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Abstract: Short-term hourly load forecasting in South Africa using additive quantile regression
(AQR) models is discussed in this study. The modelling approach allows for easy interpretability and
accounting for residual autocorrelation in the joint modelling of hourly electricity data. A comparative
analysis is done using generalised additive models (GAMs). In both modelling frameworks, variable
selection is done using least absolute shrinkage and selection operator (Lasso) via hierarchical
interactions. Four models considered are GAMs and AQR models with and without interactions,
respectively. The AQR model with pairwise interactions was found to be the best fitting model.
The forecasts from the four models were then combined using an algorithm based on the pinball
loss (convex combination model) and also using quantile regression averaging (QRA). The AQR
model with interactions was then compared with the convex combination and QRA models and
the QRA model gave the most accurate forecasts. Except for the AQR model with interactions,
the other two models (convex combination model and QRA model) gave prediction interval coverage
probabilities that were valid for the 90%, 95% and the 99% prediction intervals. The QRA model
had the smallest prediction interval normalised average width and prediction interval normalised
average deviation. The modelling framework discussed in this paper has established that going
beyond summary performance statistics in forecasting has merit as it gives more insight into the
developed forecasting models.

Keywords: additive quantile regression; Lasso; load forecasting; generalised additive models

1. Introduction

1.1. Context

In the literature, several modelling approaches are discussed in which hourly or half-hourly
electricity demand data is modelled jointly and also modelling of hourly data separately [1,2]. Pros and
cons of these different approaches are discussed in the literature. Modelling hourly data jointly helps
in exploring the correlation structure of the intra-day relationships and can improve the accuracy of
forecasts [1]. Wood et al. [2] argue that there are practical disadvantages of modelling hourly data
individually which are the failure to capture the correlation between the hourly periods, the problem
of interpretation due to lack of model continuity between the hourly periods and that the developed
models will lack statistical stability. The authors further argue that over-fitting and the burden of
model checking are significantly reduced if one model is fitted to the data. However, this modelling
approach leads to the problem of the dimensional curse. Proponents of this modelling approach argue
that the use of factor analysis can help in identifying a few factors that can account for most of the
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variation in the covariance matrix of the data [3]. Dordonnat et al. [4] develop a regression model
which takes the intra-day correlation structure to forecast electricity demand.

1.2. Literature Review on Related Problems

It is argued in the literature that electricity demand patterns change throughout the day. Soares
and Medeiros [5] argue that modelling of hourly demand data separately avoids the intra-day
correlations which are common with time series data. Ramanathan et al. [6] develop flexible multiple
regression models for each hour of the day to forecast electricity demand. The authors included
a dynamic error structure together with adaptive adjustments which allow for the correction of
forecast errors of previous hours. The modelling approach by Ramanathan et al. [6] is extended by Fan
and Hyndman [7] who use a semi-parametric additive modelling framework to forecast short-term
half-hourly Australian electricity demand. Using regression splines to model temperature and lagged
demand effects, Fan and Hyndman [7] model each half-hourly period separately. These authors argue
that modelling hourly or half-hourly electricity demand data results in more accurate forecasts.

Work on short-term load forecasting in which hourly data is modelled separately is discussed in
literature. Goude et al. [8] developed generalised additive models for forecasting electricity demand.
The authors used hourly load data from 2260 substations across France. Individual models for each
of the 24 h of the day were developed.The developed models produced accurate forecasts for the the
short- and medium-term horizons. Additive quantile regression models for forecasting probabilistic
load and electricity prices are developed by Gaillard et al. [9]. The work done by Gaillard et al. [9]
is extended by Fasiolo et al. [10] who developed fast calibrated additive quantile regression models.
An online load forecasting system for very-short-term load forecasts is proposed by Laouafi et al. [11].
The proposed system is based on a forecast combination methodology which gives accurate forecasts
in both normal and anomalous conditions. Zhang et al. [12] developed a hybrid model to short-term
load forecasting based on singular spectrum analysis and support vector machine, which is optimized
by the heuristic method they refer to as the Cuckoo search algorithm. The new proposed model
outperformed the other heuristic models used in the study.

Boroojeni et al. [13] proposed a model which captures the complex seasonalities of electricity
demand including the non-seasonal cycles. The developed model was then used for both short-term
and medium-term forecasting. A boosted artificial neural network technique was presented in
Khwaja et al. [14]. The developed model was compared with other artificial neural networks
based models. Results showed that the new proposed model produces the lowest forecast errors.
Ekonomou et al. [15] propose a methodology for short-term load forecasting. In their paper, wavelets
and neural networks are used. The developed models were then applied to real and simulated data
sets. In a study by Pappas et al. [16], autoregressive integrated moving average (ARIMA) models were
used in short-term load forecasting. The authors showed in their study that the ARIMA model was
appropriate for modelling load data with periodic variations and performed poorly during blackouts
or when unexpected peaks in load demand were experienced.

A two-stage approach which is presented as a pattern recognition problem is discussed in
Gajowniczek and Zabkowski [17]. The stages involve forecasting and peak detection through the use
of machine learning algorithms. It is found that the proposed modelling approach produces accurate
forecasts and is capable of detecting about 96.3% of the peak loads. Chapagain and Kittipiyakul [18]
present a modelling approach which includes atmospheric covariates in the modelling and forecasting
of short-term electricity demand. The atmospheric covariates used are cloud cover, wind speed, rainfall,
relative humidity, and solar radiation including snow fall. Empirical results from this study showed a
significant improvement in the forecast accuracy compared to models without atmospheric variables.
Divina et al. [19] show that the use of a stacking ensemble learning scheme results in combined
forecasts which are more accurate compared to the forecasts from individual models. Nagbe et al. [20]
developed a functional vector autoregressive state space model for short-term electricity demand.
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The developed model was tested on real-life data sets and results showed that the modelling approach
is adequate in forecasting electricity demand.

Short-term load forecasting using South African data is discussed in the literature.
A regression-seasonal autoregressive integrated moving average (RegSARIMA) model for predicting
short-term daily peak electricity demand is discussed in Chikobvu and Sigauke [21]. A comparative
analysis is done with SARIMA and Holt-Winter’s triple exponential smoothing models. Empirical
results from this study show that the RegSARIMA model is capable of capturing important drivers
of electricity demand. In another study, an additive regression model for forecasting daily winter
peak electricity demand is presented in Sigauke and Chikobvu [22]. The authors show that electricity
demand in South Africa is highly sensitive to cold temperatures compared to hot temperatures. A more
recent study by Sigauke and Chikobvu [23] compares the performance of time series regression models
in forecasting short-term daily peak electricity demand in South Africa. Temperature effects are
smoothed using regression splines and linear splines. The model in which regression splines are used
produced better forecasting results.

Joint modelling of hourly electricity demand using additive quantile regression with pairwise
interactions including an application of quantile regression averaging (QRA) is not discussed in detail
in the literature. The current study intends to bridge this gap. The study focuses on an application of
additive quantile regression (AQR) models. A comparative analysis is then done with the generalised
additive models (GAMs) which are used as benchmark models. In this study, we discuss an application
of pairwise hierarchical interactions discussed in Bien et al. [24] and Laurinec [25] who showed that
the inclusion of interactions improves forecast accuracy.

1.3. Contributions

From the literature discussed in Section 1.2, the contributions of the present study are as follows:
this study has established that going beyond summary performance statistics has merit as it gives
more insight into the forecasting models. QRA forecasts result in valid prediction interval coverage
probabilities and narrow prediction interval widths. The inclusion of hierarchical pairwise interactions
and a nonlinear trend variable improves forecast accuracy and that the modelling framework allows
for residual autocorrelation in the joint modelling of hourly electricity data.

A discussion of the models is presented in Section 2, with Section 3 discussing the results of the
study. The conclusions are given in Section 4.

2. Theoretical Background

2.1. Quantile Regression

Developed by Koenker and Basset [26], quantile regression (QR) was introduced as a modelling
framework for estimating conditional quantiles of the response variable. If Y denotes a random
variable representing the response variable with corresponding covariates X, then the conditional
quantile gy x(7), where T € (0,1) is defined as qy|x(7) = inf{y € R, Fyx(y) > T}, where Fyx
represents the conditional distribution of Y given X. The conditional quantile gy |x(7) is a solution to

qyx(1) = argrrgnE[pT(Y—g(X))\X], 1)
where p- is the quantile loss also known as the pinball loss defined as p(,) = s(t —I(s < 0)) and
I(.) is an indicator function. Now, let Y; = X/ B + ¢; be a linear quantile regression where Y; denotes

hourly electricity demand, X; the design matrix, 8 a vector of parameters and ¢; the error term; then,
the estimates of B are given as

pr = arg min ; pe(Yi = X/ B). )
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2.2. Generalised Additive Models

Generalised additive models (GAMs) which were developed by Hastie and Tibshirani [27,28] are
used in modelling predictors in regression-based models as a sum of smooth functions. The generalised
additive model (GAM) is then written as [28-30]:

P
$(E(yt)) = Bot + Zsi(xti) + €. 3)
i=1

yt follows some exponential family distribution, where g denotes a link function and usually the
Gaussian link function is used, s; are smooth functions and ¢; is the error term. The smooth function,
s is written as

k
s(x) = Ziﬁjbj(x)r @
i=

where f; denotes the j" parameter, and b;j(x) represents the j'" basis function with the dimension of
the basis denoted by k. There are several smoothing spline bases ranging from P-splines, thin plate
regression splines, B-splines, cubic regression splines to cyclic cubic regression splines. In this study,
we use P-splines and adaptive splines. We seek to find an optimal solution to the optimisation problem
given in Equation (5):

min Y- (- Yo ) + 530 [0 ®

i= i=1
where A; is the i smoothing parameter.
2.3. The Proposed Models

2.3.1. Additive Quantile Regression Model

An additive quantile regression (AQR) model is a hybrid model that is a combination of GAM
and QR models. AQR models were first applied to short-term load forecasting by Gaillard et al. [9]
and extended by Fasiolo et al. [10]. Let y; denote hourly electricity demand where t = 1,...,n, nis the
number of observations and let the number of days be denoted by n,;. Then, n = 24n,, where 24 is
the number of hours in a day and the corresponding p covariates, x4, Xs, - . ., Xtp. The AQR model is
given in Equation (6) [9,10]:

4
Yir = Y sic(xy) + e TE(0,1), (6)
=1

where Sjr are smooth functions and ¢; ; is the error term. The smooth function, s, is written as

g
sj(x) = k; Bribi;(xt7), %)

where B; denotes the j" parameter, and b;(x) represents the j'" basis function with the dimension of
the basis being denoted by 4. The parameter estimates of Equation (6) are obtained by minimising the
function given in Equation (8):

n 14
Jyix(T) =Y pr (yt,r - Zsj,r(xtj))/ ®)
t=1 j=1
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where p- is the pinball loss function that is defined in Section 2.1. The AQR models are given in
Equations (9) and (10):

Yio = ZSJT x4j) + Z Z"‘JkSJ x1j)sk(Xee) + v
j=1 k=1j=

P(BYO(B)er,c = 0(B)O(B)orz, ©
= $(B)D(5) [y - { 1 sye() + 2 za]ks] wi)si(r) }| = O(BIOB ) (10

A comparative analysis will be done with the GAM given in Equation (11) and discussed in
Sigauke [31]:

= Por + ZS Xi) + Z Z XjSj xt])sk(xtk) + €,

i=1 k=1j=1

¢(B)P(B*)er = 6(B)O(B”)vr, (11)

= 9805 1~ { B+ Vi) + z z s )si(r) | =O(BIOGE ), (12
i=1 =1j=
where y; denotes hourly electricity demand, s; denotes the smoothing function, x;; represents the
covariates, and ¢; denotes error terms which are assumed to be autocorrelated. Selection of variables is
done using the least absolute shrinkage and selection operator (Lasso) for the hierarchical interactions
method developed by Bien et al. [24] and implemented in the R package “hierNet” [32]. The objective
is to include an interaction where both variables are included in the model. The restriction known as
the strong hierarchy constraint is discussed in detail in Ben and Tibshirani [24] and Lim and Hastie [33].

2.3.2. Forecast Error Measures

There are several error measures for probabilistic forecasting which include among others the
continuous rank probability score, the logarithmic score and the quantile loss that is also known as the
pinball loss. In this paper, we use the pinball loss function which is relatively easy to compute and
interpret [34]. The pinball loss function is given as

T - 7 lf > ,

Lgey) = ¥~ ™ I (13)
(1 =1)(qr —yt), ifyr <qr,

where ¢ is the quantile forecast and y; is the observed value of hourly electricity demand.

2.3.3. Percentage Improvement

The percentage improvement between the best model Mpest, j = 1, . .., k with the other models is
computed as follows ([35]):

(14)

Improvement(%) = (1 _ Pinball (best model) ) x 100

Pinball (other model)

Equation (14) is used to compute the percentage improvements of the best model developed from the
other models.
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2.3.4. Prediction Intervals

For each of the models, M]-, j = 1,...,k, we compute the prediction interval widths (PIWs),
which we shall abbreviate as PIW;;,i=1,...,n,j=1,..., k as follows:

PIW;; = UL;; — LL;;, (15)

where UL;; and LL;; are the upper and lower limits of the prediction interval, respectively. The analysis
for determining the model which yields narrower PIW is done in this study using box and whisker
plots, together with the probability density plots. A comparative analysis is done using the prediction
intervals based on QRA [36].

2.3.5. Evaluation of Prediction Intervals

A prediction interval with nominal confidence (PINC) of 100(1 — «)% is defined as the probability
that the forecast ¢ - lies in the prediction interval (LL;;, UL;;). PINC is given in Equation (16) [37]:

PINC = P(f);, € (LL;j, UL;j)) = 100(1 — a)%. (16)

Various indices are used to evaluate the reliability of prediction intervals (PIs). In this paper,
we use the prediction interval coverage probability (PICP), the prediction interval normalised average
width (PINAW) and the prediction interval normalised average deviation (PINAD) that are discussed
in Sun et al. [37] and Shen et al. [38]. The PICP is given in Equation (17):

1 m
PICP = — ) 1, 17
where m is the number of forecasts and I is a binary variable that is defined as

I —

1, if LL;;, UL;
i _{ vi€ ( 1 ) (18)

0, if otherwise.

The PICP is valid if it is greater than or equal to the predetermined level of confidence [37,38].
The PINAW is an index that is used to check if the required value is covered by the prediction interval
and is given as follows [37,38]:
1 m

PINAW = —LL;;),i=1,...,k 19
m(max(y;;) — min(y;;)) 121 )] (19)

If the PICP is valid and accurate, then the PINAW is usually small [37,38]. However, PINAW can
be used to compare different models and then determine the one that possesses the smallest percentage
value. Another index which is used to assess the deviation of the target value from the prediction
interval is the PINAD, which is given in Equation (20) [37,38]:

D
3/1]) mm(yl])

1 m
PINAD = — Z

(20)

3

where
LLl] = Yjir if Yiji < LLij,
Dij =40, if LL < Yji < UL;;
Yji — ULi]‘, if Yji > ULl].

l]r
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2.3.6. Forecast Error Distribution

For each of the models, M;, j=1,...,k we extract the residuals € =Yij — Uy and then compute
the under and over predictions. Probablhty density and box plots of forecast errors including summary
statistics are used in the analysis of over and under predictions.

2.3.7. Forecast Combination

QRA is based on forecasting the response variable against the combined forecasts which are
treated as independent variables. Let y; r be hourly electricity demand as discussed in Section 2.3.1
and let there be M methods used to predict the next observations of y;, which shall be denoted by
Vi1, Ye+2, - - - Yirm. Usingm = 1,..., M methods, the combined forecasts will be given by

k
I = Bo+ Y Biyj + et (21)
j=1

where #;; represents forecasts from method j, thfA is the combined forecasts and ¢;  is the error term.
We seek to minimise

n k
. .QRA -
argmin Y7 (G — o~ - i) @
t=1 j=1
In matrix form, we have
n
. ~QRA
arg min t; pe (9 —x{B),

which reduces to

argmin Y. (P -xfp)+ Y Q-G - xp).

BER?  ora 1o QRA
£ AT B GRA<xTp

The QRA forecasts will be compared with forecasts based on weighted average of the forecasts
given in Equation (23)

M
it = Z WmtYmt, T, (23)
m=1
where wy,;; is weight assigned to the forecast m.

3. Description of the Case Study

The modelling framework discussed in Section 2 is then applied to a real-life data set. Hourly
load data from Eskom, South Africa’s power utility company is used. The data is from all the sectors
of the South African economy, i.e., industrial, commercial, agricultural including the residential
sectors. In this study, hourly temperature data from the South African Weather Services is used.
The temperature data is from 28 meteorological stations. Other variables (predictors) used are lagged
demand at lags 1, 12 and 24; including factor variables, hour = 1, hour = 2, ..., hour = 24; month which
takes values, month = 1 for January, month = 2 for February, ..., month = 12 for December; daytype
taking values daytype = 1 for Monday, daytype = 2 for Tuesday, ..., daytype = 7 for Sunday, variable
holiday which takes value 1 if a day is a holiday and also value 1 for a day before and after a holiday.
In addition, a nonlinear trend variable is also used.
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4. Empirical Results

4.1. Exploratory Data Analysis

The summary statistics of hourly electricity demand for the sampling period January 2010 to
December 2012 is given in Table 1. The distribution of hourly load is non-normal since it is skewed to
the left and platykurtic as shown by the skewness value of —0.243 and a kurtosis value of 2.05 given in
Table 1.

Table 1. Summary statistics for hourly electricity demand (MW).

Descriptive Statistics Mean Median Max Min  St. Dev. Skewness Kurtosis

Load 27,798 28,496 36,664 18,739 3337 —0.2433 2.050

Figure 1 shows the time series plot of hourly electricity demand together with density, normal
quantile to quantile (Q-Q) and box plots that all show departure from normality of the data.
The distribution of the sampling data is bimodal.

Hourly electricity demand Density
s
s i ]
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o
£ 3 =
(7] Q > 9 T
he] Q = o
z ° g o
s 8
15 N .
Q
2 o
>
5 8 4 8
5 9 S
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2010.0 2011.0 2012.0 2013.0 20000 25000 30000 35000
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o ]
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Q e
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-4 -2 0 2 4 20000 25000 30000 35000
Theoretical Quantiles Hourly electricity demand (MW)

Figure 1. Hourly electricity demand from January 2010 to 31 December 2012.

A plot of hourly electricity demand with a superimposed nonlinear trend is shown in Figure 2.
A penalised cubic regression spline 7t(t) = Y} (vt — f (xt))2 +A [ (f" (x))zdx is used as the nonlinear
trend function, with A as the smoothing parameter and is estimated by generalised cross-validation
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(GCV) approach. The fitted values are extracted and used as input values for the nonlinear trend
variable in the GAM and AQR models.

35000
|

30000
|

Hourly load

25000
|

20000
|

T T T T T
0 5000 10000 15000 20000

Observation number

Figure 2. Plot of hourly electricity demand from 1 January 2010 to 31 December 2012 superimposed
with a nonlinear trend.

4.2. Forecasting Electricity Demand When Covariates Are Known in Advance

4.2.1. Forecasting Results

The data used is hourly electricity demand from 1 January 2010 to 31 December 2012 giving
us n = 26,281 observations. The data is split into training data, 1 January 2010 to 2 April 2012, i.e.,
n1 = 19,708 and testing data, from 2 April 2012 to 31 December 2012, i.e., n; = 6573, which is 25% of
the total number of observations. The smoothed effect of the variable “hour” which is given in Figure 3
shows that daily peak electricity demand occurs around 7:00 p.m. The period 5:00 p.m. to 9:00 p.m. is
then considered as the peak period in which electricity demand is expected to exceed a certain high
threshold, which is likely to cause problems for the system operators due to grid instability and severe
stress on the system.

The models considered are My (GAM), M, (GAMI), which are GAM models without and with
interactions, respectively, and M3 (AQR), M4 (AQRI) which are additive quantile regression models
without and with interactions, respectively. The four models M; to M, are then combined based on
the pinball losses, resulting in Ms and also combined using QRA, resulting in M.
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Figure 3. Smoothed effects of variable “hour”.

4.2.2. Out of Sample Forecasts

10 of 21

After correcting for residual autocorrelation, we then use the model for out of sample forecasting
(testing). A comparative analysis of the models given in Table 2 shows that My is the best model out of
the four models, M; to My, based on the root mean square error (RMSE), mean absolute error (MAE)
and mean absolute percentage error (MAPE). The forecasts from the four models are then combined
based on the pinball losses. The weights assigned to the forecasts from the models M; to My are 0.0174,
0.0946, 0.326 and 0.562, respectively. The model for combining the forecasts based on the pinball losses
is Ms. Model Mg, i.e., the model based on QRA has the lowest MAE and MAPE values as shown in
Table 2. Model 4 has more under predictions compared to over predictions, and M5 has more over
predictions compared to under predictions, while, for model 6, the under and over-predictions are

almost the same.

Table 2. Model comparisons.

My M M3 M, M;s Mp
RMSE 7362 6624 7315 6488 596.1 577.7
MAE (NW) 568.7 5162 5495 499.7 4594 4452
MAPE (%) 2.15 1.93 2.04 1.86 1.70 1.65
Under predictions 3319 3279 3280
Over predictions 3251 3291 3286

Using models My, M5 and Mg, we then compute the average pinball losses. The average losses
suffered by the models based on the pinball losses are given in Table 3 with model Mg having the

smallest average pinball loss.

Table 3. Average pinball losses for M; to Mg (2 April 2012 to 31 December 2012).

M, M, M3 My

M5

Mp

Average Pinball loss  284.363  258.087 274.768 249.842 229.723 222.584
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In order to test the effectiveness of the forecasting models M, to Mg, we present, in Figure 4,
box plots of the pinball loses of the models.

o
o o
2 :
— o 8
o
L
e
E i ;
§ .
°
S 8
(%) o
SJ, —
%2}
o
T
Q
£ .
o . v
o : E :
S 4 1 ' 1
o . ' |
o 4 P
T T T
pinballAQRI pinballPlagr pinballQRA

Figure 4. Plot of pinball losses for models M, (pinballAQRI), M5 (pinballPlaqr) and Mg (pinballQRA)
(2 April 2012 to 31 December 2012).

4.2.3. Evaluation of Prediction Intervals

Empirical prediction intervals (PIs) are constructed using the forecasts from the models My to M.
The constructed Pls are then used to find PIWs, PINAWSs, PINADs and calculation of the number of
forecasts below and above the PIs from each model. Summary statistics of the PIWs for the models My
to Mg for PINC value of 95% are given in Table 4. The distributions of the PIWs for the three models
are all leptokurtic since they are greater than 3. They are all skewed to the right since the values of
their skewness are all positive. This shows that heavy-tailed distributions would be appropriate to
fit the distributions of the PIWs of the three models. Model M5 has the smallest standard deviation,
which indicates narrower PIW compared to My and M.

Table 4. Model comparisons.

Mean Median Minimum Maximum Standard Deviation Skewness Kurtosis Range

My 2100.9 2023 287 5617 686.98 0.7256 3.7217 5330
Ms 2419.1 2435 1883 3560 117.72 1.4898 12.3368 1667
Mg 2300.0 2263 795 4438 418.11 0.6776 4.0304 3643

Boxplots of widths of the PIs for the forecasting models My, M5 and Mg are given in Figure 5.
The figure shows that the PI from model M5 are narrower compared to those from M4 and M6.

Figure 6 shows the density plots of the PIWs of My, M5 and M. The distribution of the PIWs of
M5 is bimodal and all the densities show that the distributions are skewed to the right.
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Figure 5. Prediction interval widths for models My (PIAQRI), M5 (PIConvex) and Mg (PIQRA).
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Figure 6. Density plots of the prediction interval widths for models My (PIAQRI), M5 (PIConvex) and

Mg (PIQRA).
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In order to choose the best model based on the analysis of the PIWs, we need to calculate the
PICPs, PINAWSs and PINAD:s including a count of the number of forecasts below and above the Pls.
This is done for various PINC values, which are 90%, 95% and 99%, respectively. A comparative
evaluation of the models using PI indices for PINC values of 90%, 95% and 99% are given in Table 5.
Models Ms and Mg have valid PICPs for the three PINC values, with Mg having the highest PICP.
Model Mg has the smallest PINAD values and fewer number of forecasts falling below and above the
PIs. Model M4 has the smallest PINAW value for all three of the PINC values. All three of the models
could be used in the construction of PIs. Although M, does not give a valid PICP, the PINAW and
PINAD are reasonably small. The performance of model Mg seems to be the best amongst these three
models. However, this analysis is not enough and, as a result, we need further analysis using residuals
of the three models.

Table 5. Comparative evaluation of models using prediction interval (PI) indices. Below LL = number
of forecasts below the lower prediction limit, Above UL = number of forecasts above the upper
prediction limit.

PINC Model PICP (%) PINAW (%) PINAD (%) BelowLL Above UL

90% My 84.41 10.63 0.2353 462 563
Ms 90.46 11.73 0.1671 310 317
Mg 90.80 11.07 0.1347 301 304

95% My 91.19 12.52 0.1186 236 343
M5 95.16 14.41 0.0756 156 162
Mg 95.31 13.70 0.0573 151 157

99% My 97.35 16.43 0.03127 36 138
Ms 99.1 19.87 0.0110 30 31
Mg 99.22 17.75 0.005986 31 20

4.2.4. Residual Analysis

Table 6 gives summary statistics of the residuals from the models My, M5 and M. Model Mg has
the smallest standard deviation with a median of zero, showing that it is the best model for predicting
hourly electricity demand. All three of the models have positive skewness, an indication of a large
number of positive errors, which is a reflection of underestimation of predicted hourly electricity
demand. Model 6 has the smallest skewness value. A failure to predict high electricity demand is
shown by high values of kurtosis [16]. The kurtosis values of all three of the models are greater than 3.

Table 6. Model comparisons.

Mean Median Minimum Maximum Standard Deviation Skewness Kurtosis

My 4416 7 —2507 3258 647.36 0.3761 3.9266
Ms 2855 -1 —2520 2690 595.49 0.2442 3.7702
Mg 1498 0 —2273 2860 577.56 0.1997 3.9223

The error distributions of each of the forecasting models My, M5 and Mg are given in Figure 7,
which shows that the number of positive errors dominates negative errors, an indication that the
distribution of errors for each of the three models is positively skewed. Model M; is the best fitting
model since it has the smallest distribution of errors.

Figure 8 shows the boxplots of the hourly errors from the three models. The range of the errors
from M6 is narrower compared to the ones from M4 and M5.
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4.2.5. Plots of out of Sample Forecasts

From the analysis of the PIWs and residual analysis, Mg is the best fitting model and can be used
for predicting hourly electricity demand. The plot of actual demand superimposed with forecasted
demand from model Mg (2 April to 31 December 2012) given in Figure 9 shows that the forecasts
follow hourly electricity demand very well.
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Figure 9. Plot of actual demand superimposed with forecasted demand from Mg (2 April to 31
December 2012).

The density plots from Mg (QRA forecasts) and M5 (convex combination forecasts) models
superimposed with actual hourly electricity demand are given in Figure 10. In both plots, the fit of the
densities is fairly good.

A summary of the accuracy measures for the months April to December 2012 for each of the
first 168 forecasts of each month is given in Table Al in Appendix A while Appendix B shows in
Figures A1-A3 hourly load superimposed with forecasts together with their respective densities.
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Figure 10. Density plots of actual demand superimposed with density plots from Mg and Ms models
(2 April to 31 December 2012).

5. Discussion

The modelling approach discussed in this study allows for easy interpretability and accounting
for residual autocorrelation in the joint modelling of hourly electricity data. A comparative analysis
was then done with the generalised additive models (GAMs). In both modelling frameworks, variable
selection was done using Lasso via hierarchical interactions. Four models considered were GAMs
and AQR models with and without interactions. The AQR model with pairwise interactions was
found to be the best fitting model. The forecasts from the four models were then combined using an
algorithm based on the pinball loss (convex combination model) and also using quantile regression
averaging (QRA). The AQR model with interactions was then compared with the convex combination
and QRA models and the QRA model gave the most accurate forecasts. Except for the AQR model with
interactions, the other two models’ convex combination model and the QRA model gave prediction
interval coverage probabilities which were valid for the 90%, 95% and the 99% prediction intervals.
The QRA model had the smallest prediction interval normalised average width and prediction interval
normalised average deviation.

6. Conclusions

This study discussed an application of short-term hourly electricity demand forecasting in South
Africa using additive quantile regression (AQR) models without and with pairwise interactions which
satisfy the strong hierarchy in Lasso via hierarchical interactions. This modelling approach allows for
a detailed analysis which goes beyond the performance statistics in forecasting. This approach has
merit in that it gives more insight in the developed models.
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Abbreviations

The following abbreviations are used in this manuscript:

AQR Additive Quantile Regression

GAM Generalised additive model

MAE Mean Absolute Error

MAPE  Mean Absolute Percentage Error

PI Prediction Interval

PICP Prediction Interval Coverage Probability

PINAD  Prediction Interval Normalised Average Deviation
PINAW  Prediction Interval Normalised Average Width

PINC Prediction Interval with Nominal Confidence
QR Quantile Regression
QRA Quantile regression averaging

RMSE Root Mean Square Error

Appendix A. Summary of the Accuracy Measures for the Months April to December 2012

A summary of the accuracy measures for the months April to December 2012 for each of the first
168 forecasts of each month is given in Table A1. The best forecasts are in October and the worst are
in April.

Table A1. Forecast accuracy measures root mean square error (RMSE), mean absolute error (MAE) and
mean absolute percentage error (MAPE) for the forecasts of April to December 2012.

RMSE MAE (MW) MAPE (%)

April 945.5214 781.6429 3.151406
May 620.7605 488.6548 1.891559
June 665.0797 537.5238 1.898156
July 392.0611 329.3393 1.181808

August 642.6158 538.2321 1.903814
September  750.3948 618.5476 2.264714
October 345.0181 271.0595 1.010533
November 394.3301 302.9048 1.146244

December  468.6219 369.5595 1.395704

Appendix B. Hourly Load with Forecasts for the Months April-December 2012

Hourly load superimposed with forecasts for the first 168 forecasts of each month of the months
April to December of 2012 together with their respective densities is given in Figures A1-A3.
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Figure Al. Hourly load superimposed with forecasts for the first 168 forecasts of each month of the

months April to June 2012 together with their respective densities.
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