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ABSTRACT

The fluorite structured mixed-metal fluorides CdF,(xPbF>) for 0 mol %<x<100 mol % PbF, are
exceptionally good F ion conductors, a property, which is related to the mixed nature of the
cation sub-lattice. Hence, from the technological viewpoint, these materials have important
applications as electrolytes in solid state batteries. In this research project, we have used a
combination of experiment and theory (classical simulations) to gain some insights into structural
and dynamical properties of these materials. For this study, the highly conducting materials are

best suited because they are experimentally amenable and have simple structures.

The validity of the model was first assessed by performing a number of preliminary perfect lattice
calculations. In general, the calculated values of elastic and dielectric constants agreed with those
from available experimental data, in particular those for the pure components of the solid
solutions. The experimentally determined variation of the static dielectric constant as a function
of composition was reasonably reproduced by the present calculations. It was observed that the
dielectric constant increases when the mixed system evolves from CdF, to PbF,. The results also
suggest that linear variations (curves with no anomaly) of elastic constants with composition
between the two pure components are only due to composition change of the mixed systems.

Defect properties of the pure components of the solid solutions under study were determined
using a two-region approach. In pure systems, the vacancy activation energy for fluorine
migration in the bulk is found to be lower than the interstitial energy for fluorine migration. This

suggests that vacancy mode of migration is predominant in the pure alkaline earth fluorides.



Molecular dynamics (MD) technique has been used to yield useful information on fluorine
diffusion within CdF.(xPbF,) mixed systems. These systems were modelled at temperatures
ranging from liquid nitrogen temperature (77 K) to 800 K at a series of dopant concentrations.
The plots of the anion species in these materials are seen to increase linearly with time, a clear
evidence of migration on the anion sub-lattice, whilst the plots of ionic motion on the cation-
sublattice rapidly evolved to a constant value, invariant with time, suggesting that cations do not
participate in the diffusion process. The x =60 mol % PbF, sample in CdF2(xPbF>) mixed systems
exhibits the highest magnitude of the fluorine diffusion coefficient (in the temperature range 77
— 800 K) whilst the lowest magnitudes of the fluorine diffusion coefficients were noted for Pb-
deficient solid solutions (x <20 mol % PbF,). Furthermore, useful insight can be gained from the
study of variation in ionic conductivity (o) with Pb concentration (x). This study shows an initial
rise in o as x increases from zero (i.e. pure CdF,). After reaching a peak at x ~ 60 mol % PbF",
o falls at x > 80 mol % PbF,. In essence, the x = 60 mol % PbF, sample has the maximum ionic
conductivity and correspondingly the lowest activation energy (Ea.) in the entire series of
CdF,(xPbF,) samples in agreement with previous experimental results. Hence, we propose that
the initial rise in & is due to an increase in concentration of charge carriers and the subsequent fall

is due to a decrease in their mobility.

The analysis of the element-specific pair radial distribution functions to determine if the trends
reported for pure compounds continue in the mixed solutions reveals that cation radial distribution
functions (RDFs) are typical to those found in solids. Hence, the cubic structure remains
preserved in mixed systems (even at high temperatures), suggesting that these materials are solid

electrolytes. However, anion RDFs were typical to those found in liquids, indicating that the

xxi



fluorine ions formed a weakly correlated sub-system. In addition the extent of disorder in the
radial distribution of mixed systems are far complex than that in pure compounds — a feature

associated with the evolution of the system from CdF, to PbF..

Complementary structural studies have been performed at the SERC Daresbury laboratory SRS.
EXAFS spectroscopy has been used to probe local environments around cations in CdF,(xPbF>)
systems. The cation-fluorine peak shows reduced amplitude as a function of increase in dopant
concentration. This behaviour is typical of stoichiometric compounds. A high degree of disorder
is shown around the Pb cations in the entire series of solid solutions, with the highest disorder
noted for the x = 60 mol % PbF, sample — a feature already alluded to using theoretical
techniques. Temperature induced structures revealed that vacancies are preferentially sited
adjacent to Pbions in these systems. A similar study by Cox and co-workers on PbSnF, showed
that vacancies are sited next to Pb ions of the fluorite structure. This suggests that anion (i.e.
fluorine) vacancies are nearest-neighbours to host cation when the divalent dopant cation is
smaller than the host cation and are nearest neighbours to the dopant when it is larger than the
host. EXAFS has also been used to detect the effect of composition variation on the local
structure of the two types of cations in CdF,(xPbF,). The results reveal differences for the local
environments of Cd>” and Pb*" cations. On the basis of this work we are able to predict design
of new solid materials and of solids in which useful properties are optimized to support fast ion

conduction.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 SUPERIONIC CONDUCTORS

The present study is based on an experimental and theoretical study of the structure of mixed
metal fluorides. Interest in these materials emanated from their potential use as solid electrolytes
in high-energy storage devices such as batteries for vehicles, gas sensors and liquid-crystal
displays. Solid electrolytes, superionics or fast-ion conductors, represent an interesting example
of highly anharmonic and distorted structure, bridging the gap between solids and liquids. These
materials exhibit unusually high ionic conductivities, c (10™-10™ QO'cm™), comparable to that
found in molten salts, but at temperatures well below their melting points (Derrington and
O'Keefe 1973). These features led to an interest in understanding the mechanisms behind fast-ion

conduction and this spurred basic research into a variety of materials.

Other properties of superionic conductors include: small electronic conductivity, low activation

energy, ions are principally charge carriers and number of available empty sites is far greater than

the number of ions (Chandra 1981).

Comprehensive reviews on superionic conductors are given by Boyce and Huberman (1979),
Catlow et al. (1978, 1983, 1996), Chadwick (1983), Comins et al. (1990), Cox et al. (1994),

Wang and Grey (1995, 1997), Rammutla et al. (2001, 2002). Interest in the transition from order



to disordering state goes back to the 1830's when Faraday carried out the first study. However,
it was only in the 1960's that more interest was focussed on this field. At the time silver- and
copper- based compounds such as RbAg,ls, Agl and Cul in which the disorder occurs in the silver
and copper sublattices were discovered as superionic conductors and there was a realization that
there were many potential technological applications. Furthermore, hexagonal compounds with
the B—alumina structure, Na-f-alumina (Na; 67Mgo 67Al1033017), were added to the list followed
by fluorites (e.g. CaF etc.), defect stabilized ceramic oxides (CaO:AO, (A=Zr, Hf, Th, Ce)) and
fluorides with the tysonite structure (e.g. AF; (A=Y, Lu, Re)) (Ngoepe et al. 1990 and Wang and
Grey 1997 ). However, the full understanding of fast-ion behaviour of these materials requires
a detailed knowledge of the nature of defect structures, crystal properties such as elastic and
dielectric constants, structural properties such as radial distribution functions, dynamical
properties like diffusion coefficients and ion-migration mechanisms. Hence, the objective of the
work described in this thesis was to gain such information. An important feature has been

combined use of theory and experiment.

This Chapter is broken up as follows: in section 1.1 we present a discussion on superionic
conductors; section 1.2 is devoted to a classification of superionic conductors followed by
sections on the review of stoichiometric fluorides and solid solutions (section 1.3) and on point
defects in solids, diffusion mechanisms and ionic conductivity (sections 1.4 to 1.7) on fluorite

lattices. Finally a summary on the objectives of the present study is presented (section 1.8).

1.2  CLASSIFICATION OF SUPERIONIC CONDUCTORS

Superionic conductors are classified according to the nature of phase transition to the superionic

2



state (Boyce et al. 1979). Types of phase transitions are: transition from one crystal structure to
another, where there is no evidence for soft mode transitions; phase transition that extend over
few hundred degrees below the melting point. The phase transformation often marks the onset,
with increasing temperature, of sudden large-scale disorder. A brief review of various types of

superionic conductors of this type is given below.

1.2.1 Typel

Materials of this type are characterised by the transition to the superionic state which is abrupt
(Figure 1.1a). This type of transition is regarded as a first order phase transition. Here there is
a rearrangement of immobile ion sublattice at the transition temperature in addition to the
disordering of the mobile ion sublattice. This process is accompanied by a discontinuous increase
in the ionic conductivity (Figure 1.1d). The discontinuity is attributed to the rapid increase in the
number of ions available for diffusion. Materials such as RbAgals, Agl and Cul exhibit this type
of disorder (Boyce and Huberman 1979). In this class of materials cations are structurally
disordered and the cation sublattice is ‘liquid-like’. Consequently, cations move from one site to

another with a low activation energy.

1.2.2 Typell

In this class the transition temperature T. to the superionic state is associated with the
development of extensive disorder on either anion or cation sub-lattice (Figure 1.1b). The
disorder gives rise to a progressive increase in the ionic conductivity over a relatively wide

temperature range to values typical of ionic melts, but remains continuous through such transition
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Figure 1.1 The temperature dependent order parameter (a) a first order phase transition, (b) a
second order phase transition, (c) a gradual disordering with no phase transition, (d), (e) and (f)

show the corresponding ionic conductivity



(Derrington and O’Keefe 1973, Derrington et al. 1975)(Figure 1.1e). Furthermore, this type of
superionic conductors exhibits broad specific heat anomalies at temperatures Tc well below the
melting temperatures Ty, (Catlow et al. 1978). The anomalies in the specific heat are associated
with the development of limited disorder on the anion sublattice of fluorites (Catlow et al. 1978)

contrary to massive disorder (Rice et al. 1974, Huberman 1974).

Systems in which the phase transitions are apparently second order include fluorite type intrinsic
anion conductors such as CaF,, PbF,, BaF,, LaF3, ZrO,(x»,0;) and anti-fluorite cation conductors
like Na,S LisSiOs and K,S. These materials possess low melting temperatures and are
predominantly ionic in nature and good electrolytic conductors at high temperatures. In the case

of fluorites, Tk is given by 0.8Ty,, where Ty, is the melting temperature / point.

The current investigation is concerned with type II superionic conductors.

1.2.3 Type Il

In this class of materials, the order-disorder parameter gradually drops to zero, with increasing
temperature, with either no “nonconducting-conducting transformation™ nor specific heat anomaly,
as shown in Figure 1.1¢). Certain alkali halides such as PbCl,, CaBr,, YCl; and MgCl, exhibit this
type of phenomenon. This usually occurs when there are significant energy differences between
two lattice sites. This class of materials simply becomes highly conducting upon melting.

Furthermore, the ionic conductivity (typically from 107 Q@' ecm™ to 1 Q"' em™) shows Arrhenius

behaviour, with no discontinuities or shape changes (Whittingham and Huggins 1971).



1.3 REVIEW OF STOICHIOMETRIC FLUORIDES AND SOLID SOLUTIONS

1.3.1 Introduction

Experimental and computational techniques have been used to study superionic behaviour in
numerous compounds and the effects of dopants on both the transition temperature and the extent
of disorder. In this section we will particularly pay attention to fluorites and their mixed

compounds.

The structure of the fluorite lattice (Fm3m) is shown in Figure 1.2. It is of considerable
importance in the discussion of type II éuperionic conductors. Figure 1.2 shows that in a perfect
lattice, each ion occupies the site assigned to it on the basis of the crystal structure. The lattice
consists of a simple cubic array of anions, with alternate cube-centres occupied by cations (Baker
1974). Consequently, half of the cube centre sites are empty. A significant aspect of such empty

cube centre sites is the provision for the accommodation of fluorine interstitials.
1.3.2 Pure Stoichiometric Halides

Much work has been carried on the pure alkaline-earth fluorides such as CaF,, BaF,, PbF,, etc.
(Catlow et al. 1978, Brass 1989, Comins et al. 1990, Cox et al. 1994, Netshisaulu et al. 1993,
1996). In a fluorite structure as shown in Figure 1.2, fluorine ions occupy normal lattice positions
with cations occupying alternate cube center-sites, while the other alternate cube centre sites are
vacant. Low and high temperature measurements on these compounds revealed that they behave

in an essentially the same way. The degree of disorder is negligible at temperatures below the
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Figure 1.2 The fluorite crystal structure.



fast-ion regime, but with increasing temperature, fluorine ion displacements occur along <100>
directions (Shapiro 1976 and Vlieg 1986). Above the critical temperature T, the disorder is
enormous and the material becomes superionic (Brass 1989). During this transition the cations
remain at their normal lattice (tetrahedral) sites. In short, the results from statics and molecular
dynamics computer simulation techniques on pure fluorites reveal that: anion — Frenkel disorder
dominates (i.e. ions occupying cube centre sites leaving anion vacancies); activation energies for
vacancy migration are relatively low, i.e., anion vacancy is highly mobile; activation energies for
interstitial migration are substantially higher; conductivity is enhanced, disorder on the cation sub-

lattice is negligible, etc.

Early theories on the properties of fluorites at high temperatures were based on the assumption
that interstitials would contribute effectively to the anion disorder (Shapiro 1976, Dickens et al.
1976a). However, recent computer modelling studies and detailed examination of neutron
scattering data have indicated that cube-centre sites are not appreciably occupied for any length
of time in the superionic phase (Catlow 1996). In fact a large number of vacancies (on the lattice

sites) is due to the relaxation of ions.

1.3.3 Doped Fluorides

1.3.3.1 Trivalent impurity doped fluorides

The rare-earth ions enter the fluorite crystal lattice as trivalent cation substitutionals, with charge
compensation being provided by excess fluoride interstitials (Kjems, Andersen and Schoonman
1983). Trivalent impurity cations replace divalent host cations of the fluorite lattice and charge-

compensation is provided by the incorporation of fluoride ions (F') (excess anions) in interstitial



sites (Baker 1974). Thus the M’' impurities occupy cation sites and are compensated by
interstitial fluorine ions. Hence the predominant defect in the alkaline earth fluorites is the Frenkel

type. This is also supported by theoretical calculations of point defects (Catlow 1974).

In trivalent doped fluorites, the main focus of interest has been on the nature of the dopant
interstitial clusters at low and high dopant concentrations. At low dopant concentrations (<1 mol
%), there is a good evidence for the formation of nearest-neighbour (nn) and next-nearest
neighbour (nnn) substitutional cation-anion interstitial pairs (Catlow et al. 1973, 1978; Comins
et al. 1990). Furthermore, at these concentrations, the ENDOR work (Baker et al. 1968) also
indicated that the anion interstitial is not significantly distorted from the cube interstitial site as
verified by Catlow and Norgett (1973). It has, however, been well established that at higher
dopant concentrations (> 5 mol %), complex defect clusters are formed with interstitials not
located at cube-centre sites (Cheetham et al. 1970, 1971). These impurity-stabilized clusters are
considered to bind interstitials leading to reduction in the transition temperature T, to the
superionic phase (Catlow et al. 1981, Chadwick et al. 1983, Comins et al. 1990, Mjwara et al.
1991, Ngoepe and Catlow 1991 and Rammutla et al. 2002). These striking features have been
primarily ascribed to an effective reduction in energy of formation on anion Frenkel pairs, caused

by trapping of interstitial ions by impurity-interstitial complexes.

Theoretical evidence (Catlow et al. 1973) has been put forward in connection with the existence
of the 2:2:2 cluster as a basic structure in the more heavily doped fluorites. These dopant-
interstitial clustering (in anion-excess alkaline-earth fluorites) has also been studied by extended

X-ray absorption fine structure (EXAFS) (Catlow et al. 1985).



Experimental measurements and estimates based on computer modelling techniques suggest that
cation impurity-interstitial complexes and charge compensating interstitial anions act as traps for

thermally-generated anion interstitials, reducing both the energy of formation of anion Frenkel

pairs and T..

1.3.3.2 Divalent doped fluorides

The fluorite structured solid solutions RbBiF,; and PbSnF, are exceptionally good F ion
conductors (Catlow et al. 1985 and Cox et al. 1994). This is due to the mixed nature of the cation
sub-lattice. EXAFS studies on local structures of the two cations, Rb and Bi in RbBiF,, as a
function of temperature, showed marked differences (Catlow et al. 1985, 1989 and Cox et al.
1994). The most fascinating insight into this material is that the Rb edge EXAFS displays a
marked reduction in both amplitude and frequency with an increase in temperature, whereas in
the case of Bi no change in the amplitude or frequency was observed. This suggests that the Bi
ions 'dictate' the structure by drawing the F~ ions to form tight co-ordination shell at a short
distance. This leaves the Rb-F shell co-ordination comparatively disordered. The larger change
in the Rb-F distance as function of temperature was attributed to the fact that the thermally
induced F ions vacancies were preferentially located next to Rb ions (with larger ionic radii and
lower charges). Molecular dynamics (MD) has been used to yield complementary information on
structural properties in these materials (Catlow et al. 1989). Ion transport occurs via a non-
collinear interstitialcy mechanism. A similar study on PbSnF,, where both cations have a charge
of 2+ so that no electrostatic advantage is possible for the formation of vacancies at sites with a
surplus of either Pb or Sn nearest neighbours, shows that vacancies are sited next to Pb ions (Cox

et al. 1994). This finding has been attributed to the larger ionic radius of Pb cations and a highly
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active lone pair on Pb cations.

Information from our previous EXAFS experimental study on CdF,(60 mol % PbF) has provided
evidence for an anomalous disorder around Pb cations (Netshisaulu et al. 1995, Netshisaulu
1996). This result is in accord with arguments based on ion size, in which a small ion allows the
lattice to relax around it, whereas the larger ion causes a slight distortion in the local structure
(Catlow et al. 1989). Complementary molecular dynamics technique has also shown a relatively
low value of the transition temperature T, to the fast-ion phase. It has been found that no
diffusion of fluorine ions occur below Tk, in pure fluorites (Netshisaulu et al. 1993, Netshisaulu
et al. 1999). However, a feature of primary interest is the mobility of fluorine ions in this system
which occurs below T, and that its T, is significantly low compared to that of trivalent doped
fluorides. Furthermore, a significantly low F~ ion interstitial activation energy suggests that
interstitialcy mechanism is a more prevalent mode of transport in CdF»(60 mol % PbF>). Such
an interstitialcy mechanism was also depicted from the single ion trajectories obtained from our
previous MD calculations (Netshisaulu et al. 1999). These factors are more ideal for construction

of efficient reversible electrochemical cells.

1.4 POINT DEFECTS IN IONIC SOLIDS

Tonic crystals consist of arrays of different charged ions. A stable crystal structure is formed when
Coulombic attractive forces of oppositely charged ions reach equilibrium with repulsive forces of
the outer of the electron clouds (like ions). The lattice of a fluorite crystal can be described as
a simple cubic array of anions with a cation at every alternate cube centre. In a perfect lattice, i.e.

at T ~ 0 K, each ion occupies the site assigned to it on the basis of the crystal structure.
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However, in real crystals the lattice will deviate to some extent from the ideal lattice due to either
thermal atomic vibrations (thermal defects) or impurity-induced defects. The existence of crystal
defects causes matter transport in ionic solids. There are two major types of thermal (intrinsic)
point defects (imperfections which are localised over a few atom sites) that are responsible for
ionic transport. These are the Schottky and Frenkel defects. Schottky and Frenkel defects are
discussed below as they play a leading role in determining most of the physical properties of the

crystals.

1.4.1 Schottky Defects

A Schottky defect is formed when corresponding cation and anion sites in the lattice are vacant
(see Figure 1.3a). So ions/atoms move from their normal lattice sites within the crystal structure
to the lattice sites on the surface of the crystal leaving behind a vacancy. This disorder is
dominant in closed-packed solids/structures, where the energy required to insert an interstitial
defect into the structure is very large. It is mostly noted in rare-gas solids (e.g. Krypton and Xe),
where only one type of vacancy occurs and also in most pure alkali halides (e.g. rocksalt (NaCl)

and KCI), where both cation and anion vacancies occur in equal numbers.
In a pure fluorite crystal of composition MF, (Figure 1.2), containing Schottky defects, n(F’)

and n(M”") are the number of F~ anions and M*' cations, respectively. n(F) and 2n(M*") are

each constant with n(F") = 2n(M*"). For a lattice site to be vacant, the probability for creating
p y
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Figure 1.3 (a) Schottky defect (b) Frenkel defect
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a Schottky defect is given by

Pzexp{;l;} 1.1

where kg is the Botzmann’s constant, T is the absolute temperature and the Schottky free energy
E, = hy - TS,, with h, and S, the enthalpy and entropy of the energy per defect. If the crystal
contains N ions and n Schottky defects, then N-n lattice sites are occupied. Hence, the probability

P (the number of ways of creating n defects and placing them among N ions) may be obtained

from
[
P= _ﬂ_ 12
(N —n)in
At thermal equilibrium, the total number of vacancies created, », can be obtained from
[ - E
PZ—L = exp[ L’} I3
(N —n)!n! kT

If the number of vacancies is much smaller than the total number of atoms, i.e., if »<<N, then

nmNexp[;?} 1.4
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1.4.2 Frenkel Defects

A Frenkel defect occurs when an ion moves from its regular site to a cube-centre (interstitial) site,
thus leaving a vacancy (see Figure 1.3b) at its normal position (i.e. at the regular cube corner)
(Hayes and Stoneham 1985). These defects are prevalent in open structures such as those of
silver halides (e.g. AgBr, AgCl, etc), where they are formed on the cation sublattice and those of
fluorite structures where they form on the anion sub-lattice. The probability/number of different

ways of creating/producing ‘n’ Frenkel defects and distribute them among N lattice and N

interstitial sites is written in the form

nl
(N —n)!(N'-n)!

- Iy
=ex 1.5
ot

where Eis the Frenkel free energy or the energy required to displace an anion from its normal

lattice position to an interstitial.

If the number » of Frenkel defects is much smaller than the total number of atoms and interstitials,

respectively, i.e., if n=< N and N', then

E
n= (NN exp{k ;] 1.6

where (= he- TS;, with hrand Sy being corresponding enthalpy and entropy) is the Frenkel free
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energy necessary to remove an ion from a lattice site to an interstitial position. For a Frenkel pair

equation 1.6 becomes

. - F
n ~ (NN")"? ex 1.7
(NN p{ml

In most solids the crystal formation of Frenkel and Schottky defects are significantly different that
one type is dominant. However, calculations on Schottky defects suggest that the energy needed
to create a Schottky pair in fluorite-structured materials such as CaF, is > 5 eV and to produce
a cation Frenkel pair is ~ 6 eV (Hayes and Stoneham 1985). 1t is apparent from these large values
that the concentration of Schottky defects is fairly low even at high temperatures. In contrast,
anion Frenkel defects are most common in pure fluorites MF, (M = Ca, Sr, Ba, Pb) where F

interstitials occur in equal numbers.

1.5 DIFFUSION MECHANISMS IN FLUORIDE SOLIDS

In a perfect crystal, the atoms occupy the sites assigned to them on the basis of the crystal
structure and diffusion cannot easily occur. However, atoms in a crystal structure oscillate around
their equilibrium positions. Occasionally, these jumps become large enough to allow an atom to
change sites. Hence, diffusion (a macroscopic quantity/phenomenon relating to ensembles of
atoms) in solids is simply the movement of atoms through a crystal lattice. However, the crystal
itself remains fixed/retains its shape. During the diffusion process, the lattice site dwelling time

is several orders of magnitude greater than the time spent between lattice sites. lonic crystals
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have simple structures that allow for the straightforward determination of diffusion coefficients.
Much of the interest in diffusion process in the fluorites with large divalent cations (e.g. Ca™,

Sr**, Pb*', Ba®', etc) is due to their potential use as solid electrolytes in future battery systems.

Experimental techniques such as Radio-tracer experiments (Hood and Morrison 1967 and Binier
et al. 1979) have, in principle, provided useful information on the disordered sub-lattice in ionic
solids. In essence, these experiments showed that the cations are relatively immobile, whilst the
anions are highly mobile. However, information on diffusion coefficients is not accessible at high
temperatures via tracer experiments. NMR experiments become useful in this regard (see

Chadwick 1983(b)).

Different types of defects give rise to different mechanisms of diffusion (mass transport) as shown
schematically in Figure 1.4 for the fluorine motions in fluorite lattices. This process gives rise to

ionic conductivity (i.e. charge transport).

1.5.1 The Vacancy Mechanism

In all crystals some of the lattice sites are unoccupied. Vacancy diffusion mechanism occurs when
an ion in a lattice site adjacent to a vacancy (empty lattice site) jumps into a vacancy (at a nearest
neighbour (NN) site). The vacancy migrates/diffuses into the bulk of the crystal, displacing the
mobile ion by one lattice step in the process. In most fluorite-type crystals diffusion proceeds by
vacancy motion along the <100> direction (Figure 1.4a) (Catlow et al. 1989 and Ngoepe and

Catlow 1991).
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Figure 1.4 Diffusion mechanisms for anions in the fluorite lattice (a) Vacancy mechanism (<100>
jumps), (b) Direct interstitial migration (<110> jumps), (¢) Interstitialcy mechanism (non-
collinear) and (d) Exchange mechanism. (Closed circles represent cations, open circles the anions

and open squares the anion vacancies).
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1.5.2 The Interstitial Mechanism

In this mechanism an interstitial ion (an ion occupying sites other than those of the perfect lattice)
migrates to anyone of the neighbouring interstitial sites by means of the shortest available route
(Figure 1.4b). This mechanism is also called a direct interstitial mechanism. Furthermore, it is
very unlikely to occur in a fluorite lattice because the lattice distortion would become large
enough to make it inoperative. Hence, this diffusion mechanism does not permanently displace

any of the matrix ions.

1.5.3 The Interstitialcy Mechanism

This type of diffusion mechanism is mostly common in mixed systems. If an ion gets into the
interstitial site, it cannot jump/move from one interstitial position to another since it could cause
a large distortion on the structure. Hence, for less distortion, it would simply push/displace one
of its NN lattice atoms to the next available (matrix) site (Figure 1.4c). If the displaced ion moves
in the direction different from that of an interstitial ion, then the jump is termed non-collinear.

The interstitialcy motion takes place along a <111> direction. The path taken depends on the
occupancy of the cubes. In the salt structure all cubes are vacant whereas in the fluorite structure
alternate cubes are occupied by the ions of the other sublattice, so that only the non-collinear

intersitialcy mechanism is operative.

1.5.4 The Exchange Mechanism

This method of migration occurs when two neighbouring ions on normal lattice sites exchange
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positions via two adjacent interstitial sites (Figure 1.4d). However this mechanism is energetically
unfavourable in crystals with close packed structures because each ion is surrounded by its

neighbours.

1.6 IONIC CONDUCTIVITY IN SOLIDS

Tonic conductivity is a macroscopic quantity and is a measure of a drift in the random motion of
defects due to the applied electric field on the ionic crystal. In superionic conductors conduction
occurs by means of ions only and the presence of point defects at higher temperatures enables
some species of ions, mostly anions, to transport current under applied electric field. The
contribution of the highly mobile defect species to the specific conductivity of the crystal is

obtained from Ohm’s law:

Ji=GgE 1.8

where J, is the electrical current density of ion species of type /, o7is the conductivity and £ is the

field.

However, the electrical current density J; is given by

Ji = qiniVaria 1.9
But
Vdrift = I.LE 1.10
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Using equations 1.8, 1.9 and 1.10 gives the total conductivity as

o = ngqu 1.11

where n, is the number of mobile species of type i per unit volume or density of charge

carriers/mobile species, ¢;is the charge of mobile species 7 and 4 is the mobility of mobile species.
From equations 1.8 and 1.11
J =(nqu)L 112

However, Fick derived equations to explain the transport of matter in materials as follows:

or
J=-D {d_n} 113
dx

where the proportionality constant D is the diffusion coefficient, J the flux density (the flow of
matter per unit cross sectional area per unit time), x is the direction of flow of matter due to the
presence of a concentration gradient and » is the number of mobile species per unit volume. The

negative sign in this equation (i.e. equation 1.13) shows that diffusion occurs in the direction
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opposite to increasing concentration or it is down the concentration gradient. This mathematical
statement is generally applicable for an isotropic medium, i.e. a medium which has uniform

physical properties in all directions about any point in the medium.
It can be shown that, at equilibrium, the flow/transfer of ions is opposed by the diffusion

current, i.e. the two current densities are equal.

Hence,

-qD B—iil = (nqu)E 1.14

where q represents the electron charge (e = 1.6 x 10" C)

So that rearranging equation 1.14 gives

On integrating, we obtain

n= A exp [%}dx 1.16

where A is a constant.

However, from Boltzmann statistics,
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n=B exp {—qu}dx 1.17
ks1

where ki is the Boltzmann’s constant: k = 1.38 x 107 J/K

Equating equations 1.16 and 1.17 yields the microscopic Nernst-Einstein equation/relation

which in terms of the conductivity is

o _nq

D kT

or

s=nl 24 1.18
ks T

This equation finds extensive application in ionic systems. However, it is often much easier to
measure the ionic conductivity, which is a nondestructive experiment, than to measure D. From
equation 1.18 we can determine D from a measurement of 6. The diffusion coefficient which is
measured experimentally is usually the tracer diffusion coefficient (Dy) and is different from D.

So, with Dy, equation 1.18 changes to

2

o 1.19
D fiksT :

where f; is termed the correlation factor for tracer diffusion. Correlation effects for diffusion in
solids should be taken into account because each atom follows a correlated walk (i.e. not a truly

random walk) during diffusion. The value of fr is characteristic of the lattice geometry and of the
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diffusion/jumping mechanism. When the jumps take place completely at random, fy = 1. For
cases of correlated jumps, fr # 1, the determination of f could lead to the definition of a diffusion
mechanism and hence the predominant point defect. The topic of correlation effects in tracer

diffusion is reviewed comprehensively by Catlow (1982).

So equation 1.19 becomes

=2 | D 120
AN

where the units (in the present study) for nfy" are in cm™, q in Coulombs (C), k in JK' Tin
y q

Kelvin (K), D in em’s™” and 5 in Q 'em™ (or C*J"' s x em™)
1.7 COMPARISON OF SELF-DIFFUSION AND IONIC CONDUCTIVITY

The two transport coefficients, ionic diffusion and ionic conductivity, are caused by the jumping
of defects through the crystal. Diffusion represents a mixing up of the ions in a crystal caused by
the thermally induced random motion of the defects, whereas the ionic conductivity experiment
measures a drift superimposed on this motion by an applied electric field (E). The connection
between these two phenomena can be obtained from the very general Nernst-Einstein relation

(equation 1.18).
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1.8 MOTIVATION OF THIS RESEARCH

There is theoretical and experimental evidence that ionic motion in superionics is substantially
enhanced by monovalent, divalent or trivalent doping (Kosacki et al. 1989, Comins et al. 1990,
Cox et al. 1994). Hence, this study forms part of a continuing investigation of fast-ion conduction
in fluorite-type materials doped with either trivalent or divalent substitutional cation impurities
(Catlow et al. 1985, Comins et al. 1990, Cox et al. 1994). Most of these materials show order-
disorder phase transition at high temperatures (i.e., close to T., where a substantial Frenkel
disorder occurs on the anion sub-lattice). This phenomenon is accompanied by a substantial rise
in ionic conductivity, a broad specific heat anomaly and a significant reduction in certain elastic
constants (Catlow et al. 1978, Comins et al. 1990 and Rammutla et al. 2001). High ionic
conductivity is important so that the ohmic polarization across the electrolyte does not lower the
operating cell voltage appreciably. Furthermore, the activation energy should also be low in order

to maintain a steady output performance when changes in environmental temperatures takes place.

Previous studies undertaken on trivalent-doped fluorites have shown that the extra positive charge
carried by an M** dopant cation can be compensated by an introduction of a fluorine interstitial
ion if a divalent cation is to be replaced in order to maintain electrical neutrality. However,

substitutional divalent cations need no charge compensation.

This work was stimulated by the Raman scattering experimental work of Kosacki et al (1989) on
CdF,(xPbF,) (0 mol %<x<100 mol % PbF,) mixed metal fluorides, which revealed that there is
a high mobility of fluorine anions in these systems (Kosacki et al. 1989) and the operation

temperature is drastically reduced, bringing it closer to room temperature. The latter property
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has generated the current interest in the computational study of CdF,(xPbF;) mixed systems. In
addition, it has been shown using experimental methods that CdF,(60 mol % PbF,) is the most
favourable material for reversible operation battery construction which operates at room
temperature (Kosacki et al. 1989). In addition, we have already shown, in our earlier work on
these systems, via computational methods that ionic motion in CdF»(60 mol % PbF>) is
substantially enhanced as compared to those of the two binary compounds, namely, CdF, and
PbF, (see Netshisaulu 1996). The results also agree with our previous EXAFS experiment at
concentration x = 60 mol % PbF,. Furthermore, a significantly low F ion interstitial activation
energy calculated using statics simulations suggested that interstitialcy mechanism is a more
prevalent mode of transport in CdF,(60 mol % PbF;). Such an interstitialcy mechanism was
greatly validated by information obtained from molecular dynamics (using the rigid ion model)
which displayed a window through which one can observe the ion trajectories of a simulated

system.

However, despite reports elaborated above, there is limited information on the nature of defect
structures giving rise to the superionic motion in the entire range of CdF,(xPbF,) mixed systems.
Furthermore, the local environments of Cd and Pb cations as a function of concentration x and
temperature in these systems are not yet fully understood. Hence, the present study focuses on
extensive computational and EXAFS studies on the whole series of CdF(xPbF>) mixed crystals.
Effects of randomly doping alkaline earth fluorides with divalent ions (over the cation sublattice)
on bulk data, transport properties (such as diffusion rates, conductivity and activation energies)
and structural properties are also the subject of the present study. Furthermore, the extent of
disorder in these systems will be clarified. These properties will be optimized for use as

electrolytes in microbatteries. EXAFS measurements were employed to provide complementary
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information on the local environments of the cation sites.

It is hoped that a better understanding of the fast-ion phase of the mixed-metal fluorides under
study will pave a way for manufacturing other mixed crystals, which could serve as better
electrolytes in batteries. Hence, this study seeks to add value to the search/synthesis for/of new

mixed-metal fluorites with enhanced conductivities.
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CHAPTER 2

COMPUTER MODELLING TECHNIQUES

2.1 INTRODUCTION

With the advent of powerful contemporary computers with rapid access memory, there were
several attempts to model the properties of materials, with commercial importance (see for
example Catlow, 1997). Computer modelling involves representing physical systems by models,
which are constructed to make computations feasible. The models are then simulated on ultrafast
computers, with a view to predict the properties of real systems/crystals. The motivation to study
real world systems using computer simulation is that the approach expedites the ability to probe
systems that could be experimentally inaccessible. These methods are also used as an aid to the

analysis of experiments.

There are two basic types of computer modelling methods used in computational physics
(concerned with the behaviour of atoms in solids) and chemistry (concerned with the structures
of various species in solids). These are classical atomistic modelling and quantum mechanical
modelling (Hayes and Stoneham 1985, Catlow 1986, Wimmer 1996, Catlow 1997). These
techniques have been used to study bulk, defect and surface properties of condensed matter.

Atomistic simulation methods are based on the variation of forces between atoms with interatomic
separation. Hence, it is essential that reliable interatomic potential models be obtained since they

represent the fundamental physics of the system under investigation. In the present work,
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atomistic modelling methods are used to predict the following properties of real systems:

o Structure and lattice energy

° Bulk phenomenon such as elastic and dielectric constants

. Defect properties such as formation and activation energies
. Detailed transport phenomena in disordered solids.

In this chapter an outline of the form of interatomic potential models used to simulate the forces
acting between ions/atoms in solids will be presented, followed by an account of the theory of the
modelling methods used in this work will be given. Lastly, particular emphasis is given to their

applications to fast-ion conductors.

2.2 SUMMARY OF WORK ON POTENTIAL MODELS

In atomistic modelling, the reliability of the simulations depends heavily on the quality of the
interatomic potentials used in the calculations. The potentials are used to predict the structural
and dynamical properties of solids. The interaction between a pair of ions in an ionic crystal is
expressed in two parts, namely, the long-range Coulomb (i.e. electrostatic due to the ionic charges
¢, and ¢,) and the non-Coulomb short-range part ¢r ;) between the ions. Their sum yields the

lattice energy of the crystal:

q;
V(ry) =

L+ i) 4l

)}
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where r;; is the distance between ions i and j. For strongly ionic solids in which interactions
between atoms are non-directional, ¢ is assigned the full charge of the ion located at the nucleus
(e.g. for NiO: Ni=2; 0=-2) (Catlow and Stoneham, 1983). However, for semi-ionic and
heteropolar materials, covalence is often marked with directionality to the bonding. In such

instances, the use of partial charges is more realistic.

The second derivative of equation (2.1) with respect to strain and displacement yields statics
properties such as dielectric and elastic constants, respectively. A number of standard analytical
functions are available for ¢r;), e.g. the Buckingham and Leonard Jones forms which are more
suitable for non-bonded interactions. The short-range interatomic forces are described by the

Buckingham form (for ionic and semi-ionic systems):

- N
¢ (ry) = A exp {-—”jl - (G 22
p |

where r is the interionic separation, A;exp(-1/p;;) denotes repulsion (Born-Mayer potential for
cation-fluorine and fluorine-fluorine pairs) when two neighbouring clouds overlap and Cyr®
represents a Van der Waals attraction for fluorine-fluorine pairs. Thus, the Born Mayer form is
supplemented by an attractive r° term for the anion-anion interactions. pis the hardness
factor/parameter. Generally these calculations are computationally inexpensive due to the

exclusion of ionic polarizability.
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A considerable improvement of the static lattice results obtained from rigid ion potentials has been
made using the shell model (Dick and Overhauser 1958). In this model, an ion is simulated by a
mass-less shell (external electrons) and a massive core (into which the mass of the ion is
concentrated). In this model, the shell is attached to a core by means of a harmonic spring of
force constant, k (see Figure 2.1). Polarisation is described in terms of the displacement of the
shell relative to the core and is coupled to the short-range repulsion (Catlow et al. 1986) by
allowing repulsive forces to act entirely between shells. The net ionic charge is represented by

the sum of the core (X) and the shell (¥). Hence, the expression for the polarisability of the free

ion is as follows:
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where Y;e is the shell charge and k; the harmonic spring constant coupling the core and the shell
of the ion. The reliability of computer-modelling techniques in calculating defect energetics and
thermodynamic properties in solid state materials largely depends on the appropriate
determination of the three interaction parameters in equation (2.2) and the shell model constants,
ie. ¥, and k, However, in most cases, the increase in the already enormous computational
requirements prevents the use of such shell model potentials in molecular dynamical cases. In
addition, numerous static and dynamical simulation studies have shown that ionic two-body
potential interactions are sufficient for studies of fluorite structured materials; whose structure is

simple.

Variables of the interatomic potentials in equations (2.2) and (2.3) must be parameterised. This
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k, spring constant

Figure 2.1 Schematic representation of a polarisable model



may be achieved by using either empirical or theoretical (or direct) methods. In empirical
procedures, parameters (starting with an initial guess of parameters) in the analytical function
describing the potentials are fitted to the experimentally observed properties (e.g., the structure,
dielectric, elastic constants, etc.) of a model compound or crystal where they are adjusted via a
least squares fitting procedure (in order to minimise the differences between the calculated and
the experimental structure). This process is repeated until optimal agreement is obtained.
However, there are some drawbacks with this approach:

o The empirical approach only yields information on potentials at interatomic distances close

to those in the model compounds.

o Good crystal data (elastic and dielectric constants) must be available for suitable model
compounds

. Experimental data is required for the calculations

. The derived potentials are only accurate at internuclear separations, which are close to

those of the perfect lattice.

The theoretical approach is based on quantum mechanics. This process involves deriving
potentials by calculating the short-range interaction energy between two ions for a series of
interatomic separations. The resulting energy surface is then fitted to potential functions. The
most accurate approach is likely to be via Hatree-Fock quantum mechanical methods (see for
example Gale et al. 1992). Short-range potentials have also been developed from electron gas
methods (see for example Mackrodt et al. 1979) and local density methods. Some weaknesses
of this approach are:

. Experimental data is required

33



o Care of environmental factors must be taken into account correctly during the calculations

2.3  Lattice Statics

Static simulations may be subdivided into two categories, perfect lattice and defect lattice
calculations. Both methods are based on energy minimization procedures. Structure and lattice
energy properties could be calculated using static simulation procedures. These methods take no
explicit account of thermal motions of atoms in the materials. However, to obtain detailed
information on migration mechanisms requires the explicit inclusion of kinetic energy terms. Most
applications of static lattice techniques have been concerned with the study of the defect
behaviour in ionic solids. However, the calculation of the energetics for a crystal should always
be preceded by a valid test of interionic potentials, which should reproduce a wide variety of

perfect crystal properties well.

2.3.1 Lattice Energy Minimization

Energy minimization involves the determination of the minimum energy configuration of the
crystal (Catlow 1997). These methods are restricted to the prediction of static structures and of
those properties, which can be described within the harmonic (or quasi-harmonic) approximation

where there is no explicit inclusion of atomic motions/vibrations.

A crystal structure (initial configuration) must be input as a trial model. However, the choice of
a suitable starting configuration may pose serious difficulties for the study of superionics (where

structures are often highly disordered and therefore poorly characterized). The “unit cell’ is then
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repeated periodically in 3-dimensions/directions in order to generate an infinite system (which is
non-defective). The atomic co-ordinates or bond-lengths are then iteratively adjusted until the
forces acting between them are reduced to a minimum. This may be carried out at a constant
pressure, where lattice parameters are also adjusted or at constant volume where they remain

fixed. The latter is the simplest and most commonly used approach (Catlow 1997).

A wide variety of energy minimization algorithms are available. They are classified according to
the order of the derivative of the total energy function that is used in the calculations (Catlow
1997). Methods that employ second derivatives of the energy with respect to atomic positions
are more rapidly convergent than 1" derivative techniques. The former is more efficient than the
latter. The most widely used minimization procedure is the Newton-Raphson method (Norgett
and Fletcher 1970). A configuration closer to the minimum energy can be obtained when the

updated co-ordinates [in the vector r,. ] for the (12+ )th iteration are related to those in the nth

iteration by:

Or = ryry =ga. Hy 2.4

where g, is a vector of the first derivatives of the internal energy function with respect to particle
co-ordinates and H, is the Hersian matrix 1.e. W, ;, in which the elements of W, are second

derivatives of energy with respect to atomic co-ordinates or positions r.

Two computational problems:
B Inversion of the matrix W, requires large amounts of computer time. The second problem
concerns storage of the Hessian matrix, which may, for complex structures, be close to
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the CPU memory limit even of modern day supercomputers. In these cases, conjugate
gradient methods, which make use of only first derivatives, are used. These require less

CPU memory but converge much less rapidly (see Parker, 1982).

2.3.2 Calculation of Bulk Properties

Once the equilibrium condition has been established, bulk lattice properties can be calculated.
Such calculations may be used to test the validity of a particular potential function, or to test a
set of potential parameters. Calculations of elastic and dielectric constants require the evaluation
of specific terms in the g and W, matrices. Their calculation is straightforward (computationally)

although the derivation of the appropriate equations is complex (see Catlow and Norgett, 1976).

Perfect lattice simulation techniques involve generating a non-defective Born model lattice with
suitable boundary conditions and adjusting ion co-ordinates until the internal basis strains are
completely eliminated (Catlow 1982, Dwivedi and Cormack 1990). Lattice energies associated
with resulting structures (equilibrium configurations) are calculated. Knowledge of the lattice
energy is of considerable value in predicting the stability of the structure. In this study, the
procedure followed is closely related to that given by Catlow (1997). Ina lattice containing N

atoms per unit cell near its equilibrium configuration, the lattice energy can be written as:

U(R)=Uy(R)+g'5+8" W.d 25

where Jis a generalized (3s + 6) - dimensional matrix consisting of a 3s dimensional vector of
displacements, dr, and 6 bulk components, J, thus:
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g is a vector of the first-derivatives of energy
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and W denotes the second matrix of second derivatives and is of order 3N+6 by 3N+6
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where W,, is the coordinate second derivative matrix (3N by 3N), W, and W, are the mixed

coordinate and strain second derivative matrices (6 by 3N and 3N by 6) and W,; is the strain

second derivative matrix.

The configuration R” = {r’s}, is related to R by the transformation

r's = Ac.(rs + Or) 2.9
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in which Ag is the symmetric strain matrix formed from the components of d¢ . In the absence

of external fields it is possible to calculate the minimum configuration. This is accomplished by

v . e ; . o o-U : e
calculating the various derivatives, 1.e., the coordinate derivatives [—J , the mixed derivatives

o°r

-2

2
[2 i } and the strain derivatives [O Q_U
2 2

]in equation (2.11) using a lattice model based on the

appropriate form of pair potentials. Furthermore, on employing equilibrium conditions that g =

oU,

0 (which assumes the crystal is at zero strain), = 0 and differentiating with respect to or
(J

gives

UL(R) = UL[R.] + %208 W 128e[Wy, ' -W,,. W, ].5¢ 2.10

where R. denotes the field-free equilibrium configuration. Finding the lattice constants involves
calculating the second derivatives of the evaluated total lattice energy with respect to changes of
atomic co-ordinates within the unit cell. Hence, the elastic constraint tensor (' can immediately

be obtained as

1

C = I'r [Wt:p;'Wgr. Wrrll.wm] 21 I

The variations of elastic constants with temperature are then simulated from the change of the

lattice parameter of the material with temperature. V. represents the volume of the crystal.
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2.3.3 Defect Energy Calculations

Once the perfect lattice has been modelled satisfactorily, defect energies may be calculated. The basis
of the calculation is to introduce a defect (or defects) into the perfect lattice and then to relax the
surrounding particles to a new (stable) minimum energy configuration. The lattice energy of the

perfect lattice is then subtracted from that of the defect lattice in order to obtain the defect energy.

In ionic or semi-ionic crystals the relaxations arising from a charged defect extend over a wide range
owing to the long-range of the Coulomb forces. This makes the exact calculation of the new

configuration prohibitively time consuming if large number of particles are included.

The approach developed to overcome this problem is known as the ‘two-region’ method (Norgett
1974). The defect is surrounded by a spherical region I (inner region) which contains all defects
(Figure 2.2). In this region, where the defect forces are strongest, the ions are relaxed to zero force
using energy minimization routines (e.g. the Newton-Raphson interactive procedure). Around this
an outer region II, which extends to infinity, is placed where, owing to greater distance, the defect
forces are weaker and the ionic relaxation (or the response of region II to the defect) is
calculated/treated using the Mott-Littleton approach (1938) (a continuum approximation for
calculating the displacement of the ions incorporated in the GULP computer code). The total energy

of the defective lattice F is written as

E =E(x) + Ex(x,a) + Es(at) 2.12
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Figure 2.2 Schematic diagram of Mott-Littleton model

40



where E,(x) denotes the energy of the inner region, E;3(x) the energy of the outer region and E>(x) the
interaction energy between the two regions, / and /1. x are the displacements of the ions in the inner
region from the defect position while a are for those in the outer regions. For small values of ¢, i.e.

where the outer region constitutes a perfect crystal, the harmonic approximation holds
6 2 5 -
Ea(ot) = - ?12_ l:_.s‘_(x_a)} P 213

in which a are the equilibrium values for & corresponding to arbitrary values of x. Defect energies
can be determined by direct minimization with respect to x, followed by the determination of E;(x)

using direct simulation. An expression for the defect energy in (2.13) becomes

E =) *Elro)y=- — [M} a 2.14
2 oa oo

Now that « is an implicit function of the inner region, then E can be evaluated by minimizing the

energy directly, i.e. by solving equations

Pﬁ] ~0 215
ox |,
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2.4 MOLECULAR DYNAMICS SIMULATIONS

2.4.1 Introduction

Molecular dynamics (MD) technique 1s used for studying the structural and dynamical properties of
the system. Most molecular dynamics calculations are performed using a DL POLY program
developed by Smith et al. (1997). Unlike the energy minimisation procedures discussed above,
molecular dynamics includes effects of thermal motion explicitly. These simulations are based on the
first derivative of potential functions to describe the variation in forces between atoms with
interatomic separation. However, it is essential that reliable crystal potentials be obtained since they

represent the fundamental physics of the system under investigation.

2.4.2 Setting Up an MD and Running MD Simulations

An MD simulation is set-up and run as follows:

(a) Establishment of an initial configuration: First it is necessary to establish an initial
configuration of the system/crystal under study. Hence, a simulation box of 100-several
thousands atoms is specified. These atoms are arranged initially on a fcc lattice in a cubic
box. Periodic boundary conditions (pbcs) are applied to the simulation box in order to

generate an infinite system in three dimensions, i.e. the box is surrounded by images of itself
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(b)

(c)

such that if a particle leaves the box, it re-enters on the opposite face with the same trajectory
in order to eliminate surface effects (limitations by the edges of the periodic box). For
adequate statistics, a supercell of the basic unit cell is normally used. The initial configuration
may be obtained from experimental data, from a theoretical model or from a combination of
the two, while velocities (as the simulations are dynamical) are chosen in accordance with the

target temperature for the simulation.

Calculation of forces from potential energy: The net force, /;, acting on each ion is
obtained by summing the forces (pair-wise interactions are considered) exerted on it by all the
ions in the N-particle system. So the net force, [}, acting on the 7th particle at each time step

are calculated from the derivatives of the interatomic potentials as follows:

F,(t) = VV(]‘U) 2.15

where V(r;) is a pair potential between ions i/ and j separated by a distance r;; (r; = r-7).

Mathematical algorithms: The system is made to evolve in time, with the motion of each
ion being governed by classical (Newtonian) equations of motion in an iterative fashion. This
is achieved by specifying a time step, Af, shorter than the period of any important dynamical
process in the system at atomic level (e.g. a period of atomic vibrations). For this reason,
values of 107°-10™ s (i.e. 0.01 ps-0.001 ps) are commonly used [Allen and Tildesley (1987),
Jacobs and Rycerz, 1997]. The shorter the Az, the more accurate is the numerical integration

of the equations of motion. After the system has evolved for a successive timestep the co-
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ordinates (x,) and velocities (v;) of the particles are updated. For an infinitely small value of

At, the positions (x;) and velocities (v;) of an arbitrary ith particle can be written as

Xi(t + At) = Xi(t) ¥ Vi(t)At 2.16

Vit + At) = vi(t) + nifld 317

1

where xi(t + At) and v;(t + At) are the values of x; and v; after the lapse of time At and m;
refers to the mass of the ith particle with F; being the total force acting upon the ith particle.
However, using (in practice) finite timesteps, At, these expressions are inadequate and so
updating formulae (complex updating algorithms for x; and v; ) must include higher powers
of At. The Beeman algorithms (Beeman 1976) are commonly used. Hence equations (2.20)

and (2.21) can be rewritten as

xi(t + At) = xi(t) + vi(t)At + {[4"" (1)~ a,-éf ~ AnJAL } 2:18

2.19

V'(t + At) = V‘(t) +[[2ar (f + ﬂf) + Sa} ({) -a, (f _ Af)]Af3 j|

6

where q, is the acceleration of the ith particle at time 7.
(d) Equilibrating and production run: The above procedure is repeated for several thousand

timesteps to enable the system to reach equilibrium at the appropriate temperature. Once
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equilibrium is attained, the simulation is run for several thousand timesteps during which data
is collected. Data is then sent to a file for subsequent analysis and processing (i.e. details of

the structure and dynamics of the system may be calculated).
2.4.3 Calculation of Physical Properties from Molecular Dynamics (MD) Simulations

Simulation by the MD method makes it possible to monitor the system of particles over a number of
timesteps. Features of interest such as transport properties (e.g. diffusion coefficients) and structural

properties, in particular, the radial distribution functions (RDFs) can be obtained.
2.4.4 Transport Coefficients

Transport refers to a phenomenon that gives rise to a flow (movement) of material from one region
to another. The (very) presence of transport implies that the system is not in equilibrium. So most
of the MD simulations are on calculations of non-equilibrium properties from equilibrium simulations.
Estimates of the magnitude of the diffusion constants D; of ions / can be obtained from the
dependence of the mean-square displacement <r;’(t)> of particles i on time 7 using the Nernst-Einstein

relation/equation (Einstein 1905):

D= {__—(‘rf (r)>_8’],t—->oo 2.20
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where B, is a thermal factor arising from thermal vibrations.

Plots of mean-square displacements <7°(2)> as a function of time / provide a means to establish
whether diffusion is occurring and whether a solid has melted (Figure 2.3). If diffusion is occurring
then the mean-square displacements gradually increase with time and the diffusion coefficient D,
becomes the gradient of the plot of the MSD with time. If diffusion is not occurring (or D; = 0) or
the atoms are merely vibrating about the mean values (mean lattice sites), a line parallel to the

horizontal axis is obtained with a value equal to the mean-square amplitude of thermal motions (B,).

In the case where the plots of MSD versus 7 are not perfectly linear whereas the other conditions
concerning stability of the simulation have been satisfactorily met (short enough At, constant T,
sufficiently long run) then the ensemble average has not sampled a sufficient number of initial times
(Catlow 1997). It is generally known that for a sufficiently long run, initial times starting at every 10"

timestep, with t extending over half the run, may be sufficient.

2.4.5 Radial Distribution Functions (RDFs)

Structural information can be extracted from MD studies via calculated RDFs (g(r)) which can be
compared directly with experiment. Radial distribution functions yield information on the probability
of finding an atom/molecule a distance r from another atom/molecule compared to the ideal gas

distribution. Thus g(r) is dimensionless. Hence, the probability of finding an ion of type / at a point
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Figure 2.3 Variation in mean square displacement of the mobile species.
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r from another ion j is given by
J\I‘_J
pilr) = <Zf = )> 221
i=l

where the position of the ith ion of type 7 is 7; and the sum goes over the entire simulation or all such

ions in the system, i.e. N;.

In a crystal, g(r) has an infinite number of (sharp) peaks whose separations and heights are
characteristics of the lattice structure. Figure 2.4 shows the RDF calculated from a molecular
dynamics simulation for liquid argon. The first (and largest peak) occurs at about 3.7 A with g(r)
having a value of ~ 3. This means that it is three times more likely that a pair of molecules (two
molecules) would have this separation than in the ideal gas. For short distances (less than the atomic
diameter) g(r) is zero. This is attributed to strong repulsive forces. The RDF then falls and passes
through a minimum value » ~ 5.4 A, The likelihood of finding a pair of atoms atoms with this
separation is less than for the ideal gas. However, at long distances, g(r) tends to the ideal gas value,
indicating that there is no long-range order, i.e. after long time intervals individual ion-trajectories
become continuous ion density distribution, which represent less probability of finding a group of ions

in different regions of the unit cell.

To calculate the pair distribution function, the neighbours around each atom or molecule are

divided/sorted into histograms (distance ‘bins’/small discrete ‘bins’). The number of neighbours
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Figure 2.4 Radial distribution function from molecular dynamics simulation of a liquid material.
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around each atom in each bin is then averaged over the entire simulation. For an example, a count

is made between 2.5 A and 2.75 A, 2.75 A and 3.0 A and so on for every atom in the simulation,

This count can be performed during the simulation itself or by analysing the configurations that are

generated (Leach 1996). g(r) can also be used to monitor the progress of the equilibration.

Furthermore, this function is useful for detecting the presence of two phases (where larger than

expected first peak appears and by the fact that g(r) does not decay towards a value of 1 at long

distances.

2.4.6 Limitations of the MD Method

The following constraints are common to the MD method:

(a)

(b)
(©)

(d)

(e)

MD simulations are computationally expensive in terms of CPU time and memory as
compared to energy minimization methods. However, computationally faster methods now
permit the inclusion of larger systems (i.e. systems which involve several thousand particles)
in MD simulations.

Diffusion must be rapid (i.e. D > 107 cm’s™) if we are to observe any during the simulation.
A further consequence of (a) above is that the inclusion of polarizability leads to very large
amounts of computer time. However, the omission of polarizability may be a serious one
particularly in massively doped electrolytes having a very high concentration of defects, e.g.,
oxides.

Surface effects are excluded from the simulation due to the application of periodic boundary
conditions. So Schottcky disorder cannot be spontaneously formed.

The finite-size of the simulation box plays a major drawback in the world of computer
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modelling, since the number of mobile species must be large.

2.5 COMPUTER SIMULATION CODES

lonic materials are modelled using interatomic potentials, which are embodied in general, purpose

computer programs. Atomistic computer modelling codes employed in the current study are as

follows:

e DL POLY: This is a molecular dynamics program which is used for calculating details of both
structural and transport properties of mobile sub-lattices in fast-ion conductors. Data collected
using this MD code are cast into pictorial forms which provides a window through which one can
observe the behaviour of a simulation model. The DL POLY program is comprised of five (5)
sub-directories as shown below:

- Data: Standard test cases for DL POLY are stored in the ‘data’ sub-directory. Each test case
has its own sub-directory. Input files for running DL POLY are copied into the execute sub-
directory using the ‘select’ macro.

- Build: A master copy (back-up) of the DL POLY makefile sits in this sub-directory. The
makefile is copied to the ‘source’ sub-directory in order to facilitate the compilation of the
DL POLY program.

- Utility: This directory stores utility routines for adapting data to suit different circumstances.

- Source: ADL POLY program is compiled in this sub-directory. A sample makefile is edited

(in this sub-directory) before being used. Before compilation, dl params.inc file should be
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edited to adjust the DL POLY array dimensions for their systems.

Execute: The executable, DLPOLY .X (a program for carrying out a routine function), will
be placed/deposited in the executable sub-directory. Hence, this is regarded as a ‘working’
sub-directory from which jobs are submitted for execution and data files manipulated. Typing
DL_POLY begins the execution. However, before running DL. POLY, ensure input files [i.e.
Control (This file contains job control information, i.e. the amount of data to be gathered),
Config (This file contains information on positions and velocities of the atoms of the system
under investigation) and Field (This file describes the system in terms of atom types and
intermolecular forces i.e. number of atoms and interatomic potentials are present in the
execute sub-directory)] are present in the execute sub-directory. Output data files are
returned to execute sub-directory. The DLPOLY output files are as follows:

History — This file is not human readable. It contains information on atomic coordinates,
mean square displacements (MSDs), etc.

Quiput — This file is human readable and contains information on radial distribution functions
(rdfs).

After — This file is used for data crunching. It facilitates the identification of coordinates for

the trajectories for MSDs.

GULP: This program is essential for deriving interatomic potentials in a crystal. The process

involves adjustment of variable parameters to known structural properties of the compounds,

namely, dielectric and elastic constants, etc. Furthermore, this program performs calculations for

perfect and defect crystal lattice.
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2.6 SOME EXAMPLES OF COMPUTER MODELLING APPLICATIONS

Rahman (1976) and Vashishta (1979) investigated fast-ion properties of BaF; and Agl, respectively,
using molecular dynamics techniques. Structural properties obtained were in good agreement with
experimental results. Their studies were conducted using rigid ion potentials which successfully

described fast-ion properties of these materials.

Comprehensive MD simulations of high temperature fast-ion conductors were conducted by Dixon
and Gillan (1980), Gillan and Dixon (1980a,b, 1981) on Srcl, Their results strongly indicated that
fast-ion phase interstitials simply skirt past the cube-centre sites. These results were supported by

neutron diffraction studies carried out by Hutchings et al. (1983).

Studies on SrCl, revealed that there was no evidence for the occupation of cube-centre sites.

Movement of the anions was by a solid-jump process in which the flight time was several orders of
magnitude less than the residence time. These ‘hops’ took place along the <100> cube-edge
direction. There is substantial disorder on the anion sub-lattice. It is however, complex and

dynamical in nature.

Several studies of mixed-metal fluorides (e.g. RbBiF,, PbSnF,, etc.) have provided evidence that
these systems are good F ion conductors — considerably better than for example pure PbF; (see Cox
1988). In these materials it is easy to excite F~ ions into interstitial sites from lattice positions

surrounding which there is a local excess of Rb". Hence, interstitials are the mobile species. MD
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studies on these systems have shown that interstitial migration mechanism (movement of ions between

lattice and interstitial sites) is a more prevalent mode of transport.

2.7 EQUIPMENT USED FOR THIS PROJECT

The equipment listed below were used for computer modelling calculations and experiments:

Hardware: Silicon Graphics workstations

Silicon Graphics Origin 2000 Server
Silicon Graphics Power Challenge XL Server

Pentium Pro Desktop computer

. Software: Classical calculations: DL POLY and Gulp codes

Data Software: Microsoft Word, Microsoft Excel, SigmaPlot and

Corel Draw packages

z Printing facilities: HP LaserJet 6MP, HP ColorLaserJet 5, HP DeskJet 930C and HP

DesklJet 870Cxi, HP ScanJet 3200C

. Daresbury Synchroton Radiation facilities in the UK
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CHAPTER 3

EXPERIMENTAL METHODS FOR MEASURING STRUCTURAL

PROPERTIES OF SOLIDS

3.1 INTRODUCTION

X-ray diffraction and Extended X-ray Absorption Fine Structure (EXAFS) are valuable techniques
in the study physical and chemical properties for a wide variety of solids. The former was the first
method for studying the internal structure of crystals. X-ray diffraction reflects long range-order
(order over many interatomic distances) (particularly in single crystals), within solids whereas EXAFS
reveals short-range order/local structural information around a particular atomic species within
condensed materials. There is a link between these techniques and computer modelling (Chadwick

1998). Furthermore, there are a number of comparative issues between the two techniques that

warrant some discussion.

X-ray diffraction measurements yield diffraction patterns, which contain information about the size
and shape of the (entire) unit cell, structures, average atomic positions, thermal motion of atoms and
defects. It is also used extensively to study the relationship between ionic arrangement (structure)
and ionic transport. In fact, diffraction techniques give information on the solid as a whole (i.e.

information is collected simultaneously on a large number of atoms of the system). This technique
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is mostly useful in the determination of long-range order in solids. So X-ray diffraction is used to
evaluate materials for the purposes of synthesis and control of properties of materials and to

determine structural features that promote or hinder conductivity in solids.

EXAFS is a local structural probe (tool) widely used in physics, chemistry, electronic and electrical
engineering, biological materials, metallurgy, surface sciences and elsewhere (Hayes and Boyce 1981
and Catlow 1997). It is able to provide a detailed picture (within 3—5 coordination shells, i.e. within
a small local environment) of the arrangement of atoms around the one whose x-ray absorption edge
is measured (central atom). Hence, EXAFS gives physically meaningful results on coordination
number (number of atoms surrounding the excited atom), bond distances/lengths, elements/type of
atoms in the coordination shell around the excited atom, a Debye-Waller factor that is a measure of
the static and thermal disorder in the system. This information is of great use in resolving many

chemical and structural problems in materials science studies.
In this chapter we review these techniques with emphasis on origin of each method, theoretical

aspects, strategies of data collection and data analysis, their strengths and limitations, their application

to superionics and types of samples (i.e. single or powder).
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3.2 X-RAY DIFFRACTION TECHNIQUES

3.2.1 Origin of X-ray Diffraction

X-rays are electromagnetic waves with high energies, and with a wavelength of the order 10" m (1
A) and can therefore be diffracted (deviated from the periodic arrangement of atoms in solids) by
atoms in solids which have interatomic separations of this order. Visible light has a much larger
wavelength (A ~ 400 to 700 nm), so it cannot be used to study/resolve molecular structure details,
since diffraction occurs when a wave meets a barrier with approximately this wavelength (of about
1 A). Hence, wavelengths that are comparable to the interatomic spacing are required to probe the

arrangement of atoms in a crystal.

When X-rays encounter atoms in a plane/layer of atoms in the crystal, diffraction patterns are formed.
Sir Lawrence Bragg first published the theory of X-ray diffraction in 1912. In this theory, the
difference between the distance travelled by rays bouncing off two different planes is 2dsin8. For the
rays that interfere in phase (i.e. they have their maximum amplitudes at the same time), the
interference is referred to as constructive (add up to give a strong beam), while those that interfere
out of phase (i.e. one has its maximum amplitude when the other has a minimum) are called

destructive interference (zero resultant sum). Bragg’s equation for a bright (intense) X-ray reflection

18

nA = 2dsin0O 3.1
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where d is the separation between the planes under consideration, @is the angle at which X-rays enter
the planes, n} is the path difference, n=1 indicates that a first-order reflection occurs, n=2 is for the
occurrence of a second-order reflection, and so on. If the planes are not at an angle & to the

incoming beam then there will be no diffracted beam due to this set of planes. In most cases,

emphasis is on first order reflections (i.e. when n=1).

3.2.2 Experimental Arrangement

There are two types of X-ray diffraction experiments which are in common use:

3.2.2.1 Single crystal diffraction technique

Single crystals give data of the highest quality as all diffracted beams (rays) give a distinct reflection
which can be recorded as a ‘spot’ on the photographic film. In this technique, a single crystal is
mounted so that its crystallographic axes are in some known direction in relation to the position of
the photographic film.  The mounted single crystal is rotated about the axis. As the crystal oscillates
there will be certain positions in which the relation between the incident X-ray beam and the atom in
a crystal is correct for giving a bright-diffracted X-ray beam. Hence, a series of spots will be formed

on the film corresponding to these reflections. However, there are problems associated with the use
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of single crystals in X-ray diffraction measurements. These include, sample availability (growing of
single crystals of adequate size and quality) and difficulties with high temperature experiments.
Nevertheless, some single crystal experiments have been performed on high temperature fluorite
structured crystals. A crystal is distinguished from a glass or an armophous material by possessing
long-range order. Most armophous materials and glasses do not possess long-range order.

Diffraction effects are only observed from crystalline solids, in the same way as X-rays.

3.2.2.2 Powder diffraction technique

Crystals of the sample to be investigated are ground to a fine powder whose crystallites should be of
random orientation (i.e. there is no necessity to find a well-formed specimen of the crystal nor is it
necessary to spend a long time setting the specimen accurately in a particular direction). In the
original X-ray powder diffraction, a powder sample is packed tightly in a tube made of glass which
is not opaque to X-rays and placed in the path of the X-ray beam at the centre of the powder camera.
The sample is then rotated about its axis. A set of planes of atoms within the crystal which satisfy
the Bragg condition (i.e. have the appropriate A for the diffraction to condition to occur) will give
a reflection. Most research papers published nowadays focus on modern powder diffraction
techniques where a detector (ionisation chamber and SSD) is used. Powder diffraction experiments
are straightforward and widely applicable although they are riddled with limitations. Information is
often lost due to peak overlap. Reducing the peak width using synchrotron X-ray sources can
reduce this problem. Other problems arise from preferred orientation which becomes more severe

at high pressures,
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3.2.3 Analysis of X-ray Diffraction Data

Diffraction data refinement in superionics is comprised of two stages: determination of the unit cell
dimensions and the positions of the atoms inside each unit cell (forming the basis) from the intensities
of the diffracted beams in the pattern. Refinement using diffraction data normally proceed by using
least squares fitting methods where structural parameters are varied. These parameters include
atomic parameters, the coordinates of the atoms in the unit cell, the occupation numbers of each

atomic site and the thermal parameters.

3.2.4 Limitations of X-ray Diffraction Techniques

X —ray diffraction-based techniques, while providing the essential information on the average
structure, are not effective as local structure measurements/probes in characterising the differences

in the behaviour of the different cations in fluorite structured materials (e.g. stabilized cubic zirconia).

3.2.5 Applications of Powder Diffraction to Superionic Conductors

Powder diffraction has been extensively used as a tool for bulk structure determination in superionic
conductors. The technique is also used to identify crystalline phases and impurities as an aid in

synthesis and fabrication. The number of independent structure factors that are obtained from
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powder techniques may be too small for highly complex systems. Nevertheless structures with many
variables are presently solved using powder diffraction methods as profile fitting techniques are used
to enhance the extraction of information from complex powder diffraction data whereas overlapping
component peaks can be solved using the techniques pioneered by Rietveld (1969) as reviewed by
Young and Mackie (1974). Cubic calcia stablized-zirconia is an example of a solid electrolyte in
which many aspects of conduction processes have been clarified by powder diffraction technique.
Studies of X-ray and Neutron powder diffraction have established features of the structure that
results in high ionic conductivity. These studies have also found an order-disorder transformation
that results in changes of ionic conductivity. Its X-ray powder intensities have a disordered fluorite
arrangement in which Ca and Zr ions are in the cation sites and O, and vacancies are in the anion sites
(Tien et al. 1965). This defect structure explains high ionic conductivity as a result of oxygen ions
exchanging positions between lattice sites and vacancies. However, evidence for ordering of Ca and
Zr, which is seen in X-ray patterns and electron micrographs of single crystals, is not observed by

powder diffraction, because the changes in intensity are small.

3.3 EXTENDED X-RAY ABSORPTION FINE STRUCTURE SPECTROSCOPY (EXAFS)

3.3.1 Origin of X-ray Absorption Fine Structure (XAFS)

EXAFS are the oscillations in the absorption spectrum of an element in a condensed phase that

provides information on local structure. A combination of the X-ray Absorption Near-Edge Structure

(XANES) and EXAFS is referred to as XAFS (X-ray Absorption Fine Structure). In fact, XAFS
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spectrum is divided into three distinct regions as marked in Figure 3.1: (i) the ‘pre-edge region’,
which spans roughly 10 eV above and below the edge, (ii) the X-ray Absorption Near Edge
Structure’ region (XANES) which extends approximately 50 eV above the edge, and (iii) the
‘EXAFS’ region extends beyound the edge up to even 1 keV (finite energy range) (see Teo et al.
1980, Catlow et al. 1990, Chadwick 1998). The three features provide structural information about
the target atom (the photoelectron emitter) and are finding increasing applications for studies in both
crystalline and armophous materials. XANES yields important chemical information about the
excited atom while EXAFS contains structural information. In the EXAFS region the higher
photoelectron energies mean that the mean free path of the photoelectrons are much shorter. Thus,
the EXAFS features extend out with decreasing amplitude (see Figure 3.1) leading to shorter-range

information.

For a model lattice of central atom A (excited or the centre of the outgoing wave excited atom) in
a condensed medium (solid or liquid) surrounded by an environment of atoms B (atoms very close
to the emitting atom) in an X-ray beam, the photoelectron ejected from atom A and propagating to
neighbouring atoms B as a spherical wave is backscattered by these atoms (B) in the medium resulting

in the interference with the outgoing wave (Figure 3.2). Thus, depending on the difference in
pathlengths (distance between the excited atom and the back scattering atom and the wavelength of
the photoelectron), the interference will be constructive or destructive (see Figure 3.3). If the
wavelength of the initial outgoing wave from the excited atom is such that the scattered wave is
reflected back (backscattered) exactly in phase with the outgoing wave they add up to produce a

resultant wave (Figure 3.3). Ifthey are out of phase they subtract to produce a wave with a reduced

62



<« XFAS >

<+ EXAFS region (~1keV) —»
XANES region (~50eV)
e
N
A —
L S
T}
E, X-ray energy

>

Figure 3.1 The variation of the absorption coefficient as a function of photon energy for an atom
in a solid (for a transmission experiment). E, denotes the point where the XAFS spectrum starts.
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Figure 3.2 A schematic representation (model) of the origin of the EXAFS features. A is the central

atom, B is the neighbouring atom, " represents the outgoing photoelectron wave and **
represents the backscattered wave. The outgoing photoelectron waves propagate to neighbouring

atoms. The backscattered waves modify the electron wave at the central atom and give rise to

EXAFS as shown in Figure 3.3.
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Figure 3.3 The excited electron wavefunction (wavelength A) propagating away from the atom at

which photon absorption occurs, and is being backscattered from surrounding atoms. The

interference between the outgoing and backscattered photoelectron wave is demonstrated and gives

rise to EXAFS.
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amplitude (Figure 3.3). This modification of the electron wave (by backscattered waves) at the
central/excited atom gives rise to EXAFS which can be analyzed to give extra information on the
structure around the excited atom. Thus EXAFS arises due to the presence of atoms around the core

(excited atom) which absorbs a photon.

3.3.2 Data Collection Techniques

EXAFS technique is element specific, and this permits investigation of the local environment of a
constituent element in a composite material. The X-ray absorption coefficient of the entire system/
a material as a function of photon energy, in an energy range that is below and above the absorption
edge of one of the elements in the material is measured. X-rays are energy selected out using an
appropriate crystal monochromator [e.g. Si(111), Si(220), Ge(111), Si(311), etc]. When X-rays

encounter any form of matter, they are partly transmitted and partly absorbed.

In a transmission EXAFS experiment, X-rays are passed through an incident reference ion chamber
(ion chamber 1) to measure their incident current intensity (I,). Then, they are passed through the
sample and the transmitted intensity (I,) is measured using ion chamber 2 (see Figure 3.4). (These
ion chambers are filled with the correct gases). These intensities are measured simultaneously to

allow for cancellation of sudden changes in intensity of the incident photon beam.
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Figure 3.4 Schematic experimental arrangement for transmission EXAFS.
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The extent to which X-rays are attenuated or modulated as they pass through a material is expressed

by the X-ray absorption coefficient,

!
=In| = 3.2
Ju [1-'}

From the above equation u is obtained by plotting ln(%] versus the energy of incident X-rays as

shown in Figure 3.1. The dependence of x on the X-ray energy can be evaluated. The process by
which X-rays are absorbed by atoms is termed photoelectric effect. As the X-ray energy is increased,
first the X-ray photons will pass directly through the sample (at low energy values) and then a point
will be reached where the X-ray beam has sufficient energy (in the range 1 to about 40 keV) to ‘eject’
an electron (a photoelectron) from the atom’s shell in the element. The point where there is a sharp
rise in u (i.e. where the new mode of absorption begins) is referred to as the absorption edge (a sharp

discontinuity in the absorption curve)(an absorption edge is shown in Figure 3.5).
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Figure 3.5 Schematic X-ray absorption edge.

69



An atom consists of a central nucleus surrounded by electrons lying in various shells, where the
designation K, /., M,... corresponds to the principal quantum number n= 1, 2, 3,.. Absorption edges
are named after the core levels from which photoelectrons are ejected such as 1s (K), 2s (L), etc (Rao
and Rao 1988), in the order of increasing wavelength. So the energy where a K—edge electron can
just be ejected is called the K—edge. This process leaves the atom in an excited, high-energy state.
Then, one of the outer electrons immediately falls into the vacancy in the K shell, emitting energy
in the process, and the atom is once again in its normal energy state. The energy emitted is in the
form of radiation of a definite wavelength and is, in fact, characteristic K radiation. An electron from
any one of the outer shells (i.e. L or M shells) can fill the K-shell vacancy. However, it is more
probable that a K-shell vacancy will be filled by an . electron than by an M electron. I characteristic
(L—edge) originates in a similar way: an electron is knocked out of the /, shell and the vacancy is filled
by an electron from some outer shell. Tt requires less energy to remove an L electron than a K
electron, since the former is farther from the nucleus. It therefore follows that the L excitation
voltage is less than the K and that K characteristic radiation cannot be produced without L, M, etc.,
radiation accompanying it. There are three types of L—edges, L, L, and L;. L, corresponds to the
ejection of the photoelectron from the 2s” shell, L, and L; edges correspond to the ejection of an
electron from a 2-p level (i.e. 2p12(L;) and 2p;.(Ls), respectively). All elements of atomic number
above 9 have three L edges. However, in practice measurements are done at either the K or the L;

edge.
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3.3.3 EXAFS Theory

EXAFS describes a spherical wave which comes out from the excited atom, propagates towards
another atom, is scattered from it, propagates back towards the excited atom and finally reaches the
excited atom, after being scattered again from it. The EXAFS function [y(k)], based on a single
scattering event by the photoelectron (valid at photoelectron energies greater than ~ 30 eV), i.e.

assuming no significant multiple scattering contribution, is given by

N
kR

- -2R; ) .
(k) = Z— Jg!f; (k,:r)‘exp(—ZJj‘k“)exp[ 2 d Jx51n(2kRj+25! +y,) 33
J

J

This equation can be reduced to

209 = 3 - ARSInCKR; + (k) 3.4

/

where the sine term represents frequency of the EXAFS oscillations arising from each shell ,j, and A,
represents their amplitude. The amplitude of the oscillations depends on the number and type of

atoms surrounding the central/x-ray atom, whilst the frequency depends on distance between the
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excited and the neighbouring atoms or distance travelled by the photoelectron wave from the exited
atom to the backscattering atoms (Cox et al. 1994). Hence, the equation indicates that the number
and type of each (surrounding) atom at a distance R, from the excited atom can be identified. R;, N,
f(k,m) and 5, 2 are the structural parameters of the jﬂ1 shell, where, N, is the number of identical atoms
around the excited atom, R, is the distance between the excited atom and the neighbouring atoms, o
g ? is the Debye-Waller (DW) term/factor which takes into account the loss in amplitude caused by
thermally induced and static displacements within the " shell atoms (the backscatterer) relative to the
emitting atom and f(k, 7) describes the type of atoms in the | shell (backscattering atoms). 1/kR;* and
e'mj-z';?L are the factors which modify the amplitude of the oscillations. In the sine term, 2kR; and (k)
account for the phase shifts suffered by the photoelectron on interacting with the j shell atoms
(backscattering atoms) and the excited atom, respectively. The phase shifts must be included in the
calculations. Typically quantitative structural data are gained up to the third—fourth co-ordination
shell, in the luckiest cases since the contribution of the co-ordination shells far from the excited atoms
is small. Atoms with low atomic numbers (z) (few electrons) will be weak backscatterers whereas

those with high z numbers will be strong backscatterers.

The amplitude and the frequency of the oscillations in y (k) from a given shell contains information
on the number and type of neighbouring atoms around the excited atom, whilst the frequency of the
oscillations gives the distance between the excited and the neighbouring atoms. These neighbours

can be considered as being in a series of ‘shells’ going out from the excited atoms.
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3.3.4 Sample Preparations

Samples are ground to a fine powder (<20 xm) using a mortar and prestle. However, these samples
must have an absorbance change of ~ 1.5 over the absorption edge.

Absorbance = ut 35

where p denotes the absorption coefficient and  the thickness of the sample. Typical values of 7 are
5—10 um. Samples are then compressed under high vacuum into thin discs (pellets) (200-400 zm
thickness) of uniform thickness using hydraulic pellet press. Samples with high absorption coefficient
are diluted with boron nitride (which has a low X-ray absorption coefficient) in order to obtain a disc
which can be easily handled. Optimum sample thickness/concentration are found by trial and error.

Then, samples are mounted in an evacuable crystal heating furnace with Beryllium windows.

3.3.5 Analysis of the EXAFS Spectrum

3.3.5.1 Introduction

In Daresbury Laboratory, the data analysis procedure requires that the transmission data sets, with
pre-suffix ‘. dat’, obtained from the samples are saved on the XRSSERV1 computer database. Before
data analysis, the data sets are retrieved from the archives by a telnet link where xrsserv1.dl.ac.uk is
used as an i.p. address for the XRSSERV1 operating system. Then, ‘nrsget’ command in the UNIX

machine at Daresbury Laboratory is executed. The directory in which the data sets sit depends on
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the station on which the data were collected, e.g. directory ‘/ex1a/’ corresponds with ‘station 7.1°,
directory ‘/exf9/° corresponds with ‘station 9.2, etc. Hence, the command for restoring the files from
the station 9.2 takes the following format: ‘nrsget exf9 r1234.dat’, where ‘exf9’ and ‘r1234.dat” are

the station number and filename, respectively.

There are a number of iterative programs (about three or so) which are valuable for the analysis of
EXAFS data. These include the Daresbury Laboratory programmes such as EXCALIB, EXBACK
and EXCURVE codes (Binsted 1992). Manipulation of the data involves extraction of the EXAFS
signal from the x-ray absorption background through several stages (see Figures 3.1 and 3.3-3.6).
These include pre-edge subtraction, normalisation of the signal, subtraction of the signal from the
background and transformation into k-space and extraction of parameters of interest from the suitably

processed data.

3.3.5.2 EXCALIB

EXCALIB converts the raw experimental data collected on the station into a form which is suitable

for the background subtraction program EXBACK. Thus EXAFS oscillations are extracted from the

spectrum by turning the x-scale into energy and the y-scale into absorption (]n();" ] ). This is

t

accomplished by reading into the program information on EXAFS type (e.g. transmission or
fluoresence), monochromator type (e.g. Si (111), Si (220), Si (311), Ge (111), etc), inspection and

deletion of glitches (offending features which appear as sharp structure of narrow width and are due
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to spurious reflections from the crystal monochromator) and specification of the reference

chambers’gain ratio (ln[f‘—“]) . The plot is then saved into a file with extension ‘.exc’, which is then

t

read into EXBACK.

3.3.53 EXBACK

This program subtracts the X-ray absorption background of an excited atom from the generated

EXAFS spectrum. This process is carried out in several steps as follows:

Setting the E,: This is defined as the point in the spectrum where the EXAFS spectrum starts and
is set by placing the cross hairs on the summit of the largest peak in the spectrum. This point is
then set to an arbitrary zero point/energy (Eq) and the spectrum is then rescaled to this value (see
Figure 3.1).

pre-edge fitting: Two points are selected in the pre-edge region, i.e. below the absorption edge
(an absorption edge is shown in Figure 3.5) as shown in Figure 3.6(a). Then, a polynomial is
fitted to these points (one at the start and the other at a position just before the edge). The two
points are reset and different degrees of polynomial are used until a line (which is linear for
transmission data and quadratic for fluorescence data) can be drawn that matches the slope of the
pre-edge part of the spectrum. This will give some confidence that pre-edge absorption effects
have been removed (Figure 3.6a).

post-edge fitting. Two points [one at the start of the EXAFS (at about 20-50 eV) and the other

at about 200 eV beyound the absorption edge] are chosen above the absorption edge as shown
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Figure 3.6(a) An example of a polynomial being fitted to the spectrum using two selected points in

the pre-edge region
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Figure 3.6(b) An example of a polynomial being fitted to the spectrum using two selected points

above the absorption edge the EXAFS region.
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in Figure 3.6(b). A polynomial is fitted to the spectrum using the two selected points. This
process is repeated until the line of best fit (ie. a line that cuts through the fine
structure/spectrum with equal oscillations on each side/the average of the structural
oscillations) is achieved. However, caution must be taken that the EXAFS should not show
low frequency oscillations which belong to the background and the background should not
exhibit any oscillations due to following the EXAFS too closely. However, in most cases the
first point is chosen along the rising part of the first EXAFS peak. Furthermore, there should
be no discontinuities on the post-edge when looking at the derivative of the energy function.
background subtraction/correction: The background is then subtracted using the pre and
post—edge polynomials and the resultant EXAFS is plotted with the energy scale (x-axis)

converted into the k-scale (see Figure 3.7a) using the relationship

1/2
- [2'?] (E-£)" 36

where E, is the edge energy. The oscillations (k) are weighted, commonly cubed, i.e. the
k-space weighting is chosen as three, to provide symmetric function in high k-space (see
Figure 3.7b). More accurate descriptions of the EXAFS are given in the curved wave theory
of Lee and Pendry (1975) and the small atom approximation of Gurman (1988).

Fourier Transform (FT): Two points are chosen from either end of the back-ground
subtracted k (frequency)-dependent spectrum/data to Fourier Transform between them. The

spectrum is Fourier Transformed from frequency to distance (r) space giving rise to an
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Figure 3.7(a) The normalized EXAFS function ¥ (k) plotted as a function of wave vector k.
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Figure 3.7(b) The EXAFS modulation [data shown in Figure 3.8(a)] replotted as kK’ x(k) as

a function of the wave vector k. Note the effect is to bring out the oscillations at high k.
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Figure 3.8 Fourier Transform of Figure 3.8(b); the arrows show the real/true nearest-neighbour and

second nearest-neighbour (interatomic) distances. The magnitude of this Fourier Transform shows
four well separated maxima, which are assigned to the four shells of nearest neighbours surrounding

the excited atom. The corresponding number of atoms in each shell can be identified.
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approximate radial distribution function (Cox et al. 1994). The x-axis of the FT represents distances
in A and the peaks correspond to the successive neighbouring shells (see Figure 3.8). The inspection
of the FT is a powerful tool in selecting the optimal background subtraction of the data. However,
this Fourier Transformed spectrum is obtained without phase shift corrections. Thus, distances of
the FT are shorter than the real/true distances. Hence, in order to get accurate values of R; the phase
shifts have to be known. These can be obtained from theoretical calculations or from the EXAFS of
model compounds. A model compound is the one which contains the same central atom and
scattering atom at similar distances to the unknown material but which has exactly known structure
(N;and r; are generally known for model compounds). The background-subtracted spectrum is written

out to a file with extension ¢.exb’. The file is then read into EXCURV92 or EXCURV97.

3.3.5.4 EXCURV92

EXCURV92 is a curve-fitting program. Data analysis is carried out as follows:

. The spectrum is read into EXCURV92 and the point frequency is set to 1 (every point) and
the column combination is set to 32 (where column 3 is the energy and column 2 the
EXAFS). The exchange potentials and ground state are used in EXCURVE to calculate
phaseshifts of the elements involved in the system whose EXAFS is being investigated. First,
the elements involved are specified. The potentials are calculated by inputting information
about a two-atom model, i.e. the atoms’ atomic number, the type of edge being measured

(e.g. K- or L-edge) and the excited atoms’ nearest neighbours. The value of the potential V
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should be about —12 eV. This process is followed by the calculation of phaseshifts.

@ The EXAFS and its FT are plotted.

. EXAFS is fitted when it has been weighted by k’ in order to try to fit the entire oscillations
and not just those in the low k region.

. The main shell parameters (radius of the shell 1(r;), number of atoms in shell 1 (n;), Debye-
Waller factors in shell 1 (a;) and the type of atom in shell 1 (t,)) are entered for the first shell
(ns = 1). A number between 1 and 500 is chosen to define the size of the changes the
program makes in the parameters while iterating with 1 being the biggest change and 500 the
smallest. The parameters are iterated (via a least-squares refinement) until the best fit of the

‘theory’ to the ‘experimental’ curve is obtained. Then a new spectrum is drawn to these

values.
. Shells are added (from ns = 1 to ns = 5) and trial parameters are iterated as above.
° The output file is written out and printed.

3.3.5.5 Strategies for data analysis

The accuracy of the parameters can be achieved as follows:

o R;: can be determined within an accuracy of 0.02 A, the accuracy depending on the accuracy
of the phase shifts.
o N; and o’ these are highly correlated in any fitting, and are difficult to separate. Thus values

of N; and o° are normally good to 20% (i.e. they are less accurate). However, o’ should

always be positive and are normally between 0.001 and 0.025 A*.
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° flk,m): the reliability of the calculations is somewhat smaller, since this function is much more
sensitive to the details of the potential. Differences in atomic number need to be ~ S to 10
for usefulness. Thus EXAFS cannot distinguish between elements in the same row of the

Periodic Table such as C, N or O as backscatterers.

3.3.6 Some Applications of the EXAFS Technique

EXAFS spectroscopy does not rely on long-range order within a sample. Hence, it has been

extensively used in the study of materials science.

Examples of the applications of the technique are given below:

3.3.6.1 Glasses

EXAFS yield detailed information on the local structure in glasses. A good example is provided by
the work on ZrF,-based glasses, namely, 55ZrF,.(45-x)BaF, xCsF glasses. It has been shown that
Zr-F peaks in the Fourier Transform shift to shorter distances with the progressive substitution of CsF
for BaF,. This implies that the F co-ordination environment around Zr, especially the Zr-F bond

lengths (Kawamoto et al. (1991)), affects the activation energy for conduction.

Synchrotron radiation and a range of complementary techniques provide information on the
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phenomenology of zeolite materials instability (Greaves 1997). These structural instabilities lead to
the collapse of the microporous structure when the temperature or pressure is raised sufficiently. In
Naj;Aly;-Sit,04s, the temperature of collapse occurs close to the glass transition T, (Greaves 2001).
At T,, a supercooled liquid becomes indistinguishable from a solid. Hence, zeolite collapse
incorporates the shear typical of a solid but well below the melting point. As a result, the armophised

alumino-silicate that is formed is essentially a rigid glass.

3.3.6.2 Disordered systems

Vast studies of solids containing defects have been made (e.g. the local structural environments of
Bi*" and dopant cations (Rb'" ) in the fluorite structured solid-solutions). These studies showed that
that whilst the Rb-F shell is heavily disordered, the first co-ordination shell of the host-fluorine shell
is fairly ordered (Catlow et al. 1985). This behaviour was attributed to the fact that thermally-
induced vacancies arising from F~ ion conduction are preferentially sited next to Rb ions. The
formation of these vacancies as the temperature increases causes the remaining F ions in the Rb-F
co-ordination sphere to relax to a new minimum energy configuration with a shorter mean Rb-F

distance.

Similarly, previous EXAFS work on the local environments of a range of rare-earth doped CaF,
showed that two types of clusters are formed depending on the radius of the dopant ion. For the

smaller rare-earth ions (Tb, Yb, Tm) stable large cubo-octahedral clusters (6'/0'/8'/6') were formed.
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However, there is little variation in their structure. For the larger dopant ions (La, Ce, Nd, Pr) the
dimeric clusters (2'/0'/2/2") were dominant. However, there are slight variations in the structure in
these clusters. The presence of clusters affect the vibrational properties of the material, affect the

transition temperature to the superionic state and the development of disorder.

3.3.6.3 Biological molecules

The local environment of metal ions in biomolecules such as ferritin and haemoglobin may be
established using EXAFS. Hence, accurate bond lengths have also been determined for a number of
important enzymes and proteins. The precise determination of the Fe-S bond lengths via EXAFS has
enabled the crystal structure of the metalloprotein rubredox to be successfully refined via X-ray

diffraction (Garner and Halliwell 1986).

3.3.6.4 Amorphous semiconductors

The FT of the EXFAS of a-Ge as well as A-Ge:H shows the presence of a single peak, due to four

Ge atoms at a distance of 2.45 A, confirming that the local structure of the amorphous network is

similar to that of a crystal. The absence of any second shells at about 4.0 A points to a spread in the

tetrahedral angle of at least 7° rms (see a series of studies pioneered by Evangelisti et al. (1981)).
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3.3.7 Strengths and Limitations of EXAFS

The power of EXAFS in examining complex structural problems in heavily defective materials can

be considerably enhanced when it is combined with computer modelling studies. EXAFS also

compliments X-ray diffraction techniques. The special features of EXAFS technique which have
made this possible are:

» Determination of structural information, namely, the local environment (local coordination
and interatomic distances) of an excited atom may be established by tuning the absorption
edge of an individual atom type. As the EXAFS oscillations are produced only by atoms
close to the emitting atoms, EXAFS studies are not limited to single crystals (i.e. systems
having long-range order). Even systems which have a well defined coordination around a
central atom may be studied. Furthermore, by careful analysis some information may be
obtained about the second nearest neighbour coordination shells or sometimes about more
distant shells.

. EXAFS is not limited to single materials/crystals. Hence, disordered materials such as glasses,
amorphous materials, gels, solutions, polycrystalline, etc can be investigated.

. EXAFS is not very sensitive to pressures and high temperatures. Hence, catalytic materials
are studied under real catalytic environments.

. EXAFS data collection (process) is simple and lasts for short periods.

s EXAFS can be sensitive to low concentration of the target atom.
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However the following experimental realities offset these advantages (see Cox et al. 1988):

A high intensity synchrotron light source is required for the collection of high quality data.
The technique is only suitable for short-range order, i.e. for rupto 5 A from the central atom
since the contribution of the atoms in the coordination shells far from the central atoms (to
the EXAFS spectrum) is small.

Although more Synchrotron sources are being built and access is getting easier, these sources
are sparse in other parts of the world (e.g. in Africa) and available time is highly sought after.
For instance, the only places so far where SRS are available world-wide are UK (Daresbury
Laboratory), USA (The National Light Source, Brookhaven), Japan (the Photon Factory of
the National Laboratory for High Energy Physics, Tsukuba), France (LURE, Orsay),
Germany (DESY, Hamburg), Germany (BESY, Berlin), EC central facility under construction
(European Synchrotron Radiation Facility, Grenoble), Italy (the PULS Synchrotron Radiation
Facility, Frascati), etc.

Co-ordination numbers are difficult to extract from EXAFS spectrum because of the high
correlation between co-ordination numbers (CN) and the effects of thermal vibrations. The
accuracy on CN is about 20 %.

It is difficult to distinguish between atom types unless they display marked differences in
backscattering powers, e.g. EXAFS cannot distinguish between elements that belong to the
same row in the Periodic Table such as C, N, or O as backscatters.

It is difficult to detect EXAFS oscillations for light atoms (i.e. atoms with low atomic

numbers, i.e. below Ca). However, synchrotron light sources are now becoming more
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competitive to cater for this drawback.

The EXAFS theoretical approximation is not valid below 2-3 A, since the limit kp, in the
FT spectrum cannot be reduced to zero. Thus analysis of the FT spectra for disordered
systems in the R space is only limited to low distance determinations (typical accuracy 0.05-
0.10A). However, the diffraction experiment gives the i(k) from practically k=0. On the
other hand EXAFS extends up to very high k values (up to 12-20 A™) values). Thusit is very

much sensitive to short range correlations than x-ray diffraction.
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CHAPTER 4

COMPUTER MODELLING OF STRUCTURAL AND DYNAMICAL

PROPERTIES OF CdF,-PbF,; MIXED METAL-FLUORITES

4.1 INTRODUCTION

Fluorite structured compounds are prime candidates for investigations by experimental and computer
modelling techniques. In these materials, wide computational flexibility enables optimization of their
solid electrolyte properties such as conductivity, activation energy, etc. through compositional
control. This is necessitated by the need for new fast ionic conductors working at substantially low
temperatures. Among fast-ion conductors, alkaline-earth fluorides show order—disorder phase
transition at high temperatures. The use of the terms order and disorder in this work always refers
to regular/perfect lattice sites and random occupancy of the atoms. The structure itself is ordered.
The disordering (in most alkaline-earth fluorides) is predominantly on the anion sub-lattice. A
substantial rise in ionic conductivity (which often results in good redox stability) to values typical of
ionic melts (values ~ 1 Q' ecm™), unusually low values of activation energies and anomalous
reductions in certain elastic constants (Comins et al. 1990) are the prominent features, which
accompany this process. Changes in elastic constants mark the transition temperature region.

However, their superionicity is not concomitant with structural phase transition. Furthermore, in
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most of the superionic conductors one of the ions is relatively more mobile than the others. For
example, in alkaline-earth fluorides, anions are the current-carrying species, while in alkali halides and

B-aluminas, cations carry practically all of the current.

In the present study CdF, is doped with divalent cations of anomalously high polarisability to form
fluorite type solid solutions CdF,(xPbF,) . There is an ionic size difference between the host and
guest cations (rPb”' = 1.20 A and rCd*' = 0.97 A). In CdF,(xPbF,) mixed crystals the Pb atoms take
the sites of Cd atoms with increasing Pb concentration x. These dopant species are randomly
substituted. CdF,(xPbF;) mixed systems form a continuous series of substitutional solid solutions
with the fluorite structure (Kosacki et al. 1989). Hence, in this study a cubic fluorite structure is
assumed for the solid solution at all compositions. There have been several studies on these novel
mixed crystals, notably the investigation of their ionic transport using Raman scattering techniques
by Kosacki et al. (1989). However, atomic (statics and molecular dynamics) simulations have never
been performed at various dopant concentrations and at different temperatures on these systems.

Previous work was only performed for the x = 60 mol % PbF, sample (Netshisaulu et al. 1999). In
the present study, particular attention is mainly given to the use of conventional rigid ion potentials
in clarifying features that give rise to the fast-ionic motion in the entire range of these ‘mixed-
conducting’ materials. Hence, we modelled mixed CdF»(xPbF,) systems using atomistic simulations
(facilitated by the use of the GULP (Gale, 1997) and the DL POLY (Smith and Forrester 1998)
codes) in the whole composition range (0 mol %<<x<100 mol % PbF,). This involves calculations
of structural and dynamical properties of these solid solutions. First, interionic potentials for

CdF.(xPbF,) are derived and used in calculations of the bulk crystal data such as the second-order
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elastic and dielectric constants. In the absence of experimental data for comparison, the calculations
on bulk properties of the mixed systems are based on the experimentally determined trend of the static
dielectric constant (g,) as a function of temperature. The temperature and concentration (Pb content)
dependences of bulk properties of CdF,(xPbF,) are investigated. Second, the mean square
displacements of the cations and anions in the two end members and in their mixed systems were
determined from molecular dynamics (MD) simulations. Transport properties such as diffusion
coefficients, activation energies and ionic conductivity are extracted from the mean-square
displacement plots of the anions. Furthermore, the temperature and dopant dependences of the 1onic
conductivity and activation energy are also investigated. These MD calculations have been used to
provide complementary (theoretical support) information on structural properties of these systems
such as the radial distribution functions for the EXAFS experiments discussed in Chapter 5. This
helps to provide a detailed interpretation of the properties of these mixed crystals. These materials
could find their industrial application in the form of energy-storage devices, light-emitting devices and
light-energy converters. Hence theoretical and experimental treatments of the atomic structure of

the novel CdF,(xPbF,) are necessary.

4.2  INTERIONIC POTENTIALS FOR CUBIC CdF,-PbF,; MIXED SYSTEMS

An interatomic potential model is a representation of the potential energy of the system as a function
of particle coordinate system. The pair potential model has serious inadequacies for more covalent

materials. However, for most strongly ionic materials the pair potential model is considered to be a
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reasonable approximation (Catlow 1986).

The short-range interactions between the ionic species in CdF,(xPbF,) are described by interatomic
potentials and the polarisability of the ions themselves is described by the shell model. On the one
hand, the use of potentials based on shell model potentials in ionic systems is expected to give better
estimates of dynamical properties (those due to interactions between ions as their local environments
change dynamically) than rigid-ion models, although structural properties, such as dielectric constants
and radial distribution functions are modelled more or less equally well by rigid-ion and shell model
potentials in ionic materials (Gillan and Lindan 1991). On the other hand, it has been found that the
explicit inclusion of polarisation has very little effect on the quantities of interest (see Gillan and
Lindan 1991), so long as the rigid-ion potential is suitably constructed. In addition, the use of rigid-
ion model results in great saving in computational costs in the execution of MD calculations, because

all the shells in the shell model have to be relaxed adiabatically at each time-step.

There has been a concerted effort to model a wide range of related systems, including fluorites such
as pure CaF, (Bingham 1989, Lindan and Gillan 1995), mixed-metal RbBiF, (Cox et al. 1994), etc.
For these varieties of systems, it has been reported that rigid-ion potentials give reasonable estimates
of their static and dynamical properties (Lindan and Gillan 1995). Hence, for these materials,
conventional rigid-ion potentials have been employed extensively in molecular dynamics studies. As
has already been outlined in Chapter 2.2, the most popularly used expression in simulating ionic solids

has the Buckingham form (see equation 2.2).
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In the present study, the rigid-ion and shell model short-range interionic parameters of CdF, (xPbF,)
mixed systems were derived empirically using a GULP code (Gale 1997). However, the shell model
F-F potential parameters were taken from Lindan and Gillan’s (1993) work on CaF,. The cation-
cation (cation = Cd or Pb) interactions are generally ignored in view of large separations of cations
in the fluorite structure. The remaining cation-F interactions for the two potential models were
determined by empirically fitting them to the absolute zero temperature lattice parameter, the bulk
data (dielectric and second-order elastic constants) and the lattice energy data for mainly pure
components of the solid solutions. The validity of both models was assessed by performing a number
of preliminary perfect lattice calculations, where crystal properties such as dielectric and elastic
constants were compared with available experimental data. In this study the same set of potentials
were used for both molecular statics and molecular dynamics calculations on all of the samples (i.e.
0 mol %<x<100 mol % PbF,) under study. Furthermore, in modelling these mixed systems, a single
description of F-F interaction terms, which are common to the two pure compounds, were used.

Essentially this is the approach adopted by Cox et al. (1994) in modelling mixed systems.

For the fitting, an acceptable range for the sum of squares is considered a variable quantity. Errors
in our observable are looked at and a value judgement is made about whether they are acceptable or
not. The first three vibrational frequencies are found to be zero for a core only model, but deviate
slightly when shells are present due to the numerical precision of matrix inversion. In this case, a

value within about 0.5 cm — 1.0 cm of zero is what we consider acceptable.
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43 COMPUTATIONAL PROCEDURES

4.3.1 Static Modelling of CdF(xPbF>)

In this study, perfect lattice and defect simulations are conducted on CdF»(xPbF») mixed systems and
pure materials, respectively. These simulations are based on room temperature parameters and are
static in nature; that is, thermal motions of the ions are not included explicitly as outlined in Chapter
2. However, the two simulation techniques are based on energy minimisation procedures, where the
ionic-coordinates are iteratively adjusted until the forces acting between them are reduced to a

minimum (Catlow 1997). In the current study, these simulations are conducted at constant pressure.

4.3.1.1 Perfect fluorite lattice calculations of CdF,-PbF; systems

The perfect lattice is the lattice with all ions being at their original/undisplaced positions and without
the impurity. The lattice static calculations were carried out using the standard procedure efficiently
coded in the GULP program that is used throughout the work presented in this Chapter. However,
it is worth noting that in order to simulate all the compositions of interest, i.e. x = 0 mol % to x =100
mol % PbF; in CdF,(xPbF,), we adopted a mean-field approach/strategy which consists of scaling
interaction energies by the product of site occupancies. This allowed the simulation of a randomly
distributed solid solution, and was preferred to the usual methodology of setting up large supercells,
which unavoidably builds up an ordered system. Elastic constants associated with equilibrium
structures were deduced using energy-minimisation techniques as discussed in Chapter 2. In each

case, a valid energy minimisation was produced for each composition in a reasonable amount of ¢.p.u.
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time. Hence, the fluorite structure for each composition was the actual structure adopted by each

material.

4.3.1.2 Defect fluorite lattice calculations of the pure constituents, CdF, and PbF,

The defect lattice simulations for pure compounds (CdF; and PbF,) were performed using the GULP
code. The basis of the calculation was to introduce a defect (or defects) into the perfect lattice and
then to relax the surrounding particles to a new minimum energy configuration (see Chapter 2 for
more details). Thus the calculations involved the division of the crystal lattice into an inner-region
I containing all defects, where the energy minimization method is applied, and an outer region 11,
where defect forces are weaker and the relaxation may be calculated via the Mott-Littleton
approximation (Mott and Littleton 1938). The lattice energy of the perfect lattice was then

subtracted from that of the defect lattice in order to obtain the defect energy of the pure materials.

4.3.2 Molecular Dynamics (MD) Simulations

MD is a well-established computer modelling technique originally derived to model liquids so as to
gain some valuable insight into the physical chemistry underpinning their fast-ion conduction. This
technique is based on ‘classical’ methods where Newton’s laws of motion are applied in order to
follow the dynamical behaviour of every atom in a system over a given time (see Chapter 2). By real

time standards the time-scales are short (i.e. measurements are taken in pico-seconds), but on atomic
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scales, these are times in which atoms move randomly in a system, because matter at atomic level 1s
dynamic (atoms are in constant motion). Using Beeman’s numerical algorithm, the positions and
velocities of all the atoms can be predicted for some future time, i.e. one can locate, unambiguously,
the position of each atom and follow its motion as it interacts with its neighbours. Such complex
simulations can take several hundred hours of CPU time on most powerful workstations, but it is the

only way that such great detail can be resolved.

In the present study, molecular dynamics studies were performed on CdF,(xPbF,) using a DL POLY
code (see Chapter 2 for further details), where the rigid-ion potential model (with the same nigid-ion
potential parameters as for the static calculations) was employed. Simulation runs were started from
the fluorite structure, where a simulation box containing 768 particles (256 cations and 512 anions,
i.e. 4 x 4 x 4 unit cells) was set up with each ion at a given velocity in accordance with the target
temperature. Periodic boundary conditions were applied and the ensemble used imposes the
conditions of constant temperature and volume (NVT). However, cations were randomly distributed
over the available cation sites. In fact, the arrangement of the cations in these systems was such that
Cd”" ions were put on all tetrahedral positions in the fcc lattice forming CdF,. No charge
compensating fluorine ions were introduced since both cations, i.e. Cd*" and Pb*’, have the same
charge (2+). Next, a suitable number of Cd*' ions were replaced by Pb”" ions at random for each
composition x. Then, the system was allowed to evolve in time. After each time-step, At (~ 107 s),
coordinates and velocities of each ion were updated using the procedures based on Newton’s
equations of motion. Each simulation was equilibrated until a constant temperature was obtained (for

at least 3 000 At). Once the system had equilibrated, it was run for several thousands of time-steps
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(for about 50 000 At to yield a simulation time of 50 ps — time sufficiently long for noting diffusion
in CdF,(xPbF,) during which data were collected. A wealth of information (thermal average values
of the quantities of interest) on structural and transport properties including the radial distribution
functions (RDFs) (they give the full probability distribution of the ions in the immediate environments
of the target ion / the probability of finding ions in different regions of the unit cell and are useful
comparisons with EXAFS Fourier Transform), transport coefficients (e.g. diffusion coefficients can
be deduced from the gradient of the graph of the MSDs of the mobile species with time, conductivity
is estimated using the Nernst-Einstein equation), transition temperatures (temperature associated with
marked changes in physical properties), the melting point and ion transport mechanisms can be
extracted from the subsequent data. The simulations were run on Silicon Graphics servers at the

University of the North, in the Materials Modelling Centre.
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44  RESULTS AND DISCUSSION

4.4.1 Derived Interionic Potentials

The derived rigid-ion and shell model potential parameters for CdF,(xPbF,) mixed crystals are listed
in Tables 4.1 and 4.2. These potentials were developed by predicting physical properties (e.g. bulk
properties of the perfect solid) that are reasonably in agreement with experimental data apart from

C,2. Consequently, they were used in the statics and molecular dynamics calculations.

It is worth noting from tables 4.1 and 4.2 that cation-cation (cation = Cd or Pb) interactions were not
considered in the present calculations because they are, in general, rather weak and consequently can
be neglected. It is evident from the tables that short-range forces were taken to act between anions
and cations, and between anions and anions. Values of the cation-fluorine (1.e. Cd-F or Pb-F)
interactions were found by fitting to the available experimental/crystal data such as elastic and
dielectric constants. Furthermore, a single (common to the two nominally pure compounds/materials)
description of the interatomic potential for fluorine-fluorine interactions was used, since the second-
neighbour interactions do not make very substantial contributions to the elastic or equilibrium

properties of alkaline-earth fluorides.
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Table 4.1 Rigid-ion potential parameters obtained for CdF,(xPbF;) mixed systems.

Buckingham parameters A(eV) p(A) C(eVA™®)
cdtod® 0.00 0.3000 0.00
Cd-F 420.060 0.3529 0.0280
Pb?'-Pb*’ 0.00 0.3000 0.00
Pb*'-F 157.339 0.4662 0.9284
F-F 160919.850 0.1758 223070
Cutoff=12 A

Table 4.2 Shell model potential parameters for CdF»(xPbF,) mixed systems.

- Yel) K(eVA™)

cd” 6.315 741.40

Pb>* 3.1459 32.35

F ) -2.8475 101.20
Buckingham  A(eV) p(A) C(eVA™®)

_Runmpiey
cd*-cd* 0.0 0.300 0.0
Pb*-Pb*" 0.0 0.300 0.0
Cd*'-F 1742.172 0.288 0.0
Pb*"-F 1511.692 0.322 0.0
F-F 1808.00 0.293 109.10

Cutoff=12 A ' -
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4.4.2 Crystal Bulk Data

The validity of the rigid-ion and shell models was assessed by carrying out a number of perfect lattice
calculations. The accuracy in the determination of elastic constants provides a convenient test for the
appropriateness of the derived interionic potentials for a solid. Furthermore, the behaviour of the
elastic properties of crystals is of great importance in understanding such properties as structure,
composition and phase transitions, etc. in materials. Basically, they are a measure of the energy
change when a solid is strained/deformed uniformly and are related to lattice vibrations. The

dielectric constant reflects the response of the solid to the application of an electric field.

Following our previous work on pure CdF, (Netshisaulu 1996), a full study of the elastic properties
on a series of fluoride solutions between PbF, and CdF, is presented here based on improved
potentials (i.e. regarded as superior to those used in the earlier work) derived using the GULP
program. In addition, F-F short-range potentials used for the shell model in these calculations were
obtained from an extensive study of the alkaline-earth fluorides (see Catlow et al. 1977). The shell

model (polarization) parameters (shell charges and spring constants) were fitted to the dielectric

constants.

First, the calculated crystal bulk data for pure (CdF, and PbF,) components of the solid solutions that
were evaluated using the two potential models given in Tables 4.1 and 4.2 are presented in Table 4.3.
Owing to the symmetry of a cubic crystal, there are three independent elements in the elastic constant

tensor, namely, C;, Cjzand Cy, in several crystals of CdFx(xPbF;). While no direct comparison
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Table 4.3

Calculated crystal properties of pure CdF; and PbF; fluorine ion compounds.

CdF, PbF,
Property Rigid-ion  Shellmodel  Experiment™ Rigid-ion Shell model  Experiment’
Elastic const.
C1(Gpa) 183.7 1823 184.0 90.5 105 930
C12(Gpa) 28.2 60.2 67.0 11.8 408 440
Cas(Gpa) 27.8 23.0 21.8 7.00 18.2 206
Dielectric const.
€o 8.68 8.76 9.00 317 354 317
R 3.27 243 e 200 -
Lattice par.
ao(A) 5.38 5.38 5.39 593 5.93 5.94

"Experimental estimates from Catlow et al. (1978)

*Experimental estimates from Hart et al. (1971)
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could be made for the entire series, it is apparent from Table 4.3 that most of these properties are in
fair agreement with the measured values, with the exception of C,,, which is poorly estimated, by the
rigid-ion model. A similar inconsistency had been found in the case of materials with a similar
structure. This discrepancy can be explained in terms of the limitations of the rigid-ion model. It has
been shown by Basu et al. (1985) that agreement in C,, can be improved by including a three-body
interaction term, but this has a tendency to cause a larger discrepancy in the other two elastic
constants. However, the latter potentials have been found to be satisfactory in molecular dynamics
simulations provided that static dielectric constants are correctly predicted. It is gratifying to note
that our potentials correctly reproduce the value of the static dielectric constant for CdF,, which is
essential for adequate representation of defect dependent properties. Moreover, the static dielectric

constants are also reproduced fairly well on including the polarizability.

For PbF,, the rigid-ion model consistently underestimates the values of the elastic constants for a
highly polarisable PbF, material as compared to CdF,. Most of the rigid-ion values for the elastic
constants of PbF,, in particular, C;, and Cy, are much too small compared to the experimental values
(Catlow et al. 1978). The discrepancy in these elastic constants can be ascribed to the rigid-ion model
itself since it assumes that ions are not polarisable and they interact as point charges. A shell model,
which assumes ions to be made of charged cores and spherical shells, is more appropriate as shown
by the results in Table 4.3, However, it is well known that the Pb*" ion is highly polarisable. The
calculated lattice parameters from our rigid-ion and shell model potentials are in excellent agreement
with the experimental values. This indicates that our potential models are reliable in the study of

fluorite-structured compounds, which gives us confidence in using both potentials in the investigation.
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The crystal data of the mixed systems calculated on the basis of the rigid ion potential model are

reported in Table 4.4. In the absence of experimental data for comparison, the present investigation

Table 4.4 Calculated crystal properties of CdF,(xPbF,) mixed crystals

Property Material composition x

(mol % PbF;)

Elastic const. 0 20 40 60 80 100
Ci1(Gpa) 183.7 158.9 137.3 118.9 103.3 90.5
C12(Gpa) 28.1 234 194 16.2 13.7 11.8
Cas(Gpa) 27.8 223 17.4 13.1 9.6 7.0

Diel.Const., gy 8.7 10.8 13.9 18.2 243 317

on these crystal properties have been based on an experimental static dielectric constant of ~16
deduced from conductivity measurements carried out by Kosacki et al. (1985, 1989) on the CdF,(60

mol %PbF,) material, which compares well with the calculated value, 18.2.

4.4.3 Effects of Temperature on Crystal Bulk Data in Mixed Crystals

It is well known that many of the physical properties of the fast-ion conductors change anomalously
at high temperatures (Ngoepe 1987). These include rapid increases in dielectric constants, large

decreases in the elastic moduli and continuous curvature in the Arrhenius plots of the diffusion
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Figure 4.1(a) The temperature variation of the three independent elastic constants in CdF,(xPbF)
mixed systems.
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coefficients of these materials. Calculations on the temperature dependences of the second-order
elastic constants C;; are derived on the basis of the quasiharmonic approximation. In this part of the
study the variations of thermodynamic quantities with temperature are discussed. Hence, extensive
calculations on the temperature dependences of elastic moduli were carried out on Pb*" dopant CdF,
in the temperature range 77 - 800 K. These results were compared with observations from ionic
conductivity experiments of Kosacki et al. (1989). Figure 4.1 (a) and (b) gives the temperature
dependences of the three independent elastic constants C11, Ci2and Cas in various samples x. In the
temperature range 77 - ~ 400 K (see Figure 4.1(a)), all three elastic constants (Cy1, Ci2 and Cyy) in
mixed samples have the same characteristic temperature - dependent curves as for the pure
compounds, i.e. the curves are smooth and show no anomally. This may be attributed to the
similarity in the crystal structure throughout the compositions of the six-fluorite samples. In addition,
these variations of C; with temperature in the temperature range 77 - ~ 400 K result from
anharmoncity, where long-wavelength acoustical modes are dominant in the low temperature region
(Catlow et al. 1978, Ngoepe 1987 and Chaba and Ngoepe 1999). Figure 4.1(a) also shows that the
temperature variation of the elastic constants start to deviate from linearity at x = 60 mol % PbF’ in
the temperature range 400 — 800 K since the quasi-harmonic approximation does not fully account
for changes noted in C;;’s at high temperatures, in particular above T.. The experimental value for
T.in CdF2(60 mol % PbF,) is ~ 485 K. The anomalous behaviour observed in this temperature region
also coincides with the reported anomalies in ionic conductivity for the sample x = 60 mol % PbF,

(Kosacki et al. 1989).

107



It is also apparent from Figure 4.1(a) that the elastic constant C,; is strongly dependent on
temperature whereas the other two, namely, C,, and Cus, do not change significantly. The elastic
constants in most pure fluorite-structured materials are known to exhibit similar features (see
Netshisaulu 1996). However, the doped crystals have significantly smaller values of elastic constants
than in pure CdF, suggesting corresponding reductions in the three elastic constants (C,;, C;; and Cy,)
with an increase in temperature as shown in Figure 4.1 (b). Furthermore, the temperature variations

of C,4 are smaller than those of other elastic constants.

Our results are in accord with previous reports on doped fluorites (e.g., Catlow et al. 1981, Ngoepe
and Catlow 1991, etc.) that deviations from the linear anharmonic decrease occur at a significantly
lower temperature than in pure crystals indicating that the transition temperature T, is lower for

doped crystals than for pure crystals, i.e. T. moves to lower temperatures with increasing doping.

4.4.4 Effects of Concentration on Crystal Bulk Data

Static lattice calculations on fast-ion conductor CdF,(xPbF,) in the entire composition range, i.e. from
x = 0 to 100 mol %PbF,, were conducted. Calculated and observed dielectric constants were plotted
as a function of composition in Figure 4.2. Hence, in the absence of some experimental data,
particularly the elastic constants, calculations on the CdF,(xPbF,) mixed solid solutions were mainly
validated from the experimentally determined behaviour of the static dielectric constant (g,) as a

function of concentration x which was fairly reproduced by the present study. It was observed that
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Figure 4.2 Comparison of the calculated and experimental values of the dielectric constants, €, of
CdF»(xPbF,) mixed crystals as a function of composition x.
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€ increases when the mixed system changes from CdF, (x=0 mol % PbF,) to PbF, (x=100 mol %
PbF,). Initially, i.e. for x<60 mol %, a steady increase in the dielectric constant, €, with composition,
x, is observed, whilst a linear increase is observed beyond x=60 mol % PbF,. The curvature on g vs.
x plot commences just below x=60 mol % PbF,. Furthermore, satisfactory reproduction of the
experimental composition dependence of the dielectric constant is noted at values close to the end
members (i.e. x=0 mol % PbF, and x=100 mol % PbF,). This is attributable to the complex nature
of the mixture in the region 40 mol % < x< 80 mol % PbF, and the large polarisablity of the lead ion

in mixed-metal fluorites.

Plots of the variations of the elastic constants with composition are shown in Figure 4.3. The most
obvious aspect of these plots is the linear decrease with increasing Pb composition x in all the elastic
constants C;; in the region between CdF, (x=0 mol % PbF>) and PbF, (x=60 mol %PbF,). However,
all the elastic constants change less rapidly above 60 mol % PbF,. This behaviour accords well with
the composition dependence of the dielectric constant, where the curvature on g vs. x plot
commences just below x = 60 mol % PbF,. An important feature of the results is the confirmation
of the enhanced ionic conductivity at x = 60 mol % PbF, (see Kosacki et al. 1989). In addition, the

lack of anomaly in the variation of the elastic coefficients C;; with composition for the CdF,(xPbF,)
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crystals (Figure 4.3) is due to the fact that the mixture remains cubic phase (absence of phase
transformation) throughout the entire composition and the variation in elastic constants is only due
to the concentration of Pb in the mixed crystals (Gasanly et al. 1993). Hence, the graph shows the
usual tendency that elastic constants C;; tend to decrease with increasing bond length. On the basis

of changes noted in &, it could be surmised that C;; would correspond to experimental results.

4.4.5 Defect Formation and Migration Energies

We have used our model potentials (rigid-ion and shell) in the calculations of the defect energies for
CdF; and PbF,. The results are presented in Tables 4.5 and 4.6 (for pure fluorine ion conductors
CdF, and PbF,, respectively). Activation energies can shed some useful insights into the nature of
the disorder in these superionic conductors. It can be seen from Table 4.5 that the calculated anion
vacancy activation energy (~0.4 eV) for CdF-, based on the shell model, is in reasonable agreement
with the available experimental value of 0.44 eV obtained by Tan et al. (1970). In these calculations,
migrating F~ ion in the saddle point is equidistant from two vacant fluorine lattice sites. The activation
energy is calculated by subtracting the anion vacancy formation energy (initial configurations) from
that of the saddle point/migration energy. This energy is linked to the motion of fluorine vacancies
in CdF,. Furthermore, the value of the anion interstitial activation energy (i.e. the activation energy
for interstitial mobility) of 0.48 eV is more than that of the anion vacancy activation 0f 0.37 eV. This
difference suggests that the vacancies are more mobile than interstitials in pure CdF,. Hence, vacancy
mechanism is a more prevalent mode of transport in CdF,. This is in excellent agreement with the

current understanding that for nominally pure fluorites the vacancy mechanism is more favoured,
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whilst interstitial transport occurs only in the presence of suitable dopants (Catlow et al. 1977). This
suggests that the predominant type of disorder is Frenkel disorder. The Frenkel energy is obtained
by adding the values for the isolated anion vacancy formation and anion interstitial formation energies
(see Table 4.5). It is, however, noted that the rigid ion model tends to underestimate the anion

activation energy.

Table 4.5 Calculated defect formation and migration energies for CdF,

Model
Defect type Shell model Rigid ion model Experimental
(eV) (eV) (eV)
Anion vacancy formation' 5.42 4.05
Anion interstitial formation? -3.55 -1.80
Anion Frenkel pair 0.87 225
Anion vacancy migration 5.79 4.17
(saddle point energy)
Anion interstitial migration -3.07 -1.47
(saddle point energy)
Anion vacancy activation 0.37 0.12 0.44°
Anion interstitial activation 0.48 0.33

"Energy required to remove a lattice anion from the perfect (lattice) site to infinity
_IEnergy required to introduce an interstitial anion from infinity into the perfect lattice (crystal).
‘Experimental (Tan et al. 1970)
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Table 4.6 Calculated defect formation and migration energies for PbF,

Defect type Rigid ion model Shell model Expeirimental
(eV) (eV) (eV)

Anion vacancy formation 2.82 3.31

Anion interstitial formation -1.80 -2.02

Anion Frenkel pair 1.02 1.29 (1.12)f 0.94

Anion vacancy migration 2.84

Anion interstitial migration -2.18

Anion vacancy activation 0.02 0.235 (0.08)' 0.26

Anion interstitial activation 0.38 0.476 (0.08)" 0.52

:Theoretica] estimates from Jacobs et al. (1984), where available, in brackets

*Experimental estimates from Azimi et al. (1984)

In an analogous fashion, defect formation and migration energies for nominally pure PbF, were
calculated using rigid ion potentials. These energies are presented in Table 4.6. The calculated values
are compared with previous estimates and the available experimental data. The calculated anion
Frenkel pair energy of 1.0 eV is in reasonable agreement with the experimental value 0of 0.94 eV. As
can be seen, theoretical calculations of the defect energies are more difficult for PbF, due to problems
in modelling the highly polarizable Pb*" ion. The activation energy (Ea ~ 0.02 eV) is extremely
underestimated by the rigid ion model for PbF,, a phenomenon that was also observed by Walker et
al (1985) (Eat ~ 0.08 eV). However, these values can be used qualitatively to predict the
predominant type of disorder in PbF, as Frenkel disorder and the vacancy mechanism as the most

favoured mode of migration.
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4.4.6 Effects of Temperature on Mean Square Displacements (MSDs) of Ions

This part of the study was carried out using molecular dynamics method in order to investigate the
effects of temperature on the mean square displacements (MSDs) of ions in mixed metal fluorites.
MSDs plots are helpful in explaining the phenomenon of phase changes such as melting. This
fundamental property is determined by choosing a particular F~ ion species and following it over a
long period of time as it diffuses from site to site through the lattice. The MSDs are averaged over
the particles in the system to reduce the statistical errors. Hence, MSDs is the property of the whole
sample rather than individual species. As indicated in equation 2.2, the relationship strictly holds only
for the limit as t — oo (so not applicable for short times). This relationship can thus be used to
calculate the diffusion coefficients from an equilibrium simulation by plotting the MSDs as a function

of time and then attempting to obtain the limiting behaviour as t — .

In the present study, the simulation runs were made on mixed metal fluorites at temperatures ranging
from liquid nitrogen temperature 77 to 700 K. Plots for the variation of MSDs with time for F ion
species in CdF, (xPbF,) mixed solutions are indicated in Figure 4.4. These plots show that diffusion
is negligible at liquid nitrogen temperatures. Linear variation of MSDs with ¢ implies diffusion of
fluorine ions in mixed metal fluorites, in particular, for concentrations x = 40 mol % to 100 mol %
PbF;at 700 K. The rapid diffusion of the F~ ions is in accordance with the general understanding that
smaller ions are expected to diffuse more easily through materials. A similar behaviour is found in
other solid electrolytes such as Y/ZrO, (Petrolekas and Metcalfe 1995, Chaba and Ngoepe 1998),

a number of perovskite-type oxides such as LaMnO; and LaCoO; (Islam et al. 1996), fluoride
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perovskites (Watson et al. 1992) and most mixed metal fluorites (e.g. RbBiF,) (Cox et al. 1994).

However, for concentrations x = 0 mol % PbF; and x = 20 mol % PbF.. no fast-ion conduction is
predicted at T=700 K, indicated by a constant MSD with time. This observation indicates that the
transition temperatures for samples x = 0 mol % PbF; and x = 20 mol % PbF; are well above T = 700
K, a result which is in excellent agreement with our previous results (Netshisaulu, 1996) on the
transition temperature T, of pure CdF; [T. (CdF,) ~ 1000 K]. T, for CdF; is also well reproduced
by our current study (see Figure 4.4 for the diffusion trends in pure CdF,, i.e. x = 0 mol % PbF,) and
that for CdF2(20 mol %PbF>) is ~ 800 K (see Kosacki et al. 1989). These results also show that the
well-documented transition temperature to the fast-ion phase of PbF; is well above 600 K (i.e.
T.(PbF2)>600 K). The transition temperature, T, for PbF; is ~ 700 K (see Samara 1978, Dickens
and Hutchings 1978, Kosacki et al. 1989, etc). Hence, substantial fluorine diffusion in mixed-metal
fluorites takes place below the transition temperature of pure CdF,, which is about 1000 K. In

2+

contrast, no diffusion of cation species (both Pb*" and Cd’‘ion species) takes place, even at 700 K
(see Figures 4.5 and 4.6), indicating that the material is below its melting point since the crystal is

considered to have melted when all sub-lattice show an increase in MSDs with time.
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Hence, the presence of the fast-ion phase in mixed metal fluorites is achieved even before the crystal
actually melts. A similar behaviour was noted in oxygen (Li and Hafskjold 1995, Khan et al. 1998

and Chaba 2000) and fluorine ion conductors (Netshisaulu et al. 1999) from MD studies.

4.4.7 Effects of Composition on MSDs

MSDs versus time for all dopant concentrations (the six models) at 700 K are presented in Figure 4.7.
It is clear from Figure 4.4 that, on the one hand, at low concentrations (i.e. at x = 0 mol % PbF; -
20 mol % PbF, with T = 700 K), no fast-ion conduction is predicted, indicated by a constant MSD
with time. Furthermore, the asymptotic time dependence of this quantity, MSDs, in this composition
range (x = 0 mol % PbF,— 20 mol % PbF>) shows that D; = 0 (diffusion virtually ceases) for anions
at T= 700 K. On the other hand, fast-ion conduction is evident through the mobility of the fluorine
anions at temperature T=700 K for x = 40 mol % PbF,— 100 mol % PbF,. It is interesting to note
that the highest value of diffusion is observed on the anion sub-lattice at the composition x = 60 mol
% PbF,. However, the diffusion decreases to below that of the x = 60 mol % composition for x > 80
mol % PbF,. Furthermore, in all solid solutions the cations do not diffuse with increasing
concentration x (see Figures 4.5 and 4.6). These cations simply oscillate in the vicinity of the
tetrahedral sites. Hence, the fluorite structure is maintained as the system evolves from CdF, to PbF,,

with the role of the cation sub-lattice being to maintain long-range order of the materials.
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CdF,(xPbF,) mixed crystals at T = 700 K.
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4.4.8 Effects of Temperature on Transport Properties

The present investigation aims to provide additional data on the ionic conduction of CdF,(xPbF,)
mixed solid solutions. It is generally known that mixed solid solutions are highly conducting, but they
have considerably lower superionic transition temperatures than those of the pure compounds
(Kosacki et al. 1989). The self-diffusion constant D; of the F~ ions is obtained from the slope of the

MSDs (<r’(t)>) — time line using equation 4.1.

In the current study, anion diffusion coefficients were extracted from the plots of the MSDs (see
Figure 4.4) in the temperature range 77 to 800K. The calculated results are presented in Table 4.7.
From the profiles of the anion diffusion coefficients (see Figure 4.8), there is no diffusion until a

certain temperature, T, is reached.

It is assumed that diffusion and conductivity are manifestations of the same migration process so that
the two physical properties are closely related (see Chapter 1.6). Hence, from the profile of the
diffusion coefficients, it is possible to use the Nernst-Einstein relation to make the connection
between diffusion and conductivity for a single conduction mechanism and to estimate the magnitude
of the ionic conductivity. The Nernst-Einstein relation shows that the diffusion coefficient is

proportional to the ionic conductivity.
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Hence,

]
o=|2_\p, 4.1
AT

Table 4.7 Calculated fluorine diffusion coefficients for specimens x = 0 mol % - 100 mol % PbF in
CdF,(xPbF,) mixed crystals.

Temperature D¢ x 107 (cm’/s) for each composition x (mol % PbF>)

T(K) 0 20 40 60 80 100
77 0.459 - 10.8 10.8 48.3 46.2
100 - 9.67 8.21 3.22 58.1 14.9
200 0.267 2.35 - 13.6 10 14.9
300 0.645 1.03 14.3 18.1 70.3 206
400 0.559 12:5 81.6 21.7 159 -
500 1.44 14.7 482 13.0 300 116
600 1.40 6.03 818 513 1370 605
700 - 4.97 1420 2580 2570 1620
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where k is the Boltzmann’s constant in eV, q is the charge of the carrier ion, T is the absolute
temperature, n is the number of charge carriers per unit volume (density) or simply the concentration
of charge carriers and f'is the correlation factor (where f'is equal to or less than 1) that depends on
the type of diffusion mechanism. In the present study the conductivity was calculated from the
diffusion coefficients via the Nernst-Einstein relationship by setting fto unity (1) since the main goal
of this study is to establish the order of magnitude of diffusion or conductivity as recommended by
Watson et al. (1992). The relation in the equation above is only expected to hold accurately when
both mass transport (diffusion) and charge transport (conductivity) are effected by the same physical
mechanism. Furthermore, in the present work, only anion species, i.e. the fluorine ions, were
assumed to participate in both the mass transport and charge transport as shown in the earlier sections

above,

The variation of ionic conductivity with temperature and composition is the key to understanding
transport phenomena in mixed solid solutions. Hence, we have presented in Figure 4.9 the
temperature dependence of the conductivity [¢n (cT) against T™' plot] for several compositions of
the CdF,(xPbF,) solid solutions. It can be seen that the conductivity of these mixed solutions
increases in the temperature range covered upon the incorporation of PbF,. The conductivity curves
observed correspond to an Arrhenius-type law, i.e. the usual conductivity plot of #n (oT) against T
is linear. This trend is typical of most of the mixed metal fluorites (Cox et al. 1994). In the present
study conduction models are based on random distributions of lead (Pb) cations and it is assumed that
transport is effected through the bulk of the solid with the mixed crystals containing one kind of

mobile charge carriers, i.e. F~ species, which leads to a disordering on the anion sub-lattice of these
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solid solutions. The cations provide the immobile ‘lattice’ through which the mobile F ions can
migrate. It is clear from Figure 4.9 that doped samples had conductivities with values higher than
those of the pure ones throughout the temperature range covered (curves for samples x < 40 mol %
PbF, are excluded for clarity purposes). Comparing the different materials in Figure 4.9, the slope
corresponding to sample x = 60 mol % PbF; is the steepest. In addition, qualitatively, the trend in
the temperature variation of conductivity in the CdF,(xPbF,) crystals is similar to those observed in
related mixed metal fluorites such as RbBiF, sand PbSnF; (Catlow et al. 1989 and Cox et al. 1994).

The activation energy has been derived from the Arrhenius-Einstein equation, which relates the ionic

conductivity to activation energy E,:

-FE
ol =0, ex < 4.2
0 p( T J
Taking #n on both sides,
E 1
¢n(oT) = constant -| —~ (—] 4.3
kK T
Hence
E, = —kTtn(oT) 4.4
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where E, is the activation/ Arrhenius energy for conduction in eV derived from the gradient of the

slopes of the conductivity versus the reciprocal temperature (T") curves. The plot of ¢n(cT) versus
B . v : : E, . .
T normally yields a straight line with the gradient equal to — G I Activation energy is the energy

required to overcome a ‘barrier” to diffusive motion.

4.4.9 Correlation between ionic conductivity, concentration and activation energy

In this section, we examine the correlation between ionic conductivity (o), dopant concentration x
and activation energy (E,) in CdF(xPbF,) samples. The variation of ionic conductivity with Pb
content x is shown in Figure 4.10(a) for the temperature T = 700 K. Experimentally (Kosacki et al.
1989) determined pattern is also shown in Figure 4.10(c). Figure 4.10(a) indicates that incorporation
of Pb ions on cadmium (Cd) sites increases the ionic conductivity until a certain dopant level is
reached. In essence, the effect on conductivity of varying composition (Pb content) in the
CdF»(xPbF,) systems leads to a conductivity increase in the composition range 0 mol %<x<60 mol
% PbF, (in line with the general understanding that diffusion of ions can be accelerated enormously
by impurities), whereas for 80 mol %<x<100 mol % PbF; the conductivity starts to decrease upon

increasing Pb content x. In an earlier work on polymer electrolytes by Bhattacharyya et al. (1999),
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it was indicated that the initial rise in o is due to an increase in concentration of charge carriers and
the subsequent fall is due to a decrease in their mobility. A notable feature found in the calculation
of conductivity is that there is a maximum (peak) in the plot of ionic conductivity versus dopant
concentration which occurs at ~ 60 mol % dopant concentration of PbF, (see Figure 4.10(a)). This
is in reasonable agreement with the composition dependence of the calculated diffusion constant and
the experimental o measurements from Kosacki (1989) et al.’s work (see Figure 4.10(c)). Associated
with this enhancement in conductivity for the 60 mol % sample is a reduction in the activation energy
for conduction, with the maximum in conductivity corresponding to a minimum (dip) activation
energy E, (see Figure 4.10 (b)). Hence, the conductivity is much higher and the activation energy
much lower for the same PbF, substitution rates/values of x at T=700 K. Furthermore, Figure 4.10(b)
shows there is reasonable agreement between calculated and experimental results for the activation

energies.

The exceptional high ionic conductivities and relatively low activation energies in these systems have
been found in other mixed cation fluorite structured compounds with a definite composition, e.g.
PbSnF, and RbBiF, (Catlow et al. 1989 and Cox et al. 1994). In essence, the present study provides
evidence that when the Pb content x is less than 60 mol %, migration of F ions (from lattice (normal)
positions into interstitial ones increases. In this case, F ions are easily transferred into interstitial sites
from their normal (anionic) sublattices surrounding which there is a local excess of Pb*". This
(process) leads to the creation of supplementary vacancies in the anionic lattice positions. The Cd
cations enhance o by preserving the open-nature of the fluorite. This helps to retain the

pathway/route for migration via interstitial sites. Experimental evidence for this proposal has been
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obtained from EXAFS studies on RbBiF; by Cox (1988). However, our results also show that the
conductivity decreases tremendously after the maximum at x = 60 mol % PbF; concentration. Thus,
for higher concentrations, the migration of fluorine interstitials decreases resulting in a diffusion
coefficient decreasing. Alternatively, this decrease in conductivity with dopant concentration at
concentration levels beyond ~ x = 60 mol % PbF; (i.e. for 60 mol %<x<100 mol % PbF,) doping level
is attributed to fluorine jumps becoming decreasingly effective in causing bulk ionic conductivity. In
this case the fluorine ions increasingly perform ‘ineffectively’ since they simply oscillate/percolate
around an interstitial position. This could be an indication of the presence of extensive short-range

order of local ordering which suggests a strengthening of the Cd-F / Pb-F bonding.

The calculated activation energies together with the values derived from ionic conductivity
measurements by Kosacki and co-workers (Kosacki et al. 1989) for each concentration formed
between CdF, and PbF; are presented in Table 4.8 (also see Figure 10(b)). The calculated energies
compare reasonably well with their observed values. In addition, examination of the table shows that
0.051 eV is the lowest activation energy E,, at x = 60 mol % PbF, and corresponds with the
maximum ionic conductivity. The apparent low activation energy (for conduction) for the mixed
crystal at x=60 mol % PbF; clearly indicates a rapid mobility through the bulk. The occurrence of
such high ionic conductivities also suggests that the structural properties of the materials and the ion
migration mechanisms may show unusual features. This improvement in conduction suggests that
the x = 60 mol % sample may have randomly disordered structure. Similar dependences of ionic

conductivities on dopant content in related materials were also seen (see for example Catlow et al.

1989 and Bhattacharyya et al. 1999).
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Table 4.8 Calculated and experimental activation energies for specimens x = 0 mol % Pbk>, x = 20
mol % PbF and x = 40 mol % PbF-, x = 60 mol % PbF,, x = 80 mol % PbF; and x = 100 mol % PbF
at T=400 K and T =700 K.

Activation energy (eV)
Compositionx  Calculated Experimental
(mol % PbF,)
0 0.437 0.44°
20 0.360 0.237
40 0.214 02"
60 0.051 0.06"
80 0.124 0.08"
100 0.091 0.26'

fTan etal. (1970)
"Azimi etal. (1984)
Kosacki et al. (1989)
The activation energies for the solid solutions shown in Table 4.8 decrease with increasing Pb content
x. The current calculations qualitatively reproduce the main features observed experimentally, in
particular the observed maximum in the conductivity at ~ x = 60 mol % PbF, which corresponds to
the lowest activation energy E,. Kosacki et al. (1989) observed a strong non-linear dependence of
the superionic transition temperature on mixed metal fluorites, with a minimum occurring at T. = 485
K which corresponds with the x = 60 mol % PbF.. In fact, in the PbF, concentration range of 60 mol
%<x<100 mol %, there is an increase of the temperature of the transition to the superionic state (T).
In contrast, in the composition range of 0 mol %<x<60 mol % PbF,, a decrease of the transition
temperature has been observed. The dependence obtained is directly related to similar dependences

seen in the ionic transport results and the Raman line half-width (Kosacki et al. 1989).
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4.4.10 Combined Effects of Temperature and Concentration on Radial Distribution Functions

In this section, several molecular dynamics studies have been undertaken in order to understand the
effect of composition and temperature on structural properties, in particular, radial distribution
functions (RDFs) of CdF(xPbF,). These studies were performed on x = 0 mol %, 20 mol %, 40 mol
%. 60 mol %, 80 mol % and 100 mol % PbF, concentrations at various temperatures, ie. forT=177,

300, 500, 600 and 700 K. However, in this work, results for T = 77, 300, and 700 K are presented.

RDFs give the probability of finding ions of a certain species in a particular region of the crystal at
a given distance away from a point of reference or even as a function of distance from one species
to another. It also provides information about the spatial distribution of the ions and their
environments in a shell fashion (see equation 2.1 in Chapter 2). Hence, the degree/nature of

(dis)order on the local structure of species in the system could be determined.

The intention of this section is to probe the degree of (dis)order on the Pb, Cd and F sublattices in
doped CdF,(xPbF,) crystals, and to clarify its nature. Calculations of the RDFs were performed for
the entire concentration range of the solid solution, i.e. for compositions x = 0 mol % to x =100 mol
% PbF,. First, we consider the RDFs for the two cations, namely, Cd* ion and Pb” ion for the whole

composition range, i.e. x =0 mol % to x =100 mol %, followed by the F'-F" RDFs.
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4.4.10.1 RDFs of the cations (g(Cd-Cd) and g(Pb-Pb))

The curves for the two cations (g(Cd-Cd) and g(Pb-Pb)), in the whole concentration range x = () mol
% PbF to x =100 mol % PbF,, at temperature T = 700 K, are calculated and presented in Figures
4.11 and 4.12, respectively. These structures reveal a series of well-defined peaks corresponding to
successive nearest-neighbour distances (positions of the first peaks) of the regular lattice, i.e. like that
of a normal solid (Islam et al. 1996). The peaks are strongly peaked such that they fall to
approximately zero in between. Hence, the cation RDFs of all systems reveal that the extensive long-
range order is preserved. The peak intensity increases with composition x for the Cd-Cd peaks and
decreases with composition for the Pb-Pb peaks (see Table 4.9). In addition, in all compositions, the
distances between the cations (i.e. Cd-Cd and Pb-Pb distances) are greater than the F-F

distances/separations (see Table 4.10).

4.4.10.2 RDFs of fluorine ions (g(F-F))

The F-F RDFs for the six compositions at temperature T = 700 K are shown in Figure 4.13. At low
PbF, concentrations (x<20 mol % PbF), the F-F" RDF curves are sharply peaked, i.e. they show
more structure. With increasing PbF> content, the F-F* RDF curves become less structured, and the
height of all the first peaks are reduced. The F-F RDF curves, for the systems x>20 mol % PbF-,
simulated at T=300 to T=700 K, show that the degree of disorder (shown by decreases in height and
broadening of the first peaks) was found to increase with increasing temperature and the locations

of the peaks also change with temperature (see Table 4.10). This is also accompanied by the loss of
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Figure 4.11 Cd-Cd Radial distribution functions in CdF,(xPbF,) at T=700 K.
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Figure 4.12 Pb-Pb Radial distribution functions in CdF,(xPbF,) at T=700 K.
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Table 4.9 Cd-Cd and Pb-Pb bond-lengths obtained from molecular dynamics studies on CdF,(xPbF,)
mixed solutions.

Bond- Temp Composition x(PbF, mol %)
length
0 20 40 60 80 100
T(K) r(A) height r(A) height r(A) height r(A) height r(A) height r(A) heigh
Cd-Cd 700 3825 7.212 3.875 6.849 3925 7404 3925 9506 3925 14.10 - -
Pb-Pb 700 - 4.025 13.88 4.075 8.581 4.125 6.284 4.175 5.169 4,175 4.706
Table 4.10 F-F bond-lengths obtained from molecular dynamics studies on CdF,(xPbF,) mixed
solutions.
Temp. Composition x(PbF; mol %)
0 20 40 60 80 100
T(K) r(A) height r(A) height r(A) height r(A) height r(A) height r(A) height
300 2.625 5230 2775 3.660 2.825 2.888 3.025 2607 3.025 2704 3.075 2.721
700 2.675 3.674 2775 2739 2875 2427 3.075 2240 3.125 2170 3.075 2.167

long-range order on the anion sublattice, i.e. the oscillations in the RDFs die out rapidly with
increasing r (and is similar to those in liquids even though the crystal remains unmelted). Hence, the
F-F" RDFs for these systems resemble the mobile ion—mobile ion RDF of liquids, indicating that they
form a weak, diffuse structure (system with less structure) for separations larger than the nearest
neighbour. In this respect, doped CdF»(x PbF>) crystals resemble many superionic conductors so far
characterized [e.g. PbSnF; (by Cox et al. 1994), RbBiF, (by Catlow et al. 1985), Yttria-doped cubic

zirconia (by Shimojo et al. 1992 and Islam and co-workers 1996), etc].

Analysis of the general profiles for cation-caction and fluorine-fluorine interactions shows that whilst
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temperatures T = 300 and 700 K.
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the cations retain their original coordinates, the anions form a complex, grossly distorted ‘cubic’
structure. In particular, the F-F RDFs are much less sharp than the cation-cation RDFs (compare
Figures 4.11-13). This shows a more diffuse anion sublattice. Furthermore, in F-F RDFs, a
broadening of the general profile is observed with an increase in the concentration of PbF, (see Figure
4.13) such that the height of the second peak for the mixed systems rapidly dies out. Hence, the

fluorine sublattice is deformed from a simple cubic lattice.

4.4.10.3 RDFs of the cations (g(Cd-F) and g(Pb-F))

The Cd-F and Pb-F RDFs are presented in Figures 4.14 and 4.15, respectively. As expected, these
peaks correspond to the cation-fluorine interactions. To study the local environments of the two
cations, we will concentrate on the behaviour of the first peaks (cation-fluorine first-neighbour

distance) of the cation-fluorine RDFs.

[t is remarkable to note that the Cd-F and Pb-F RDFs show no pronounced qualitative changes on
raising the concentration from x = 0 mol % PbF, to x =100 mol % PbF,. However, the heights of the
Cd peaks remain greater than those of the Pb peaks (see Figures 4.14 and 4.15), i.e. the differences
in the Cd-F and Pb-F RDFs are greatly shown. This is indicative of the high extent of disorder on the
Pb cation sites/sublattices than that on the Cd cation sites. Furthermore, in all compositions the
distances between the Pb-F pairs are greater than those between the Cd-F pairs [see Table 4.11(a)-
(b)]. This implies that it is energetically more favourable for a fluorine vacancy to be the nearest

neighbour of Pb*" ion in the CdF,-PbF, systems. The results accord well with the computational
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Table 4.11(a) Cd-F bond-lengths obtained from molecular dynamics studies on CdF5(xPbF,)
mixed solutions.

Temp. Composition x (mol % PbF,)

0 20 40 60 80
T(K) R(A) Height r(A)  Height r(A) height r(A) Heigh r(A) Height
77 2325 1173 2,125 7734 2225 770 2225 ;5.[23 2225 9.777
300 2375 6405 ;_275 5200 2325 596 2175 7.172 2175 7.172

Table 4.11(b) Pb-F bond-lengths obtained from molecular dynamics studies on CdF(xPbF 2)
mixed solutions.

Temp. Composition x (mol %PbF,)

20 40 60 80 100
T(K) r(A)  Height r(A)  Height r(A) height r(A) Heigh r(A) Height
77 2275 5.58 2375 6.685 2325 4946 2.125 ;.324 2.325 5.893
300 2325 3798 2375 3.798 2475 3.670 2325 3785 2375 3.999

results of Li and Hafskjold (1995) and Allilla et al. (2001) on Y>0-ZrO, systems, which showed that

it is energetically more favourable to create an oxygen vacancy in the nearest neighbourhood of the

Y*" ions than of the Zr*" ions. In addition, Cox et al. (1994) showed similar results from simulations

of PbSnF, and RbBiF,. Hence, this is a general trend for mixed-metal fluorites. These results are also

in accord with arguments based on ion size (see Cox et al. 1994), in which the small ion (Cd in the

present study) allows the lattice to relax around it, whereas the large ion causes slight distortion in

the local structure.

A further feature of note is that no significant structure is observed in the cation RDF peaks at
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distances more remote than the first neighbours (in particular, for x>40 mol % PbF; samples). This
clearly contrasts with the parent materials CdF, and PbF», which show contributions to the peaks
from second neigbours and beyond (see Figures 4.14 for x = 0 mol % PbF>). A possible explanation
for the absence of peaks due to cation-fluorine shells in the doped samples could be the high degree

of disorder in the mixed systems than in the parent materials.

In summary, Figures 4.14 and 4.15 present the calculated RDFs for the two cations at T =77 and 300
K at various temperatures and at various concentrations. Some similarities/differences can be
detected:

. One peak can be well-identified / resolved in the two RDFs for the mixed systems (x240
mol % PbF,), even though the cations display negligible mobility on the MSD-time
scale/line. This is indicative of the loss of long-range order in the mixed systems.

® The peak in the Pb RDF is broader than the peak in the Cd RDF in all samples
independent of the temperature, i.e. the static disorder in the Pb-F coordination shell is
greater than in the Cd-F one.

® The peak in the Cd RDF is higher than the peak in the Pb RDF, i.e. the Pb-F bond length
is longer than the Cd-F bond length.

Reductions in the height of the Pb-F and Cd-F amplitudes with temperature increase are noted. This

points to the extent of disorder in complex systems.
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CHAPTER 5

EXAFS STUDIES OF STRUCTURAL PROPERTIES OF CdF,-PbF,

MIXED SYSTEMS

5.1 INTRODUCTION

EXAFS is a technique that allows one to probe the immediate structural environment of a constituent
element in a composite material as outlined in Chapter 3. Thus the technique probes only short-range
order within a solid, namely, the nearest-neighbour elements, the number of nearest-neighbours and
the location of atoms coordinating the excited element within the material. EXAFS measurements

are carried out using a synchrotron as a source for X-ray radiation.

In this study, the local environments of Cd and Pb cations in CdF,(xPF>) solid solutions as a function
of composition x and temperature have been measured by means of EXAFS. Hence, individual local

structural features surrounding both Cd and Pb cations can be directly compared.

Previous EXAFS work on mixed-metal fluorides of the form ABiF,; and MSnF, (where A=Rb and
M=Pb), with very high F ion conductivities, successfully revealed the local structural environments

of the cations (Catlow et al. 1985 and Cox et al. 1994). The EXAFS profiles and Fourier Transform
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data obtained for the Rb and Bi edges in RbBiF, mixed systems showed that local environments of
both cations are highly disordered and the Fourier Transform of each cation consists of a single peak.
This is in contrast with the results for pure fluorite-structured materials such as CaF,, CdF,, etc
(Catlow et al. 1984 and Netshisaulu 1996) which show more than one peak in the Fourier Transform
profile. The absence of contributions from more distant shells to the Fourier Transform in RbBiF,
was attributed to the large extent of displacements of the atoms from their perfect lattice sites.
Hence, backscattering from shells beyond the first nearest neighbours is negligible. Furthermore, the
Rb-F bond length is marginally greater than the Bi-F bond length in these materials. On this basis,
it was concluded that the Bi ions ‘dictate’ the structure by drawing F ions to form a tight
coordination shell at a short distance which leaves the Rb-F shell comparatively disordered (Cox et
al. 1994). Further evidence to the observations above was that F~ vacancies were preferentially
located in anion sites neighbouring cations having larger ionic radii and lower charges. This intriguing
behaviour was attributed to the fact that it is electrostatically easy to remove ions from sites in excess
of singly charged ions (e.g. Rb in RbBiF,) (since Rb ions carry a lower charge of +1 as opposed to
+3 for Bi ions) than to remove them from sites adjacent to the more highly charged Bi ions. The
reasons for the greater ease of removing F~ ions from a site rich in Rb than from a site adjacent to an
excess of Bi ions were as follows:

(a) Electrostatically,.

(b) Elastically, significant size difference between the involved cations (i.e. rRb" = 1.47 A > B’

=0.96 A) suggests that Rb promotes vacancy stabilisation in neighbouring sites.

The profile of the EXAFS spectra for the local structure surrounding the two cation edges in RbBiF;
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as a function of temperature showed significant differences. In the case of Bi no change in the
amplitude or frequency of the oscillations was observed whilst the Rb edge EXAFS displayed a
dramatic reduction in both amplitude and frequency as a function of temperature. This implies that
local ordering about Bi*" is much greater than about Rb'". The first peaks in the Fourier Transforms
of Rb" show reduced amplitudes (with increasing temperature) and are broader than those for Bi.

This phenomenon is linked to the decrease in the number of F ions in the neighbouring shell of Rb'
as well as an increase in the static component of the Debye-Waller factor. The decrease in frequency

of the EXAFS oscillations with increasing temperature is accounted for by a decrease in the Rb-F

distance for the shell.

In the present investigation, Cd and Pb cations have the same charge (+2) as in PbSnF, (Cox et al.

1994) so that no electrostatic advantage exists for the creation of F~ vacancies in anion sites adjacent

to the cations with an excess of either Cd or Pb ions. The removal of ions from a site rich in Pb

neighbours is more favourable than from a site adjacent to an excess of Sn due to the reasons given

below:

(a) there is no electrostatic advantage in PbSnF, mixed these systems so that removal of [ ions is
equally favourable from either type of site.

(b) Pb’' cation promotes vacancy stabilisation in neighboring sites due to their large ionic radius.

(c) The greater activity of the lone pair on Pb*" favours the stabilisation in the neighbouring sites due
to lone pair localisation. This is also evident in the marked loss of higher frequency contribution
to the EXAFS at high temperatures. This shows the negligible impact of more distant

neighbours on the Pb edge EXAFS.
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Generally, effects observed on the Sn edge in PbSnF, are similar to those observed on the Bi edge
in RbBiF,. On the other hand, for the Pb edge, effects observed are similar to those observed on the
Rb edge. Furthermore, the Sn-F distances are shorter than the Pb-F distances. On the basis of this
discussion, Cox et al. (1994) proposed that Rb'" and Pb*' ions transfer F ions from normal sites into
interstitial ones with the creation of supplementary vacancies in the normal anionic sublattice, whilst
Bi and Sn cations enhance the conductivity by preserving the structure (maintaining a temperature-
independent local environment), thus helping to preserve the open-nature of the fluorite structure,

retaining the pathway for migration via interstitial sites.

CdF»(xPbF-) are mixed solid solutions of the A, B.C type for every composition (0 mol %=<x<100
mol %PbF,). Hence, this solid solution is based on the CdF, matrix and the lattice parameter varies
linearly with temperature (see Figure 5.1). Furthermore, X-ray diffraction analysis shows that the
lattice constant of the CdF»(xPbF>) mixed crystals varies almost linearly with Pb content (Kosacki and
Dynowska, 1980), i.e. it fulfills Vegard’s law. These mixed crystals also possess high levels of F" ion
disorder. High temperature studies on these compounds (Kosacki 1986 and Kosacki et al. 1989)
have provided strong evidence for a relatively low value of the transition temperature T to the fast-
ion phase at x=60 mol %. Our previous computer modelling results on CdF,(xPbF) (Netshisaulu,
1996) crystal also revealed that the extent of disorder increases around Pb. However, a detailed study
of the structural, dynamical and conductivity properties of CdF>(xPbF,) mixed systems in the whole
compositional range is still lacking. This chapter is aimed at the examination of the environment

around the Cd and Pb atoms and the determination of the extent of structural disorder. For these
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reasons it is necessary to undertake more elaborate EXAFS studies on CdF,-PbF; systems in order

to give a qualitatively detailed interpretation of the results.

5.2 EXAFS THEORY

The plane-wave approximate of the EXAFS is described in Chapter 3. However, the plane-wave
approximation’s application is limited to high photo-electron (emitted on absorption of the x-ray).

In this work, the exact, rapid curved-wave (EXCURV) theory is used for EXAFS analysis.

5.3 EXPERIMENTAL DETAILS

5.3.1 Sample Preparations

CdF,-PbF, crystals with 0, 20, 40, 60 80 and 100 mol % PbF, were prepared for this study in the
Chemical Laboratory of the University of Kent, at Canterbury, in the UK. Weighed quantities of
CdF, and PbF, compounds were thoroughly mixed and melted in graphite containers inside quartz
tubes until a uniformly clear melt was obtained under vacuum (1 0° torr). These prepared specimens
were finely ground (< 20 mm) with a mortar and prestle and well diluted with boron nitride and
pressed into thin coherent pellets using a 13-mm die. After preparation the samples were mounted

in an evacuable crystal-heating furnace.
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5.3.2 The EXAFS Technique

Details on the EXAFS technique have been reported in Chapter 3. X-ray absorption spectroscopy
is simply the accurate determination of the X-ray absorption coefficient of a material as a function of
photon energy, in an energy range that is below and above the absorption edge of one of the elements
in the material. Each element (in this case, Cd or Pb) has a unique absorption edge that corresponds
to the binding energy of the inner shell electrons. This work is concerned with K and L; absorption
edges for the study of the local environments of the neighbours of Cd and Pb elements, respectively.
The former results from the photo-electric process in which the energy of the X-ray is absorbed by

a 1s core state while the latter results from the corresponding process for the 2p core state.

5.3.3 Experimental Procedure

We have made X-ray absorption measurements on absorption edges of all the cations present in the
sample. Thus EXAFS measurements for CdF,(xPbF,) mixed systems were taken at the Pb (L)
(13.036 keV) and Cd (K) (26.716 keV) edges using the Science and Engineering Council (SERC)
Synchrotron Radiation Source facilities of station 7.1 at Daresbury in the UK. The samples
CdF,(xPbF5), x= 0 mol %-100 mol % PbF,, were mounted in an evacuable heating furnace with
Beryllium windows. The EXAFS absorption spectra were recorded at various temperatures in the
transmission mode using a channel-cut Si(111) crystal monochromator to study the L; absorption
edge of Pb and the Si(220) one for the Cd edge. Order-sorting monochromators were used to

minimise harmonic contamination of the beam. During the data collection, the SRS was operated at
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an electron energy of 2.0 GeV with a typical beam current of ca. 150 mA.

5.3.4 Data Analysis

The EXAFS were analyzed following a standard procedure using the Daresbury EXAFS programme
library (see Chapter 3 for details). Data were fitted using least squares fitting program. Five
parameters (i.c. energy Eo, afac, potential V;, afac, radial distance R;, Debye-Waller factor Ac’) for
each of the five nearest-neighbour shells were allowed to vary in order to obtain a good fit to the

experimental data. The coordination of the first shell was held fixed at eight fluorines.

In essence, data analysis of the raw EXAFS includes removal of the background level and a Fourier
transformation of the EXAFS (experimental data). The result is a series of peaks in the Fourier
transform that correspond to the contributions of various coordination shells around the excited atom.
The Fourier Transform is similar to a radial distribution function. Further data analysis of the
EXAFS gives coordination numbers (N), radial distances (R) and a Debye-Waller factor (Ac®) that
is a measure of the thermal and static disorder in the CdF»(xPbF; ) solutions. The amplitude and
phase parameters have been obtained from the parent solid samples CdF, and PbF; for the analysis
of the EXAFS of mixtures. Calculated phase shifts should be included in data analysis to ensure that
peaks represent shell distances. Furthermore, fluorine coordination around Cd*" and Pb”' ions in the
solid solution of the CdF2(xPbF,) system are similar to those in the end-members CdF, and PbF,

respectively.
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5.4 RESULTS AND DISCUSSION

5.4.1 Introduction

The objective of this study is to examine the effects of increasing concentration and temperature on
the local structural environment of the host and dopant cations. Hence, information on local
environments of the host Cd and dopant Pb cations in CdF,(xPbF: ) mixed systems and the extent of
structural disorder was obtained from EXAFS measurements as a function of PbF, composition x and
temperature 7. EXAFS technique has also been used to compare the immediate structural
environments of the Cd and Pb cations in an attempt to locate the position of anion vacancies in

CdF>(xPbF>).
5.4.2 Compositional Effects on Fourier Transforms

The EXAFS spectra (k) have been k’ weighted in the usual manner (see Catlow et al. 1985) so that
the Fourier transform amplitude (corresponding to interatomic/radial distances) can be determined
more accurately within this weighting. EXAFS data were collected for Cd and Pb edges at both
liquid-nitrogen (77 K) and ambient (300 K) temperatures in order to distinguish between the effects
of static and thermal disorder. The radial distribution functions RDFs were obtained by Fourier
transforming the k* (k) data of the Cd K and Pb L; edges. Figures 5.2 and 5.3 show the low
temperature (77 K) Fourier transform amplitudes [(an ‘EXAFS radial distribution function (RDF)’]
against r of the Cd (K) (— ) and the Pb (L3) (-—-) edges in CdF2(xPbF>)(0 mol %< x <100 mol

%) systems, respectively. The first peaks in the Fourier transforms (Figures 5.2 and 5.3) result from
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) for various Pb content x in CdF.(xPbF>) crystals.
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Figure 5.3 Fourier Transforms of the EXAFS function above the Cd(K) edge( ) and the
Pb(L3) edge () in binary (i.e. CdF;and PbF,) compounds of CdF»(xPbF,) crystals.
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backscattering from the nearest-neighbour shell of fluorine atoms (i.e. nearest neighbour to the central
metal atom giving rise to Cd-F or Pb-F distances, while the second peaks correspond to
backscattering from the shell of metal atoms [(Cd,Pb)-Cd or (Pb,Cd)-Pb]. A comparative
examination of the Cd and Pb spectra in Figures 5.2 and 5.3 reveals the presence of two well-defined
peaks (for the composition ranges 0 mol %=<x<60 mol % PbF; and 60 mol %<x<100 mol % PbF,)
with the amplitudes of the second shells (cation-cation / metal-metal peaks, i.e. (Cd,Pb)-Cd or
(Pb,Cd)-Pb peaks significantly reduced at x=60 mol % PbF, for both edges. Thus the Fourier
transforms of the EXAFS spectra are dominated by the first fluorine shell [fluorine-cation (Pb or Cd)]
for the composition x=60 mol % PbF,. This spectrum (for x=60 mol % PbF>) clearly shows that the
EXAFS results from a single fluorine shell and this is typical of most solid solutions (see Catlow et
al. 1985 and Cox et al. 1994). This is a manifestation of an extensive static disorder in the CdF,(60
mol % PbF,) sample. The disorder tends to increase with composition until the value of x = 60 mol
% is reached. This is consistent with Kosacki et al.’s (1989) observations (see Figure 5.4) where a
decrease in the temperature to the superionic state T, was noted as the value of x was increased in
the range 0 mol %<x<60 mol % PbF,. For 60 mol %=<x<100 mol % PbF, an increase in T. was noted.
The compositional dependence of T attained a minimum at T = 485 K for x = 60 mol % PbF; (see
Figure 5.4). However, it is a commonly accepted view that the lack of features from further shells

(i.e. lack of long-range order) shows that this system is heavily disordered.
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In the same vein it can be concluded that doping in CdF»(xPbF,) mixed systems leads to both large
local distortions of the structure and lower values of T. (Kosacki et al. 1989). The amplitudes of the
Fourier transforms of the edges of the two cations indicate significant differences in heights as shown
in Figure 5.2 and 5.3. Amplitudes in the Fourier transforms of the first shells of the Cd (K) edge
spectra are markedly higher than those for Pb (L;) edge spectra across the entire composition. On
the basis of these results, it can be concluded that F vacancies are mainly excluded from the near
environment of the Cd ions. Furthermore, in both cases, the first peak is also significantly affected
by changes in composition x (see Figure 5.5 and 5.6). The amplitude of the Fourier transform of the
first shell for both sites is seen to decrease rapidly with an increase in Pb content until x ~ 60 mol %,
followed by an increase in amplitude as observed for the Cd-Cd and Pb-Pb profiles in Figures 5.2 and
5.3, respectively. Thus no nearest Cd-Cd nor Pb-Pb pairs are detected for sample x = 60 mol % PbF-.
The smearing out of the second shell at x = 60 mol % PbF; could be due to destructive interference
of amplitudes from Pb and Cd. However, to make the picture clear, let us focus on the behaviour of
the cation-fluorine peaks since we are interested in the nearest neighbour interactions (i.e. the cation-
fluorine interaction). It is immediately obvious by comparing the compositional dependence of the
amplitudes of the Fourier transforms of the first shells (Figures 5.5 and 5.6) for 0 mol %<x<100 mol
% PbF,, that Cd sites are less sensitive to the increase in Pb content. Thus there is less disorder
associated with the first peak for Cd-F interactions whilst the first shell in the Pb*" cation EXAFS is
considerably disordered. Hence, the disorder in the Pb sites is almost certainly due to increase in the
DW factor rather than the change in coordination numbers (since the coordination numbers are held
fixed). The increase in the DW factor could be linked to a decrease in amplitude for the Fourier

Transforms. Furthermore, from previous arguments in the work of Cox et al. (1994) on PbSnF, that
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the larger Pb”" ion is expected to favour the Pb-F sites.

5.4.3 Compositional effects on DW factors

Structural parameters (nearest-neighbour number N, radial distance R and DW factor o) of the first
peak give a description of the local environment / structure of the cations in mixed systems and are
presented in Tables 5.1 and 5.2, in order to compare the extent of disorder in the entire range of
CdF»(xPbF,) systems. Since 6” and N are highly correlated, we preferred to fit the EXAFS spectra
holding N fixed. Hence, in each case, the dopant is surrounded by eight (8) fluorine ions. The high
values of the Debye-Waller factors in Tables 5.1 and 5.2 suggest the presence of static disorder in Cd
and Pb sites, respectively, in CdF,(60 mol %PbF,) at 77 K. A closer examination of the tables 5.1
and 5.2 reveal that for almost pure CdF, and x>80 mol % PbF (or CdF»(xPbF>) for x close to 0 mol
% PbF, or 100 mol % PbF,), the values of the DW factors are low. The value of each DW factor
appears to increase with composition for both edges. Least-squares fit with N, R and o’ as fitting
parameters consistently shows the Pb-fluorine shell to have larger o than Cd-fluorine shell in the
whole composition as shown in Figure 5.7. Thus the DW factors of the Pb-F peaks are consistently
larger than those for Cd-F peaks. This implies that the dopant sites are disordered or atoms in
fluorine shells surrounding the Pb are more disordered than atoms in fluorine shells surrounding Cd.
This is in line with simple elastic arguments which, suggest that vacancies would be sited adjacent
to the dopant cation (i.e. Pb promotes vacancy stabilisation in neighbouring sites). In the case where

a relatively small dopant cation is used, the vacancies are located in the vicinity of the host cation.
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Table 5.1 Structural parameters for the first shell of fluorines obtained from EXAFS experiments on
CdF,(xPbF») mixed solutions for the Cd (K) edge.

Temp. Composition x (mol %PbF,)

0 20 40 60 80

T(K) R(A) o’(AY) I'(A) I oA R(A) !. (AD) I’(A) T o(AD I’(A) T (A

77 (2310 | 0.012 | 2294 | 0.014 | 2235 | 0025 | 2.275 0.027 | 229  0.015

300 | 2295|0020 [ 2293 | 0.021 | - - |2249 0025|2288 0.021
500 | 2276 | 0.021 | - - b - lamsion| - | -
650 229010027 | - | - [2219 0031]2211 0039 - | -

Table 5.2 Structural parameters for the first shell of fluorines obtained from EXAFS experiments on
CdF,»(xPbF,) mixed solutions for the Pb (L;) edge.

Temp. Composition x (mol %PbF,)
20 40 60 80 100
T(K) | RA) A | r(A) - dA) | pA) | @) | RA) | TR | ( Ay | °&
| | |

77 | 2485 0.023 | 2275 0.027 | 2496 | 0042 | - | - | 2.524 0.027
300 | - | - 2249 0025|2438 0046| - = - [2500 0.048
450 | - . | 2235 0028|2437 00s8| - | - |2458 0056
s00 | - - |238 0050 - - | - - |2427 0058
550 | - - | 2411 0093 | - - |2460 0076|2405 0.058

However, in the situation where a much larger impurity cation is used (as in the present study), the
vacancies are situated in the proximity of the dopant cation. The implication of this is that the central
Cd?" host cation has less static disorder in the presence of the larger dopant cations. Perhaps this
comes as no surprise because it might be expected that large (ionic radius) cations (dopants) would

relieve some of the “steric’ strain introduced into the system by accommodating a vacancy in the
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Figure 5.7(a) Variation with composition x of the disorder term o (Debye-Waller parameters) (from
EXAFS) of the first neighbour (cation-fluorine) shell in CdF,(xPbF) at temperature T =77 K. The

curves are guides to the eye.
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Figure 5.7(b) Variation of the disorder term o (Debye-Waller factors) from EXAFS of the first

neighbour (cation-fluorine) shell as a function of composition in CdF2(xPbF>) at temperature T = 300
K.
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Figure 5.8(a) Debye-Waller parameters (as determined from EXAFS) of the first neighbour (Pb-F)
shell as a function of composition in CdF»(xPbF,) at T = 77 and 300 K.
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Figure 5.8(b) Debye-Waller parameters (as determined from EXAFS) of the first neighbour (Cd-F)
shell as a function of composition in CdF,(xPbF>) at temperature T = 77 and 300 K.
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nearest-neighbour anion site. A possible explanation of the effects we observe is that in the case of
Pb dopants and Cd hosts, the size mismatch could lead to an increase in the number of Cd* ions

without any F~ species in the nearest neighbour cation sites.

Low values of the DW factors for the Cd-F interaction (c” of about 0.02 A®) imply less disorder
whilst the high values of the Debye-Waller factors in Pb sites (6> of about 0.04 A?) reflect the
extensive disorder around the Pb cations in the entire range of CdF,(xPbF,) systems. The plots for
the dependence of the DW factors on composition x suggest that the fluorine lattice becomes more
disordered as the mix of large ions (Pb) and small ions (Cd) in the fluorine shell becomes more evenly
distributed. Maximum disorder occurs when the mixture has approximately equal concentration of
Cd and Pb for both sites (Cd and Pb). Thus the most pronounced change in Debye-Waller factor
occurs for 40 mol %<x<80 mol % PbF,. Such a situation is quite similar to that observed in PbSnF,
and RbBiF; mixed crystals (see Catlow et al. 1985 and Cox et al. 1989). In RbBiF; mixed metal
fluorides, such behaviour was related to the properties of the cation such as ionic radius. Cations

with large ionic radius promote vacancy stabilisation in neighbouring sites.

The large values of the DW factors of the Pb-F interactions in CdF,(xPbF,) systems are consistent
with low amplitudes of their Fourier transforms (see Figures 5.2 and 5.3). Small values of the DW
factors for the Cd-F interactions also indicate a well-defined coordination environment for the Cd-F
Fourier transforms. This suggests that the addition of Pb”" to CdF, disorders the local environment
around the Pb sites. Furthermore, the profiles of the Debye-Waller (DW) factors of the Pb-F

interaction as a function of composition in the mixed systems are larger than those in the Cd-F
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interation, which result in a smaller Pb-F peaks as displayed in Figure 5.2 and 5.3. The amplitude

reduction of the Fourier transform can be fully explained by the increase in o”.

5.4.4 Compositional effects on bond lengths

Tables 5.1 and 5.2 give radial distances that were determined from the first peaks of the Fourier
transforms for the Cd and Pb edges in CdF,(xPbF,) mixed systems at 77 K. The actual Cd-F and Pb-
F distances / separations are plotted in Figure 5.9 as a function of composition x. Although both
EXAFS spectra consist of two major peaks, there are clear differences in the dependences of the
radial distances of Cd and Pb cations on composition x. Notably, the Pb-F distances are consistently
larger than Cd-F distances, again reflecting the larger Pb ion size and the high state of disorder on the
Pb sites, yet the unit cell expands with increasing Pb content x (see Figure 5.1). The net expansion
occurs because the smaller Cd ions are increasingly replaced by the much larger Pb ions. The same
argument was used by Veal et al. (1988) on their EXAFS study of yttria stabilized cubic zirconia.
However, the metal-oxygen distances (i.e. Zr-O and Y-O) in yttria stabilized cubic zirconia
systematically decrease with composition x (or vacancy concentration) and the plot of the weighted-
average of Y-O and Zr-O distances [or (Zr,Y)-O distance] obtained from EXAFS shows the expected
expansion with composition x. The mean (Zr,Y)-O distance was calculated using the lattice constant
of the fluorite-type structure where the coordinate of metal is assumed to be (0,0,0) and that of
oxygen is (V4,%.,%). The same behaviour was reported for ZrO,-Gd,O; solid solutions (Uehara et al.

1987). In essence the decrease in the metal-oxygen distance was attributed to the decrease in the
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coordination numbers around the absorber / target cation.

Examination of the results given in Tables 5.1 and 5.2 and Figure 5.9 shows that the radial distances
remain more or less the same over the entire composition range (i.e. 0 mol %<x<100 mol % PbF,)
or no appreciable changes in metal-fluorine distances are observed with Pb content. This is
reasonably explained by the fact that the coordination number N of both Cd and Pb was kept fixed
at eight (8) across the composition beacause the fitting parameters (i.e. N and 6°) for fluorine shells
surrounding the Cd and Pb absorbers are highly correlated in equation 3.3. This behaviour of near

constant bond-lengths with concentration is noted at high temperatures.

5.4.5 Temperature effects on Fourier transforms

Fitting high temperature experimental data for mixed systems is more difficult since these materials
possess high levels of defects and makes detailed quantitative analysis more complex. However, in
this study we are mainly concerned with changes in the local arrangement (structural information) of
the neighbours of Cd and Pb cations with temperature. K and L; edge spectra of Cd and Pb cations,

respectively, were obtained for each concentration in the temperature range 77 to 300 K.

Shown in Figures 5.10 and 5.11 are the Fourier Transforms for the Cd - and Pb — edges obtained for

CdF,(xPbF,) mixed crystals at T = 77 K and 300 K. Examination of the Fourier transformed data
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Figure 5.9 Pb-F and Cd-F nearest-neighbour distances as a function of composition x in
CdF,(xPbF,) mixed crystals as measured by EXAFS at temperature T=77K.
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Figure 5.10 Fourier Transforms of the EXAFS function for various samples x in CdF»(xPbF>) crystals above

the Cd (K) edge at temperatures T = 77(—

Yand 300 K ().
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Figure 5.11 Fourier Transforms of the EXAFS function for various samples x in
CdF,(xPbF,) crystals above the Pb(Ls) edge at temperatures T =77 (———) and 300
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(Figure 5.10) reveals that for the pure CdF, compound the structure is richer at low temperatures
(e.g. at temperature T = 77 K). A two-peak structure was observed for CdF,. As before, the first
peak in Figure 5.10 corresponds to the Cd-F contribution whilst the second peak corresponds to the
cation-cation contribution to the structure for CdF, (x = 0 mol % PbF,). Both peaks (first and
second) in Figure 5.10 tend to steadily go down with an increase in temperature (i.e. from 77 to 450
K). Comparatively, the first peak in the Cd-F RDFs for CdF is sharper than for PbF> (x = 100 mol
% PbF,) in Figure 5.11. This implies that Cd adopts well-defined sites. Likewise for PbF,, presented
in Figure 5.11, a two-peak structure is observed with the second peak splitting into two and rapidly
decreasing in amplitude with temperature increase until the structure ceases to exist at x = 60 mol %
PbF,. In short, the main difference between peaks for the Cd- and Pb- edges in the two binary
compounds is on the magnitudes of the FT amplitudes and the rate of decrease with temperature (see

Figures 5.10 and 5.11).

In the mixed crystals, i.e. for the composition range 0 mol %<x<100 mol % PbF,, the two-peak
structure is transformed into one peak for higher concentration x = 60 mol % PbF> and for higher
temperatures (450 K and 500 K). This feature could be linked to destructive interference of
amplitudes from Pb and Cd atoms. Hence, only a one-peak structure is observed for x ~ 60 mol %
PbF, (see Figures 5.10 and 5.11). The Fourier transform spectra for the Pb (Ls) edge show an
increased broadening with temperature and peaks which progressively diminish over the given
temperature range. This behaviour could represent a general phenomenon for mixed metal fluorites

as a result of the extensive disorder in these materials (Cox et al. 1994).
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5.4.6 Temperature effects on DW factors

Figure 5.12 shows the temperature dependence of the DW factors for Cd-F and Pb-F shells. Some
of the main features shown in Figure 5.12 are: the values obtained for the solutions are larger than
values obtained for pure compounds over the same temperature range and the plots in Figure 5.12
reveal that the DW factors increases linearly with temperature with the plot for the compound x=60
mol % PbF, showing large values for the DW factors in the Pb-F shells than in the Cd-F shells. This
s in line with the discussion in section 5.4.3 on compositional dependence of the DW factors. In
summary, the temperature dependence of the slopes of the DW factors for x = 60 mol % PbF, shows

that there is a considerable thermal displacements within the Pb-F shell.

5.4.7 Temperature effects on bond-lengths

The temperature dependence of Cd-F and Pb-F bond-lengths for the compositions x=0 mol % PbF,,
=60 mol % PbF, and x=100 mol % PbF is shown in Figures 5.13 and 5.14. It is evident from
Figures 5.13 and 5.14 that the positions of the various peaks vary with temperature. The general
observation from the plots is that there is a reduction in cation-F separations in mixed solutions,
which in turn is related to solution forming tendency. Thus, curves of the mixed crystals shift to
shorter distances with increasing temperature. This is in line with the results from the work of Cox
et al. (1994) on PbSnF,. In addition, the Pb-F bond lengths are consistently longer than are Cd-F,

i.e. the Cd-F bond lengths are consistently shorter than those for Pb-F distances. Hence, the first
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Figure 5.12 Variation of the DW factors for Cd-F and Pb-F as a function of temperature in
CdF,(xPbF,) mixed crystals.
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neighbour distances correspond with the standard ionic radii. This phenomenon could be linked to

the elastic and ion size arguments and the fact that both Cd and Pb (see Cox et al. 1994) share the

same fluorine anion neighbours.
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CHAPTER 6

COMPARISON OF THE EXPERIMENTAL AND SIMULATION

RESULTS

6.1 INTRODUCTION

The first part of this Chapter is devoted to the study of the local structures of the two cations (i.e. Cd
and Pb ions) separately by means of EXAFS spectroscopy. Computer modelling technique is used

to provide complimentary information on these features.

62 EFFECTS OF COMPOSITION AND TEMPERATURE ON THE PROFILES OF THE

FOURIER TRANSFORMS/RADIAL DISTRIBUTION FUNCTIONS

Fourier transforming EXAFS data produces an approximate radial distribution function (RDF), in
which features at low distances are more dominant (see Catlow et al. 1989). Figure 6.1 compares
the calculated and experimental data for the Cd-F peaks in CdF»(xPbk?) mixed solutions. However
(as shown in the Figure), only selected peaks in the mixed solutions were monitored to ensure clarity
in the presentation of the results. Moreover, the height of the Cd-F peak for the x = 0 mol % PbF,

sample is far greater than peaks for other concentrations from calculations. Hence, the Cd-F peak
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for the sample x = 0 mol % PbF; has been left out for clarity. As reported earlier (see sections 4.4.10
and 5.4.2), the first peak in the RDFs represents the cation-fluorine interaction. As may be seen from
the two Figures, the calculated curves qualitatively reproduce the pattern of the FTs’s variation with
concentration x for the temperature T =77 K. For short distances (less than 1.5 A) the RDF is nearly
sero. This is due to the strong repulsive forces (see discussion in Chapter 2). Furthermore, in all
cases, it is clear that high (maximum) peaks at liquid nitrogen temperature (77 K) occur at lower
values of the RDFs. Hence, there is no long-range order. This also indicates that the probability of
finding two atoms (Cd** and F") within a distance r ~ 2.20 A (or of finding F atom/ion at a distance
from the Cd atom) is high compared to the ideal gas distribution. It is quite gratifying to note that
both experimental and modelling results reveal a minimum curve for the x = 60 mol % PbF; sample.
This is in line with the results from the Raman scattering work of Kosacki et al. (1989).

Furthermore, the present calculations of the conductivity have shown considerable enhancement in
the ionic mobility on doping (i.e. when a cadmium jon is replaced by a lead ion of larger jonic radius)
and a concomitant reduction of the activation energy for the conduction process for the x = 60 mol
% sample in CdF>(xPbF,) mixed crystals (see Chapter 4). The conductivity was shown to be anionic
in nature. However, the experimental profiles are broader and less pronounced than those in the
calculations. The explanation could be the polarization effects which were neglected in the
calculations. Similarly, Figure 6.2 shows the concentration dependence of the Pb-F Fourier
Transforms/RDFs (Figures 6.2(a) experimental and 6.2(b) computational results) for the various
samples in CdF»(xPbF;) mixed crystals. The Pb-F profiles vary with concentration x in a similar
fashion as for the Cd-F profiles. Thus doping increases the disorder around both cations (i.e. Cd and

Pb ions). However, the Pb-F profiles are broader than those for the Cd-F across the entire
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Figure 6.1 The concentration dependence of the Cd-F RDFs at T = 77 K in
CdF,(xPbF>) crystals. (a) present experimental work (b) present calculations. In
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composition. This suggests the predominance of static disorder in the Pb-F coordination shell, or
simply stated, static disorder around the Pb ions is greater than around the Cd one. Hence, the
neighbourhoods of the Cd and Pb ions are not the same. These features are quite consistent with
earlier findings from Raman scattering spectroscopy studies of Kosacki et al. (1989). The
experimental Fourier Transforms for the two-cation edges and their respective computational data
indicate that the experimental Cd-F peaks are systematically higher than the calculated curves (see
Figures 6.3a and 6.3b). Hence, the present calculations qualitatively describe the basic features of

the real materials.

Figures 6.4 and 6.5 display reductions in the height of the first peaks of the Cd-F and Pb-F RDFs/FTs
as the temperature increases. In all cases, there is good agreement between experimental and
computational results and minor discrepancies are probable within the errors of the experimental
results and the uncertainties in the calculations attributable to the quality of the interionic potentials.
The significant broadening of the Pb-F peaks (see Figure 6.5) with an increase in temperature is
ascribed to extra F~ vacancies which are present in interstitial sites. These features suggest that the
local environment of Pb*" ions is more disordered than that of the Cd*' ions. A similar behaviour was
noted by Cox et al. (1994) in their study on PbSnF,. Consequently, more F vacancies are located

around the Pb*" cations in the fluorite structure of the CdF»-Pbk systems than near the Cd”" ions.
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6.3 THE F-F RADIAL DISTRIBUTION FUNCTIONS (RDFs) AND MEAN-SQUARE

DISPLACEMENTS (MSDs) OF F- IONS IN CdF,(xPbF;) SYSTEMS

The temperature dependence of the MSDs curves in the CdF»(xPbF) systems (shown in Figure 6.6)
shows that the F ion species are mobile at T = 700 K for systems x = 40 mol % - 100 mol % PbF-.
The transition temperatures T. to the fast-ion phase for pure CdF, and x = 20 mol % PbF, doped
system are ~ 1000 K (see Figure 4.1(a)) and ~ 800 K (see Kosacki et al. 1989), respectively. It also
appears from Figures 6.6. and 6.7 that diffusion in the 40 mol % - 100 mol % PbF, concentrations
occurs at temperatures below and above T.. Ngoepe and Catlow (1991) arrived at similar
conclusions for CaF, (10 mol % LaF3) doped fluorine ion conductors. In Table 6.1 we present details
of the observed transition temperature T, in pure and doped samples of CdF>(xPbF-) (see Kosacki
et al. 1989). It is clear from the Table that T, moves tb lower temperatures with increasing doping
until a 60 mol % PbF, dopant concentration (corresponding to T. =485 K) is reached, beyond which
an increase in T is noted. The transition temperature marks the disappearance of long-range order,

which is order over many interatomic distances.

The RDFs for the F-F interactions at T = 300 and 700 K are shown in Figure 6.8. These results
complement those from the MSDs of the F~ ion species in many respects: namely, at higher
temperatures; the peaks become smaller in height and correspondingly broader as the amplitude of
vibration of the ions around the lattice sites increases; the second shell/peak at a position between 3.0
and 4.0 A disappears at concentrations beyond x = 40 mol % PbF,. In addition, it is apparent from

Figure 6.8 that the first peak becomes broader at concentration x = 60 mol % PbF, Hence, it suffices
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to say that radial distribution function is a good qualitative indicator of atomic motion, for if rapid
diffusion is occuring on one sublattice (e.g. F in CdFx(xPbF>)), the self-correlation function, g(r),

indicates this by the presence of small and broad overlapping peaks.

Table 6.1 Transition temperatures for x = 0 to 100 mol % PbF in CdF»(xPbF,) systems.

Concentration, x Transition temperature, T
(mol %) (K)

0 1000

20 800

40 650

60 485

80 560

100 715
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

The work described in this thesis is the first EXAFS study of the CdF,(xPbF,) mixed metal fluorites
and provides an explanation of the jonic conductivity. The current study was mainly directed at a
detailed understanding of structural and dynamical properties/features of mixed-metal fluorites in
relation to high ionic conductivity. Hence, the investigation of the compositional and temperature
dependence of the physical properties of CdF,(xPbF,) solid solutions has been undertaken. Although
(limited) information on the material under discussion is available, an important feature here has been
the combined use of theory and experiment. The fair agreement between the molecular dynamics
simulations RDFs and EXAFS results confirms the strong links between the simulations and
experiment and adds confidence to the model structures. The poor agreement of the radial
distribution distances with the results from EXAFS must be attributed to the failure of the model to
account for thermal motions and polarisability in this material, in which the ions are particularly

mobile, even at low temperatures.

The shortening of measured interatomic distances with increase in temperature in mixed solutions as

noted in the current study, has already been encountered in other fluorite structured mixed cation
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systems such as PbSnF,. A possible explanation is that in these solutions the metal-fluorine bonds

are less balanced by long-range order than they are in pure compounds.

The present model successfully allowed the identification of the mobile species and the nature of the
conductivity. While these mixed metal fluorites are highly conducting at room temperature, they have
considerably lower transition temperatures than those of their pure counterparts. Calculations of
diffusion coefficients and RDFs obtained from the current MD simulations (modelled using rigid-ion
potentials) confirm that the anions are the mobile species, whilst the cation sub-lattice remains
essentially ordered. This is in line with the already recognised understanding that an ion (F ions are
smaller than either Cd*' or Pb*' ions) hopping from one site to another must be small. Hence, we
postulate that cations provide immobile ‘lattice’ through which the small (mobile) F~ ion can migrate.
Furthermore, the present study shows that cations in mixed metal fluorites do not contribute to
diffusion up to the highest temperature studied, T =700 K. Hence, the calculated MSDs, diffusion
coefficients and RDFs are generally in agreement with previous MD results on mixed metal fluorites

such as RbBiF, (Catlow et al 1989), and perovskite-type oxides such as LaMnOs and LaCoQO; (Islam

1996).

The ionic conductivity results from our MD calculations did allow the most important qualitative
features of the experimental data (i.e., the observation of a maximum/peak in the & vs. Pb content x
curve) to be reproduced. The information on the activation energy (Ex) for conduction indicates the
opposite trend, where the activation energy decreases with an increase in the dopant level. This

tendency can be ascribed to the distribution of the conducting ions among the available interstitial
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sites. Cox’s (1994) and Matar et al.’s (1982) work on RbBiF, and PbSnF., respectively, found
similar results. The resulting vacancies and the corresponding interstitials contribute to the enhanced
ionic conductivity. Our computer modelling work predicts that 60 mol % PbF> doped CdF, crystals
exhibit the lowest activation energy of conductivity in the class of CdF:(xPbF>) crystals, in agreement
with Raman scattering studies of Kosacki et al (1989). In addition, our calculations correctly
predicted the maximum conductivity at x = 60 mol % PbF,, which agrees with that of Kosacki et al.
(1989). Hence, these crystals show the best fast-ionic properties than the other CdF2(xPbF>) crystals.
Thus, we have presented a qualitative picture of the ionic conductivity variations of a typical mixed

metal fluorite.

The present work represents the first attempt to compute the complete set of elastic constants (Cy)
(which determine how a material responds to the application of external conditions such as stress,
pressure, temperature, etc.) and their temperature dependences in CdF,(xPbF,) mixed-metal-fluorites
by means of computer modelling techniques. The calculations give C), larger than Cj;and Cys. This
phenomenon is well known for pure fluorine ion conductors such as CaF,, PbFs, etc. The values of
the elastic constants are compared with those from previous experiments (for the pure components
of the alloy). They show a linear decrease in all the elastic properties with increasing Pb composition
and the decrease is associated with the absence of phase transition/transformation since the mixture
remains cubic (phase) for the whole composition range. Hence, the variation in elastic constants is
only due to the composition change of the mixed systems. Perhaps the most significant result from
the simulation is that all the elastic properties decrease with increasing bond-length (interatomic

distances).
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The temperature dependence of the second-order elastic constants (i.e. C1, Ci2 and Cas) suggests that
all three coefficients have the same characteristics as for the pure components of the CdF»(xPbF;)
mixed systems. This could be attributed to the similarity in the crystal structure in the entire crystal
structure. Thus Cy, is strongly dependent on temperature as opposed to Ci» and C,4 which are non-
dependent. A feature to note is that doped crystals have smaller values of Cj; than in pure CdF. The
dielectric constant &, increases when the mixed system changes from CdF; (x = 0 mol % PbF) to
PbF, (x = 100 mol % PbF,). This result is in excellent accord with the experiment. The plots reveal
a steady increase in &, for x<60 mol % PbF, and a linear beond x = 60 mol % PbF,. Thus the
curvature on € vs. x plot commences just below x = 60 mol % PbF,. Calculations on defect
properties of CdF»(xPbF,) mixed systems have shown that Frenkel disorder is a more prevalent mode

of transport in both CdF, and PbF,, in accordance with experiments.

In general, the cation-cation RDFs consist of a series of sharp and well-separated (resolved) peaks
corresponding to successive NN distances. Hence, cations are strongly localised on regular lattice
sites. This is a normal trend for an ordered solid and is in agreement with MD studies on perovskite-
type oxides (Islam et al. 1996) and yttria-stabilized-zirconia (YSZ) (Shimojo et al. 1992 and Chaba
2000). However, the F-F peaks are broader with small maxima and for separations larger than NN
(first peak) shells are barely resolved (i.e. they show featureless structure). This implies that the
anions form a weakly correlated sub-system, which is indicative of the loss of long-range order on
the mobile fluorine sub-lattice. Such disorder is expected for F ions, which are highly mobile on the
molecular dynamics timescale. Furthermore, the Cd-Cd distances are shorter than those for Pb-Pb.

The shorter Cd-Cd distances are due to strong Coulomb attraction between Cd ions and the fluorine
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ion. Cd-F distances are also shorter than those for Pb-F in all cases. This implies that fluorine ion
' shifted to the Cd ion from the normal fluorite position by the presence of the dopant Pb ion.

Moreover, the Cd-F curves are sharper than the Pb-F curves, indicating that the local structural
environment of Pb’" ions is more disordered than of the Cd*" ions. This could be linked to the
disparity in the ionic radius/size between Cd?' and Pb*' ions. These differences are understandable
if anion vacancies are sited adjacent to Pb than Cd with ensuring relaxations of ions in the vicinity of
the vacancy increasing the degree of static disorder in the Pb coordination shells and maximising the

proximity of the larger cation to its fluorine neighbours.

In addition, the Debye-Waller factors for the mixed metal fluorites are considerably greater than those
for pure compounds. This is an indication of the presence of extensive short-range order in mixed
metal fluorites. The relative lack of order can also be deduced from the loss of structural features
over many interatomic distances, i.e. beyound the NN shells. Static disorder is the major contributor

to the Debye-Waller factor in mixed systems.

Cationic properties that promote F" ion vacancy creation and the correspoding interstitial in the
mixed-metal fluorites (as reported by Cox e al. 1994) are:

(a) low ionic charge

(b) large ionic radius

(c) highly active lone pairs and

(d) strongly polarizable ions
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The work described in this thesis has successfully shown the advantages of the combined use of
EXAFS and computational approaches in synthesising fast-ion conductors with enhanced

conductivities at a temperature as low as possible.

72 RECOMMENDATIONS

The study of mixed-metal fluorites has further enlarged our horizons by making it necessary o
examine other questions, which play a more central role in the case of mixed-metal fluorites. Among

these are the following:

o Clearly, further calculations remains to be done on these fascinating systems with the use
of sophisticated potential models, larger numbers of particles (unit cells) for better
statistics and longer simulations for MD. This would be possible on a TERAFLOP
machine.

° Further experimental investigation with high-resolution NMR on these materials could

contribute to the understanding of these complex and highly disordered materials.

. Measurements of elastic constants as a function of temperature can be compared with our
predictions
. Other types of mixed-metal fluorites can be studied in a similar way, e.g. [CaF (xPbF2)]
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