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ABSTRACT

A number of previous research studies have investigated volatility and financial risks

in the ermeging markets. This dissertation investigates stock returns volatility and

financial risks in the Johannesburg Stock Exchange (JSE). The investigation is con-

ducted in modelling volatility using Autoregressive Moving Average-Generalised Au-

toregressive Conditional Heteroskedastic (ARMA-GARCH)-type models. Daily data

of the log returns at the JSE over the period 08 January, 2002 to 30 December, 2011

is used. The results suggest that daily returns can be characterised by an ARMA (1,

0) process. Empirical results show that ARMA (1, 0)-GARCH (1, 1) model achieves

the most accurate volatility forecast. Modelling tail behaviour of rare and extreme

events is an important issue in the risk management of a financial portfolio. Extreme

Value Theory (EVT) is applied to quantify upper extreme returns. Generalised Ex-

treme Value (GEV) distribution is used to model the behaviour of extreme returns.

Empirical results show that the Weibull distribution can be used to model stock re-

turns on the JSE. In using the Generalised Pareto Distribution (GPD), the modelling

framework used accommodates ARMA and GARCH models. The GPD is applied to

ARMA-GARCH filtered returns series and the model is referred to as the ARMA-

GARCH-GPD model. The threshold value is estimated using Pareto quantile plot

while peak-over-threshold approach is used to model the upper extreme returns. In

general, the ARMA-GARCH-GPD model produces more accurate estimates of ex-

treme returns than the ARMA-GARCH model. The out of sample forecast indicates

that the ARMA (1, 3)-GARCH (1, 1) model provides the most accurate results.
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Chapter 1

Introduction and Background

1.1 Introduction

Stock market performance is crucial to businesses in South Africa. Studying stock

market performance requires assessing constituents such as volatility modelling and

financial market risks. It is therefore important to examine the Johannesburg Stock

Exchange (JSE). The JSE is a full service securities exchange which provides trad-

ing, clearing and settlement of equities, derivatives, interest rate products and other

associated instruments. The stock exchange was established in 1887 and has been

experiencing numerous changes since then. The JSE is licensed as an exchange under

the Securities Services Act, 2004 and Africa’s premier exchange. It has operated as

a market place for the trading of financial products for nearly 120 years.

The JSE does not only channel funds into the economy, but also provides investors

with returns on investments in the form of dividends, analyses business information

to identify areas of risk and makes recommendations on profitability models. The ex-

change is fulfilling its main function by rechanneling cash resources into the productive

economic activity, thus building the economy while enhancing job opportunities and

wealth creation. The exchange functions inside a proper regulatory framework that

is adhered to by all market players and is carefully enforced by a regulatory act. The

JSE has been based on self-regulation with rules and directives to protect the inter-

ests of the general public who are buying and selling shares.
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The JSE All Share Top 40 Companies Index is an equity index intended to reflect the

performance of the South African ordinary share market as a whole. The purpose of

the index is to have a tool that will be able to describe the market at a given point in

time in terms of price levels, dividend yield and earnings yields. The All Share Price

Index (ALSI) is an equity index which mirrors the performance of the South African

ordinary share market. The ALSI is benchmarked against global standards and is

basically an indicator of the general mood of the market. The ALSI measures the

performance of the overall market. A relatively big proportion of the total number of

securities listed on the JSE are incorporated into the index, on the basis that move-

ments in the share prices of those constituent companies can be said to represent the

market as a whole.

JSE limited released results that showed flexibility of the stock exchange even with

difficulties faced by all stock markets in 2008 which include increased volatility and

declining investor sentiments. Despite the fact that stock markets globally faced ex-

traordinary tests in 2008, the JSE performed well. The rising trend was a result of

increased purchase of shares and competitive share prices. However, at the end of

2008, the market cap fell due to falling share prices and this was a signal of a reces-

sion. The share prices started to rise in the last quarter of 2009 and this was a sign

that the world recession was easing.

Investing in financial markets is challenging because prices are highly volatile and

exhibit extreme price movement of magnitude. Volatility is defined as the statistical

measure of the dispersion of returns for a security or market index within a specific

time horison. It can either be measured by using the standard deviation or variance

between returns from that same security or market index. It is used to quantify the

risk of the financial instrument over the specified time period. Risk is the possibility

of losing some or all of the original investment. Generalised Autoregressive Condi-

tional Heteroskedastic (GARCH) is a time series technique used to model the serial

dependence of volatility. This study models volatility and financial market risks of

2



shares using GARCH-type models.

Extreme Value Theory (EVT) is the theory of measuring and modelling extreme

events. It is especially well suited to describe the tails of the profits and losses dis-

tributions typically found in stock returns. Two main distributions for EVT analysis

are Generalised Extreme Value (GEV) distribution and Generalised Pareto Distribu-

tion (GPD). Nowadays EVT has experienced a boom in the financial field, especially

with respect to risk managements. In this study the GEV distribution has been

applied to model tail behaviour of returns while GPD is used to model conditional

heteroskedasticity in the JSE stock returns.

1.2 Research problem

Volatility has become a topic of enormous importance to almost anyone who is in-

volved in financial markets and has been one of the most active and successful areas of

research in time series econometrics and economic forecasting in recent decades. Fi-

nancial markets across the world have seen increased volatility in recent periods. The

problem is that investors and financial analysts are concerned about uncertainty of

returns on their investment assets, caused by variability in speculative market prices

and the instability of business performance. Investors are interested in the direct

impact of time varying volatility on the pricing and hedging derivatives. In order to

address the above problem, GARCH-type models and EVT distributions are used to

examine time varying volatility of ALSI on the JSE.

1.3 Purpose of the study

1.3.1 Aim

The aim of this study is to examine the use of GARCH-type models for modelling

volatility and financial market risks of shares on the JSE. The study will detect

the best fit estimation model for conditional variance on GARCH-type models in-

cluding GARCH (p, q), Generalised Autoregressive Conditional Heteroskedastic in

3



Mean (GARCH-M), Threshold Generalised Autoregressive Conditional Heteroskedas-

tic (TGARCH), Exponential Generalised Autoregressive Conditional Heteroskedastic

(EGARCH) and EVT distributions.

1.3.2 Objectives of the study

The objectives of the study are to:

a. Develop symmetric and asymmetric GARCH-type models,

b. Use EVT for modelling extreme market risk for the ALSI on the JSE, and

c. Identify areas for further study.

1.4 Significance of the study

Investors and financial analysts are concerned about the uncertainty of the returns

on their investment assets caused by variability in speculative market prices and the

instability of business performance. When stock market risk increases, risk starts to

averse investors, who in turn tend to reduce their holding of equities relative to safe

assets such as Treasury bills. As a proxy of risk, volatility is not only of great concern

to investors but also to policy makers. On the other hand, policy makers are mainly

focused on the effect of volatility on the stability of financial markets in particular,

and the whole economy in general. Finally, volatility estimation is essential in many

Value-at-Risk (VaR) models.

1.5 Organisation of the study

This study is divided into five chapters. Following this introductory chapter, chap-

ter 2 reviews empirical literature on modelling volatility and financial market risks.

Chapter 3 provides methods that are used to model volatility and financial market

risks. Analysis of the data used in this study is discussed in chapter 4. Finally, chap-

ter 5 concludes the study, makes recommendations and identifies areas for further

study.
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Chapter 2

Literature review

2.1 Introduction

This chapter analyses the theoretical and empirical literature related to modelling

volatility and financial market risks. Following this introductory part, section 2.2

analyses volatility using GARCH-type models. In section 2.3 modelling of returns is

measured using GEV distribution, while in section 2.4 volatility modelling is measured

using GPD. Finally, section 2.5 summarises the chapter.

2.2 Volatility modelling using GARCH-type models

Mala and Reddy (2007) conducted a study on measuring stock market volatility in

emerging economies. They used both Autoregressive Conditional Heteroskedastic

(ARCH) and GARCH models to find the presence of the stock market volatility on

Fiji’s stock market. The analysis was done using time series data for the period 2001

to 2005. The volatility of stock returns were then regressed against the interest rates

and the results showed that the interest rates changes have a significant effect on

stock market volatility. The test for the presence of the volatility was carried for

each specific firm listed on the stock market but results revealed that of the 16 listed

companies, only 7 firms were volatile.

Alberg et al. (2008) examined a comprehensive empirical analysis of the return and

conditional variance of the Tel Aviv Stock Exchange (TASE) indices in Israel using
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GARCH models. They compared the forecasting performance of several GARCH

models using different distributions for two TASE index returns and parameters were

estimated using Quasi Maximum Likelihood (QML) technique. The Akaike Infor-

mation Criterion (AIC) and the log-likelihood values indicated that the EGARCH

model and Asymmetric Power Autoregressive Conditional Heteroskedastic model es-

timate the series better than the traditional GARCH. The results further showed

that EGARCH model using a skewed student-t distribution is the most successful in

forecasting the TASE indices. The results indicated that asymmetric GARCH models

improve the forecasting performance.

Floros (2008) examined the use of GARCH-type models for modelling volatility and

explaining financial market risk. Daily data from Egypt and Israel were used. The

study employed various GARCH-type models such as simple Component GARCH

(CGARCH), EGARCH, TGARCH, Asymmetric Component GARCH (ACGARCH)

and Power GARCH (PGARCH) models. The results showed strong evidence that

daily returns can be characterised by GARCH models. The findings are that for

both Egypt and Israel markets, increased risk will not necessarily lead to a rise in

the returns. The research on examining financial returns has raised the question of

whether GARCH-family models are able to capture volatility clustering.

Hein (2008) examined stock return volatility in Vietnam stock market. The empirical

investigation was conducted by means of GARCH models including both symmetric

and asymmetric models. The data set used was from Vietnam index over a six-year

period from March, 2002 to March, 2008. The findings presented the inappropriate-

ness of asymmetric GARCH in modelling Vietnam stock return volatility. The excess

kurtosis and skewness in residual series of Vietnam stock return still revealed even

with the best performing GARCH models. Empirical results suggested the sufficiency

of GARCH (1, 1) and GARCH (2, 1) models in capturing properties of conditional

variance in Vietnam stock market.

Aktan et al. (2010) addressed the issue of conditional volatility modelling by using
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symmetric and asymmetric GARCH-type models. The study examined the charac-

teristics of conditional volatility in the three Baltic stock markets (Estonia, Latvia

and Lithuania) by using a broad range of GARCH volatility models. The results

showed that there is strong evidence that daily returns from Baltic stock markets can

be successfully modelled by GARCH-type models. For all Baltic markets, they con-

cluded that increased risk will not necessarily lead to a rise in the returns. All of the

analysed indices exhibited complex time series characteristics involving asymmetric

GARCH model, long tails and complex autoregressions in the returns.

Emenike (2010) investigated the volatility of stock market returns in Nigeria using

GARCH (1, 1) and the Glosten Jagannathan Runkle (GJR)-GARCH (1, 1) models.

Volatility clustering, leptokurtosis and leverage effects were examined for the Nigerian

Stock Exchange returns series from January, 1985 to December, 2008. The results

from GARCH (1, 1) model showed that volatility of stock returns was persistent in

the return series data. The results of GJR-GARCH (1, 1) model showed the existence

of leverage effects in the stock returns data. Overall results from this study provided

evidence to show volatility persistence, fat-tail distribution and leverage effects for

the Nigerian stock returns data.

Hamadu and Ibiwoye (2010) studied the volatility behaviour of the Nigerian insurance

stock price. Several deviations of heteroskedastic conditional volatility models were

evaluated using model evaluation performance metrics. The post estimation revealed

that most of the models studied were competitive. However, the results showed that

the EGARCH is a more preferred modelling framework for evaluating risk volatility

of Nigerian insurance stocks. The findings were validated by using AIC, Root Mean

Square Error (RMSE) and Mean Absolute Error (MAE) evaluation information mea-

sures.

Sigauke et al. (2010) investigated the use of Autoregressive Integrated Moving Av-

erage (ARIMA)-GARCH-type models for modelling volatility in a hyperinflationary

economic environment. Their study used monthly stock prices of eight counters listed
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on the Zimbabwe Stock Exchange (ZSE) over the period 1993 to 2004. The results

suggested that the monthly returns are characterised by an ARMA (0, 1)-GARCH

(1, 1) model and that increased risk does not necessarily imply an increase in returns.

The out of sample forecasting evaluation indicated that ARMA (0, 1)-TGARCH (1,

1) model achieves the most accurate volatility forecast followed by ARMA (0, 1)-

GARCH (1, 1) model. The study showed that supply and demand theory which was

used at the ZSE underestimated the value of assets.

Wang (2010) investigated the link between the volatility of China’s stock market

and macroeconomic variables such as the real Gross Domestic Product (GDP), in-

flation, and interest rate for the period from 1992 to 2008 using monthly data. The

study implemented two steps in its investigation. In stage one, the volatility for each

variable using EGARCH model was estimated and an examination of the causal re-

lationship between the volatility of the stock prices and the macroeconomic variables

was found. Results revealed that there was no causal relationship between stock mar-

ket volatility and economic activity measured by real GDP. This implied that stock

prices were not significant in explaining economic activity. Results showed unidirec-

tional causal relationship between stock market volatility and interest rate volatility

running from stock prices to the interest rate.

Ahmed and Suliman (2011) estimated volatility in the daily returns of the princi-

pal stock exchange of Sudan using GARCH models. In their study, they used the

Khartoum Stock Exchange (KSE) over the period from January, 2006 to November,

2010. The models used include both symmetric and asymmetric GARCH that capture

the most common stylised facts about index returns such as volatility clustering and

leverage effect. The empirical results showed that the conditional variance process is

persistent. The results also provided evidence on the existence of risk premium for the

KSE index return series which support the positive correlation between volatility and

the expected stock returns. The findings of their study explained that all GARCH

specifications applied clarify that explosive volatility process is present in the KSE

index returns over the sampled period.
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Angabini and Wasiuzzaman (2011) examined different GARCH models to investigate

and quantify the changes in volatility of the Malaysian stock market with respect to

the global financial crisis in 2007/2008. The unit root test was applied to check for

stationarity and series were found to be stationary. Conditional mean was then mod-

elled using Autoregressive Moving Average (ARMA) models and the Autoregressive

(AR) (4) model was selected as the best model. The GARCH models were estimated

using QML assuming the Gaussian normal distribution. Different lags were examined

for each model and the GARCH (1, 1), EGARCH (1, 1) and GJR-GARCH (1, 1) were

found to be the most successful models. AR (4)-GARCH (1, 1), AR (4)-EGARCH

(1, 1) and AR (4)-GJR-GARCH (1, 1) were the final models to describe the process.

Li and Hong (2011) examined and demonstrated the ability and superiority of price

range estimators to forecast future volatility by comparing with the GARCH volatility.

The study employed data from United States stock market. They adopted Autore-

gressive Volatility (AV) model in order to model dynamics of volatility process. Two

types of volatility models discussed and estimated were return based GARCH model

and range-based AV model. The comparison study included out of sample forecasting

performance as well as in sample comparison. The results from both out of sample

and in sample forecasts showed that the range based AV model successfully captured

the dynamics of the volatility. Furthermore the results showed that AV gained good

performance relative to the GARCH model.

2.3 Modelling returns using GEV distribution

Bali (2007) proposed an extreme value distribution to estimate interest rate during

high volatility period on Federal Reserve in the United States. The study provided

strong evidence for the presence of serial correlation and extreme conditionally het-

eroskedastic volatility effects. The study showed that the tails of the empirical dis-

tribution are much thicker than the tails of the normal distribution. The empirical

results indicated that the volatilities of the maximum and minimum changes in the

interest rate decline as time to maturity arises. The study also introduced a closed
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form option pricing model based on the GEV distribution, and showed that the newly

proposed model provides more accurate predictions.

Hasan et al. (2011) studied extreme share returns in Malaysia. The monthly, quar-

terly, half yearly and yearly maximum returns are fitted to the GEV distribution.

Maximum Likelihood Estimation (MLE) is used to estimate the parameter while L-

moment estimate is used to initialise the MLE optimisation routine for the stationary

model. Likelihood ratio test is performed to determine the best model and return

levels are then estimated for prediction and planning purpose. The results showed

that maximum returns for all selection periods are stationary. The results also con-

cluded that yearly maximum is better for the convergence to the GEV distribution

especially if longer records are available.

Zhao et al. (2011) developed a GEV-GARCH model by applying a conditional autore-

gressive heteroskedastic structure to the classical GEV distribution on high frequency

data of Dow Jones stock returns. A simulation study and real data showed that the

GEV-GARCH model can capture the dynamic of conditional variance of extremes and

model the tail behaviour of the underlying variables. The study indicated that model

identification is problematic if the tail behaviour changes as fast as the volatilities.

Results also indicated that the model can be used in estimation of tail related risk for

heteroskedastic time series. Further results demonstrated that model identification

and parameter estimation complications arise when considering a time varying shape

parameter with similar GARCH structure.

Huang et al. (2012) studied the applications of EVT on analysis for closing price

data of Dow Jones industrial index and Danish fire insurance claims data. The study

proposed the hypothesis testing problem for the extreme value index based on a new

test statistics, the Linear Quadratic Regulation statistics. The proposed test statis-

tics is obtained by using maximum Lq-likelihood (MLq) method. The focus for the

study is only on the testing problem for GEV distribution. The results showed that

MLq method performs well on testing problems for GEV distribution.
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2.4 Volatility modelling using GPD

Bystrom (2005) investigated electricity prices quoted on Nord Pool, the first multi-

national exchange for electricity trading. Initially, return series was filtered with an

AR-GARCH model and then applied results from EVT to the residuals. The study

revealed that price changes in the market are not only volatile but their empirical

distributions are also highly non-normal. Results showed a good fit of the GPD to

AR-GARCH filtered price change series. The results also indicated that Peak Over

Threshold (POT) method of modelling the extreme tails changes with high accuracy.

Chan and Gray (2006) examined a number of approaches to forecast VaR for elec-

tricity markets. The daily data of aggregated electricity spot prices from five in-

ternational power markets (Victoria, Nord Pool, Alberta, Hayward and PJM) are

examined. Leverage effects in conditional volatility are modelled with an EGARCH

specification. Model residuals are standardised to produce near independently and

identically distributed observations, and EVT is applied to the standardised residuals

to forecast the tail quantiles. The results showed that AR-EGARCH model with

EVT method produces the most accurate forecast of VaR than pure AR-EGARCH

model.

Cotter (2007) examined extreme risk in Asian markets. EVT model and Gaussian

distribution were applied to daily log returns of Asian equity market. POT of EVT

generated the risk measures where tail returns are modelled with a fat-tailed distri-

bution. The GPD parameters are estimated by maximum likelihood method. It is

established that EVT distribution support modelling of tail returns in an uncondi-

tional setting. The results also revealed that distribution measures are much smaller

if Gaussian distribution is applied compared to GPD estimates.

Magheyereh and Al-Zoubi (2008) investigated the tail behaviour of daily stock re-

turns for the three emerging stock in the Gulf region (Bahrain, Oman and Saudi

Arabia) over the period 1998 to 2005. In order to model extreme returns and to esti-

mate tail quantiles, the study filtered the return series of the Gulf markets with the
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skewed student’s t distribution of AR (1)-Fractionally Integrated Asymmetric Power

Autoregressive Conditional Heteroskedastic (FIAPARCH) (1, d, 1) model and then

applied results from EVT to the standardised residuals. The results revealed that

POT method of modelling extreme tail quantiles is more accurate than conventional

methodologies in estimating the tail behaviour of the Gulf market returns. The re-

sults also showed that extreme values are located further out in the right tail than in

the left tail and tail parameters differ within the region.

Djakovic et al. (2011) investigated the performance of EVT with daily stock index

returns of four different emerging markets. The research covered the sample rep-

resenting the Serbian, Croatian, Slovenian and Hungarian stock indexes using data

from January, 2006 to September, 2009. Performance test was carried out for the

success of application of the EVT in estimating the tails of daily return distribution.

Research results according to estimated GPD parameters indicated the necessity of

applying market risk estimation method. The results also indicated that the GPD

fits the tails of the return distribution in selected emerging markets well, and that

the daily return distributions have different characteristics at the left and right tails.

Guru (2012) applied extreme value theoretic technique to the NSE Nifty index to

quantify the tail risks in the index for the time period 1995 to 2011. POT method of

GPD was fitted to the data. The positive value of the shape parameter of the distri-

bution indicated fat-tailed nature of the return series. The results showed features of

financial asset returns. It was also found that extreme value based modelling of tails

of the distribution provides more accurate measures of risk compared to estimates

based on normal assumption.

Lee (2012) focused on modelling and estimating tail parameters of loss distribution

from Taiwanese commercial fire loss severity. The GPD was employed and compared

with standard parametric modelling based on Lognormal, Exponential, Weibull and

Gamma distribution. In the results, parametric curve-fitting method is described for

modelling extreme historical losses using mean excess function plot. Optional thresh-
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old is determined and parameter value of GPD is modelled using a Hill plot and mean

excess function plot. The results showed that GPD can be fitted to commercial fire

insurance loss security.

Sigauke et al. (2012) conducted a study on modelling of intraday increases in peak

electricity demand using ARMA-EGARCH-generalised single Pareto model. The de-

veloped model is used for extreme tail quantile estimation using daily peak electricity

demand data from South Africa during the period from 2002 to 2011. The advantage

of the modelling approach used lies in its ability to capture conditional heteroskedas-

ticity in the data through EGARCH framework. It was found that ARMA-EGARCH-

generalised single Pareto model produces more accurate estimate of extreme tails than

a pure ARMA-EGARCH model. The modelling approach can be applied in any study

for modelling conditional heteroskedasticity.

Song and Song (2012) proposed a new, fast and stable parameter estimation method

for extreme quantiles of heavy-tailed distributions with massive data. The method

employed the POT with GPD that is commonly used to estimate extreme quan-

tiles and parameter estimation. The results demonstrated that parameter estimation

method has a smaller Mean Square Error (MSE) than other common methods when

the shape parameter of GPD is at least zero. The estimated quantiles also show

the best performance in terms of RMSE and absolute relative bias for heavy-tailed

distribution.

2.5 Conclusion

This chapter has presented the previous work done on volatility modelling in financial

markets. Results from literature show that GARCH-type models can be used to model

volatility especially in stock markets. Empirical evidence reveals that extreme value

distributions like GEV distribution and GPD can be measured to model extreme

events and reduce risks in the markets.
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Chapter 3

Methodology

3.1 Preliminaries

The chapter discusses the methods and techniques which will be used in analysing

the data. This study employs a quantitative research paradigm since it is much more

focused on the collection and analysis of the numerical data and statistics. The study

follows a model testing research design for modelling volatility and financial market

risks of shares on the JSE. Secondary data from the officials of the JSE is measured.

The JSE daily data of all share price index from 07 January, 2002 to 30 December,

2011 is used.

3.2 Data analysis techniques

The study uses Time series, Autoregressive Moving Average (ARMA) model, Gener-

alised Autoregressive Conditional Heteroskedasticity (GARCH)-type models and Ex-

treme Value Theory (EVT) distributions which include Generalised Extreme Value

(GEV) distribution and Generalised Pareto Distribution (GPD).

3.3 Time series analysis

Time series is a sequence of data points, measured typically at successive time instants

spaced at uniform time intervals. Time series analysis is used for identifying and

characterising the nature of the analysed variables and predicting future values of
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the time series variable. A time series plot is used to display the time variation of

one or more scalar data sets associated with a mesh or grid at observation points in

observation coverage. This is basically a plot of the response or variable of interest

(Zt) against time.

3.3.1 Components of time series

A time series can be decomposed into the following components:

1. Trend: A trend exists when there is a long-term increase or decrease in the data.

2. Seasonal component: A seasonal pattern exists when a series is influenced by sea-

sonal factors (e.g., the quarter of the year, the month, or day of the week). Seasonal-

ity is always of a fixed and known period.

3. Cyclic component: A cyclic pattern exists when data exhibit rises and falls that

are not of fixed period. The duration of these fluctuations is usually of at least 2 years.

4. Irregular components: These are erratic movements in a time series that follow no

recognisable pattern.

3.4 Stationarity

The basic idea of stationarity is that the probability laws that govern the behaviour of

process do not change over time. In a sense, the process is in statistical equilibrium.

Specifically, a process Yt is said to be strictly stationary if the joint distribution

of Yt1 , Yt2 , ..., Ytn is the same as the joint distribution of Yt1−k
, Yt2−k

, ..., Ytn−k
for all

choices of time points t1, t2, ..., tn and all choices of time lag k. The time series Yt

is said to be second order stationary if the mean is constant for all t and if for any

t and k the covariance between Yt and Yt+k only depends on the lag difference k.

In other words there exists a function c : Z → R such that for all t and k we have

c(k) = cov (Xt, Xt+k). The various techniques which can be used to standardise

the data include differencing, logarithm transformation, square root transformation,
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power transformation, etc. Differencing and logarithm transformation techniques are

applied in this study.

3.4.1 Stationary through differencing

Models that are not stationary when subjected to differencing often yield stationary

process. Thus, a time series of a differenced data can be denoted by: BZt = Zt−Zt−1,

where B denotes backshift operator. In some instances, differencing once may not

yield a stationary process. In that regard we continue to difference the dataset until

it is stationary.

3.4.2 Stationary through logarithm transformation

The logarithm transformation is normally used when a serious problem is encounted

where increased dispersion seems to be associated with increased levels of the series,

implying that the larger the series the more the variation there is around that level

and conversely.

3.5 Augmented Dickey-Fuller test

In testing for a unit root, the Augmented Dickey-Fuller (ADF) test can be used. It

is an augmented version of the Dickey-Fuller test for a larger and more complicated

set of time series models. The testing procedure for the ADF is the same as for

Dickey-Fuller test but applied to the model:

∆yt = α + βt + γyt−1 + δ1∆yt−1 + · · · + δp−1∆yt−p+1 + ǫt (3.1)

where ∆ is a difference operator, α is a constant, β is the coefficient on a time trend

and γ is the lag of the autoregressive process. Imposing the constraints α = 0 and

β = 0 correspond to modelling a random walk and using the constraint β = 0 corre-

sponds to modelling a random walk with a drift. By including lags of the order p, the

ADF formulation allows for higher order autoregressive processes. This means that

the lag length p has to be determined when applying the test. The unit root test is

carried out as follows:
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H0 : γ = 0 (The data needs to be differenced to make it stationary or there is a

unit root).

H1 : γ < 0 (The data is stationary and does not need to be differenced or there is no

unit root).

The value for the test statistic DFT = γ̂

SEγ̂
can be compared to the relevant critical

value for the ADF test.

3.6 Test of normality

3.6.1 Skewness and Kurtosis

Skewness is the third standardised moment and it describes the asymmetry of a

distribution. Positive value of skewness indicates a long right tail while negative

value of skewness indicates a long left tail. Zero skewness indicates symmetry around

the mean. The skewness (S) of a random variable X is given by:

S =
E(X − µ)3

σ3
(3.2)

where µ and σ are the mean and standard deviation of X.

The kurtosis is the fourth standardised moment of the distribution and is a mea-

sure of flatness of a distribution. The kurtosis for the normal distribution is exactly

three. Kurtosis higher than three indicates that the distribution has heavy tails and

peaks close to its mean. The sample data has a flatter distribution than the normal

if the value of kurtosis is less than three. The kurtosis (K) of a random variable X is

given by:

K =
E(X − µ)4

σ4
(3.3)

where µ and σ are the mean and standard deviation of X.

3.6.2 Jarque-Bera test

The Jaque-Bera (JB) is a popular test of normality that incorporates both skewness

and kurtosis. It is given by:

JB =
n

6

[
S2 +

(K − 3)2

4

]
(3.4)
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where n is the sample size, S is the skewness and K is the sample excess kurtosis.

The JB test has an asymptotic χ2 (chi-square) distribution with two degrees of free-

dom and can be used to test the null hypothesis that the data are from a normal

distribution. The null hypothesis of normality is rejected if the calculated test statis-

tic exceeds a critical value from the χ2 (2) distribution. The critical value of 5.99

is corresponding to 5% level of significance. The JB test for normality is presented as:

H0 : Normal distribution, skewness is zero and excess kurtosis is zero.

H1 : Non-normal distribution.

3.7 Histogram and Kernel Density estimation

Histogram is a graphical representation of the frequency distribution of a data set.

It provides insight into skewness, tail behaviour and outliers. The basic procedure of

constructing a histogram consists of dividing the interval covered by the data set into

length of sub-intervals known as bins. Histogram is a good starting point for analysing

the shape and location of the data distribution. However, some of its properties

such as non-smooth can be unsatisfactory. The unsatisfactory of non-smooth can

be alleviated by Kernel density estimation. The Kernel density estimation is not

only a popular tool for visualising the distribution of data but also a well-known

nonparametric estimator of univariate or multivariate densities. Let X1, X2, ..., Xn

denote a sample of size n from a random variable with density f . The Kernel density

estimate of f at the point x is given by:

fh(x) =
1

nh

n∑

i=1

K

(
x − Xi

n

)
(3.5)

where the Kernel K satisfies
∫ ∞

∞

K (x) dx = 1 and the smoothing parameter h is

known as the bandwidth. The function
∫ ∞

∞

fh (x) dx = 1 is due to the division of the

sum by nh.
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3.8 Diagnostic test

The JB test statistic is the test for normally under the null hypothesis that the

coefficients of skewness and kurtosis are equal to zero and three respectively. If the

critical value of JB test is greater than 5.99, it indicates statistical significance at the

5% level. In this dissertation we employ four main GARCH-type models and carry

out the diagnosis tests to determine whether the models are adequate and which

model is the best fit for the data. The estimated GARCH model which provides a

good fit should capture all dynamic aspects of the model of the mean and the model

of the variance.

3.9 Model building strategy

The model building strategy developed in this study uses Box and Jenkins (1976)

technique. Box and Jenkins (1976) propose a practical three-stage procedure for

finding a good model.

Stage 1: Model identification

The identification stage uses two graphical devices to measure the correlation between

the observations within a single data series. These devices are called an estimated au-

tocorrelation function (ACF) and estimated partial autocorrelation function (PACF).

The next step at the identification stage is to summarise the statistical relationships

within the data series in a more compact way than is done by the estimated ACF

and PACF. The estimated ACF and PACF are used as guide in choosing one or more

autoregressive integrated moving average (ARIMA) models that seem appropriate.

Stage 2: Model estimation

The precise estimates of the coefficients of the model chosen at the identification stage

are discovered. This stage provides some warning signals about the adequacy of the

model. In particular, if the estimated coefficients do not satisfy certain mathematical

inequality conditions, that model is rejected.
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Stage 3: Diagnostic checking

Box and Jenkins (1976) suggest some diagnostic checks to help determine if an es-

timated model is statistically adequate. The results at this stage may also indicate

how a model could be improved and this leads to the identification stage. The cycle

of identification, estimation and diagnostic checking is repeated until a good model

is found.

3.10 Autocorrelation and Partial Autocorrelation plots

After a time series has been stationarised by differencing, the next step in fitting an

ARMA model is to determine whether AR or MA terms are needed to correct any

autocorrelation that remains in the differenced series. ACF plot is merely a bar chart

of the coefficients of correlation between a time series and lags of itself. The PACF

plot is a plot of the partial correlation coefficients between the series and lags of itself.

In general, the partial correlation between two variables is the amount of correlation

between them which is not explained by their mutual correlations with a specified set

of other variables. A partial autocorrelation is the amount of correlation between a

variable and a lag of itself that is not explained by correlations at all lower-order-lags.

3.11 Autocorrelation and Partial Autocorrelation functions

Box and Jenkins (1976) suggest the number of lags to be no more than (n
4
) autocorrela-

tions. The autocorrelation coefficient measures the correlation between a set of obser-

vations and a lagged set of observations in a time series. The autocorrelation between

Zt and Zt+k measures the correlation between pairs (Z1, Z1+k), (Z2, Z2+k), ..., (Zn, Zn+k).

The sample autocorrelation coefficient rk is an estimate of γk, defined as follows:

rk =

∑
(Zt − Z)(Zt+k − Z)

∑
(Zt − Z)2

(3.6)

where Zt is the data from the stationary time series, Zt+k is the data from k time

period ahead of t and Z is the mean of the stationary time series. The estimated

ACF and PACF are used as a guide in choosing one or more ARIMA models that

might fit the available data. The idea of partial autocorrelation analysis is to measure
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how Ẑt and Ẑt+k are related. The equation that gives a good estimate of the partial

autocorrelation is:

ϕ̂kk =

rk −
k−1∑

j=1

ϕ̂k−1,jrk−j

1 −

k−1∑

j=1

ϕ̂k−1,jrk−j

, k = 2, 3, ... (3.7)

where ϕ̂k−1,j for k = 2, 3, ... and j = 1, ..., k − 1

3.12 Autoregressive model

The notation AR (p) refers to the autoregressive model of order p. AR (p) model is

written as:

Xt = c +

p∑

i=1

φiXt−i + εt (3.8)

where Xt is the time series, φ1, ..., φp are parameters, c is a constant and εt is a

sequence of independent random variables with mean 0 and variance σ2, assuming

that Xt is stationary.

3.13 Moving Average model

The notation MA (q) refers to the moving average of order q. MA (q) model is written

as:

Xt = µ + εt +

q∑

i=1

θiεt−i (3.9)

where Xt is a stationary time series, θ1, ..., θq are the parameters of the model, µ is

the expectation of Xt (often assumed to be equal to zero) and εt is a sequence of

independent random variables with mean 0 and variance σ2.

3.14 Autoregressive Moving Average model

The notation ARMA (p, q) refers to the model with p autoregressive terms and q

moving average terms. This model contains the AR (p) and MA (q) models:

Xt = c + εt +

p∑

i=1

φiXt−i +

q∑

i=1

θiεt−i (3.10)
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where c is a constant and εt is a sequence of independent random variables with mean

0 and variance σ2.

3.15 Behaviour of ACF and PACF

Table 3.1 defines the behaviour of the ACF and PACF plots on models AR(p), MA(q)

and ARMA(p, q).

Table 3.1: Behaviour of the ACF and PACF

Model ACF PACF

AR (p) Tails off gradually from Cuts off after p lags

lag p and may contain

damped fluctuations

MA (q) Cuts off after q lags Tails off gradually from

lag q and may contain

damped fluctuations

ARMA (p,q) Both decay exponentially Both decay exponentially

from max(p,q) and contain from max(p,q) and contain

damped fluctuations damped fluctuations

3.16 Mean equation

There are a large number of previous studies modelling the volatility which is ap-

proximated by the variance of the error terms when estimating expected returns.

Literature suggests that the main focus in stock returns analysis is the variance equa-

tion rather than the mean equation. Thus an unpredictable part of stock returns

should be concentrated on. The unpredictable part of stock returns, error or inno-

vation terms, is obtained by autoregressive regression which removes the predictable

part of returns. The mean equation is specified as:

rt = εt + c (3.11)

where rt is the returns, εt ∼ N(0, σ2
t ) and c is a constant. The number of AR and MA

terms are selected based on the AC and PAC plots. The best model is then estimated
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by the smaller Akaike Information Criterion (AIC) and the Durban-Watson statistics

which is two or closer. Durban-Watson statistics is used to detect the presence of

autocorrelation. The value of Durban-Watson statistics is always between zero and

four and there is no autocorrelation in the sample if the value of Durban-Watson

statistics is two.

AIC is the most widely used model selection among researchers. Shawky and Abu-

Zinadah (2008) indicate that AIC is a good model selection for a large sample. The

AIC can be calculated as:

AIC = 2L − Klog(n) (3.12)

where L is the maximised value of the log likelihood function for the estimated model,

K is the number of independently estimated parameters in the model and n is the

count of data points in the estimated dataset. Provided the ARMA specification

displays no sign of autocorrelation, the number of lags with the lowest AIC is selected.

3.17 Autoregressive Conditional Heteroskedastic model

A more sophisticated volatility model is the Autoregressive Conditional Heteroskedas-

tic, ARCH (q) model suggested by Engle (1982). It is unlikely in financial time series

that the error terms will be constant overtime, therefore allowing for conditional het-

eroskedasticity in stock returns analysis is reasonable. Unlike historical estimation

process using sample standard deviations, the ARCH model constructs the condi-

tional variance σ2
t of asset returns with maximum likelihood method. The ARCH (q)

model by Engle (1982) formulates volatility as follows:

σ2
t = ω +

q∑

i=1

αiε
2
t (3.13)

The time varying volatility is captured by allowing volatility to depend on the lagged

values of the innovation terms εt and q chosen such that the residuals of the variance

equation are white noise. All of the coefficients in the conditional variance equation

are required to be non-negative, thus ω > 0, αi ≥ 0, for i = 1, ..., q. In particular, if

q = 1, the conditions become ω > 0, and α1 ≥ 0. The ARCH effect is exhibited by α1
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to capture the short-run persistence. The ARCH model is simple to apply but many

parameters are required to estimate the volatility of stock returns. The problem of

parsimony among the other problems of ARCH model such as how to specify the value

of p and the violation of non-negativity constraints led to more general framework

GARCH (p, q) proposed by Bollerslev (1986).

3.18 Lagrange Multiplier test and Ljung-box statistics

Lagrange multiplier (LM) test for autoregressive conditional heteroskedasticity must

be tested on estimated equation. The ARCH LM test is the most commonly utilised

method within a GARCH framework, and it is therefore used in this study. The null

hypothesis is rejected if the test statistics which follow a chi-squared distribution is

significant and concludes that there is evidence of ARCH effects in the data and a

GARCH model is appropriate. Engle’s LM can be used to test the null hypothesis of

no remaining ARCH effects. LM test for autoregressive conditional heteroskedasticity

must be tested on estimated equation.

Ljung-box statistic can be used to test the null of no autocorrelation up to a specific

lag. The Ljung-box statistic is defined as:

Q = n (n + 2)
h∑

j=1

ρ̂2
j

n − j
(3.14)

where n is the sample size, ρ̂j is the sample autocorrelation at lag j and h is the

number of lags being tested. The critical region for the significance level α is rejected

if Q > χ2
1−α,h where χ2

1−α,h is the α-quantile of the chi-square distribution with h

degrees of freedom. In our study we use Ljung-box test from one up to twentieth

order autocorrelation of residuals of the fitted ARMA (p, q) model εt and squared

residuals of the fitted ARMA (p, q) model ε2
t .

3.19 Volatility measurement

Volatility is the spread of all likely outcomes of an uncertain variable. In financial

markets, the spread of asset returns is of concern to risk managers and stock brokers.
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Volatility is associated with the sample standard deviation of returns over some period

of time. It is computed using the equation:

σ̂ =

√√√√ 1

T − 1

T∑

t=1

(rt − µ)2 (3.15)

where rt is the return on day t and µ is the average return over the T − day period.

The return rt is defined as:

rt = log

(
Pt

Pt−1

)
(3.16)

where Pt denotes the current stock price on day t and Pt−1 denotes one lagged stock

price on day t − 1. The variance, σ2 could also be used as a measure of volatility.

Modelling volatility using variance and standard deviation is less common because of

their simple relationship. In this study, variance is used as a measure of volatility.

Volatility is a qualified measure of market risk. Volatility is related to risk, but it is

not exactly the same. Risk is associated with undesirable outcome, whereas volatility

strictly measure uncertainty.

3.20 GARCH-type models

GARCH model is used to estimate the serial dependence of volatility. Financial time

series modelling has been a subject of considerable research both in theoretical and

empirical statistics and econometrics. Numerous parametric specifications of ARCH

models have been considered for the description of the characteristics of financial

markets. ARCH model was introduced by Engle (1982) for modelling financial time

series, while Bollerslev (1986) came up with the GARCH to parsimoniously repre-

sent the higher order ARCH model. A GARCH model for the conditional variance

process extends the simple ARCH model by assuming that εt = ztσt where zt are

innovations, that is zt are standardised residuals since zt = εt

σt
. The innovations zt

are such that E(zt) = 0 and V ar(zt) = 1. We can assume these innovations to

be conditionally normally distributed, Student-t distributed and Generalised error

distributed. GARCH-M model was considered by Floros (2008) and Nelson (1991)

introduced the EGARCH model to capture the asymmetric effect. Other specifica-

tions of the GARCH models include TGARCH model introduced independently by
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Glosten et al. (1993) and Zakoian (1994) to capture the asymmetric effect.

3.20.1 GARCH (p, q) model

Following the natural extension of the ARMA process as a parsimonious represen-

tation of a higher order AR process, Bollerslev (1986) extended the work of Engle

(1982) to the GARCH process. The GARCH (p, q) process is defined as:

σ2
t = ω +

q∑

i=1

αiε
2
t +

p∑

j=1

βjσ
2
t−j (3.17)

for ω > 0, αi ≥ 0, βj ≥ 0 and σ2
t is the conditional variance, which is a linear function

of q lags of the squares of the error terms ε2
t or the ARCH terms and p lags of the

past value of the conditional variances σ2
t or the GARCH terms, and the constants

αi, βj and ω.

The most widely used model in practice for many financial time series is GARCH

(1, 1) which contains only three parameters in the conditional variance equation.

The model is very parsimonious and shown to be sufficient to capture the volatility

clustering in data without the requirement of higher order models. GARCH (1, 1) is

specified as:

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1 (3.18)

where σ2
t is the conditional variance and εt is the residual at time t. The conditional

variance equation models the time varying nature of volatility of the residuals gener-

ated from the mean equation. The study employs GARCH (1, 1) and higher order

GARCH models to verify the best fit model for JSE returns.

3.20.2 GARCH-M (p, q) model

The GARCH-M model is an extension of the basic GARCH framework which allows

the conditional mean of a sequence to depend on its conditional variance or standard

deviation. GARCH-M model is often used for prediction of the risk of a portfolio at a

given point in time. The model is useful in presenting the time-varying risk premium

in explaining excess returns. This model is considered by Floros (2008) for checking

26



if increase in variance result in a higher expected returns. The standard GARCH-M

model is given by:

rt = µ + βσ2
t + εt, εt ∼ N(0, σ2

t )

σ2
t = ω + αε2

t−1 + βσ2
t−1 (3.19)

In GARCH-M (1, 1), when (α+β) approach unity the persistence of shocks to volatil-

ity is greater. If shocks to volatility persist over a long time, the effect of volatility on

stock prices can be significant. The parameter β is called the risk premium parame-

ter. If risk premium parameter is greater than zero and statistically significant, the

model indicates that the return is positively related to its volatility. In other words,

a rise in mean return is caused by an increase in conditional variance as a proxy of

increased risk.

3.20.3 EGARCH (p, q) model

EGARCH model is designed to capture the leverage effect noted in Black (1976) while

Nelson (1991) developed this model. A simple variance specification of EGARCH (p,

q) model is given by:

log σ2
t = ω +

q∑

j=1

βjlogσ2
t−j +

p∑

i=1

αi

(∣∣∣∣
εt−i

σt−i

∣∣∣∣ + ρi

εt−i

σt−i

)
(3.20)

The α parameter represents a magnitude effect or the symmetric effect of the model,

the “GARCH” effect. For stock prices, negative shocks (bad news) generally have

large impacts on their volatility than positive shocks (good news). The presence of

leverage effect can be tested by the hypothesis that ρ < 0. The leverage effect is

asymmetric if the parameter ρ 6= 0. The term εt−i

σt−i
in equation (3.20) represents the

asymmetric effect of shocks. A special variation of the EGARCH (p, q) model is the

EGARCH (1, 1) model given by:

log σ2
t = ω + β log σ2

t−1 + α

(∣∣∣∣
εt−1

σt−1

∣∣∣∣ + ρ
εt−1

σt−1

)
(3.21)

The logarithmic form of the conditional variance implies that the leverage effect is

exponential. The exponential nature of the EGARCH model guarantees that the
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conditional variance is always positive even if the coefficients are negative. The per-

sistence in conditional volatility is captured by the parameter β. When β is relatively

large, then volatility takes a long time to die out following a crisis in the market,

Alexander (2008).

3.20.4 TGARCH (p, q) model

TGARCH model was introduced independently by Glosten et al. (1993) and Zakoian

(1994) to capture the asymmetric effect. The TGARCH (p, q) model specification

for the conditional variance is given by:

σ2
t = ω +

q∑

i=1

αiε
2
t−i +

q∑

i=1

γiε
2
t−idt−i +

p∑

j=1

βjσ
2
t−j (3.22)

where dt = 1 if εt < 0 and dt = 0 otherwise. In this model, good news (εt > 0) and

bad news (εt < 0) have differential effects on the conditional variance. Good news

has impact of α, while bad news has impact of α+γ. If γ > 0 then the leverage effect

exists and bad news increases volatility, while if γ 6= 0 the news impact is asymmetric,

Hill et al. (2007). The specification of the conditional variance of TGARCH (1, 1)

model is given as:

σ2
t = ω + α1ε

2
t−1 + γdt−1ε

2
t−1 + β1σ

2
t−1 (3.23)

where the coefficient γ is known as the asymmetric term. When γ = 0, the model

collapse to the standard GARCH forms.

3.21 Residual analysis

Residuals can be used to assess if the ARMA model is adequate and if the parameter

estimates are close to the true values. The residual Ẑt can be defined as:

Ẑt = Xt − X̂t (3.24)

where Xt is the actual value and X̂t is the fitted value. Model adequacy is checked

by assessing whether the model assumptions are satisfied. The basic assumption is

that the at are white noise. That is, they possess the properties of independence,

identically and normally distributed random variables with mean zero and variance
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σ2
a. A model is good if it has residuals that are independent, normally distributed

and constant variance.

(i) Test for Independence

A test for independence can be performed by examining ACF of the residuals. Resid-

uals are independent if they do not form any pattern and are statistically insignificant.

The Ljung-Box test can be used for randomness and the hypothesis is as follows:

H0: The data are independently distributed.

H1: The data are not independently distributed.

The Ljung-Box test statistic is given as:

QLB = n (n + 2)
m∑

k=1

ρ̂2
k

n − k
(3.25)

where n is the sample size, ρ2
k is the sample autocorrelation at lag k and m is the

number of lags being tested. For significance level α, the critical region for rejec-

tion of the hypothesis of randomness is QLB > χ2
α,h, which is the α-quantile of the

chi-squared distribution with h degrees of freedom. Because the test is applied to

residuals, the degrees of freedom must account for the estimated model parameters

so that h = m - p - q, where p and q indicate the number of parameters from the

ARMA (p, q) model fit to the data.

(ii) Test for Normality

In reality, residuals will never be perfectly normally distributed. If the departure from

normality is extreme, then the test statistics do not have a t-distribution. Test for

normality can be performed by constructing a histogram. A histogram of normally

distributed residuals should approximately be asymmetric and bell shaped. A plot

of the tth ordered data values versus the corresponding normal scores should fall ap-

proximately on a straight line. Normal score correlation test is based on the sample

correlation coefficient between the residuals at and the corresponding normal scores

St.
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(iii) Test for Homoskedasticity

Test of constant variance can be inspected by plotting the residuals and plotting the

residuals against fitted value. The model is adequate if the plot suggest a rectangular

scatter around a zero horizontal level with no trends.

3.22 Forecasting and Evaluation measures

Evaluating the performance of different forecasting models plays a critical role in

choosing the most accurate models. A huge number of papers has studied the con-

struction of modelling and forecasting volatility, a few of them focus on the volatility

forecasting evaluation. The economic loss function is usually unavailable because it

requires the specific details of the investors’ decision process and the cost or bene-

fits that result from using these forecasts. Therefore, the statistical loss function is

utilised in practice instead of economic loss function. The most widely used evalua-

tion measures are Mean Absolute Error (MAE), Root Mean Square Error (RMSE),

and Mean Absolute Percent Error (MAPE). The common way to solve the problem

is to carry out the average figures of some statistical measures and then compare the

forecast models based on the parameter obtained.

The RMSE for the conditional mean is calculated as:

RMSE =

√∑n

t=1(rat − rft)2

n
(3.26)

where n is the number of out of sample forecast data points, with rat − rft being the

forecast errors. The terms rat and rft are the actual returns and its future forecast,

respectively.

The conditional volatility model for RMSE is calculated as:

RMSE =

√√√√√

n∑

t=1

(σ2
at − σ2

ft)
2

n
(3.27)

where σ2
at and σ2

ft are realised and forecasts of volatility, respectively.
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MAE is also dependent on the scale of the dependent variable but it is less sensi-

tive to large deviations than the usual squared loss. The conditional volatility model

for MAE is calculated as:

MAE =
1

n

n∑

t=1

∣∣σ2
at − σ2

ft

∣∣ (3.28)

Another popular accuracy measure is the MAPE, which is scale independent. How-

ever, MAPE was criticised for the problem of asymmetry and instability when the

original value is small. MAPE as accuracy measure is affected by large percentage

errors that occur when the value of the original series is small and MAPE cannot

be compared directly with simple models such as random walk. The conditional

volatility model for MAPE is calculated as:

MAPE =
1

n

n∑

t=1

∣∣∣∣∣
σ2

at − σ2
ft

σ2
ft

∣∣∣∣∣ (3.29)

3.23 Extreme Value Theory

Extreme Value Theory (EVT) is a branch of statistics that studies “rare” or extreme

events. It has been established for modelling catastrophic events in insurance and

finance. It is especially well suited to describe the “fat-tails” of the profit and loss

distributions typically found in stock returns. Nowadays EVT has experienced a boom

in the financial field, especially with respect to risk management, particularly with

its application to VaR estimation. The EVT method applied in this study assumes

that the returns series are independent and identically distributed (i.i.d.) random

variables. The i.i.d. random variables do not hold in market data returns as they

present stylised facts such as heavy tails and clustered extremes. This feature can be

corrected by filtering the returns series using time series analysis to get i.i.d. variables

and then apply EVT method. In this study EVT methods are used in order to model

the tails of the returns distributions of the stock indices. The two most widely used

distributions for EVT analysis are Generalised Extreme Value (GEV) distribution and

Generalised Pareto distribution (GPD). Both distributions are limiting distribution

of extremes, but they differ in their definition of extremes.
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3.23.1 Generalised Extreme Value Distribution

The Generalised Extreme Value (GEV) distribution is a motivated method for de-

scribing the distribution of the maxima and minima, Beirlant et al. (2004). The GEV

distribution is a family of continuous probability distributions developed within the

EVT to combine the Gumbel, Frechet and Weibull families. The GEV distribution

has cumulative distribution function:

F (x; µ, σ, ξ) =






exp
{
−[1 + ξ(x−µ

σ
)]

−1
ξ

}
, 1 + ξ(x−µ

σ
) > 0 and ξ 6= 0

exp
(
−e

−(x−µ)
σ

)
, ξ = 0

(3.30)

where ξ is an extreme value index, also known as shape parameter. For ξ > 0, ξ < 0

and ξ = 0 we obtain the Frechet, Weibull and Gumbel families, respectively. The

Frechet distribution is fat-tailed as its tail decays slowly. The Weibull distribution

(upper bounded) is a thin-tailed distribution with finite tail. The Gumbel distribu-

tion is thin-tailed for which all moments are finite and whose cumulative distribution

function declines exponentially in the tails. The shape parameter ξ, governs the tail

behaviour of the distribution. The scale parameter σ and location parameter µ rep-

resent the dispersion and average of the extreme observations respectively.

The quantile function for the GEV distribution is used to predict the probability

of exceedances levels and estimate high quantiles. The quantile function of the GEV

distribution is given by:

xp =






µ + σ
ξ
{[-log(1 − p)]−ξ − 1} , ξ 6= 0

µ − σlog[-log(1 − p)], ξ = 0
(3.31)

The quantity xp satisfy P (X > xp) = 1 − F (x; µ, σ, ξ) = p, for 0 < p < 1, where xp

is the return level associated with the return period 1
p

. A derivation of the quantile

function is given in the Appendix A1. The parameters µ, σ and ξ can be estimated

using the maximum likelihood method. The log-likelihood function L is given as:

L(x; µ, σ, ξ) =
n∏

i=1

(fx;µ,σ,ξ) (3.32)
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where the probability density function fx;µ,σ,ξ is given as:

f(x; µ, σ, ξ) =
1

σ

[
1 + ξ

(
x − µ

σ

)]−1−ξ
ξ

exp

{
−[1 + ξ(

x − µ

σ
)]

−1
ξ

}
(3.33)

for 1 + ξ
(

x−µ

σ

)
> 0 and ξ 6= 0.

If ξ = 0 the pdf f(x; µ, σ, ξ) is given as:

f(x; µ, σ, ξ) =
1

σ
exp

(
−x − µ

σ

)
exp

[
-exp

(
−x − µ

σ

)]
(3.34)

3.23.2 Probability-Probability plot

Let x1, x2, ..., xn be a random sample from the cumulative distribution function (cdf)

F and F̂ be the estimated cdf. Then a plot of F̂xi,n against pi,n; i = 1, 2, ..., n is called

the Probability-Probability plot, where xi,n is the ith order statistics and pi,n is the

plotting position, which is defined as:

pi,n =
i − α

n + β
; i = 1, 2, ..., n (3.35)

The parameter α, β ≥ 0 can be chosen empirically based on the behaviour of the data,

the type of distribution and the estimation method used to estimate the parameters.

If the model fits the data well, then the pattern of points will be very close to the

45-degree line.

3.23.3 Quantile-Quantile plot

The Quantile-Quantile (Q-Q) plot is a probability plot which is a graphic in which

the empirical order statistics on the Y-axis are compared to expected values of some

theoretical order statistics located on the X-axis. The idea of Q-Q plot has emerged

from the observation that for important classes of distributions, the Q-Q plots are

linearly related to the corresponding quantiles of a standard example from the class.

Let F̂x be the estimate of the distribution function F. The Q-Q plot consider the

estimate of the inverse of cdf such that F̂−1
pi,n

versus xi, n, ; i = 1, 2, ..., n. The model

will fit the data well if the points of the scatter plot are very close to 45-degree line.
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3.23.4 Return Level plot

The return level can be defined as the level which is expected to be exceeded once

every 1
p

period, which is known as return period. The return level, say xT , exceeded

on average once in T days can be written as:

T =
1

P

P (X > x) = 1 − F (x) =
1

T

XT = F−1

(
1 −

1

T

)
(3.36)

which is given by the quantile function F−1.

3.23.5 Generalised Pareto Distribution

The use of GPD is suggested by the results of Pickands (1975) for limiting distribution

for the excesses over a sufficiently high threshold. Different methods can be applied

under GEV distribution to perform statistical inferences on extreme value. The block

maxima are the mostly used method on GEV distribution but its weakness is that

it cannot peak observations over a selected high threshold. The Peak Over Thresh-

old (POT) method of GPD is one of the most widely used to estimate sufficiently

high threshold. The threshold for GPD can be selected using graphical techniques

like quantile plots and mean excess plots. This study applies Pareto quantile plot to

select a threshold for GPD.

The cumulative distribution function associated with GPD denoted as Wξ is defined

as:

Wξ(x) =






1 −
(
1 + ξ(x−τ)

σ

)−1
ξ

and x − τ > 0

1 − exp
(
−x−τ

σ

)
, ξ = 0 and x − τ > 0

1 −
(
1 + ξ(x−τ)

σ

)−1
ξ

, ξ < 0 and 0 < x − τ < −σ
ξ

(3.37)

where ξ is called the shape parameter or extreme value index which takes a negative,

a positive or a zero. The parameters τ and σ are location and scale parameters re-

spectively. The tail index ξ gives an indication of the heaviness of the tail. The larger
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ξ, the heavier the tail. Distributions with shape parameter ξ 6= 0 are suited to model

financial returns. If ξ > 0 then Wξ(x) is the Pareto distribution, ξ = 0 correspond to

the Exponential distribution and ξ < 0 is known as Beta distribution.

The survival function of the GPD is calulated as P (X > x|X > τ) = 1 − Wξ(x).

This equation can be expanded as:

1 − Wξ(x) =






(
1 + ξ(x−τ)

σ

)−1
ξ

and x − τ > 0

exp
(
−x−τ

σ

)
, ξ = 0 and x − τ > 0

(
1 + ξ(x−τ)

σ

)−1
ξ

, ξ < 0 and 0 < x − τ < −σ
ξ

(3.38)

The quantile function of the GPD is given by:

xp =






τ + σ
ξ
[(p)−ξ − 1] , ξ 6= 0

τ − σlog(p), ξ = 0
(3.39)

where p is the tail probability. The maximum likelihood of GPD is based on the

value of threshold τ . A derivation of the quantile function given in equation (3.39) is

presented in Appendix A2.

The log likelihood function for a GDP random variables is given by:

logL (ξ, σ|τ) = −mlogσ −

(
1 +

1

ξ

) m∑

i=1

log

[
1 + ξ

(
xi − τ

σ

)]
(3.40)

with 1+ξ
(

xi−τ
σ

)
> 0, ξ 6= 0 and i = 1, ...,m. The estimator holds the usual properties

of consistency, asymptotic efficiency and asymptotic normality when ξ > −0.5.

3.23.6 Peak Over Threshold method

A threshold is chosen as defining the start point of the tail and the POT method

then estimates the distribution of the excess beyond the threshold. The distribution

of excesses over a sufficient high threshold τ on the underlying return distribution F

is defined as:

Fτ (y) = Pr {X − τ = y|X > τ} (3.41)
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where τ is the threshold. The POT method is based on what is called the GPD in the

following manner: It has been shown Pickands (1975) that asymptotically, the excess

values above a high level will follow a GPD if and only if the parent distribution

belongs to the domain of attraction of one of the extreme value distributions. The

POT method involves the selection of τ , the exceedances above threshold. This

method consists of fitting the GPD to the distribution of excesses over a threshold τ .

The choice of threshold is an important practical problem, which is mainly based on

a compromise between bias and variance. Pareto quantile plot is seen in this study

as a useful graphical technique in selecting a sufficiently high threshold. Selecting a

threshold is bound on a statement that says: above a threshold τ at which the GPD

is a valid approximation of the excess distribution, the Pareto quantile plot should

be approximately linear.

3.24 Pareto quantile plot

A Pareto quantile plot is a graphical method for inspecting the parameters of a

Pareto distribution. A Pareto model holds if there exist a linear relationship between

the logarithms of the observed values and the quantiles of the standard exponential

distribution. The logarithms of the observed values, log(xi), i = 1, ..., n are plotted

against the theoretical quantiles. The Pareto quantile plot is generalised by using the

theoretical quantiles:

− log




1 −

i∑

j=1

wj

n∑

j=1

wj

n

(n + 1)




i = 1, ..., n (3.42)

where the correlation factor n
(n+1)

ensures that the quantiles reduce to − log
(
1 − i

n+1

)

if all sample weights are equal.

3.25 Conclusion

This chapter has presented the techniques, methods and steps to be applied when

modelling volatility and financial market risks. The data is analysed using Time

36



series, GARCH-type models and EVT distributions.
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Chapter 4

Data analysis

4.1 Introduction

This chapter sets out to achieve the major objectives of the study. The statistical

packages used for data analysis are Eviews and R. The chapter is divided into ten

sections. Section 4.2 expresses the data used. Section 4.3 analyses the behaviour of the

dataset. Section 4.4 discusses ARMA (p, q) model applied and section 4.5 discusses

residual analysis. Section 4.6 discusses the symmetric and asymmetric GARCH-type

models. Section 4.7 models the tail behaviour of returns using GEV distribution while

section 4.8 models conditional heteroskedasticity on the returns using GPD. Section

4.9 evaluates out of sample predictions and finally, section 4.10 concludes the chapter.

Appendix B presents R codes used to generate some of the results obtained in this

chapter.

4.2 Data collection

The study uses secondary data provided by the JSE. The data used consists of daily

log returns on JSE return index (in percentages) over the period 08 January, 2002 to

30 December, 2011, generating 2495 observations. The inspiration behind choosing

daily data is that the stock markets react very quickly to new information.
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4.3 Behaviour of the data

Figure 4.1 shows that all share JSE index is not stationary, meaning that variance

is not stable. Some transformation is needed since the index series is not stationary.

Figure 4.1 also indicates the fall (deflation) of shares towards the end of 2008 that

might be caused by investors who rush and sell their shares in a panic due to the

world recession. This created some excellent buying opportunities for well-informed

traders and investors.
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Figure 4.1: Plot of daily prices for JSE price index (2002-2011)

Formal unit root tests were carried out using the ADF test as shown in Table 4.1.

Since the computed ADF test statistics (-0.7316) is greater than the critical values

at 1%, 5% and 10% significant levels, we fail to reject the null hypothesis that there

is a unit root and the series needs to be differenced to make it stationary.

Table 4.1: Augmented Dickey-Fuller test of the JSE price index

ADF Test Statistic = -0.7316 1% Critical Value -3.4360

5% Critical Value -2.8632

10% Critical Value -2.5677

Figure 4.2 shows that returns series has a constant mean and constant variance which

implies the first difference series of JSE index achieves stationarity. The returns are
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multiplied by 100 to generate percentage changes in price. The multiplication also

reduces the errors as the raw returns could be very small and produce large round-

ing errors in some calculations. Based on the stationarity requirements, percentage

logarithmic returns are calculated as:

rt = 100∇logPt

= 100(1 − B)logPt

= 100(logPt − logPt−1)

= 100log

(
Pt

Pt−1

)
(4.1)

where Pt denotes the current stock price on day t and Pt−1 denotes one lagged stock

price on day t − 1.

Figure 4.2 also displays volatility clustering and shows that volatility occurs in bursts

which gives a hint that the returns may not be independent and identically distributed

(i.i.d.). Returns show the extent of the day-to-day change in price where a positive

spike represents a large daily gain and a negative spike indicates a significant daily

loss. The series seems to be stationary since the data is fluctuating around zero.

Figure 4.2 exhibits the defining characteristics of financial markets which are high

volatility, occasional extreme movements and volatility clustering.
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Figure 4.2: Plot of daily returns for JSE index (2002-2011)
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Table 4.2 shows that the absolute computed ADF test statistics of -83.60657 is much

smaller than the critical values at 1%, 5% and 10% significant level, thus we can reject

the null hypothesis and conclude that JSE index series is a non-stationary series, but

after taking the 1st-difference stationary is achieved.

Table 4.2: Augmented Dickey-Fuller test of the JSE returns

ADF Test Statistic = -83.60657 1% Critical Value -3.4360

5% Critical Value -2.8632

10% Critical Value -2.5677

Table 4.3 shows descriptive statistics for prices index and returns. The mean and

median are positive, suggesting that stock prices in general increase slightly over-

time. The skewness measures the asymmetric and kurtosis measures the peakedness

of the probability distribution. The coefficient of skewness indicates that both price

index and returns have asymmetric distribution skewed to the left. The kurtosis of

returns is 5.9695 which is greater than 3 indicating that the distribution of the re-

turns is leptokurtic, that is, it is fat-tailed. This shows that the returns series exhibit

financial characteristics of leptokurtosis and volatility clustering. The implication of

non-normality is supported by the Jarque-Bera test statistics for both prices index

and returns which show that the null hypothesis of normality is rejected at the 5%

level of significance. The conclusion that returns series observed in the JSE mar-

ket have non-normality distribution is reasonable as it is common phenomenon in

emerging stock markets.
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Table 4.3: Summary statistics of the price index and returns

Measure Prices Returns

Mean 20485.70 0.0435

Median 21264.36 0.0886

Minimum 7361.150 -7.5807

Maximum 33232.89 6.8339

Std. deviation 8340.726 1.3322

Skewness -0.0972 -0.1316

Kurtosis 1.4776 5.9695

Jarque-Bera 254.3360 (0.0000) 923.8839 (0.0000)

The Q-Q plot for the returns shown in Figure 4.3 falls nearly on a straight line

except at the beginning, where the plot goes up marginally. Q-Q plots that fall

on a straight line in the middle but curve upward at the beginning indicate that

the distribution is leptokurtic and has a thicker tail than the normal distribution.

The reason that the distribution would not be exactly normal is because of volatility

clustering.
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Figure 4.3: Q-Q plot of the returns series
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The Kernel density of the returns series given in Figure 4.4 shows that the dis-

tribution of the data is non-normal. The density is estimated using Kernel density

estimation, Silverman (1986).
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Figure 4.4: Kernel density of the returns series

The red line shown on Figure 4.5 represent a normal curve. The non-normality is

driven by the presence of an outlier. Figure 4.5 shows that JSE returns distribution

is peaked, confirming the evidence of non-normal distribution in Table 4.3. Peaked

distribution is a sign of recurrent wide changes, which is an indication of uncertainty

in the price discovery process. The suggestion is that heteroskedasticity issue needs

to be taken into account. It is reasonable to use GARCH-type models to acquire

heteroskedasticity.
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Figure 4.5: Histogram of daily returns

4.4 Model specification

The ARMA (p, q) models provide a flexible and parsimonious approximation to con-

ditional mean dynamics. Autocorrelation and partial autocorrelation plots are used

to determine the order of ARMA (p, q) models. The ACF and PACF plots shown

in Figure 4.6 and Figure 4.7 respectively, give a clearer picture about the nature of

the model. The result for ACF plot decays exponentially while PACF shows only one

lag strongly significant at the first strike. It is clear that an ARMA (1, 0) model is

appropriate and yet can be applied in the returns data.
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Figure 4.6: Autocorrelation plot
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Figure 4.7: Partial autocorrelation plot

According to the ACF and PACF, ARMA (1, 0) model is found to be the best

fitting model. The ARMA (1, 1) model is also tested and the better model was found

to be AR (1, 0) based on the AIC. Table 4.4 demonstrates the ARMA (1, 0) model

summary and its test score. The returns can be written as rt = 0.0436 + [AR (1) =

0.0389] with p-values in the parenthesis. The value of the Durban-Watson statistics

is almost 2, implying that there is no autocorrelation in the sample.
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Table 4.4: ARMA (1, 0) model summary and test score

Statistics Estimation

Constant 0.0436 (0.1165)

AR(1) 0.0389 (0.0522)

AIC 3.4116

Durban-Watson statistics 1.9991

Log likelihood -4253.2830

4.5 Residual analysis

4.5.1 Test of independence

The best test for residual autocorrelation is to examine the autocorrelation plot of

the residuals as shown in Figure 4.8. Ideally, most of the residual autocorrelations

should fall within 95% confidence bands around zero, which are located at roughly

2√
n

where n is the sample size. The residuals seem to be statistically insignificant

since most of the residual autocorrelations are located roughly at 2√
2495

= 0.0400.
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Figure 4.8: Autocorrelation of the residuals
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The Q-statistic of Ljung-Box test for randomness at lag 5 is 18.2130 (0.0010) as shown

in Table 4.5. The χ2
α,h = χ2

0.05,4 = 9.49 and QLB > χ2
α,h, thus the null hypothesis is

rejected and that the residuals are not independent.

Table 4.5: Correlogram of the residuals

Lag AC PAC Q-stat P-value

1 0.0000 0.0000 0.0004 0.0000

2 -0.0071 -0.0090 0.1928 0.6610

3 -0.0710 -0.0710 12.8920 0.0020

4 -0.0310 -0.0310 15.3210 0.0020

5 -0.0340 -0.0360 18.2130 0.0010

4.5.2 Test of normality

Figure 4.9 is a histogram of the residuals and it shows that residuals are approximately

normal but negatively skewed. The figure is bell shaped and it also shows that

residuals are symmetric about the mean.
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Figure 4.9: Histogram of the residuals
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4.5.3 Test of constant variance

Figure 4.10 shows the residual plot that is used to test for constant variance. The

figure shows that there is no trend; therefore the conclusion is that the ARMA (1, 0)

model is adequate.
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Figure 4.10: Residuals plot

The results in Figure 4.11 show that there is no trend. The graph of residual against

fitted values suggests that ARMA (1, 0) model is adequate. In general, residual plot

and residual against fitted plot recommend ARMA (1, 0) model.

0 500 1000 1500 2000 2500

−0.
2

−0.
1

0.0
0.1

0.2
0.3

Fitted

Re
sid

ual
s

Figure 4.11: Residual against Fitted plot
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4.6 GARCH-type models

The returns series data is not constant over time, which suggests that heteroskedas-

ticity issue needs to be taken into account. It is reasonable to use GARCH-type

models to acquire heteroscedasticity in the JSE returns data. There are fundamental

distinctions between the symmetric GARCH-type models that are used to model or-

dinary volatility clustering and asymmetric GARCH-type models that are designed

to capture leverage effects. GARCH (1, 1) model is chosen because it is the simplest

specification and the most widely used in the literature. This study uses GARCH

(1, 1) model and GARCH (1, 1)-M model to resolve ordinary volatility clustering.

EGARCH (1, 1) model and TGARCH (1, 1) model are designed to capture leverage

effects. GARCH-type models are used with ARMA (1, 0) model as mean equation.

4.6.1 ARMA (1, 0)-GARCH (1, 1) model

Results of the ARMA (1, 0)-GARCH (1, 1) model for returns are shown in Table 4.6.

The mean equation can be written as rt = 0.0854 + [AR (1) = 0.0497], as shown

in Table 4.6. The estimate of φ is statistically significant at 5% level supporting the

use of ARMA (1, 0) model for the returns. Theory expects parameters φ and α to

be higher than zero and β to be positive to ensure that the conditional variance (σ2
t )

is non-negative. Table 4.6 shows that φ and α are greater than zero and significant

at 5% level. Thus, GARCH (1, 1) model seems to be quite good for explaining the

behaviour of stock returns volatility in JSE.

49



Table 4.6: ARMA (1, 0)-GARCH (1, 1) models for returns

Mean Equation

Coefficient Std. Error z-Statistics P-value

µ = 0.0854 0.0218 3.9089 0.0001

φ = 0.0497 0.0497 2.4290 0.0151

Variance Equation

Coefficient Std. Error z-Statistics P-value

ω = 0.0228 0.0062 3.6673 0.0002

α = 0.0938 0.0128 7.3211 0.0000

β = 0.8933 0.0132 67.5847 0.0000

Volatility shocks are persistent since the sum of the ARCH and GARCH coeffi-

cients are very close to one as shown in Table 4.7. The Ljung-Box Q-statistics of

order 20 computed on the standardised residuals and squared standardised residuals

are presented by Q(20) and Q2(20), respectively. The Ljung-Box Q(20) and Q2(20)

statistics up to twentieth order autocorrelation are both less than χ2
20,0.05 = 31.410

suggesting that the hypothesis of independence in daily returns should not be re-

jected. Engle’s LM test indicates that there are no more ARCH effects left up to lag

10. In Table 4.7, the values in parenthesis denote the standard errors.

Table 4.7: ARMA (1, 0)-GARCH (1, 1) model diagnostic

α + β 0.9871

Q(20) 17.2110 (0.5760)

Q2(20) 16.4260 (0.6290)

ARCH (10) 0.0297 (0.1655)

AIC 3.1451

Durban-Watson statistics 2.0186

4.6.2 ARMA (0, 1)-GARCH (1, 1)-M model

Table 4.8 summarises the parameter estimates for the ARMA (0, 1)-GARCH (1, 1)-

M model. The coefficient denoted by β1 is positive and insignificant, meaning that
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increased risk does not necessarily imply higher returns. The coefficient of α is sig-

nificantly positive and less than one, indicating that the impact of “old” news on

volatility is significant with persistent shocks.

Table 4.8: ARMA (1, 0)-GARCH (1, 1)-M models for returns

Mean Equation

Coefficient Std. Error z-Statistics P-value

µ = 0.0321 0.07626 0.4207 0.6740

φ = 0.0508 0.0223 2.2820 0.0225

β1 = 0.0502 0.0719 0.6983 0.4850

Variance Equation

Coefficient Std. Error z-Statistics P-value

ω = 0.0246 0.0075 3.2966 0.0010

α = 0.0926 0.0116 7.9817 0.0000

β = 0.8935 0.0133 67.1677 0.0000

Table 4.9 shows that volatility shocks are persistent since the sum of the ARCH and

GARCH coefficients are very close to one. The Ljung-Box Q-statistics of order 20

computed on the standardised residuals and squared standardised residuals are pre-

sented by Q(20) and Q2(20) respectively. The Ljung-Box Q(20) and Q2(20) statistics

up to twentieth order autocorrelation are both less than χ2
20,0.05 = 31.410 suggesting

that the hypothesis of independence in daily returns should not be rejected. Engle’s

LM test indicates that there are no more ARCH effects left up to lag 10. In choosing

the symmetric model, it is accepted that GARCH (1, 1) model is the best due to the

values of the AIC while Durban-Watson statistics is almost the same in these two

models.
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Table 4.9: ARMA (1, 0)-GARCH (1, 1)-M model diagnostic

α + β 0.9861

Q(20) 17.1090 (0.5820)

Q2(20) 16.8940 (0.5970)

ARCH (10) 0.0297 (0.1398)

AIC 3.1457

Durban-Watson statistics 2.0187

4.6.3 ARMA (1, 0)-EGARCH (1, 1) model

The skewness statistics of the returns series generated in Table 4.3 imply the asym-

metry in the data set. This study employs EGARCH and TGARCH models for

asymmetric persistence.

Table 4.10 presents results for the ARMA (1, 0)-EGARCH (1, 1) model. The lever-

age effect term, γ is negative, indicating the existence of the leverage effect in future

returns during the sampling period. Since γ 6= 0 the news impact is asymmetric,

supporting the use of the skewed Student-t distribution for zt (the standardised resid-

uals). The parameter β measures the persistence in conditional volatility irrespective

of anything happening in the market. The value of parameter β is 0.9819 which is

closer to 1, implying that volatility will take long time to die in the Johannesburg

stock market.
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Table 4.10: ARMA (1, 0)-EGARCH (1, 1) model for returns

Mean Equation

Coefficient Std. Error z-Statistics P-value

µ = 0.0365 0.0217 1.6814 0.0927

φ = 0.0459 0.0202 2.2758 0.0229

Variance Equation

Coefficient Std. Error z-Statistics P-value

ω = −0.0896 0.0158 -5.6599 0.0000

α = 0.1189 0.0205 5.7989 0.0000

β = 0.9819 0.0034 272.0490 0.0000

γ = −0.0961 0.0146 -6.5809 0.0000

In Table 4.11, the sum of α and β is above one, suggesting that shocks to the

conditional variance are highly persistent. This implies that large changes in returns

tend to be followed by large changes, and small changes tend to be followed by small

changes which confirm that volatility clustering is observed in JSE returns series. The

Ljung-Box statistics up to twentieth order autocorrelation are less than the critical

value from the χ2 distribution at 5% level of significance suggesting that shocks to

the conditional variance are highly persistent. Engle’s LM test indicates that there

are no more ARCH effects left up to lag 10. The values in parenthesis in Table 4.11

denote the standard errors.

Table 4.11: ARMA (1, 0)-EGARCH (1, 1) model diagnostic

α + β 1.1008

Q(20) 17.3940 (0.5630)

Q2(20) 23.5110 (0.1440)

ARCH (10) 0.0293 (0.1958)

AIC 3.1205

Durban-Watson statistics 2.0131

53



4.6.4 ARMA (1, 0)-TGARCH (1, 1) model

The ARMA (1, 0)-TGARCH (1, 1) model for returns shown in Table 4.12 indicates

that the news impact is asymmetric since γ 6= 0. The parameter γ is significantly

positive which indicates that the leverage effect exists, which in turn implies that bad

news will increase volatility.

Table 4.12: ARMA (1, 0)-TGARCH (1, 1) model for returns

Mean Equation

Coefficient Std. Error z-Statistics P-value

µ = 0.0359 0.0219 1.6383 0.1014

φ = 0.0494 0.0201 2.4569 0.0140)

Variance Equation

Coefficient Std. Error z-Statistics P-value

ω = 0.0311 0.0068 4.5909 0.0000

α = −0.0022 0.0156 -0.1415 0.8875

β = 0.9062 0.0141 64.3148 0.0000

γ = 0.1482 00.0213 6.9614 0.0000

Table 4.13 shows that persistence in volatility shocks is evident as the sum of

the ARCH and GARCH terms makes 0.9040 which is close to one. The TGARCH

model captures asymmetric effect better than EGARCH model, and it is therefore

regarded as the best model for asymmetry in the JSE return series. The Ljung-Box

Q(20) and Q2(20) statistics up to twentieth order autocorrelation are both less than

χ2
20,0.05 = 31.410 suggesting that the hypothesis of independence in daily returns not

be rejected. Engle’s LM test indicates that there are no more ARCH effects left up

to lag 10. In Table 4.13, the values in parenthesis denote the standard errors.
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Table 4.13: ARMA (1, 0)-TGARCH (1, 1) model diagnostic

α + β 0.9040

Q (20) 18.2840 (0.5040)

Q2(20) 25.3430 (0.1500)

ARCH (10) 0.0311 (0.1645)

AIC 3.1209

Durban-Watson statistics 2.0199

4.7 Generalised Extreme Value Distribution

Financial data is well known to be heavy tailed and Extreme Value Theory (EVT)

has been shown to be a very useful tool in estimating and predicting the extreme

behaviour of financial products. EVT has arisen as a new methodology to analyse

the tail behaviour of stock returns. The application of the EVT to statistics allows

us to fit models to data from the upper and lower tails and provides a firm theoret-

ical foundation on which we can build statistical models describing extreme events.

Extreme share returns on stock markets are of particular interest to fund managers,

investment analysts and financial regulators. This is because extreme returns affect

the whole stock market and may dramatically reduce the benefits of risk variation.

An extreme share price change can significantly affect the performance of an in-

vestment over a long time period (e.g. a year) or even threaten the stability of the

financial system. A popular assumption usually made is that financial logarithmic

returns follow a normal distribution. There is empirical evidence that distributions of

returns can possess fat or heavy tails so that a careful analysis of returns is required.

The Generalised Extreme Value (GEV) distribution has been successfully used to

model the extreme returns events for many countries and regions. The importance of

GEV distribution arises from the fact that it is the limit distribution of the maxima of

a sequence of independent and identically distributed random variables. This section

seeks to establish whether or not, the returns on the JSE price index follow a heavy

tailed distribution.
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Figure 4.12 shows the dataset of positive and negative returns at the JSE from the

period 08 January, 2002 to 30 December, 2011. In all the 2495 returns, there are 1321

positive returns and 1174 negative returns as displayed in Figure 4.12. This shows

that there was more chance for investors to sell their shares at profit during the given

time interval.
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Figure 4.12: Scatter plot of the returns

4.7.1 Tail quantiles

Maximum likelihood fitted parameter values and their corresponding standard errors

are summarised in Table 4.14. The parameter estimate of ξ̂ obtained (-0.1897) im-

plies that the underlying daily returns can be modelled using the Weibull class of

distributions, since ξ̂ < 0.

Table 4.14: GEV parameter estimates from fitting daily returns

Parameter Estimate Standard Error

Location (µ̂) -0.4917 0.0309

Scale (σ̂) 1.4299 0.0185

Shape (ξ̂) -0.1897 0.0034
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4.7.2 Model checking

The diagnostic plot shown in Figure 4.13 is used to assess the accuracy of the GEV

distribution for the returns. The diagnostic plot generated in Figure 4.13 uses ismev

package of R established by Coles (2001). The probability plot and quantile plot

provide techniques for assessing whether or not a data set follows a given distribu-

tion. The data is plotted against a theoretical distribution in such a way that the

points form a straight line. Departures from this straight line indicate departures

from the specified distribution. The return level plot shows the return period against

the return level, and shows an estimated 95% confidence interval. The return level is

the level that is expected to be exceeded. The return period is the amount of time

expected to wait to exceed a particular return level. Thus, all these diagnostic plots

support the fitted model.
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Figure 4.13: Diagnostic plot illustrating the fit of the data to the GEV distribution

Table 4.15 shows the number of exceedances above the extreme tail quantiles. The

theoretical number of exceedances of 95% tail probability over a 125 return is calcu-

lated as 0.05 * 2495. The number of exceedances decreases as the quantiles increase.

The Conditional GEV is computed using quantile function. In place of 95% tail prob-

ability x0.05 = −0.4917 − 1.4299
0.1897

{
[-log(1 − 0.05)]0.1897 − 1

}
= 2.7552 and the number
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of exceedances above 2.7552 is 54.

Table 4.15: Estimated tail quantiles at different probabilities (Number of exceedances)

Tail probability (p) Expected observation Conditional GEV

0.1 250 109

0.05 125 54

0.01 25 18

0.005 12 14

0.001 2 7

Figure 4.14 shows that the GEV distribution predicts accurately the number of ex-

ceedances above very high quantiles. The expected observations are represented by a

solid line while the dashed line represents GEV distribution.
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Figure 4.14: Plot of exceedances against tail probabilities

4.7.3 Monthly frequency analysis

The monthly frequency analysis of observations above 95th quantile is carried out.

Table 4.16 shows the frequency of occurrence of return values above the 95th quan-

tile. This indicates that May and October have the highest returns over the sam-

pling period (2002-2011). The investigation provides an important implication to
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investors and risk managers when modelling extreme events in the JSE. The extreme

exceedances are also presented by bar-plot in Figure 4.15.

Table 4.16: Monthly frequency analysis of observations above 95th quantile

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Freq 4 5 5 1 7 3 2 4 6 7 5 5
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Figure 4.15: Bar chart of the monthly frequency above 95th quantile.

4.8 Generalised Pareto Distribution

Accurate modelling of extreme returns is vital to financial risk management. Risk

management gained importance in the last decade due to the increase in the volatil-

ity in financial markets. The common assumption in finance theory is that financial

returns are normally distributed. Conversely, several tail studies indicate that most

financial time series are fat tailed. Investing in financial markets is challenging be-

cause prices are highly volatile and exhibit extreme price movement of magnitudes.

It is important to note that EVT relies on an assumption of independent and identi-

cally distributed (i.i.d.) observations. There is empirical evidence that distribution of
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returns can possess fat or heavy tails so that a careful analysis of returns is required.

The GPD was first introduced by Pickands (1975) in the extreme value framework as

a distribution of the sample excesses (or exceedances) above a sufficient high thresh-

old. The POT method models a distribution of excess over a given threshold. The

importance of the GPD in the extreme value theory is dominant and extensively used

in various practical situations.

4.8.1 Model selection

The key assumption in EVT is that extreme returns are i.i.d. series. Hence, before

using an EVT method we may want to check that observations are approximately

i.i.d. In case the observations do not fulfil this hypothesis, it is important to ap-

ply a filter before fitting the EVT model. In particular it is very common to find

heteroskedasticity in financial returns series. According to the AIC, the ARMA (1,

0)-EGARCH (1, 1) is a better model but it does not fall in the constraint α + β = 1.

The fitted model for ARMA (1, 0)-GARCH (1, 1) model shows that α + β = 0.9871,

which is closer to 1. ARMA (1, 0)-GARCH (1, 1) model is estimated in a view of

filtering the return series to obtain nearly i.i.d. residuals.

The results of fitting an ARMA (1, 0)-GARCH (1, 1) model for the JSE returns

series are presented in Table 4.17. The estimate of φ is significant in supporting the

use of ARMA (1, 0) model for the returns. Volatility shocks are persistent since the

sum of the ARCH and GARCH coefficients are very close to one. The estimates

for α and β are highly significant. The Box-Pierce Q-statistics is insignificant up to

lag 20 indicating that there is no excessive autocorrelation left in the residuals. The

critical value χ2(20) distribution is 31.41. In all cases 5% level of significance is used

and p-values are shown in the parentheses. In modelling volatility of heteroskedastic

shares, EVT is applied to standardised residuals from this model. The model diag-

nostic results support the use of the ARMA (1, 0)-GARCH (1, 1) model which is

applied to filter returns in obtaining nearly i.i.d.
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Table 4.17: ARMA (1, 0)-GARCH (1, 1) model for returns

Mean Equation

µ = 0.0854(0.0001)

φ = 0.0497(0.0151)

Variance Equation

ω = 0.00228(0.0002)

α = 0.0938(0.0000)

β = 0.8933(0.0000)

Model Diagnostics

α + β = 0.9871

Q(20) = 17.2110(0.5760)

Q2(20) = 16.4260(0.6290)

ARCH(10) = 0.098048(0.0002)

4.8.2 The GPD fit

The Pareto quantile plot is a graphical method for inspecting the parameters of Pareto

distribution. The logarithm of the observed positive residuals is plotted against the

theoretical quantiles. The Pareto quantile plot shown in Figure 4.16 is illustrated

by using the laeken package of R established by Beirlant et al. (1996) to predict a

threshold. Figure 4.16 displays the Pareto quantile plot for the positive residual data.

The threshold is τ = exp (0.9634) = 2.6206. There are 58 observations above the

threshold as shown in Figure 4.17. The maximum likelihood estimation is used for

the determination of the GPD parameters from 58 exceedances. The estimated GPD

parameters are σ̂ = 1.0896 (0.2442) and ξ̂ = -0.0321 (0.1824), with standard errors in

the parenthesis. The results show that residuals can be modelled using the Weibull

class of distributions, since ξ < 0.

61



0 1 2 3 4 5 6 7

0.0
01

0.0
05

0.0
50

0.5
00

−log[1−i/(n+1)]

Lo
g o

f th
e o

bse
rva

tion
s

Figure 4.16: Pareto quantile plot

Figure 4.17 shows the plot of all 1255 positive residuals. The residuals above a

horizontal line are those that are above a threshold τ = 2.6206. The observations

above the threshold are assumed to follow GPD.
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Figure 4.17: Scatter plot of positive residuals
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Diagnostic plots for the fitted GPD are shown in Figure 4.18. The GPD model is

adequate since the probability and quantile plots consist of points close to the unit

diagonal, indicating a good fit to the data.
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Figure 4.18: Diagnostic plot illustrating the fit of the data to the GPD

4.8.3 Estimation of extreme quantiles

Table 4.18 shows the number of the exceedances related to the corresponding tail prob-

abilities. It is discovered that for both expected observations and conditional GPD,

the number of exceedances decrease as the tail probability increase. The method

to calculate quantiles works well if the observed number of exceedances is close to

the number of expected observations. The number of expected observations can be

calculated by multiplying the number of residuals by tail quantiles, Bystrom (2005).

The theoretical number of exceedances of a 95% tail quantile over positive residuals

of 1255 is (0.05*1255) = 63. ARMA-GARCH model is presented with conditionally

normally distributed standardised residuals.
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Table 4.18: Estimated tail quantiles at different probabilities (Number of exceedances)

Tail probability (p) Expected ARMA-EGARCH Conditional GPD

0.1 126 161 76

0.05 63 107 34

0.01 13 53 12

0.005 6 40 3

0.001 1 17 0

The conditional GPD is attained by applying the quantile function and count the

number of observations that are larger than the estimated tail quantile. The ARMA-

GARCH model significantly underestimates all tail quantiles resulting in an excessive

number of exceedances. The conditional GPD distribution produces better forecast-

ing results, thus the ARMA-GARCH-GPD model yields more accurate estimates of

extreme tail quantile.

The findings of this study also show that the ARMA-GARCH-GPD model performs

well, especially in financial markets where the distribution of returns exhibits large

movements. Plot of exceedances against tail probabilities for expected observations

is given in Figure 4.19. The solid line represents the expected observations, the blue

dashed line is the conditional GPD and the red dashed line represents the ARMA-

GARCH model.

64



Tail probabilities

Ex
cee

da
nce

s

0.1 0.05 0.01 0.005 0.001

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Figure 4.19: Plot of exceedances against tail probabilities

Figure 4.20 shows the bar chart of the monthly frequency of occurrence of ex-

ceedances. All months have the highest frequencies above the threshold except in

April and July. October is the month with highest exceedances above threshold.

This investigation provides an important implication to investors and risk managers

when modelling extreme events in the JSE.
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Figure 4.20: Bar chart of the monthly frequency of occurrence of exceedances
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The bar chart of the yearly frequency of occurrence of exceedances is given in

Figure 4.21. The number of exceedances were high in 2008, which was caused by the

global recession of 2008/2009, resulting in a large increase in unemployment and a

deflationary scare in many countries.
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Figure 4.21: Bar chart of the yearly frequency of occurrence of exceedances

4.9 Out of sample forecasting

A good forecast capability of volatility models provide a practical tool for stock mar-

ket analysis and enable investors to give more appropriate securities pricing strategies.

The forecast error statistics used in the evaluation of the out of sample predictions

takes the period from 10 January, 2012 to 28 December, 2012 generating 244 obser-

vations. The Root Mean Square Error (RMSE) statistics and Mean Absolute Error

(MAE) statistics are used to rank the models based on their out of sample fore-

casting accuracy. The alternative GARCH models and some diagnostic checking are

performed to compare volatility specifications. Different ARMA (p, q)-GARCH (1,

1) models are selected as the representative models to compare out of sample perfor-

mance. The ACF and PACF are used to test all possible models. The out of sample

forecasting for the possible ARMA (p, q)-GARCH (1, 1) models assume three differ-

ent distributions namely: Normal distribution, Student-t distribution and Generalised
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error distribution. The four models used are ARMA (1, 0)-GARCH (1, 1), ARMA

(1, 1)-GARCH (1, 1), ARMA (1, 2)-GARCH (1, 1) and ARMA (1, 3)-GARCH (1, 1).

The RMSE statistics and MAE statistics for the four ARMA (p, q)-GARCH (1,

1) are reported in Table 4.19. The RMSE statistics indicates that ARMA (1, 1)-

GARCH (1, 1) model provides the most accurate forecast, followed by ARMA (1,

0)-GARCH (1, 1) model and ARMA (1, 3)-GARCH (1, 1) model. The MAE statis-

tics indicates that ARMA (1, 1)-GARCH (1, 1) model provides the most accurate

forecast, followed by ARMA (1, 3)-GARCH (1, 1) model.

Table 4.19: Comparison of out of sample forecast accuracy models

Model RMSE MAE

ARMA(1, 0)-GARCH(1, 1) 0.7056 0.5624

ARMA(1, 1)-GARCH(1, 1) 0.7045 0.5604

ARMA(1, 2)-GARCH(1, 1) 0.7057 0.5625

ARMA(1, 3)-GARCH(1, 1) 0.7056 0.5622

The error statistics in Table 4.19 are unable to provide the obvious distinction be-

tween the three performing models. The data justification is performed to provide

the best accurate model. Table 4.20 shows results for data validation for the out of

sample forecast which is performed using data from 07 January, 2013 to 02 August,

2013. The out of sample forecast for data validation assumes that the models follow

Normal distribution, Student-t distribution and Generalised error distribution. The

AIC and MAE indicate that the ARMA (1, 3)-GARCH (1, 1) model provides the

most accurate forecast.
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Table 4.20: Data validation

Model AIC RMSE MAE

ARMA(1, 0)-GARCH(1, 1) 11.9497 89.0309 25.5215

ARMA(1, 1)-GARCH(1, 1) 11.8412 88.5014 19.6507

ARMA(1, 2)-GARCH(1, 1) 11.5865 88.5256 20.4412

ARMA(1, 3)-GARCH(1, 1) 9.5721 88.7082 8.2686

4.10 Conclusion

Chapter 4 has presented and analysed the results pertaining to volatility and financial

market risk at the JSE. The behaviour of the data and the stationarity tests on the

data were first presented. The basic picture revealed the properties of financial data

such as excess volatility, volatility clustering, excess kurtosis and non-normality. Re-

sults show that returns are characterised by an ARMA (1, 0) process. The symmetric

and asymmetric GARCH-type models are used to model volatility and financial risks

at the JSE. The ARMA (1, 0)-GARCH (1, 1)-M model shows that increased risk does

not necessarily imply an increase in returns. The TGARCH model captures asymmet-

ric effect better that the EGARCH model. The out of sample forecasting evaluations

indicate that ARMA (1, 0)-GARCH (1, 1) model achieves most accurate volatility

forecast. In modelling the extreme returns, the two most EVT distributions (GEV

distribution and GPD) are used. The GEV distribution shows that daily returns for

the JSE follow the Weibull class. The results show that the ARMA-GARCH-GPD

model yields more accurate estimates of extreme returns than the ARMA-GARCH

model. The out of sample forecast indicates that the ARMA (1, 3)-GARCH (1, 1)

model provides the most accurate results.
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Chapter 5

Conclusion

5.1 Introduction

This chapter gives a report of the conclusion related to the objectives and research

problem of the study. The chapter is divided into five sections. Following this in-

troductory part, section 5.2 discusses research findings and section 5.3 states the

limitations and outlines some recommendations of the study. Section 5.4 provides

areas for further study and section 5.5 concludes the chapter.

5.2 Research findings

The study investigates the estimation and forecast ability of ARMA (p, q) model and

four GARCH-type models. EVT is used in the study for the asymptotic behaviour

of extreme observations. The JSE returns series exhibits the defining characteristics

of financial markets, which are high volatility, occasional extreme movements and

volatility clustering. The conclusion that daily returns series observed in JSE have

non-normality distribution is reasonable as it is common phenomenon in datasets

of emerging markets. Overall results provide evidence to show volatility clustering,

leptokurtic distribution and leverage effects for the Johannesburg stock returns data.

The high values of kurtosis for the returns suggest that extreme price changes oc-

curred more frequently during the sample period, 08 January, 2002 to 30 December,

2011.

69



The JSE price index series achieved stationarity after taking the 1st-difference. Re-

sults show that returns are characterised by an ARMA (1, 0) model. The results

indicate that the daily returns can be characterised by the GARCH-type models.

The Ljung-Box Q-statistics is tested up to the twentieth order autocorrelation which

indicated that the null hypothesis of independence in daily returns should be rejected

in all GARCH-type models. The financial theory that suggests that an increase in

variance results in a higher expected return does not hold in the JSE returns data.

The Ljung-Box Q-statistics justified the use of all GARCH-type models in modelling

volatility at the JSE. The out of sample forecasting evaluations indicate that the

ARMA (1, 0)-GARCH (1, 1) model achieve the most accurate volatility forecast.

The GEV distribution illustrates that daily returns for the JSE follows the Weibull

class. In summary, the probability plot and the quantile plot suggest that the GEV

distribution is a good fit to the data. The exceedances above the 95th quantile indi-

cate that May and October have the highest returns over the sampling period. The

investigation provides an important implication to investors and risk managers when

modelling extreme events in the JSE. In modelling heteroskedasticity using GPD, the

ARMA-GARCH model was applied in stage one with a view of filtering the return

series to obtain nearly i.i.d. residuals. In stage two, the EVT framework is applied

to the standardised residuals from ARMA-GARCH model. The results show that

residuals can be modelled using the Weibull class of distributions.

The ARMA-GARCH model overestimates all tail quantiles and thus the distribu-

tion disables to model the positive tail accurately. The ARMA-GARCH-GPD model

yields more accurate estimates of extreme returns than the ARMA-GARCH model.

In summary the results of this study support the combination of ARMA-GARCH

model with EVT for estimating upper extreme quantiles. In particular, the results

show that the participants in the JSE market can rely on EVT-based models like

GPD when modelling conditional heteroskedasticity of extreme events. This study

also provides an important implication to investors and risk managers. The study by

Bystrom (2005) indicates that VaR performance under a GARCH-EVT framework is
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superior to a number of parametric approaches. The findings of this study also show

that the ARMA-GARCH-GPD model performs well, especially in financial markets

where the distribution of returns exhibits large movement of magnitude.

5.3 Limitations and Recommendations

One limitation of this study is that it is confined to secondary data only. All limi-

tations of GARCH-type models and EVT distribution are applicable to this study.

GARCH-type models are recommended to be used to model and forecast volatility

at the JSE, more specially the ARMA (1, 0)-GARCH (1, 1) model. The participants

in the JSE market can rely on EVT-based models like GEV distribution and GPD

when modelling volatility of extreme events.

5.4 Areas for further study

Future research should look at forecasting volatility of daily data using Markov regime

switching GARCH models. Bayesian GARCH approach can be used in the estimation

of the volatility of the residual returns. The impact of GEV quantile estimators has

yet to be assessed and remains the focus of further research. This can have severe

significances for risk management tools like VaR, as it could leave a financial market

inadequately protected against extreme risk. Further combination of models of the

overall time series with models of the tails appears to be an interesting issue to address

in future work on extremes in financial markets.

5.5 Conclusion

This chapter presented the summarised results found in attaining the objectives and

research problems of this study. The findings of this study have important implica-

tions for investors and risk managers at the stock markets. It may be worthwhile

to investors to invest in industries and sectors that are generally more stable or less

volatile. The findings are important to investors and risk managers who are concerned

with assessing risk portfolios.
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Appendix A1

Derivations of the quantile function of the GEV distribution.

The cumulative distribution function of GEV distribution is given by:

F (x; µ, σ, ξ) =






exp
{
−[1 + ξ(x−µ

σ
)]

−1
ξ

}
, 1 + ξ(x−µ

σ
) > 0 and ξ 6= 0

exp
(
−e

−(x−µ)
σ

)
, ξ = 0

The survival function of the GEV distribution is P (X > x) = 1 − Gx;µ,σ,ξ

P (X > x) = exp
{
−

[
1 + ξ

(
x−µ

σ

)]−1
ξ

}
, for 1 + ξ

(
x−µ

σ

)
> 0 and ξ 6= 0

Let p = P (X > x)

p = 1 − exp
{
−

[
1 + ξ

(
x−µ

σ

)]−1
ξ

}

1 − p = exp−
[
1 + ξ

(
x−µ

σ

)]−1
ξ

log (1 − p)−ξ = −
[
1 + ξ

(
x−µ

σ

)]

xp = µ + σ
ξ

[
−log (1 − p)−ξ − 1

]

Similarly when ξ = 0 we have xp = µlog [-log (1 − p)]
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Appendix A2

Derivation of the quantile function of the GPD.

The cumulative distribution function of GPD is given by:

Wξ(x) =






1 − [1 + ξ(x−τ
σ

)]
−1
ξ , ξ 6= 0

1 − exp
(
−x−τ

σ

)
, ξ = 0

The survival function of the GPD is P (X > x) = 1 − Wξ(x)

P (X > x) =






1 − [1 + ξ(x−τ
σ

)]
−1
ξ , ξ 6= 0

1 − exp
(
−x−τ

σ

)
, ξ = 0

Let p = P (X > x)

p = 1 − [1 + ξ(x−τ
σ

)]
−1
ξ , for ξ 6= 0

(1 − p)ξ = [1 + ξ(x−τ
σ

)]

xp = τ + σ
ξ

[
(p)−ξ − 1

]

where xp is the quantile function.

Similarly when ξ = 0 we have xp = τ − σlog (p)
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Appendix B

This Appendix contains some of the R codes used to generate the results

and plots in Chapter 4

FITTING TIME SERIES PLOT

attach(Prices)

win.graph()

Prices.ts=ts(Prices,start=2002,end=2011,freq=260)

plot(Prices.ts,xlab=“Date”,ylab=“All share JSE index”,col=“blue”,main=“”)

attach(Returns)

win.graph()

Returns.ts=ts(Returns,start=2002,end=2011,freq=260)

plot(Returns.ts,xlab=“Date”,ylab=“Daily returns”,col=“blue”,main=“”)

FITTING Q-Q PLOT, DENSITY PLOT AND HISTOGRAM

attach(Returns)

head(Returns)

win.graph()

qqnorm(RT)

attach(Returns)

head(Returns)

win.graph()

plot(density(Returns)),col=“blue”,main=“”)

box()

attach(Returns)

head(Returns)
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win.graph()

hist(returns,col=“blue”,main=“”)

box()

FITTING ACF AND PACF PLOTS SIMULTANEOUSLY

attach(Price)

win.graph()

par(mfrow=c(2,1))

acf(price,main=“”)

acf(price,type=“p”,main=“”)

box(ity=“solid”)

win.graph()

FITTING RESIDUALS

attach(residual)

head(residual)

win.graph()

win.graph()

acf(residual,ylab=“ACF of Residual”,main=“”)

box()

attach(res)

head(res)

win.graph()

hist(residual,xlab=“Residual”,col=“blue”,main=“”)

box()

attach(res)

win.graph() residual.plot=plot(residual,start=2002,end=2011,freq=260)

plot(residual,xlab=“Number of observations”,ylab=“Residual”,col=“blue”,main=“”)

box()
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plot(residual,col=“blue”,main=“”)

attach(fitted)

win.graph()

plot(Fitted,xlab=“Fitted”,ylab=“Residuals”,col=“blue”,main=“”)

abline(h = 0.0, lty = 3,col=“red”)

box()

FITTING GENERALISED EXTREME VALUE DISTRIBUTION

attach(return)

library(ismev)

sharefit=gev.fit(return)

win.graph()

gev.diag(sharefit)

win.graph()

GEV=c(109,54,18,14,7)

EO=c(250,125,25,12,2)

g-range=range(0,260)

plot(EO,type=“o”,axes=F,col=“blue”, ylab=“Exceedances”, xlab=“Tail probabili-

ties”)

lines(GEV,type=“o”,pch=22,lty=2,col=“red”)

axis(1,at=1:5, lab=c(“0.1”,“0.05”, “0.01”,“0.005”,“0.001”))

axis(2, las=1, at=10*0:g-range[2])

box()

attach(Exceedance)

head(Exceedance)

win.graph()

barplot(Frequency, main=“”, xlab=“Month”,ylab=“Frequency”,

names=c(“Jan”,“Feb”,“Mar”,“Apr”,“May”,“Jun”,“Jul”,“Aug”,“Sep”,“Oct”,“Nov”,
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“Dec”),border=“blue”,

density=c(4,5,5,1,7,3,2,4,6,7,5,5))

box()

FITTING GENERALISED PARETO DISTRIBUTION

attach(lnresidual)

head(lnresidual)

win.graph()

library(laeken)

paretoQPlot(lnresidual,w = NULL, xlab =“-log[1-i/(n+1)]”, ylab =“Log of the ob-

servations”,interactive = TRUE,main=“”,col=“blue”)

attach(residual)

head(residual)

win.graph()

plot(Residual,xlab=“Number of observations”,ylab=“Positive residuals”,col=“blue”,

xlim=c(0,1250))

abline(h = 2.6206, lty = 3)

attach(residual)

head(residual)

library(ismev)

sharefit=gpd.fit(Residual,2.6206)

win.graph()

gpd.diag(sharefit)

win.graph()

AEG=c(161,107,53,40,17)

GPD=c(76,34,12,3,0)

EO=c(126,63,13,6,1)

g-range=range(0,170)
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plot(AEG,type=“o”,axes=F,col=“blue”, ylab=“Exceedances”, xlab=“Tail probabil-

ities”)

lines(EO,type=“o”,pch=22,lty=2,col=“red”)

lines(GPD,type=“o”,pch=22,lty=2,col=“black”)

axis(1,at=1:5, lab=c(“0.1”,“0.05”, “0.01”,“0.005”, “0.001”))

axis(2, las=1, at=10*0:g-range[2])

box()

attach(Exceedance)

head(Exceedance)

win.graph()

barplot(Frequency, main=“”, xlab=“Month”,ylab=“Frequency”,

names=c(“Jan”,“Feb”,“Mar”,“Apr”,“May”,“Jun”,“Jul”,“Aug”,“Sep”,“Oct”,“Nov”,

“Dec”),border=“blue”,

density=c(4,5,6,1,7,3,2,5,6,8,6,5))

box()

attach(Exceedance)

head(Exceedance)

win.graph()

barplot(Frequency, main=“”, xlab=“Year”,ylab=“Frequency”,

names=c(“2002”,“2003”,“2004”,“2005”,“2006”,“2007”,“2008”,“2009”,“2010”,“2011”),

border=“blue”,

density=c(4,2,2,0,5,3,23,12,2,5))

box()
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