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ABSTRACT 

 

Surface coal mining requires good and sound rehabilitation practices to re-establish 

productive land capability and land use after mine-closure.  The vast majority of 

Mpumalanga’s coal deposits are located below high quality and productive arable land.  

Impacts on soil and land, associated with surface coal mining can reduce the possibility 

to re-establish the pre-mining land capability and productive potential.  Stockpiled soils 

are excavated from the ground during mining activities, and piled on the surface of the 

soil for rehabilitation purposes.  These soils are often characterized by low Soil Organic 

Matter (SOM) content, low fertility, and poor physical, chemical and biological properties, 

limiting their capability for sustainable vegetation growth.  The aim of this study was to 

assess coal-mine stockpile soil quality and its impacts on vegetation using laboratory 

techniques and Reflectance Spectroscopy. 

 

Firstly, the impact of quality of coal-mine stockpile soils on sustainable vegetation growth 

and productivity was investigated.  Soils were collected at three different depths (surface 

(0-25cm), mid (150-200cm) and deep (300-350cm)), as well as mixed (equal proportion 

of surface, mid and deep) from two stockpiles (named stockpile 1: aged 10 and stockpile 

2:20 years) at the coal mine near Witbank in Mpumalanga Province, South Africa.  Soils 

were amended with different organic and inorganic fertilizer.  A 2 x 4 x 5 factorial 

experiment in a randomized complete block design with four replications was established 

under greenhouse condition.  A grass species (Digiteria eriantha) was planted in pots with 

unamends and amended soils under the greenhouse condition at ambient temperatures 

of 26-280C during the day and 16.5-18.50C at night.  Mean values of plant height, plant 

cover, total fresh biomass (roots, stems and leaves) and total dry biomass were found to 

be higher in the stockpile 1 than in stockpile 2 soils.  On average, plants grown on soils 

with amendments yielded plant height that was 98.28% higher than plants grown on soil 

with no amendment.  On average, height of plants grown on soil amended with poultry 

manure and lime was 44.65% higher compared to plants planted on soils amended with 

NPK + lime, compost and poultry manure.  On average, mixed soils had better vegetation 

growth than soil from the individual depths.  In total, dry biomass and plant height of plants 
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grown on mixed soils was 33.56% and 22.34% higher than plants grown on surface, mid 

and deep soils.  Mixing soils changes texture, which might affect other physical properties 

like water availability, infiltration rate and aeration and, to some extent, chemical 

properties. 

 

Secondly, the effect of soil amendments on enzyme activity of coal-mine stockpile soil 

was investigated.  The activity of β-glucosidase, alkaline phosphatase, acid phosphatase 

and urease was analysed after harvest of grass species (Digiteria eriantha).  The results 

show significantly high activity for β-glucosidase, alkaline phosphatase and urease when 

soils were amended with poultry manure + lime.  Soils with no fertilizer yielded 

significantly low enzyme activity compared to soil amended with poultry manure+ lime, 

NPK + lime, sole application of poultry and in some instances compost application.  β-

glucosidase, urease and acid phosphatase mean values generally tend to decrease with 

an increase in soil depth.  β-glucosidase activity for surface soil was found to be 18.06% 

higher than that of mid and deep soil.  The stockpile depth plays a major role in 

biochemical activities of the soil; deep soils, in most cases, have decreased microbial 

biomass and enzyme activity due to oxygen and moisture availability.  The results for the 

effect of organic and inorganic amendment on stockpile soil showed that on average, 

alkaline phosphatase activity following the application of poultry manure + lime was 

17.69% higher than that of lime + inorganic fertilizers (NPK).  On average, the acid 

phosphatase activity following the application of lime + NPK was 56.33% higher than that 

of poultry manure + lime, compost, soil with no fertilizer as well as sole poultry manure.  

Urease activity for soil with no fertilizer was found to be 84.70% lower than that of soil 

amended with poultry + lime.  The increase in enzyme activity was attributed to change 

in soil pH due to application of amendments.  A comparison of the two stockpiles indicated 

that, stockpile 2 (20-year old) had low enzyme activity compared to stockpile 1 (10-year 

old).  The activity of β-glucosidase, acid phosphatase, alkaline phosphatase and urease 

was found to be 11.03%, 8.04%, 10.03% and 60.23% respectively, higher on stockpile 1, 

relative to stockpile 2 soils. When soils are stockpiled for a long period of time, microbial 

biomass is reduced and that affect enzyme activity because microbial biomass is 

considered as the primary source of enzymes in the soil. 
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Thirdly, the capability to estimate coal-mine stockpile soil properties using Reflectance 

Spectroscopy was investigated. Soil from coal-mine stockpiles were air dried, crushed, 

sieved and analysed using laboratory methods. The following soil properties: 

exchangeable calcium (Ca), sodium (Na), magnesium (Mg), potassium (K), soil pH, 

organic carbon (OC), phosphorus (P) and clay content were analysed as they are 

important for vegetation re-establishment during rehabilitation. Spectral reflectance of the 

soil samples was measured using FieldSpec 3 Portable Analytical Spectral Device 

(ASD®) spectrometer. Partial Least Square Regression (PLSR) was used to estimate 

various soil properties, in combination with various spectral transformation techniques 

such as untransformed reflectance spectra, First Derivative Reflectance (FD) and Log 

transformed spectra Log (1/R).  To assess the performance of various predictive models, 

R2 (Coefficient of Determination), Root Mean Squares Error of Validation (RMSEV) and 

Variable Importance in the Projection (VIP) values were computed.  The results showed 

that pH and Ca were accurately estimated (R2=0.79 and 0.69 and RMSEV=0.52 and 

0.89cmol/kg respectively) using Log (1/R) reflectance as compared to other soil 

properties achieving R2 less than 0.5.  Ca has strong correlation with pH.  Ca expressed 

in soil solutions is mostly related to pH, which is what was attributed to accurate prediction 

of both Ca and pH.  Soil pH in most cases is directly influenced by calcium carbonate 

content in the soil.  Although the performance of other soil properties was poor, they were 

highly correlated with pH and Ca except for K.  K is soluble and mobile and is therefore 

subject to leaching in most soils resulting in low K concentrations.  Low K concentrations 

results in higher variability and lower R2 values. 

 

Finally, the capability of Partial Least Square Regression and Reflectance Spectroscopy 

to estimate the effect of coal-mine stockpile soil on foliar nitrogen and phosphorus content 

was investigated.  Grass samples were collected from coal-mine stockpile soils and the 

adjacent unmined soils at open-cast coal mine around Witbank area in Mpumalanga 

Province, South Africa.  Samples were oven dried and analysed for foliar N and P 

concentration in the laboratory. Spectral reflectance of the dried grass samples were 

measured using Analytical Spectral Device (ASD) - FieldSpec 3.  Partial Least Square 
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Regression (PLSR) was used to estimate N and P concentration, in combination with 

various spectral transformation techniques such as First Derivative Reflectance (FDR) 

and Log transformed spectra Log (1/R).  The results show that stockpile soils appear to 

impact foliar N and P concentration as evidenced by low N and P concentration in the 

grass, sampled from stockpile soils compared to grass sampled from unmined soils.  This 

was attributed to soil nutrient status of the study sites, as unmined sites had high soil 

nutrient content than stockpile soils.  Foliar N concentration of grass sampled from 

stockpile soils and unmined soils can accurately be estimated without spectral 

transformation.  FD yielded highest R2 for N and P estimation in grass sampled from both 

stockpile soils and unmined soils. 

 

Overall, the study shows that stockpiling affect soil quality, enzyme activity and vegetation 

growth.  It further shows that soil amendments can improve soil quality and enzyme 

activity of coal-mine stockpile soils.  Finally, Reflectance Spectroscopy can be used to 

estimate coal-mine stockpile soil properties, its quality and foliar N and P content as an 

indicator of vegetation nutrient stress. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 Background of the Study 

Mining may be described as an activity and occupation concerned with the extraction of 

minerals.  These minerals include coal, petroleum oil, Baryte-limestone, quartz, lignite 

etc.  The ever-increasing demand for minerals and energy as well as advancement in 

extraction techniques has increased the mining of minerals in South Africa (Whiteman, 

1982; and Schobert, 1987).  South Africa’s economy is highly fossil fuel dependent, with 

the main source of electricity being coal accounting for about 90% of the country fuel use 

(Stats SA, 2015).  Apart from the heavy domestic reliance on coal as a source of energy, 

South Africa is a significant participant in global coal markets (Botha, 2014).  The majority 

of South Africa’s reserves and mines are in the Central Basin, which includes the Witbank 

(eMalahleni), Highveld and Ermelo coalfields (COM and CRA, 2007).  South Africa’s 

economically recoverable coal reserves are estimated at between 15 and 55 billion 

tonnes and coal production in the Central Basin is likely to peak in the next decade (The 

Bench Marks Foundation, 2014). 

 

Anthropogenic activities such as mining activities, specifically open-cast mining have 

resulted in drastic alternations of soil geochemical cycles that often lead to land 

degradation (Paterson et al., 2016).  It is imperative that mining process must ensure the 

restoration of productivity of the affected land (Ghose, 1989).  Ghosh (1990) reported that 

every million tonne of coal extracted by surface mining methods cause the land damage 

of about 4ha.  Opencast mining activities affect several physical, chemical and 

microbiological properties of soil as a result of excavation and storage of the soil 

(Strohmayer, 1999).  The inability to preserve the quality of stripped soil (stockpiling) is 

one of the basic hindrances to restoration of mined land.  The acute problem in preserving 

mine soil leads to large areas of land continually becoming infertile despite efforts for re-

vegetation (Paterson et al., 2016). 
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Several studies on stockpiled soil management have been done elsewhere to address 

the problem of soil quality after mining (Harris & Birch 1989; Jordan 1998; Tate & Klem, 

1985; and Fresquez & Aldon, 1984).  Most of these studies focused on assessment of 

stockpile soil properties using wet chemistry methods.  There are limited studies focusing 

on assessing coal-mine stockpile soil properties using Reflectance Spectroscopy.  In this 

study, Reflectance Spectroscopy was used to assess soil properties.  The studies by 

Demattê et al. (2010) and Mashimbye et al. (2012) indicated that Near InfraRed (NIR) 

spectroscopy is among one of the less expensive, less labour intensive, effective, reliable 

and user-friendly technique for quantitative soil analysis.  

 

Furthermore, the available studies do not address the relationship between stockpile 

ages, stockpile depth, vegetation growth and enzyme activity of coal-mine stockpiled 

soils.  Hence, this study focused on generating information to address the problem of 

coal-mine stockpiled soil quality and its impact on vegetation growth and enzyme 

activities. 

 

1.2. Motivation of the Study 

The following considerations provided justification for the study: 

 The challenges of coal-mine stockpiling and maintenance of its soil quality is 

critical for sustainability of mine land rehabilitation and it must be addressed; 

 As part of potential rehabilitation plan, there is a need to continuously monitor and 

examine vegetation quality around stockpiled soils and the surrounding areas; 

 Sustainable management and storage of coal-mine soils is critical to maintaining 

soil health; and 

 The need to utilize low cost and time effective methods for improved assessment 

of stockpiled soils is required for environmental health and pollution reduction. 
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1.3. Aims and Objectives 

The aim of the study was to determine if greenhouse studies, laboratory-based 

techniques and Reflectance Spectroscopy could provide reliable results for assessment 

of coalmine stockpile soil quality and its impacts on vegetation.  

 

The main objectives of the study were, namely, to: 

1. Evaluate the impact of quality of coal-mine stockpile soils on vegetation growth 

and productivity; 

2. Evaluate the effect of soil amendments on enzyme activities of coal-mine 

stockpile soil; 

3. Estimate coal-mine stockpile soil properties using Reflectance Spectroscopy; 

and 

4. Estimate the effect of coal-mine soil stockpiling on foliar nitrogen and 

phosphorus content as indicators of vegetation quality using Partial Least 

Square Regression and Reflectance Spectroscopy. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

World population has doubled over the last fifty years and quadrupled over the past 

century (UN-DESA, 2013). During this period and in most parts of the world, productivity 

gains in agriculture have increased profoundly. However, the amount of land that can be 

brought into the agricultural system is physically finite, so the concern naturally emerges 

that a much larger world population cannot be fed. Access to food is a basic human need. 

It is acknowledged that poverty is a fundamental cause of food insecurity. Ensuring long 

term food security is a major challenge to many countries in the world (FAO, 2013). It is 

therefore critical for a country to retain its production capability to adhere to its food 

requirements. South Africa has only about 3 – 4% high potential agricultural land that is 

suitable for sustained food production. Much of this high potential agricultural land has 

however been lost to other competing land use prospects, with coal mining being one of 

the major competing land use (Van der Burgh, 2012). 

 

Surface coal mining results in degradation of soil physical properties, significant loss of 

organic matter and nutrients and hence diminishes soil productivity (Akala & Lal 2001).  

Restoring the soil productivity and the establishment of sustained vegetative cover are 

primary objectives of mine soil reclamation.  In the process of open-cast mining, the area 

is completely stripped of vegetation to remove overburden covering the coal seam.  Soil 

loss is a regular occurrence at surface coal mines, especially older mines where soil 

management was not a management priority at the onset of mining operation (COM and 

CRA, 2007).  In some areas, soil was not even stripped prior to mining as it was not a 

requirement to do so (Cogho, 2012).  Adequate soil stripping, stockpiling and 

management of this resource at a surface coal mine is therefore of utmost importance.  

Without proper soil management, post-mining substrate might not only comprise soils and 

that might limit the ability of the substrate to support a good vegetation cover (Mentis, 

2006).  Soil generation (pedogenesis) is a lengthy process that spans over several years 

(Strohmayer, 1999). 
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2.2 Coal-Mine Soil Stockpiling 

Soil is a vital natural resource, constituting a critical controlling component during the early 

stage of ecosystem development.  Soil quality is defined as “the capacity of a soil to 

function within ecosystem boundaries to sustain biological productivity, maintain 

environmental quality and promote plant and animal health” (Doran & Parkin, 1994).  

Mining activities are invariably associated with the removal of fertile top soil organic layer 

enriched with vegetation cover (Fox, 1984) and hence has negative environmental 

consequences. 

 

Surface coal mining requires good and sound rehabilitation practices to re-establish 

productive land capability and land use after mine-closure.  The vast majority of 

Mpumalanga’s coal deposits are located below high quality productive arable land 

(Mentis, 2006).  Impacts on soil and land associated with surface coal mining can reduce 

the possibility to re-establish the pre-mining land capability and productive potential.  The 

result observed in practice, defined as the status quo, is that most surface coal mining 

companies in Mpumalanga aim to re-establish grazing land capability potential for the 

end land use option instead of the original arable land capability (Botha, 2014). 

 

Stockpiling is a necessary part of civil engineering and mining operations, involving the 

removal of topsoil (the A and B-horizon of the soil).  The topsoil is usually removed with 

heavy equipment and then stored in large, deep piles for the duration of the civil 

engineering or mining project.  When the project is complete, the soil is re-spread to allow 

for the establishment of plants.  The storage period for stockpiled soil ranges from a few 

months to several years.  The depth of the stockpile and the length of time it is stored 

affect the quality of the soil (Strohmayer, 1999). 

 

Soil takes centuries to develop from parent material and organic matter.  In a study of soil 

development of six sites where surface mines existed between 5 and 64 years, the depth 

of the newly developed soil horizon in the 5-year-old site was 3cm compared to 35cm in 

the 55-year-old site (Strohmayer, 1999).  If stockpiled soil is reapplied quickly after mining, 
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with less compaction from mechanical traction, the production potential of vegetation on 

the stockpile remains high (Thomas & Jansen, 1985). 

 

During the process of open-cast coal mining, topsoil is removed and stockpiled for future 

use.  Stockpiled topsoil becomes highly degraded the moment this long-term structure is 

disturbed.  Several studies conducted (Fresquez & Aldon, 1984; Harris & Birch, 1989; 

and Strohmayer, 1999) reveal that timeframe can lead to damage of most soil properties.  

The damage starts when topsoil is initially stripped from the ground.  Changes that occur 

in soil include change in physical, chemical and biological properties, and loss or 

reduction of viable plant remnants and seeds (Strohmayer, 1999).  For stockpiled soil to 

meet its goals of rehabilitation post mining-closure, quantification of soil physical and 

chemical properties that affect soil quality and crop production is necessary.  Soil 

properties such as soil structure, microbial population and nitrogen can change rapidly 

when the soil is disturbed (Lad & Samant, 2015). 

 

The natural process of soil development can take hundreds of years and stockpiled 

topsoil becomes highly degraded the moment the structure is disturbed (Birch et al., 

1989).  Studies reviewed herein lead to one timeframe where the most damage occurs.  

This timeframe is when topsoil is initially stripped from the ground.  Changes that occur 

in soil include increased bulk density, decreased water holding capacity, chemical 

changes, reduced nutrient cycling, reduced microbial activity, and loss or reduction of 

viable plant remnants and seeds (Harris & Birch, 1989). 

 

Soils are in practice stockpiled in three categories according to their clay content, topsoil 

and subsoil, and not grouped together as commonly prescribed in the soil guidelines of a 

mine (New Hope Group, 2014).  The “A” and “B” horizons are usually stripped and 

stockpiled together, diluting the fertility status of the soil (COM and CRA, 2007), and 

increase fertility requirements post-closure.  Mentis (2006) also described this impact as 

an effect of soil disturbance when bringing the subsoil, saprolite and fragmented rock to 

the surface.  These components then form part of the mixture with topsoil that is used for 

the top layer on a post-mining surface.  The result is that the mixture often cannot support 
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plant life.  Therefore, for good rehabilitation results to re-establish plant life, the 

contamination of soil, especially when bulk volume soil stripping is practised on a site, 

should be minimized or prevented (COM and CRA, 2007). 

 

Several researches on stockpiled soils were conducted in other countries addressing 

challenges and problems faced in those respective countries.  Ghose (1989) conducted 

a study that focused on the effect of open mining on soil fertility in India’s largest open-

cast coal project Eastern Coalfields Ltd.  The study indicated that, for every million tonne 

of coal extracted by surface mining, approximately 4ha of a surface area is disturbed.  

Harris and Birch (1989) noted that when soil stockpiles in more than a meter deep, 

chemical effects such as accumulation of ammonium and anaerobic conditions occurred 

in the topsoil at the base of the pile.  Other detrimental biological effects include absence 

of propagules and decrease in viability of buried seeds. 

 

A study conducted in Wales and New Zealand by Williamson and Johnson (1990) 

reported that the soil pH and the mineral content of stockpiled soils are not affected, as 

long as the soil is not stored for long periods of time in deep stockpiles.  The same study 

reported that soil biology of stockpiled topsoil is restored quickly once the soil is re-spread.  

Abdul-Kareem and McRae (1984) stated that, although there is a clear evidence of the 

effects due to storage and earthmoving equipment, the extent of deterioration of soil in 

stockpiles resulting from the equipment and storage has been greatly overestimated.  The 

authors further indicated that there is no reason why soils should not continue to be 

stockpiled, although greater care must be given to minimize compaction and mixing of 

topsoil with subsoil. 

 

A study conducted by Zelikman and Carmina (2013) demonstrated the possibility of using 

ground spectral-based approaches for digital quantification of some soil properties using 

the non-destructive NIRs (Near InfraRed) procedures.  The study was also able to predict, 

soil moisture, hygroscopic water, carbonates and specific surface area at a reasonable 

level down the profile based on the spectral library containing laboratory and field in-situ 

collected spectra.  Labovitz et al., (1983) demonstrated that the metal content in the soil 
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changed the leaf reflectance, especially in those parts of the spectrum used for 

chlorophyll content and leaf water absorption, and that variation in trace metal content 

was associated with leaf reflectance.  Schellekens et al., (2005) conducted a study that 

focused on changes of the leaf reflectance spectrum due to metal-induced stress from 

copper deposits. 

 

2.3. Enzyme Activities of the Soil 

Enzyme activity is a soil property that is chemical in nature, but has a direct biological 

origin.  Since soil enzyme activities are very sensitive to pollution, enzymes have been 

suggested as potential indicator or monitoring tools to assess soil quality and health.  

Enzyme activities can effectively reflect the biological status of the soil (Sisa, 1993).  Dick 

et al. (1996) suggested that soil enzyme analyses could be a good indicator of soil quality, 

because i) they are strongly linked to important soil properties such as organic matter, 

microbial activity or biomass, ii) they have the tendency to change earlier than other soil 

properties, and iii) they involve relatively simple methods as compared to other parameter 

assessment of soil quality.  The enzyme activity depends on the contents of the organic 

and mineral colloids, metal types and chemical properties (Kucharski & Wyszkowska, 

2004). 

 

Soil enzyme activities are very sensitive to both natural and anthropogenic disturbances 

and show a quick response to the induced changes (Dirk, 1997; and Kumar et al., 2013).  

A study conducted by Fresquez et al. (1985) shows that soil stockpiling affected enzyme 

activity.  Therefore, enzyme activities can be considered as effective indicators of soil 

quality changes resulting from soil stockpiling.  Soil enzymes play a fundamental role in 

establishing biogeochemical cycles and facilitate the development of plant cover.  It is an 

important aspect of the below-ground processes and give insight into the relative changes 

in below-ground system functioning as a plant community develops over time (Tabatabai 

et al., 2010).  Enzyme activity in soil results from the activity of accumulated enzymes 

and from enzymatic activity of proliferating microorganisms (Kiss et al. 1975).  
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Soil enzymes mainly originate from soil microorganisms, which can indicate microbial 

activities in soil environment.  Soil enzymes play an important role in organic matter 

decomposition and nutrient cycling.  The activity of enzymes is affected by abiotic 

conditions (e.g., temperature, moisture, soil pH, and oxygen content), by the chemical 

structure of the organic matter and by its location in the soil strata (Deng &Tabatabai, 

1994; and Pavel et al., 2004).  Several studies show that soil enzyme activity data can be 

used as the foundation for the development of conceptual models that provide a more 

comprehensive understanding of key biochemical processes linking microbial populations 

and nutrient dynamics (Sinsabaugh & Moorhead, 1994; Schimel & Weintraub, 2003; and 

Akca & Namli, 2014). 

 

Enzymes catalyse all biochemical reactions and are an integral part of nutrient cycling in 

the soil.  Soil enzymes are believed to be primarily of microbial origin but also originate 

from plants and animals (Tabatabai, 1994).  They are usually associated with viable 

proliferating cells, but enzymes can be extracted from both living and dead cells.  Soil 

enzymes are considered to be indicative measures of soil fertility and bioremediation 

activities due to the fact that they participate in elemental cycling (Dick et al., 1996). 

 

Many studies have also suggested that soil enzymes can be used as indices of soil 

contamination, soil fertility and soil health (Martens et al., 1992; Giusquiani et al., 1994; 

and Saviozzi et al., 2001).  Soil enzyme activity is variable with substrate supply (Degens, 

1998), providing useful linkage between microbial community composition and carbon 

processing (Waldrop et al., 2000) and is sensitive indicators to detect the changes 

occurring in soils (Gonzalez et al., 2007). 

 

Criteria for choosing enzyme activities as biomarker to assess soil quality is based on 

their sensitivity to soil management practices, importance in nutrient cycling, organic 

matter decomposition and bioremediation activities.  Among the parameters related to the 

biochemical and microbiological state of the soil, the most important are the indicators of 

the soil microbial activity, principally different enzymatic activities that are specifically 
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related to the cycles of nitrogen (N), phosphorus (P), and carbon (C) (urease, 

phosphatase, and β-glucosidase, respectively) (Bandick & Dick, 1999). 

 

Since enzyme activity is linked to several ecosystem processes including soil formation, 

organic matter transformation and bioremediation activities, it is important to understand 

the different physico-chemical factors affecting the enzyme activities (Kujur et al., 2012). 

Given the importance of enzymes in maintenance of soil quality, the present study was 

initiated to assess the impact of different soil amendments on enzyme activity, and to 

illustrate if soil enzyme activities can be used as indices for soil quality and health. 

 

2.4 Reflectance Spectroscopy for Assessing Stockpile Soil 

Remote Sensing (RS) has become an important tool to help facilitate effective 

environmental planning, as an alternative to conventional field based techniques that are 

labour intensive and time consuming.  Reflectance Spectroscopy is another example of 

Remote Sensing that offers an opportunity to undertake pectral evaluation useful to 

characterize and discriminate soils (Demattê et al., 2004) because various soil attributes 

absorb and reflect incident radiation differently.  The differences between the intensity of 

both absorption and reflection at each wavelength are influenced by soil structural and 

chemical configuration.  An inter-correlation between featureless and constituents with 

spectral features is the mechanism by which those harder to detect constituents are 

recognized and measured (Nanni & Demattê, 2006). 

 

Several studies have shown that the spectral behaviour of soils is influenced by their 

physical, chemical, and mineralogical characteristics (Stoner & Baumgardner, 1981; 

Galvão et al., 1997; and Demattê et al., 2004).  Reflectance Spectroscopy has been used 

for many years to assess grain, fertilisers and soil qualities (Ben-Dor & Banin, 1994; Faraji 

et al., 2004; and Mohan et al., 2005) and has proven to be a rapid and convenient means 

of analysing many soil constituents at the same time.  NIR spectroscopy is an easy to use 

and less expensive technique that has the potential to replace traditional wet chemistry 

methods of soil analysis (Mashimbye et al., 2012).  Using traditional wet chemistry 

techniques for physico-chemical analysis may be restrictive due to high costs and labour 
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when large amounts of samples have to be analysed.  It is accepted that Near InfraRed 

(NIR) and Mid-InfraRed (MIR) spectroscopy are among less expensive and user-friendly 

techniques for quantitative soil analysis (Shepherd & Walsh, 2002; Brown et al., 2006; 

Bellon-Maurel et al., 2010; Bilgili et al., 2010; and Bellon-Maurel & McBratney, 2011). 

 

Adoption of spectroscopic techniques for soil analysis are gaining momentum nowadays.  

For example, Bilgili et al. (2010) evaluated visible-Near InfraRed reflectance (VNIR) 

spectroscopy for prediction of diverse soil properties related to four different soil series of 

the entisol soil group within a single field in northern Turkey.  They obtained strong 

correlations for exchangeable Ca, Mg, cation exchange capacity, organic matter, clay, 

sand, and CaCO3 contents. Bellon-Maurel et al. (2010) investigated the critical aspects 

to be conscious of when assessing NIR spectroscopy measurements for soil analysis.  

 

A variety of statistical methods are used by researchers to extract soil attributes from the 

spectra.  The statistical treatments that are used to enhance the extraction of soil attribute 

information from spectra include amongst others Principal Component Regression 

(PCR), Multiple Regression Analysis (MRA), Stepwise Multiple Linear Regression 

(SMLR), bagging PLSR and multivariate adaptive regression splines (MARS).  Spectral 

transformations (mathematical treatments) are also applied to the spectra to maximize 

the extraction of information from spectra (Cho & Skidmore, 2006; and Ramoelo et al., 

2011).  

 

The mathematical spectral treatments include first and second derivatives, straight line 

subtraction, vector normalization, and multiplicative scattering correction, to mention a 

few.  It appears that the use of statistical methods and spectral transformation frequently 

have a favourable result for enhancing the extraction of soil information from spectra.  For 

example, Janik et al. (2009) compared the performance of PLSR analysis for the 

prediction of a variety of soil chemical and physical properties from their MIR spectra 

using a combination of PLSR and neural networks (NN).  While their study established 

that the PLSR-NN method outperformed the PLSR for the prediction of some soil 

properties, they cautioned that the use of PLSR-NN over the PLSR should be questioned 
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against the backdrop of the trade-off of limited improvement and the added computational 

complexity.  Primarily, PLSR is the most commonly used statistical spectral treatment 

technique for soil analysis.  Bilgilli et al. (2010) assert that this is mainly because PLSR 

is superior to traditional methods in dealing with high dimensional multi-collinearity in the 

data. 

 

PLSR is one of the most common multivariate statistical techniques for spectral 

calibration and prediction of soil properties, e.g., Chang and Laird, (2002); and McCarty 

et al., (2002).  PLSR approach is known to minimize multi-colinearity and overfitting by 

decomposing independent variable into uncorrelated latent variables.  The latter makes 

it useful for analysing spectrometer as compared to SMLR (Shepherd & Walsh, 2002). 

 

Reflectance Spectroscopy has been successfully used to estimate leaf biochemical 

concentration, including nitrogen (N) and phosphorus (P) as indicators of vegetation 

quality (Cho & Skidmore, 2006; and Ramoelo et al. 2011).  Often, this is achieved by 

using spectral transformation such as Log (1/R), first derivatives, second derivatives etc.  

The spectral transformation techniques are mainly used to enhance absorption features 

of foliar biochemical concentrations, while minimizing atmospheric, soil background, and 

water absorption effects, as well as data redundancy (Cho & Skidmore, 2006).  Ramoelo 

et al., (2011) demonstrated that using water removed spectra (WR) and PLSR improves 

the estimation of foliar N and P in the controlled environment, due the capability of WR to 

minimize water absorption effect on the fresh leaf spectra.  Continuum removal has also 

been successfully applied to enhance absorption features for foliar biochemical 

concentrations (Mutanga et al., 2005). 

 

Reflectance Spectroscopy of natural surfaces is sensitive to specific chemical bonds in 

materials, whether solid, liquid or gas.  The advantage of spectroscopy is that it is very 

sensitive to small changes in the chemistry and/or structure of a material (Clark, 1999).  

Using Remote Sensing, there is a significant progress in estimating foliar biochemicals, 

especially using spectroscopy approaches.  A simple technique is to correlate vegetation 
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index and a biochemical concentration of interest, e.g., N (Abdel-Rahman et al., 2010; 

and Ramoelo et al., 2012).  

 

2.5 Conclusion 

The review of literature presented in this chapter outlined the effect of open-cast mining 

on soil quality, properties of coal-mine stockpile soil, enzyme activity as indicator of soil 

health and the use of Reflectance Spectroscopy to estimate soil and vegetation 

properties. 

 

Firstly, literature proves that open-cast mining severely alters the landscape, which 

reduces the value of the natural environment in the surrounding land and affect soil 

quality.  During the process of open-cast coal mining, topsoil is removed and stockpiled 

for future use.  Stockpiled topsoil becomes highly degraded the moment this long-term 

structure is disturbed. 

 

Secondly, Soil properties do change during stockpiling.  Changes that occur in soil include 

increased bulk density, decreased water holding capacity, chemical changes, reduced 

nutrient cycling, reduced microbial activity and loss or reduction of viable plant remnants 

and seeds. 

 

Thirdly, Soil enzymes activity can be used as indicators of soil health.  Soil enzyme 

activities are very sensitive to both natural and anthropogenic disturbances and show a 

rapid response to the induced changes. 

 

Finally, Reflectance Spectroscopy has a potential to assess coal-mine stockpile soil and 

grass properties.  Reflectance Spectroscopy is reliable, less tedious and cost effective 

technique to assess and predict properties of soil and grass.  Clearly, the assessment of 

coalmine stockpile soil quality and its impact on vegetation using laboratory-based and 

Reflectance Spectroscopy techniques should to be investigated. 
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CHAPTER 3 

IMPACT OF QUALITY OF COAL-MINE STOCKPILE SOILS ON VEGETATION GROWTH 

AND PRODUCTIVITY 

 

3.1 Introduction 

South Africa has only about 3-4% of high potential agricultural land that is suitable for 

sustained food production.  Much of this land has however been lost to other competing 

land use prospects.  Agricultural production is under tremendous pressure from new or 

expanding mining activities to facilitate current growth (Collett, 2013).  Of the entire 3-4% 

of high potential agricultural land, 46.4% is found in Mpumalanga Province.  At the current 

rate of coal mining, it is estimated that approximately 12% of high potential agricultural 

lands will be transformed while a further 13.6% is under prospecting by mines in 

Mpumalanga, South Africa (Van der Burgh, 2012). 

 

Surface coal mining requires good and sound rehabilitation practices to re-establish 

productive land capability and land use after mine closure.  The vast majority of 

Mpumalanga’s coal deposits are located below high quality productive arable land.  The 

impacts on soil and land associated with surface coal mining can reduce the possibility of 

re-establishing the pre-mining land capability and productive potential.  The result 

observed in practice, defined as the status quo, is that most surface coal mining 

companies in Mpumalanga aim to re-establish grazing land capability potential for the 

end land use option instead of the original arable land capability (Botha, 2014). 

 

Open-cast coal mining activities are leaving an unmistakable footprint on the landscape 

in the form of altered landscapes due to the creation of discard dumps.  Valuable 

agricultural land is being degraded hence affecting long-term productivity (Chodak et al., 

2011).  Poor soil management in the operational phase of the mine could limit the re- 

 
 

establishment of pre-mining land-use or another sustainable land capability class post- 

closure (Strohmayer, 1999; Ghose, 2001; and Ghose, 2004).  In this study, 10 to 20 years 

old coal-mine stockpile soils were used to evaluate their ability to support plant growth 
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and to assess their quality and fertility status, as those soils will be used for rehabilitation 

during post mining phase. 

 

Soil is a valuable resource as it is the growth medium used by vegetation and for food 

production.  Adequate soil stripping, stockpiling, and management of this resource at a 

surface coal mine is therefore of utmost importance.  Without proper soil management, 

post-mining substrate might not only comprise quality of the soils but can also affect re-

vegetation (Mentis, 2006).  If stockpiled soil is reapplied quickly after mining, with less 

compaction from mechanical traction, the production potential of vegetation on the 

stockpile remains high (Thomas & Jansen, 1985).  Soil is a vital natural resource, 

constituting a critical controlling component during the early stage of ecosystem 

development.  Soil quality is defined as the capacity of a soil to function within ecosystem 

boundaries to sustain biological productivity, maintain environmental quality, and promote 

plant and animal health (Doran & Parkin, 1994).  Mining activities are invariably 

associated with the removal of fertile top soil organic layer enriched with vegetation cover 

and hence has environmental consequences (Fox, 1984). 

 

Open-cast mining severely alters the landscape, which reduces the value of the natural 

environment in the surrounding land.  The land surface is dedicated to mining activities 

until it can be reshaped and reclaimed.  Topsoil stripping and stockpiling is an important 

and necessary practice of surface coal mining operations, as topsoil forms a critical 

element for the successful restoration of open pit mines (Ghose, 2001).  Topsoil cannot 

always be placed directly onto mined out land.  Therefore, it may be necessary to 

stockpile the resource for future use (COM and CRA, 2007). 

 

Poor management of topsoil and stockpiles will lower the rehabilitation potential of the 

soils and increase rehabilitation costs.  This, in turn, has an impact on the post-mining 

land capability and land use once mining has ceased. Improving the fertility and health of 

the stockpiled soils through amendment is critical for rehabilitation.  Currently, there are 

limited studies of this nature as most of the studies are focused on rehabilitation rather 

than on good soil management practices during mining operation.  The main objective of 
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the study was to evaluate the impact of quality of coal-mine stockpile soils on vegetation 

growth and productivity 

 
1 This chapter is based on the work published in Sustainability Journal: Mushia, N.M.; Ramoelo, A.; Ayisi, 

K.K. The Impact of the Quality of Coal-Mine Stockpile Soils on Sustainable Vegetation Growth and 
Productivity. Sustainability 2016, 8, 546. 
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3. 2 Objectives 

The specific objectives were, namely, to: 

1. Evaluate the effect of coal-mine stockpile soil depth on vegetation growth and 

productivity; 

2. Evaluate the effect of coal-mine stockpile soil age on vegetation growth; and 

3. Investigate the capability of different amendment of stockpile soils to support 

vegetation growth and productivity for rehabilitation purpose.  

 

3.3 Hypotheses 

1. Coal-mine stockpile soil depth has an effect on vegetation growth and 

productivity. 

2. Coal-mine stockpile soil age has an effect on vegetation growth. 

3. Amendment of stockpile soil has the capability to support vegetation growth 

and productivity for mine rehabilitation purpose.  

 

3.4 Materials and Methods  

3.4.1 Locality and Soil Sampling Process 

Bulk soils were sampled from different depths of two soil stockpiles: stockpile 1 (10 years 

old) and stockpile 2 (20 years old) from a coal mine situated approximately 8 kilometres 

south of Witbank in Mpumalanga Province of South Africa.  Stockpile soils are mixture of 

different soil types pilled together in a non-sequential form.  There were no visible soil 

horizons.  The depth of each stockpile soil was approximately 400cm. Sparsely scattered 

growth of different grass species were observed on the stockpile soils during the time of 

sampling.  The climate of the area can be regarded as having warm, moist summers and 

cool to cold dry winters with frost.  On average, 85% of the annual total rainfall of 750mm 

is received during the growing season (i.e., October to March).  

 

3.4.2 Greenhouse Experiment: Set up and sampling 

A 2x4x5 factorial experiment in a randomized complete block design (RCBD) with four 

replications was established under greenhouse condition (from January-May 2015) to 

minimise any unforeseen variations.  The conditions inside the greenhouse were set at a 
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temperature of 26-280C during the day and 16.5-18.50C at night, relative humidity of 

approximately 60%, photoperiod of 8-12 hour light/24 hour and the evapotranspiration of 

3.5-4.0mm/day.  The indoor temperature was set to mimic the temperature of the 

surrounding area in summer.  The factors studied were as follows:  Factor 1 (age of the 

stockpile soil) at 10 years old and 20 years old; Factor 2 (stockpile soil depth), sampled 

as follows: surface soil (0-25cm); mid soil (150-200cm); deep soil (300-350cm) and mixed 

soil (mixture of equal amounts of surface, mid and deep).  The mixed soil treatment was 

carried out to simulate the condition of the soil during rehabilitation process at the mines.  

The third factor was soil amendments namely: poultry manure, no fertilizer, lime + poultry 

manure, compost and lime + mineral fertilizers (NKP).  

 

Soils were amended with organic amendments and mineral fertilizers according to 

fertilizer recommendations for smut finger grass (Digiteria eriantha) using method by 

FSSA (2007).  One litre (13cm diameter top x 11cm depth x 9.6cm diameter at the base) 

plastic pots perforated at the base were filled with the amended soils for planting in the 

greenhouse.  Prior to application, poultry manure was air dried and analysed for nutrient 

content (Total N=5.8 %, P=2.5%, K=2.8 %, Ca=12.15 % and pH=8.9) (Non-Affiliated Soil 

Analysis Working Group, 1990).  The chicken manure was applied two weeks before 

planting at a rate of 16g/pot, which is equivalent to 3.2t/ha. 80 g/pot or 16t/ha of compost 

was applied two weeks before planting.  Statistically, there was no significant differences 

in soil pH from the different depths sampled.  Lime (CaCO3) was applied three months 

before planting at a rate of 10g/pot or 2t/ha.  The reason for applying lime months before 

planting was to allow enough time for the lime to be released into the soil.  Application of 

inorganic fertilizers (NPK) Superphosphate [Ca (H2PO4) 2]. (10.5% P), Potassium 

chloride [KCl] (50%K) was done a week after planting (Unagwu et al., 2012).  

Superphosphate was applied at 0.55g/pot or 110kg P/ha, Potassium chloride was applied 

at 0.3g/pot or 60kg K/ha for soils with clay% <20 and 0.39g/pot or 78kg K/ha for soil with 

clay% >20. 0.6g/pot or 120kg N/ha of LAN was applied when plants were four weeks old 

and the other 0.6 g/pot was applied when plants were twelve weeks (Huang et al., 1994).  

Smuts finger (Digiteria eriantha) seeds were subsequently sown in the pots following the 

soil amendments on 10th January 2015 in a greenhouse.  A total of 160 pots were 
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arranged into 2x4x5 factorials with four replicates (Morrison, 2001).  The decision to use 

this grass specie to evaluate soil fertility and quality of stockpiled soils was based on the 

fact that this grass is one of the species commonly used for post mine rehabilitation in 

South Africa (Truter et al., 2009).  It is also an important source of forage for livestock and 

wildlife (Rethman & Tanner, 1995). 

 

3.4.3 Soil Chemical Analysis 

Prior to soil amendment, the sampled soils from surface, mid, deep and mixed were 

analysed for physical and chemical properties.  The soils were first air-dried and screened 

through a 2mm sieve for analysis.  A particle size analysis was performed on the <2mm 

soil fraction using the pipette method (Soil Analysis Working Group, 1990).  

Exchangeable cations, cation exchange capacity, soil organic carbon and exchangeable 

aluminium (Al), as well as pH (H2O) were determined according the procedures of Non-

Affiliated Soil Analysis Working Group (1990).  Textural classes of the soil are as follows; 

stockpile 1: Surface (sandy clay loam), mid (sandy loam), deep (clay loam) and mixed 

(loam).  Stockpile 2; Surface (loamy sand), mid (silt loam), deep (sandy loam) and mixed 

(sandy loam) (Table 3.1).  Sampled soils were amended according to their respective 

treatments: (poultry manure + lime, poultry manure, compost, no amendments and 

mineral fertilizers + lime.  Ten seeds of Digiteria eriantha were sown in each pot and 

thinned out to five plants after seedling emergence.  Plants were watered four times a 

week for the first 6 weeks and, thereafter, were watered daily until the experiment was 

completed. 
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Table 3.1. Pre-Sown Soil Fertility Results 

_______________________________________________________________________________________________________________________________ 

                           Stockpile 1 (10 years)                                                                                                                 Stockpile 2 (20 years)                                                                                                            

                       ________________________________________________________    _________________________________________________ 

                             Soil Depth 

                             ___________________________________________________________________________________________________________ 

‡ Soil Properties               Surface              Mid               Deep                     Mix                            Surface  Mid             Deep  Mix 

_______________           _______________________________________________________         ___________________________________________________________                                            

Na cmol(+) kg-1  0.07    0.08  0.07  0.08   0.03  0.04  0.05  0.06                    

K cmol(+) kg-1  0.18  0.11  0.07  0.17   0.11  0.06  0.05  0.07 

Ca cmol(+) kg-1  0.74  0.47  0.33  0.68   0.54  0.77  0.72  0.66 

Mg cmol(+) kg-1  0.45  0.42  0.27  0.49   0.27  0.58  0.28  0.46 

CEC cmol(+) kg- 1  5.80  3.46  3.94  5.11   4.68  2.83  5.54  4.27 

pH (H2O)  5.67  5.25  5.19  5.88   5.49  5.99  5.20  5.68  

Org C (%)  0.45  0.34  0.18  0.53   0.70  0.25  0.30  0.82    

Al cmol (+) kg-1  0.72  0.84  1.12  0.69   0.79  0.77  1.07  0.93   

P-Bray 1 (mg kg-1)  8.99   7.07  6.68  8.35   6.76  6.04  4.93  7.03  

Clay %   25.32  16.14  30.05  21.84   14.44  11.32  10.39  12.94 

Silt %   23.10  15.90  45.68  32.01   7.38  50.19  35.66  32.18            

Sand %   51.28  67.96  24.27  45.98   78.18  38.49  53.95  54.88  

‡ Surface soil (0-25 cm) (S); mid soil (150-200 cm) (M), deep soil (300-350 cm) (D) and mixed soil (mixture of equal amounts of surface, mid and deep) (Mx) 
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3.4.4 Data Collection 

The following growth parameters were measured on 30th May 2015 as indicators of 

vegetative growth: plant height, plant cover, total fresh biomass (roots, stems and 

leaves) and total dry biomass (Maas, 1998).  Plant height was measured using 

measuring tape from the base of the plant to the tip of the topmost leaf of the plant 

(BBIRD Grassland Protocol, 1997).  Plant cover was measured by visual scoring of 

the grass cover around the pot (BBIRD Grassland Protocol, 1997).  Total fresh 

biomass was determined at the end of the experiment where the plants were removed 

from the pots and soil on the roots were thoroughly washed off under a tap and a sieve 

to remove bound soils and retrieve any broken root fraction.  The whole plant was 

weighed to determine total fresh biomass.  Grass samples were oven dried at 60°C 

for 48hours until constant weight and were weighed with Mettler PE 6000 balance with 

0.01g readability for total dry biomass (Anash et al., 2010). 

 

3.4.5 Statistical Analysis 

Data were analysed using standard procedure for analysis of variance (ANOVA) of a 

factorial arrangement of a randomised complete block design (Gomez & Gomez, 

1984).  Differences between treatment means were separated using the Duncan’s 

Multiple Range Test (DMRT) procedure at 0.05 and 0.01 probability levels.  Pearson’s 

correlation coefficient was done to determine the relationships among various 

variables at 95% probability level (p<0.05).  All data were analysed using the statistical 

package, STATISTIX 10.0. 

 

3.5 Results 

The mean values of plant parameters at different depths and soil amendments are 

recorded in Tables 3.2 and 3.3 respectively.  There were significant differences 

(P<0.05) in plant height, fresh biomass, dry biomass and plant cover in relation to 

depth and soil amendments.  Mixed soils produced higher mean values for all 

measured plant parameters (Table 3.2).  
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Table 3.2. The Effect of Different Depths of the Stockpile on Plant Parameters 

Measured plant parameters 

‡ Soils            Height (cm)              Fresh biomass (g)        Dry biomass (g)           Plant cover (%)            

MX                          18.72a                        28.33a                              12.96a                     70.80a                     
S                             16.55b                        23.91b                               9.28b                       62.00b                                          
M                            14.21c                        22.19b                                8.07c                       61.00b                    
D                            12.85d                        17.34c                                7.34c                      45.90c                                                 

P (≤0.05)                0.00*                             0.00*                               0.00*                      0.00*                          

‡ a, b, c, d indicates significant difference. Means in the same column followed by the same letter are not 
significantly different from each other at the 5% probability level, *Significant at p≤0.05. 
‡ MX = Mixed soil; S = Surface soil; M = Mid soil; D = Deep soil.  

 

Considering the impact of soil amendment, there was significant improvement in most 

of the plant parameters measured when soils were amended, relative to those sown 

on unamend soil (Table 3.3).  The application of poultry manure+ lime consistently 

increased height, fresh and dry biomass as well as plant cover compared to the plants 

sown on unamend soils.  Compost and poultry manure application improved height, 

fresh biomass and dry biomass.  Plants sown on soil with no fertilizer showed 

significantly low growth rate.  Among the different soil amendment treatments, the 

poultry manure + lime and lime + inorganic fertilizer were superior in increasing the 

parameters measured.  

 

Table 3.3: The Effect of Soil Amendments on Plant Parameters 

Measured plant parameters 

‡ Amendments    Height (cm)   Fresh biomass (g)   Dry biomass (g)    Plant cover (%)      

P+L      23.47a     28.33a                 14.55a                   85.16a                                   
NPK+L          20.04b     23.91a                  12.19b                   78.44b             
C                   14.53d     17.34b        8.97d                       57.50c               
P                  17.09c     22.19a                  10.92c                73.28c        
NF      0.28e      1.80c        0.44e                     5.30d                                       

P (≤0.05)   0.00*   0.00*     0.00*                        0.00*                  

‡ a, b, c, d indicates significant difference. Means in the same column, followed by the same letter are not 
significantly different from each other at the 5% probability level, *Significant at p≤0.05. 
‡ Height=Plant height, Amendments= Soil amendments, NF= No Fertilizer, P+L= Poultry manure + 
lime, NKP+L= Inorganic fertilizer + lime, C= Compost, P= Poultry manure.   

 

Figures 3.1 and 3.2 presents the combined effects of soil depth and amendments on 

plant height and total dry biomass.  The results show that there was no significant 

difference (p<0.05) in plant height at different depth when the grass is sown on soils 

with no fertilizer (Figure 3.1).  The results in Figure 3.1 also showed significant 

difference in plant height in response to soil depths when soil was amended with lime 

+ poultry, compost, lime + inorganic fertilizer and poultry manure.  Plants sown on soil 

with no fertilizer showed no significant (p<0.05) for dry biomass on different depths of 
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stockpile (Figure 3.2). Correlation statistics indicated significant correlations among all 

measured plant parameters (Table 3.4). 
 

 

 

Figure 3.1. Effect of Soil Depth and Amendments on Plant Height 
a, b, c indicates significant difference. Means with the same letter are not significantly different from 
each other at the 95% probability level. 
* Significant at p ď 0.05. A = Stockpile 1, B = Stockpile. ‡ MX = Mixed soil; S = Surface soil; M = Mid 
soil; D = Deep soil. 
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Figure 3.2. Effect of Soil Depth and Amendments on Total Dry Biomass 
a, b, c indicates significant difference of mean. Means with the same letter are not significantly different 
from each other at the 95% probability level (e.g., a, b). * Significant at p ď 0.05. A = Stockpile 1, B = 
Stockpile 2. ‡ MX = Mixed soil; S = Surface soil; M = Mid soil; D = Deep soil  

 

 

 

 



25 
 

Table 3.4. Correlations Coefficients (R2) between Selected Parameters Measured 
from Plants Parameters Grown on Stockpile Soils 

  Height     Fresh biomass            Dry biomass   Cover               

Height                 1.00 
Fresh biomass            0.97*                 1.00 
Dry biomass  0.96*                  0.99*        1.00 
Cover               0.93*                  0.97*  0.95*   1.00 

* = significant at P<0.05 

 

3.6 Discussion 

3.6.1 Effect of Soil Stockpile Age on Vegetation Growth 

Stockpiling of soil mounds during mineral extraction has been shown to affect the 

chemical and physical properties of the soil (Harris et al., 1989; and Johnson et al., 

1991).  Plant parameters measured from plants grown on soils from stockpile 1 (age 

10 years) produced higher mean values compared to those planted on stockpile 2 

(age 20 years).  This can be attributed to the fact that when soils are stored for a long 

time nutrients released by microbiological activity is continually lost due to leaching 

and erosion, nutrient cycle is broken down and soil ultimately become unproductive 

(De & Mitra, 2002; and Ghose, 2004).  According to Kundu and Ghose (1997), as the 

age of soil stockpile increased, the concentrations of suitable plant growth nutrients in 

soil gradually decreased.  Their study revealed that K was 54.70% lower in soil after 

ten years, relative to 36.84% after one year of top soil stockpiling and pH was 7.21% 

lower after ten years, relative to 2.20% after one year of top soil stockpiling. 

 

3.6.2. The Effect of Stockpile Soil Depth on Plant Parameters 

Mixed soils tend to have higher vegetation growth as indicated by measured 

parameters than all other soils from different depths (surface, mid and deep).  The 

higher vegetation growth is an indication that mixing stockpile soils can improve 

productivity of the soil.  There was no significant increase in organic carbon 

percentage, soil pH and other soil elements and a decrease in exchangeable 

aluminium when the soils were mixed.  The higher mean values of all plant parameters 

measured on plants grown on mixed soils can be attributed to the change in soil texture 

that affects other physical properties like water availability, infiltration rate and 

aeration, and, to some extent, chemical properties (Rice, 2002; and Garg & Kumar, 

2012).  Mixed soil of stockpile 1 was classified as loam soil (Table1).  According to 

NRCCA (2010) and Shaxson and Barber (2003), the average water holding capacity 

(inch/foot) of loam soil is two times higher than that of sandy clay loam (surface soil).  
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The same applies to sandy loam and loamy sand.  Sandy loam soil has water holding 

capacity two times higher than that of loamy sand (Shaxson & Barber, 2003; and 

NRCCA, 2010).  Stockpile 2 mixed soil was classified as sandy loam whereas surface 

soil was classified as loamy sand.  According to Bierhuizen (1959), soil with high water 

holding capacity is favourable for plant growth since plants receive enough water for 

cell elongation, leaf expansion and fresh biomass. 

 

Using deep and mid soils as a growth media resulted in low vegetation growth as most 

plant parameters measured were statistically lower compared to plants grown on 

mixed and surface soils.  According to Harris and Birch (1989), when soil is stockpiled 

more than a meter deep, chemical effects, such as accumulation of ammonium and 

anaerobic conditions, occur at the base of the pile.  Mid and deep soils used in this 

study were stockpiled deeper than 1 meter.  Deep soils in this study were found to 

have aluminium content of more than 1.0cmol (+) kg-1.  High concentration of Al3+ 

content in the soil inhibits shoot growth by inducing deficiency in Ca, Mg and P and 

hormonal imbalances in plants (Roy & Bhadra, 2014).  Tate and Klem (1985) 

concluded that the depth of stockpiles should be restricted to the rooting depth of 

covering vegetation and further indicated that, if plant cover can be maintained with 

roots extending throughout the depth of the stockpile, nutrient cycling processes and 

microbial activity can continue while the stockpile is stored.  Soils used in the 

experiments were stockpiled to a maximum depth of approximately 4 meters.  There 

was higher plant growth rate in surface soils in both stockpiles as compared to mid 

soils and deep soils that can be attributed to high organic carbon on surface soils.  

According to NSW (2010), microbes decompose organic matter in the soils releasing 

nitrogen, phosphorus and other range of elements for use by plant roots.  The report 

further indicates that soil organic carbon decreases with soil depth and that disturb 

soils loses more labile organic carbon that well managed soils. 

 

3.6.3. Effect of Soil Amendments on Vegetation Growth 

Soils disturbed by surface mining are always hostile to planted tress due to changes 

physical and chemical properties (Chodak et al., 2011).  Surface coal mining results 

in degradation of soil physical properties as well as significant loss of organic matter 

and nutrients, and thus diminishes soil productivity (Akala & Lal, 2001).  Restoring the 

soil productivity and the establishment of sustained vegetative cover are primary 
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objectives of mine soil reclamation.  The soil used in the study was acidic with pH 

ranging from 5.2-5.9.  This can be attributed to high rainfall within the area that resulted 

in losses of exchangeable bases from the soil with a consequent effect of soil 

acidification (Mentis, 2006).   

 

Most of the stockpile soils had deficiencies in essential soil elements confirming the 

findings by Ussiri and Lal (2005) that physical and chemical properties of mine soils 

tend to inhibit soil-forming processes and plant growth.  This is usually due to lack of 

nutrients associated with SOM, including nitrogen (N) and phosphorus (P). Soils with 

no amendments had low plant growth rate compared to soils amended with fertilizers.  

This is consistent with the finding of Mohapatra and Goswami (2012) that stockpile 

soil tends to have reduced essential nutrients for plant absorption. 

 

The mean values of plant parameters measured in this study increased with addition 

of soil amendments.  Poultry manure and lime tend to have higher mean values for all 

measured plant parameter in both stockpile soils.  This confirms the findings by (Hue, 

1992; and Haynes & Mokolobate, 2001) that organic waste applications have been 

shown to raise soil pH and increase plant growth in acid soils.  According to Stevenson 

and Vance (1989), manures contain humic type substances with many functional 

groups such as carboxyl and phenolic groups that are able to consume protons at their 

natural pH values. These substances are formed during the decomposition process 

and are relatively stable against further decomposition.  Their capacity to consume 

protons therefore controls the buffer characteristics of these materials and therefore 

their ability to neutralize soil acidity.  Addition of agricultural lime increases soil pH, 

and at pH5.5 most of toxic elements bind to other essential elements in the soil solution 

and reduce their availability for plant uptake (Vogel 1981).  When soils were amended 

with lime and inorganic fertilizer, vegetation growth parameters increased but not 

similar to poultry manure + lime.  According to Ayeni and Adetunji (2010), poultry 

manure has Ca and Mg that are not usually supplied by inorganic fertilizer except as 

impurities.  The studies by Adeniyan and Ojeniyi (2006) and Adediran et al., (2005) 

reported that poultry manure composed micro and macronutrients.  Because of the 

more balanced nutrition given by poultry manure, their studies found that poultry 

manure at 10t ha-1 gave higher maize yield than NPK fertilizer at 400kg ha-1.  In this 
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study, 3.2t ha-1 of poultry manure yielded high vegetation growth than a combination 

of application of 240kg N ha-1, 110kg P ha-1 and 78kg K ha-1. 

 

Poultry manure normally adds cations in the soils (especially Ca).  Addition of large 

quantities of cations to a soil results in accumulation of cations in soil solution with a 

consequent displacement of H+ from exchangeable sites into solution (Samuel et al., 

1985).  Displacement of H+ from exchangeable sites into solution contributes to 

availability of essential nutrients for plant absorption.  Poultry manure alone had good 

influents on plant parameters as compared to compost.  Poultry manure has high Ca 

content that contributes to high CaCO3 content of the manure, which explains why 

poultry manure was an effective amendment for increasing vegetation growth.  

Addition of compost to soils increased productivity better than no fertilizer application.  

Compost increases soil pH and adds nutrients to the soil (Chang et al., 2005).  Addition 

of compost improves the cation exchange capacity of soils, enabling them to retain 

nutrients longer.  It will also allow crops to more effectively utilize nutrients, while 

reducing nutrient loss by leaching (USCC, 2001).  Wong et al. (1998) found out that 

addition of compost to acid soils increases soil pH and ameliorates soil acidity.  They 

attributed this effect primarily to the proton consumptive ability of the added organic 

materials. 

 

3.7. Conclusion 

 The depth of the stockpile affects the quality of the soil at replacement.  Soil stored 

in depth higher than 1m had an effect on plant growth.  They yielded low grass 

growth in terms of measured plant parameters (plant height, dry biomass etc.).  

Mixed soil (as would happen in the rehabilitation process) yielded better grass 

growth, relative to three soils sampled separately at different depths.  

 Without addition of lime and fertilizers, stockpiled soil could not support vegetation 

growth as evidenced by low plant growth on soil without fertilizer.  Poultry manure 

+ lime is essential for plant growth and productivity of stockpile soils. 

 Soil amendments in particular agricultural lime and mineral fertilizers helps in 

reducing soil nutrients stress, but are often expensive; something which will make 

soils rehabilitation difficult. 
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Since the process of stockpiling and reapplying stockpile involves additional expense 

and effort, a careful analysis of results from sites with stockpile soil applications would 

provide the necessary information for cost-benefit analysis and would indicate 

possibilities for improvement in the efficiency of the process of stockpiling. 
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CHAPTER 4 

THE EFFECT OF SOIL AMENDMENTS ON ENZYME ACTIVITIES OF COAL-MINE 

STOCKPILE SOIL 

 

4.1 Introduction 

Coal is the world’s most abundant and widely distributed fossil fuel and it remains the 

primary energy source for several countries world-wide (Botha, 2014).  In South Africa, 

coal mining makes a significant contribution to economic activity, development of 

sustainable job opportunities and foreign exchange earnings.  The coal mining sector 

contributes 1.8% of South Africa’s GDP (Stats SA, 2015).  Coal extraction is 

essentially mined by two methods, namely, underground and opencast methods, both 

of which are very destructive processes.  During coal extraction, the topsoil is usually 

removed with heavy equipment and then piled in large, deep piles for the duration of 

mining project (Strohmayer, 1999).  Unfortunately, highly potential agricultural lands, 

ecologically sensitive environments and surroundings are compromised for this 

development, often resulting in loss of ecosystem value (CRA, 2012). 

 

Soil is a vital natural resource that plays a critical controlling component during the 

early stage of ecosystem development.  Soil quality is defined as “the capacity of a 

soil to function within ecosystem boundaries to sustain biological productivity, maintain 

environmental quality and promote plant and animal health” (Doran & Parkin, 1994).  

Mining activities in most cases alters the soil subsystem areas and an assessment of 

these changes is essential to determining soil quality.  There is growing recognition 

for the need to develop sensitive indicators of soil quality in promoting appropriate soil 

management strategies for long-term sustainability of terrestrial ecosystems (Kujur & 

Patel 2012). 

 

The assessment of soil enzyme activities is simple, requires low labour costs 

compared to other biochemical analysis (Ndiaye et al., 2000), and the results are 

correlated to other soil properties (Klose et al., 1999; Moore et al., 2000; Ndiaye et al., 

2000; and Tra´sar-Cepeda et al., 2000).  Furthermore, it has been reported that any 

change in soil management and land use is reflected in the soil enzyme activities, and 

that they can anticipate changes in soil quality before they are detected by other soil 

analyses (Ndiaye et al., 2000).  Previous studies with soils from various regions have 
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shown that enzyme activities are sensitive to soil changes due to tillage (Kandeler et 

al., 1999; Acosta-Martı´nez; and Tabatabai, 2001); cropping systems (Bandick & Dick, 

1999; Klose et al., 1999; Ndiaye et al., 2000; and Ekenler & Tabatabai, 2002); and 

land use (Staben et al., 1997; Gewin et al., 1999; and Acosta-Martı´nez et al., 2003).  

Therefore, enzyme activities can be considered as indicators of soil quality changes 

resulting from soil stockpiling. 

 

Several researchers have studied the effect of fertilization on soil fertility by 

investigating soil enzymatic activity (Martens et al., 1992; Giusquiani et al., 1994; 

Baldrian, 2009; Banerjee et al., 2012; and Frincu et al., 2015).  Martens et al. (1992) 

reported from a long-term study that the addition of organic matter maintains high 

levels of soil phosphatase activity.  Giusquiani et al., (1994) observed in field 

experiment that phosphatase activity increased when the compost manure was added 

at rates between 90 and 270t ha-1.  Frincu et al., (2015) reported that soil enzymes are 

often used as indicator of soil fertility because they are very sensitive and respond to 

changes in soil management more quickly than other soil variables.  All these studies 

(viz., Martens et al., 1992; Giusquiani et al., 1994; Baldrian, 2009; Banerjee et al., 

2012; and Frincu et al., 2015) were mainly concentrated on the static effect of soil type 

and fertilization on soil microorganism and enzymatic activity, but few, if any, have 

been conducted on the effects of chemical and organic amendments on the dynamic 

changes of enzymatic activity in coal-mine stockpile soils.  This study therefore 

examines the effects of different amendments on the variation of soil enzymatic activity 

at different depths of stockpile soils.  

 

Among the parameters related to the biochemical and microbiological state of the soil, 

the most important are the indicators of the soil microbial activity, principally different 

enzymatic activities that are specifically related to the cycles of nitrogen (N), 

phosphorus (P), and carbon (C) (urease, phosphatase, and β-glucosidase, 

respectively).  These were the enzyme activities assessed in this study.  This study 

will provide information on the effect of soil amendment material for coalmine stockpile 

soils, and their potential for rehabilitation process.  
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4.2 Objectives 

The objectives of this study were, namely, to: 

1. Evaluate the effect of amendments on coal-mine stockpile soil enzyme 

activities; 

2. Evaluate the effect of coal-mine stockpile soil depth on enzyme activities; and 

3. Evaluate the effect of coal-mine stockpile soil age on enzyme activities. 

 

4.3 Hypotheses 

1. Inorganic and organic amendments have effect on coal-mine stockpile soil 

enzyme activity. 

2. Coal-mine stockpile soil depth has effect on enzyme activity. 

3. Coal-mine stockpile soil age has effect on soil enzyme activity. 

 

4.4. Materials and Methods 

Soil sampling process, greenhouse experiment (experiment set including 

experimental design, sampling and fertilizer applications) and soil chemical analysis is 

similar to the one used in the previous chapter (See Chapter 3 for more information).  

The same treatment in Chapter 3 was further analysed for enzyme activities. 

 

4.4.1 Soil Enzyme Analysis 

Prior to amendment and planting, the soil used for this experiment were analysed for 

activity of urease, acid and alkaline phosphatase, and β-glucosidase (Table 4.1).  The 

same analysis was conducted on soils at the end of the experiment to evaluate the 

effect of soil amendments on enzyme activities.  

 

For soil urease activity analysis, 5g soil was taken in an Erlenmeyer flask (100ml) and 

2.5ml urea solution was added.  The flask was incubated at 370C for 2 hours.  After 

incubation, 50ml of KCl solution was added and the flask shaken for 30 minutes.  

Solution was filtrated and the filtrate was analysed for ammonium content.  The 

method described above was used to prepare a blank but with 2.5ml distilled water.  

Urea solution was added at the end of the incubation and before KCl addition.  For 

ammonium estimation, 1ml of the clear filtrate was taken into an Erlenmeyer flask 

(50ml), then added 9ml of distilled water, 5ml of Na salicylate/ NaOH solution and 2ml 
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of dichloroisocyanide solution and allowed to stand at room temperature for 30 

minutes and optical density was determined at 690nm (Tabatabai & Bremmer, 1972).  

 

The soil alkaline phosphatase activity was measured by putting 1g soil in Erlenmeyer 

flask (50ml) and treated with 0.25ml of toluene, 4ml of MUB (Modified Universal Buffer, 

pH of 11 for alkaline phosphatase) and 1ml of p-nitrophenyl phosphate (PNP) solution 

made in the same buffer.  After stopping the flask, contents were mixed and incubated 

for 1 hour at 370C.  After incubation, 1ml of CaCl2 (0.5M) and 4ml of NaOH (0.5M) 

were added.  The solution was mixed and soil suspension was filtered through 

whatman no. 2v folded filter paper.  For control preparation, 1ml of PNP solution was 

added after the addition of 1ml CaCl2 (0.5M) and 4ml of NaOH (0.5 M).  Soil 

suspension was filtered and optical density was measured at 400nm (Alef & 

Nannipieri, 1995).  

 

For soil acid phosphatase activity, the same method of Alef and Nannipier (1995) used 

for alkaline phosphatase was used with addition of Modified Universal Buffer, pH of 

6.5 instead of Modified Universal Buffer, pH of 11. Optical density was measured at 

400nm.  

 

β-glucosidase activity was determined using 1g of air-dried soil (<2mm) with p-

nitrophenyl-b-d-glucopyranoside (PNG, 0.05M) as substrate.  This assay is based on 

the release and detection of p-nitrophenyl (PNP).  Two millilitres of 0.1M maleate 

buffer at pH 6.5 and 0.5ml of substrate was added to 0.5g of sample and incubated at 

370C for 90min.  The reaction was stopped with tris-hydroxymethyl aminomethane 

(THAM), that is, according to Tabatabai (1994).  The amount of PNP was determined 

in a spectrophotometer at 398nm (Tabatabai, 1994).  The enzyme activities were 

assayed in duplicate with one control, to which substrate was added after incubation 

and subtracted from a sample control value. 
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Table 4.1. Enzyme Activity Analyses for Stockpile Soils Prior to Planting and Amendment with Organic and Inorganic 

Amendments 

_____________________________________________________________________________________________________________________________ 

                           Stockpile 1 (10 years)                                                                                                Stockpile 2 (20 years)                                                                                                            

                       ________________________________________________________    _________________________________________________ 

          Soil Depth 

                             ___________________________________________________________________________________________________________ 

‡ Enzyme activity                   Surface        Mid         Deep                 Mix           P (≤0.05)                                       Surface          Mid             Deep            Mix       P (≤0.05)                                         

_______________           _______________________________________________________                           _______________________________________________                                            

Gase (mg PNF kg−1 h−1)         14.47b        14.38b       12.16c            24.14a          0.00                                                 12.48b           9.55c             8.16d         16.23a     0.00   

aPase (mg PNF kg−1 h−1)        22.64a        18.03b       18.44b            23.12a         0.00                                                 18.55b           12.67c          8.33d          20.99a     0.00 

Pase (mg PNF kg−1 h−1)     12.91b        11.11c       9.65d              14.65a          0.00                                                  6.61a             4.95b           3.46c          6.79a          0.00 

Urease (mg NH4+kg−1 h−1)     19.66b         16.10c      16.55c             21.62a          0.00                                                  9.46b             6.20c            6.56c         13.02a      0.00 

‡ a, b, c, d indicates significant difference.  Within rows, means followed by the same letter are not significantly different (P = 0.05) using Duncan’s multiple range 

test. Surface soil (0-25 cm) (S); mid soil (150-200 cm) (M), deep soil (300-350 cm) (D) and mixed soil (mixture of equal amounts of surface, mid and deep) (Mx).  

Gase= beta-glucosidase, Pase= Alkaline phosphatase, aPase= Acid phosphatase. 
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4.4.2 Statistical Analysis 

Data were analysed using analysis of variance (ANOVA) in a randomised complete 

block design (Gomez & Gomez 1984).  Differences between treatment means were 

separated using the Duncan’s Multiple Range Test (DMRT) procedure at 0.05 and 

0.01 probability levels.  Pearson’s correlation coefficient was done to determine the 

relationships among various variables at 95% probability level (p<0.05).  All data were 

analysed using the statistical package, STATISTIX 10.0. 

 

4.5 Results 

Table 4.1 reported the mean values of enzyme activity from different depth of coal-

mine stockpile soil before planting.  The results show that mixed soil has significantly 

high mean values for activity of β-glucosidase, urease and alkaline phosphatase, 

followed by surface soils.  There was no significant difference for acid phosphatase 

activity between mixed soil and surface soil.  After planting, mixed soil showed the 

same trend of having significantly high mean values for activity of β-glucosidase, 

urease and alkaline phosphatase, followed by surface soils (Table 4.2).  There was no 

significant different (P<0.05) for alkaline phosphatase on soils from surface, mid and 

deep.  On average, the alkaline phosphatase activity from surface, mid and deep soils 

was 30.3% lower than that of mixed soil (Table 4.2).  β-glucosidase, urease and acid 

phosphatase mean values generally tend to decreases with an increase in soil depth.  

There were no significant differences among β-glucosidase, urease and alkaline 

phosphatase between mid and deep soils.  β-glucosidase activity for surface soil was 

found to be 18.06% higher than that of mid and deep soil (Table 4.2).  

 

Table 4.2: The Effect of Different Depths of Coal-Mine Soil Stockpile on Enzyme 
Activities 

Enzyme activity 

‡ Soils    β-glucosidase     Acid Phosphatase    Alkaline Phosphatase   Urease       

MX            98.21a      95.47a      48.33a                    100.46a                             
S    90.07b    93.82a   33.55b          93.29b                             
M    79.12c   68.16c   32.39b            79.02c                             
D   73.46c   53.76d    35.04b    65.71c                             

P (≤0.05)  0.00*   0.00*   0.00*       0.00*                          
‡ a, b, c, d indicates significant difference.  Means in the same column, followed by the same letter are not 
significantly different from each other at the 5% probability level,*Significant at p≤0.05.‡ MX = Mixed 
soil; S = Surface soil; M = Mid soil; D = Deep soil. 
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The results for the effect of organic and inorganic amendment on stockpile soil were 

recorded in Table 4.3.  β-glucosidase activity following application of poultry manure+ 

lime yielded significantly (P<0.05) high mean values than lime + inorganic fertilizers 

(NPK), compost, no fertilizer as well as poultry manure.  On average, the β-

glucosidase activity following the application of poultry manure + lime was 62.7% 

higher than that of lime + inorganic fertilizers (NPK), as well as single application of 

poultry manure (Table 4.3).  β-glucosidase activity for soil with no fertilizer was 86.15% 

lower than soil amended with poultry manure + lime.  β-glucosidase activity for soil 

amended with compost was 77.79% lower than soil amended with poultry manure + 

lime and 60.33% higher than soil with no fertilizer (Table 4.3).  The application of 

poultry manure + lime significantly (P<0.05) increased alkaline phosphatase activity 

more than other soil amendments.  Similar to β-glucosidase, there was no significant 

difference in alkaline phosphatase recorded between soils amended with poultry 

manure and lime + inorganic fertilizers (NPK). 

 

On average, the alkaline phosphatase activity following the application of poultry 

manure+ lime was 17.69% higher than that of lime + inorganic fertilizers (NPK), as 

well as single application of poultry manure.  Alkaline phosphatase activity following 

the application of compost was found to be 72.62% lower than that of soil amended 

with poultry manure + lime.  There was significant difference in alkaline phosphatase 

activity between soil amended with compost and soil with no fertilizer.  Alkaline 

phosphatase activity for soil with no fertilizer was found to be 51.93% lower than that 

of soil amended with compost.  There was significant difference (P<0.05) in alkaline 

phosphatase activity between soil amended with lime + NPK and soil with no fertilizer.  

Alkaline phosphatase activity for soil with no fertilizer was found to be 84.70% lower 

than that of soil amended with lime + NPK (Table 4.3). 

 

Application of lime + NPK yielded significantly high mean values for acid phosphatase 

compared to poultry manure + lime, compost, no fertilizer as well as poultry manure.  

On average, the acid phosphatase activity following the application of lime+ NPK was 

56.33% higher than that of poultry manure + lime, compost, soil with no fertilizer as 

well as sole poultry manure.  There was no significant difference (P<0.05) for acid 

phosphatase for soil amended with compost and no fertilizer.  The application of 

poultry manure + lime yielded significantly high mean values (P<0.05) for urease, 
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followed by lime + inorganic fertilizers (NPK) as well as sole poultry manure.  There 

was no significant difference for urease recorded between soils amended with poultry 

manure and lime + inorganic fertilizers (NPK).  Similar to acid phosphatase compost 

application and soil with no fertilizer showed no significant difference in urease and 

yielded low mean values compared to inorganic fertilizers (NPK), poultry manure + 

lime and sole poultry manure.  Urease activity for soil with no fertilizer was found to be 

84.70% lower than that of soil amended with poultry + lime (Table 4.3). 

 

Table 4.3: The Effect of Soil Amendments on Enzyme Activities 

Enzyme activity 

‡ Amendments   β-glucosidase    Acid Phosphatase   Alkaline Phosphatase   Urease      

P+L   166.67a   52.02b   89.13a   147.91a                  
NPK+L   101.34b   67.41a   76.66b   105.07b                  
P   103.53b   49.89b  74.57b   103.08b                  
C   37.02c   34.19d  24.40c   33.10e  
NF   23.09d   36.36d  11.73d   33.44e                                    

P (≤0.05)               0.00*          0.00*   0.00*                      0.00*                  

‡ a, b, c, d indicates significant difference.  Means in the same column, followed by the same letter are not 
significantly different from each other at the 5% probability level, *Significant at p≤0.05. ‡ P+L= Poultry 
manure + lime, NKP+L= Inorganic fertilizer + lime, C= Compost, P= Poultry manure, NF= No fertilizer 

 

Table 4.4 shows results for effect of stockpile on enzyme activities.  Stockpile 1 soil 

yielded higher mean values of all the enzymes assessed compared to stockpile 2 soil.  

The activity of β-glucosidase, acid phosphatase, alkaline phosphatase and urease 

was found to be 11.03%, 8.04%, 10.03% and 60.23% high on stockpile 1, relative to 

stockpile 2 soils. 

 

Table 4.4. The Effect of Age of Coal-Mine Soil Stockpile on Enzyme Activities 

Enzyme activity 

‡ Stockpile     β-glucosidase   Acid Phosphatase          Alkaline Phosphatase       Urease      

Stockpile 1        89.67a                82.34a                 57.04a            104.21a                    
Stockpile 2         80.76b        76.21b                  51.84b                     65.03b                    

P (≤0.05)           0.00*      0.00*                    0.00*                      0.00*                  

‡ a, b, c, d indicates significant difference.  Means in the same column followed by the same letter are not 
significantly different from each other at the 5% probability level, *Significant at p≤0.05. 

 

Table 4.5 showed the association between the different enzymes studied.  There was 

significantly high positive correlation among soil enzymes (Table 4.5).  Correlation 

coefficient ranged from 0.86 to 0.95.  The highest correlation was observed between 

alkaline phosphatase and acid phosphatase and the lowest between acid 

phosphatase and urease. 
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Table 4.5. Correlations Coefficients (R2) between Enzyme Activities of Stockpile 

Soils after Planting 

                                    Acid Phosphatase       Alkaline Phosphatase     β-glucosidase         Urease 

Acid Phosphatase                    1.00                                                                                                                
Alkaline Phosphatase              0.95*                          1.00 
Beta-glucosidase                     0.87*                               0.90*                             1.00                             

Urease                                      0.86*                              0.88*                             0.89*             1.00 

* = significant at P<0.05 

 
 
4.6. Discussion 

4.6.1. Effect of Age of Coal-Mine Stockpile on Enzyme Activity 

Stockpiling of soil mounds during mineral extraction has been shown to affect the soil 

biological, chemical and physical properties mainly as a result of anaerobic conditions 

within the heaps, but also due to machineries used during the stripping and stockpiling 

of the soil (Rai et al., 2014).  Enzyme activities are sensitive to both anthropogenic 

and natural disturbance; they show quick response to any soil induced change (Dirk, 

1997).  Soils from stockpile 1 (10 years old) yielded high mean values for all analysed 

enzyme activity compared to soils from stockpile 2 (20 years old).  These findings can 

be attributed to the fact that when soils are stockpiled for a long period of time microbial 

biomass is reduced (Strohmayer, 1999).  According to Hu and Cao (2007), enzyme 

activity in soil is associated with microbial biomass because microbial biomass is 

considered as the primary source of enzymes in the soil.  

 

4.6.2. The Effect of Stockpile Soil Depth on Enzyme Activity 

Enzyme activity was high in mixed soil.  This improvement in soil enzyme activities 

can be attributed to change in soil texture when soils are mixed.  Change in soil texture 

affects other physical properties like water availability, infiltration rate and aeration 

and, to some extent, chemical properties and biological properties (NRCCA, 2010; and 

Garj & Kumar, 2012).  Activities of β-glucosidase, alkaline phosphatase, acid 

phosphatase and urease in all soil depths have shown improvement after planting, 

relative to pre-planting (Table 4.1 and Table 4.2).  This is consistent with the findings 

by Widdowson et al., (1982) that soil biology of stockpiled topsoil is restored quickly 

once the soil is re-spread.  Surface soils yielded high activity for β-glucosidase, acid 

phosphatase and urease compared to mid and deep soils.  According to Strohmayer 
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(1999), soil stockpile depth plays a major role in biochemical activities of the soil.  This 

study is consistent with the findings by Fresquez et al., (1985) that reported that soil 

enzyme activities decreases with increase in depth of the stockpile soil.  Abdul-Kareem 

and McGae (1984) reported a decrease in microbial biomass and enzyme activity from 

0.3m depth until 2m depth of stockpile soils.  Alkaline phosphatase was not 

significantly different between surface, mid and deep soils.  This can be attributed to 

pH of the soil.  The pH of the soil in this study was found to be less than 6.  The study 

conducted by Turner (2010) reported that alkaline phosphatase was found to be 

predominant in soils that are less acidic (>6).  Soil pH affects ionic and hydrogen 

bonds, which are important to enzyme shape and therefore enzyme activity (Reece et 

al., 2010). 

 

4.6.3. Effect of Soil Amendments on Enzyme Activities 

Soil enzyme activities are very sensitive to both natural and anthropogenic 

disturbances and show a quick response to the induced changes (Dirk, 1997).  The 

study conducted by Fresquez et al., (1985) shows that soil stockpiling affected enzyme 

activity.  Any change in soil management and land use is reflected in the soil enzyme 

activities, and they can anticipate changes in soil quality before detection through other 

soil analytical methods (Ndiaye et al. 2000).  Treatment involving poultry manure + 

lime showed significantly high mean value of 166.67mg p-Nitrophenol kg-1 h-1 for β-

glucosidase activity, followed by treatment with NPK+ lime and poultry manure (Table 

3).  According to Acosta-Martinez and Harmel (2006), significant increase of β-

glucosidase activity due to poultry litter application represents limiting steps of 

cellulose degradation of soil and recycling of the nutrients from poultry litter.  Hota et 

al., (2014) reported that application of lime in combination with organic manure has 

favourable effect on soil microbial biomass and that organic manure is more 

pronounced when applied with lime rather than their sole application.  Naramabuye 

(2004) reported that the application of lime and poultry manure increase soil pH, 

relative to sole application of poultry manure.  A study conducted by Chao et al., (2015) 

reported that soil enzyme activities increase along the gradient of soil pH, indicating 

that the influence of organic amendments on soil enzyme activities observed in their 

study could mainly be due to the effect of soil pH.  
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The results for β-glucosidase activity (23.09mg p-Nitrophenol kg-1 h-1) without fertilizer 

application in this study were lower than the findings by Chang et al. (2014) who 

recorded 39.3mg p-Nitrophenol kg-1 h-1 for β-glucosidase on soil with no fertilizer 

treatment.  Similar to the results for β-glucosidase activity (23.09 mg p-Nitrophenol kg-

1 h-1) without fertilizer application, Chang et al., (2014) recorded high enzyme activity 

of 57.2mg p-Nitrophenol kg-1 h-1 for β-glucosidase on soil with compost application as 

compared to this study where 37.02mg p-Nitrophenol kg-1 h-1 was recorded.  This 

inconsistency can be attributed to the type of soil used in the studies as the soil in the 

study conducted by Chang et al., (2014) whereas the soil in this study was disturbed 

by stripping and stockpiling.  Acid phosphatase was found to be higher than alkaline 

phosphatase when no fertilizer was applied.  

 

The findings of this study are consistent with finding by Hota et al. (2014).  While in 

their study, the activities of acid and alkaline phosphatase are closely related to soil 

pH with acid phosphatase dominating in acid soil.  The study by Chaitanya et al. (2013) 

recorded a high alkaline phosphatase activity of 52.78 mg p-Nitrophenol kg-1 h-1 at 

harvesting stage compared to 11.73mg p-Nitrophenol kg-1 h-1, which was recorded in 

this study at the same growth stage from soils with no fertilizer treatment.  This can be 

attributed to the nature of soil and soil pH as the soil in this study had pH less than 6 

and their study soil pH was 7.8.  

 

Application of lime and poultry manure significantly increased alkaline phosphatase 

activity, followed by NPK + lime and sole application of poultry manure.  This is due to 

the fact that alkaline phosphatase is dominant in alkaline soils (Turner, 2010).  

According to Dick et al. (1988), application of lime has positive effect on phosphatases 

as it increases soil pH, which can limit enzyme mediated reaction rates by affecting 

maximum activities of the enzymes and solubility of substrate.  NPK + lime yielded 

high alkaline phosphatase activity than acid phosphatase activity.  This contradicts the 

findings by Laxminarayana (2013) who reported high acid phosphates compared to 

alkaline phosphatase when soil was treated with NPK + lime.  

 

Sole application of poultry manure significantly increased alkaline phosphatase better, 

relative to application of compost.  According to Naramabuye (2004), poultry manure 

contains substantial amount of CaCO3 compared to compost.  Upon addition of poultry 
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manure to the soil, CaCO3 is dissociated releasing CO3
2- into the soil that combines 

with protons forms H2CO3
 thereby increasing soil pH.  Significantly high value of 

147.91mg NH4
+kg−1 h−1 for urease activity was obtained from soil amended with 

poultry and lime combination.  The study by Fernandes et al., (2005) reported that 

application of organic amendments stimulates urease activity.  According to 

Klebanovich and Moroz (1998), application of organic fertilizers and lime decreases 

soil acidity and increases urease activity.  In this study, urease activity value of 

105.07mg NH4
+kg−1 h−1 was recorded under application of NPK + lime, which was 

found to be lower than 204mg NH4
+kg−1 h−1 recorded by Klebanovich and Moroz 

(1998).  Compost and no fertilizer yielded low values for urease activities 33.10 and 

33.44mg NH4
+kg−1 h−1 respectively compared to values recorded by Chang et al. 

(2007), who recorded 55.2 and 50.1mg NH4
+kg−1 h−1 respectively.  This difference can 

be attributed to soil types, duration of the study and the rate of application of 

amendments. 

 

4.7. Conclusion  

Soil quality depends on physical, chemical, microbial and biochemical properties.  Soil 

enzyme activity has a great potential as an indicator of soil quality as it is sensitive to 

change.  The study unearthed the following findings: 

 Deep stockpile soils had low enzyme activity compared to surface and mixed 

soils, at the depth >1 meter biological activity becomes low due to the 

environmental condition that favours mostly anaerobic organisms; 

 Mixing of stockpile soils generally showed the great potential to increase soil 

enzyme activity; 

 Duration of soil stockpiling can have influence on soil enzyme activity; when 

soils are stockpiled for a long period of time, microbial biomass is reduced; 

 Soil amendments have potential to improve enzyme activity of stockpile soils; 

 Poultry manure and lime showed a great potential in improving urease, alkaline 

phosphatase and β-glucosidase activities of stockpile soils; and 

 Increasing soil pH by adding lime or using poultry manure can increase enzyme 

activity. 
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Information obtained from the study can be useful in providing guidance about 

selection of most effect soil amendment material to improve enzyme activity and 

nutrient cycle of coalmine stockpile soils. 
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CHAPTER 5 

ESTIMATING COAL-MINE STOCKPILE SOIL PROPERTIES USING 

REFLECTANCE SPECTROSCOPY 

 

5.1. Introduction 

Open-cast coal mining has been associated with various negative environmental 

impacts such as soil, water, air pollution as land degradation (Maczkowiack et al., 

2012; and Cogho, 2012).  Open-cast coal mining may lead to adverse changes in soil 

textural and structural attribute.  In view of the increasing open-cast coal mining 

activities in South Africa that affect soil quality and have adverse effects on soil flora 

and fauna, it is of utmost importance to monitor the physical and chemical 

characteristics of coal-mine stockpiled soils (O’Beirne et al., 2013).  This will not only 

pave the way for greater understanding of the direction of improving soil fertility and 

bioremediation, but also as a prerequisite for assessing the process of soil 

reclamation, thus leading to the vegetation development/succession with respect to 

time (COM and CRA, 2007). 

 

During the process of open-cast coal mining, topsoil is removed and stockpiled for 

future use.  Stockpiled topsoil becomes highly degraded the moment this long-term 

structure is disturbed.  Several studies conducted (Fresquez & Aldon, 1984; Harris & 

Birch, 1989; and Strohmayer, 1999) reveal that timeframe can lead to damage of most 

soil properties.  The damage starts when topsoil is initially stripped from the ground.  

Changes that occur in soil include change in physical, chemical and biological 

properties, and loss or reduction of viable plant remnants and seeds (Strohmayer, 

1999).  For stockpiled soil to meet its goals of rehabilitation post mining-closure, 

quantification of soil physical and chemical properties that affect soil quality and crop 

production is necessary.  Soil properties such as soil structure, microbial population 

and nitrogen can change rapidly when the soil is disturbed (Lad & Samant, 2015), 

making traditional laboratory methods impractical due to time and cost of the sampling 

and analytical procedures. 

 

There are several studies conducted on physical and chemical properties of stockpiled 

soils using wet chemistry methods (Harris & Birch, 1989; Kundu & Ghose, 1997; and 

Strohmayer, 1999).  Soil samples are collected at targeted stockpiles and analysed in 
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the laboratory for physical and chemical properties.  In recent times, the need for well 

managed top soil stockpiling process has increased as the soil will be required for 

post-mining rehabilitation (COM and CRA, 2007).  Consequently, the use of wet 

chemistry methods for analysing and assessing the effect of topsoil stockpiling will be 

restrictive in terms of the costs and labour involved.  It is desirable to investigate 

reliable, less tedious and cost effective techniques to assess and predict properties of 

coal-mine stockpiled soils. 

 

Remote Sensing (RS) has become an important tool for environmental applications. 

Spectral evaluation has proven to be useful, particularly to characterize and 

discriminate soils, for several purposes in survey (Demattê et al., 2004).  Several 

studies have shown that the spectral behaviour of soils is influenced by their physical, 

chemical, and mineralogical characteristics (Stoner & Baumgardner, 1981; and 

Galvão et al., 1997).  Reflectance Spectroscopy has been used for many years to 

assess grain, fertilizers and soil qualities and has proven to be a rapid, convenient 

means of analysing many soil constituents at the same time (Bellon-Maurel et al., 

2010; Bilgili et al., 2010; and Bellon-Maurel & McBratney, 2011).  NIR spectroscopy is 

an easy to use and less expensive technique that has the potential to replace 

traditional wet chemistry methods of soil analysis (Mashimbye et al., 2012).  Using 

traditional wet chemistry techniques for physical and chemical analysis may be 

restrictive due to high costs and labour when large amounts of samples are involved.  

It is accepted that Near InfraRed (NIR) spectroscopy and Mid-InfraRed (MIR) 

spectroscopy are among less expensive and user-friendly techniques for quantitative 

soil analysis (Shepherd & Walsh, 2002; and Bilgili et al., 2010). 

 

A variety of statistical methods are used by researchers to extract soil attributes from 

the spectra, which include, amongst others, Principal Component Regression (PCR), 

Multiple Regression Analysis (MRA), Stepwise Multiple Linear Regression (SMLR), 

bagging Partial Least Square Regression (PLSR) and multivariate adaptive regression 

splines (MARS).  Spectral transformations (mathematical treatments) are also applied 

to the spectra to maximize the extraction of information from spectra (Cho & Skidmore, 

2006; and Ramoelo et al., 2011).  
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The mathematical spectral treatments include first and second derivatives, straight line 

subtraction, vector normalization, and multiplicative scattering correction, to mention 

a few.  It appears that the use of statistical methods and spectral transformation 

frequently have a favourable result for enhancing the extracting of soil information from 

spectra.  For example, Janik et al., (2009) compared the performance of PLSR 

analysis for the prediction of a variety of soil chemical and physical properties from 

their MIR spectra using a combination of PLSR and neural networks (NN).  While their 

study established that the PLSR-NN method outperformed the PLSR for the prediction 

of some soil properties, they cautioned that the use of PLSR-NN over the PLSR should 

be investigated against the backdrop of the trade-off of limited improvement and the 

computational complexity.  Primarily, PLSR is the most commonly used statistical 

spectral treatment technique for soil analysis.  Biligili et al., (2010) asserted that this is 

mainly because PLSR is superior to traditional methods in dealing with high 

dimensional data and multicollinearity problem. In this study, PLSR was used to 

estimate coal-mine stockpile soil properties.  

 

 Many studies have been conducted to estimate soil properties using Reflectance 

Spectroscopy on agricultural soil, soil salinity and soil pollution (Bellon-Maurel et al., 

2010; Bilgili et al., 2010; Bellon-Maurel & McBratney, 2011; and Mashimbye et al., 

2012), no studies were found to estimate coal-mine stockpile soil properties using 

spectroscopy and spectral transformation.  Evaluation of the potential of spectroscopy 

in estimating coal-mine stockpile soil properties could be critical for understanding the 

effects of stockpiling on properties of coal-mine soils.  
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5.2 Objectives  

The objectives of the study were, namely, to:  

1. Determine the ability of Reflectance Spectroscopy to estimate soil 

properties. 

2. Determine the ability of spectral transformation techniques to enhance 

estimation of soil properties. 

3. Investigate what spectral regions and bands are dominant in estimating 

properties of coal-mine stockpiled soil. 

 

5.3. Hypotheses 

1. Soil properties can be estimated using Reflectance Spectroscopy.  

2. Spectral transformation techniques can enhance estimation of soil 

properties. 

3. No spectral regions and bands are dominant in estimating properties of coal-

mine stockpile soils. 

 

5.4. Materials and Methods  

5.4.1. Locality and Soil Sampling 

Soil samples were collected from three open-cast coal mines located approximately 8 

kilometres south of Witbank in Mpumalanga Province of South Africa.  The climate of 

the area can be regarded as having warm, moist summers and cool to cold dry winters 

with frost.  On average, 85% of the annual average rainfall of 750mm falls in the 

growing season (i.e., October to March). 

 

Fifty samples were collected with soil auger from selected three stockpiles with age 

>6 at depth 0-25cm using a line transect sampling method at every 25 m interval 

(Bhatti et al., 2005).  Soils were a mixture of different soil types and origins.  They 

ranged from red freely drained to dark black high clay content soils (Soil Classification 

Working Group, 1991).  The depth of the stockpiles was approximately 4-5m deep 

(Figure 1).  Sparsely distributed grass species was growing on stockpile soils at the 

time of sampling.  The soils showed signs of sheet erosion during sampling.  There 

were signs of non-homogenous mixture of soils.  Soils were not stockpiled according 

to soil type or horizon.   Geographical Positioning System (GPS) co-ordinates were 
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recorded at every sampling point.  At total of 150 samples were collected and taken 

for spectral analysis. 

 

 

Figure 5.1. Stockpile Soils 

 

5.4.2. Spectral Data Collection 

A FieldSpec 3 Portable Analytical Spectral Device (ASD®) spectrometer 

(manufactured by Analytical Spectral Devices, Inc.) was used to acquire spectral 

signatures of the same soil samples that were used for laboratory analysis.  Spectral 

data were collected in a darkroom to ensure stable atmospheric and uniform 

illumination conditions.  The instrument covers the visible to short-wave infrared 

wavelength range (350-2500nm).  The spectrometer has a sampling interval of 1.4nm 

for the region 350 to 1000nm and 2nm for the region 1000 to 2500 nm with a spectral 

resolution of 3 and 10nm, respectively.  A halogen lamp (Lowel Light Pro, JCV 14.5V-

50WC) was used as a source of light.  The lamp was fixed at a nadir position 20cm 

above the target.  To prevent contamination of one sample by another, each sample 

was placed on a separate black paper background before making spectral signature 

measurements.  Soil was spread on 16cm dimension plate to completely cover the 
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plate’s surface.  The soil was flattened 3cm above the plate using a sterile ruler to form 

an even surface.  Reflectance calibration was done using a white reference.  The white 

reference is a calibrated white spectralon with a near 100% diffuse (Lambertian) 

reference reflectance panel made from a sintered poly-tetra-flourethylene based 

material.  Calibration was done before taking measurements of each of the samples.  

Spectral signatures were taken at a height of approximately 15cm above the target at 

approximately 15º off nadir to minimize the effect of bidirectional reflectance.  Each 

sample was rotated five times when the spectra were measured to minimize 

bidirectional reflectance effects (Mashimbye et al. 2012). 

 

5.4.3. Soil Physical and Chemical Analysis 

Soil samples collected were analysed in the laboratory for the following: exchangeable 

calcium (Ca), Sodium (Na), magnesium (Mg), potassium (K), soil pH, organic carbon 

(OC), phosphorus (P) and clay content.  The soils were air-dried, ground with pestle 

and mortar and screened through a 2mm sieve for analysis.  A particle size analysis 

was performed on the <2mm soil fraction using the pipette method to determine clay 

percentage of the soils.  Soil pH was determined in deionized water with a 1:1 (w/v), 

soil: water ratio the mixture was centrifuged and analysed using a method by Non-

Affiliated Soil Analysis Working Group (1990).  OC was determined by a dry 

combustion procedure using a LECO CHN 1000 Auto-Analyzer.  The exchangeable 

Ca, Mg, K, Na and cation exchange capacity (CEC) were extracted with 1M 

ammonium acetate at pH7.0 and determined by atomic absorption spectrophotometry.  

Available P was determined using Bray-1 methods (Non-Affiliated Soil Analysis 

Working Group, 1990). 

 

5.4.4. Data Analysis 

Descriptive statistics of selected physical and chemical properties of the soils were 

computed. Mean values, standard deviation as well as spearman correlation statistics 

were computed using Statistica 12.0 (Statsoft, 2013).  Predictive models were 

computed using untransformed individual reflectance, First Derivative Reflectance 

(FD), Log transformed spectra Log (1/R). Commonly used spectral transformation 

techniques such as Log transformed spectra Log (1/R) and first derivative were 

computed.  Log (1/R) was determined by calculating a log function of the spectral 

reflectance’s reciprocal (Hruschka, 1987; Yoder & Pettigrew-Crosby, 1995; and Fourty 
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& Baret, 1998).  The first derivative of the spectral reflectance was derived using a 

first-difference approach.  This approach calculates differences in reflectance between 

adjacent wavebands (Dawson & Curran, 1998).  

 

5.4.5. Estimation of Soil Physical and Chemical Properties Using Reflectance 

Spectroscopy and PLSR 

Hundred and fifty soil samples were used for regression.  The total numbers of 

samples were split into 70/30 proportion, 70% for calibration and 30% for validation 

and evaluation of the models.  To optimize the accuracy of the prediction models, the 

data were subjected to spectral pre-treatments called Mean Centering (MC). 

 

 

Partial Least Square Regression (PLSR) was used to analyse the data as this 

technique is commonly used regression technique (Viscarra Rossel, 2008).  

Regression predictive models for Clay%, pH, organic C, exchangeable Ca, Mg, Na, K 

and P using soil samples collected from open-cast coal-mine stockpiles were 

computed.  Soil reflectance data in the wavelength range between 350 and 2500nm 

were used for the analysis.  

 

PLSR was computed using the ParLeS version 3.1 software (Viscarra Rossel, 2007, 

2008).  In this study, PLSR was used to derive calibrated and validated models for 

selected coal-mine stockpile soil properties. PLSR is a method that specifies a linear 

relationship between a set of dependent variables, Y, and a set of predictor variables, 

X (Farifteh et al., 2007).  The general idea of the PLSR is to extract the orthogonal or 

latent predictor variables, accounting for as much of the variation of the dependent 

variables as possible (Viscarra Rossel, 2008).  PLSR generates model evaluation 

statistics such as the R2, adjusted R2 (R2adj), Root Mean Squares Error (RMSE), 

Mean Error (ME), Ratio of Prediction to Deviation (RPD), and Standard Deviation of 

the Error distribution (SDE).  The model accuracy and efficiency were assessed in the 

validation set on the basis of Coefficient of Determination (R2), Root Mean Square 

Error of Validation (RMSEV), and Residual Predictive Deviation (RPD) (Williams, 

2001).  The R2 values indicate the strength of statistical correlation between measured 

and predicted values (Farifteh et al., 2007).  Additionally, the PLSR models were 

tested with the Residual Predictive Deviation (RPD), which is the ratio of the standard 
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error of performance to the standard deviation of the reference data (Williams, 2004).  

Interpretation of the RPD differs amongst authors and applications.  

 

The six level interpretations of RPD given by Viscarra Rossel et al., (2006) were 

adopted as follows: RPD<1.0 indicates very poor models/predictions, and their uses 

are not recommended; 1.0< RPD <1.4 indicates poor models/predictions, where only 

high and low values are distinguishable; 1.4< RPD <1.8 indicates fair 

models/predictions, which may be used for assessment and correlation; 1.8< RPD 

<2.0 indicates good models/predictions, where quantitative predictions are possible; 

2.0< RPD <2.5 indicates very good, quantitative models/predictions; and RPD >2.5 

indicates excellent models/predictions.  Generally, an optimal model should have 

lower RMSEV and higher R2 and RPD.  Variable Importance in the Projection (VIP), 

with a threshold of 1, was used to determine the important wavelengths used in the 

PLSR calibration (Viscarra Rossel et al., 2010).  Generally, wavelengths with VIP 

scores greater than 1.0 are highly influential; values between 0.8 and 1.0 indicate 

moderately influential variables; and values lower than 0.8 represent less important 

variables (Eriksson et al., 2001; and Gosselin et al., 2010). 

 

5.5. Results 

5.5.1. Descriptive Statistics of Coal-Mine Stockpile Soil Properties 

Results of the descriptive statistics of selected of coal-mine stockpile soil properties 

are presented in Table 5.1.  Clay% of the samples ranges from 1.30 to 34.00.  pH 

range from 3.96 to 8.62 with the mean value of 5.46.  Organic carbon was found to 

range from 0.02% to 1.65% and P ranged from 0.55mg/kg to 16.95mg/kg.  Ca ranged 

from 0.12cmol/kg to 7.08cmol/kg. Mg ranged from 0.12cmol/kg to 9.28cmol/kg, K 

ranged from 0.05cmol/kg to 15.16cmol/kg and Na ranged from 0.01cmol/kg to 

1.19cmol/kg.  Figure 5.2 illustrate the relationship between concentration of soil 

properties and raw (original) spectra.  For Clay%, spectra reflectance is high when soil 

percentage of clay is low.  Spectral reflectance of pH increases with an increase in pH 

values.  The highest correlation between Ca and spectra is approximately R2=0.5 at 

the wavelength between 1700nm-1800nm. P, Mg, K and Na shown the same trend 

spectral reflectance increased with in concentration of P, Mg, K and Na in the soil.  

Low concentration of OC in the soil yielded high spectral reflectance. 
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Table 5.1. Coal-Mine Stockpile Soil Properties 

Variable     Mean  Min Max     Std. Dev         Median     Skew          

Clay (%)  17.90  1.30 34.00  8.80  16.50      166.78      
Na (cmol/kg)  0.16  0.01 1.19  0.24  0.06       0.04 
K (cmol/kg)  0.81  0.05 15.16  2.44  0.18       62.24       
Ca (cmol/kg)  1.53  0.12 7.08  1.50  0.70       4.81        
Mg (cmol/kg)  1.41  0.12 9.28  1.85  0.45       14.77         
P (mg/kg)  4.32  0.55 16.95  3.89  3.04       82.91                
pH   5.46  3.96 8.62  1.08  5.29       1.08                                                         
OC (%)   0.43  0.02 1.65  0.38  0.37       0.007                 

n= 150, Skew= Skewness coefficient, Std.Dev= Standard deviation, OC= Organic Carbon 
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Figure 5.2: Descriptive statistics (showing low (Blue), moderate (Grey) and high 
(Orange) content of each soil property) of the original spectral 
reflectance of stockpile soils 
A= Clay (%),B = Na (cmol/kg), C = K (cmol/kg), D = Ca (cmol/kg), E = Mg (cmol/kg),F = P 
(mg/kg),G= pH (H2O), H = OC (%) 
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Table 5.2 reports on spearman correlation matrix of coal-mine stockpile soil properties. 

Clay% significantly correlated (p<0.01) with all other measured soil properties except 

pH.  K had significant correlation with clay and P but not with other soil properties. The 

relationship between soil spectra and laboratory analysis is presented in Figure 5.1.  

To illustrate the spectral dependence of the relation between original soil reflectance 

and measured soil properties, the correlogram have been calculated (Figure 5.3).  The 

correlogram reports the coefficient of correlation (r) between soil reflectance and soil 

properties.  They have been calculated from reflectance spectra convoluted with a 

median filter (size 50nm).  The highest correlation was found between soil pH and the 

spectral, followed by Ca and Mg.  The highest correlation soil pH, Ca and Mg and raw 

spectra was found near 520nm-560nm and the R2 was found to be approximately 0.56, 

0.54 and 0.52 respectively. 

 

Table 5.2. Correlation Matrix of Selected Coal Mine Stockpile Soil Properties 

                           Clay %     Na    K        Ca         Mg              P         pH         OC 

Clay %                    1.00       0.46**    0.35**         0.28**      0.39**           0.47**            0.21         -0.35** 

Na                                         1.00       0.07            0.62**      0.70**           0.59**            0.52**      -0.38** 

K                                                         1.00           -0.22        -0.17             0.43**           -0.19         -0.04 

Ca                                                                          1.00         0.87**           0.38**            0.87**      -0.39**  

Mg                                                                                          1.00             0.44**            0.69**      -0.44** 

P                                                                                                                 1.00               0.38**      -0.38**              

pH                                                                                                                                     1.00        -0.46** 

OC                                                                                                                                                     1.00 

OC= Organic Carbon, ** Significant at p<0.01. 
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Figure 5.3: Correlogram of Reflectance Spectra and Soil Physical and 

Chemical Properties 

 

5.5.2. Spectral Features 

The spectral features of all 150 soil samples are depicted in Figure 4.  The spectral 

reflectance is typical of soil spectra as it follows the basic shape similar observed by 

other researchers.  The spectra show prominent absorption around 1400, 1900 and 

2200nm.  The absorption features shown by spectra are associated with the bending 

and stretching of the O-H bonds of free water at 1400, 1900nm and lattice minerals 

around 2200nm.  The highest reflectance found around 1721-1849nm and the lowest 

reflectance was found around 356nm. 
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Figure 5.4. Untransformed Spectral Reflectance of All the Soil Samples 

 

5.5.3 Soil Physical and Chemical Properties Estimation Using PLSR and Various 

Spectral Transformation Techniques 

Soil properties that were estimated with high accuracy were pH and Ca based on R2 

values ranging from 0.5 to 1.0 and RPD values of more than 1.5 (Table 5.3).  The 

extent of prediction is graphically presented in Figure 5.5.  Other soil properties were 

poorly predicted by the model based on low RPD values that were found to be less 

than 1.5 (Table 5.3).  Log (1/R) transformation spectra yielded higher estimation 

accuracy (R2= 0.79, RPD=2.08, RMSEV=0.52) for pH compared to untransformed 

spectra (R2= 0.77, RPD=2.01, RMSEV=0.53) and first derivative spectra (R2=0.64, 

RPD=1.53, RMSEV=0.70) (Table 3).  In relation to Ca, Log (1/R) transformation 

spectra yielded high estimation accuracy (R2=0.69, RPD=1.79, RMSEV=0.89cmol/ kg) 

compared to untransformed spectra (R2=0.64, RPD=1.65, RMSEV=0.97cmol/ kg) and 

first derivative transformation (Table 5.3), Mg, K, CEC, Clay content, OC and Na were 

poorly predicted (Table 5.3).  
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Table 5.3. Performance of PLSR Models for Predicting Various Soil Properties 
Using Different Spectral Transformation 

Spectra  Variable R2  RMSEV RPD  Factors 

No transformation Clay%  0.40  6.44  1.18  6 
Na  0.23  0.21   1.14  3 
K  0.23  2.31  1.12  6  
Ca  0.64  0.97  1.65  6 
Mg  0.49  1.41  1.37  5 
CEC  0.37  5.14  1.16  5 
pH  0.77  0.53  2.01  3 
OC  0.23  0.41  1.14  4                           

_________________________________________________________________________________ 
First Derivative Clay%  0.29  7.33  1.03  4 

Na  0.24  0.21  1.15  4 
K  0.28  2.20  1.17  4                        
Ca  0.63  1.02  1.57  4 
Mg  0.46   1.50  1.29  4 
CEC  0.37  5.17  1.25  5 
pH  0.64  0.70  1.53  5 

                                       OC                    0.14                    0.44                  1.07                   7 

Log (1/R)  Clay%  0.47  6.14  1.23  7 
    Na  0.27  0.21  1.17  4                                        

K  0.28  2.18  1.18  5                   
Ca  0.69  0.89  1.79  7 

    Mg  0.48  1.42  1.37  7 
CEC  0.33  5.39  1.39  7                               
pH  0.79  0.52  2.08  7              

                          OC                0.16  0.44  1.06  4  

OC= Organic Carbon 
 

Variable Importance for Projection (VIP) plot and regions for estimation of coal-mine 

stockpile soil properties shows the highest VIP scores for clay are centred near 574nm 

for untransformed spectra, 1910nm for FD and 2332nm for Log (1/R) transformed 

spectra (Table 5.4).  K, Ca, Mg, P, pH and OC spectral domains used by the PLSR 

prediction model are centred near 674, 1071, 673, 976, 1900, 549nm for 

untransformed spectra. Na was found to have VIP of less than 1 for untransformed 

spectra.  Clay%, Na, K, Ca, Mg, P, pH and OC had highest VIP scores near 2192, 

975, 2480, 2475, 2490,986 and 2497nm wavebands for FD.  Clay%, K, Ca, Mg, P and 

pH had highest VIP scores near 882, 2093, 2480, 2479, 567 and 2499nm wavebands 

for Log (1/R) transformed spectra (Table 5.4).  Na and OC were found to have VIP of 

less than 1 for Log (1/R) hence were not recorded in Table 5.4. 

 

 

 

 



57 
 

Table 5.4: Highest Variable Importance in the Projection (VIP) Values of Each 
Estimated Soil Property 

Spectra   Variable VIP  λ (nm)          Region 

No transformation            Clay%  10.71  574  VIS 
K  3.61  674  VIS 
Ca  3.71  1071  NIR 
Mg  3.50  673  VIS 
P  23.27  976  NIR  

     pH  4.88  1900  SWIR 
OC  1.02  549  VIS 

First Derivative  Clay%  9.29  1910  SWIR 
Na  7.81  975  NIR 
K  16.95  2480  SWIR 
Ca  21.60  2475  SWIR 
Mg  17.83  2490  SWIR 
P  23.27  976  NIR 

     pH  2.14  986  NIR 
OC  4.88  2497  SWIR 

Log (1/R)   Clay%  6.34  2332  SWIR 
K  2.59  2093  SWIR 
Ca  3.91  2480  SWIR                                                  
Mg  4.53  2479  SWIR 
P  5.81  567  VIS 

     pH  7.93  2499  SWIR 

VIS=visible region, NIR= Near InfraRed region, SWIR= Short wavelength infrared, Soil 
properties with VIP score of <0.8 are excluded from the table 
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Figure 5.5: Scatterplots of Highest Predicted Soil Properties, i.e., pH and Ca from 
untransformed and transformed spectral using partial least significant 
regression (PLSR). A= No transformation, B= First derivatives, C= Log 
(1/R) transformation. 
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5.6. Discussion 

The study intended to evaluate the performance of PLSR and Reflectance 

Spectroscopy in estimating various properties of coal-mine stockpiled soils.  The 

specific objectives were, namely, to: (1) determine the ability of Reflectance 

Spectroscopy to estimate soil properties; (2) determine the ability of spectral 

transformation techniques to enhance estimation of soil properties; and (3) investigate 

what spectral regions and bands are dominant in estimating properties of coal-mine 

stockpiled soil.  

 

This section explains the findings of this study. 

 

5.6.1. Untransformed Soil Spectral Characteristics 

The spectra of all soil sample shows prominent absorption around 1400, 1900 and 

2200nm, these findings are consistent with the findings by Viscarra Rossel et al. 

(2006).  The spectra show prominent absorption features that are associated with the 

bending and stretching of the O-H bonds of free water at 1400, 1900nm and lattice 

minerals around 2200 nm (Shepherd & Walsh, 2002; Viscarra Rossel et al., 2006; and 

Mashimbye et al., 2012).  The results for organic carbon in this study are consistent 

with the findings by Stoner and Baumgardner (1981) that show that increasing soil 

organic carbon (SOC) lowered albedo across the whole visible, ShortWave InfraRed 

and Near-InfraRed (Vis–NIR–SWIR) reflectance spectrum.  For clay content, there 

was variation in respective to textural reflectance.  Soils with low clay content showed 

high reflectance than soils with high clay content.  

 

The results of this study are contrary to previous studies (Stoner & Baumgardner, 

1981; Baumgardner et al., 1985; and Gosselin et al., 2010), which suggest that, as 

soil grain size decreases, surface component decreases and volume component 

increases indicating an increased reflectance with decreased grain size (surface 

becomes smoother).  The studies (viz., Stoner & Baumgardner, 1981; Baumgardner 

et al., 1985; and Gosselin et al., 2010) concluded that reflectance should decrease as 

soil particle size increases; this is due to the increasing number of optical traps causing 

loss of radiation.  The reason for high reflectance of soils with low clay content in this 

study can be attributed to the fact that soils in the study area were disturbed and that 

soils’ high clay content increases the potential for aggregate formation.  Macro 



60 
 

aggregates physically protect organic matter molecules from further mineralization 

caused by microbial attack making soil to have high organic matter and low reflectance 

(Schreier, 1977; and Rice, 2002).  Ca showed high reflectance in the visible region 

and concave shape.  According to Melfi et al. (1979), this concave shape of the spectra 

in the visible to Near-InfraRed region is due to crystalline iron in the soil.  Na, K, Mg, 

P and pH have shown similar trend in reflectance, high concentration of each element 

have shown high reflectance.  According to Zornoza et al. (2008), these properties are 

principally controlled by clay and organic matter type and content, which have 

functional groups with variable charges responsible for the adsorption of the different 

cations and water. 

 

5.6.2. Soil Parameters Estimation Using Reflectance Spectroscopy vs PLSR 

Ca and pH are stockpile soil properties that were accurately predicted in this study.  

According to Bonnet et al. (2015), Ca has strong correlation with pH, and Ca 

expressed in soil solutions is mostly related to pH resulting in accurate prediction of 

both Ca and pH.  A study conducted by Leluva (2007), revealed that there is an overlap 

of wavelength regions associated with soil pH and Ca prediction.  Soil pH in most case 

is directly influence by calcium carbonate content in the soil.  OC, P, Na, K, Mg and 

clay content were poorly predicted.  RPD of their models were less than 1.4 (Viscarra 

Rossel et al., 2006).  The poor predictive models are presumably due to the nature of 

soils used in the study area.  For instance, K can be highly mobile in the soil solution.  

Stockpile soils structure gets destroyed during stripping, which enhances leaching with 

a consequent reduction of soil elements (Ghose, 2004).  According to Janik et al. 

(1998), spectroscopy is unlikely to provide quantitative data where the property being 

predicted is unrelated to soil chemistry or for soil solution chemistry where 

concentrations are low.  Ca and pH properties are related to Mg, P, Na, clay and OC 

from the correlation matrix table in the results section, which means that there might 

be no need to estimate more variables using spectroscopy, rather few and key 

properties could be of interest and used to understand the physio-chemical makeup 

of the stockpiled soils. 

 

The results of pH estimation are consistent with those reported by Bonnet et al. (2015) 

and Islam et al. (2003).  Bonnet et al., (2015) reported R2 of 0.70 and RPD of 1.64.  

This study recorded R2 values of (0.77 and RPD=2.01 untransformed spectra, 0.64 
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and RPD=1.53 FD and 0.79 and RPD=2.08 Log (1/R) respectively).  Terhoeven-

Urselmans et al. (2010) also recorded correlation coefficients of 0.80, RMSE=0.75 and 

RPD=2.21 for pH using MIR spectroscopy and first derivatives transformation.  For 

pH, the Log (1/R) transformation yielded higher estimation accuracy.  Log (1/R) is 

transformation known as diffusion reflectance that enhances absorption of features for 

soil properties (Mashimbye et al., 2012). 

 

Ca was among the most accurately estimated soil property, especially using Log 

transformation spectra (R2=0.69, RPD=1.79).  The R2 found in this study were lower 

than that reported by Shepherd and Walsh (2002) and Chang et al., (2001) (R2=0.75) 

but are consistent with the one reported by Mashimbye et al., (2012) from the South 

African soils (R2=0.62).  In this study, Log transformation was important in estimating 

Ca.  This demonstrates the potential to estimate Ca from soil properties using 

Reflectance Spectroscopy. 

 

Organic carbon was poorly predicted with untransformed spectra yielding (R2=0.23 

and RPD=1.14) as compared to FD and Log (1/R) transformation.  The performance 

of Log (1/R) (R2=0.16, and RPD=1.06) and FD (R2=0.14 and RPD=1.07) yielded 

results that contradicts finding by Peng et al. (2014).  Peng et al., (2014) reported 

(R2=0.60 and RPD=1.59) untransformed spectra, (R2=0.52, and RPD=1.43) Log (1/R) 

and (R2=0.55 and RPD=1.47) FD.  Other studies on OC contents estimation using Vis-

NIR spectra (Islam et al., 2003; Viscarra-Rossel, 2007; and Urselmans et al., 2010) 

found the R2 values in a range of R2=0.57 to 0.91.  The predictive performance of the 

soil organic carbon models in this study was found to be poor according to the 

evaluation standard of Viscarra-Rossel et al. (2006).  The poor predictive performance 

is attributed to the nature of soil used.  Stockpile soils were found to have low organic 

carbon content (mean value = 0.43 %).  According to Nicholas (2004), it is unlikely for 

spectroscopy to provide quantitative data where the property being predicted has low 

concentration in the soil solution. 

 

For the soluble Mg, this study found that the R2 using PLSR was poor compared to 

that obtained by (Janik et al., 1998; Mashimbye et al., 2012; and Peng et al., 2014).  

The performance of PLSR and original spectra was higher than those of FD and Log 

(1/R) but comparably lower than what was achieved by Janik et al. (1998) (R2= 0.76), 
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Genu and Demattê (2011) (R2 =0.68) and Mashimbye et al. (2012) (R2=0.78).  The 

difference in results can be due to soil stockpiling as soil nutrients are leached during 

stockpiling resulting in low concentrations of soluble nutrients (Ghose, 2004). 

 

In this study, Na was poorly estimated using Reflectance Spectroscopy.  The R2 for 

exchangeable Na ranged from 0.23 to 0.29.  The results of this study are comparable 

to those of Janik et al. (1998), who recorded R2 of 0.33.  The R2 value obtained in this 

study is higher than that recorded by Bikindou et al., (2012) and Chang et al. (2001).  

Bikindou et al., (2012) and Chang et al., (2001) reported R2 of 0.12 and 0.09 

respectively.  The reason for poor prediction can be attributed to low Na concentrations 

in the soil that could have been caused by leaching.  According to Ghose (2004), 

stockpiled soils experience excessive leaching and lose of basic exchangeable 

cations. 

 

Predictive models for K were poor (R2 = 0.23 to 0.28).  This is consistent with previous 

studies.  Janik et al., (1998) reported an (R2= 0.34) using MIR and PLSR.  According 

to Janik et al. (1998), spectroscopy is unlikely to provide quantitative data where the 

property being predicted is low in concentration.  In this study, the mean value of K 

was found to be 0.860cmol/kg, which is low to moderate according to Nicholas (2004).  

The low concentration of K in the soil is attributed to the fact that K is affected by its 

high mobility in the soil solution, which easily varies K content, thus providing less 

certain prediction results (Bonnet et al., 2015).  Regarding P, the PLSR predictive 

models were poor.  While the R2 values for untransformed spectra, FD and Log (1/R) 

were 0.30, 0.33 and 0.29 respectively.  The R2 for P obtained in this study is lower 

than those obtained by Genu and Demattê (2011); Dhawale et al. (2013); Franceschini 

et al. (2015), which were R2 of 0.70, 0.84 and 0.79 respectively.  

 

The differences are presumed to be due to the use of different statistical techniques 

and different instruments.  In this study, Analytical Spectral Device (ASD) FieldSpec 3 

spectrometer and PLSR were used while Genu and Demattê (2011); Dhawale et al. 

(2013).  Franceschini et al., (2015) used airborne hyperspectral sensor and PLSR, 

P4000 dual type spectrophotometer instrument and PLSR and Infra-Red Intelligent 

Spectroradiometer (IRIS) sensor and Multiple Linear Regression Analysis 

respectively.  Clay% was poorly estimated in this study at R2 0.47.  Gomez et al. 
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(2008); Lee et al. (2009); and Franceschini et al., (2015) obtained R2 = of 0.83, 0.85 

and 0.80 using cross validation method and PLSR respectively.  The differences are 

presumed to be due to the use of different instruments and statistical methods. 

 

5.6.3. Spectral Bands and Region Important in Estimation Soil Properties 

The spectral regions critical for estimating Ca and pH are presented in this section.  

The best performing bands for field-based predictions of pH and soluble Ca were 

found to be in SWIR and the findings were related to that of Mashimbye et al. (2012).  

The VIP scores for prediction models for soil pH show that the most important spectral 

bands used by the PLSR prediction model are centred near 1900nm for untransformed 

spectra, 986nm for FD and 2499 for Log (1/R) transformed spectra.  

 

 A study conducted by Paz-Kagan et al., (2015) mapping the Spectral Soil Quality 

Index (SSQI) using airborne imaging spectroscopy at Schäfertal Site, Germany 

recorded that the highest VIP scores for pH are associated with absorption bands near 

1000 and 1900nm.  Those wavelengths are consistent with the wavelengths recorded 

in this study.  The other wavelength recorded in this study that is associated with soil 

pH was found near 2499nm.  According to Clark (1999), the wavelength near 2500nm 

are associated with carbonates in the soil, hence, in this study, high pH and low Na 

concentration were recorded.  The VIP scores for prediction of Ca models show that 

the most important spectral domains are found in SWIR region near 2475 and 

2480nm.  The wavelengths found in this study are consistent with the findings by Lee 

et al. (2011) that show that for Ca, the wavelengths near 2460nm were identified by 

PLSR analyses.  High VIP scores for Ca are found near 2475nm and 2480, which is 

around 20nm to the known Ca absorbance waveband.   

 

5.7. Conclusion  

The aim of the study was to evaluate the feasibility of Reflectance Spectroscopy to 

estimate physical and chemical properties of the stockpile soils.  Spectral reflectance 

for dried, crushed and sieved soil samples were measured under controlled conditions 

using ASD Fieldspec 3 spectrometer leading to the following observations: 

 PLSR predictive models for clay content, Ca, Mg, K, Na, pH and OC were found 

to be poor; 
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 Ca and pH were accurately predicted; 

 The results showed that PLSR can be used to predict soil pH and Ca of coal-

mine stockpile soils; 

 The most important bands were for Ca and pH were found in the NIR and SWIR; 

 Predictive models using PLSR can be efficiently used as a tool for estimation 

of soil pH and Ca for coal-mine stockpile soils; 

 This study is one of the few if not the only study to use Reflectance 

Spectroscopy-PLSR to estimate properties of coal-mine stockpile soils and it 

shows that a potential to use Reflectance Spectroscopy to assess pH and Ca 

in stockpile soils. 

 

The findings of this study would be useful to provide information on use of Reflectance 

Spectroscopy to estimate properties of coal-mine stockpile soils.  Further research 

with a large number of sample and different study sites will be required to quantify the 

findings of this study. 
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CHAPTER 6 

ESTIMATING THE EFFECT OF COAL-MINE SOIL STOCKPILING ON FOLIAR 

NITROGEN AND PHOSPHORUS CONTENT USING PARTLIAL LEAST SQUARE 

REGRESSION AND REFLECTANCE SPECTROSCOPY 

 

6.1. Introduction 

In open-cast mines, coal evacuation is done by open excavation of the land and 

approaching the coal strata by excavating the entire earth mass lying above the coal 

starta (Ghose, 2004).  This process of topsoil stockpiling in most cases results in 

drastic alternations in soil geochemical cycles and often lead to land degradation, with 

adverse changes in soil textural and structural attributes (Abdul-Kareem & McRae, 

1984).  Other effects of topsoil stockpiling are reduction in succession of most of the 

pre-existing vegetation.  Plant fragments from pre-existing vegetation are lost or 

greatly reduced.  The seed bank is also reduced, and what does remain must compete 

for the reduced nutrients with microbes (Strohmayer, 1999).  These microbes become 

highly competitive as the base of stockpiles become anaerobic.  In addition to a loss 

in the breakdown of organic matter, stockpiling causes many other deleterious 

changes including a marked drop in the earthworm population that, in turn, affects soil 

nutrients, bulk density and water holding capacity (Johnson et al., 1991; and Rai et al., 

2014). 

 

The process of topsoil stockpiling affects the physical, chemical and biological 

properties of the soil.  Consequently, these soils have lower soil aggregate stability, 

lower infiltration rates, reduced water holding capacity, and a greater capacity to resist 

root extension (Chapman et al., 1994), all of which inhibit the potential for plant growth.  

The soil chemical properties of the soil also deteriorate when topsoil is stockpiled.  

Oxygen becomes limiting and anaerobic environment is created.  As a result, large 

quantities of nitrogen are lost to the atmosphere as gaseous N2 or N2O, through the 

process of de-nitrification. Loss of nitrogen and other nutrients by leaching also occurs, 

thus reducing available nutrients for vegetation growth and thereby inducing stress 

(Davies et al., 1995).  

 

Estimation of foliar biochemicals provides information that enables the assessment of 

ecosystem functioning, for example, nutrient cycling, gas exchange and plant 
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productivity (Ollinger et al., 2002).  Foliar biochemicals such as nitrogen (N) and 

phosphorus (P) are primary indicator of physiological processes such as 

photosynthesis, leaf respiration and growth rates (Gusewell, 2004).  Therefore, leaf N 

and P can be used as an indicator of vegetation stress or status (Ramoelo et al. 2015). 

 

To estimate foliar N and P various techniques have been used for different ecosystems 

including agriculture (Bogrekci & Lee, 2005; and Mutanga et al., 2005). Several 

researchers (Mutanga & Kumar, 2007; Skidmore et al., 2010; and Ramoelo et al., 

2011) have used spectroscopy and Remote Sensing techniques to estimate foliar 

biochemical.  Spectroscopy is among less expensive, rapid and user-friendly 

techniques for quantitative foliar biochemical analysis as compared to traditional wet 

chemistry techniques that maybe restrictive due to high costs and labours (Bogrekci 

& Lee, 2005).  The premise to estimate leaf N and P is based on the assumption that 

is a positive relationship between leaf N and chlorophyll concentrations (Yoder & 

Pedigrew, 1995).  To achieve the latter, vegetation indices based on the red edge 

band correlated with leaf N to develop a simple leaf predictive models (Ramoelo et al., 

2012, 2015).  The red edge band is a region of the spectra that shows an abrupt 

change between red and Near-InfraRed, and it is known to relate to leaf N and 

chlorophyll.  The other approach is to integrate Remote Sensing indicators and 

environmental variables to improve the estimation of leaf N and P (see Ramoelo et al., 

2012; 2013; 2014).  In spectroscopy, the use of absorption features are commonly 

used (Curran 1989; and Ramoelo et al., 2013).  

 

Most of the spectral absorption features that have been identified and used for N 

estimation are located in the Near InfraRed (NIR) and ShortWave InfraRed (SWIR).  

For example, N has absorption features centred at 430nm, 460nm, 640nm, 660nm, 

910nm, 1510nm, 1940nm, 2060nm, 2180nm, 2300nm, 2350nm, dominating in the 

SWIR region (Curran, 1989).  The main leaf biochemicals absorbing in the SWIR 

region (1000-2500 nm) include lignin, cellulose, starch and proteins (Curran, 1989; 

Kokaly and Clark, 1999; and Kumar et al., 2001).  For estimating leaf P, absorption 

features for starch are often used (Knox et al., 2012; and Ramoelo et al., 2013).  Leaf 

P does not have a well-defined absorption features because it often occurs in small 

quantities within the plant.  Most of the studies conducted focused on estimation of 
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foliar N and P growing on undisturbed soils, few if not none has focused of the effect 

of soil stockpiling on grass quality.  
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6.2 Objectives 

Specific objectives were, namely, to: 

1. Determine if nutrient content of grass sampled from stockpile and unmined sites 

differ; 

2. Determine the ability of spectral transformation to enhance prediction of foliar 

N and P; 

3. Investigate what spectral bands are important in predicting N and P; and 

4. Investigate what spectral regions are more dominant in predicting N and P of 

grass sampled from coal-mine stockpile and unmined soils.  

 

6.3. Hypotheses 

1. There is no difference in nutrient content of grass sampled from unmined 

and mined soils. 

2. Spectral transformation can enhance prediction of foliar N and P can be 

determined 

3. No spectral bands are important for prediction of foliar N and P. 

4. No spectral regions are dominant in predicting foliar N and P of grass 

sampled from coal-mine stockpile and unmined soils. 

 

6.4. Materials and Methods 

6.4.1. Locality 

Grass samples were collected from an open-cast coal mine and its adjacent unmined 

site located approximately 8 kilometres south of Witbank in Mpumalanga Province of 

South Africa.  The climate of the area can be regarded as having warm, moist 

summers and cool to cold dry winters with frost.  On average, 85% of the annual 

average rainfall of 730mm falls in the growing season (October to March). 

 

6.4.2. Grass Sampling 

Grass samples were collected from coal-mine stockpile soil and the unmined plot 

adjacent to the mining site (Table 6.1).  The following dominant grass species were 

identified: Cynodon dactylon, Eragrostis plana, Eragrostis. Curvula, Panicum 

coloratum and Aristida bipartite.  A line transect sampling design was used to collect 

field data (Fewster et al., 2005) at 25 meter intervals.  Site discrimination was based 

on the nature of soils in the study sites, e.g., stockpile (anthropogenic soils) and 
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unmined (natural soils).  Geographical Positioning System (GPS) co-ordinates were 

recorded at every sampling point.  A total of 100 samples were collected at each site. 

 
Table 6.1. Soil Properties of the Study Sites 

Properties  Coal-mine stockpile soil site      Unmined soil site   
 ________________________________________________________________________________                                                                            
Na cmol(+) kg-1  0.07                           0.04                
K cmol(+) kg-1  0.18                              0.74                                                                                        
Ca cmol(+) kg-1  0.74                         4.83                                                                     
Mg cmol(+) kg-1  0.45                         1.79                                                                     
pH (H2O)     5.67                         6.4                                                                      
Org C (%)  0.45                 2.86                                                                                                                                         
Al cmol (+) kg-1  0.72              0.37 
Total N (%)  0.04             0.18                                                
P (mg/kg)  8.99          23.47 
Clay%   18.34        22.6 

OC= Organic Carbon 

 

6.4.3. Chemical Analysis 

The dried grass samples were sent to the laboratory for chemical analysis.  N was 

analysed using the acid digestion method, using sulphuric acid to retrieve foliar N 

concentration and P was determined using the acid digestion technique were 

perchloric and nitric acids were used for foliar P concentration retrieval (Giron, 1973; 

and Grasshoff et al. 1983).  Chemically analysed N and P are henceforth referred to 

as observed N and P content. 

 

 

6.4.4. Spectral Measurements 

An Analytical Spectral Device (ASD) FieldSpec spectrometer was used to acquire 

spectral signatures of the same grass samples that were used for laboratory analysis.  

Spectral data were collected in a darkroom to ensure stable atmospheric and uniform 

illumination conditions.  The instrument covers the visible to short-wave infrared 

wavelength range (350-2500nm).  The spectrometer has a sampling interval of 1.4nm 

for the region 350 to 1000nm and 2nm for the region 1000 to 2500 nm with a spectral 

resolution of 3 and 10nm, respectively.  Darkroom conditions were used to eliminate 

diffuse light conditions and to ensure that light conditions are similar to allow 

comparison.  A halogen lamp (Lowel Light Pro, JCV 14.5V-50WC) was used as a 

source of light.  The lamp was fixed at a nadir position 20 cm above the target. 
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To prevent contamination of one sample by another, each sample was placed on a 

separate black plastic background before making spectral signature measurements.  

Grass sample was spread on the plate to completely cover the plate’s surface.  The 

grass was flattened on top to form an even surface.  Reflectance calibration was done 

using a white reference.  The white reference is a calibrated white spectralon with a 

near 100% diffuse (Lambertian) reference reflectance panel made from a sintered 

poly-tetra-flourethylene based material.  Calibration was done before taking 

measurements of each of the samples.  Spectral signatures were taken at a height of 

approximately 15cm above the target at approximately 15º off nadir to minimize the 

effect of bidirectional reflectance.  Each sample was rotated five times when the 

spectra were measured to minimize bidirectional reflectance effects (Ramoelo et al., 

2011; and Mashimbye et al., 2012). 

 

6.4.5. Data Analysis 

Descriptive statistics of grasses from stockpiles and unmined areas were computed.  

Mean values of N and P, standard deviation as well as analysis of variance of the 

same elements were computed using Statistix 10.0.  Predictive models were 

computed using untransformed individual reflectance, First Derivative Reflectance 

(FD), Log transformed spectra Log (1/R).  Commonly used spectral transformation 

techniques such as Log transformed spectra Log (1/R) and first derivative were 

computed.  Log (1/R) was determined by calculating a Log function of the spectral 

reflectance’s reciprocal (Hruschka, 1987; Yoder & Pettigrew-Crosby, 1995; and Fourty 

& Baret, 1998).  The first derivative of the spectral reflectance was derived using a 

first-difference approach.  A first-difference transformation of the reflectance spectrum 

calculates differences in reflectance between adjacent wavebands. More details on 

this can be found in Dawson and Curran (1998). 

 

6.4.6. Regression Analysis and Bootstrapping 

Total number of 200 samples was used for regression.  Partial Least Square 

Regression (PLSR) was used to due to its popularity to this type of analysis (Ehsani 

et al., 1999; Martens & Naes, 2001; and Viscarra Rossel, 2008).  To compare the 

retrieval accuracy of foliar N and P using the various spectral transformation 

techniques, a bootstrapping approach was used (Efron, 1983).  The advantage of 
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bootstrapping is that it can be used efficiently when only a limited number of samples 

are available. 

 

Bootstrapping was used as an alternative to the split method since it iteratively 

resamples the data set to be used for model development, making it a good technique 

for assessing model accuracy (Verbyla & Litvaitis, 1989).  In this study, PLSR was 

integrated with bootstrapping to derive calibrated and validated models. To integrate 

PLSR and bootstrapping, bagging-PLSR was implemented using the Parles 3.1 

software (Viscarra Rossel, 2007, 2008).  

 

Using bagging-PLSR, independent or predictor variables were mean-centred to 

normalize them prior to further statistical analysis.  The Leave-One-Out Cross 

Validation, as defined by the lowest root mean square error (RMSE), was used to 

determine the optimal number of factors or latent variables to be used for model 

development (Cho et al., 2007; Darvishzadeh et al., 2008; and Viscarra Rossel, 2008).  

This Optimal number of factors was then used for model development and validation 

with the number of bootstraps equalling 1000.  The retrieval accuracy was defined by 

the bootstrapped mean of the Coefficient of Determination (R2) and the RMSE.  The 

confidence interval at a 95% confidence level was calculated for both R2 and RMSE 

(Ramoelo et al., 2011).  The importance of a given waveband in the estimation of foliar 

N and P concentration of grass samples was assessed by the variable Importance in 

the Projection (VIP) score (Wold et al., 2001).  The VIP gives a summary of the 

importance of an X-variable (waveband) for both y and X, and is calculated using the 

weighted sum of squares of the PLS-weights (w), with the weights calculated from the 

y-variance of each PLS factor.  A large VIP score, like PLS regression coefficient (βw), 

indicates an important X-variable (waveband).  VIP scores provide a measure of 

importance of each explanatory variable or predictor (Wold et al., 2001), and as a 

measure of performance when multi collinearity exists among variables, as evaluated 

by Chong and Jun (2005) through computer simulation experiment. 

 

6.5 Results 

6.5.1. Descriptive Statistics and Spectral Features 

Figure 6.1 shows original reflectance of grass samples from coal-mine stockpile site 

and unmined sites.  The reflectance increases in the red/infrared boundary near 
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700nm.  The reflectance is nearly constant from 1100 to 1300nm and then decreases 

for the longer wavelengths.  Results of the descriptive statistics of foliar N and P from 

grass sampled from coal-mine stockpile soils and unmined site are presented in Table 

6.2.  Grass samples from unmined site had significantly higher mean values for N and 

P as compared to those from coal-mine soil stockpile site.  There was significant 

difference (p<0.05) between mean values of measured N and P from both study sites.  

N concentration was 10.50mg/g for grass sampled from coal-mine stockpile soil site 

and 17.20mg/g for grass sampled from unmined soil site.  N concentration for grass 

sampled from stockpile soil was 38.95% lower, relative to grass from unmined site.  P 

concentration was 0.66mg/g for grass sampled from coal-mine stockpile soil site and 

1.32mg/g for grass sampled from unmined site.  P concentration for grass sampled 

from stockpile soil was 50.00% lower, relative to grass from unmined site.  The results 

show that there is high concentration of N than P on grass samples from both stockpile 

soils and unmined soils. 
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Figure 6.1: Untransformed Spectral Reflectance of All the Grass Samples; A= Soil 

Stockpile Site, B= Unmined Site 
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Table 6.2: Descriptive Statistics of Foliar N and P from Stockpile Site and 
Unmined Site 

Measured   Variable    Sampling site         Mean        C.V         Min           Max 
_________________________________________________________________________________ 
 
N (mg/g)  Unmined   17.20a       26.94       1.03         25.80  

Stockpile site      10.5b     21.93                 0.58         17.30    
 P (≤0.05)                            0.00 
_________________________________________________________________________________  
 P (mg/g)   Unmined                 1.32a        41.35       0.70             2.68                            
                                 Stockpile site            0.66b         20.00         0.38        0.97     
 P (≤0.05)                                                  0.00 

‡ a, b indicates significant difference.  Within rows, means followed by the same letter are not 
significantly different (P=0.05) using Duncan’s multiple range test. SD=Standard derivative, C. 
V=coefficient of variance, Min=Minimum, Max=Maximum. n=100 

 

6.5.2. Estimating Grass Foliar N and P Concentration Using PLSR and Various 

Transformation Techniques 

Predictive models of foliar N and P concentration were examined using Partial Least-

Squares Regression (PLSR).  PLSR analysis yielded accurate prediction for foliar N 

from both soil stockpile and unmined sites (Table 6.3; Figure 6.2).  All models for foliar 

N possessed a high Coefficient of Determination (R2).  FD yielded highest predictive 

models for foliar N in both sites (soil stockpile site R2=0.88, RMSE=0.087, unmined 

site R2=0.93, RMSE=0.071).  
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Figure 6.2: Scatterplots of Measured and Predicted Values for Foliar N Based 

on PLSR  Prediction; A= Soil Stockpile Site, B= Unmined Site
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Table 6.3. Performance of PLSR Models for Estimating Foliar N and P Concentration Using Different Spectral Transformation 

from Coal Mine Stockpile Soil and Unmined Sites 

_______________________________________________________________________________________________________________________________ 

                                                    Stockpile soil site                                                                                                                   Unmined soil site 

                                            ____________________________________________________              ________________________________________________ 

                                             

Spectra         variables                   R2  RMSE       95% LCI 95% UCI      No. of factors                R2  RMSE       95% LCI 95% UCI      No. of factors               

________   _____________         _______________________________________________                         _______________________________________________                                            

  R                     N (%)                 0.72        0.120       0.102   0.147           8                                 0.78       0.112         0.092              0.132               6 

                          P (mg/kg)                 0.47        94.84         80.19                116.02           8                                 0.55          87.53         74.02              107.08             8                               

  FD                   N (%)                 0.88        0.087       0.074   0.106           5                                  0.93          0.071         0.060              0.087                5 

                          P (mg/kg)                 0.71        74.26         62.79                98.45           7                                  0.87          55.14         46.63              67.46              6 

Log (1/R)           N (%)                 0.76        0.113         0.095                0.138             7                                  0.78          0.108         0.091    0.132                7           

                          P (mg/kg)                 0.49        93.43         79.01                114.30           8                                  0.59          84.65         71.58               103.56             7                                   

FD= 1st derivative, R= Original reflectance. 
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There was high foliar N and P concentration predictive models for grass sampled from 

unmined site as compared to soil stockpile sites (Table 6.3).  Original spectra and Log 

(1/R) spectra of grasses sampled from coal-mine stockpile soils showed poor 

prediction for foliar P (R2=0.47, RMSE=94.84 original spectra; R2=0.49, RMSE=93.43 

Log (1/R)).  FD yielded accurate predictive model for foliar P from grasses sampled 

from stockpile soils (R2=0.71, RMSE=74.26).  Grasses sampled from unmined site 

yielded accurate predictions for foliar P concentration.  FD yielded the highest 

predictive model for foliar P, followed by Log (1/R) transformation (Table 6.3; Figure 

6.3).  

 

Variable Importance for Projection (VIP) and regions for estimation of foliar N and P 

concentration VIP scores revealed the highest for N are centred near 1978nm for 

original reflectance, 1770nm for FD and 672nm for Log (1/R) transformed spectra for 

grass sampled from stockpile soils. For grasses sampled from unmined soils, the 

highest VIP scores for N are centred near 676nm for original reflectance, 1770nm for 

FD and 924nm for Log (1/R) transformed spectra.  For P concentration, the highest 

VIP scores are centred near 1001nm for original reflectance, 976nm for FD and 676nm 

for Log (1/R) transformed spectra for grasses sampled from stockpile soils.  For 

grasses sampled on unmined soils, the highest VIP scores for P are centred near 

1197nm for original reflectance, 1770nm for FD and 1079nm for Log (1/R) transformed 

spectra (Table 6.4).  

 

 

 

 



78 
 

  

Figure 6.3: Scatterplots of Measured and Predicted Values for Foliar P Based on 
PLSR Prediction; A= Stockpile Soil Site, B= Unmined Soil Site 
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Table 6.4. Highest Variable Importance in the Projection (VIP) Scores for Foliar N and P Estimation 

_______________________________________________________________________________________________________________________________ 

                                                    Stockpile soil   site                                                                                                                   Unmined soil site 

                                            ____________________________________________________                            ________________________________________________ 

                                             

Spectra         variables                      VIP                        λ (nm)                          Region                             VIP                        λ (nm)                         Region                    

________   _____________         _______________________________________________                            _______________________________________________                                            

  R                     N (%)                   1.54                           1978                                      SWIR                         3.63                           676                                        Visible 

                          P (mg/kg)                   6.93                           1001                                      NIR                             9.59                          1197                                       NIR  

  FD                   N (%)                   17.72                         1770                                      SWIR                          28.91                        1770                                      SWIR 

                          P (mg/kg)                   19.47                         976                                        NIR                             16.91                        1770                                      SWIR 

Log (1/R)           N (%)                          2.97                           672                                       Visible                    2.57                           924                                        NIR          

                          P (mg/kg)                   7.64                           676                                       Visible                           8.04                          1079                                       NIR                                 

FD= 1st derivative, R= Original reflectance;  

 
 
 
 
 
 
 
 
 
 
 



80 
 

6.6 Discussion 

The study was initiated to estimate the effect of coal-mine stockpile soils on foliar N 

and P concentration using PLSR and Reflectance Spectroscopy.  The specific 

objectives were, namely, to: (1) determine if nutrient content of grass sampled from 

stockpile and unmined sites differ; (2) determine the ability of spectral transformation 

to enhance prediction of foliar N and P; (3) investigate what spectral bands are 

important in predicting N and P; and (4) investigate what spectral regions are more 

dominant in predicting N and P concentration of grass sampled from coal-mine 

stockpile and unmined soils. 

 

6.6.1. Foliar N and P Content 

Foliar nutrient contents are widely recognized as an effective measure of the nutritional 

status of plants because leaves are the primary sites of physiological activities 

including photosynthesis, respiration, transpiration, gas exchange and nutrient storage 

(Dogan et al., 2010; and Demirayak et al., 2011).  The results from chemical analysis 

of foliar N and P show that grass sampled from stockpile soils have low mean values 

than those sampled from unmined soils.  According to Davies et al. (1995), the 

chemical properties of the soil deteriorate when topsoil is stockpiled.  Oxygen 

becomes limiting and anaerobic environment is created.  As a result, large quantities 

of nitrogen are lost to the atmosphere as gaseous N2 or N2O, through the process of 

de-nitrification.  Loss of nitrogen and other nutrients by leaching also occurs, reducing 

available nutrients for vegetation growth.  The mean value for foliar N from grass 

sampled from stockpile soils was low according to threshold set by Paarlahti et al., 

(1971) and Reinikainen et al. (1998).  The authors indicated that threshold (mg/g) of 

(< 12) poor, (12 to13) adequate and (13 to18) is optimal foliar N concentration.  The 

mean value for foliar N from grass sampled from unmined site was optimal according 

to threshold set by Paarlahti et al. (1971) and Reinikainen et al. (1998).  According to 

Moilanen et al. (2010), the more fertile the site, the higher the foliar N concentration.  

The mean value for P concentration from grass sampled from stockpile soils was also 

low according to threshold set by Paarlahti et al. (1971) and Reinikainen et al. (1998).  

They indicated that threshold (mg/g) of (<1.3) poor, (1.3 to 1.6) adequate and (1.6 to 

2.2) optimal foliar N concentration.  The mean value for foliar P from grass sampled 

from unmined site was adequate according to threshold set by Paarlahti et al. (1971) 

and Reinikainen et al. (1998). 
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6.6.2. Original Reflectance Characteristics 

The spectral reflectance is typical of vegetation spectra as it follows the basic shape 

as observed by other researchers (Card et al., 1988; Curran, 1989; Elvidge, 1990; and 

McLellan et al., 1991).  The wavelength regions in which the grass components have 

strong absorption features shows that the reflectance increase around 550nm (green) 

and is low around 400-450nm (blue region) and near 660-680nm (red region).  This is 

attributed to pigments absorption (Kokaly et al., 2007).  In this study, reflectance 

increased above 700nm-1300nm, which is consistent with finding by (Curran, 1989, 

and McLellan et al., 1991).  The high reflectance results from an increased amount of 

light scattering at cell-wall interfaces because of a change in the index of refraction, 

the absence of pigment absorptions, and the weakening of overtone absorption of 

water in leaves at those wavelengths.  The absorption feature near 700nm is the 

results of electron transitions in chlorophyll (Curran, 1989).  There was a strong 

absorption feature around 1900nm in both grass sampled from unmined and coal-

mine stockpile soil sites.  This is attributed to the bending and stretching of the O-H 

bond in water and other chemicals (Curran, 1989). 

 

6.6.3. Foliar N and P Concentration Estimation Using PLSR and Various Spectral 

Transformation Techniques 

Foliar nitrogen concentration was estimated with high accuracy on grass sampled from 

unmined and coalmine stockpile soils.  The RMSE for N concentration prediction were 

found to be low ranging from 0.071 to 0.120.  Low RMSE values verify reliability of the 

models (Liu et al., 2003).  The original reflectance for estimation of foliar N 

concentration had R2= 0.72 for grasses sampled on stockpile soils and R2= 0.78 for 

grasses sampled on unmined soils.  The R2 found in this study is higher than the R2 

recorded by Ramoelo et al., (2011).  Ramoelo et al., (2011) recorded R2 = 0.60 

(original reflectance) for N from Savannah grass species using NIR-PLSR.  This 

difference can be attributed to the kind of grass species and the time of sampling.  In 

this study, the sampling took place in the beginning of summer.   

 

The findings of this study are consistent with those of Pellissier et al., (2015) and Wang 

et al. (2015).  Pellissier et al., (2015) recorded R2=0.76 using field based imaging 

spectrometer and PLSR while Wang et al. (2015) recorded R2=0.75 using PLSR.  The 
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study by Ramoelo et al., (2011) recorded R2=0.59 for FD and R2=0.62 for Log (1/R) 

using PLSR.  In this study, R2=0.88 and 0.92 were recorded (for FD from grasses 

sampled from coal-mine stockpile soils and unmined soils respectively) using PLSR.  

The R2 results recorded in this study are consistent with the findings by Kawamura et 

al. (2010) and Serbin et al., (2012) who recorded R2=0.90 using FD and PLSR on 

pasture canopy and R2= 0.89 using PLSR- leave-one-out (LOO) cross-validation 

procedure for glasshouse leaf nitrogen concentration respectively.  Curran et al. 

(2001) recorded R2=0.96 using FD and stepwise regression.  Log (1/R) for N 

concentration prediction yielded R2=0.76 and 0.78 for grass sampled from coal-mine 

stockpile soils and unmined soils respectively.  The R2 recorded in this study is higher 

than that recorded by Ramoelo et al. (2011).  Ramoelo et al., (2011) recorded R2=0.62 

(Log (1/R)) for N concentration estimation using PLSR from savannah grass and 

Serrano et al., (2002) recorded R2 range (0.39-0.45) from data collected using 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) analysed using multiple 

stepwise regression.  The study conducted by Ramoelo et al., (2011) recorded high 

R2 value for N estimation based on Log (1/R) transformation as compared to FD and 

original reflectance.  Yoder and Pettigrew-Crosby (1995) showed Log (1/R) performed 

accurately estimating N concentrations, compared to reflectance.   

 

Similar results were also attained by Fourty and Baret (1998).  They argued that by 

transforming reflectance to absorbance Log (1/R) values, the accuracy of biochemical 

estimates was improved.  Log (1/R) is likely to be used instead of the original 

reflectance because of the linear relation between the absorbing components and its 

contribution to the Log (1/R) value at the wavelength absorbed (Hruschka, 1987).  But, 

in this study, FD performed better that Log (1/R), this can be attributed to the fact that 

FD explore information that is often suppressed by other standard analytical methods.  

The study conducted by Ruano-Ramos et al., (1999) showed no significant difference 

between Log(1/R) and FD values as it recorded R2= 0.97 (Log (1/R)) and R2=0.98 

(FD).  

 

Grass P concentration for grass sampled from stockpile soils was poorly estimated, 

with the original reflectance recording Coefficient of Determination of R2= 0.47 and 

that of Log (1/R) transformation as R2=0.49.   
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The findings of this study are consistent with findings by Ramoelo et al. (2011).  

Ramoelo et al. (2011) recorded R2= 0.47 (Log (1/R)) for P concentration from 

Savannah grass species using NIR-PLSR.  Poor prediction of grass foliar P was 

recorded by several researchers, e.g., Brogrekci and Lee (2005); Serusi (2010); Knox 

et al. (2012); and Özyigit and Bilgen (2013).  They recorded R2= (0.34 to 0.43) using 

different statistical methods.  For grass sampled on unmined soils, original reflectance 

and Log (1/R) yielded fairly predictive models.  The R2 values were 0.55 and 0.59 

respectively.  The findings are consistent with findings by Chadwick and Asner (2016).  

They recorded R2 = 0.53 using PLSR from data collected through airborne high fidelity 

imaging spectroscopy (HiFIS).  FD yielded accurate prediction for grasses sampled 

from coal-mine stockpile and unmined soils.  R2 = 0.71 and 0.87 were recorded 

respectively.  The Coefficient of Determination found in this study is higher than that 

found by Ramoelo et al. (2011) (R2=0.17) using FD and PLSR.  R2=0.71 from grass 

sampled coal-mine stockpile soils is consistent with recorded by Wang et al. (2015) 

(R2 = 0.69), which was Coefficient of Determination obtained using support vector 

regression.  Curran et al., (2001) recorded R2 = 0.78 using FD method.  Mutanga and 

Skidmore (2003) recorded R2 = 0.76 using continuum removed derivative reflectance 

method.  The findings of Curran et al. (2001), Mutanga and Skidmore (2003) were 

consistent with of the findings of this study. 

 

FD yielded high model prediction accuracy than Log (1/R) and original reflectance in 

both grass N and P content estimation (Table 6.3).  This can be explained by the ability 

of FD to eliminate background signals and calculates differences in reflectance 

between adjacent wavebands (Demetriades-Shah et al., 1990; and Tsai & Philpot, 

1998).  Foliar N concentration was accurately predicted in both study sites compared 

to P.  In this study, the total concentration of phosphorus was low compared to N 

concentration.  According to Seastedt (1988), the total concentration of phosphorus in 

plants is low.  Detection of phosphorus concentrations from spectra has not been 

studied to the same extent as compounds such as nitrogen, cellulose, and water 

(Curran, 1989; and Kokaly & Clark, 1999).  Features that would be directly linked to 

phosphorus would likely be undetectable due to the overlaps from features found in 

higher concentrations within plants, e.g., water, cellulose, and nitrogen (Kokaly et al., 

2009).  Foliar N and P concentration for grass sampled from unmined soils were highly 

predicted than those of grass sampled from coal-mine stockpile soils.  This can be 
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attributed to soil nutrient status of the study sites.  Unmined soils have high nutrients 

content that stockpile soils (Table 1).  According to Vogel (1981), stockpile soils are 

often deficient in N and P, especially when associated organic materials were removed 

and buried during stockpiling. 

 

The study shows that the pre-processed spectra obtained better predictive results 

compared with the raw spectral reflectance.  Similar results have been reported in 

many studies, which also confirmed the effects of pre-processing methods (Log (1/R) 

and first derivative) on improving the biochemical component estimations of plants 

(Bogrekci & Lee 2005; Rossel 2008; Serusi, 2010; Ramoelo et al., 2011; and Özyigit 

& Bilgen, 2013). 

 

6.6.4. Spectral Bands and Regions Important in Estimation of Foliar N and P 

Concentration 

The spectral regions critical for estimation of foliar N and P concentration of grass 

samples are presented in this section.  The best performing bands for predictions of 

foliar N concentration of grass sampled from stockpile soils were found to be in these 

regions: visible (672nm) for Log (1/R) transformation and ShortWave InfraRed 

(1770nm) for FD (1978nm) for original reflectance.  For grass sampled from unmined 

soils, the highest VIP scores for prediction of N concentration were found to be in the 

visible (676 nm) for original reflectance, Near InfraRed (924nm) for Log (1/R) and 

ShortWave InfraRed (1770nm) for FD.  

 

For dried leaf, wavelengths that are most relatable to nitrogen concentration occurred 

in association with the absorption spectra of plant pigments, i.e., the red-edge position 

(670–780nm).  The 672 and 676nm wavelengths that yielded high VIP scores for N 

concentration are found near 660nm, which is a known wavelength for N concentration 

absorption (Curran, 1989; and Kumar et al., 2001).  Lamb et al. (2002) reported that 

leaf reflectance in red-edge range of wavelengths (690–740nm) could be used to 

predict leaf nitrogen concentration and total nitrogen content of ryegrass (Lolium 

multiflorum Lam).  This shows that red region absorption changes due to the nitrogen 

content of plants.  The wavelength 1770nm yielded high VIP score using FD and 

PLSR.  This is consistent with the finding by Kawamura et al. (2010).  Their study 

recorded that, the wavelength 1770nm yielded high VIP for N concentration prediction 
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using FD and PLSR.  According to Clark and Lamb (1991), 1620 to 1845nm 

wavebands are associated with C-H, C-N, and N-H groups that are related mainly to 

fibre components and protein (Clark & Lamb 1991).  The waveband 924nm (Log (1/R)) 

yielded high VIP score and this is the waveband is found near known absorption 

waveband for N concentration (910nm).  This waveband is associated with C-H stretch 

(Curran, 1989).  The waveband 1978nm (original reflectance) also yielded high VIP 

score.  This waveband is found near a known waveband for N concentration estimation 

(1980nm) (Curran, 1989).  According to Mitchell et al. (2012), waveband 1980nm is 

associated with N–H asymmetry. 

 

For foliar P concentration, the highest VIP scores for original reflectance for grass 

sampled from stockpile and unmined soils were found near 1001 nm and 1197nm 

respectively.  The dominant regions for foliar P concentration estimation were found 

to be NIR region for original reflectance. This can be attributed to internal cellular 

structure of the leaves (Zhai et al., 2013).  One thousand and three (1003) nm 

waveband is found near waveband 982nm recorded by Kawamura et al., (2010).  In 

their study, waveband 982nm yielded high VIP score for P concentration estimation 

on pasture using FD and PLSR. Waveband 1197nm is consistent with the waveband 

recorded by Kawamura et al. (2010).  The authors recorded that waveband 1197 nm 

yielded high VIP score for P concentration estimation.  The wavebands 950 to 1360nm 

are associated with C-H and O-H biochemical groups (Thenkabail et al. 2004; and 

Kawamura et al. 2010).  For FD, high VIP scores were recorded near 976nm and 

1770nm for grass sampled on stockpile soils and unmined soils respectively.  These 

findings are consistent with the findings by Kawamura et al. (2010), they recorded 

978nm and 1770nm using FD and PLSR for foliar P estimation on pasture.  

 

For Log (1/R), the highest VIP score were recorded near 676nm and 1079nm for grass 

sampled on stockpile soils and unmined soils respectively.  The waveband 675nm is 

consisted with the waveband (676nm) selected by Özyigit and Bilgen (2013) for 

estimation of P concentration in rangeland plants.  Their study found that significant 

relationships existed between phosphorus levels and red region wavelengths.  The 

spectral reflectance in the visible (VIS) wavelengths (400–700nm) depends on the 

absorption of light by leaf chlorophyll and associated pigments such as carotenoid and 

anthocyanins (Babar et al. 2006).  The waveband 1079nm is consistent with the 
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waveband (1079nm) recorded by Kawamura et al. (2010).  In the study by Kawamura 

et al. (2010), the waveband 1079nm yielded high VIP score for P concentration 

prediction on pasture.  The VIP peaks centred around 1079, 1197 and1770nm 

wavelengths, are commonly selected for prediction of each pasture nutrients 

properties (Kawamura et al. 2010).  These VIP wavebands are within ±10 nm of 

wavebands used to predict herbage nutrient concentrations with NIRS in the 

laboratory (garcía-Ciudad et al. 1999). 

 

6.7. Conclusion 

The following conclusions are drawn from this study: 

 The results show that NIRS-PLSR can be used to estimate foliar N and P; 

 Foliar N concentration of grass sampled from stockpile soils and unmined soils 

can accurately be estimated using original reflectance; 

 Top soil stockpiling appear to impact foliar N and P concentration as evidenced 

by low N and P concentration in the grass species, sampled from stockpile soils, 

relative to those from unmined soils; 

 Foliar P was poorly estimated without spectral transformations; 

 FD yielded highest co-efficient of variance value for both foliar N and P 

estimation.  This is due to its effectiveness in eliminating background signals 

and the ability of FD to explore information that was often suppressed by other 

standard analysis methods; 

 The highest VIP bands were found in the SWIR for foliar N estimation in grass 

sampled from both study sites using FD transformation; and  

 For foliar P estimation, the highest VIP bands were found at NIR for grasses 

sampled from stockpile soils; and for grasses sampled from unmined soils, the 

highest VIP bands were found at SWIR both using FD transformation. 
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CHAPTER 7 

GENERAL CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Conclusions 

This study investigated coal-mine stockpile soil quality and its impact on vegetation 

growth using greenhouse study, laboratory-based techniques and Reflectance 

Spectroscopy.  

 

The key conclusions of the study are as follows: 

 The depth of the stockpile affected the quality of the soil.  Soil stored in depth 

deeper than 1.0m had effect on plant growth through reduced grass 

biomass production.  When the soils were mixed, as would happen in a 

rehabilitation process, the resultant effect on grass growth was higher as 

compared to any of the three soils sampled separately at different depths 

(Chapter 3); 

 Without addition of lime and fertilizers, stockpiled soil could not significantly 

support vegetation growth and productivity.  Soils with no fertilizer treatment 

yielded very low grass biomass (Chapter 3); 

 The duration of stockpile affected soil quality and vegetation growth.  As the 

age of the soil stockpile increases, the concentration of suitable plant growth 

nutrients decreases (Chapter 3); 

 Deep stockpile soils had low enzyme activity compared to surface and 

mixed soils.  A depth greater than 1.0 meter, biological activity becomes low 

due to the environmental condition that favours mostly anaerobic organisms 

(Chapter 4); 

 Mixing of stockpile soils generally showed the great potential to increase 

soil enzyme activity (Chapter 4); 

 Duration of soil stockpiling can have influence on soil enzyme activity. When 

soils are stockpiled for a long period of time, microbial biomass is reduced 

(Chapter 4); 

 Soil amendments have potential to improve enzyme activity of stockpile 

soils (Chapter 4); 
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 Reflectance Spectroscopy can predict coal-mine stockpile soil properties. 

Soil Ca and pH were accurately predicted by Partial Least Square 

Regression and Reflectance Spectroscopy (Chapter 5); 

 Predictive models using Partial Least Square Regression can be efficiently 

used as a tool for estimation of soil pH and Ca for coal-mine stockpile soils 

(Chapter 5); 

 Top soil stockpiling affects foliar N and P concentration as indicated by low 

N and P concentration in grass sampled from stockpile soils as compared 

to samples from unmined soils.  Reflectance Spectroscopy and Partial Least 

Square Regression can be used to estimate foliar N and P (Chapter 6); 

 Overall, coal-mine stockpiling affect soil and vegetation quality.  Soil 

properties deteriorate during stockpiling, the deterioration in soil properties 

affect nutrient cycling.  Enzyme activity can be used as a rapid method of 

soil health indicator; 

 Since the process stockpiling and reapplying stockpile involves additional 

expense and effort, a careful analysis of results from sites with stockpile soil 

applications would provide the necessary information for cost-benefit 

analysis and would indicate possibilities for improvement in the efficiency of 

the process of stockpiling; and 

 In order to achieve site stabilization, minimize degradation, and facilitate the 

long-term recovery of these mining sites with an aesthetically pleasing 

landscape, an understanding must exist that the successful recovery of 

these sites is dependent on soil quality.  Soil stockpiling is a valuable 

technique, but restoration plans must be guided by research such as this 

one so that soil that is re-spread back is productive. 

 

7.2 Knowledge Contribution 

The study contributes knowledge with regard to: 

 Proper soil stockpiling and management during open-cast mining process;  

 The ability of Reflectance Spectroscopy to timely estimate selected 

parameters of stockpile soils; 

 Literature with regard to coal-mine stockpile soil quality and characteristics 

in relation to vegetation growth and soil health; 
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 Application of soil amendments to improve grass biomass and coal-mine 

stockpile soil enzyme activity; 

 Effect of coal-mine stockpile soil on foliar biochemicals (N and P); and 

 Use of enzyme activity as well as grass as an indicator soil coal-mine 

stockpile soil quality. 

 

7.3. Recommendations 

This study recommends that: 

 Pre-mining soil survey must be carried out to obtain soil information that will 

assist in soil stripping; 

 Soil must be stockpiled according to their characteristics (similar or related 

soil forms, similar physical properties etc.). Mixing topsoil and subsoil during 

stripping is likely to result in poor vegetation growth as the subsoil might end 

up at the top and used as a top soil during rehabilitation; 

 Depth of stockpile must be maintained at around 1.0-meter deep as deep 

soils tend to have less oxygen, which, in turn, affects biological activities; 

 Duration of the stockpile should be limited to less than 6 years.  In situations 

where soils can be re-spread immediately after striping, this must be carried 

out to avoid nutrient loss; 

 Grass samples for estimation of foliar N and P concentration should be 

collected during summer and winter as vegetation nutrient levels varies in 

response to season; 

 Microbial diversity of the stockpile soils need to be investigated to 

understand the role played by microbes in enzyme activity; and 

 Further research with a large number of soil samples and different study 

sites is required to enhance the findings of this study. 
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