ABSTRACT:

Comparison of Alfentanil and Lignocaine in blunting the pressor response during endotracheal intubation.

Laryngoscopy and tracheal intubation produce marked increases in heart rate and blood pressure, which is potentially dangerous in certain patients. Various pharmacological agents have been used before laryngoscopy and tracheal intubation in an attempt to attenuate the adrenergic response, but with varying degree of success.

OBJECTIVE

To compare the efficacy of lignocaine to alfentanil in blunting the pressor response to endotracheal intubation.

DESIGN

An open label comparative study.

POPULATION

Seventy eight ASA I and II adult patients between the ages of 18 and 65 years booked for elective surgery which requires endotracheal intubation.

SETTING

Dr George Mukhari Hospital, a tertiary level training hospital in Gauteng, South Africa.

METHOD

After obtaining ethical clearance the study was conducted on 78 ASA class I & II patients. The patients were randomly allocated to three groups according to their treatment regime. All patients were premedicated with diazepam 10mg 2 hours pre operatively. Anaesthesia was induced with Thiopentone 5mg/kg followed by Vecuronium 0,1mg/kg and maintained with Isoflurane in nitrous oxide and oxygen mixture.

Group A patients received lignocaine 1.5mg/kg iv 3 minutes before intubation. Group B – alfentanil 15ug/kg iv 1 minute before intubation and group C patients did not receive any treatment before intubation. Heart rate, systolic blood pressure, diastolic blood pressure and mean arterial pressure were recorded at the following intervals: pre- induction, pre- intubation 1, 2 and 3 minutes post intubation.

STATISTICS

Statistical analysis was done by Chi Square test followed by the normal approximation of the binomial distribution. Increase in blood pressure and heart rate in the three treatment groups were compared by analysis of variance, followed by pairwise comparisons. A p- value <_ 0,05 was considered significant.

MAIN RESULT

The three treatment groups did not differ in relation of Gender ratio, Mean weight and Mean age.

ALFENTANIL GROUP

There was a non significant increase in heart rate 1 minute post intubation (P= 0,7625), and there was no increase 2 and 3 minutes post intubation. A decrease in SBP, DBP and MAP was observed at 1, 2 and 3 minutes post intubation.

LIGNOCAINE GROUP

There was an increase in all parameters 1 minute post intubation which was comparable to the control group. A decrease in all parameters which differed from that of the control group except for heart rate, was observed at 2 and 3 minutes post intubation.

CONTROL GROUP

There was an increase in all parameters 1 minute post intubation. A decrease in all parameters 2 and 3 minutes post intubation remained above the baseline.

CONCLUSION

Alfentanil is superior to lignocaine in blunting the pressor response to endotracheal intubation.

Chapter 1

INTRODUCTION AND LITERATURE REVIEW

Laryngoscopy and tracheal intubation produce marked increases in heart rate and blood pressure. These changes are considered potentially dangerous in patients with cardiovascular disease because they may be associated with post-operative myocardial infarction or cerebral haemorrhage (1,2,3).In pregnant hypertensive patients increases in intracranial pressure with risk of cerebral haemorrhage, cardiac failure and pulmonary oedema result in morbidity and mortality in both the mother and the baby. (4,5)

Stress response is characterized by hormonal and metabolic changes which follow injury or trauma. It is part of the systemic reaction to injury which encompasses a wide of endocrinological, immunological and haemotological effects. The endocrine stress response is characterized by secretion of the pituitary hormones and activation of the sympathetic nervous system. The main hormones involved are catecholamines, glucocorticoids, growth hormone, thyroid hormone and glucagons. The overall metabolic effect of the hormonal changes is increased catabolism which mobilizes substrates to provide energy sources, and a mechanism to retain salt and water and maintain fluid volume and cardiovascular homeostasis.

Hypothalamic activation of the sympathetic autonomic nervous system results in increased secretion of catecholamines from the adrenal medulla and release of noradrinaline from presynaptic nerve terminals. Noradrinaline is primarily a neurotransmitter, but there is some spillover of noradrinaline released from nerve terminals into the circulation. The increased sympathetic activity results in the well recognized cardiovascular effects of tachycardia and hypertension.

Immunological and haematological changes involve cytokine production, acute phase reaction, neutrophil leucocytosis and lymphocyte proliferation. This process is designed to minimize immediate blood loss, limit injury associated infection and optimize the access of response protein to the injured site. All the above are stress response to trauma and surgery.(6)

There are various techniques by which this intubation related stress response can be attenuated. These depend on reduction in input stimuli, blockage of adrenergic response and blockage of catecholamine release. These methods include the use of lignocaine topically or intravenously, use of direct acting vasodilators, use of large doses of opiods e.g alfentanil and fentanyl, and the use of magnesium sulphate which blocks the release of catecholamines from adrenergic nerve terminals. Most of these techniques have disadvantages related to either cardiovascular or respiratory depression. (5,7)

Alfentanil is a synthetic opioid analgesic acting at mu receptors, which is one of the opioid receptors located throughout the central nervous system and other tissues, and are responsible for supraspinal and spinal analgesia. Other opioid receptors are kappa, delta and sigma. (1,8)

In general opioids do not seriously impact cardiovascular function. High doses of alfentanil and related opioids are associated with vagus- mediated bradycardia, venodilation and decreased sympathetic reflexes. They are often used to blunt the hypertensive and heart rate response caused by endotracheal intubation (1,8). Negative inotropic effect of alfentanil is observed with very large doses in excess of 5mg.

Alfentanil depresses ventilation, particularly respiratory rate and high doses can cause chest wall rigidity severe enough to prevent adequate ventilation. This centrally mediated muscle rigidity is effectively treated with muscle relaxants. Other side effects are nausea and vomiting.

Alfentanil has been shown to have a more rapid onset of effects and shorter duration of action. These pharmacological properties of alfentanil suggest it would be of value in reducing the haemodynamic responses to endotracheal intubation, furthermore because of shorter duration of actions and an early opportunity may be provided to reassess or terminate the anaesthetic. The effects of alfentanil are permanently reversed by naloxone which has a longer duration of action than alfentanil (2,8).

Lignocaine is an amino amide local anaesthetic metabolized in the liver by microsomal enzymes. It acts by binding to sodium channels in the inactivated state, preventing subsequent channel activation and the large transient sodium-influx associated with membrane depolarization (8).

In general, local anaesthetics depress myocardial automaticity and reduce duration of refractory period. Myocardial contractility and arterial blood pressure are generally unaffected by the usual intravascular doses of lignocaine. The pressor response associated with laryngoscopy and intubation is attenuated by intravenous administration of lignocaine 1,5 mg/kg iv 3 minutes prior to instrumentation. It relaxes bronchial smooth muscles and can be effective in blocking the reflex bronchoconstriction sometimes associated with intubation (9).

Intravenous lignocaine 1,5mg/kg iv decreases cerebral blood flow and attenuates the rise in intracranial pressure that accompanies intubation in patients with decreased intracranial compliance (8).

Lignocaine has been used to supplement general anaesthetic techniques, since it is capable of reducing the minimal alveolar concentration (MAC) of volatile anaesthetic by up to 40 % (8).

Many studies questioned the effectiveness of lignocaine in blunting of pressor response to endotracheal intubation. Most of such studies utilized the rapid sequence induction and intubation method with succinylcholine rather than the use of non depolarizing muscle relaxants. (5,10,11).

Allen et al indicated that alfentanil and magnesium were significantly better than lignocaine in containing the mean cardiovascular response to intubation in hypertensive proteinuric pregnant patients.(5)

Abou-Madi et al showed that intravenous lignocaine 1,5mg/kg iv 2-3 minutes prior intubation caused borderline protection against hypertension and tachycardia. They concluded that intravenous lignocaine 1,5mg/kg iv appears to be a good alternative if time or circumstances do not permit topical aerosol anaesthesia. (16)

Chapter 2

2.1 Study Design and Patient Selection

This was an open label comparative study undertaken at Dr George Mukhari hospital, a tertiary level training hospital in Pretoria.

Seventy eight patients between ages of 18 & 65 years booked for elective surgery which required general anaesthesia and endotracheal intubation were included.

Excluded from the study were patients with:

- Hypertension
- American Society of Anaesthesiology (ASA) grade III &IV
- Mallampati airway class III & IV
- Current cardiovascular and neurological disease.

2.2 Methods and Material

The study was approved by the Research Ethics and Publication Committee of Dr George Mukhari Hospital / Medunsa Reference number: MP 43/2005 Informed written consent was obtained from all patients.

2.3 Randomisation

The three treatment groups in the study were labeled as follows:

- Group A: Treatment with Lignocaine 1,5mg/kg 3 minutes before intubation.
- Group B: Treatment with Alfentanyl 15ug/kg 1 minute before intubation.
- Group C : Control group, no treatment.

Randomisation plan was used to decide who gets which drug.

The seventy eight patients in the study were randomly assigned in a 1:1:1: ratio to the three treatment groups in the study. A randomisation plan was prepared, which was balance in blocks of six patients. (i.e in each conservative block of six patients, two patients were randomly assigned to lignocaine, two to Alfentanyl and two patients to no treatment. The patient randomisation number assigned was at the same time also the patient's identity number.

All patients received pre-medication with diazepam 10mg- given orally 2 hours pre- operatively.

COMPARISON OF ALFENTANYL AND LIGNOCAINE IN BLUNTING OF PRESSOR RESPONSE DURING ENDOTRACHEAL INTUBATION

DR. S.J. MOUMAKOE

RANDOMISATION PLAN	
Legend: A = Lignocaine (26 B = Alfentanyl (26 C = No treatment (26)

Pt number	Treatment	Blocks
1	С	1
2	С	2
3	A	3
4	A	4
5	В	5
6	В	6
7	В	1
8	С	2
9	В	3
10	A	4
11	С	5
12	A	6
13	A	1
14	В	2
15	С	3
16	A	4
17	В	5
18	С	6
19	В	1
20	В	2
21	С	3
22	A	4
23	С	5
24	A	6

25	В	1
26	C	2
27	A	3
28	C	4
29	A	5
30	В	6
31	В	1
32	В	2
33	A	3
34	A	4
35	C	
36	C	5 6
37	В	1
38	C	2
39	A	3
40	A	4
	В	5
41		
42	C	6
43	С	1
44	В	2
45	A C	3
46		4
47	A	5
48	В	6
49	Α	1
50	A	2
51	С	3
52	С	4
53	В	5
54	В	6
55	С	1
56	В	2
57	Α	3
58	Α	4
59	С	5
60	В	6
61	Α	1
62	В	2
63	С	3
64	Α	4
65	В	5
66	С	6
67	A	1
68	С	2
69	В	3
70	C	4
71	В	5
72	A	6
73	C	1
74	В	2
75	A	3
76	A	4
77	C	5
	В	6
78	D	ס

2.4 Anaesthesia

Anaesthesia was induced with thiopentone 5mg/kg followed by vecuronium 0,1mg/ kg to achieve muscle relaxation. Alfentanyl or lignocaine administration followed thereafter.

The peripheral nerve stimulation was used to monitor the degree of muscle paralysis.

Endotracheal intubation proceeded 3 minutes after administration of lignocaine and 1 minute after administration of Alfentanyl. Anaesthesia was maintained with isoflurane and 67 % nitrous oxide in oxygen mixture.

A Datex Omeda ventilator was used for control of ventilation. Monitoring consisted of continuous three lead electrocardiography, non invasive blood pressure, pulse oximetry and capnography

2.5 Hemodynamic Data

Heart rate, systolic blood pressure, diastolic blood pressure and mean arterial blood pressure, were recorded 5 minutes before induction with patients in the supine position on the operating table. The next reading was at preintubation and then each minute post intubation for three minutes.

Surgical stimulation or analgesic supplements was avoided during the period of data recording.

Chapter 3

Results

The demographics of the three groups were comparable for age, gender, weight and general conditions.

Separate data collection forms were compiled for heart rate, systolic blood pressure, diastolic blood pressure and mean arterial pressure.

Measurements were recorded pre-induction, pre-intubation, 1 minute post intubation, 2 minutes post intubation and 3 minutes post intubation.

3.1 Statistical Methods

Seventy eight patients were recruited into the study. (26 in each group). No patients were excluded subsequent to recruitment.

The three treatment groups A,B,C were comparable in terms of demographics.

3.2 Statistical Analysis

Changes in blood pressure, mean arterial pressure and heart rate were compared with each group as well as between groups. Changes were compared between groups before induction of anaesthesia, pre- intubation, 1 minute post intubation, 2 minutes post intubation and 3 minutes post intubation.

The proportion/ percentages of patients in which pressor responses were successfully blunted during endotracheal intubation were compared by the chi square test, followed by pairwise comparison by the normal

approximation of the binominal distribution. A 95% confidence interval was calculated for the proportion/ percentages of patients in which pressor responses were successfully blunted with each treatment.

Increase in blood pressure and heart rate in the three treatments were compared by analysis of variance, followed by pairwise comparisons.

A p value ≤ 0.05 was considered as significant.

3.3 Summary of Results

The three treatment groups A:B:C did not differ in relation of gender ratio, mean weight and mean age.

Heart Rate

The results are tabulated in Table 1 below. The values are expressed as means. There was an increase in the heart rate in the three groups at 1 minute post intubation (see Table 2). The increase was significant in both the control and lignocaine group.(26.19 & 24.42 beats/minute respectively; p<0,0001 for both). A non- significant increase of 0,85 beats/minute was observed after alfentanil at 1 minute post intubation. (P= 0,7155)

The changes from baseline in group A and C did not differ significantly at any point. (See Table 9; P = 0.6723; P = 0.7624 and P = 0.7305 respectively). Both profiles however differ from the profiles of group B. (See Table 9; and Figure 1 & 2).

Table 1: Mean values of Heart Rate (HR) within A, B & C, (beats\min)

	Variable	n	Mean	SD
Α	Pre-induction(Baseline)	26	75.88	14.57
	Pre-intubation Pre-intubation	26	88.23	13.49
	1 min post-intubation	26	102.08	11.24
	2 min post-intubation	26	97.73	13.39
	3 min post-intubation	26	95.27	14.57
В	Pre-induction(Baseline)	26	82.19	15.00
	Pre-intubation	26	76.46	16.38
	1 min post-intubation	26	83.04	17.06
	2 min post-intubation	26	78.00	17.00
	3 min post-intubation	26	75.54	15.70
C	Pre-induction(Baseline)	26	76.12	13.54
	Pre-intubation	26	81.46	13.57
	1 min post-intubation	26	100.54	11.29
	2 min post-intubation	26	99.35	10.85
	3 min post-intubation	26	93.88	11.85

Fig. 1: Mean values of Heart Rate (HR) within A, B & C, (beats\min)

Α	Lignocaine	
В	Alfentanil	
С	No Treatment	

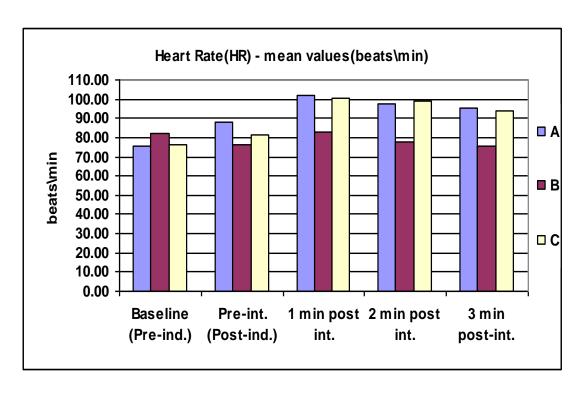
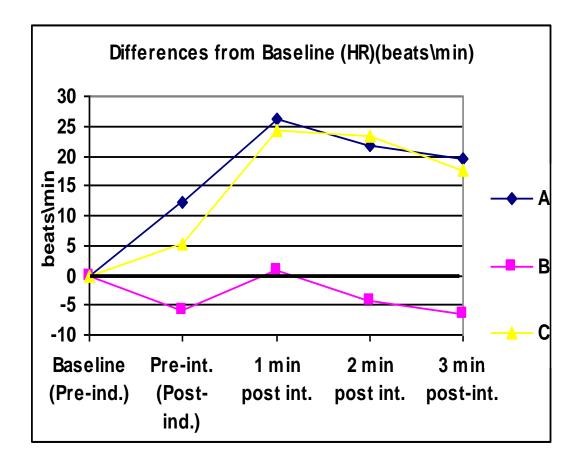



Table 2: Mean differences from Baseline (HR), (beats\min)

	Variable	n	Mean	SD	P value	
Α	Pre-intubation	26	12.35	17.22	0.0012*	
	1 min post-intubation	26	26.19	15.88	<0.0001*	
	2 min post-intubation	26	21.85	19.35	<0.0001*	
	3 min post-intubation	26	19.38	20.39	<0.0001*	
В	Pre-intubation	26	-5.73	10.91	0.0129*	
	1 min post-intubation	26	0.85	11.71	0.7155	
	2 min post-intubation	26	-4.19	13.21	0.1182	
	3 min post-intubation	26	-6.65	13.98	0.0227*	
С	Pre-intubation	26	5.35	16.37	0.1084	
	1 min post-intubation	26	24.42	17.06	<0.0001*	
	2 min post-intubation	26	23.23	16.22	<0.0001*	
	3 min post-intubation	26	17.77	15.51	<0.0001*	
* statis	stically significant (p<0.05)					

Fig. 2: Mean differences from Baseline (HR), (beats\min)

Α	Lignocaine	
В	Alfentanil	
С	No Treatment	

Systolic Blood Pressure

A decrease in SBP was observed in all three treatment groups after induction of anaesthesia (see Table 3). There was a significant increase in the Lignocaine and control groups at 1 minute post intubation. (10,23 mmHg with p = 0,005 and 18,88 mmHg with p < 0,001 respectively; see Table 4). A decrease in systolic blood pressure was observed with the Alfentanyl group and continued to drop 3 minutes post intubation (See Table 3). The changes from baseline with A, B & C differ from one another at each time point (see table 9). The profiles of A; B; & C are shown in Figures 3 & 4.

Table 3: Mean values of Systolic Blood Pressure (SBP) within A, B & C, (MmHg)

	0 , (11111111 5)			
	Variable	n	Mean	SD
A	Pre-induction(Baseline)	26	125.77	13.26
	Pre-intubation	26	106.00	13.73
	1 min post-intubation	26	136.00	19.92
	2 min post-intubation	26	119.62	19.01
	3 min post-intubation	26	112.50	16.17
В	Pre-induction(Baseline)	26	123.27	14.72
	Pre-intubation	26	102.96	15.55
	1 min post-intubation	26	105.92	16.09
	2 min post-intubation	26	98.15	12.89
	3 min post-intubation	26	95.19	12.36
С	Pre-induction(Baseline)	26	121.15	11.76
	Pre-intubation	26	111.58	10.42
	1 min post-intubation	26	140.04	15.88
	2 min post-intubation	26	132.85	12.76
	3 min post-intubation	26	123.69	9.24

Fig. 3: Mean values of Systolic Blood Pressure (SBP) within A, B & C, (MmHg)

Α	Lignocaine	
В	Alfentanil	
С	No Treatment	

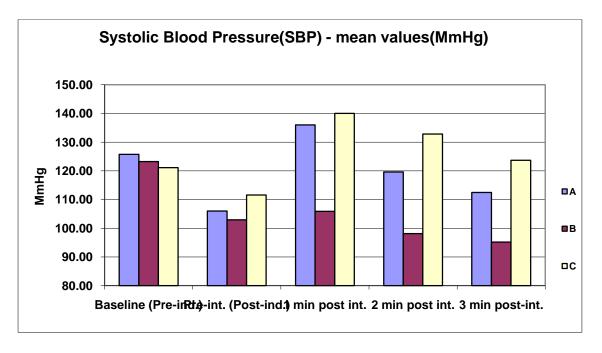
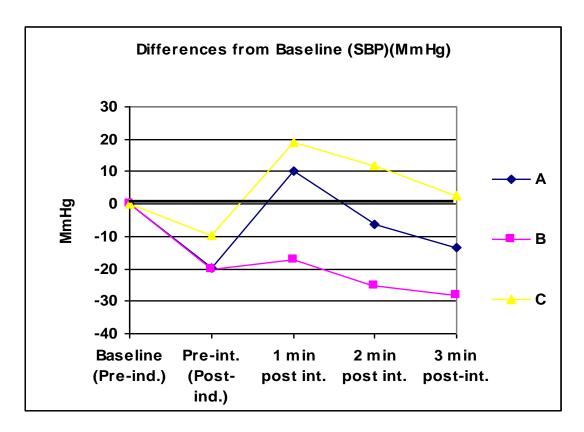



Table 4: Mean differences from Baseline (SBP), (MmHg)

			<u> </u>	J [/]	
	Variable	n	Mean	SD	P value
A	Pre-intubation	26	-19.77	9.44	<0.0001*
	1 min post-intubation	26	10.23	14.59	0.0015*
	2 min post-intubation	26	-6.15	13.26	0.0255*
	3 min post-intubation	26	-13.27	10.81	<0.0001*
В	Pre-intubation	26	-20.35	14.66	<0.0001*
	1 min post-intubation	26	-17.35	14.89	<0.0001*
	2 min post-intubation	26	-25.12	14.59	<0.0001*
	3 min post-intubation	26	-28.08	15.60	<0.0001*
С	Pre-intubation	26	-9.58	8.48	<0.0001*
	1 min post-intubation	26	18.88	14.23	<0.0001*
	2 min post-intubation	26	11.69	13.68	0.0002*
	3 min post-intubation	26	2.54	13.09	0.3322
* statis	stically significant (p<0.05)				

Fig. 4: Mean differences from Baseline (SBP), (MmHg)

A Lignocaine
B Alfentanil
C No Treatment

Diastolic Blood Pressure

A decrease in DBP was observed in all three groups after induction of anaesthesia. (See Table 5). There was an increase in DBP at 1 minute post intubation in the lignocaine and control groups (10,15 mmHg with p < 0.0001 and 13,08 mmHg with p < 0.0001 respectively; see Table 6). The changes from baseline with A; B; & C differed from one another at each time point, except at 1 minute post intubation where A and C did not differ. (P = 0.4030, see Table 9). The points of A; B & C are reflected in Figures 5 & 0.0001

Table 5: Mean values of Diastolic Blood Pressure (DBP) within A, B&C, (MmHg)

	Variable	n	Mean	SD
A	Pre-induction(Baseline)	26	80.23	9.38
	Pre-intubation	26	68.73	10.50
	1 min post-intubation	26	90.38	13.98
	2 min post-intubation	26	77.73	14.87
	3 min post-intubation	26	72.46	13.88
В	Pre-induction(Baseline)	26	78.54	11.08
	Pre-intubation	26	60.81	13.21
	1 min post-intubation	26	64.50	14.95
	2 min post-intubation	26	56.88	10.95
	3 min post-intubation	26	53.26	10.52
С	Pre-induction(Baseline)	26	74.85	11.14
	Pre-intubation	26	67.88	10.92
	1 min post-intubation	26	87.92	11.36
	2 min post-intubation	26	82.08	10.99
	3 min post-intubation	26	78.31	11.15

Fig. 5: Mean values of Diastolic Blood Pressure (DBP) within A, B&C, (MmHa)

,	(Willing)				
Α	Lignocaine				
В	Alfentanil				
С	No Treatment				

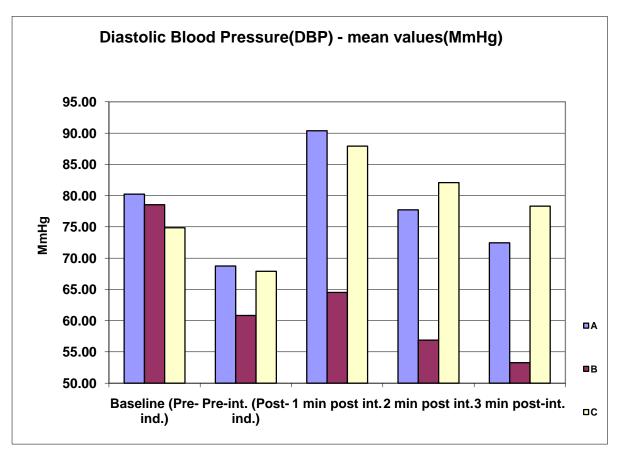
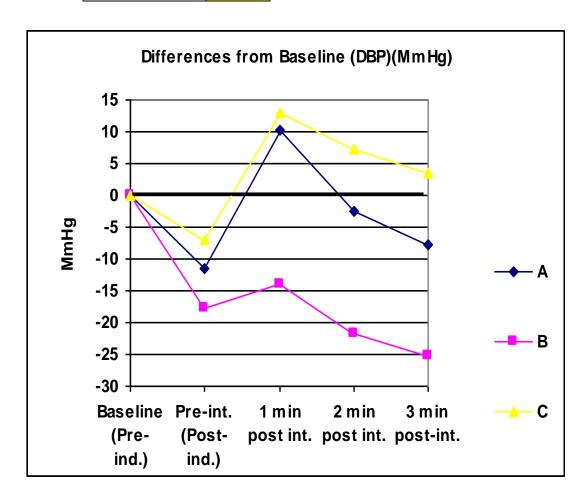



Table 6: Mean differences from Baseline (DBP), (MmHg)

	Variable	n	Mean	SD	P value
Α	Pre-intubation	26	-11.50	8.03	<0.0001*
	1 min post-intubation	26	10.15	10.01	<0.0001*
	2 min post-intubation	26	-2.50	12.30	0.3101
	3 min post-intubation	26	-7.77	12.80	0.0048*
В	Pre-intubation	26	-17.73	14.46	<0.0001*
	1 min post-intubation	26	-14.04	15.15	<0.0001*
	2 min post-intubation	26	-21.65	12.81	<0.0001*
	3 min post-intubation	26	-25.27	12.21	<0.0001*
С	Pre-intubation	26	-6.96	11.89	0.0062*
	1 min post-intubation	26	13.08	11.89	<0.0001*
	2 min post-intubation	26	7.23	12.14	0.0055*
	3 min post-intubation	26	3.46	12.01	0.1543
* stati	stically significant (p<0.05)	•			

Fig. 6: Mean differences from Baseline (DBP), (MmHg)

Α	Lignocaine	
В	Alfentanil	
С	No Treatment	

Mean Arterial Pressure(MAP)

There was an increase in MAP in the lignocaine and control group at 1 minute post intubation. (See table 7). A decrease in MAP was observed in the alfentanil group 1 minute post intubation and continued to decrease at 3 minutes post intubation. (See Table 8).

The changes from baseline in group A; B; & C differed from one another at each time point, except at 1 minute post intubation where A & C did not differ. (P = 0,1230 see Table 9). The profiles of A; B; &C are reflected in Figures 7 & 8).

Table 7: Mean Arterial Pressure (MAP) within A, B & C, (MmHg)

	Variable	n	Mean	SD
A	Pre-induction(Baseline)	26	95.46	9.46
	Pre-intubation	26	81.15	10.89
	1 min post-intubation	26	105.46	15.54
	2 min post-intubation	26	91.73	15.58
	3 min post-intubation	26	85.77	13.92
В	Pre-induction(Baseline)	26	93.46	11.03
	Pre-intubation	26	74.88	13.14
	1 min post-intubation	26	78.26	14.06
	2 min post-intubation	26	70.69	10.61
	3 min post-intubation	26	67.23	10.20
С	Pre-induction(Baseline)	26	90.27	10.59
	Pre-intubation	26	82.50	9.29
	1 min post-intubation	26	105.31	11.47
	2 min post-intubation	26	99.04	10.21
	3 min post-intubation	26	93.35	9.75

Fig. 7: Mean Arterial Pressure (MAP) within A, B & C, (MmHg)

A Lignocaine
B Alfentanil
C No Treatment

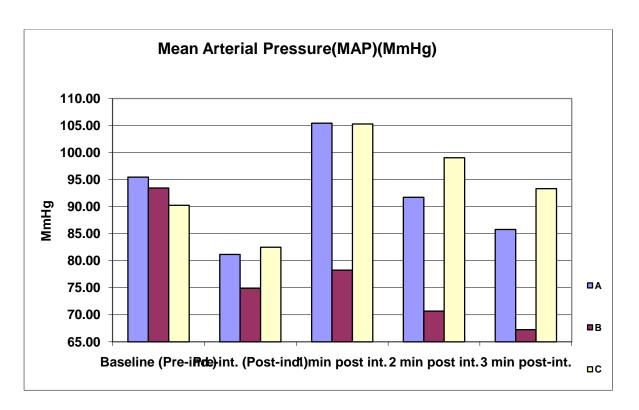


Table 8: Mean differences from Baseline (MAP), (MmHg)

	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1							
	Variable	n	Mean	SD	P value			
A	Pre-intubation	26	-14.31	6.96	<0.0001*			
	1 min post-intubation	26	10.00	9.80	<0.0001*			
	2 min post-intubation	26	-3.73	11.45	0.1092			
	3 min post-intubation	26	-9.69	10.36	<0.0001*			
В	Pre-intubation	26	-18.58	12.90	<0.0001*			
	1 min post-intubation	26	-15.19	13.46	<0.0001*			
	2 min post-intubation	26	-22.77	11.81	<0.0001*			
	3 min post-intubation	26	-26.23	11.73	<0.0001*			
С	Pre-intubation	26	-7.77	9.42	0.0003*			
	1 min post-intubation	26	15.04	11.38	<0.0001*			
	2 min post-intubation	26	8.77	11.53	0.0007*			
	3 min post-intubation	26	3.08	11.71	0.1923			
* statisti	cally significant (p<0.05)	•	•	•				

Fig. 8: Mean differences from Baseline (MAP), (MmHg)

Α	Lignocaine	
В	Alfentanil	
С	No Treatment	

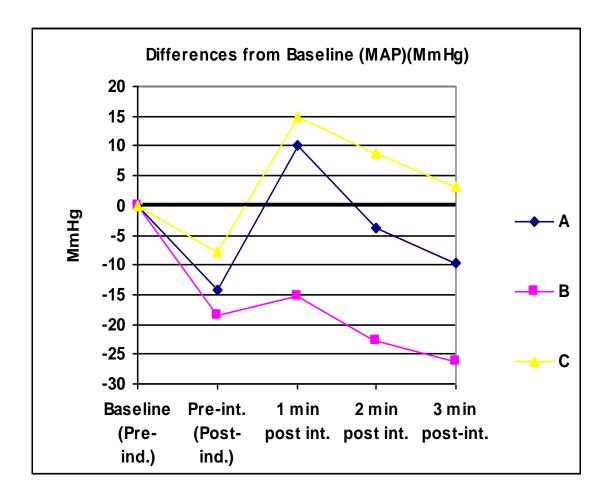


Table 9: p values for Comparison of A, B & C

		Change from bas	eline (HR)	
	Pre-intubation	1min	2 min	3 min
A vs B	<0.0001*	<0.0001*	<0.0001*	<0.0001*
A vs C	0.0987	0.6723	0.7624	0.7305
B vs C	0.0099*	<0.0001*	<0.0001*	<0.0001*
		Change from bas	eline (SBP)	
	Pre-intubation			
A vs B	0.8530	<0.0001*	<0.0001*	<0.0001*
A vs C	0.0016*	0.0355*	<0.0001*	<0.0001*
B vs C	0.0009*	<0.0001*	<0.0001*	<0.0001*
		Change from base	eline (DBP)	·
	Pre-intubation			
A vs B	0.0599	<0.0001*	<0.0001*	<0.0001*
A vs C	0.1682	0.4030	0.0061*	0.0061*
B vs C	0.0015	<0.0001*	<0.0001*	<0.0001*
	(Change from base	eline (MAP)	
	Pre-intubation			
A vs B	0.1304	<0.0001*	<0.0001*	<0.0001*
A vs C	0.0218*	0.1230	0.0002*	0.0001*
B vs C	0.0002*	<0.0001*	<0.0001*	<0.0001*
* statistic	cally significant (p<0.05)			

Chapter 4

Discussion

Cardiovascular stimulation as demonstrated by increase in arterial pressure and heart rate accompanies direct laryngoscopy and tracheal intubation. Direct laryngoscopy and tracheal intubation is associated with a rise in noradrenaline concentration which suggests increased sympathetic nervous activity(14).

In most patients these changes are well tolerated. In certain groups of patients, such as those who are at risk of developing arterial hypertension or myocardial ischaemia, such changes may be detrimental. Several methods of attenuating the rise in blood pressure and heart rate have been described. These depend on reduction in input stimuli, blockage of adrenergic response and blockage of catecholamine release (15,16).

This study compared the effect of lignocaine and alfentanil in blunting the pressor response to endotracheal intubation. The results obtained in this study for blunting of pressor response in the control group compared with those of other previous studies which showed a significant increase in HR, SBP & DBP post endotracheal intubation. (1, 3).

Alfentanil is an opioid analgesic which has been shown to be less potent, but have a more rapid onset of effects and shorter duration of action. A non significant increase in heart rate (P= 0.7625), was observed in the Alfentanyl group 1 minute post intubation. This is in contrast with other studies which showed that Alfentanyl 15ug/kg did not blunt heart rate response to endotracheal intubation(16;12). Such studies utilized suxamethonium and rapid sequence induction and intubation, rather than intubation following a non depolarizing muscle relaxant used in this study.

There was a significant decrease in SBP, DBP & MAP 1 minute post intubation in the Alfentanyl group. The decrease persisted 3 minutes post intubation. This may be undesirable in patients with cardiovascular instability and the elderly, because hypotension and bradycardia can lead to decrease in cardiac output with risk of myocardia ischaemia, stroke, cardiac arrhythmias and sudden death (13).

Lignocaine is advocated widely and was the standard drug for attenuation of the pressor response to endotracheal intubation. Davidson and Gillespie demonstrated that the use of intravenous lignocaine to supplement propofol-alfentanil anaesthesia improved intubating conditions. The improvement in intubating conditions was largely caused by a reduction in the incidence and severity of cough after insertion of the tracheal tube, although an improvement in the case of laryngoscopy was also apparent (7).

Lignocaine has been used as lignocaine gargle for oropharyngal anaesthetic, as lignocaine aerosol for intratracheal anaesthesia, or as an intravenous bolus for general anaesthesia. Intravenous lignocaine in particular has been found to suppress the cough reflex (10), to prevent increase in intracranial pressure, to attenuate hemodynamic responses and to possess antiarrhythmic properties. (17)

The mechanism by which intravenous lignocaine attenuates the circulatory responses is still unclear, but proposed mechanism consists of a direct myocardial depressant and vasodilating effect, a central stimulant effect and an effect on sympathetic transmission (18)

Tam et al indicated that intravenous lignocaine at 1,5mg/kg attenuates increase in heart rate and arterial blood pressure only when given 3 minutes before intubation (17). This was the dose and time used in this study. In contrast to Tam et al, lignocaine did not blunt the pressor response to

endotracheal intubation 1 minute post intubation and its profile did not differ from that of control group. There was however, a decrease below baseline in all parameters in the lignocaine group except for heart rate 2 and 3 minutes post intubation which indicated blunting of only blood pressure response 2 and 3 minutes post intubation. Allen et al indicated that alfentanil and magnesium were significantly better than lignocaine in containing the mean cardiovascular responses to intubation in proteinuric pregnant patients. (5)

In their study, Okuda et al concluded that intravenous lignocaine can attenuate the circulatory response due to laryngoscopy and endotracheal intubation, and that lignocaine should be administered at least 1 minute before laryngoscopy and endotracheal intubation with fentanyl, nitrous oxide and oxygen anaesthesia (18). Fentanyl was not used in this study. The attenuation of the circulatory response by lignocaine in their study 1 minute post intubation could be due to the addition of fentanyl, because Black et al showed that fentanyl 5ug/kg prevented the increase in blood pressure during laryngoscopy and endotracheal intubation (1).

In conclusion alfentanil is superior to lignocaine in blunting the pressor response to endotracheal intubation. Alfentanil at 15ug/kg can be used as a supplement during induction to prevent the rise in blood pressure and heart rate associated with laryngoscopy and endotracheal intubation.

REFERENCES

- 1) Black TE, Kay B, Healy TEJ. Reducing the Haemodynamic responses to Laryngoscopy and intubation. A comparison of Alfentanil with Fentanyl. Anaesthesia, 1984; 39:883-887
- 2) Crawford DC; Fell D. et al. Effects of Alfentanil on the pressor and catecholamine responses to tracheal intubation. British Journal of Anaesthesia 1987;59:707-712
- 3) Chraemmer Jorgensen B, Hoilund Carlsen PF; et al. Lack of effects of intravenous Lignocaine on haemodynamic response to rapid sequence induction of general Anaesthesia. A double blind controlled clinical trial: Anaesth Analg 1986; 65: 1037-43
- 4) Bansal S, Pawar M. Haemodynamic responses to Laryngoscopy and intubation in patients with pregnancy induced hypertension.. Effects of intravenous esmolol with or without lidocaine. International Journal of Obstetric Anaesthesia(2002) 11: 4-8
- 5) Allen RW, James MFM, Uys PC. Attenuation of the pressor response to tracheal intubation in hypertensive proteinuric pregnant patients by Lignocaine, Alfentanyl and magnesium sulphate. British Journal of Anaesthesia 1991; 66:216-233
- 6) Desborough JP. The stress response to trauma and surgery. British Journal of Anaestheisia 2000;85: 109-17.
- 7) Davidson JAH, Gillespie A..Tracheal intubation after induction of Anaesthesia with propofol, Alfentanil; and iv Lignocaine. British Journal of Anaesthesia 1993;70:163-166

- 8) Morgan G. Edward jr, Mikhail Maged. S. et al. Clinical Anaesthesiology 3rd edition. Local Anaesthetics 233-240. Non volatile anaesthetic agent 164-169.
- 9) Splinter MW, Cervento F. Haemodynamic responses to Laryngoscopy and tracheal intubation in geriatric patients. Effects of Fentanyl; lidocaine and thiopentone. Canadian Journal of Anaesthesia 1989; 36, 4:370-376
- 10) Yukioka H, Yoshimato N, et al. Intravenous Lidocaine as a suppressant of coughing during tracheal intubation. Anaesth Analg. 1985; 64:1189-92
- 11) Splinter MW. Intravenous Lidocaine does not attenuate the haemodynamic response of children to laryngoscopy and tracheal intubation. Canadian Journal of Anaesthesia 1990; 37; 4:440-3
- 12) Scheinin B, Scheinin M. et al. Alfentanil obtunds the cardiovascular and sympathoadrenal responses to suxamethomium facilitated Laryngoscopy and intubation. British Journal of Anaesthesia. 1989; 62: 385;-392
- 13) Habib AS, Parker JL et al. Effects of Remifentanil and Alfentanil on the cardiovascular response to induction of anaesthesia and tracheal intubation in the elderly. British Journal of Anaesthesia 2002, March: 88(3): 430-3
- 14) Assem Abdel- Razec et al. Nifedipine versus Fentanyl to prevent the pressor response to tracheal intubation. Middle East Journal of Anaesthesia 1991; 11(1): 63-71

- 15) James MFM et al. Intravenous magnesium sulfate inhibits catecholamine release associated with tracheal intubation .

 Anaesthetic Analgesia 1989; 68: 772-776
- 16) Abou Madi MN, Keszler H, et al. Cardiovascular reactions to Laryngoscopy and tracheal intubation following small and large intravenous doses of lidocaine. Canadian Anaesthesia Society Journal 1977; 24: 12-19
- 17) Tam S, Chung F et al. Optimal time of injection before tracheal intubation. Anaesthesia and Analgesia 1989; 66: 1036-1038
- 18) Okuda M, Ohi Y, et al. Timing of injection and plasma concentration of Lidocaine before tracheal intubation. Journal of Anaesthesia 1990; 4(2): 150-154

APPENDIX A: RAW DATA FOR HEART RATE.

Legend : HR_1 = Ward

HR_2 = Pre-Induction

HR-3 = Pre-Intubation

HR_4 = 1 Minute post intubation

HR_5 = 2 Minutes post intubation

HR_6 = 3 Minutes post intubation

OBS	GROUP	HR_1	HR_2	HR_3	HR_4	HR_5	HR_6
1234567890112345678901234567890123345678901234567890123456789012345678901234567890123456789012345678	АААААААААААААААААААААААААААААВВВВВВВВВВ	63486675580204420788689822288886898677685450628128206988878778888677878786818076769644328	5943444324668878457716667701599899108887864668872688789693779688677726887896987889693778259887864887869998999999999999999999999999	100 948 791 957 978 111 1028 1071 108 109 108 109 109 109 109 109 109 109 109 109 109	107 105 94 113 110 112 100 93 95 110 98 101 111 108 97 122 107 98 101 101 99 103 72 101 62 100 79 101 100 98 112 100 79 101 100 98 101 100 98 101 100 98 101 100 98 101 100 99 101 100 99 101 100 99 101 100 99 101 100 99 101 100 99 101 100 99 101 100 99 101 100 99 101 100 99 101 100 99 101 100 99 101 100 99 101 100 99 101 101	112 96 87 112 113 110 95 97 101 95 118 70 110 88 106 103 110 103 104 88 106 107 108 108 109 109 100 101 101 102 103 104 105 106 107 108 109 109 109 109 109 109 109 109 109 109	110 93 79 105 101 106 88 107 109 107 109 101 104 88 100 73 100 107 109 101 104 88 100 73 100 107 109 101 104 88 107 109 109 109 109 109 109 109 109 109 109

APPENDIX B : RAW DATA FOR SYSTOLIC BLOOD PRESSURE

Legend: SBP_1 = Ward
SBP_2 = Pre-Induction
SBP-3 = Pre-Intubation
SBP_4 = 1 Minute post intubation
SBP_5 = 2 Minutes post intubation
SBP_6 = 3 Minutes post intubation

OBS	GROUP	SBP_1	SBP_2	SBP_3	SBP_4	SBP_5	SBP_6
123456789011234567890012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012346789012346789012346789012346789001234678900123467890012346789001234678900123467890012346789001234678900123467890012346789001234678900012346789000000000000000000000000000000000000	АААААААААААААААААААААААААААААВВВВВВВВВ	120 110 120 130 130 130 130 130 130 130 130 120 110 120 110 120 110 110 110 110 11	123 137 147 132 108 150 144 133 121 127 131 109 128 140 131 132 137 121 132 139 103 130 140 112 103 130 131 132 133 130 131 131 132 133 130 131 131 132 133 134 135 136 137 137 138 139 130 131 131 132 133 134 135 136 137 137 138 139 130 131 131 132 133 134 135 136 137 137 138 139 130 131 131 132 133 134 135 136 137 137 138 139 130 130 131 131 132 133 134 135 136 137 137 138 139 130 130 131 131 132 133 134 135 136 137 137 138 139 130 130 131 131 132 133 134 135 136 137 137 138 138 139 130 130 131 131 131 131 131 131 131 131	107 112 122 123 135 118 117 106 92 110 107 95 105 125 107 85 82 99 107 124 108 115 134 108 115 134 108 115 134 108 115 134 108 115 134 109 1102 121 107 102 124 108 115 134 109 1102 121 101 92 102 123 93 78 88 84 92 106 105 92 107 1101 92 1101 106 1101 1101 1101 1101 1101 1101	120 108 164 153 121 185 130 128 144 153 124 123 154 109 121 142 110 168 127 130 107 108 117 109 107 108 117 109 107 108 119 119 119 119 119 119 119 119 119 11	108 117 125 132 176 135 110 111 142 109 102 109 124 109 123 115 100 123 114 90 123 115 102 83 104 102 83 105 105 105 112 129 112 129 113 115 116 117 117 118 119 119 119 119 119 119 119 119 119	104 109 113 120 123 159 122 110 99 123 108 105 121 108 105 121 133 107 107 108 108 109 109 119 109 109 109 109 109 109 109

APPENDIX C : RAW DATA FOR DIASTOLIC BLOOD PRESSURE

Legend : DBP_1 = Ward
DBP_2 = Pre-Induction
DBP-3 = Pre-Intubation
DBP_4 = 1 Minute post intubation
DBP_5 = 2 Minutes post intubation
DBP_6 = 3 Minutes post intubation

OBS	GROUP	DBP_1	DBP_2	DBP_3	DBP_4	DBP_5	DBP_6
123456789101121314567891011213145667889101121333334567889101121314566788910112133333455678891011213145666677777777777777777778		70 70 90 90 90 90 70 70 80 90 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 70 80 90 70 80 90 70 80 90 70 80 90 70 80 90 70 80 90 70 80 90 70 80 90 80 80 80 80 80 80 80 80 80 80 80 80 80	8763341099688777997768778887878597777958421100038867678448877776545678422	7768887399869867851985876887546575638876555748776775966830551321088888888888888888888888888888888888	83 78 106 98 78 103 97 101 83 106 98 103 106 87 106 88 107 106 107 118 107 108 109 109 109 109 109 109 109 109 109 109	820 820 986 1884 1884 976 678 9775 886 9775 887 978 9775 978 978 978 978 978 978 978 978	771 813 771 813 773 810 773 810 773 810 773 810 773 810 773 810 774 810 774 810 774 810 774 810 810 810 810 810 810 810 810 810 810

APPENDIX D : RAW DATA FOR MEAN ARTERIAL PRESSURE

Legend : MAP_1 = Ward
MAP_2 = Pre-Induction
MAP-3 = Pre-Intubation
MAP_4 = 1 Minute post intubation
MAP_5 = 2 Minutes post intubation
MAP_6 = 3 Minutes post intubation

OBS	GROUP	MAP_1	MAP_2	MAP_3	MAP_4	MAP_5	MAP_6
$\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 1 & 2 & 1 & 2 & 2 & 2 & 2 & 2 & 2$	ААААААААААААААААААААААААААААААВВВВВВВВВ	87 83 100 103 83 103 103 103 103 80 87 83 93 83 93 77 83 83 103 83 83 103 83 83 103 83 83 103 83 83 103 83 83 103 83 83 103 83 83 103 83 83 103 83 83 103 83 83 103 83 83 103 83 83 103 83 83 103 83 83 83 83 83 83 83 83 83 83 83 83 83	99 83 111 100 83 110 108 108 109 90 96 90 106 98 88 93 107 108 90 77 91 90 83 97 74 107 88 83 88 103 90 87 74 109 101 87 87 109 109 109 109 87 87 87 87 87 87 87 87 87 87 87 87 87	87 81 93 92 104 85 91 87 77 85 86 87 87 87 88 86 87 87 88 88 87 88 88 88 87 88 88 88 88	95 888 125 116 92 142 108 111 99 115 106 119 92 115 122 99 82 100 85 113 81 130 96 117 92 82 68 73 103 78 81 63 78 66 66 82 68 76 60 96 64 86 96 113 100 113 100 113 100 113 100 113 100 113 100 113 100 113 100 113 100 113 100 113 100 100	91 92 102 104 100 135 100 98 83 89 98 101 89 77 80 95 110 87 69 97 73 66 71 62 70 46 89 64 89 64 89 64 89 64 89 101 101 103 104 104 105 107 107 108 109 109 109 109 109 109 109 109 109 109	86 90 931 99 121 95 77 85 84 85 67 90 107 86 86 74 100 40 80 87 86 87 86 87 86 87 86 87 86 87 86 87 87 87 87 88 87 87 87 87 88 87 87 87