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Abstract: In the present work, entropy generation in the flow and heat transfer of couple stress fluid
through an infinite inclined channel embedded in a saturated porous medium is presented. Due to
the channel geometry, the asymmetrical slip conditions are imposed on the channel walls. The upper
wall of the channel is subjected to a constant heat flux while the lower wall is insulated. The equations
governing the fluid flow are formulated, non-dimensionalized and solved by using the Adomian
decomposition method. The Adomian series solutions for the velocity and temperature fields are
then used to compute the entropy generation rate and inherent heat irreversibility in the flow domain.
The effects of various fluid parameters are presented graphically and discussed extensively.
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1. Introduction

Flow and heat transfer with constant heat flux through a porous medium has been a major
challenge in several geological, medical, thermal problems and engineering applications. For instance,
in the adsorption/water treatment processes, ground water flows, breathing filters, oil recovery,
constructions of roads and buildings, as dryers and many more metallurgical and geothermal
utilizations. Given the broad applications, several works have been reported in this active area
of research. For example, Cimpean et al. [1] reported the convective fluid flow down an inclined plane
subjected to constant heat flux. Hajipour and Dehkordi [2] examined the nanofluid channel flow that
is partially filled with porous material. Mahmoudi [3] analyzed the forced convective flow subjected
to constant heat flux and flowing through a nanochannel that is immersed in a porous medium
with velocity slip and temperature jump conditions. In the work of Mahdavi et al. [4], the entropy
generation in pipe flow with partial porous materials exposed to constant heat flux was investigated.
Cimpean and Pop [5] discussed the steady flow of nanofluid in an inclined channel with a porous
material and exposed to constant heat flux. Torabi et al. [6] presented a robust analysis of bifurcation
problem associated with entropy minimization in a two-phase channel flow with partial porous
medium and constant heat flux. For more results of flows in porous media, kindly see the following
books [7–11].

From a practical applications point of view, fluid viscosity is highly sensitive to changes in
temperature, especially when subjected to uniform heat flux. As reported by Sahin [12], by increasing
the temperature of engine oil from 20 ◦C to 80 ◦C, its viscosity decreases by 24 times; water viscosity
drops by 2.7 times while that of air reduces by 1.4 times. Therefore, for optimal performance in
a thermo-fluid setup, there is need to introduce size-dependent polymer additives of mechanical
significance that could sustain the rheological properties of these fluids needed at extremely high
temperature. The classical Navier–Stokes theory does not support the inclusion of the microstructures
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or additives. However, following Stokes [13] couple stress theory, he elaborated the presence of
body couples, couple stresses and non-symmetric stress tensor in a moving base fluid. Common
examples of couple stress fluid are blood, lubricants, pharmaceutical mixtures, paints, synovial fluids
and many more applications that contain tiny microstructures. By using the couple stress model,
Srinivasacharya and Kaladhar [14] explained the hydromagnetic couple stress fluid flow through
parallel disk taking the Hall and ion-slip effects into consideration. Ahmed et al. [15] applied the couple
stress model to explain the magnetohydrodynamics (MHD) oscillatory flow in a rotating inclined
channel. Akhtar and Shah [16] obtained an exact solution for unsteady flow of couple stress fluid
in a channel. Recently, Aksoy [17] examined the couple stress fluid through a channel subjected to
constant heat flux. More related studies on the theory and wide range of applications on the couple
stress fluid model are documented in studies by Srinivasacharya and his collaborators in [15–22],
Bég and his cohorts [23,24], and Hayat et al. [25,26] and references therein.

From an energy management perspective, it is well known that the performance of any
thermo-fluid engineering set-up depends on the design and the operating temperature of the working
fluid since heat transfer is an irreversible process. Therefore, for optimal performance, it is imperative
to monitor the entropy generation in the flow channel. Recent findings have shown that the second law
analysis approach is a reliable and efficient method for minimising entropy generation in a moving
fluid. For instance, Ting et al. [27] utilized this method to describe the inherent irreversibility in Al2O3

nanofluid flow through heated leaky micro-channel. Anand [28] discussed the entropy production
nanofluids through a heated tube. In [29], Chen et al. monitored the entropy generation rate in
a buoyancy-induced nano fluid flow with frictional effects. López et al. [30] studied the entropy
generation in radiative MHD nanofluid in a leaky vertical microchannel. In [31], Havzali et al.
investigated the inherent irreversibility in a Newtonian gravity-driven flow through an inclined
channel. Other related works on the second law analysis approach for minimizing entropy generation
includes [32–36]. Interestingly, there is a thin line between the second law analysis approach and that
described by the material cost flow accounting perspective [37–39] regarding waste management and
achieving a cleaner production. Motivated by Hayat et al. [31,40–46], the present study addresses
the second law analysis for a shear-induced asymmetrical slip couple stress fluid flow through
saturated porous medium subjected to constant heat flux studied. To the best of our author’s
knowledge, the thermal analysis reported here has not been investigated despite the enormity of
the work done in this area of study. In the following section, the problem will be formulated and
nondimensionalized. In Section 3, solutions of the dimensionless boundary-valued-problems will be
obtained by using the rapidly convergent computational Adomian decomposition method [47–49]
implemented in Mathematica 10.0. In Section 4, results are presented and discussed extensively, and
the contributions to knowledge are presented in Section 5.

2. Model Formulation

Consider the steady flow of couple stress fluid through a parallel inclined channel of distance 2h
apart as shown in Figure 1 below. The channel is further assumed to be filled up with porous materials
of constant porous permeability.
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Figure 1. Flow geometry.

The upper wall of the channel is subjected to constant heat flux while the lower wall is insulated.
Therefore, the equation governing the gravity-driven steady fully developed couple stress fluid flow
can be written as [17]:

0 = ρg sin ϑ +
d

dy′

(
µ

du′

dy′
− η

d3u′

dy′3

)
− µu′

K
, (1)

where 0 < ϑ < 900, and the additional term in (1) is due to the inclusion of porous materials
that tend to restrict the flow. The slip boundary conditions along the channel walls are given by
Devakar et al. [46] as:

u′ = αL

(
µ du′

dy′ − η d3u′

dy′3

)
, d2u′

dy′2
= 0 at y′ = −h

u′ = −αU

(
µ du′

dy′ − η d3u′

dy′3

)
, d2u′

dy′2
= 0 at y′ = h

. (2)

For the thermal analysis, the lower wall of the channel is taken to be insulated while the upper
plate is subjected to constant heat flux qw. Following Aksoy [17], the energy conservation equation for
the chemically-inert porous medium can then be written as:

u′
∂T
∂x′

= k
∂2T
∂y′2

+ µ

(
du′

dy′

)2

+ η

(
d2u′

dy′2

)2

+
µ

K
u′2. (3)

Together with the constant heat flux condition and the insulated wall condition:

k
∂T(x, h)

∂y′
= qw, −k

∂T(x,−h)
∂y′

= 0, (4)
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respectively. In the fully developed flow situation, the momentum equation is independent of x′

as a result, ∂T(x,y)
∂x′ = constant. Thus, there is need to evaluate the mass flow rate by integrating (3)

along the y-direction in the form:

∂T
∂x′

h∫
−h

u′dy′ =
h∫
−h

(
k

∂2T′

∂y′2

)
dy′ +

h∫
−h

µ

(
du′

dy′

)2

+ η

(
d2u′

dy′2

)2

+
µ

K
u′2
dy′. (5)

By using (4), Equation (5) becomes

∂T
∂x′

=
1

um

qw +

h∫
−h

µ

(
du′

dy′

)2

+ η

(
d2u′

dy′2

)2

+
µ

K
u′2
dy′

 = Constant. (6)

With (6) in (3), we get an energy equation for the couple stress fluid flow as follows:

u′
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(
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dy′

)2

+ η

(
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µ
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(
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(
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)2

+
µ

K
u′2, (7)

together with the non-uniform boundary conditions

T = T0 on y′ = −h
T = T1 on y′ = h

. (8)

Introducing the following dimensionless variables and parameters

(x, y) = (x′ ,y′)
h , u = u′

U , G = ρgh2

µU sin ϑ, κ2 = µh2

η , β2 = h2

K ,

α1 = UαL
h , α2 = UαU

h , θ = T−T0
h
k qw

, Br = µU2

hqw
, um =

h∫
−h

u′dy′
(9)

we get the following dimensionless equations:

0 = G +
d2u
dy2 −

1
κ2

d4u
dy4 − β2u (10)

u
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(
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1∫
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(
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)
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)
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dy2 + Br
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)2
+ 1

κ2

(
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)2
+ β2u2

)
(11)

subject to shear-induced and non-uniform wall boundary conditions

u = α1

(
du
dy −

1
κ2

d3u
dy3

)
, d2u

dy2 = θ = 0 at y = −1

u = −α2

(
du
dy −

1
κ2

d3u
dy3

)
, d2u

dy2 = 0, θ = 1 at y = 1

. (12)

3. Adomian Method of Solution

To obtain the solution of the dimensionless Equations (10)–(12), we first write the differential
equations in the integral forms as follows:

u(y) = u(−1) +
y∫
−1

du(−1)
dY dY

+
y∫
−1

y∫
−1

y∫
−1

(
d3u(−1)

dY3

)
dYdYdY +

y∫
−1

y∫
−1

y∫
−1

y∫
−1

κ2
(

1 + d2u
dY2 − β2u(Y)

)
dYdYdYdY

(13)
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θ(y) =
y∫
−1

dθ(−1)
dY dY+

y∫
−1

y∫
−1

(
u

um

(
1 + Br

1∫
−1

((
du
dY

)2
+ 1

κ2

(
d2u
dY2

)2
+ β2u2(Y)

)
dy

)
− Br

((
du
dY

)2
+ 1

κ2

(
d2u
dY2

)2
+ β2u2(Y)

))
dYdY

(14)

Observe that, to arrive at the integral equations in (13) and (14) above, the following boundary
conditions have been used; and we now form an infinite series of the form:

u(y) =
∞

∑
n=0

un(Y) . (15)

Evidently, by substituting (15) in (13) and (14), we get the following recurrence relations:

u0(y) = a0 +
y∫
−1

a1dY +
y∫
−1

y∫
−1

y∫
−1

a2dYdYdY +
y∫
−1

y∫
−1

y∫
−1

y∫
−1

κ2dYdYdYdY

un+1(y) =
y∫
−1

y∫
−1

y∫
−1

y∫
−1

κ2
(

d2un
dY2 − β2un

)
dYdYdYdY

. (16)

Obtaining a few terms in (16), the partial sum

u(y) =
m

∑
n=0

un(Y) (17)

provides the approximate solution and is used to obtain expressions for the undetermined constants

a0 = u(−1), a1 = du(−1)
dY , a2 = d3u(−1)

dY3 regarding the other boundary conditions remaining in (5).
The expressions for the constants above are obtained by using the following boundary conditions:

u(−1) = α1

(
du
dY (−1)− 1

κ2
d3u
dY3 (−1)

)
u(1) = −α2

(
du
dY (1)−

1
κ2

d3u
dY3 (1)

)
d2u
dY2 (1) = 0

, (18)

while the condition θ(1) = 1 was used to derive the unknown constant in (14). The convergent series
solution is then used to determine the solution of (14) together with the thermal boundary conditions.
Next, we code the scheme in a computer algebra package known as Mathematica 10.0 for easy iteration
of the successive approximant (16) and (17), and the graphical results are presented as Figures 2–5.

The skin friction and the heat transfer rate are determined by

S f =

(
1
a2

d3u
dy3 −

du
dy

)
y=1

, Nu = − dθ

dy y=1
. (19)

4. Entropy Generation Analysis

Due to the heat irreversibility in the flow channel, the expression for the entropy generation rate
due to heat transfer and particles frictional interactions in the inclined channel can be written as:

EG =
k

T2
0

((
∂T
∂x′

)2
+

(
∂T
∂y′

)2
)
+

µ

T0

(
du′

dy′

)2

+
η
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(
d2u′

dy′2

)2

+
µ

T0K
u′2. (20)

In dimensionless form, we get

NS =
EGk
q2

w
=

((
∂θ

∂x

)2
+

(
∂θ

∂y

)2
)
+

Br
Ω

((
du
dy

)2
+

1
κ2

(
d2u
dy2

)2

+ β2u2

)
. (21)
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The first term of Equation (21) represents the heat irreversibility due to heat transfer while other
terms described the thermal inefficiency are due to fluid friction irreversibility. In other words, let

NT = N1 + N2, where N1 =

((
∂θ
∂x

)2
+
(

∂θ
∂y

)2
)

,

N2 = Br
Ω

((
du
dy

)2
+ 1

κ2

(
d2u
dy2

)2
+ β2u2

)
.

Then, Bejan number is defined as the ratio of irreversibility due to heat transfer and the total
entropy generated within the flow channel, i.e.,

Be =
N1

NT
.

Observe that Bejan number is bounded between zero and unity. In an exceptional case, when
both heat transfer and frictional irreversibilities have equal contributions, Be attains 0.5.

5. Discussion

In this section, graphical results are plotted and discussed based on the fluid physics for
dimensionless velocity, temperature distribution, entropy generation and heat irreversibility. Table 1
attests to the rapid convergence of the series solutions. In achieving this, the boundary conditions
are used to evaluate the undetermined coefficient ai′s, and it is observed that convergence is reached
with just a few terms of the series. Another significant result from the table is the convergence of
the Nusselt number and Skin friction. Table 2 shows the comparison of the present results with
previously obtained results in a particular case when β = 0, and the result shows a perfect agreement
in the absence of the porous permeability parameter.

Table 1. Rapid convergence of the series solution (17) at G = β = 1 = κ, α1 = 0.001 = α2.

n a0 a1 a2 c1 Nu Sf um

1 0.0009743 0.237460 −0.736701 0.0004275 −1.00043 1.11742 0.194213
2 0.0009201 0.216357 −0.703787 0.0001636 −1.00016 0.95068 0.174346
3 0.0009145 0.213902 −0.700609 0.000138 −1.00001 0.91730 0.171868
4 0.0009142 0.213745 −0.700042 6.33 × 10−7 −1.00000 0.94309 0.171704
5 0.0009142 0.213738 −0.700041 1.91 × 10−8 −1.00000 0.91416 0.171704
6 0.0009142 0.213738 −0.700041 6.399 × 10−10 −1.00000 0.91416 0.171704

Table 2. Validation of u (y) with [46] when G = 1, β = 0, κ = 1, α1 = 0.001 = α2.

y uExact(y) [46] uADM(y) Present Result |uExact(y)− uADM(y)|
−1 0.001 0.001 1.20574 × 10−13

−0.8 0.0477304 0.0477304 1.08022 × 10−11

−0.6 0.0892458 0.0892458 2.09434 × 10−11

−0.4 0.121594 0.121594 2.99819 × 10−11

−0.2 0.142059 0.142059 3.73114 × 10−11

0.0 0.149054 0.149054 4.22571 × 10−11

0.2 0.142059 0.142059 4.40482 × 10−11

0.4 0.121594 0.121594 4.17903 × 10−11

0.6 0.0892458 0.0892458 3.44567 × 10−11

0.8 0.0477304 0.0477304 2.10586 × 10−11

1 0.001 0.001 1.89595 × 10−12

Figure 2a shows the effect of variation in the lower wall slip parameter. It is observed that
an increase in the slip parameter enhances the fluid flow at the lower wall of the channel while
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an increase in the upper wall slip is seen to elevate the flow velocity at the upper wall of the channel
as presented in Figure 2b. In Figure 2c, an increase in the porous permeability parameter is
observed to reduce the fluid flow velocity; this is physically true since an increase in the porous
permeability parameter implies a reduction in the porous permeability of the medium. Figure 2d
depicts the influence of the couple stress parameter on the fluid flow: it is observed that an increase
in the parameter represents a decrease in the fluid viscosity, hence, as the fluid viscosity increases,
the fluid flow velocity decreases.
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Figure 2a shows the effect of variation in the lower wall slip parameter. It is observed that an 
increase in the slip parameter enhances the fluid flow at the lower wall of the channel while an 
increase in the upper wall slip is seen to elevate the flow velocity at the upper wall of the channel as 
presented in Figure 2b. In Figure 2c, an increase in the porous permeability parameter is observed to 
reduce the fluid flow velocity; this is physically true since an increase in the porous permeability 
parameter implies a reduction in the porous permeability of the medium. Figure 2d depicts the 
influence of the couple stress parameter on the fluid flow: it is observed that an increase in the 
parameter represents a decrease in the fluid viscosity, hence, as the fluid viscosity increases, the fluid 
flow velocity decreases. 
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of porous permeability parameter; (d) effect of the couple stress inverse parameter.

Figure 3 shows the effect of variation of parameters on the temperature distribution in the flow
channel. In Figure 3a, the effect of the rise in the lower slip parameter is presented. As observed from
the figure, an increase in the lower slip is seen to decrease the fluid temperature in the region closer to
the insulated plate, while it enhances the temperature of the fluid particles closer to the upper wall
exposed to constant heat flux. The reverse phenomenon is experienced in Figure 3b as the parameter
of higher slip increases. One observes an asymmetrical thermal structure in the two cases. The effect of
the couple stress inverse parameter is shown in Figure 3c. From the plot, it is noticed that an increase in
the couple stress inverse parameter enhances the fluid temperature due to a reduction in the dynamic
viscosity of the fluid. Finally, as the porous permeability parameter increases, a decrease in the fluid
temperature is observed. This is due to an increase in the permeability of the porous bed.

Figure 4 described the influence of fluid parameters on the entropy generation in the flow channel.
As observed in Figures 2a and 3a, the lower slip parameter at the insulated wall enhances the velocity
profile, and this increase resulted in a decreased fluid temperature in Figure 3a. The net effect of
the increased lower slip parameter on flow and heat transfer is seen on the entropy generation rate
that is presented as Figure 4a. As observed, entropy generation is slightly higher in the entire flow
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region except at the upper region with constant heat flux where it falls. The reverse phenomenon is
seen as the upper slip parameter is varied.
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Figure 5a,b represent the effect of the slip parameter on the heat irreversibility ratio. In Figure 5a,
as the lower slip parameter increases, there is a rise in heat generated by fluid friction, hence fluid
friction irreversibility dominates over heat transfer irreversibility as the lower slip parameter increases.
A similar explanation holds for the results presented in Figure 5b. In Figure 5c, we observed that,
as the couple stress inverse increases, the fluid viscosity decreases, and both fluid friction and heat
transfer contribute to the heat irreversibility. However, as the fluid viscosity increases, fluid friction
decreases and heat transfer irreversibility dominates over irreversibility due to fluid friction. Finally,
as the porous permeability parameter increases, the fluid velocity and frictional interaction decreases;
therefore, heat transfer irreversibility dominates over fictional irreversibility, as seen in Figure 5d.
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6. Conclusions

Entropy generation in the slip flow and heat transfer in the couple stress fluid through a parallel
plate subjected to constant heat flux and saturated with porous materials are investigated. A rapidly
convergent Adomian decomposition method is applied to obtain the approximate solution of the coupled
problem. The influence of lower and upper slip parameters, couple stress inverse parameter and porous
permeability parameter on the velocity, temperature, entropy generation production and the Bejan number
are examined and discussed physically. The results show the influence of the couple stresses and porous
permeability in minimizing entropy within the flow channel. It is important to note that the present
analysis is limited to micro-scale thermal analysis, and subsequent analysis will incorporate a macroscale
thermal description as presented in [50].
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Nomenclature

(α1, α2) dimensionless lower and upper slip coefficients
(αL, αU) dimensional lower and upper slip parameters
κ couple stress inverse parameter
θ dimensionless fluid temperature
ρ fluid density
µ dynamic viscosity
β porous permeability parameter
η couple stress coefficient
(u′, u) dimensional and dimensionless fluid velocity
Br modified Brinkman number
um maximum velocity
(x, y) Cartesian coordinates
G dimensionless pressure gradient
U characteristic velocity
h channel width
P fluid pressure
Cp specific heat capacity
(T, T0, T1) dimensional and referenced fluid temperatures
qw constant heat flux
K porous permeability
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