. S.E.

0

 3.10 .9995

 3.07 .9989

 2.30 .9995

 2.14 .9992

 2.10 .9981

 1.88 .9972

 1.65 .9958

 1.29 .9957

 1.22 .9906

 1.19 .9771

 1.08 .9561

 1.06 .9008

  .22 .9745

  .22 .8970

  .00 .9984

  Q p

 
 

Figure 5.27: PACF ARIMA(2,0,0) model 

 
 

 It can be noted that the ARIMA(2,0,0) model seems to be an adequate fit based on 

autocorrelation function (Figure 5.26) and partial autocorrelation function (Figure 

5.27). Based on D-W statistic in Table 5.29, it can be concluded that there is no 

autocorrelation between the residual values. Parameter estimates are only given by the 

Autoregressive of order 2 represented as AR(2) with no differencing and zero moving 

average estimates.  

Partia l Autocorrelat ion Function
Consumption(GWh): ARIMA (2,0,0) residuals;

(Standard errors assume AR order of k-1)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 -.008 .1118

 14 -.103 .1118

 13 +.033 .1118

 12 +.005 .1118

 11 +.040 .1118

 10 -.063 .1118

  9 -.062 .1118

  8 -.045 .1118

  7 -.013 .1118

  6 -.048 .1118

  5 +.015 .1118

  4 -.101 .1118

  3 +.004 .1118

  2 -.051 .1118

  1 -.000 .1118

Lag Corr. S.E.
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Despite the fact that there is no autocorrelation and the model has a good fit, the 

setback is with the MAPE of 9% which is greater than α=5%. Thus, it can be 

concluded based on Table 5.29 that this model will not be an appropriate one for 

forecasting medium term electricity consumption for the FeCr sector. 

 

Model 2 

 
Table 5.26: Parameter estimates for ARIMA(2,1,0)(1,0,0) 
        Variable: Consumpt  
 Transformations: D(1)  
           Model: (2,1,0)(1,0,0)  Seasonal lag:  12 
 No. of obs.:79  Initial SS=8045E2  Final SS=7701E2 (95.72%)  MS=10133. 
  Parameters (p/Ps-Autoregressive, q/Qs-Moving aver.); highlight: p<.05 
              p(1)   p(2)  Ps(1) 
   Estimate: .19974 -.0467 .06460 
   Std.Err.: .11608 .11776 .14711 
 

 
 
Figure 5. 28: Residual plot for ARIMA(2,1,0)(1,0,0) 

 
 

Plot o f var iable: Consumption(GWh)
ARIMA (2,1,0)(1,0,0) residuals;
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Figure 5.29: The ACF of  ARIMA( 2,1,0)(1,0,0) model 

 
 

Figure 5.30: The PACF for ARIMA(2,1,0)(1,0,0) model 

 
 

The ARIMA(2,1,0)(1,0,0) model seems to fit the data adequately. However, there is 

also no autocorrelation between the residual values. All the parameter estimates are 

not significant (Table 5.27). The MAPE of 8% which is greater α=5% simply means 

that the error margin is too wide and forecasts will deviate significantly. Therefore, 

this model will not be appropriate for forecasting medium term electricity 

consumption for the FeCr sector. 

 

Autocorrelat ion Function
Consumption(GWh): ARIMA (2,1,0)(1,0,0) residuals;

(Standard errors are white-noise estimates)

Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 -.037 .1000

 14 -.076 .1008

 13 +.031 .1016

 12 -.001 .1023

 11 +.056 .1031

 10 -.022 .1038

  9 -.167 .1046

  8 -.066 .1053

  7 +.018 .1061

  6 -.057 .1068

  5 -.139 .1075

  4 -.062 .1083

  3 +.025 .1090

  2 -.008 .1097

  1 +.000 .1104

Lag Corr. S.E.

0

 6.43 .9717

 6.29 .9586

 5.73 .9555

 5.63 .9334

 5.63 .8967

 5.34 .8675

 5.29 .8080

 2.75 .9489

 2.37 .9369

 2.34 .8862

 2.05 .8418

  .39 .9836

  .06 .9964

  .00 .9976

  .00 .9983

  Q p

Partia l Autocorrelation Function
Consumption(GWh): ARIMA (2,1,0)(1,0,0) residuals;

(Standard errors assume AR order of k-1)

Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 15 -.072 .1125

 14 -.154 .1125

 13 -.013 .1125

 12 -.001 .1125

 11 +.042 .1125

 10 -.061 .1125

  9 -.189 .1125

  8 -.065 .1125

  7 +.018 .1125

  6 -.061 .1125

  5 -.139 .1125

  4 -.062 .1125

  3 +.025 .1125

  2 -.008 .1125

  1 +.000 .1125

Lag Corr. S.E.
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Table 5.27: Overall goodness of fit for models fitted 

 
 

Model 1 (ARIMA(2,0,0)) and Model 2 (ARIMA(2,1,0)(1,0,0)), both have MAPE that 

is greater than 5% level of significance. Model 2 parameter estimates are all not 

significant. Thus we can conclude that Box Jenkins method is not a good method to 

use for medium term when forecasting electricity consumption for the FeCr sector.  

 

5.2.2.2.3 Results and discussion 
 

The results on how efficient the models that were found to have the best fit to the data 

discussion thereof are discussed next. These outcomes are only for those models that 

were found to have the best fit on each of the methods that were examined. After 

fitting the models to the data set, the outcomes will be compared so that the 

appropriate method to forecast the FeCr sector electricity consumption for medium 

term or tactical use is selected. The methods fitted include Multiple Linear 

Regression, Exponential Smoothing and Box Jenkins method.  Only Multiple Linear 

Regression and Exponential Smoothing results are shown since these methods had the 

potential to forecast electricity consumption for medium term in the FeCr sector.  

 

Table 5.28 and Table 5.29 demonstrate results of the multiple regression and 

exponential smoothing goodness of fit. It is observed that exponential smoothing 

model fits the data better with a MAPE of 2.5%, while multiple regression model is 

worse off with a MAPE of 12.95%. The plot of actual values against estimated figures 

for exponential smoothing and regression models (Figure 5.31, 5.33 and Figure 5.34) 

further confirms that exponential smoothing model fits the data better compared to 

multiple regression model.  

Forecast Model for FeCrEnergyConsumpt Forecast Model for FeCrEnergyConsumpt
ARIMA(2,0,0) ARIMA(2,1,0)*(1,0,0)

Term          Coefficient  Std. Error  t-Statistic  Significance Term          Coefficient  Std. Error  t-Statistic  Significance
a[1]           1.1106       0.1072      10.3568       1.0000 a[1]           0.2007       0.1125       1.7846       0.9217 <-
a[2]          -0.2768       0.1078      -2.5680       0.9879 a[2]          -0.0481       0.1126      -0.4270       0.3294 <-
_CONST       144.3305 A[12]          0.0672       0.1345       0.4999       0.3814 <-

Within-Sample Statistics Within-Sample Statistics
Sample size 80                   Number of parameters 2 Sample size 80                   Number of parameters 3
Mean 868.1                       Standard deviation 197.3 Mean 868.1                       Standard deviation 197.3
R-square 0.774                   Adjusted R-square 0.7711 R-square 0.7497                  Adjusted R-square 0.7432
Durbin-Watson 2.025              Ljung-Box(18)=6.808 P=0.008351 Durbin-Watson 2                  Ljung-Box(18)=8.769 P=0.03514
Forecast error 94.39             BIC 98.45 Forecast error 99.97             BIC 106.5
MAPE 0.09154                     RMSE 93.2 MAPE 0.08848                     RMSE 98.08
MAD 63.91                       MAD 64.06                
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Table 5.28: Overall results, Stepwise Regression in Multiple Regression 

Method 

 
 

Figure 5.31: Yearly Forecast versus Actuals using Multiple Regression 

 
 

Exponential smoothing produces the best medium term forecast on a monthly basis 

that can be estimated yearly as shown in Figures 5.33 and 5.34 after being back 

transformed. Based on the seasonality factor, the results show a gradual increase in 

consumption over the months. These monthly forecasts can inform the yearly 

forecasts as shown in Figure 5.34. Parameters such as α, δ or β and γ can be used to 

adjust for randomness that can exist as a result of unforeseen world events that can 

Forecast Model for EnergyConsumptionActual
Regression(3 regressors, 0 lagged errors)

Term               Coefficient       Std. Error        t-Statistic       Significance

WFECRS        1.035102         0.439490         2.355236         0.973664
USD               456.793858     143.606689      3.180868          0.996222
WSSC             0.003105         0.141282         0.021974          0.017364 <-

Marked regressors are insignificant.

Within-Sample Statistics
Sample size 29                   Number of parameters 3
Mean 6234                        Standard deviation 2963
R-square 0.9163                  Adjusted R-square 0.9099
Durbin-Watson 0.9613             Ljung-Box(18)=28.17 P=0.9405
Forecast error 889.5             BIC 1002
MAPE 0.1295                      RMSE 842.2
MAD 625.7
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have an impact on the behaviour of the forecast. This is done through market analysis 

presented in Chapter 3 of this study. 

Figure 5.32: Yearly MAPE versus α = 0.05 level of significance 

 
 
Figure 5.33: Monthly forecast versus Actuals using Exponential Smoothing 
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Figure 5.34: Yearly forecast versus Actuals using Exponential Smoothing 
method 

 
 

The results that compare the previous actual with the forecasts for each year are 

shown in Figure 5.35 where the MAPE over all the years are below 5% level of 

significance. These MAPEs on a yearly basis imply that the error in GWh is between 

24GWh and 500GWh (i.e. about ± (7GWh, 44GWh) per month on average). This 

shows that this method is appropriate for forecasting the medium term electricity 

consumption forecast for the FeCr sector. Average MAPE over the five year period is 

only 2%, which is consistently below the 5% level of significance. 

 

Figure 5.35: Yearly MAPE versus α = 0.05 level of significance 
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Table 5.29: Overall results for Exponential smoothing model 

 
 

The multiple regression model is derived from stepwise forward regression where 

each variable is entered in sequence and its value is assessed. If adding the variable 

contributed to the model then it is retained, but all other variables in the model are 

then retested to see if they are still contributing to the success of the model. If they no 

longer contribute they are removed. This method ensures that the end result is the 

smallest possible set of predictor variables included in the model. 

 

Based on Table 5.28, it can be observed that WSSC is not significant while the other 

two parameters are significant at 5% level. The MAPE (Figure 5.32) for the multiple 

regression model on average is 12.95% which is way above the 5% level. Therefore, 

multiple regression is not as reliable as exponential smoothing in forecasting 

electricity consumption for the FeCr sector on medium term basis.  

 

Another shortcoming with the multiple regression method is that for the forecast to be 

produced, all the forecasted data for the dependent variable should be available which 

can be difficult to find. Looking at the predictor variable such as the US dollar, it can 

be difficult to find medium term forecast that is reliable since it has many factors 

contributing to its fluctuations. Thus, this method can be unreliable since it depends 

on forecasts of many other predictor variables to predict the future. 

 

The results of the multiple regression fit in Figure 5.31 illustrate that the forecast and 

the actual values are not as close together as those in Holt-Winters Linear seasonal 

smoothing in Figure 5.34. 

 

Exp. smoothing: Multipl. season (4) S0=6.692 T0=1.000 (Yearly 
Data FeCr 2003_2008 monthlynew.sta)�
Expon.trend,mult.season; Alpha= .700 Delta=.200 Gamma=.008�
TransFeCr Energy Consumpt

Summary of Error Error
Mean error 0.002
Mean absolute error 0.100
Sums of squares 3.020
Mean square 0.038
Mean abs. perc. error 0.025
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CHAPTER 6: SENSITIVITY ANALYSIS 

 
6.1 Introduction 
 
The traditional, statistical approach to forecasting has been based upon the 

identification, specification and estimation of a single model. Recently, 

computationally intensive methods which depart from tradition have become popular. 

The purpose of this chapter is to carry out sensitivity analysis by comparing models 

that best fitted the data set studied in this research for both short term and medium 

term with models that have gained popularity in recent years (as a result of being 

adopted by many researchers), and then finding the method that works best. The data 

set used in the previous chapter will be used to identify, estimate and validate the 

method that works best. 

 

One of the models that have gained much popularity that will be used in comparison 

to those fitted is the GARCH model. These will be compared with Box Jenkins 

ARIMA and multiplicative seasonality Holt-Winter Linear smoothing. 

 

6.2 GARCH Model 
 
To compute GARCH (p, q) model, the following steps were taken: 
 
The first point is to estimate the best fitting AR(q) model such that  
 

௧ݕ ൌ  ܽ଴ ൅ ܽଵݕ௧ିଵ ൅ ڮ ൅ ܽ௤ݕ௧ି௤ ൅ ௧ߝ ൌ ܽ଴ ൅ ෍ ܽ௜ݕ௧ି௜

௤

௜ିଵ

൅ ௧ߝ … . .  ሺ6.1ሻ ݊݋݅ݐܽݑݍ݁

where, 

a0 is the intercept of the model 

 t is the error terms andߝ

yt is the (AR) model 

Secondly, the autocorrelation of residual errors are computed and plotted using 
 

ߩ ൌ  
∑ ൫߳௧̂

ଶ െ መ௧ߜ
ଶ൯்

௧ି௜ାଵ ൫ߝ௧̂ିଵ
ଶ െ መ௧ିଵߜ

ଶ ൯

∑ ൫ߝ௧̂
ଶ െ መ௧ߜ

ଶ൯ଶଶ
௧ିଵ

… … … … … … … … … … … . . .  ሺ6.2ሻ ݊݋݅ݐܽݑݍ݁
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where ߳ t ~ IN(0,1)  
 
For large samples, the standard deviation of  )(iρ  is given by: 
 

ሺ݅ሻߩ ൌ
1

√ܶ
  … … … … … … … … … … … … … … … … … … … … … … …  ሺ6.3ሻ ݊݋݅ݐܽݑݍ݁

 

where, 

  T is the total number of samples. 

 

Thus, individual values that are larger than )(iρ  indicate the GARCH errors. LJung-

Box test is used to estimate the number of lags and to test the hypothesis that there 

exists GARCH error in the conditional variance. 

 

This model is tested for both short term and medium term. Thus the dataset applied 

for short term is the daily ferrochrome electricity consumption while for medium term 

we use the monthly ferrochrome electricity consumption data set. 

 

Figure 6.1: ACF of the residual values for medium term GARCH(1,1) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Autocorrelation Function
FeCr Energy Consumpt: ARIMA (1,0,1) residuals;

(Standard errors are white-noise estimates)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0

 24 +.001 .0924
 23 +.048 .0932
 22 -.131 .0940
 21 +.055 .0948
 20 -.083 .0956
 19 -.038 .0964
 18 +.035 .0972
 17 +.037 .0980
 16 +.005 .0988
 15 -.013 .0995
 14 -.088 .1003
 13 +.041 .1011
 12 +.016 .1018
 11 +.049 .1026
 10 -.049 .1033
  9 -.061 .1040
  8 -.030 .1048
  7 -.016 .1055
  6 -.039 .1062
  5 +.016 .1069
  4 -.100 .1076
  3 +.005 .1083
  2 -.032 .1090
  1 -.011 .1097
Lag Corr. S.E.

0
 6.72 .9998
 6.72 .9996
 6.45 .9995
 4.52 .9999
 4.19 .9999
 3.44 1.000
 3.29 .9999
 3.16 .9999
 3.01 .9998
 3.01 .9996
 2.99 .9991
 2.22 .9996
 2.05 .9993
 2.02 .9984
 1.80 .9977
 1.57 .9966
 1.23 .9964
 1.15 .9921
 1.13 .9804
  .99 .9634
  .97 .9147
  .10 .9921
  .10 .9534
  .01 .9232
  Q p
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Table 6.1: Summary of medium term analysis for GARCH(1,1) model  

 
 
 
Figure 6.2: ACF of the residual values for short term GARCH(1,1) 

 
 

Forecast Model for FeCrEnergyConsumpt ARIMA(1,0,1)

Term          Coefficient   Std. Error  t-Statistic   Significance

a[1]                  0.8075       0.0746      10.8234        1.0000
b[1]                 -0.2867       0.1204      -2.3802         0.9803
CONST          167.0950

Within-Sample Statistics

Sample size 80                        Number of parameters 2
Mean 868.1                             Standard deviation 197.3
R-square 0.7717                     Adjusted R-square 0.7688
Durbin-Watson 1.97             Ljung-Box(18)=6.988 P=0.009777
Forecast error 94.86               BIC 98.94
MAPE 0.09212                        RMSE 93.66
MAD 63.1        

Autocorrelat ion Function
FeCr Consmp GWh: ARIMA (1,0,1)  residuals;
(Standard errors are white-noise estimates)

 Conf. Limit
-1.0 -0.5 0.0 0.5 1.0
0 48 +.022 .0231 47 -.008 .0231

 46 -.025 .0231 45 -.022 .0231 44 -.011 .0231 43 +.020 .0231 42 +.032 .0231 41 +.021 .0231 40 -.011 .0231 39 -.024 .0231
 38 -.032 .0231 37 -.013 .0231 36 +.013 .0232 35 +.036 .0232 34 +.016 .0232 33 -.009 .0232 32 -.028 .0232 31 -.024 .0232
 30 +.005 .0232 29 +.031 .0232 28 +.038 .0232 27 +.016 .0232 26 -.011 .0232 25 -.029 .0232 24 -.027 .0232 23 +.000 .0232
 22 +.031 .0232 21 +.030 .0232 20 +.010 .0233 19 -.019 .0233 18 -.033 .0233 17 -.026 .0233 16 -.007 .0233 15 +.012 .0233
 14 +.033 .0233 13 +.036 .0233 12 -.002 .0233 11 -.030 .0233 10 -.035 .0233  9 -.013 .0233  8 +.014 .0233  7 +.040 .0233
  6 +.018 .0233  5 +.002 .0234  4 +.018 .0234  3 +.079 .0234  2 +.214 .0234  1 +.480 .0234Lag Corr. S.E.

0562.0 0.000561.1 0.000
561.0 0.000559.8 0.000558.9 0.000558.7 0.000557.9 0.000556.0 0.000555.1 0.000554.9 0.000
553.9 0.000552.0 0.000551.7 0.000551.4 0.000548.9 0.000548.5 0.000548.3 0.000546.8 0.000
545.8 0.000545.7 0.000543.9 0.000541.2 0.000540.7 0.000540.5 0.000539.0 0.000537.6 0.000
537.6 0.000535.8 0.000534.1 0.000533.9 0.000533.2 0.000531.3 0.000530.0 0.000529.9 0.000
529.7 0.000527.7 0.000525.3 0.000525.3 0.000523.6 0.000521.3 0.000521.0 0.000520.7 0.000
517.8 0.000517.2 0.000517.2 0.000516.6 0.000505.1 0.000421.1 0.000  Q p
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Figure 6.3: Residual values for short term GARCH(1,1) 

 
 
 
Table 6.2: Summary of short term analysis for GARCH(1,0) model  

 
 
 
Having computed the GARCH models, the next step is to test if there exist the 

GARCH errors such that the models can be extracted further from the residual errors 

of the AR(q) or ARIMA(p, q) models. 

 

Plot of variable: FeCr Consmp GWh
ARIMA (1,0,1) residuals;
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Forecast Model for FeCrConsmpGWh
ARIMA(1,0,0)

Term          Coefficient      Std. Error   t-Statistic     Significance

a[1]           0.9685             0.0059     163.7522       1.0000
CONST     0.9325

Within-Sample Statistics

Sample size 1827                 Number of parameters 1
Mean 29.57                       Standard deviation 4.146
R-square 0.9357                  Adjusted R-square 0.9357
Durbin-Watson 2.155              ** Ljung-Box(18)=431.7 P=1
Forecast error 1.052             BIC 1.053
MAPE 0.02798                     RMSE 1.051
MAD 0.8163
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Hypothesis testing 

 

We test the following hypotheses 

 

Ho : There are existing GARCH errors in the conditional variance 

Hi : There are no GARCH errors 

 

The asymptotic standard deviation is given by: 

ሺ݅ሻߩ ൌ  
1

√ܶ
 

where T is the total number of samples. Individual values that are larger than )(iρ  

indicate the GARCH errors. Ljung - Box test is used to estimate for the number of 

lags until the values are less that 10 percent significant. 

 

Thus, for medium term data where the data points were equals to 80, 

 )(iρ    = 1/ 80  

 = 0.111803 

)(iρ    = 1/ 1827  

 = 0.023395   

 

When comparing )(iρ  with the residuals of the autocorrelation function for both the 

short term and medium term in Figure 6.2 and Figure 6.3 respectively, it can be seen 

that there is no residual value which is greater than )(iρ . This indicates that we reject 

the null hypothesis that there exist the GARCH errors in the conditional variance. 

This implies that there are no GARCH errors in the conditional variance of both data 

sets. 

 

6.3 Sensitivity Analysis  
 

The GARCH model is one of the widely applied models in forecasting electricity 

consumption. In this context the data maintain the homoscedastic behaviour within 

the residual values of the data sets. Thus this model is better applied in the data set 
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that has heteroscedastic condition in the variance such that the residual values from 

the autocorrelation function will have to be modelled in order to get the parameter 

estimates of the GARCH model. 

The GARCH, ARIMA and the Holt-Winter Exponential Smoothing model has the 

following properties:  

 

Properties of GARCH model 
 

The primary interest of the GARCH model encompasses the following: 

• Modelling changes in the variance 

• Providing improved estimations of the volatility 

• The model is not necessarily concerned with better forecasts but can improve 

forecasts already generated so as to reduce  the margin of  error  

• The model can be integrated into ARMA 

• The GARCH is more useful in modelling financial time series (De Gooijier & 

Handyman, 2006). 

 

Properties of ARIMA models 
 

• The ARIMA model consists of unit-root non-stationary time series which can 

be rendered stationary by the difference operation 

• ARIMA models are useful in real applications 

• The models are applied in stable data that has regular correlation 

• The ARIMA needs a minimum of 40 data points. 

 

Properties of the Holt-Winter Exponential Smoothing model 
 

• The Holt-Winter Exponential Smoothing model is used when the data shows 

trend and seasonality 

• The data can depict multiplicative or additive seasonality 

• Parameters are initialized only once, hence once the parameters have been 

established, the forecasting can proceed without any delay in re-computation 

of the parameters 

• Past data need not be remembered 
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• The model is suitable for series where the parameters remain more or less 

constant over a period of time (Kalekar, 2004). 

 

Other models such as the multivariate data analysis have a short coming in that more 

dependent variables and independent variable should be examined in order to arrive at 

the proper model which is not robust to the interest of this study. 

 

On the other hand, neural networks which with their ability to derive meaning from 

complicated or imprecise data, can be used to extract patterns and detect trends that 

are too complex to be noticed by either humans or other computer techniques. This 

method processes information in a similar way that the human brain does. The 

network is composed of a large number of highly interconnected processing elements 

working in parallel to solve a specific task. It learns by example. These elements 

cannot be programmed to perform a specific task. The examples must be selected 

carefully otherwise useful time is wasted, or even worse the network might be 

functioning incorrectly.  

 

Thus for this method (neural networks), it is easy to make a mistake. The 

disadvantage is that because the network finds out how to solve the problem by itself, 

its operation can be unpredictable. In addition, this method is not in competition with 

others but complimentary to other methods. For this study, it is a task that is more 

suitable to an algorithmic approach operation while there are more tasks that are 

suited to neural networks.  Hence a combination of two approaches, normally 

conventional forecasting methods and neural networks is more likely to perform at 

maximum efficiency (Stergiou and Siganos, 2008). 

 

Thus comparing the results of the models computed in Chapter 5 to the most widely 

used methods such as GARCH, shows that the models that are recommended to 

forecast electricity consumption in the Ferrochrome sector for this study are as the 

findings points out. 
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6.4 Analysis and post optimality  
 

The forecasting process starts with patterns of consumption behaviour which require 

one to plot the available historical consumption data , observe and analyse, and then 

attempt to determine the forecasting method that best fits the patterns exhibited by the 

data. Once a method has been identified, there are several measures available for 

comparing the historical data with the forecasts as discussed in the literature review of 

this study to determine how accurate the forecasts are.  

 

If the forecast is not accurate, another method can be tried or judgement, experience, 

or knowledge of the market could be used as discussed in Chapter 3 of this study, or 

even intuition to adjust the forecast in order to enhance further accuracy. The actual 

consumption should then be monitored to assess the performance of the forecast 

method over the planning period. If the forecast is accurate, it is appropriate to 

continue using the forecast method, otherwise consideration must be given to 

selecting a new model or adjusting the existing one. The flow chart diagram that 

summarises all the work done in the previous chapters as stipulated by Russell and 

Taylor (1995) is indicated in Figure 6.4. 
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1. Identify the purpose of forecast 

2. Collect historical data 

3. Plot the data series 

4. Transform the data 

5. Select a forecast model that seems 

appropriate for the data 

6. Develop/compute forecast for period 

of historical data 

Predictor 
series 

Parameter 
estimates Evaluation of 

time range 

Model 
Specification 

7. Check forecast accuracy with one 

or more measures 

8. Is accuracy 
of forecast 
acceptable? 

9a. Forecast over planning horizon 

10. Adjust forecast based on additional 
qualitative information and insight 

11. Monitor results and measure 
forecast accuracy 

No

9b. Select new 
forecast model or 
adjust parameter 
of existing model

Yes 

Figure 6.4: Flow chart diagram for the forecasting process 
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CHAPTER 7: CONCLUSION AND 

RECOMMEMDATIONS 

 

7.1 Discussion and recommendations 
 
The challenge of determining electricity consumption forecasting model is of concern 

to forecasters and continues to receive attention in statistical literature. Forecasting is 

becoming more challenging because of the changing environment in the electricity 

market as well as other economic contributors globally. The strategic forecast of the 

power utility company should then set the ultimate goal in the longest term possible 

while interim tactical changes based on short-term forecast help deal with immediate 

changes. 

 

The main objective of this research is to identify models to forecast the short and 

medium term forecasts for operational and tactical use using quantitative time series 

analysis models. The FeCr sector is examined for this study. Short term refers to a 

period of up to twelve months (one year) and medium term refers to a period of two to 

ten years.  

 

Fitted for short term is the Autoregressive Moving Average model and Simple 

Exponential Smoothing with no trend and seasonality. Comparing these two models 

based on the best model selection tools like the R2, the Bayes Information Criterion 

and the MAPE; the ARIMA(2,0,2)(1,0,0) model is recommended. From the analyses 

this model has the best fit to the data series and can thus be used to forecast short term 

electricity consumption for the ferrochrome sector.  

 

Fitted for medium term is the Multiple Linear regression using stepwise regression 

and Holt-Winter’s Linear Seasonal Smoothing. The Holt-Winter’s Linear Seasonal 

Smoothing was the best fit for forecasting medium term. The Multiple Linear 

regression using stepwise regression cannot be recommended as the best model 

because its error is too wide. Another disadvantage is that it is difficult to make any 

conclusion with the Multiple Linear regression using stepwise regression because of 
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high variability due to multicollinearity and uncertainties surrounding the independent 

variables forecast for medium term. To some predictor variables, the data set that is 

used to produce a forecast will have to be forecasted. This means more risk 

surrounding the final forecast of the dependent variable since the data set involved is 

also a forecasted one. 

 

The Holt-Winter’s Linear Seasonal Smoothing exhibits both trend and seasonality. 

The two main Holt–Winter models are the additive model for time series exhibiting 

additive seasonality and the multiplicative model for time series exhibiting 

multiplicative seasonality.  The Holt-Winter’s Linear Seasonal Smoothing with 

multiplicative seasonality is the one recommended for forecasting electricity 

consumption for the ferrochrome sector for medium term. This model is effective in 

forecasting medium term forecasts as well as providing the confidence limits which 

measure the level of uncertainty into the future.  

 

Another advantage of Holt-Winter’s Linear Seasonal Smoothing is that it is a highly 

adaptable and robust tool to forecast in different horizons. Unforeseen world events 

that convey uncertainties into the future predictions can be built-in to this model since 

it has many parameter estimates that take such factors into account. In order to select 

the best parameter estimates the MAPE is used. 

 

7.2 Limitations 
 
The following are identified as limitations of the study: 

• The study is based on the power utility‘s experience and therefore it might not 

necessarily hold true for other organisations in similar business. 

• The study is based on data collected from power utility customers, which is 

highly confidential. 

• The study does not provide or design new forecasting tools but recommends 

proper usage of some of the available tools. 

• Tools available might limit the application of more complex methodology and 

findings of the methods applied are based on the available tools provided. 
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• Forecasts for other variables used other than from power utility, remain at the 

source and will not be used for any other interest except the one for which it 

was requested. 

 

7.3 Further work 
 
The models recommended in this study for both short and medium term were based 

on 2003 to 2008 data This means that the performance of the models should be 

monitored and compared against the actuals over time to assess if indeed the models 

are appropriate. All the measures that estimate appropriate models have been 

presented, but the truth still has to prevail.  

 

This is a call to forecasters, researchers or statisticians for more research in sensitivity 

analysis to be carried out in order to best select the method that forecast well with 

fewer risks attached to it. 

 

Like most studies there is still more work to be done. The following are the 

delimitations of the study. 

• This research focuses on fewer causal variables and there is still a need to 

study many other variables to determine if they depict the same patterns or 

provide a better model than the one recommended. 

• The study focuses on time and not much on world qualitative factors although 

it did touch on that, but an intensive study that looks at qualitative factors that 

can enhance the quality of the forecast is required. 

• This study invites researchers to critique the models recommended and hence 

prove or disapprove their relevancy. 

• This study only focuses on developing models that are applicable to FeCr 

sector. It will be interesting as a further study to investigate models that are 

appropriate to forecast electricity consumption in other sectors such as coal, 

platinum, traction etc. 

• To ensure that models developed from this study remain relevant, proper 

monitoring and periodic reviews need to be enforced against changes in the 

environment. 
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• It is evident that multicollinearity is a common problem from this study, there 

is a need to perform analysis using statistical analysis that eliminates the 

presence of multicollinearity like principal components analysis which this 

study did not include. The use of principal components may not necessarily 

produce a better model but eliminates multicollinearity. It will be interesting 

as a further study to investigate use of principal components if it does 

eliminates multicollinerity 

• In this study, there was no attempt to combine methods to improve the 

efficiency of the forecast. Hence, another focus may be to investigate the 

possibility of combining the models determined in the study with other 

conventional methods in an effort to improve efficiency 

 

7.4 Conclusion 
 

The main aim of this study is to find forecasting models to forecast electricity 

consumption for operational and tactical planning in the ferrochrome sector. In order 

to achieve this, a compressive literature review was carried out to review what other 

authors have found when carrying similar studies. In addition, it is of interest to find 

out other methods gaining popularity as far as this topic is concerned. It is interesting 

to establish that this topic continues to receive extensive attention in the literature.  

 

The mathematical formulation of the methods and models investigated in this study 

has been provided to enhance the quality of the forecasts found. While the 

investigated methods of forecasting electricity consumption are technical, reliability 

of the forecasts is compromised if the use of judgment, experience and knowledge of 

the market is not facilitated. 

 

One of the objectives of this study is to investigate the market of the ferrochrome 

sector and risk exposure of the power utility that is supplying electricity to this sector. 

In this study the market has been extensively investigated and findings discussed. The 

emphasis has been on identifying attribute/factors that have an impact on the 

behaviour of electricity consumption in the sector. In addition to stipulating the 

characteristics of the sector, the study also added more quality to the market dynamics 
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identified to influence the behaviour of electricity consumption. This is vital 

information for the power utility as it is the main supplier of electricity to this sector.  

 

In this study a new method of forecasting electricity consumption in the ferrochrome 

sector for short term and medium term to increase efficiency is provided. Different 

methods that produced different models have been tried in order to select the best 

model that fitted the data adequately. Assumptions for the data sets provided were 

clearly indicated. Different measures to test the forecast accuracy after models 

identification were applied in order to establish which forecast model is more accurate 

than the others. For operation and tactical planning, models to forecast electricity 

consumption in the ferrochrome sector have been identified and recommended. To 

assess the robustness of these models, the data set for the ferrochrome sector 

electricity consumption was used. The results confirm goodness of the models 

proposed. 

 

While there was no attempt to combine methods, a sensitivity analysis was conducted 

instead. The sensitivity analysis did not focus on the sensitivity of the model 

parameters as expected but on the sensitivity of the methods. In particular the methods 

investigated were GARCH, ARIMA and the Holt- Winter seasonal exponential 

smoothing. However, the literature review reveals other models that are gaining 

popularity in forecasting electricity consumption. These include neural network and 

GARCH models among others. In the study, a summary of the strength and weakness 

of the neural network and GARCH models is provided. However, only and in-depth 

analysis of the GARCH model was done. 

 

In this study, an ARIMA method is suggested as an appropriate tool for operational 

forecasting of electricity consumption. The Holt-Winter Linear seasonal smoothing 

method is suggested for tactical planning.  



119 
 

REFERENCES 
 

1. Al-Ghandoor, A & Samhouri, M. (2009). Electricity consumption in the 

industrial sector in Jordan: Application of multivariate linear regression and 

adaptive neuro-fuzzy techniques. Journal of Mechanical and Industrial 

Engineering, 3(1):69-76. 

2. Al-Saba, T & El-Amin, I. (1999). Artificial neural networks as applied to 

long-term demand forecasting. Artificial Intelligence in Engineering, 13:189-

197. 

3. Adepoju GA, Ogunjuyigbe SOA, and Alawode KO. (2007). Application of 

Neural Network to Load Forecasting in Nigerian Electrical Power System. The 

Pacific Journal of Science and Technology.8(1):68-72 

4. Andrews RL. (1994). Forecasting performance of structural time series 

models. Journal of Business and Economic Statistics, 12(1):129-133. 

5. Azadeh, A, Ghaderi, SF and Sohrabkhani, S. (2008). Annual electricity 

consumption forecasting by neural network in high energy consuming 

industrial sectors. Energy Conversion and Management, 49(8):2272-2278. 

6. Baker, S. (2006). Multiple Regression Theory. http://hadm.sph.sc.edu/  

courses/J716/pdf/716-3%20Multiple%20Regression.pdf 

7. Balnac, K and Bokhoree C. (2008). Forecasting electricity demand of 

Mauritius using support vector machines for sustainable energy planning. The 

International Journal of Environmental, Cultural, Economic and Social 

Sustainability, 5:271-284. 

8. Bhargava, N, Singh, B and Gupta, S. (2009). Consumption of electricity in 

Punjab: Structure and growth. Energy Policy, 37:2385-2394. 

9. Bunn, DW. (1996). Non-traditional methods of forecasting. European Journal 

of Operational Research, 92:528-536. 

10.  Business dictionary. (2007-2009). http://www.businessdictionary.com 

11. Ceylan, H and Ozturk, HK. (2004). Estimating energy demand of Turkey 

based on economic indicators using genetic algorithm approach. Energy 

Conversion and Management, 45:2525-2537. 



120 
 

12. Copas, JB. (1983). Regression, prediction and shrinkage. Journal of the Royal 

Statistical Society, 45(3): 311-354. 

13. Costantini, M and Pappalardo, C. (2008). Combination of forecast methods 

using encompassing tests: An algorithm-based procedure. http://www.ihs.ac.at 

(accessed 04 February 2010). 

14. De Gooijer JG and Hyndman, RJ. (2006). 25 years of time series forecasting. 

International Journal of Forecasting, 22:443-473  

15. Draper, N & Smith, H. (1981). Applied Regression Analysis, (2nd Edition). 

New York: John Wiley & Sons, Inc. 

16. Fatai, K, Oxley, L and Scrimgeour, FG. (2003). Modeling and forecasting the 

demand for electricity in New Zealand: a comparison of alternative 

approaches. The Energy Journal, 24:75-102. 

17. Feinberg EA & Genehliou D, (2005). Applied mathematics for structural 

electric power systems: Load Forecasting. Power Electronics and Power 

systems, 2005: 269-285 

18. Garett, TA and Leatherman, JC. (2000). An introduction to state and local 

public finance. The Web book of Regional Science.  

http://www.rri.wvu.edu/WebBook/Garrett/chapterfour.htm 

19. Garson, DG. (2009). Quantitative Research in Public Administration: Multiple 

Regression. Caldwell: ncsu.edu 

20. Gettler, L. (2007). Sox First: Six steps for forecasting. Management & 

Compliance.http://www.soxfirst.com/50226711/six_steps_for_forecasting.php 

(accessed 20 July 2009). 

21. Ghader, SF, Azedeh, MA and Mohammadzadeh, S. (2006). Modeling and 

forecasting the electricity demand for major economic sectors of Iran. 

Information Technology Journal, 5(2):260-266. 

22. Guerrero, VM and Berumen, E. (1998). Forecasting electricity consumption 

with extra-model information provided by consumers. Journal of Applied 

Statistics, 25(2):283-299. 

23. Gujarati, DN. (2006). Essentials of Econometrics, (3rd Edition). U.S. Military 

Academy, West Point: McGraw-Hill Higher Education. 

24. Hamzaçebi, C. (2007). Forecasting of Turkey’s net electricity energy 

consumption on sectoral bases. Energy Policy, 35:2009-2016. 



121 
 

25. Hill, T and Lewicki, P. (2006). Statistics: Methods and Applications: a 

Comprehensive Reference for Science, Industry, and Data Mining. Tulsa Ok: 

StatSoft Inc. 

26. Hirschhausen, C and Andres, M. (2000). Long-term electricity demand in 

China – From quantitative to qualitative growth. Energy Policy, 28:231-241. 

27. Hocking, RR. (1976). The analysis and selection of variables in linear 

regression. Biometrics, 32 (1):1-49, March 1976 (A Biometrics Invited Paper). 

28. Hyndman, RJ. (2008). Forecasting and the importance of being uncertain. 

Indian Institute of Management Calcutta slides. Australia: Centage publisher. 

29. Inglesi, R. (2010). Aggregate electricity demand in South Africa: Conditional 

forecasts to 2030. Applied Energy: 87(2010):197-204 

30. Kalekar, PS. (2004). Time series forecasting using Holt-Winters exponential 

smoothing.  

http://www.it.iitb.ac.in/~praj/acads/seminar/04329008ExponentialSmoothing. 

pdf (accessed 04 January 2010). 

31. Keller, G. (2005). Statistics for Management and Economics, (7th edition). 

United States of America, Duxbury: Thompson Brook/Cole publishing. 

32. Keyno HRS, Ghader, F, Azade, A and Razmi, J. (2009). Forecasting 

electricity consumption by clustering data in order to decrease the periodic 

variable’s effects and by simplifying the pattern. Energy Conversion and 

Management, 50(3):829-836. 

33. Makridakis, S, Spyros, M, Steven C. W, and Hyndman R. J, (1998). 3rd 

edition. Forecasting: Methods and Applications. New York: John Wiley and 

sons. 

34. Malo, P and Kanto, A. (2005). Evaluating multivariate GARCH models in the 

Nordic electricity markets. Communications in Statistics: Simulation and 

Computation, 35:117-148. 

35. Managa, A. (2006). Model selection criterion. Unpublished thesis. Pretoria: 

University of Limpopo. 

36. Maseema, MP. (2009). Forecasting in an ever changing environment. Paper 

presented at the forecasters forum meeting of Eskom on the forecasting in an 

ever changing environment conference: Midrand, South Africa. 



122 
 

37. McClave, JT, Benson, PG & Sincich, T. (2001). Statistics for Business and 

Economics, (8th edition). United States of America, New Jersey: Prentice-

Hall, Inc. 

38. Metaxiotis, K, Kagiannas, A, Askounis, D and Psarras, J. (2003). Artificial 

intelligence in short term electric load forecasting: a state-of-the-art survey for 

the researcher. Energy Conversion and Management, 44:1525-1534. 

39. Mohamed, Z, Bodger, PS, Hume, DJ. (2004). Forecasting electricity 

consumption: A comparison of models for New Zealand and the Maldives. 

Kathmandu, Nepal: International Conference on Power Systems, 3-5 

November 2004: 6 pp. 

40. Osborne, JW & Waters, E. (2002). Four assumptions of multiple regression 

that researchers should always test. Practical Assessment, Research & 

Evaluation, 8(2). 

41. Oxford dictionary. (2006). Cape Town: Oxford university Press Southern 

Africa 

42. Ozturk, HK, Ceylan, H, Canyurt, OE & Hepbasli, A. (2005). Electricity 

estimation using genetic algorithm approach: a case study of Turkey. Energy, 

30:1003-1012. 

43. Pao, HT. (2009). Forecasting energy consumption in Taiwan using hybrid 

nonlinear models. Energy, 34(10):1438-1446. 

44. Rahib, A,Vasif, HA, &Cemal A. (2005). Electricity Consumption Prediction 

Model using Neuro-Fuzzy System. World academy of science, Engineering 

and Technology 8(24):128-131 

45. Rencher, AC & Pun, FC. (1980). Inflation of R² in best subset regression. 

Technometrics, 22:49-53. 

46. Robert, D & Kugel, C. (2008). Intelligent Enterprise: Six steps to better sales 

forecasting and demand planning. Available from Intelligent Enterprise: 

www.intelligententerprise.com/showarticle.jtml?article ID=209000118 

47. Russell, L & Kratowics, PE. (Editors). (2004-2009). Plant services: 

Forecasting. Available from plant services database: 

http://www.plantservices.com/articles/2003/28.html 

48. Russell, D & Mackinnon JG. (1993). Estimation and inference in 

econometrics. Cape Town: Oxford University press. 



123 
 

49. Russell, RS & Taylor, BW. (1995). Production and Operations Management. 

New Jersey: Prentice-Hall, Inc. 

50. Sahu, A. (2007). Forecasting. Available from reference for business database: 

www.referenceforbusiness.com 

51. SAS user guide. (1989). SAS/STAT User's Guide, Version 6, Fourth Edition, 

Volume 2, Cary, NC: SAS Institute Inc 

52. Silk, MH. (1988). World chromite resources and ferrochromium production. 

Mintek, Randburg: Council for Mineral Technology publishing. 

53. Smith, M. (2003). Electricity load and price forecasting using statistical 

methods and models. Available from  http://www.secondmoment.org/articles/ 

electricity.php (accessed 26 January 2010). 

54. Souza, RC, Barros M, Miranda, CVC. (2007). Short term load forecasting 

using double seasonal exponential smoothing and interventions to account for 

holidays and temperature effects. Journal of Operational Research Society, 3-

5 October 2007. 

55. Stergiou, C. & Siganos, D. (2008).Neural Networks.Available from 

http://www.doc.ic.ac.uk/-nd/surprise_96/journal/vol4/ccs11/report.html 

(accessed 09 March 2010) 

56. Tabachnik, BG & Fidell, LS. (1989). Using Multivariate Statistics, (3rd 

edition). New York: HaperCollins. 

57. Tunç, M, Çamdali, Ü & Parmaksizoğlu, C. (2006). Comparison of Turkey's 

electrical energy consumption and production with some European countries 

and optimization of future electrical power supply investments in Turkey. 

Energy Policy, 34:50-59. 

58. Walonick, DS. (1993). An overview of forecasting methodology. Available 

from http://www.statpac.com/research-papers/forecasting.htm (accessed 18 

July 2009). 

59. Yan, LM & Choon, OH. (2009). Neural networks forecasting on electricity 

consumption in Malaysia. Available from 

http://math.usm.my/research/OnlineProc/CS10.pdf (accessed 25 July 2009). 

60. Zhang, X & Gu R. (2007). Improved BP neural network for forecasting 

industrial electricity consumption in China. Available from: 

http://ieeexplore.ieee.org/Xplore (accessed 25 July 2009). 

 


