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Abstract 

Soil erosion, which is a critical component of land degradation, is one of the serious global 

environmental problems often threatening food security, water resources, and biodiversity. A 

comprehensive assessment and analysis of remote sensing applications in the spatial soil erosion 

mapping and monitoring over time and space is therefore, important for providing effective 

management and rehabilitation approaches at local, national and regional scales. The overall aim 

of the study was to assess the use of multispectral remote sensing sensors in mapping and 

monitoring the spatio-temporal variations in levels of soil erosion in the former homelands of 

Sekhukhune district, South Africa. Firstly, the effectiveness of the new and freely available 

moderate-resolution multispectral remote sensing data (Landsat 8 Operation Land Imager: OLI 

and Sentinel-2 Multi-Spectral Instrument: MSI) derived spectral bands, vegetation indices, and a 

combination of spectral bands and vegetation indices in mapping the spatio-temporal variation of 

soil erosion in the former homelands of Sekhukhune District, South Africa is compared. The 

study further determines the most optimal individual sensor variables that can accurately map 

soil erosion. The results showed that the integration of spectral bands and spectral vegetation 

indices yielded high soil erosion overall classification accuracies for both sensors. Sentinel-2 

data produced an OA of 83, 81% whereas Landsat 8 has an OA of 82.86%. The study further 

established that Sentinel-2 MSI bands located in the NIR (0.785-0.900 µm), red edge (0.698-

0.785µm) and SWIR (1.565-2.280 µm) regions were the most optimal for discriminating 

degraded soils from other land cover types. For Landsat 8 OLI, only the SWIR (1.560-2.300 

µm), NIR (0.845-0.885 µm) region were selected as the best regions. Of the eighteen spectral 

vegetation indices computed, Normalized Difference Vegetation Index (NDVI) and Soil 

Adjusted Vegetation Index (SAVI) and Global Environmental Monitoring Index (GEMI) were 

selected as the most suitable for detecting and mapping soil erosion. 

Secondly, the study assessed soil erosion in the former homelands of Sekhukhune, South Africa 

by applying a time-series analysis (2002 and 2017), to track changes of areas affected by varying 

degrees of erosion. Specifically, the study assessed and mapped changes of eroded areas (wet 

and dry season), using multi-date Landsat products 8 OLI and 7 Enhanced Thematic Mapper 

(ETM+)). Additionally, the study used extracted eroded areas and overlay analysis was 

performed together with geology, slope and the Topographic Wetness Index (TWI) of the area 

under study to assess whether and to what extent the observed erosional trends can be explained. 
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Time series analysis indicated that the dry season of 2002, experienced 16.61 % (224733 ha) of 

erosion whereas in 2017 19.71% was observed. A similar trend was also observed in the wet 

season. This work also indicates that the dominant geology type Lebowa granite: and Rustenburg 

layered its lithology strata experienced more erosional disturbances than other geological types. 

Slopes between 2-5% (Nearly level) experienced more erosion and vice-versa. On the hand, the 

relationship between TWI and eroded areas showed that much erosion occurred between 3 and 6 

TWI values in all the seasons for the two different years, however, the dry season of 2002 had a 

slightly higher relationship and vice-versa. We, therefore, recommend use and integration of 

freely and readily available new and free generation broadband sensors, such as Landsat data and 

environmental variables if soil erosion has to be well documented for purposes of effective soil 

rehabilitation and conservation. 

Keywords: Food security Global changes, Land degradation, Land-based ecosystems, Land 

management practices, Satellite data, Soil conservation, Sustainable Development; Topographic 

Wetness Index; Time series analysis. 
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1. Chapter One 

Background of the study 

1.1. Introduction 

Soil erosion as a major problem, causes the reduction in the capacity of the land to perform 

ecosystem functions and services that support society and development. Soil erosion is amongst 

the leading environmental problems in South Africa and the worldover (Le Roux et al., 2007, 

Wessels et al., 2004). According to Le Roux et al., (2007), soil erosion affects food security, 

national economic development, and natural resource conservation. For example, the report by 

Department of Environmental Affairs and Tourism, (2005) indicates that many South African 

communal areas in the Limpopo, North West, Northern Cape, and Mpumalanga provinces are 

severely degraded. Greater Sekhukhune District in Limpopo is among some of the areas, which 

are badly degraded and this impacts on the livelihoods of people living in these areas, due to a 

decline in the productive capacity of the affected areas (Stronkhors at al., 2009). However, most 

of these reports were based on routine field surveys and information derived from digitized aerial 

photographs. This, therefore, calls for the accurate monitoring and mapping of degraded areas to 

provide essential information on the levels of degradation, as well as prioritization on the areas 

that require immediate interventions (Le Roux et al., 2007; Wessels et al. 2004). Besides, this 

information is key in decision-making and in developing possible rehabilitation strategies of the 

affected and potentially vulnerable areas. Mapping of eroded areas provides valuable spatial 

information that may benefit operational tasks, such as rehabilitation of affected areas and any 

other forms of remediation.  

Soil erosion is a very complex problem to solve, as a number of factors govern it: ranging from 

biophysical, climatic and human activities. Human-induced practices, such as overutilization and 

exploitation of the natural vegetation cover, poor soil, cropland and rangeland management, and 

overgrazing results in severe soil erosion (Mulibana at al., 2007). Information on the areas 

affected by soil erosion is central in coming up with management and rehabilitation efforts. In 

trying to understand soil erosion and its impacts in these areas, researchers have since applied 

various techniques namely: empirical, conceptual and physically based models (Merritt et al., 

2003). However, a major limitation in modelling soil erosion using these techniques is the 
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restriction in the understanding of the processes involved, particularly in terms of the spatial and 

temporal distribution (Croke and Mockler, 2001). Previous assessments of the quality and 

quantity of soil erosion models show that, in general, the spatial aspect and patterns of erosion 

are poorly predicted (Jetten et al., 2003; Merritt et al., 2003). Furthermore, models can rarely be 

relied upon to give accurate predictions of absolute amounts of soil erosion. Without adequate 

input data and calibration, models can only be expected to give a relative ranking of the effects 

of input variables (Garen et al., 1999). Input data preparation is a difficult task and the mechanics 

of operating the models is sometimes complicated (Jetten et al., 2003). The large part of the 

effort goes into the construction of the input data set, often derived from a few basic variables 

that are available as raw data. In addition, the main limitation of soil erosion models is the fact 

that they rely on focus on small-scale applications (Nigel and Rughooputh, 2010). Additionally, 

these models are generally expensive and time-consuming and standard equipment is hardly 

available.  

Regardless of these limitations, several studies (Morgan, 2005; Le Roux et al., 2008; Seutloali et 

al., 2016; Dube et al., 2017) have identified the applications of satellite remote sensing sensors as 

the way forward to address soil erosion related environmental problems. However, the major 

limitation with available remote sensing studies on soil erosion mapping is the use of single-date 

or images, which limits the generation of meaningful conclusions and recommendations (Sepuru 

and Dube 2018). Although great strides have also been made in land degradation or soil erosion 

monitoring, the accuracy of the derived thematic maps remains questionable, especially in 

developing countries, as the availability of high-resolution data remains a challenge (Luleva et 

al., 2012). In developing countries, soil erosion monitoring in most communal areas is largely 

undocumented and this affects food security in these areas. Therefore, the freely available and 

new crop of sensors, such as Sentinel 2 MSI and Landsat 8 OLI series, with improved spatial, 

spectral radiometric and temporal resolutions, are perceived to provide the most needed spatial 

tool for monitoring these areas at low costs. These newly launched sensors, unlike their 

predecessors, have been highly rated in most of their applications and these include biomass 

mapping (Yavaşlı, 2016; Zhang et al., 2017), land-surface temperature mapping (Adeyeria, 2017; 

Avdan and Jovanovska, 2016) and invasive species mapping (Gavier-Pizarro, et al., 2012; Wang 

et al., 2017). For instance, Sentinel-2 MSI data available at 10m spatial resolution is considered 
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as one of the most possible solutions to most environmental related challenges in sub-Saharan 

African, due to its free availability, global footprint, high temporal resolution (±5days).  

1.2. Aim and Specific objectives 

The overall aim of the study was to assess the use of multispectral remote sensing sensors in 

mapping and monitoring the spatio-temporal variations of soil erosion in the former homelands 

of Sekhukhune District, South Africa. 

The objectives of the study were to: 

i. determine the optimal new generation satellite data that can accurately map the spatial 

distribution of soil erosion in the former rural homelands of Sekhukhune, South Africa 

ii. To map the seasonal and long term variations in soil erosion in the former homelands of 

Sekhukhune, Limpopo using multi-date satellite data 

1.3. Description of Study Area 

The research was conducted in the Greater Sekhukhune District Municipality, Limpopo 

Province, South Africa (Figure 1.1). The area is located at the coordinates 24°23'27.52"S and 

29°50'06.83"E and lies across the border of Mpumalanga and Limpopo province. The district 

comprises approximately 13 528 km2 (1352800 ha) of geographical area, the majority of which 

is rural. The district lies in the southeastern part of the province, and is comprised of five local 

municipalities. These include Elias Motsoaledi, Ephraim Mogale, Fetakgomo, Makhuduthamaga, 

and Tubatse. The district is situated in a semi-arid environment, with average annual rainfall 

±560 mm and temperatures showing a moderate fluctuation with average summer temperatures 

of ±23°C (Mpandeli et al., 2015; Stronkhors et al., 2009). The topography of the area is generally 

rugged ranging from hilly to mountainous with an average altitude of 494 m above sea level. 

Subsistence or smallholder agriculture accounts for 70% of the farming activities in the district, 

whilst the other 30% is commercial agriculture (Siambi et al., 2007). 
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Figure 1.1 Location of the study site. 
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1.4. The general structure of the thesis 

The thesis includes two research papers and one literature paper that answer each of the 

objectives specified in section 1.2.  

Chapter 1 

This chapter provides a brief background of the study and highlights the gaps in literature.  

Chapter 2 

As a paper article reviews the application of remote sensing technology on soil erosion, as a 

global concern including available methodologies. The review provides information on the levels 

of erosion and the spatial occurrence. The study outlines available soil erosion models and then 

highlights the trade-offs between remote sensing applications in mapping and associated image 

acquisition costs. In addition, included in this review is a discussion on the techniques to classify 

soil erosion using remotely sensed data. 

Chapter 3 and 4 

This section focuses on assessing the spatial distribution of eroded areas: Comparative evidence 

from two new non-commercial multispectral sensors while chapter four conducted a time-series 

analysis of soil erosion spatial using multi-date Landsat series data. In chapter four, assesses soil 

erosion in the former homelands of Sekhukhune, South Africa by applying a time-series analysis 

(2002 and 2017), to track changes of areas affected by varying degrees of erosion. In this chapter 

the influence of geology, slope and the Topographic Wetness Index (TWI) on the observed 

erosional trends is further investigated. 

Chapter 5 

In this chapter, the evaluation and conclusions of the research findings are made. The 

interpretations made here follow the structure of the dissertation objectives established in the 

introduction section (Chapter 1). Consequently, this section revisits and provides an evaluation 

of each research objective. Thereafter, the conclusions of the study are drawn, while the last 

section offers recommendations and proposals for further research. 
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2. Chapter Two 

 

An appraisal on the progress of remote sensing applications in soil erosion mapping and 

monitoring 

 

 

 

This chapter is based on a published review paper: 

Sepuru, T.K., and Dube, T., 2017. An appraisal on the progress of remote sensing applications in 

soil erosion mapping and monitoring. Remote Sensing Applications: Society and Environment 9 

(2018) 1–9
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Abstract 

Satellite remote sensing applications in soil erosion mapping and modeling has gathered 

considerable momentum in the last decade, globally. Most importantly, the latest advancements 

in remote sensing technology and the availability of this data in various resolutions and the 

immediate demand for up-to-date information on levels of soil loss, soil erosion mapping, and 

modeling has received renewed attention, particularly to ensure that productive agricultural land 

remains intact to ensure food security. This work details an overview of the advancements of 

remote sensing in soil erosion research. The study also, for the first time highlights the strengths 

and limitations of satellite data in mapping and monitoring soil erosion at various scales. The 

mostly recommended remotely sensed data in soil erosion modeling were multispectral sensors, 

such as Landsat data imagery, while high spectral resolution information remained limited, 

mainly due to acquisition cost. Despite many efforts made to quantify and map the extent of soil 

erosion, the focus has been restricted to local scale applications. There is, therefore, a need for a 

more detailed and extensive work to assess the spatial variability and extent of soil erosion at 

regional scales if sustainable management and effective rehabilitation strategies are to be 

developed. 

Keywords: Erosion modeling, Food security Global changes, Land degradation, Land-based 

ecosystems, Land management practices, Satellite data, Soil conservation 
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2.1. Introduction 

Soil is a natural resource that provides significant environmental, social, and economic functions. 

The economies of the world largely dependent on the soil as a natural resource for the provision 

of goods and services (Blum, 2005). However, due to the high demand of resources or good and 

services generated from soils, much pressure has been exerted, particularly from underdeveloped 

countries, which largely depends on primary sectors, such as agriculture and forestry (Wessels et 

al., 2004). Most of the agricultural practices are largely subsistence, lacking proper soil 

conservation techniques. Therefore, the pressure generated from these unsustainable human 

activities results in severe soil erosion (Le Roux et al., 2007) as Figure 1 demonstrates human 

induced erosion, the world-over. Problems linked to soil erosion, include loss of fertile topsoil 

for cropping, leading to siltation, eutrophication, damage to infrastructure and loss of aquatic 

biodiversity that contributes to global change (Morgan, 2005; Nearing et al., 2004; Onyando et 

al., 2005).  

Literature shows that soil erosion, which is a critical component of land degradation, comprising 

of water and wind erosion, chemical degradation, excessive salts, physical and biological 

degradation (Luleva et al., 2012), is one of the serious global environmental problem (Wessel et 

al., 2007) often threatening food security, water resources and biodiversity. For instance, the 

world loses approximately 75 billion tons of fertile soil from world agricultural systems each 

year (Eswaran et al., 2001). In Africa for instance, 40% of the land area is degraded, affecting 

food production and leading to soil erosion, which in turn contributes to desertification 

(Thompsell, 2017). Also, several studies indicate that varying intensities and types of soil erosion 

have affected over 70% of South Africa’s land area (Pretorius, 1998; Garland et al., 2000; Le 

Roux et al., 2007). This environmental scourge has resulted in international governments, 

environmental activists, soil scientists and hydrologists embarking on soil conservation training, 

awareness programs and research across the world, in a bid to curb further losses. 

The limitation associated with the above efforts is mainly the lack of the exact information on the 

areas affected by soil erosion, as well as its magnitude. For instance, most of these efforts are 

restricted to traditional methods, such as Revised Universal Soil Loss Equation (RUSLE) and 

whereas conservation programs are deemed a failure because communities from the affected 

areas do not have a sense of ownership (Merritt et al., 2003). The use of aerial photographs and 
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satellite data has greatly increased the capacity to quantify and monitor soil erosion at local, 

national and regional scales (Le Roux et al., 2007). This is because traditional erosion modeling 

techniques involve manual detection of erosional levels from air photos and fieldwork 

measurements. The major challenge with these approaches is that they are limited to expert 

knowledge, besides being time-consuming and costly (Dube et al., 2017). Remote sensing 

coupled with Geographic Information System (GIS), provides key information on the erosional 

dynamics and intensity over time and space, which is critical in providing a baseline for soil 

erosion assessment, control, and prediction (Wang et al., 2013). This is confirmed by numerous 

studies that have been done to date using satellite technologies.  

This thus paper aimed at reviewing the application of remote sensing technology on soil erosion, 

as a global concern including available methodologies. The paper starts by providing information 

on the levels of erosion and the spatial occurrence thereof, as well as provide a detailed summary 

of various land management practices affected by soil erosion. Secondly, the study outlines 

available soil erosion models and then highlights the trade-offs between remote sensing 

applications in mapping and associated image acquisition costs. In addition, included in this 

review is a discussion on the techniques to classify soil erosion using remotely sensed data. 
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Figure 2.1 The distribution of global status of human-induced soil degradation (Source: Oldeman 

et al., 1990). 

2.2. Distribution of soil erosion 

Soil erosion is a worldwide phenomenon, with its magnitude varying extensively across 

countries depending on the levels of technological advancement, slope/landscape, land use and 

land cover types and management practices in place (Madikizela, 2000). Several studies have 

claimed that soil erosion and its related effects severely impact on rural communities since a 

large number of rural communities’ dependent on services derived from land-based ecosystems 

for their livelihoods (IPCC, 2001; LADA, 2002 and Abbas, 2009). Furthermore, Botha (1996) 

and Weaver (1991) argued that environmental factors that control soil erosion include bedrock 

type, soil, climate, topography, vegetation and human activities. Rural communities are, 

therefore, particularly vulnerable to the consequences of soil erosion. Soil erosion also 

constitutes towards several socio-economic and environmental threats. As cited by several 

related studies (Morgan, 2005; Le Roux et al., 2008; Seutloali et al., 2016; Dube et al., 2017). 

Soil erosion occurs in the form of a sheet, rill and/or gully erosion of which some of these are 

difficult to detect using satellite data. To hamper the encroachment of soil erosion and to 



11 

 

formulate the necessary conservation strategies, it is therefore essential to know the 

phenomenon's spatial distribution and magnitude (Seutloali et al., 2016; Dube et al., 2017). Soil 

erosion described as a geomorphic process (Lal, 2001)) occur more frequently on shale or 

dolerite soils (Weaver, 1991), as these rocks develop fine-grained soils once weathered. 

Additionally, the presence of unconsolidated sediments that are high in silt (colluvial and alluvial 

sediments) coincides with most of the areas of gully erosion across the world (Botha et al., 1994; 

Watson, 1997 and Garland et al., 2000), as these sediments generally have higher run-off rates 

(due to lower permeability) and can easily detach. Sheet erosion, head-cut advance and land 

sliding suppose major stress factors on vulnerable lands in mountain ranges and other areas in 

the world (Beguería, 2006). Human activities like land clearing, deforestation, overgrazing, or on 

the other hand, land abandonment can accelerate the natural rates of these processes, leading to 

land degradation. 

There is a balance between soil erosion and soil formation (Vrieling, 2007) but in many 

locations, an imbalance currently exists between the two processes. At the global scale, alluvial 

soil erosion is the most important land degradation problem (Eswaran et al., 2001). Given the 

unclear nature of soil erosion occurrence, up-to-date information on eroded and potential risky 

areas is critical for decisions making and implementing preventive measures. 

2.3.  Available soil erosion modeling techniques 

In addressing the soil erosion problems, researchers have since applied various techniques 

namely; empirical, conceptual and physically based models (Lal, 1994; and Hudson, 1995; 

Merritt et al., 2003). Empirical models are based on observation/experiment, so it reflects 

observed facts and helps predict what will happen in the future. The models use a database of set 

conditions, making them applicable to those conditions. On the other hand, conceptual models 

had better represent reality, by incorporating the underlying transfer mechanisms of sediment 

and runoff generation in their structure, representing flow paths in a catchment as a series of 

storages (Merritt et al., 2003). However, Tesfamichael (2004) states that it is important that each 

region have a model that matches its own condition and database since there is no universally 

true model with any given conditions. Conceptual models play an intermediary role between 

empirical and physically based models. Whilst they tend to be aggregated, they still reflect the 

hypotheses about the processes governing the system behavior. This is the main feature that 
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distinguishes conceptual models from empirical models (Beck, 1987). According to Renschler 

(1996), conceptual models tend to include a general description of catchment processes, without 

including the specific details of process interactions, which would require detailed catchment 

information. This allows these models to provide an indication of the qualitative and quantitative 

effects of land use changes, without requiring a large amount of spatially and temporally 

distributed input data (Merritt et al., 2003). Empirical models are generally the simplest of these 

model types. They are based primarily on defining important factors through field observation, 

measurement, experimentation and statistical techniques relating erosion factors to soil loss 

(Petter, 1992). In addition, the models are frequently used when compared to more complex 

models, as they can be implemented in situations with limited data and parameters input (Merritt 

et al., 2003). The Universal Soil Loss Equation (USLE) and its revised version Revised 

Universal Soil Loss Equation (Wischmeier and Smith, 1978) are the most widely used and 

accepted empirical soil erosion models. They were developed for sheet and rill erosion based on 

a large set of experimental data from agricultural plots. Yet, the equation was derived on single 

agricultural plots and is only valid when applied to an area up to one hectare (Jahun et al., 2015). 

Being the most widely used equation in erosion prediction, the USLE still has limitations and 

weaknesses. In its original form, the model does not provide spatial information on soil erosion 

distribution; however, this limitation is overcome when integrated with GIS techniques 

(Fistikoglu and Harmancioglu, 2002). 

On the other hand, physically based models are based on the knowledge of the fundamental 

erosion processes; and incorporate the law of mass conservation and energy (Bennett, 1974). In 

theory, the parameters used in physical-based models are measurable and therefore known 

(Merritt et al., 2003). In practice, a large number of parameters involved and the heterogeneity of 

important characteristics, particularly in catchments, means that these parameters must often be 

calibrated against observed data (Beck, 1987). Physically based models amongst others include; 

Soil and Water Assessment Tool (SWAT), Erosion Model for Mediterranean regions 

(SEMMED) (De Jong et al., 1999) and the Water Erosion Prediction Project (WEPP) (Flanagan 

and Laflen, 1997). For instance, WEPP has been tested and applied in different geographic 

locations, across the United States (Huang et al., 1996; Laflen et al., 2004) in Australia 
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(Rosewell, 2001) and in the United Kingdom (Brazier et al., 2000). However, the application of 

WEPP in the African context is lacking. 

A major limitation in modeling soil erosion in any given area is the restriction in the 

understanding of the processes involved, particularly in terms of the spatial distribution of soil 

erosion to those processes and causes (e.g. Croke and Mockler, 2001). Previous assessments of 

the quality and quantity of soil erosion models show that, in general, the Spatial aspect and 

patterns of erosion are poorly predicted (Jetten et al., 2003; Merritt et al., 2003). Furthermore, 

models can rarely be relied upon to give accurate predictions of absolute amounts of soil erosion. 

Without adequate input data and calibration, models can only be expected to give a relative 

ranking of the effects of land management (Garen et al., 1999). Input data preparation is a 

difficult task and the mechanics of operating the models is sometimes complicated (Jetten et al., 

2003). The large part of the effort goes into the construction of the input data set, often derived 

from a few basic variables that are available as raw data. The main limitation of soil erosion 

models is the fact that they rely on the small-scale application (Nigel and Rughooputh, 2010). 

Additionally, these models are generally expensive and time-consuming and standard equipment 

is hardly available. Regardless of these limitations, several studies (Morgan, 2005; Le Roux et 

al., 2008; Seutloali et al., 2016; Dube et al., 2017) have identified the applications of satellite 

remote sensing sensor as the way forward to address this kind of environmental problems. 

2.4.  Satellite remote sensing of soil erosion 

Despite the limitation of cost and time consuming of other soil erosion models, remote sensing 

techniques can map erosion with less expert data, time and cost, and provide the suitable 

quantitative information necessary for assessing and monitoring the levels of soil erosion. 

Satellite remote sensing based modeling as both the empirical and physical-based approaches 

(Shoko et al., 2016), was used and acknowledged by researchers, which widely applied it on land 

degradation aspect (Bocco and Valenzuela, 1988; Dwivedi et al., 1997; Kiusi and Meadows, 

2006). As further highlighted by Seutloali et al. (2016), the increased recognition of remote 

sensing technologies is associated with its unique strength as it offers a significant potential for a 

timely, affordable and robust method for investigating soil erosion at a larger spatial scale, 

particularly in environments where intensive field methods remain a challenge. Recent studies 

have been made at providing a quantitative estimate of soil erosion (Tanser and Palmer, 1999; 
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Wessels et al., 2004, 2007; Bai and Dent, 2007; Thompson et al., 2009; Bennett et al., 2012). 

Table 2.1 provide detailed information on several studies that have utilized remote sensing 

approaches for estimating soil erosion and their analytical techniques. 

Efforts have been put into studying land cover and land-use change (Sobrino and Raissouni, 

2000) focusing mainly on vegetation and other ecological parameters, without further going into 

deep details of environmental problems, such as soil erosion. However, the number of studies 

decreases (Luleva et al., 2012), when it comes to direct assessment of soil loss and degradation. 

By using satellite imagery, it is possible to observe only the surface soil characteristics and only 

when the signal is not covered by the vegetation cover (Vrieling, 2006). According to Luleva et 

al. (2012) the most commonly used remotely sensed data in soil erosion monitoring come from 

Landsat data imagery. In developing a map of highly eroded areas in a mountain catchment, 

Beguería (2006), discriminated soil erosion on bare soil from resistant rock outcrops. To achieve 

this, he used a supervised classification procedure (multinomial logistic model) over three 

Landsat thematic mapper (TM) at different months and different datasets. The ability of multi-

temporal data (integration of images from different seasons) for discriminating soil erosion 

features was tested, and compared to the use of single images (Beguería, 2006). Dhakal et al. 

(2002). Jensen (2005) further highlighted that Landsat TM has a higher spectral resolution of 

seven bands (two additional mid-IR) making it better suited for mapping eroded landscapes. 

These seven different bands of Landsat TM record energy in the visible, reflective-infrared, 

middle-infrared, and thermal infrared regions of the electromagnetic spectrum and are 

appropriate for mapping soil erosion and peripheral vegetation mapping (Jensen, 2005). Dhakal 

et al. (2002) found that the visible bands (Red, Green, and Blue) were effective in detecting 

eroded areas resulting from an extreme rainfall event. 

Hochschild et al. (2003) used Landsat 5 TM image of 1996 in their assessment of soil erosion in 

Mbuluzi river catchment (Kingdom of Swaziland). The study mapped existing erosion types and 

extents by creating a negative correlation between the erosion levels and the percentage of 

vegetation cover. Furthermore, Hochschild et al. (2003) outlined soil erosion types ranging from 

slight rill to deep gullies of which rill to inter-rill erosion and deep linear erosion (gully erosion) 

are predominant in the Mbuluzi catchment using Landsat satellite data. In Nsikazi, Mpumalanga 

Province of South Africa, Wentzel (2002) used Indian Remote Sensing satellite (IRS) to derive 
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bare soil index for likely soil erosion mapping. Randall (1993) delineated gully and sheet erosion 

areas using Landsat TM images in Olifants River catchment, South Africa to find that gullies 

could be mapped more accurately. Correspondingly, Liggitt (1988) used remotely sensed data to 

assess soil erosion in Mfolozi. Liggit (1988) interpreted orthophotos and aerial photographs 

taken at different times and scales to estimate the spatial extent of gullies and sheet erosion. The 

results of this study confirm the importance of geological type on soil erosion, despite the 

overriding influence of climate and vegetation on soil formation, which has led to similar soil 

types being distributed over diverse geological formations. Khan and Islam (2003), identified a 

great deal of riverside retreat, using spatio-temporal analysis of various data sets reveals that 

very high rates of erosion can occur over periods of 1 year or a few years. However, the same 

patterns of erosion are not sustained for many years at the same location and they do not occur at 

all locations simultaneously. 

Even though Landsat data is taking over in soil erosion modeling, it is therefore encouraged to 

compare its effectiveness with other remote sensing datasets. Dwivedi et al. (1997) also found 

that SPOT image improved the classification of eroded lands than Landsat TM; however, not all 

the TM bands were utilized in this study. Although SPOT image has proven better at mapping 

eroded areas, it's a low spectral sampling (4 bands) has proven to be a limitation in mapping 

gullies (Servenay and Prat, 2003). Serveney and Pratt (2003) found that SPOT was unable to 

identify outcropping eroded areas even though they had unique spectral signatures. While there 

is an insufficient amount of literature on SPOT and Landsat TM comparison for mapping of 

gullies, it can be recognized that spatial resolution and higher spectral resolution Landsat TM 

may prove to be better at mapping gullies overall because of the spectral sampling capabilities of 

the sensor (Luleva et al., 2012). 

In the past, visual interpretation of aerial photographs together with coarse satellite imagery was 

applied for mapping gully erosion. Clearly, the combination of both may be the optimal 

approach. Fadul et al. (1999) monitored and mapped gully erosion over a small area and time, 

using a dataset of multi-date of aerial photographs data together with Landsat images. The study 

by Fadul et al. (1999) aimed at to understanding the effects of the environment on gully 

formation by estimating the rate of annual loss of arable land caused by gully erosion. The 

results showed that the traditional rainfed agriculture has accelerated gully erosion in the semi-
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arid rather than in the arid zone. The progressive rate of gully erosion in the semi-arid zone 

resulted in the loss of arable land at about 13.4 km2 year-1 and 9.8 km2 year-1 in the periods 

1985–1987 and 1987–1990, correspondingly. Similarly, Fulajtar (2001) utilized high spatial 

resolution SPOT PAN Image to detect soil erosion patterns and obtained best results in 

comparison to conventional field survey mapping methods. Recently, Seutloali et al. (2016) 

assessed and mapped the severity of soil erosion based on soil erosion levels and related to 

topographic variables (i.e. slope, stream power index and Topographic wetness index). The study 

identified thresholds of soil erosion classes ranging from sheet erosion to deep gully erosion. For 

classification and determination of vegetation indices, the study used the 30 m Landsat 

multispectral satellite data in the former South African homelands of Transkei to map their 

severity thereof (Seutloali et al., 2016). 

Although higher spatial resolution imagery, such as SPOT 5, IKONOS, and Quikbird offer a 

high-quality data for potential use in erosion mapping (Taruvinga, 2009), their utility remains 

hindered. Such high-resolution data (IKONOS and QuickBird) are very expensive to acquire for 

mapping erosion in a large area (Vrieling et al., 2008) and may not be affordable for developing 

countries. Furthermore, they have low spectral sampling capabilities. More recently, remote 

sensing has opened new views on inventory, characterization, and monitoring of degraded lands 

(Tesfamichael, 2004). The value of remote sensing along with GIS for mapping any landscape 

attribute, such as soil degradation is clear enough, but most of the studies were conducted at a 

small scale as highlighted in Table 2.1 below. Le Roux (2007) recommended that the remote 

sensing approaches to soil erosion modeling have to be applied or expanded to a regional scale. 

Table 2.2 illustrates the sensors used in remote sensing of soil erosion, as well as their cost. 

Therefore, there is no other techniques offer the promises of spatially exhaustive, objective and 

repeated measurements at a cost comparable to satellite remote sensing. 
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Table 2.1 Summary of remote sensing applications in soil erosion mapping Adopted from  

Matongera, et al., (2016). 

 

 

 

 

Study/Applications Sensor (s) 

used 

Pixel size No. of 

bands 

Scale of 

application 

Results Reference 

mapping the spatial 

distribution of soil 

erosion in the study 

area using three 

Landsat-derived VIs 

Landsat8 

OLI and 

SPOT6 /7 

30m Blue, 

green, 

red, and 

NIR 

Landsat8 

Local 

Municipality 

kappa 

statistical 

results of 0.64 

for SAVI, 0.60 

for NDVI, 

0.59 for 

SARVI 0.60 

Kwanele 

and Njoya, 

(2017) 

Assessing and 

mapping the severity 

of soil erosion 

Landsat 

TM5 

30m Blue, 

green, 

red, and 

NIR 

Local 

municipality  

19.89 percent 

of Sheet in 

1984 and 0.69 

percent of 

Deep gully in 

2010 

Seutloali,  

et al., 

(2016) 

Gully Mapping using 

Remote Sensing 

Landsat 

(TM) SPOT 

(HRG) and 

SPOT (Pan) 

 30m Blue, 

green, 

red, and 

NIR 

Buffalo 

River 

(Buffels) 

sub-

catchment 

NDVI=0.1, 

SAVI=0.08, 

TSAVI=0.45 

Taruvinga,  

(2008) 

Identifying erosion 

areas at basin scale 

using remote 

sensing data and GIS 

Landsat 

TM/ETM+ 

 30m Blue, 

green, 

red, and 

NIR 

Catchment of 

the Yesa 

reservoir 

0.02 AUR. Beguería, 

(2006) 

Gully erosion 

mapping using object-

based and 

pixel-based image 

classification methods 

IRS-P6  23.5m  

IRS-P6  and a 

Panchromatic 

band of 5.8m 

Blue, 

green, 

red, and 

NIR 

bands 

Local 

catchment 

OBIA kappa 

coefficient of 

0.82, 

PBC kappa 

coefficient 

(0.62) 

Karami et 

al., (2015) 

Delineation of erosion 

classes in semi-arid 

grasslands  

Landsat-

TM5 

25m. Red, and 

NIR 

bands 

Local 

catchment 

small erosion 

factor, C-

factor 0– 0 .1 

gullies, C-

factor > 0.4 

Hochschild 

et al., 

(2003) 
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Table 2.2 Remote sensing sensor specifications and cost in soil erosion 

  

Sensor Spectral 

bands 

Spatial resolution (m) 

description 

Swath-

width 

(Km) 

Revisit 

time 

(days) 

Cost of image 

acquisition (US 

$/km2) 

Landsat Thematic Mapper (TM) 7 30 

120 

Band (1-5 and 7) 

Band 6 

185 26 Free 

Landsat Enhanced Thematic Mapper 

plus (ETM+) 

8 30 

15 

Band (1-7) 

Band 8 

185 18 Free 

Landsat Operation Land Imager 

(OIL)  

9 30 

120 

Band (1-9) 185 
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Free 

Moderate Resolution Imaging 

Spectrometer (MODIS) 

36 250 

500 

1000 

Band (1-2) 

Band (3-7) 

Band (8-36) 

2330 1-2 Free 

RapidEye 5 5 All bands 77 1 (off 

nadir) / 5.5 

(nadir) 

US $1.28 

Système Pour l'Observation de la 

Terre 5 (SPOT 5), High-Resolution 

Stereoscopic (HRS), High-Resolution 

Geometric (HRG) and  Vegetation 

(VGT) 

5 10 

 

20 

Band (1-3) 

 

Band 4 

60 2.5 US $5.15 

Quickbird 5 2.40 

0.60 

All multispectral 

bands 

Panchromatic 

band 

16.8 1-3.5 US $24 

World View-2 8 2 

 

0.46 

All multispectral 

bands 

Panchromatic 

band 

16.4 1.1 US $28.5 

World View-3 8 1.24 

0.31 

All multispectral 

bands 

Panchromatic 

band 

13.1 1 US $29 

Indian Remote Sensing Satellite 

(IRS-P6) 

4  Band (2-5) 23.9-740 5 US $20 
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2.5.  Soil erosion classification strategies: Strength and limitations 

Classification algorithms can be parametric or non-parametric. Both require user input, in the 

form of training data, to guide the image processing software through the classification. 

Parametric algorithms use parameters, such as mean and variance-covariance matrices for each 

of the classes to determine its decision boundary between classes; whereas non-parametric 

algorithms do not make any assumptions about the distribution of the data used (Tesfamichael, 

2004). Identification and mapping of soil erosion features have been performed by the 

classification algorithms in the extraction of digital information based on spectral and/or 

structural pattern recognition (Alatorre and Beguería, 2009). Several approaches to classification 

exist, for example, supervised, unsupervised or hybrid (combination of supervised and 

unsupervised classifications) methods (Vrieling, 2006). These classification methods are 

normally in hand with mathematical algorithms which include: Interactive Self-Organizing Data 

Analysis Technique (ISODATA), Maximum Likelihood Classification (MLC), Support Vector 

Machines (SVM), Fuzzy set classification logic and Mahalanobis distance classifier (MDC). 

Classifiers based on statistical probability functions commonly use the spectral signature of a 

single pixel (pixel-based classifiers) and spatial context around a pixel to aid in its classification 

(object-based classifiers). 

Unsupervised classification (e.g. ISODATA algorithm) is normally carried out to gain an idea 

about spectral variability. In this method, the separation of clusters of pixels is carried out based 

on statistically similar spectral response patterns, to gain information categories by determining 

classes that are spectrally different, and then define their information value (Lillesand and 

Kiefer, 1994). Many studies created maps for preliminary assessment using unsupervised 

classification (Naseer and Puneet, 2017). Even though it does not require much of human 

attention to have knowledge of the classes, the ability to come up with correct land classes 

becomes the weakness when mapping soil erosions. 

Unlike unsupervised classifiers, the supervised classification allows image analyzers to use 

specific pixels (training sites) to specify the various pixel values that should be associated with 

each class. The most commonly used classification method is based on MLC; a per-pixel based 

classification (Taruvinga, 2008). Floras and Sgouras (1999) used the MLC of Landsat TM 

imagery to separate soil erosion classes. The Gaussian maximum likelihood classifier had an 
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overall accuracy of 83.94% in identifying and mapping land cover, sloping and eroded areas 

(Floras and Sgouras, 1999). Bocco and Valenzuela (1988) applied the similar classifier for 

multispectral Landsat TM and SPOT HRV images to distinguish between several erosion and 

vegetation classes. They found that the higher resolution SPOT data achieved better in 

classifying eroded areas. Metternicht and Zinckt (1998) performed a maximum likelihood 

classification on Landsat TM, and also on the combination of Landsat TM with JERS-1 SAR 

data, and the combination yielded highest classification accuracy. This approach of classification 

has limitations in resolving complex classes that are not normally distributed. Since erosion 

levels and their surrounding areas are spectrally complex, application of this traditional 

parametric algorithm may be challenging for soil erosion mapping. MDC is similar to MLC, 

however, its decision boundaries assume all class covariances are equal (Richards and Jia, 2006) 

and simply measures the maximum distance of an unknown pixel as opposed to MLC which 

calculates the probability density function of each class. 

Literature has given particular attention to the SVM approach, which was tested to produce 

higher classification accuracies (Gualtieri et al., 1999). SVM classifiers have been applied to 

multi-spectral remote sensitizing data (Hermes et al., 1999; Roli and Fumera, 2001; Huang et al., 

2002). SVM classifiers represent a promising non-parametric classification method for 

identifying soil erosion from other land cover types (Taruvinga, 2008). SVM's potential lies in its 

ability to separate classes by locating a hyperplane that maximizes the distance from the 

members of each class to the optimal hyperplane. There is a lack of information on the 

parameters used and the level of accuracy obtained from using SVM for one-class classifications. 

SVM has been used for forest fire detection and urban area extraction in SPOT 5 satellite 

imagery (Lafarge et al., 2005). The focus of their study was on the kernel parameters based on 

textual information and radiometric information, and their ability to separate in one case forest 

smoke and in other urban areas. Furthermore, Congcong et al. (2014) they compared SVM with 

other algorithm using Landsat TM and come up with 88.5% accuracy. 

For the validity and reliability of the results based on the classification of soil erosion maps, 

accuracy assessment has to be performed for each class. Furthermore, accuracy assessment is 

done to validate the classification using ground reference data collected using tools such as 

global position system (GPS) (Mhangara, 2011). The Kappa Analysis technique is widely used 
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in remote sensing for accuracy assessments as a powerful method used to measure the agreement 

between predicted and observed phenomena (Jenness and Wynnes, 2005). Assessment of 

classification accuracy is controlled with the help of error matrix reference test pixel data 

(Mustafa et al., 2012). In comparing object-based image analysis (OBIA) and pixel-based image 

classification (PBC) Karami et al. (2015) used multi-spectral data sets of an Indian Remote 

Sensing Satellite (IRS-P6) for mapping gully erosion features. Karami et al. (2015) utilized IRS-

P6 in mapping gullies in the local catchment of Lamerd Township in the southwestern region of 

Iran. The results showed OBIA at model 6 reached an overall accuracy of 89.6% and a kappa 

coefficient of 82%, which was the highest among all models. The most accurate PBC model was 

supervised model 2, which had an overall accuracy (82%) and kappa coefficient (62%) but was 

significantly lower than that of model 6. 

2.6. Spectral characteristics and vegetation Indices for mapping soil erosion 

Besides classification techniques, there is a direct relationship between soil and spectral 

reflectance, which allows the detection of disturbed soil and the mapping of its spatial 

occurrence (Price, 1993). Thus, the complexity of mapping soil erosion from its levels of the 

formation such as sheets, rills or gullies using remote sensing satellite data lies in their spectral 

differences (King et al., 2005). Therefore, it is important to understand the spectral response and 

reflectance of the erosion features characteristics, and whether the levels of erosion are to be 

mapped as a discrete feature in a landscape using remote sensing. The bare soil spectral signature 

of levels of erosion is influenced by mineral composition, soil texture, moisture and organic 

matter (Irons et al., 1989; Barnes and Baker, 2000; Sujatha et al., 2000). 

In addition to the spectral reflectance of soils, the spectral separability of other surface features, 

such as vegetation cover, built-up areas, cultivated lands, water bodies etc. also contribute to the 

spectral distinction of the eroded soil due to that vegetation and cultivated lands has more 

complex spectral properties than soil (De Asis and Omasa, 2007). The spectral response of the 

characteristics in the near-IR makes it easy to distinguish vegetation from a non-living feature. A 

study made by Price (1993), there is a correlation between reflectance values of single Landsat 

TM bands, especially band 4 (NIR), and erosion rates. In supporting this findings Pickup and 

Nelson (1984) successfully distinguished eroding, stable, and depositional areas using the 
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satellite data defined by the 4/6 and 5/6 band ratios of Landsat MSS imagery (corresponding to 

green/NIR and red/NIR respectively) for arid rangelands in Australia. 

Vegetation indices (VIs) derived from satellite images are one of the primary remote sensing 

approaches for obtaining information about the Earth's surfaces reflectance and have been used 

as a simple and quick feature extraction technique for soil erosion mapping (Singh et al., 2004; 

King et al., 2005). VIs, in particular, have gained recognition in soil erosion research (Mathieu et 

al., 1997; Singh et al., 2004). Normalized Difference Vegetation Index (NDVI), since its 

initiation by Rouse et al. (1973), it has been used quite widely in soil erosion related research 

(Vaidyanathan et al., 2002; Taruvinga, 2008; Seutloali et al., 2016; Kwanele and Njoya, 2017). 

Moreover, various modifications have been proposed to address the sensitivity of NDVI to non-

vegetation factors (Lawrence and Ripple, 1998; Kwanele and Njoya, 2017). The Soil Adjusted 

Vegetation Index (SAVI) proposed by Huete (1988), and Soil and Atmospherically Resistant 

Vegetation Index (SARVI) developed by Huete and Liu (1994) are amongst the most widely 

used modifications of NDVI in soil erosion research (Kwanele and Njoya, 2017). In mapping, 

the spatial distribution of soil erosion Kwanele and Njoya (2017) used the three Landsat-derived 

VIs (NDVI, SAVI, and SARVI,) and they assess the accuracy of VI derived soil erosion maps 

and determined the best VI for detecting soil erosion features at a catchment level. In the 

discussion of their results, SAVI-derived erosion map yielded good results across all levels of 

accuracy, including the PA and UA of 77.5% and 79.5% for the erosion class, respectively, 

together with kappa statistical results of 64%.  

NDVI can easily be derived from data acquired by a variety of satellites and low-value 

thresholds can be selected to extract eroded areas (Mathieu et al., 1997; Vaidyanathan et al., 

2002; Thiam, 2003; Symeonakis and Drake, 2004). Using SPOT imagery, Mathieu et al. (1997) 

mapped gully erosion in northern France by calculating NDVI and doing a maximum similarity 

with a brightness index and masking out vegetation, limestone outcrops, and built-up areas. 

Thiam (2003) also used NDVI to produce a three-class (low, moderate, and high) land 

degradation risk map using multi-temporal NOAA/AVHRR and averaged NDVI values to 

specific soil types which allowed for the evaluation of the spatial extent of land degradation risk 

in southern Mauritius. Symeonakis and Drake (2004) used NDVI as an indicator of vegetation 

cover to determine areas of desertification over sub-Saharan Africa, using AVHRR. Using 
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imagery from the Indian satellite sensor IRS-1B LISS-II, Vaidyanathan et al. (2002) used NDVI 

thresholds to identify classes for an erosion intensity map in Garhwal. This technique allowed 

the separation of four different classes, namely: snow, vegetation, barren and water 

(Vaidyanathan et al., 2002). However, the extensive use of NDVI has also presented significant 

weaknesses. Govaerts and Verhulst (2010) noted that satellite-based NDVI results are subject to 

interference by non-vegetation factors including, but not limited to atmospheric conditions and 

soil background. One of the weakness to NDVI is that it is sensitive to the effects of soil 

brightness, soil color, atmosphere, cloud and cloud shadow, and leaf canopy shadow and requires 

remote sensing calibration (Xue and Su, 2017).  

VIs are developed to minimize the effect of soil, such as the SAVI which had been attempted to 

improve the detection of erosion features, in open vegetated areas (Botha and Fouche, 2000) and 

TSAVI (Hochschild et al., 2003). SAVI was originally developed using ground-based data, but it 

was later found useful in minimizing soil background effects using satellite imagery (Jackson 

and Huete, 1991). SAVI has been used in land degradation studies in southern Africa (Botha and 

Fouche, 2000). Using Landsat TM and MSS, Botha (2000) used SAVI to detect land degradation 

change whereas Dang et al. (2003) used Landsat ETM to calculate SAVI for a soil erosion model 

for Miyun County in China. SAVI and TSAVI are based on the assumption that bare soil 

reflectance lies on a single line in the feature space of the red and NIR bands (soil line) (Baret et 

al., 1993). The red and NIR bands have proven to be very useful for identifying soil erosion 

through the use of the ‘soil line’ concept (Mathieu et al., 1997) which is a linear relationship 

between bare soil reflectance observed in the red and near-IR bands (Richardson and Wiegand, 

1977).  

Satellite image-derived NDVI, SAVI, and SARVI are considered mainly because they are some 

of the simplest, cheapest, and quickest feature extraction techniques (Singh et al., 2004; Gandhi 

et al., 2015; Alhawiti and Mitsova, 2016; Sonawane and Bhagat, 2017) that can be used to map 

soil erosion events. Soil erosion is a dynamic process requiring constant monitoring while 

keeping up-to-date information on its spatial distribution. Besides the discussed Vegetation 

related parameters in soil erosion mapping, other parameters have been investigated such 

includes; Topography, Soil moisture, Chemical properties of soils etc. for the assessment of 

remote sensing of soil erosion. Luleva et al. (2012) summarized parameters regarding gaps and 
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opportunities in the use of remote sensing for soil erosion assessment of which they include; 

Modified Temperature - Vegetation Dryness Index (MTVDI) (Kimura, 2007), Normalized 

Difference Water Index (NDWI) (Dasgupta et al., 2007), Leaf Area Index (LAI) and Land 

Surface Temperature (LST), Normalized Soil Moisture Index (NSMI) (Haubrock et al., 2008). 

2.7. Remote sensing recommendations for soil erosion mapping 

Application of remote sensing to natural resources inventory has become fundamental for natural 

resources management as it is deemed environmental friendly (Lillesand and Kiefer, 1994). The 

remote sensing approach is the only practical method for mapping soil erosion features because 

of the large area and complexity of the size, shape, and occurrence of the eroded features (Knight 

et al., 2007). So far, the most commonly used remotely sensed data in soil erosion modeling is 

the Landsat series data dating back to 1972. Availability and low cost of the images scenes allow 

long-term monitoring of the affected areas. The main benefit of Landsat sensor is the multi-

temporal aspect (de Jonget al., 1999), although the low spectral resolution of the sensor presents 

a serious limitation. Soil erosion parameters estimated from this imagery, are limited to the 

assessments of vegetation cover, outlining of bare surfaces, calculation of vegetation indices and 

rarely, changes in topography (Alatorre and Beguería (2009). It is, however, important to note 

that information provided by such remote sensors is limited to the mapping of surface 

characteristics that cannot be linked to soil erosion except through inference techniques 

(Vrieling, 2006). Monitoring visible signs of degradation, such as sheets, rills or gullies, as well 

as physical deteriorations, such as crusting, hard setting, and compaction, total erosion can be 

estimated over time is hindered by sensor resolution (Boardman, 2006; Omuto and Shrestha, 

2007). 

However, the newly launched Landsat 8 sensor has improved spectral and radiometric 

characteristics making it suitable for both regional and local soil erosion mapping (Pickup and 

Nelson, 1984; Dwivedi et al., 1997; and Dhakal et al., 2002). The previous Landsat TM series 

provided higher spectral resolution of seven bands (two additional mid IR) better suited for 

eroded landscapes and these bands record energy in the visible, reflective-infrared, middle-

infrared, and thermal infrared regions of the electromagnetic spectrum and are appropriate for 

erosion and peripheral vegetation mapping (Dhakal et al., 2002; Jensen, 2005). Dhakal (2002) 

found that the visible bands were effective in detecting eroded areas resulting from an extreme 
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event. The SPOT series satellites provide a higher spatial resolution sensors called High 

Resolution Visible (HRV) and High Resolution Visible and Infrared (HRVIR), which are 

capable of measuring reflected radiance in three bands at a spatial resolution of 20 m, and have 

proven better at distinguishing eroded areas compared to Landsat TM observations (Bocco and 

Valenzuela, 1988; Dwivedi et al., 1997). Although important, these sensors cannot be used to 

detect and map erosion fine characteristics such as rills or sheet erosion. 

Furthermore, the literature shows that satellites such as SPOT-5, and QuickBird offer high-

quality data for potential use in soil erosion mapping (Vrieling, 2006); but even these have their 

limitations in soil erosion studies. Such high-resolution data (IKONOS and QuickBird) are very 

expensive to acquire for mapping erosion in a large area (Vrieling et al., 2008) and may not be 

affordable for developing countries. Besides, they have low spectral sampling capabilities. Other 

studies have found the high-resolution IKONOS sensor as offering little advantage over lower 

resolution air photographs in terms of financial resources as compared to the mapping aspect 

(Nichol et al., 2006). SPOT 5 is more affordable than IKONOS and QuickBird and has already 

been acquired for many studies (Lu and Weng, 2007) but its low spectral resolution, limits its 

application in soil erosion monitoring due to limited spectral observations. However, the recent 

introduction of the freely and readily available Sentinel 2 sensor by the European Space Agency, 

with an average spatial resolution of 10 m and its 5 day-repeated coverage. This makes it one of 

the most possible and lucrative alternatives for soil erosion after Landsat series data, especially 

in developing countries were the acquisition of high resolution sensors remains a daunting task. 

Its application in vegetation (Shoko et al., 2016; Sibanda et al., 2016), water resources mapping 

has so far demonstrated its potential in helping solve key environmental as well as ecological 

questions. There is, therefore, a need for future studies to embrace this new sensor and even 

comparing its performance with that of Landsat 8 sensor. Although the two sensors have been 

compared in vegetation and grass biomass estimation (Shoko and Mutanga 2017; Sibanda et al., 

2016), the possibility of drawing similar conclusions in soil erosion modeling cannot be 

confirmed at this stage unless tested. Based on a review of studies that compared the two sensors, 

one can hypothetical conclude that the two sensors can achieve almost similar results when 

applied in soil erosion modeling. 
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2.8. Conclusion 

Although many researchers have studied various aspects of soil erosion, the temporal soil 

degradation paths and landscape developments have received little attention. The current study 

provides an overview of the progress of remote sensing applications in soil erosion over time and 

space. Despite many efforts made to quantify the extent of soil erosion, most of the focus was on 

the small-scale application, such as sub-catchment and municipal levels. Therefore, more 

detailed and extensive work is required to assess the spatial variability and extent of soil erosion 

within given regions. Furthermore, the discrimination of soil erosion over different land 

management practices is required if sustainable and effective soil erosion control, remedial and 

preventive strategies are to be developed. In developing countries, soil erosion monitoring in 

most communal areas is largely undocumented and this affects food security in these areas. 

Therefore, the new crop of sensors, such as Sentinel 2 and Landsat 8 series, with improved 

spatial, spectral radiometric and temporal resolutions provide the most needed spatial tool for 

monitoring these areas at low costs. 
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3. Chapter Three 

Understanding the spatial distribution of eroded areas in the former rural homelands of 

South Africa: Comparative evidence from two new non-commercial multispectral 

sensors 

 

 

Source: Google Earth 2018. 

 

 

This chapter is based on: 

Sepuru, T.K., and Dube, T., 2018. Understanding the spatial distribution of eroded areas in the 

former rural homelands of South Africa: Comparative evidence from two new non-commercial 

multispectral sensors. International Journal of Applied Earth Observation and Geoinformation, 

69, pp.119-132. 
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Abstract 

In this study, the most suitable multispectral sensor that can accurately detect and map eroded 

areas from other land cover types in Sekhukhune rural district, Limpopo Province, South Africa 

is determined. Specifically, the study tested the ability of multi-date (wet and dry season) 

Landsat 8 OLI and Sentinel-2 MSI images in detecting and mapping eroded areas. The 

implementation was done, using a robust non-parametric classification ensemble: Discriminant 

Analysis (DA). Three sets of analysis were applied (Analysis 1: Spectral bands as independent 

dataset; Analysis 2: Spectral vegetation indices as independent and Analysis 3: Combined 

spectral bands and spectral vegetation indices). Overall classification accuracies ranging between 

80% to 81.90% for MSI and 75.71% to 80.95% for OLI were derived for the wet and dry season, 

respectively. The integration of spectral bands and spectral vegetation indices showed that 

Sentinel-2 (OA = 83, 81%), slightly performed better than Landsat 8, with 82, 86%. The use of 

bands and vegetation indices as independent dataset resulted in slightly weaker results for both 

sensors. Sentinel-2 MSI bands located in the NIR (0.785-0.900 µm), red edge (0.698-0.785µm) 

and SWIR (1.565-2.280 µm) regions were selected as the most optimal for discriminating 

degraded soils from other land cover types. However, for Landsat 8 OLI, only the SWIR (1.560-

2.300 µm), NIR (0.845-0.885 µm) region were selected as the best regions. Of the eighteen 

spectral vegetation indices computed, NDVI, SAVI, SAVI, and Global Environmental 

Monitoring Index (GEMI) were ranked selected as the most suitable for detecting and mapping 

soil erosion. Additionally, SRTM DEM derived information illustrates that for both sensors 

eroded areas occur on sites that are 600m and 900m of altitude with similar trends observed in 

both dry and wet season maps. Findings of this work emphasize the importance of free and 

readily available new generation sensors in continuous landscape-scale soil erosion monitoring. 

Besides, such information can help to identify hotspots and potentially vulnerable areas, as well 

as aid in developing possible control and mitigation measures. 

Keywords: mapping accuracy; multispectral sensors; rural areas; soil erosion; subsistence 

agriculture. 
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3.1.  Introduction 

Soil plays a vital role in many economies of the world, particularly in developing countries, such 

as South Africa, agriculture, and forestry form the backbone of the economy (Department Of 

Agriculture Forestry and Fisheries, 2015). A review on the outlook of Agriculture in South 

Africa by the Department of Agriculture, Forestry and Fisheries (2010) shows that agriculture 

accounts for approximately 15.2% of the country’s Gross Domestic Product (GDP). Currently, 

the sector consisting of 82% (100 million hectares) of the South African land area whereas, in 

developed countries like Scotland, Europe, 79% of the land area is attributed to agriculture, 

accounting for 1.8% of the GDP and directly employing over 25,000 people (Scottish 

Environment Protection Agency, 2001). Despite their economic importance, soils in most 

developing countries are subject to continuous deterioration due to poor land management 

practices in place (Ighodaro et al., 2013), leading to severe soil degradation at a phenomenal rate 

(Pretorius, 1998; Garland et al., 2000; Le Roux, et al., 007). For example, in South Africa over 

70% of the land is affected by soil erosion (Le Roux 2007), with an estimated occurrence rate of 

8 to 30 times faster than the rate of regeneration (Baade et al., 2012, Seutloali et al., 2016). 

Human activities like land clearing for farming, deforestation, overgrazing, or land abandonment 

coupled with climate change, accelerate the rate of land degradation (Alatorre and Beguería, 

2009). In addition, the negative effects of land degradation are not limited to agriculture; they 

extend to other hydraulic structures, including reservoir sedimentation, which is associated with 

water treatment costs. This complicates water availability, which is already a problem, especially 

in the developing world of Africa. For example, South Africa alone losses approximately two 

billion rands annually including off-site costs for purification of water whose poor quality is 

caused by the siltation of dams in eroded surfaces rehabilitation (Department of Environmental 

Affairs and Tourism, 2006). Whereas, other countries like Malawi and Kenya lost about US$2 

billion and US$11 billion between 2001-2009 periods from land degradation, respectively (Kirui 

and Mirzabaev, 2015; Voortman 2003; Nkonya et al., 2013). Additionally, Dube et al., (2017) 

indicated that pressure, due to these processes, has caused serious implications on rural 

economies; as most of them rely on agriculture as a source of living. Therefore, the need for 

reliable information on degraded areas and possible vulnerable areas has increased in order to 

understand the level of degradation and to come up with possible control measures. It is thus 

important to provide an accurate and update, as well as detailed soil erosion maps for the former 
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homelands of South Africa as baseline information for monitoring, rehabilitation and control 

purposes. 

Soil erosion, which is considered to be the most critical environmental problems leading to land 

degradation (Seutloali et al., 2016, Le Roux et al., 2007; Le Roux et al., 2008), has put a burden 

on national economies. Although great strides have been made in land degradation or soil 

erosion monitoring, the accuracy of the derived thematic maps remains questionable, especially 

in developing countries, as the availability of high-resolution data remains a challenge (Luleva et 

al., 2012). The Landsat series data have so far been the most commonly used remotely sensed 

data in soil erosion modeling and monitoring. For instance, Dube et al., (2017) assessed the 

potential of using freely available Landsat series in mapping degradation levels in Eastern Cape, 

South Africa. They found out that degraded areas could be detected from the Landsat series data. 

Additionally, the main benefit of Landsat sensor is the multi-temporal aspect (de Jong et al., 

1999), although the medium spectral resolution of the scenes presents a limitation. In addition, 

Lo Curzio and Magliulo (2010), by means of Landsat data series assessed the spatial distribution 

of degraded areas, with a good spatial accuracy of 97,48% Overall Accuracy (OA) and limited 

cost in southern Italy. Moreover, Seutloali et al., (2016) mapped the severity of soil erosion, 

using the 30m Landsat multispectral satellite data in the former South African homelands of 

Transkei and the results of the study have indicated that a variety of soil erosion levels (i.e. sheet, 

slight rills, deep rills, medium gullies to deep gullies) could be detected and mapped.  

Even though Landsat data is viewed and appraised as the most reliable and appropriate dataset 

for soil erosion modeling, especially when compared with other multispectral sensors, such as 

MODIS or AVHRR that are provided at coarse spatial resolution, its applications remain largely 

restricted. This dataset’s associated slightly poor spatial resolution largely compromises its 

fullness in erosion-related studies, especially where farm or catchment level monitoring is 

required. For example, fine-scale erosional problems remain difficult to document from Landsat 

ETM+7 which has since experienced scanline errors resulting in approximately 22% data loss. 

Most studies that have tested the utility of historical Landsat archival data concluded that the 

sensor has an outstanding performance in mapping soil erosion at a larger scale. However, the 

performance of Landsat ETM+7 remains compromised for farm level monitoring, due to 22% 

data loss from the scanline errors.  
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The newly launched Landsat 8 unlike its predecessors, has been highly rated in most of its 

applications and these include biomass mapping (Yavaşlı, 2016; Zhang et al., 2017), land surface 

temperature mapping (Adeyeria, 2017; Avdan and Jovanovska, 2016), and invasive species 

mapping (Gavier-Pizarro, et al., 2012; Wang et al., 2017). For instance, studies by Vågen et al., 

(2013) demonstrated that land degradation and soil health in Ethiopia at scales appropriate for 

management can be assessed, using Landsat-8 bands. Most of the studies associated the 

successful performance of the sensor to its improved sensing characteristics (Wulder et al., 

2008). Landsat 8 OLI also occupies a unique spatial-temporal position in the sense that its bands 

can better detect and monitor human changes in land cover, whereas at the same time having an 

imaging footprint that is sufficiently large to enable wide-area applications (Wulder et al., 2012). 

Given the sensor’s recommended performance we, therefore, assume its improved sensing 

characteristics can aid in determining and mapping, as well as monitoring eroded areas in the 

former homelands of South Africa – a previous challenging task with broadband sensors like 

MODIS.  

Similar to Landsat 8, Sentinel-2 MSI (Multi-Spectral Instrument) data available at 10m spatial 

resolution is considered as one of the most possible solutions to most environmental related 

challenges in sub-Saharan African, due to its free availability, global footprint, high temporal 

resolution (±5days), and presence of new multiple bands. These has previously missing from the 

previous batch of broadband multispectral sensors, such as ASTER, Landsat 4, 5 and 7, MODIS 

etc. Studies that have used sentinel 2, for instance in forest mapping, Korhonen et al. (2017) 

indicated that the sensor’s addition red edge (RE1, RE2, RE3) spectral bands have the capability 

to improve the accuracy of estimating key plant biophysical variables. They have also shown that 

the sensor provides the most unique and robust datasets required for understanding 

environmental problems. For example, Korhonen et al. (2017) have shown that the specific 

information content of a batch of the broadband multispectral Sentinel-2 sensor may be useful in 

the monitoring of canopy properties. 

Testing the ability of this free-and-readily available remotely sensed datasets in soil erosion 

monitoring is, therefore critical. So far, the rich information contained in these sensors has not 

yet been fully exploited in mapping and monitoring eroded areas. This is primarily due to the 

fact that these sensors were launched recently. Among the different types of the readily-available 
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multispectral remote sensing sensors, archive digital dataset with a wider swath-width (185-km 

Landsat 8 OLI; 290 km Sentinel-2 MSI) and a 16 (OLI) and 5 (MSI) day temporal resolution. 

This makes the two sensors to be perceived as the key primary data sources highly suitable for 

providing practical or operational regional or district level analysis of eroded areas. This study 

for the first time sought to assess soil erosion mapping abilities of two new non-commercial 

multispectral remote sensing data: Landsat 8 OLI and Sentinel-2 MSI in the Sekhukhune district, 

Limpopo Province of South Africa. To determine the most optimal bands and vegetation indices 

that can accurately detect and map soil erosion regardless of form. Further, the study wanted to 

determine whether the areas identified as degraded in the dry season could be as well be detected 

during the wet season or it was a dry season phenomenon associated with the non-cropping. The 

study also establishes if the observed soil erosion patterns are a function of elevation or land use. 

3.2. Materials and Methods 

3.2.1. Field data collection 

The field survey was conducted from the 26th to 28th of June 2017, coinciding with the dates of 

remotely sensed data acquired for the study area. Data collection was done by recording 

coordinates at sub-meter accuracy using GPS device, to validate satellite remote sensing data. 

Eroded areas were identified during field surveys using random walks and google earth maps of 

the area. A similar approach was used in collecting data on other major land cover classes in the 

area, and these included built-up areas, cultivated areas, eroded areas forest-woodland, and grass-

shrubland, vegetation covers and water bodies. Land cover classes were identified using visual 

observation. The vector maps of the study, courtesy of Sekhukhune District together with the aid 

of google earth were used to navigate to areas affected within the study area. During the field 

operation, a total of 300 (50 per class) points were recorded, using a Trimble GeoXH 6000 series 

handheld Global Position System (GPS) at sub-meter accuracy. These GPS points were used in 

extracting spectral data from the two satellite data sets. Furthermore, photographs of eroded 

areas and other land cover types were taken, using a handheld camera.  During the collection of 

photographs, GPS coordinates were also recorded and these were used to verify the classified 

maps. 
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3.2.2. Remote sensing data acquisition and pre-processing 

Landsat-8 and Sentinel-2satellite images were used in mapping eroded areas across two seasons 

(dry and wet season) in the Greater Sekhukhune District Municipality (Table 3.1). Landsat-8 

acquires global moderate-resolution measurements of the Earth’s surface in the visible, near-

infrared, shortwave, and thermal infrared. The sensor was launched on the 11th of February 

2013, with a combination of two push broom instruments: The Operational Land Imager (OLI) 

consisting of nine spectral bands (refer to Table 3.1) and (ii) the Thermal Infrared Sensor (TIRS) 

which encompasses thermal bands 10 and 11 at a 100 m spatial resolution. Sentinel-2 mission, 

launched on the 23rd of June 2015, is a land monitoring constellation of two satellites (Sentinel- 

2a and Sentinel- 2b) providing global optical imagery with 13 spectral bands at a 5-day interval, 

using MSI (Multispectral Imager) instrument.  

In this study, cloudless Landsat 8 OLI and Sentinel 2 MSI images were acquired respectively 

during the 1st of June 2017 and 31st July 2017 for the dry season and between 1st of December 

2016 and 31st January 2017 accessed from the USGS Earth Resources Observation and Science 

(EROS) Centre archive (http://earthexplorer.usgs.gov/). Subsequently, the images were re-

projected and mosaicked. Both images were atmospherically corrected, using the dark object 

subtraction (DOS1) model in QGIS version 2.1.8 software. 

 

 

 

 

 

 

 

 

 



34 

 

Table 3.1 Landsat 8 OLI and Sentinel-2 MSI spectral characteristics used in this study 

Landsat 8 OLI spectral bands  Sentinel-2 multispectral bands  

Band#  Bandwidth (um)  GSD (m)  Band# Bandwidth (um)    GSD (m) 

1 (Ultra Blue (coastal aerosol))  0.43-0.45 30 1 (costal aerosol)  0.433-0.453 60 

2 (Blue)  0.450-0.515  30 2 (blue) 0.458-0.52 10 

3 (Green)  0.525-0.600  30 3 (green)   0.543-0.578 10 

4 (Red)  0.630-0.680  30 4 (red)  0.650-0.698 10 

5 (NIR)  0.845-0.885  30 5 (vegetation red edge)  0.698-0.713 20 

6 (SWIR)  1.560-1.660  30 6 (vegetation red edge)  0.733-0.748 20 

7 (SWIR)  2.100-2.300  30 7 (vegetation red edge)  0.765-0.785 20 

8 (Panchromatic) 0.500-0.680  15 8 (NIR) 0.785-0.900 10 

9 (Cirrus)  1.36-1.38 30 8a (vegetation red edge)  0.855-0.815 20 

10 (TIRS)  10.60-11.19 100 9 (water vapour)  0.930-0.950 60 

11 (TIRS)  11.50-12051 100 10 (SWIR-Cirrus)  1.365-1.385 60 

      11 (SWIR)  1.565-1.655 20 

      12 (SWIR)  2.100-2.280 20 

*Bold represents the bands used in this study 

3.2.3. Digital Elevation Model data 

The Shuttle Radar Topography Mission (SRTM)-derived digital elevation model (DEM) was 

used to generate information on the elevation of the area and this data was used to determine 

whether the occurrence eroded areas can be explained as a function elevation (slope). This study 

used SRTM DEM because of its higher spatial resolution (30 m/pixel) corresponding to that of 

the two sensors and accessibility. The DEM was converted to meters (m) and the elevation of the 

area under study ranged between 495 m and 2101m. DEM preprocessing was done using ArcGIS 

tools 10.4.1 software. 

3.2.4. Landsat 8 OLI and Sentinel-2 derived spectral data and vegetation indices 

Spectral reflectance values (Table 3.2) along with selected simple spectral band ratios were 

applied in this study. The choice of vegetation indices was based on their performance as 

demonstrated from previous studies (Vaidyanathan et al., 2002; Taruvinga, 2009; Singh, et al., 

2004) were retrieved from Landsat-8 OLI and Sentinel-2 data sets. The spectral reflectance was 

extracted from the images, using points collected during field surveys. The extraction was done, 

using the Hawths spatial analysis tool embedded in ArcGIS 10.4.1 software. Eighteen vegetation 
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indices were computed (Table 3.2). The indices were selected based on their successful 

application in the classification and analysis of degraded surface mapping from the highlights 

made by previous studies and remotely sensed variables for validation (Seutloali et al., 2016; 

Kwanele and Njoya, 2017; King et al., 2005). 

Table 3.2 Selected spectral vegetation indices derived from Landsat-8 OLI and Sentinel-2 

images applied in the validation of eroded surface mapping 

Parameters Computation Reference 

Normalized Difference 

Vegetation Index 

(NDVI)  

Rouse et al., 

(1974) 

Soil Adjusted 

Vegetation Index 

(SAVI)  

(Huete, 1988) 

Simple Ratio Index 

(SRI) 
 

(Rouse et al., 

1974) 

Ratio Vegetation Index 

(RVI) 
 

(Richardson 

and Wiegand, 

1977) 

Transformed Vegetation 

Index (TVI) 

 

(Deering et 

al.,1975) 

Modified Soil-adjusted 

Vegetation Index 

(MSAVI)2 

((2*(NIR+1)) - (((2*NIR)+1)2 - 8(NIR-RED))0.5)*0.5 (Qi et al., 1994) 

Enhanced Vegetation 

Index (EVI) 
 

Huete, (1999) 

Normalized Difference 

Water Index (NDWI) 

 

(McFeeters, 

1996) 

Normalized 

Difference Water 

Index (NDWI) 

 

(Gao,1996) 

Renormalized 

Difference Index (RDI) 

 

(Roujean and 

Breon, 1995) 

Normalized Ratio 

Vegetation Index  

(NRVI) 

 

(Baret and 

Guyot 1991) 

Visible Atmospherically 

Resistant Index (VARI) 

 

(Gitelson et al., 

2002) 
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Visible Green Index 

(VGI 

 

(Gitelson et al., 

2002) 

Green Normalized 

Difference Vegetation 

Index  (GNDVI)  

(Gitelson et al., 

1996) 

Global Environmental 

Monitoring Index 

(GEMI) 
*( ) 

(Pinty and 

Verstraete, 

1992) 

Pigment Specific Simple 

Ratio (Chlorophyll b) 

(PSSRb) 
 

(Blackburn, 

1998) 

Green Index (GI) 

 

Gitelson et al., 

2005) 

 

Red Index (RI) 

 

Gitelson et 

al.,2005) 

 

3.2.5. Statistical data analysis 

One-way analysis of variance (ANOVA) was used to test whether there were significant 

differences between the mean reflectance of the six identified classes. Also, the variable ranking 

was performed to test the significant performance (α = 0.05) of spectral indices. These six classes 

we tested for a significant difference (α = 0.05) using reflected multivariate extracted values. The 

variable ranking was performed to identify the optimal spectral indices that can detect and 

discriminate eroded areas from other land cover types. To map eroded areas, three stages of 

analysis (presented in Table 3.3) were implemented based on the two sets of variables (bands and 

indices) derived from the two sensors. 

 

Table 3.3 Adopted soil erosion analysis approach 



37 

 

 

3.2.6. Image Classification and Accuracy assessment 

The Discriminant Analysis (DA) classification ensemble was used to discriminate eroded lands 

from other land cover types. DA is a nonparametric classification ensemble, which searches for a 

linear combination that best discriminates amongst land cover types (Sibanda et al., 2015). 

Sibanda et al., (2015) and Dube et al., (2017), indicated that this non-parametric classification, 

converts the reflectance data of land covers at each waveband into several components that 

account for the difference in reflectance amongst the land cover types. The DA algorithm 

assumes that the samples are random (Dube et al., 2017), which is the case with land 

management unit’s samples that were used, hence appropriate for this kind of study. This 

algorithm provides cross-validated results with variable scores (Eigenvalues) that indicated the 

strength of a specific function in discriminating eroded surfaces under different land 

management units. 

Eigenvectors also knew as variable scores were produced by DA and used to evaluate the 

relative contribution of each waveband and vegetation indices to the DA function that optimally 

discriminated eroded surfaces under different management practices. The DA algorithm applies 

the Box test (Chi-square asymptotic approximation), Box test (Fisher’s F asymptotic 

approximation), Mahalanobis distances, Wilks’s Lambda test (Rao’s approximation), and 

Analysis 

stage 

Data type  Data 

source 

Details 

1 Image spectral 

information (ISI) 

Landsat 8 

OLI  

6 bands (blue, green, red, NIR, SWIR I & II) 

Sentinel-2 

MSI 

10 bands (2 (blue, green, red vegetation red edge (I,II & III), NIR, 

vegetation red edge, SWIR( I & II) 

2 Spectral indices (SIs) OLI   18 Indices (NDVI, SAVI, SRI, RVI, TVI, MSAVI, EVI,  NDWI 1, 

NDWI 2, RDI, NRVI, VARI, VGI, GNDVI,  GEMI, PSSRb, GI, RI) 

MSI 18 indices (NDVI, SAVI, SRI, RVI, TVI, MSAVI, EVI,  NDWI 1, 

NDWI 2, RDI, NRVI, VARI, VGI, GNDVI, GEMI,  PSSRb, GI, RI) 

3 ISI + SIs OLI   (6 bands) + ( 18 indices) 

MSI (10 bands) + ( 18 indices) 



38 

 

Kullback’s test to test whether within-class covariance matrices were equal. These tests exhibited 

significant classification power (P < 0.05). The classification was conducted using XLSTAT for 

Microsoft Excel 2013 software and confusion matrices were derived. In each confusion matrix, 

the columns represented the test data, while the rows represented the classes to which each 

sample was allocated to by the DA classifier. 

To assess the classification accuracy of the results, quantity disagreement, and allocation 

disagreement was used following its best application from Sibanda et al., (2016) as a way of 

separating data into training tested data also recommended by Pontius Jr. and Millones, (2011) as 

the successor of Kapa Statistic. Quantity disagreement is a sum of least perfect matches between 

the training (70%) and the testing (30%) reflectance datasets of each land management practice. 

Precisely, the quantity disagreement follows when the column total of a management practice 

class deviates from the row total of that class in a confusion matrix. To estimate the extent of the 

difference between Landsat 8 OLI data accuracy and that of Sentinel-2 MSI agreement between 

classification results and ground truth data was measured using the producer accuracy (PA), user 

accuracy (UA) and overall accuracy (OA) generated from the confusion matrices. These two 

parameters were used in accuracy assessment, as suggested by Pontius Jr. and Millones, (2011). 

3.3.  Results 

3.3.1. Discrimination of eroded areas from other land cover types 

Figure 3.1 shows the differences amongst averaged spectral bands values or curves of eroded 

areas and other land cover types for the wet and dry seasons. ANOVA results reveal significant 

differences (p <0.05), which implies eroded areas can be discriminated from other land cover 

types. It can be observed that sentinel-2 MSI could optimally discriminate eroded areas from 

other land cover types, using bands located in the NIR (0.785-0.900 um), and red edge (0.698-

0.785um) and SWIR (1.565-2.280 um) regions for both dry and wet season (Figure 3.1, b & d). 

Similarly, Landsat 8 OLI illustrated the ability of SWIR (1.560-2.300 um) region, followed by 

NIR (0.845-0.885 um) region to optimal in discriminate eroded areas eroded areas. However, the 

visible regions (from 0.433-0.578 um) from both sensors show close or inseparable reflectance 

curves, which implies weaker discrimination capabilities for both dry and wet season. But the 

visible (0.450-0.680 um) region of Landsat 8 still became worse than that of Sentinel-2. 

Moreover, it can be observed that when using Landsat 8 OLI data, eroded areas could be 
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discriminated from the built-up and grass-shrublands in the SWIR region, when compared with 

the red and green region of the visible range on the electromagnetic (EM) spectrum. However, 

when using Sentinel 2 MSI data, more eroded areas were discriminated from the built-up and 

grass-shrublands in the red edge region as compared with the SWIR region in the wet season 

than dry season. When using Landsat 8 OLI data, the dry season shows that most of the eroded 

areas were discriminated from the woodland-forest in the SWIR region of the EM spectrum but 

there were some overlaps in the visible region and NIR of EM spectrum (Figure.3.1). On the 

other hand, when using Sentinel 2 MSI, most of the woodland-forest unit was differentiated from 

the eroded areas in the SWIR, VRE, NIR and visible (red, green) regions of the EM spectrum 

except for the blue region of the spectrum (Figure. 3.1).  
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Figure 3.1 Average reflectance of eroded areas in relation to other land cover types derived using Landsat 8 OLI (b. dry season and c, 

wet season) Sentinel-2 MSI (a dry season and d. wet season) (error bars: signify the level of separability
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3.3.2. Spectral indices performance 

Variable ranking (P < 0.05) was performed and of eighteen spectral indices used, results reveal 

that Landsat 8 derived NDVI and SAVI had the highest ranking in discriminating eroded areas 

from other land cover types.  Using Sentinel-2, SAVI and GEMI had the highest ranking. 

3.3.3. Image classification 

3.3.3.1. Analysis 1: Soil erosion classification using spectral bands as an independent 

dataset 

Table 4 illustrates overall classification accuracies derived from Landsat 8 OLI and Sentinel 2 as 

an independent data set for two seasons (dry and wet seasons). The results indicated that the 

spectral reflectance information of Landsat 8 OLI alone produced slightly good classification 

results, with an overall accuracy (OA) of 80.95% over Sentinel-2 in the dry season but Sentinel 

outperformed Landsat 8 with ±0.48 OA in the wet season. The results showed the superiority of 

Landsat 8 over Sentinel-2 in the dry season by achieving an overall classification accuracy of 

±80 while Sentinel performed better in the wet season (Table 3.4). Both sensors yielded good 

user and producer accuracies of above 50% in all land cover types of the study area for both dry 

and wet season. In agreement to this, eroded areas had user accuracy (UA) of 79.31%, using 

Sentinel-2, higher than that of Landsat 8 (magnitude of 5.63%) in the dry season (Figure, 3.2). In 

the wet season, eroded areas specifically produced UA of 76% (Sentinel) and 66% using Landsat 

8. Over the six classes, better soil erosion PA and UA were achieved from both sensors for the 

dry season data, whereas in the wet season, a UA of 96.30% using Landsat 8 OLI. 

3.3.3.2.  Analysis 2: Soil erosion mapping classification using vegetation indices as an 

independent data. 

For the dry season, Landsat 8 OLI derived vegetation indices performed slightly less in detecting 

and mapping eroded areas with an OA of 75.71%. On the other hand, Sentinel-2 derived spectral 

indices had a considerably high OA of 81.90% (Table 3.4).  For the wet season, derived 

vegetation indices performed slightly less in detecting and mapping eroded areas with an OA of 

less than 75.71% when compared with the dry season.  When compared to classification results 

based on spectral bands (analysis I), the OA decreased by ±5.24% for Landsat 8 OLI datasets 
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and increased by ±5.9% for Sentinel-2 MSI datasets in the wet season (Table 3.4). Furthermore, 

user and producer accuracies for Landsat 8 OLI also slightly decreased with most of the classes 

ranging from ±2.78% - ±18.92% whereas Sentinel-2 maintained an increase of ±2.58% - 

±14.70% in most of the classes (table 3.5). The results attained using Landsat 8 OLI and 

Sentinel-2 derived vegetation indices separately produced slightly high classification accuracies 

when compared to the use of spectral bands as an independent dataset. Sentinel-2 achieved better 

accuracy results than Landsat 8 with user accuracy of 79.31% in validating eroded areas and 

whilst Landsat 8 OLI scored 78.13% of user accuracy, respectively. The difference with regards 

to the magnitude of performance using vegetation indices as a separate data set for detecting and 

mapping eroded areas was ±6.19% between the two sensors. Landsat 8 OLI thus had slightly 

lower accuracies when compared to the 10-m Sentinel 2 data. 

3.3.3.3. Analysis 3: Soil erosion classification using a combination of spectral bands and 

spectral vegetation indices. 

As illustrated in Table 3.4 the combined dataset (i.e. spectral bands and vegetation indices) 

achieved high classification results, when compared to analysis 1 and analysis 2. For instance, in 

the dry season using the combined data set, Landsat 8 OLI and Sentinel-2 produced high overall 

accuracies of 82.86% and 83.81%, respectively. Landsat 8 OLI sensor performed slight less than 

the Sentinel-2 sensor. Eroded areas were classified as a producer and user accuracy results of 

about 80% demonstrating an increase of more than 10% for both sensors, particularly in dry 

season. Furthermore, during the wet season eroded areas were classified with high UA and PA 

accuracies of ±70% for both the sensors (table 3.4), although less than that of the dry season. The 

results obtained from combined dataset significantly improved classification accuracies, although 

Sentinel-2 produced slightly good classification accuracy of 85% when compared Landsat 8. In 

general, both sensors yielded the best performance in classifying eroded areas based on 

combined spectral bands and spectral vegetation indices (Figure 3.2). 

 

 

 

 



44 

 

Table 3.4 Classification accuracies derived using spectral dataset, spectral vegetation dataset as 

well as a combined dataset 
 

LANDSAT 8 SENTINEL 2 

Analysis 1 Analysis 2 Analysis 3 Analysis 1 Analysis 2 Analysis 3 

PA UA PA UA PA UA PA UA PA UA PA UA 

Eroded 

areas 

84.85 73.68 75.76 78.13 78.79 83.87 79.31 79.31 79.31 79.31 86.21 80.65 

built-up 63.89 85.19 63.89 74.19 80.56 76.32 53.33 66.67 56.67 77.27 56.67 85.00 

cultivate

d land 

76.47 96.30 76.47 86.67 73.53 96.15 83.33 90.91 80.56 85.29 86.11 91.18 

Grass-

Shrubla

nd 

80.56 78.38 77.78 70.00 83.33 81.08 70.59 64.86 85.29 67.44 85.29 65.91 

forest-

woodlan

d 

82.35 66.67 82.35 60.87 88.24 71.43 85.00 77.27 85.00 80.95 87.50 83.33 

water 

bodies 

97.30 92.31 78.38 93.55 91.89 94.44 100.00 95.35 97.56 100.00 95.12 100.0

0 

OA 80.95 75.71 82.86 80.00 81.90 83.81 
 

LANDSAT 8 SENTINEL 2 

Analysis 1 Analysis 2 Analysis 3 Analysis 1 Analysis 2 Analysis 3 

PA UA PA UA PA UA PA UA PA UA PA UA 

Eroded 

areas 

78.79 76.47 84.85 80.00 87.88 90.63 68.97 71.43 68.97 64.52 72.41 65.63 

Build-up 75.00 81.82 75.00 62.79 88.89 86.49 63.33 61.29 63.33 65.52 60.00 66.67 

Cultivat

ed land 

32.35 84.62 50.00 80.95 64.71 88.00 69.44 86.21 63.89 76.67 72.22 92.86 

Grass-

shrublan

d 

90.00 57.69 82.00 65.08 92.00 70.77 55.88 54.29 73.53 52.08 64.71 47.83 

Woodla

nd 

65.00 76.47 75.00 83.33 75.00 88.24 82.50 71.74 80.00 88.89 82.50 80.49 

Water 

bodies 

89.19 94.29 59.46 73.33 89.19 97.06 97.56 97.56 87.80 100.00 87.80 100.00 

OA 73.81 71.43 84.29 74.29 73.81 74.29 

(PA= Producer Accuracy, UA= User Accuracy, and OA =Overall Accuracy. a) dry season b) wet 

season 

a 

b 
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Figure 3.2 Overall classification accuracies for three analysis stages. a) dry season; b) wet 

season. 

 

 

 

 

 

 

 

a 

b 
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Table 3.5 Deviation of classification accuracies between Landsat 8 OLI and Sentinel-2 MSI 

  Sensor  Parameter Overall 

accuracy 

Deviation in terms of accuracy 

(%) 

1 2 3 

 

 

 

Dry 

season 

Landsat 8 

OLI 

Image spectral 

information (ISI) 

80.95% - +5.24 -1.91 

Spectral indices (SIs) 75.71% -5.24 - -7.15 

ISI + SIs 82.86% +1.91 +7.15 - 

Sentinel-2 

MSI 

Image spectral 

information (ISI) 

80.00% - -1.9 -3.81 

Spectral indices (SIs) 81.90% +1.9 - -1.91 

ISI + SIs 83.81% +3.81 +1.91 - 

 

 

 

Wet 

season 

Landsat 8 

OLI 

Image spectral 

information (ISI) 

73.81 - +2.38 -10.48 

Spectral indices (SIs) 71.43 -2.38 - -12.86 

ISI + SIs 84.29 +10.48 +12.86 - 

Sentinel-2 

MSI 

Image spectral 

information (ISI) 

74.29 -  

+0.48 

- 

Spectral indices (SIs) 73.81 -0.48 - -0.48 

ISI + SIs 74.29 - +0.48 - 

 

3.3.3.4. Derived soil erosion maps 

Figure 3.3 shows the derived maps of the eroded areas. Overall it can be observed that both 

Landsat 8 and Sentinel-2 sensors have depicted a similar pattern in the distribution of eroded 

areas and the trend is identical across the wet and dry seasons. The derived maps indicate that the 

central part of Sekhukhune is more eroded when compared to other areas. However, 

comparatively, Landsat 8 (Figure 3.3 a and c) demonstrate high levels of erosion when compared 

to Sentinel 2 (Figure 3.3 b and d). For instance, Figure 3.4 demonstrates the area in percentage of 

each classified land cover class in comparison of the two sensors. Landsat 8 showed that most 

classes are more than 5% when compared to Sentinel-2 in dry season while with more than 6% 

in a wet season (Figure 3.4).   
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Figure 3.3 Classified land cover maps derived from Landsat 8 OLI (a. dry and c wet seasons) and 

Sentinel-2 MSI (b. dry and d. wet season). 

b a 

c d 
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Figure 3.4 Derived area per land cover class. a). dry season; b). wet season 

a 

 

b 



49 

 

 

Figure 3.5 illustrates eroded areas as detected by the two sensors. Figure 3.5 further shows the 

zoomed areas for clear visualization of the eroded areas. Extensive levels of eroded areas can be 

observed in Fig. 3.5 (a) to (f). It can be observed that the majority of the land disturbances 

through erosion are concentrated along villages and agricultural fields. Figure 3.6 as it also 

compares the two sensors; it can be perceived that sentinel-2 managed to detect eroded surfaces 

than Landsat 8 from the classified images. Moreover, it can be observed that the major 

disturbances in Sekhukhune are mainly related to croplands. Figure 3.6 (b) shows evidence of 

disturbed areas along agricultural farms. In addition, photographs were taken during field, 

observation indicates that some of the eroded surfaces are detected along villages (figure 3.7 b 

and d). From the observation, it is noticed that some of the eroded surfaces were detected along 

mines as one anthropogenic activity (figure 3.7 (d) and figure 7 (c)) and also some of the open 

areas like abandoned croplands appear to experience severe erosion.  
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Figure 3.5 Zoomed maps showing eroded areas from classified land cover maps using Landsat 8 OLI (a dry & c wet seasons) and 

Sentinel-2 MSI (b dry & d wet seasons). 

 

Figure 3.6 Google earth images showing eroded areas in abandoned fields in the former homelands, Sekhukhune, South Africa. (i) 

Illustrate gully detected in along agricultural field, around steelport town (ii) eroded surface emerging within the villages of Jane Furse 

(iii) rill forming overabundant substance farms in Mphenama areas and (iv) illustrates erosion imaging from the road of Atok mine. 

i i i 

iii 
iv 
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Figure 3.7 Photographs showing eroded areas taken in the former homelands, Sekhukhune, South Africa. (a) S open eroded areas in 

abandoned agriculture fields (b) eroded surface imaging all the villages of Jane Furse (c) illustrate a gully forming from a mine waste 

system channel and (d) illustrate eroded surface within Jane Furse village.  

a b 

c d 
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3.3.3.5. The relationship between eroded areas and elevation 

Derived erosion layers were extracted and overlaid on the elevation map (Figure 3.8). It can be 

observed that much of the area between 600m and 900m exhibited high levels of erosion when 

compared to low-lying and mountainous areas (Figure 3.9). From the map, it can as well be 

noted that high proportions of eroded areas occurred in areas with an elevation between 600 and 

1500m. Moreover, areas in the extremes (495m to 600 and 1800m to 2101m) areas show less 

rate of soil erosion (figure 3.9).  
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Figure 3.8 Maps showing the relationship between elevation and eroded areas (a. dry & c. wet; b. dry & d. wet season for Landsat 8 

and Sentinel 2 respectively). 

b a 

c d 
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Figure 3.9.  Eroded areas (%) in relation to change in elevation. a). wet & b). dry season; c). dry & d). wet season. 

b a 

c 
d 
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3.4. Discussion 

The main essence of this study was to test the effectiveness of two new generation sensors in 

detecting and mapping the spatial distribution of eroded areas amongst other land cover types in 

the former homelands of Sekhukhune, South Africa. Accurate mapping of eroded areas provides 

a critical input dataset required for soil conservation strategies. Specifically, the study aimed at 

assessing soil erosion mapping abilities of two new non-commercial multispectral remote 

sensing data: Landsat 8 OLI and Sentinel-2, as well as determine the optimal bands and indices 

that can detect and map soil erosion in former homelands. Also, the study sought to find out if 

the variations in terms of soil erosion can be explained using variations in elevation. 

Although the provision of remote sensing multispectral sensors provides an attractive alternative 

for mapping and monitoring eroded areas, one of their primary challenges is the inability to 

reduce the mapping error. Results of this study demonstrated the potential of the newly launched 

Sentinel-2 MSI in detecting and mapping eroded areas with overall accuracy results that are 

slightly higher than that of Landsat 8 OLI. Combined spectral vegetation indices and extracted 

Sentinel-2 MSI spectral reflectance information were used to accurately discriminate eroded 

surfaces from other land cover types and high classification accuracies in terms of percentages 

(OA, PA, and UA) were observed as compared to Landsat 8 OLI. The same results were also 

observed when only extracted spectral information were used with Sentinel-2 MSI slightly 

outcompeting Landsat 8 OLI. However, when spectral vegetation indices were used, Landsat 8 

OLI performed slightly better than Sentinel-2 MSI. Overall, Sentinel-2 MSI outperformed 

Landsat 8 OLI. 

It can be observed that the use of the combined dataset improved the classification accuracies, 

were Sentinel-2 outperformed Landsat 8. The unique performance of the Sentinel 2 imagery can 

be attributed to the uniqueness of sensor design. For instance, Sentinel 2 is a pushbroom scanner, 

with numerous new and strategically positioned bands that provide unique information about the 

earth’s surface (Clark and Kilham, 2016; Guidici and Clark, 2017). For example, Sentinel-

2’sNIR (0.785-0.900 um), red edge (0.698-0.785um) and SWIR (1.565-2.280 um) region of the 

EM spectrum have been depicted as the most important bands providing separability windows 

for discriminating eroded surfaces from other land cover types. On the other hand, Landsat 8 
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OLI does not cover the red edge portion of the EM spectrum, hence slightly weaker 

performance. In that regard, the lack of information from the red edge region could also explain 

the unsatisfactory performance of Landsat 8 OLI in this study. The study by, Korhonen et al. 

(2017) have shown that the lack of red edge bands in most multispectral sensors downplays their 

potential in mapping environmental properties. Moreover, since accuracies increased in both 

sensors after combining spectral bands and vegetation indices, the results of the current study, 

therefore, clearly indicate the importance of combining vegetation indices with spectral bands in 

the discrimination of eroded areas from other land cover types. This combination agrees with the 

result from the study made by Sibanda et al., (2016) where they demonstrated that the high 

classification accuracies exhibited using vegetation indices and wavebands in spectrally 

discriminating grasses grown under different management practices. Similarly, Matongera et al., 

(2017) integrated the spectral bands and derived vegetation indices yielding the best overall 

classification accuracy (80.08% and 87.80% for Landsat 8 OLI and Worldview-2 respectively) in 

detection and mapping the spatial configuration of bracken fern weeds. 

The results of this study show significant variations of the spatial distribution of eroded areas 

derived using the two sensors (Landsat 8 and Sentinel-2). For example, it can be observed from 

the results that the Sentinel-2 sensor with high spectral bands can depict eroded surfaces from 

other land cover types as when compared to the Landsat 8. Furthermore, spectral separability 

results indicated slight weaknesses of Landsat 8 when compared to Sentinel-2. However, this can 

be linked to the fact that images with low spectral reflectance have a challenge of mixed pixels. 

Although Landsat 8 demonstrated moderately poor quality (i.e. poor radiometric, spatial, spectral 

characteristics), particularly for detecting spatial occurrence of soil erosion, it holds a good 

record, especially large-scale mapping, as it is acknowledged by researcher on similar studies 

(Millington and Townshend, 1984; Whitlow, 1986; Vrieling, 2006; Zhou et al., 2008; Taruvinga, 

2009, Seutloali et al., 2016, Dube et al., 2017). Based on the digital classification of Landsat 

thematic mapper and JERS-1 data, the study by Metternicht and Zinck (1998) detected and 

mapped different soil erosion feature in Bolivia and concluded that the synergy of Landsat TM 

provides a unique combination that allows more accurate identification of eroded areas. 

Furthermore, the study by Seutloali et al., (2016), in the former South African homelands of 

Transkei has indicated the effectiveness of utilizing Landsat data as a free and readily available 

multispectral remote sensing in mapping soil erosion levels. Even though Landsat 8 seems to 
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yield comparatively good results than Sentinel-2 its spatial resolution makes it difficult to map 

eroded areas or vulnerable areas especially at plot or farm level due to mixed pixels.  

The plausible classification results can also be attributed to Discriminant Analysis (DA) 

algorithm applied in mapping eroded areas, performed best results. The studies made by Sibanda 

et al., (2015) and Dube et al., (2017) indicated the potential of using this algorithm over other 

classification techniques. Unlike the traditional classification approaches, such as the maximum 

likelihood classification algorithms, Sibanda et al., (2015) have shown that the DA classification 

ensemble has the potential to spectrally detect and discriminate complex classes. Furthermore, 

Dube et al., (2017) stated that this classification ensemble is repeatable and simple to use and it 

is illustrated by its usefulness across a wide range of research areas, including natural resources 

management, electronics, finance, and accounting. The major hindrance of this algorithm, 

however, is that it requires data sets that are normally distributed of which according to Dube et 

al., (2017), is not usually the case. 

The study further showed that soil erosion varies with a change in elevation. It can be observed 

that most of the mapped eroded areas are found within areas that are not in slightly higher 

elevation. For example, the results showed that much of the eroded areas occurred in highly 

elevated areas i.e. between 600m and 900m when compared to low-lying or flat areas. Slightly 

elevated areas are likely to experience soil erosion due to runoff during the rainy season 

(Balaguer-Puig et al. 2017). Rainwater has limited time to infiltrate into the soil as the areas will 

be a slope, hence more runoff and vice-versa. This observation is also confirmed by previous 

studies that have found out that highly elevated experience more runoff and consequently due to 

high gravitational force. For example, the study by Mondal et al. (2017) used open source DEMs 

of different resolution and ascertained their effects on soil erosion which mostly were detected in 

less steeped areas and reports that the DEMs gives better results with less uncertainty.  

Future research studies should, therefore, focus on using Sentinel 2 MSI, as it provides a better 

alternative for mapping and monitoring at various scales given it’s the high resolution and other 

related sensing characteristics. Also, the free and readily available nature of the sensors makes it 

the most optimal solution for mapping soil erosion problems in sub-Saharan Africa, which is 

currently characterized with limited resources for accurate mapping of soil erosion for 

management and monitoring of environmental problems. In a nutshell from a land management 
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side, the results of this study are vital and relevant to related stakeholders, i.e. environmental 

managers, soil scientists, and agriculturalists, as well as policymakers. The findings provide 

significant information on location and extent of the affected areas, and this will help in decision-

making, rehabilitation or remedial purposes. 

3.5. Conclusions 

The main aim of the study was to assess the effectiveness of Landsat 8 OLI and Sentinel-2 in 

mapping the spatial distribution of eroded areas in Sekhukhune district, Limpopo Province of 

South Africa. The findings of this work have shown that Sentinel 2 offers free, effective and time 

efficient of acquiring information on the spatial distribution of eroded areas. Sentinel 2 produced 

an overall classification accuracy of more than 80% whilst Landsat 8 with more than 75% of all 

tested analytical stages. The integration of Landsat 8 and Sentinel 2 derived raw spectral bands 

and vegetation indices significantly (α = 0.005) improved the detection and mapping accuracies. 

The study further showed that soil erosion varies with a change in elevation. For example, much 

of the eroded areas were occur in elevated areas when compared to low-lying or flat surfaces. In 

summary, the findings of this study have shown that the new generation of readily available 

multispectral remote sensors together with discriminant analysis classification ensemble presents 

a potential for mapping and monitoring the spatial occurrence of eroded areas in resources 

constraints areas across different scales. 
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4. Chapter Four 

 

A time-series analysis of soil erosion spatial extent in the former homelands of 

Sekhukhune, Limpopo using multi-date Landsat series data 

 

 

This chapter is based on a manuscript under review 

Sepuru, T.K., and Dube, T., “A time-series analysis of soil erosion spatial extent in the former 

homelands of Sekhukhune, Limpopo using multi-date Landsat series data” at International 

Journal of Remote Sensing 

Manuscript ID is TRES-PAP-2018-0529. 
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Abstract 

In this study, a time-series analysis (2002 and 2017) of soil erosion in the former homelands of 

Sekhukhune, South Africa was done, using wet and dry season satellite data. To achieve this 

task, dry and wet season satellite Landsat series data (Landsat products 8 Operational Land 

Imager (OLI) and 7 Enhanced Thematic Mapper plus (ETM+)) acquired over the Sekhukhune 

rural district, Limpopo Province, South Africa were classified to assess and map changes in 

eroded areas, using the robust classification algorithm: Discriminant Analysis. Additionally, 

derived eroded areas were extracted and an overlay analysis was performed to assess whether 

and to what extent the observed erosional trends can be explained, using geology, slope and the 

Topographic Wetness Index (TWI). The results indicated that the dry season of 2002, 16.61 % 

(224733 ha) of the area was eroded whereas in 2017, 19.71% this increased to 3.1%. A similar 

trend was also observed in the wet season. Also, seasonal assessment demonstrated that about 

16.61% (224733 ha) was affected in the dry season whereas 14.86% (201077 ha) for the wet 

season. Statistical analysis shows that the erosional extent did not significantly (p<0.05) vary 

across the two seasons. The findings of this work also indicate that the dominant geology type 

(Lebowa granite: Red and Granite, Fine- to medium-grained; and Rustenburg layered its 

lithology strata: Pyroxenite, norite, anorthosite, chromitite, Gabbro, norite, anorthosite, Black 

magnetite gabbro) experienced more erosional disturbances than other geological types. Slope 

steepness had a significant influence on the magnitude of soil erosion. For instance, slopes 

ranging between 2-5% (Nearly level) experienced more erosion and vice-versa. On the hand, the 

relationship between TWI and eroded areas showed that much erosion occurred between 3 and 6 

TWI values in all the seasons for the two different years. We, therefore, recommend that those 

severely overgrazed areas should be protected and monitored from overgrazing to allow grass 

and vegetation growth. 

Keywords: Eroded areas; geology; Landsat data-set; slope; Sustainable Development; Time 

series analysis; Topographic Wetness Index. 
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4.1. Introduction 

Severely eroded areas are a major global problem in South Africa, as well as elsewhere in the 

world, the effects of which are most strongly felt in developing countries where large proportions 

of the population directly depend on the soil for their livelihoods (Tully et al., 2015; Sanchez and 

Swaminathan, 2005; Sanchez, 2002). The Global Assessment of Soil Degradation (GLASOD) 

study estimated that nearly 2 billion ha (22.5%) of agricultural land, pasture, forest, and 

woodland has been degraded since the mid-twentieth century (Oldeman et al., 1990; Gibbs and 

Salmon, 2015). Moreover, Oldeman et al. (1990) estimated that roughly two percent of the soils 

are so severely degraded that the damage is likely to be irreversible, and another seven percent 

was moderately degraded such that huge on-farm investments would be required. The 

development of relevant area specific and consistent soil erosion monitoring spatial tools is, 

therefore, increasingly important to identified eroded and potentially vulnerable areas to put 

control or rehabilitation measures in place.  

The Sustainable Development Goal 15 of the 2030 (SDG 15) Agenda emphasizes on the need to 

“protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage 

forests, combat desertification, and halt or reverse land degradation, as well as halt biodiversity 

loss” (Keesstra, et al. 2016). This, therefore, paves a way for studies on understanding changes in 

eroded areas as one of the global impact (Le Roux, et al., 2007). Linking to this, the research 

conducted by Hoffman (2014) in South Africa stated that any study on land use and land cover 

change cannot be considered in isolation of a native's Land Act of 1913 because natural 

environments have all changed fundamentally, since its inception. Most of the areas in South 

Africa have been shaped by the political history of the country, with its successive colonial and 

apartheid governments who divided the land into separate areas of very different sizes reserved 

for different race groups (Kakembo and Rowntree, 2003; Giannecchini, et al. 2007; Coetzer, et 

al. 2013). The former black ‘bantustan’ or homeland areas under the communal tenure possess a 

fundamentally different environmental history from the state-owned conservation areas and 

white-owned farmland under freehold tenure, which surrounds the former homelands (Hoffman, 

2014). Therefore, the way in which land is used, and altered as a result of the successive colonial 

and apartheid governments, it has further affected the production of the land, leading to more 

eroded areas. Therefore, to reach a sustainable situation as described in SDG 15, there is an 
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urgent need to understand the spatial-temporal patterns or trends of the eroded areas, particularly 

in former homelands/farmlands. 

Soil erosion greatly affects the livelihoods of many poor rural communities (former homeland 

settlers) who depend on farming for food production and survival (Le Roux, et al., 2007). The 

vast majority of them need to share grazing areas and arable lands, since they live under a 

common setup and soil degradation occurs because of the high demand and pressure that is put 

on the soil for production in view of population growth and the high level of poverty which 

requires that they use the soil for food production (Maskey, et al. 2003). As stated by Davaasuren 

(2001), people in many affected regions who are driven by poverty and greed have a desire to 

derive as much benefit as possible from the land in a short period of time, and this leads to the 

initiation and progression of erosional processes. Although poor communities are seen as the 

perpetrators of soil erosion, it is also evident in other areas where it is a result of intense land use 

and land cover change driven by modern developmental pressures (Davaasuren, 2001). Xulu 

(2014) detailed that United Nations Economic Commission for Africa lists the causes of soil 

erosion, among others, as clearance of vegetation for agricultural, industrial and residential 

development, overgrazing and inappropriate land use. Several land degradation studies (Deeks, 

et al. 2012; Zimdahl, 2012; Finch, et al. 2014) have linked the occurrence of soil erosion to 

intense land cover change. On this basis, there are several mitigation and rehabilitation strategies 

that have been developed to combat the severity of soil erosion, but as stated by Gibbs and 

Salmon (2015), the lack of understanding of the location, area, and condition of the degraded 

land is a significant limiting factor to a more reality-based rehabilitation or mitigation strategy.  

In addressing the problems of soil erosion researchers have since applied various techniques 

namely; empirical, conceptual and physically based models (Lal, 1994; and Hudson, 1995; 

Merritt et al., 2003). The majority of these approaches or models used to quantify eroded lands 

have shown some limitations. For instance, most of them are restricted in understanding 

processes involved, particularly in terms of the spatial and temporal distribution of eroded 

surfaces (e.g. Croke and Mockler, 2001). Despite the cost and time-consuming nature of other 

soil erosion models, remote sensing techniques have been observed as the most lucrative 

alternative technique that can map erosion with less expert data. Also, this technique is timely 

and less cost and provides the most suitable quantitative information necessary for assessing and 
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monitoring the levels of soil erosion. Satellite remote sensing-based modeling embraces both the 

empirical and physical-based approaches (Shoko et al., 2016). As such this approach has been 

successfully used and acknowledged by researchers (Bocco and Valenzuela, 1988; Dwivedi et 

al., 1997; Kiusi and Meadows, 2006). No other techniques offer the promise of spatially 

exhaustivity, objectivity and repeated measurements at a cost comparable to satellite remote 

sensing (Muttitanon and Tripathi, 2005; Sepuru and Dube 2017).  

The major challenge with remotely sensed studies on soil erosion using remotely sensed data is 

that they used single-date or images collected over a period of one year (Sepuru and Dube 2018).  

Although the results are good, they are not enough for policy development. This has been largely 

attributed to the lack of appropriate spatial data, with a resolution that can capture these 

variations. According to Geymen and Baz, (2008), accurate understanding of soil erosion 

requires the long-term trend analysis of land degradation by comparing multiple land cover maps 

derived from remotely sensed data at different times and seasons, which are co-registered with 

one another to determine spatial changes. This is a clear indication that long-term (multi-year 

images) analysis is therefore key if soil conservation is to be achieved. Such information can 

provide an in-depth understanding of the rates of change or spread, as well as help point areas 

that need immediate attention. In areas were some erosional features are dominant i.e. do not 

change over time, single date images cannot capture such detail hence the need for a long-term 

monitoring. More recently, remote sensing has opened new vistas in inventory, characterization, 

and monitoring of eroded areas, which is critical for understanding the spatiotemporal changes of 

eroded areas and to come up with appropriate soil conservation strategies. Thus, the freely 

available Landsat series data and Sentinel 2 data makes them suitable for both regional and local 

scale mapping of the spatial occurrence of eroded areas (Pickup and Nelson, 1984; Dwivedi et 

al., 1997; and Dhakal et al., 2002). However, the challenge with the latter is that it was only 

launched recently, hence does not have considerable archival data required for long-term 

monitoring. Despite having a high spatial resolution of 10m, Sentinel 2 was only launched in 

23rd of June 2015 (Sentinel- 2a and Sentinel- 2b) and this makes it only suitable for snapshot 

applications (Korhonen et al. 2017; Sepuru and Dube 2018). In this study, we, therefore, assess 

soil erosion in the former homelands of Sekhukhune, South Africa by applying a time-series 

analysis (2002 and 2017), to track changes of areas affected by varying degrees of erosion. 

Specifically, the study assessed and mapped changes of eroded areas (wet and dry season), using 
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multi-date Landsat products 8 Operational Land Imager (OLI) and 7 Enhanced Thematic Mapper 

(ETM+). Additionally, the derived eroded areas were extracted and an overlay analysis was 

performed to assess whether and to what extent the observed erosional trends can be explained 

using geology, Topographic Wetness Index (TWI) and the slope of the area under study. 

4.2. Material and methods 

4.2.1. Field data collection 

The most common method of validating the results of erosion models is through erosion surveys 

in which a visual estimation of erosion risk is conducted based on observed features (e.g. 

Dwivedi et al., 1997; Metternicht and Zinck, 1998). Data collection was done by recording 

coordinates at sub-meter accuracy using GPS device, to validate satellite remote sensing data. 

Eroded areas were identified during field surveys using random walks and google earth maps of 

the area. A similar approach was used in collecting data on other major land cover classes in the 

area, and these included built-up areas, cultivated areas, eroded areas forest-woodland, and grass-

shrubland, vegetation covers and water bodies. Land cover classes were identified using visual 

observation. The vector maps of the study, courtesy of Sekhukhune District together, with the aid 

of google earth, were used to navigate to areas affected within the study area. During the field 

operation, a total of 300 (50 per class) points were recorded, using a Trimble GeoXH 6000 series 

handheld Global Position System (GPS) at sub-meter accuracy. These GPS points were used in 

extracting spectral data from the multi-date Landsat series data sets. Furthermore, photographs of 

eroded areas and other land cover types were taken, using a handheld camera. During the 

collection of photographs, GPS coordinates were also recorded and these were used to verify the 

classified maps. 

4.2.2. Landsat pre-processing 

The proposed methodology uses Landsat satellite time-series composites data to detect eroded 

areas over other land cover types, using the image classification approach. In this study, 

cloudless Landsat 8 OLI and Landsat 7 ETM+ images acquired respectively during the 1st of 

June 2017 and 31st July 2017 for the dry season and between the1st of December 2016 and 31st 

January 2017 (table 1) were used. The images were accessed from the USGS Earth Resources 

Observation and Science (EROS) Centre archive (http://earthexplorer.usgs.gov/). Subsequently, 
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the images were re-projected and mosaicked. Both images were atmospherically corrected, using 

the dark object subtraction (DOS1) model in QGIS version 2.1.8 software. 

Table 4.1 Characteristics of the remotely sensed data set selected for this study 

Satellite Sensor Resolution (m) Season 

Landsat 7  ETM+ Multispectral 30 
Dry 

Landsat 8 Operational Land Imager (OLI) Operational Land Imager (OLI) 30 

Landsat 7  ETM+ Multispectral 30 
Wet 

Landsat 8 Operational Land Imager (OLI) Operational Land Imager (OLI) 30 

 

4.2.3. Image classification and accuracy assessment 

Image classification was carried out using Maximum likelihood classification algorithm 

embedded in ArcGIS software 10.4. Using the training samples as described in Field data 

collection subheading, the spectral bands for Landsat 7 ETM+ and Landsat 8 OLI images 

separately were classified into six classes using pixels of the data sets. To assess the 

classification accuracy of the results, quantity disagreement, and allocation disagreement was 

used following its best application as demonstrated in the literature (Sibanda et al. 2016). The 

method was applied as a way of separating data into training and tested data also recommended 

by Pontius and Millones (2011) as the successor of Kapa Statistic. Quantity disagreement is a 

sum of least perfect matches between the training (70%) and the testing (30%) reflectance 

datasets of each land management practice. Precisely, the quantity disagreement follows when 

the column total of a management practice class deviates from the row total of that class in a 

confusion matrix. To estimate the extent of the difference between Landsat 8 OLI data accuracy 

and that of Landsat 8 ETM+ agreement between classification results and ground truth data was 

measured using the producer accuracy (PA), user accuracy (UA) and overall accuracy (OA) 

generated from the confusion matrices. These two parameters were used in accuracy assessment, 

as suggested by Pontius and Millones (2011). 
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4.2.4.  Sekhukhune Geological types 

According to Mousazadeh and Salleh (2014), for one to understand soil erosion, there is a need 

for studies to integrate lithology (geology type) on the analysis. There are clear connections and 

associations between areas that are eroded with the parent material. Table 4.2 below illustrates 

geological data of the area under study corresponding to the information presented in figure 4.4, 

which shows spatial information of this dataset. This secondary data set was used to check the 

relationship between geology covering the study area with eroded areas. The data set was 

accessed from South African Institute of Geoscience. 

Table 4.2 detail information on geology (parent) used in the study 

PARENT  LITHSTRAT DESCRIPTION 

Bushveld Rustenburg Layered, 

Rashoop Granophyre 

Norite, Diallage pegmatoid, Pyroxenite, Granite granophyre, Quartz-feldspar porphyry, 

granophyre 

Chuniespoort Penge, Duitschland, 

Malmani 

Iron-formation, Dolomite/limestone (+ chert), shale, subordinate quartzite, conglomerate 

and diamictite, Dolomite, subordinate chert, minor carbonaceous shale, limestone and 

quartzite, Chert, Shale 

Karoo Ecca, Irrigasie, Clarens Shale, with sandstone-rich units present towards the basin margins in the south, west and 

northeast and coal seams in the northeast, Predominantly red mudstone containing one or 

more sandstone units towards the base, Fine-grained sandstone, siltstone  

Lebowa 

Granite 

Nebo Granite, Klipkloof 

Granite, Makhutso Granite 

Coarse-grained granite, Red, medium-grained near top, Fine- to medium-grained, generally 

porphyritic granite, Fine-grained porphyritic biotite granite, Porphyritic biotite granite 

Other Parent Dennilton, Spitskop, 

Makhutswi Gneiss, 

Bushveld, Karoo Dolerite 

Diabase, Carbonatite, Water, Carbonatite, Surface deposits, Alluvium and scree, 

Granophyric Gneiss, Schist and granulite, Rhyolite, Granite-gneiss, Gneiss and 

amphibolite,Fenite, Ijolite, nepheline syenite, pyroxenite, carbonatite, Homogeneous, light 

grey (leucocratic) medium-grained granodioritic/tonalitic biotite gneiss, Network of dolerite 

sills, sheets and dykes, mainly intrusive into the Karoo Supergroup, Diallagite pegmatite, 

Network of dolerite sills, sheets and dykes, mainly intrusive into the Karoo Supergroup 
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Pretoria Timeball Hill, Nederhorst, 

Daspoort, Dwaalheuwel, 

Hekpoort, Magaliesberg, 

Strubenkop, Silverton, 

Vermont, Makeckaan, 

Lakenvalei, 

Steenkampsberg, Boshoek, 

Dullstroom 

Mudrock, quartzite, minor diamictite, Flagstone and brownish to grey shale at top, 

Quartzite, minor shale, Shale, Shale, subordinate siltstone, minor quartzite, Metamorphosed 

mudstone and shale with minor quartzite, dolomite and chert, Siltstone and sandstone, 

Feldspathic arenite, quartz arenite, subordinate wacke, micaceous siltstone, shale and 

conglomerate, Quartzite, feldspathic quartzite, arkose, Quartzite, minor shale, Arkosic 

quartzite, subgreywacke, siltstone, shale, conglomerate (in places),Shale/hornfels and minor 

carbonate rocks overlain in the south by argillaceous quartzite and arkose Quartzite with 

minor shale and siltstone, Quartzitic sandstone, mudrock and (in the west) conglomerate, 

Andesitic lava, subordinate pyroclastic rocks, minor quartzite, shale and 

conglomeratePyroxene hornfels, Basaltic andesite, minor felsite, pyroclastic rocks, arenite 

and hornfels, 

Rooiberg Damwal, Kwaggasnek, 

Schrikkloof 

Rhyolite with subordinate pyroclastic rocks and minor sandstone, Black rhyolite, leptite, 

Red granophyric rhyolite, Fine-grained, flow-banded, porphyritic and spherulitic felsite, 

Massive, generally red, porphyritic felsite, minor pyroclastic rocks and sandstone/quartzite 

Rustenburg 

Layered 

Shelter Norite, Dsjate, 

Dwars River, Croydon, 

Roossenekal 

Norite, feldspathic pyroxenite, quartz norite, Magnetite layer, Olivine diorite, magnetite 

gabbro, gabbronorite, Diorite,Hornblende microgranite, pyroxene hornfels, Leptite, 

harzburgite, Hybrid gabbro, gabbro, norite, Chromite layer - upper zone, Pyroxenite, norite, 

anorthosite, chromitite, Gabbro, norite, anorthosite, Black magnetite gabbro,  

Silverton Boven Shale, Lydenburg 

Shale, Machadodorp 

Shale, minor carbonate, and chert, Hornfels, Mudrock, Tuff, and agglomerate overlain by 

pillow basalt, Calcareous with dolomitic limestone lenses 

Timeball Hill Klapperkop Quartzite Quartzite (ferruginous in places), wacke, siltstone, shale, magnetic ironstone 

Transvaal Pretoria, Rooiberg, 

Bloempoort, Wolkberg, 

Black Reef 

Quartzite, shale and andesitic-basaltic lava, Quartzite, Quartzite, subordinate conglomerate 

and shale, mpure quartzite and conglomerate, Basic lava, tuff, agglomerate and shale, 

Dolomitic limestone and shale, Fine to medium grained quartzite, felspathic quartzite, lava, 

Andesite, Blue and yellow banded slate, quartzite, Felsite, basaltic andesite (lower part), 

minor shale and agglomerate. 

Waterberg Wilge River Reddish-brown and purple, medium- to coarse-grained sandstone, subordinate 

conglomerate, minor shale 

Wolkberg Selati, Sadowa, Abel 

Erasmus 

Mudrock, sandstone, Basaltic lava, subordinate dolomitic shale, chert, quartzite, arkose, 

subgraywacke and pyroclastic rocks, Mudrock, quartzitic sandstone 

 

4.2.5.  Slope and TWI data set derived from DEM 

The Shuttle Radar Topography Mission (SRTM)-derived (DEM) was used to generate 

information on the slope of the area and this data was used to determine whether the occurrence 
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of eroded areas could be explained in of terms terrain characteristics. This study used SRTM 

DEM because of its higher spatial resolution (30m/pixel) corresponding to that of the two 

sensors and its accessibility. In this study, topographic variables (slope and Topographic Wetness 

Index (TWI) were derived from the DEM. The slope is a vital surface characteristic that affects 

surface runoff and soil erosion rates (Seutloali and Beckedahl, 2015). It has been found that soil 

erosion rises with an increase in slope, due to the increase in rubbing ability of concentrated 

runoff (Jordan and Martínez-Zavala, 2008). Thus, the slope can provide an indication of the 

potential of an area to generate concentrated runoff and hence soil erosion. In this study, the 

slope was therefore calculated so as to determine its effects on soil erosion development and the 

observed trends. The slope was generated in ArcGIS tools 10.4.1 software following equation 1. 

Table 4.3 shows the steepness of slope that was adopted from Barcelona Field Studies Centre, 

(2017). TWI is one of the most important topographic variables in predicting soil erosion. It 

indicates soil water variability over a land surface (Iqbal et al., 2005). TWI was calculated in 

ArcGIS software as shown in equation 2 (Beven and Kirkby, 1979). 

       Equation……..…..1 

         Equation…………2 

a = Upstream contributing area in m2 (flow accumulation) 

B = Slope raster map  

TWI = Topographic wetness index 
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Table 4.3 Slope Steepness 

Slope (%) Approximate degrees Steepness 

0-0.5 0 Level 

0.5-2 0.3-1.1 Nearly level 

2-5 1.1-3 Very Gentle Slope 

5-9 3-5 Gentle Slope 

9-15 5-8.5 Moderate slope 

15-30 8.5-16.5 Strong slope 

30-45 16.5-24 Very strong slope 

45-70 24-35 Extreme slope 

70-100 35-45 Steep slope 

>100 >45 Very steep slope 

 

4.3.  Results 

4.3.1. Changing of spatial land use 

Soil erosion maps were derived for the dry and wet seasons for the year 2002 and 2017 (Figure 

4.1). During the dry season of 2002, 16.61 % (224733 ha) of the area was eroded whereas in 

2017, 19.71% this increased to 3.1% (table 4.4, Figure 4.3). A similar trend was also observed in 

the wet season. For example, in the year 2002, 14.86% of the area was eroded whereas in 2017, 

17.70% this increased by 2.84% (table 5, Figure 4.3). Eroded areas covered 224733 ha (16.61%) 

of the study area in dry season, while in the wet season it accounted for 201077 ha (14.86%). In 

2002 grass-shrub land class, covered the most area from other land cover type for both seasons 

by 72047 ha, accounting for 53.26% of the total area (Table 4.4) for the dry season and 523979 

ha (38.73%) for wet season (Table 5.5).  

There were 224733 ha (16.61 %) eroded areas in 2002 and 266596 ha (19.71%) in 2017 which 

had a positive change of 41863 ha for the dry season, some of which had been added from other 
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land covers. Moreover, there were 201077ha (14.86%) eroded areas in 2002 and 239428 ha 

(17.70%) 2017, which had a positive, change of 38351 ha for the wet season. Therefore, nearly a 

quarter of the study area had been affected by soil erosion for all the seasons and years. Spatially, 

such eroded areas are distributed throughout the study area, but with a higher concentration in 

the Northern part of the study area (Figure 4.2). Figure 4.3 (a and b) illustrated randomly 

selected area between the seasons (dry and wet) of 2002 and 2017 to show changes amongst 

farms and land cover classes within the area under study and the impact of soil erosion in the 

former homelands of Sekhukhune district. 
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Figure 4.1 Derived soil erosion thematic maps for the year 2002 and 2017. a-b dry and wet season Landsat 7 ETM+ derived soil 

erosion and (c-d) dry and wet season 2017 Landsat 8 OLI derived. 

a 
b 

c 
d 
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Figure 4.2 Zoomed maps showing changes amongst land cover within the study area. a), dry 

season; b) wet season. 
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Table 4.4 Mapped land covers and their change from 2002 to 2017 (dry season) 

Classes 2002 2017 Changes 

 ha % ha % ha % 

Eroded Areas 224733 16.61 266596 19.71 41863 3.1 

Built-up 56914 4.21 104391 7.72 47477 3.51 

Cultivated Land 59215 4.38 19377 1.43 -39838 -2.78 

Grass-shrubland 720475 53.26 665503 49.19 -54972 -4.07 

Woodland 285995 21.14 294051 21.74 8057 0.6 

Water bodies 5469 0.40 8082 0.60 2613 0.2 

       

total 1352800 100 1352800 100   

  

Table 4.5 Mapped land covers and their change from 2002 to 2017 (wet season) 

Classes 2002 2017 Changes 

 ha % ha % ha % 

Eroded Areas 201077 14.86 239428 17.70 38351 2.84 

Built-up 58323 4.31 94652 7.00 36329 2.69 

Cultivated Land 43762 3.23 48650 3.60 4888 0.37 

Grass-shrubland 523979 38.73 575675 42.55 51696 3.82 

Woodland 519799 38.42 385029 28.46 -134770 -9.96 

Water bodies 5861 0.43 9366 0.69 3506 0.26 

       

total 1352800 100 1352800 100   
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Figure 4.3 Changes detected between 2002 and 2017 in percentages. 

4.3.2. Classification Accuracy 

In this study, accuracy assessment was carried out for the land cover maps in Figure. 4.1 and 4.2 

to validate the results of the classification algorithm. Presented in Table 4.6 is an accurate 

assessment for a Landsat TM image of 2002 (wet and dry season) and Landsat 8 2017 (wet and 

dry season) of the study area. According to this error matrix, the degraded land was mapped at an 

Overall Accuracy (OA) of 67.66% and 80.95% in the dry season the year 2002 and 2017, 

respectively. 
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Table 4.6 Classification accuracies from error matrix derived using spectral dataset. 

 Landsat 7 (2002) Landsat 8 (2017) 

 Dry Season Wet Season Dry Season Wet Season 

 PA UA PA UA PA UA PA UA 

Eroded areas 65 82 81.25 78 84.85 73.68 78.79 76.47 

built-up 74 74 85 68 63.89 85.19 75 81.82 

cultivated land 60 68 100 86 76.47 96.3 32.35 84.62 

Grass-Shrubland 89 62 79.55 70 80.56 78.38 90 57.69 

forest-woodland 64 50 59.26 96 82.35 66.67 65 76.47 

water bodies 71 70 90.91 80 97.3 92.31 89.19 94.29 

OA 67.66  79.67  80.95  73.81  

*(PA= Producer Accuracy, UA= User Accuracy, and OA =Overall Accuracy) 

4.3.3. Analysis of the conversion among specific land covers 

Analysis of the changes amongst land cover types (figure 4.1) is helpful in determining possible 

explanations behind the observed changes. Moreover, this spatial comparison is more conducive 

to the revelation of specific changes in the actual degraded area than the net figures in Table 4.7 

and Table 4.8. Representing the breakdown of their complements in Table 4.7, figures in Table 

4.8 illustrate all the possible changes between any two covers. Some of these results have low 

values most probably due to misclassifications. They, therefore, do not reveal the general trend 

of eroded areas. In order to reveal this trend, this section concentrates on the critical changes. For 

instance, 9264 ha of cultivated land and 5514 ha of grass-shrub land became eroded during 

2002–2017. These changes indicate that over cultivation of crops in this vulnerable environment 

has contributed towards soil erosion. Furthermore, 46800 ha of woodland was also eroded during 

the study period. Similar to grassland and woodland class, the cultivated area is also vulnerable 

to erosion if its carrying capacity is exceeded as it has changed from 2002 to 2017. The decrease 

in woodland by 14980 ha is due to conversion to farmland (e.g., land reclamation through 
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deforestation) and urbanization. These changes are indicative of an increasing degradation that 

may worsen in the future. 

Table 4.7 Change in land covers between 2002 and 2017 (unit: ha) dry season 

 1.Eroded 

Areas 

2.Built-

up  

3.Cultivate

d Land 

4.Grass-

shrubland 

5. 

Woodland 

6. Water 

bodies 

Sum 

1. Eroded 

Areas 

83116 

(6.14 %) 

14109 

(1.04%) 

1143 

(0.04%) 

70120 

(5.18%) 

59343 

(4.38) 

312 

(0.02) 

228144 

(16.87%  

2. Built-up 46135 

(3.41%)  

18423 

(1.36%) 

1349 

(0.10%) 

14960 

(1.10%) 

14833 

(1.10%) 

524  

(0. 04%) 

96224 

(7.11%) 

3. 

Cultivated 

Land 

9264 

(0.7%) 

3554 

(0.26%) 

6982 

(0.51%) 

14272 

(1.06) 

11992 

(0.89%) 

094 (0%) 46158 

(3.41%) 

4. Grass-

shrubland 

114222 

(8.44%) 

19081 

(1.41%) 

5066 

(0.37%) 

442779 

(32.73%) 

93345 

(6.90%) 

532 

(0.04%) 

675025(49

.90%)  

5. 

Woodland 

15851 

(1.17%) 

1537 

(0.11%) 

1225 

(0.09%) 

119866 

(8.86%)  

148221(10

.95%)  

1755(0.1

3%)  

288454 

(%) 

6. Water 

bodies 

179 

(0.13%)  

117 

(0.008%) 

072 

(0.005%) 

325 

(0.02%) 

16936 

(1.25%) 

1165 

(0.09%) 

18796 

(1.39%) 

Sum 268766 

(19.86%) 

56822 

(4.20%) 

15837 

(1.17%) 

662322 

(48.99%) 

344671 

(25.48%) 

4382 

(0.32%) 

1352800 

(100%) 

*Bold numbers: main classes converted to erosion  
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Table 4.8 Change in land covers between 2002 and 2017 (unit: ha) wet season 

 1.  Eroded 

Areas 

2. Built-

up 

3. 

Cultivated 

Land 

4. Grass-

shrubland 

5. 

Woodland 

6. Water 

bodies 

Sum 

1. Eroded 

Areas 

123355 

(9.12%) 

14921 

(1.10%) 

1645 

(0.12%) 

45863 

(3.39%) 

15096 

(1.12%) 

232 

(0.02%) 

201111(14

.87%) 

2. Built-up 38066 

(2.81%) 

14493 

(1.07%) 

2187 

(0.16%) 

26121 

(1.93%) 

13330 

(0.99%) 

398 

(0.03%) 

94595 

(6.99%) 

3. 

Cultivated 

Land 

8401 

(0.62%) 

2013 

(0.15%) 

4884 

(0.36%) 

15363 

(1.14%) 

12969 

(0.96%) 

152 

(0.01%) 

43782 

(3.24%) 

4. Grass-

shrubland 

72756 

(5.38%) 

17713 

(1.31%) 

3064 

(0.23%) 

320832 

(23.72%) 

73001 

(5.40%) 

362 

(0.03%) 

487728 

(36.05%) 

5. 

Woodland 

23867 

(1.76%) 

7672 

(0.57%) 

4920 

(0.36%) 

256822 

(18098%) 

223864 

(16.55%) 

2591 

(0.19%) 

519734 

(38.42%) 

6. Water 

bodies 

134 

(0.01%) 

083 

(0.006%) 

068 

(0.005%) 

536 

(0.04%) 

3311 

(0.25%) 

1718 

(0.13%) 

5850 

(0.43%) 

Sum 266578 

(19.71%) 

56895 

(4.21%) 

16768 

(1.24%) 

665538 

(49.20%) 

341570 

(25.25%) 

5452 

(0.40%) 

1352800 

(100%) 

*Bold numbers: main classes converted to erosion 

4.3.4. The relationship between eroded areas and geology 

It can be observed that much of the areas on the Rustenburg geological layer exhibited high 

levels of erosion, followed by Lebowa granite when compared to other geological types. This 

was also observed across the two seasons for the year 2002 and 2017 (Figure 4.5). Lebowa 

granite is mainly made by the Red and Granite, Fine- to the medium-grained material as 

described in Table 4.2, while Rustenburg layered its lithology strata is Pyroxenite, norite, 

anorthosite, chromitite, Gabbro, norite, anorthosite, Black magnetite gabbro etc.
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Figure 4.4 The spatial distribution map of Geology across the study area
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Figure 4.5 Reclassified geology and areas affected by erosion in 2002 (a. dry season b. wet season) and 2017 during (c. dry season d. 

wet season). 

d 

c 
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4.3.5. Influence of topographic variables on eroded areas 

4.3.5.1.  The relationship between eroded areas and the steepness of the slope 

(topography) 

Figure 4.6 provides a map showing the spatial distribution of slope cover in percentage across 

the area under study. The relationship between topographic variables i.e. slope (steepness) and 

soil erosion is evaluated in figure 4.7. To obtain slope information at areas of different soil 

erosion extent obtained soil erosion maps were overlaid with slope map. The results in figure 4.7 

show that the extent of eroded areas occurs mostly in less steep slopes. For example, slopes 

between 2-5% (1.10-30: slope very gentle), particularly in the dry season of 2017 experienced 

less erosion. (Table 3). Furthermore, erosion was observed on slope steepness between 0.5%-2% 

particularly in the wet season of 2017 and this level symbolize that the slope is nearly level. 

 

 

Figure 4.6 The spatial distribution map of slope in percentages across the study area
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Figure 4.7 Slope and areas affected by erosion in 2002 (a. dry season b. wet season) and 2017 during (c. dry season d. wet season)

c 
d 

a b 
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4.3.5.2.  Effects of soil moisture influence erosivity on eroded areas 

Figure 4.8 provides map illustrating the spatial distribution of cover in percentage across the area 

under the study with Figure 4.9 showing this relationship between two seasons (wet and dry) of 

2002 and 2017. To obtain effects of soil moisture influence information at areas of soil erosion, 

the obtained soil erosion data were overlaid with TWI. The results in figure 4.9 show the 

relationship between soil moisture availability and soil erosion occurrence. The results show 

those areas with TWI values between 3 and 12 and less experienced high erosion whereas those 

with higher TWI values of 12 and 21 experienced less erosion. For example, in 2002 the highest 

TWI values that experienced much of erosion are between 3 and 6 in all the seasons but the dry 

season influenced the most (figure 4.9, a) followed by 2017 dry season (figure 4.9, c).  

 

 

Figure 4.8 The spatial distribution map of topographic wetness index across the study area.
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Figure 4.6: The relationship between TWI and area under erosion in 2002 (a. dry season b. wet season) and 2017 during (c. dry season 

d. wet season).

c 
d 

b a 
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4.4. Discussion  

The main essence of this study implemented a time-series analysis (2002 and 2017) of soil 

erosion in the former homelands of Sekhukhune, South Africa, using wet and dry season satellite 

data. Accurate mapping of eroded areas provides a critical input dataset required for 

policymaking and fulfilment of United Nation sustainable goals. Specifically, the study aimed 

assessing and mapping changes of eroded areas (wet and dry season), using multi-date Landsat 

products 8 Operational Land Imager (OLI) and 7 Enhanced Thematic Mapper (ETM+)), as well 

as to determine the changes among land cover types. Also, the study sought to find out if the 

variations in terms of eroded areas can be explained, using variations in the geology, slope, and 

TWI in the area.  

Landsat series data was able to capture the extent of eroded areas in the area under study. The 

findings of this study show that eroded areas increased in Sekhukhune district between 2002 and 

2017. For instance, during this period soil erosion increased by3.1% in the dry season and 2.84 

during the wet season. Shrubland and grasslands shrank from 53.26% to 49.29% during the dry 

season. Similarly, the same trend was observed for other land cover types considered in this 

study except for the built-up areas which increased by 3.51% during the dry season and 2.69% 

during the wet season. The observed findings can be attributed to increased population and 

pressure on land. Literature shows that population in Sekhukhune District increased 92922 

between 2011 and 2016 (Toggle navigation Municipalities of South Africa, 2018).  Since the 

area is more rural the land was exposed to overgrazing, for example, The Local Level Land 

Degradation Assessment (LADA) project conducted in the district indicated that Greater 

Sekhukhune District falls under Limpopo province and is among some of the areas which are 

badly degraded due to un-sustained human activities (Stronger et al. 2009).  

Results of this study also show that the dominant geology type that suffered soil disturbances by 

erosion activities are the Lebowa granite (Red and Granite, Fine- to medium-grained) and 

Rustenburg layered its lithology strata is Pyroxenite, norite, anorthosite, chromitite, Gabbro, 

norite, anorthosite, Black magnetite gabbro). This could be attributed to the fact that these 

geology types are weakly structured; hence, they are highly affected by erosion activities. For 
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example, the literature shows that land surface areas characterized by the Norite, Dsjate, Dwars 

and granite rocks that form part of lebowa and Rusternburg parent material are more vulnerable 

to erosion the area under study (Efthimiou, 2018, Oparaku, and Iwar, 2018). The study 

conducted by Blom, (2012) indicated that for granite samples, erosion rates were higher for 

samples taken from high flow locations than for thalweg samples, although not to the extent 

found in the sandstone and basalt samples. 

Moreover, the results of this study furthermore show that the influence of steepness of slope was 

observed mostly between 2-5% (1.10-30) particularly in the dry season of 2017. This steepness 

interval is nearly level where mostly anthropogenic/human actives take place including animal 

grazing lands and habitation. Therefore, we notice from this that extreme slope (45-70%), and 

Steeper slope (70-100%) have less influence on areas affected by erosion. In addition to the 

topographic effect, the highest TWI values that experienced much of erosion is between 3 and 6 

TWI values in all the season of different years but the dry season of 2002 being slightly higher 

than the rest followed by 2017 dry season. From the TWI result, we can be concluded that dry 

season has too much influence on the capacity of erosion, particularly on minimum TWI values. 

However, the study by Seutloali et al. (2017) made the analysis of topographic variables 

extracted from DEM and indicated that highly eroded areas are characterized by steeper slope 

gradients and higher Stream power index (SPI) as compared to areas of low erosion levels. 

Previous studies have demonstrated that soil erosion increases with increasing slope gradient 

(Cerdà, 2007; Seutloali and Beckedahl, 2015). Nevertheless, in this study, areas that experienced 

much of erosion are within gentle slope in percentage and low TWI and this can be motivated by 

the fact that human activities are the main factor that contributes to affected areas. The study by 

Sheshukov et al. (2018) indicated that Topographic index models provide simplistic methods to 

predict the location and trajectory of the area affected by erosion. Even though this approach is 

certainly useful in assessing the extent of soil erosion related factors, only a few studies have 

used DEMs derived from satellite data for soil erosion studies (Vrieling, 2006; Sepuru and Dube, 

2018;). 

The results have demonstrated that areas of under erosion associated with Geology, slope, and 

TWI. Therefore, the improperly reclaimed farmland from grassland should be returned to grazing 

to minimize its vulnerability to erosion. Since grassland degradation is caused primarily by 
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overgrazing, rehabilitation of degraded grassland can be achieved by reducing grazing intensity 

to a sustainable level. The number of herds that can be supported by the grassland resource 

should be based strictly on grassland carrying capacity. Those severely overgrazed areas should 

be sealed off from grazing to give the grass a chance to regenerate. For instance, grazing should 

be banned temporarily toward wet season each year when the grass just turns green (Li et al., 

2002). 

4.5.  Conclusions 

The main aim of this study was to implement a time-series analysis (2002 and 2017) of soil 

erosion in the former homelands of Sekhukhune, South Africa was done, using wet and dry 

season satellite data. Additionally, the derived eroded areas were extracted and an overlay 

analysis was performed to assess whether and to what extent the observed erosional trends can 

be explained using geology, Topographic Wetness Index and the slope of the area under study. 

The results show that soil erosion increased significantly between 2002 and 2017. Further, it was 

observed from the results that soil moisture and geology i.e. Lebowa granite and Rustenburg 

layered had an influence on erosion occurrence when compared to slope characteristics. The 

results of this study can possibly assist in directing future studies in integrating remote sensing 

technologies with topographic characteristics for understanding soil erosion and devising 

sustainable erosion conservation strategies at a regional scale and particularly in resource-

constrained Africa where costly and intensive field surveys are only reliable methods. 
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5. Chapter Five 

ASSESSING THE USE OF MULTISPECTRAL REMOTE SENSING IN MAPPING 

THE SPATIO-TEMPORAL VARIATIONS OF SOIL EROSION: A SYNTHESIS 

 

5.1. Introduction 

Soil erosion is one of the major environmental problems in South Africa and the world-over 

(Wessels et al. 2004). The complex soil erosion problem and its associated various impacts have 

attracted research from different disciplines. However, most studies stated that human activities 

are central in deteriorating the state of the environment (e.g. Kellner 2002, Wessels et al. 2007). 

Among the anthropogenic activities that exacerbate soil erosion, land cover has been selected as 

the significant element. Although many researchers have studied various aspects of soil erosion, 

the spatial and temporal soil degradation paths and landscape developments have received little 

attention. Moreover, studies that looked at spatial and temporal soil degradation patterns 

focussed much in the developed world with limited application in resource constraint regions, 

due to the lack of high-resolution data. To overcome this challenge, therefore, there is need to 

consider the new crop of freely available new generation multispectral sensors, with improved 

sensing capabilities e.g. a large swath-width, high spatial resolution (±10m) and improved noise-

to-signal ratio. The focus of this research study was to therefore to assess the use of new 

generation multispectral remote sensing sensors in mapping and monitoring the spatio-temporal 

variations of soil erosion in the former homelands of Sekhukhune District, South Africa. Hence, 

the objectives of this study were to: 

i. determine the optimal new generation satellite data that can accurately map the spatial 

distribution of soil erosion in the former rural homelands of Sekhukhune, South Africa 

ii. map the seasonal and long term variations in soil erosion in the former homelands of 

Sekhukhune, Limpopo using multi-date satellite data 

5.2. Comparing the effectiveness of Landsat 8 and Sentinel-2 data in mapping soil 

erosion 

The review of literature indicated that that the new crop of sensors, such as Sentinel-2 and 

Landsat 8 OLI, with improved spatial, spectral radiometric and temporal resolutions have not 

been tested in soil erosion monitoring, despite the overwhelming capacity to provide the most 
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needed spatial tool for monitoring eroded areas at low costs (Sepuru and Dube, 2017). The aim 

of the study was to assess the use of multispectral remote sensing sensors in mapping and 

monitoring the spatio-temporal variations of soil erosion in the study area. Based on research 

findings from this study, the two new non-commercial multispectral remote sensing data: 

Landsat 8 OLI and Sentinel-2 MSI indicated their unique abilities in effectively assessing and 

mapping soil erosion (chapter 3). The magnitude of variation inaccuracies between the two 

sensors revealed that the integration of spectral bands and spectral vegetation indices showed 

that Sentinel-2 (OA = 83, 81%), slightly performed better than Landsat 8, with 82, 86%. 

However, the comparison of these sensors demonstrates Sentinel 2 MSI, as a better alternative 

for mapping and monitoring soil erosion at various scales given its high resolution and other 

related sensing characteristics. The slightly weaker performance of Landsat 8 when compared to 

Sentinel-2 can be associated with mixed pixel challenge (Dube, 2015). ANOVA results revealed 

that there are significant differences (p <0.05) to discriminated eroded areas from other land 

cover types from Landsat 8 OLI and Sentinel-2 MSI. Sentinel-2 MSI bands located in the NIR 

(0.785-0.900 µm), red edge (0.698-0.785µm) and SWIR (1.565-2.280 µm) regions were selected 

as the most optimal for discriminating degraded soils from other land cover types. However, for 

Landsat 8 OLI, only the SWIR (1.560-2.300 µm), NIR (0.845-0.885 µm) region were selected as 

the best regions. Of the eighteen spectral vegetation indices computed, Normalized Difference 

Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) and Global 

Environmental Monitoring Index (GEMI). The findings show that the lack of red edge bands in 

most multispectral sensors downplays their potential in mapping environmental properties 

(Korhonen et al. 2017). 

5.3. Map the seasonal and long term variations in soil erosion in the former homelands 

of Sekhukhune, Limpopo using multi-date satellite data  

Although sentinel 2 data demonstrated overwhelming performance in soil erosion, its 

applications on long-term soil erosion monitoring remains restricted due to the lack of 

backdating archival data. Based on research findings from this study, multi-date Landsat 

products 8 OLI and 7 ETM+ were used determine and map thseasonal and long term variations 

in soil erosion in the former homelands of Sekhukhune, Limpopo. The results revealed changes 

of eroded areas (wet and dry season) amongst other land cover classes from 2002 to 2017 
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(chapter 4). For the dry season of 2002, 16.61 % (224733 ha) of the area was classified as 

eroded, whereas in 2017, 19.71% was noted. A similar trend was also observed in the wet 

season. The results also showed that the Lebowa granite and Rustenburg layered its lithology 

strata experienced more erosional disturbances than other geological types. This could be 

attributed to the fact that these geology types are weakly structured; hence, they are highly 

affected by erosion activities. For example, the literature shows that land surface areas 

characterized by the Norite, Dsjate, Dwars and granite rocks, which form part of lebowa and 

Rusternburg parent material, are more vulnerable to erosion the area under study (Efthimiou, 

2018, Oparaku, and Iwar, 2018). The study conducted by Blom, (2012) indicated that for granite 

samples, erosion rates were higher for samples taken from high flow locations than for thalweg 

samples, although not to the extent found in the sandstone and basalt samples. Slopes between 2-

5% (Nearly level) experienced more erosion and vice-versa. On the hand, the relationship 

between TWI and eroded areas showed that much erosion occurred between 3 and 6 TWI values 

in all the seasons for the two different years, however, the dry season of 2002 had a slightly 

higher relationship and vice-versa. The observed findings can be attributed to increased 

population and pressure on land (Schillaci, et al., 2017). Literature shows that population in more 

rural the land is exposed to overgrazing, leading to bad erosion due to un-sustained human 

activities (Stronger et al. 2009). 

5.4.  Conclusions 

The overall aim of the study was to assess the use of multispectral remote sensing sensors in 

mapping and monitoring the spatio-temporal variations of soil erosion in the former homelands 

of Sekhukhune district, South Africa. The results of this study have demonstrated that the soil 

erosion can be mapped and monitored, using freely available new generation multispectral 

remote sensing dataset, particularly in countries similar to South Africa were purchasing data is a 

limitation in monitoring erosion as one of the major environmental problem. 

Based on the results achieving the objectives of the study, the following was concluded: 

i. The new crop of sensors, such as Landsat 8 OLI and Sentinel-2 MSI series, with 

improved spatial, spectral radiometric and temporal resolutions provide the most needed 

spatial data for monitoring soil erosion at low costs. 
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ii. The integration of Landsat 8 OLI and Sentinel-2 MSI derived raw spectral bands and 

vegetation indices significantly (α = 0.005) improved the detection and mapping 

accuracies. Sentinel-2 MSI produced an overall classification accuracy of more than 80% 

whilst Landsat 8 OLI with more than 75% of all tested analytical stages. With this slight 

accuracy differences, the findings demonstrate that the new free multispectral sensors 

remain a potential primary data source for assessing soil erosion at the regional scale.  

iii. The results show that soil erosion increased significantly over the study period in the 

former homelands of Sekhukhune South Africa. 

Further, soil moisture and geology i.e. Lebowa granite and Rustenburg layered had an 

influence on erosion occurrence when compared to topographic characteristics.  

5.5.  Recommendations 

In view of the research findings and conclusions, the following recommendations for future 

research are suggested: 

i. Although the current study demonstrated accurate mapping and monitoring eroded areas 

from the use of new and freely available multispectral remote sensing sensors, it will be 

clearer for future research to further assess and compare the effectiveness of these sensors 

compared to those of high resolution such as hyperspectral data sets in mapping and 

monitoring eroded areas. 

ii. future experiments on the usefulness of these data sets need to be tested in mapping and 

monitoring different the levels of soil erosion (e.g. sheet, rills, and gullies), 

iii. There is need to develop a regional or national scale soil erosion mapping and monitoring 

if large-scale preventive and rehabilitation measures are to developed. 
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