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Abstract

Most social and health science data are longitudinal and additionally multilevel in nature, which

means that response data are grouped by attributes of some cluster. Ignoring the differences

and similarities generated by these clusters results to misleading estimates, hence motivating

for a need to assess variance components (VCs) using multilevel models (MLMs) or generalised

linear mixed models (GLMMs). This study has explored and fitted teenage pregnancy census

data that were gathered from 2011 to 2015 by the Africa Centre at Kwa-Zulu Natal, South

Africa. The exploration of these data revealed a two level pure hierarchy data structure of

teenage pregnancy status for some years nested within female teenagers. To fit these data, the

effects that census year (year) and three female characteristics (namely age (age), number

of household membership (idhhms), number of children before observation year (nch) have

on teenage pregnancy were examined. Model building of this work, firstly, fitted a logit gen-

eralised linear model (GLM) under the assumption that teenage pregnancy measurements are

independent between females and secondly, fitted a GLMM or MLM of female random effect. A

better fit GLMM indicated, for an additional year on year, a 0.203 decrease on the log odds of

teenage pregnancy while GLM suggested a 0.21 decrease and 0.557 increase for each additional

year on age and year, respectively. A GLM with only year effect uncovered a fixed estimate

which is higher, by 0.04, than that of a better fit GLMM. The inconsistency in the effect of

year was caused by a significant female cluster variance of approximately 0.35 that was used

to compute the VCs. Given the effect of year, the VCs suggested that 9.5% of the differences

in teenage pregnancy lies between females while 0.095 similarities (scale from 0 to 1) are for

the same female. It was also revealed that year does not vary within females. Apart from the

small differences between observed estimates of the fitted GLM and GLMM, this work produced

evidence that accounting for cluster effect improves accuracy of estimates.

Keywords: Multilevel Model, Generalised Linear Mixed Model, Variance Components, Hier-

archical Data Structure, Social Science Data, Teenage Pregnancy
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Chapter 1

Introduction

Section 1.1 discusses the problem statement which briefly describes possible reasons and solutions

for the problem. Section 1.2 motivates the possible solutions that were suggested in section 1.1

and further includes the aim and objectives. Section 1.2 also introduces briefly the review of

literature. The rest of this chapter discusses the dataset and the analytical procedures (section

1.3); the scientific contributions (in section 1.4); and lastly the ethical consideration (section

1.5).

1



ASSESSING VARIANCE COMPONENTS OF MULTILEVEL MODELS FOR SOCIAL SCIENCE DATA

1.1 Problem Statement

Data structures in social and health sciences are naturally multilevel or nested (Zumbo and

Chan, 2014) and often involve nonlinear outcome data. Generalised linear models (GLMs) are

frequently used to analyse outcome data that are linear or nonlinear (Molenberghs and Verbeke,

2005). However, GLMs do not account for the hierarchy of the data. Multilevel models (MLMs),

which are sometimes referred to as Generalised linear mixed models (GLMMs), have presented a

significant accountability to explore information that comes from populations with nested data

structure (Goldstein, 2011). However, researchers are continuously using methods for identically

and independently distributed data, neglecting the nested data structures (Luke, 2004). For

example, scholars such as Malema (2000) and Woodward et al. (2001) have identified factors

that are possible causes of teenage pregnancy, but have not taken into account the variability

between groupings of pregnancy status and/or females. In most of teenage pregnancy dataset,

females are nested within the households and households are nested within villages, hence, the

variability between households and/or villages should be taken into consideration (Hox and

Roberts, 2011). In this study we applied MLMs or GLMMs on teenage pregnancy datasets

to demonstrate the importance of assessing variance components (VCs) to account for within

cluster differences and similarities.

1.2 Rationale

In social or health science research, it is of substantial interest to investigate the effect the

households have on teenage pregnancy. Assessing this impact sheds some light on how house-

hold practices generate differences between and within households. This means that, teenage

pregnancy will not be compared by the average number of teenage pregnancies per household,

but by also studying the effect of households’ practices. Furthermore, we would expect house-

holds to be nested within villages. As a result, the effect of villages on the teenage pregnancy

can explain the geographic variation across villages.

1.2.1 Aim

The aim of this study is to assess, using teenage pregnancy data, the variance components of

social science data in South Africa.

1.2.2 Objectives

The objectives of this study are to:

CHAPTER 1. INTRODUCTION 2
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(a) explore the multilevel structure of teenage pregnancy and specify an appropriate model;

(b) examine the effects of some covariates on teenage pregnancy using a model that ignores

the multilevel structure;

(c) specify an appropriate MLM that examines the effects of some covariates on teenage

pregnancy;

(d) examine the effects of clustering on teenage pregnancy using variance partition coefficient

(VPC) and intraclass correlation coefficient (ICC); and

(e) determine the magnitude of the effects of the anticipated effects, in (c), taking into account

the clustering effect.

1.2.3 Literature Review

MLMs were introduced in the mid-1980s and since then, they have gained popularity because

of their ability to model simultaneously the effect of individuals and contextual information

(Goldstein, 2011). MLMs are advantageous over ordinary least square methods because they

overcome the assumption of observations independency as well as the correction of overestima-

tion of type-I error (Wang et al., 2011).

Social science data are usually collected over time; hence, are mostly unbalanced (Steele, 2008).

MLMs are again advantageous because of their ability to handle unbalanced or incomplete data

(Wang et al., 2011). Additionally, social and health sciences data are habitually longitudinal.

Nevertheless, scholars such as Molenberghs and Verbeke (2005) have presented both GLM and

GLMM for longitudinal binary data.

Mchunu et al. (2012) indicated that 19.2% of the females in the youth group have experienced

teenage pregnancy. Even more as a health issue, scholars such as Christofides et al. (2014) re-

ported a human immunodeficiency virus incidence rate ratio of 3.02 for pregnancies of females

less than 16 years.

Statistics South Africa (STATSSA) recorded 142452, 143812, 150984, 147120 and 117139 births

by teenage mothers in the years 2010, 2011, 2012, 2013 and 2014, respectively (STATSSA,

2014). In South Africa, as in other African countries, teenage pregnancy is an alarming social

concern (Nguyen et al., 2016). Furthermore, the areas that are hit hard by this concern are

previously disadvantaged villages with poor communities (STATSSA, 2014).
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1.3 Methodology and Analytical Procedure

1.3.1 Methodology

International network for the demographic evaluation of populations and their health (INDEPTH)

is a network of Health and demographic surveillance systems (HDSS). INDEPTH’s mission is

to provide an understanding of social and health issues in areas of low and middle-income

(INDEPTH, 2014). For two decades, INDEPTH collaborated with some centers that collect

information on pregnancy status from rural villages around South Africa. Reduction of teenage

pregnancy is one of the foremost objectives of South Africa’s goals. The choice of teenage preg-

nancy data is motivated by the fact that teenage pregnancy is an important social and health

problem affecting the public (Langille, 2007).

• Data

Africa center HDSS in South Africa have collected census data from 1995 to 2015 in the Mpukun-

yoni rural area, which is part of the Umkhanyakude district of KwaZulu-Natal. Mpukunyoni is

approximately 430 square kilometers and has 11000 households. Teenage pregnancy was defined

by Kumar et al. (2007) as pregnancy occurring between the maternal ages of 13-19 completed

years of delivery. Hence, this study considers 1707 females aged 13-19 from Mpukunyoni area

during the cohort years 2011 to 2015.

• Variables and levels

The outcome variable is the pregnancy status of female teenagers. Our levels are measurements

of teenage pregnancies at level 1, female teenagers at level 2 and households at level 3. Some

characteristics of female teenagers will also be included in the analysis as covariates. Both

females and households will be included in the analysis for level effect on teenage pregnancy

status.

1.3.2 Analytical Procedures

Researchers who opt to use ordinary least square methods to analyse nested data often en-

counter misleading inferences such as, biased predictor coefficients (Chung and Beretvas, 2012)

and underestimation of standard error (Aarts et al., 2014). Due to these distorted estimates,

researchers can substantively interpret the statistical significance results erroneously (Porn-

prasertmanit et al., 2014). Given these actualities and the data, the phases that follow compose

the analytical procedure of this work.
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• Phase i

This work explored the multilevel structure of pregnancy data, in order to observe the nested

pattern that can either be purely hierarchical or multiple membership. This exploration will

further give more understanding of the covariates to be used. Thereafter, an appropriate MLM

together with their underlying assumptions will be specified.

• Phase ii

This work further used the likelihood ratio tests to examine the effects of levels (female teenagers

and/or households). That is, testing the alternative against the null joint hypothesis that there

are zero variances at all levels. Thereafter, we test the alternative against the null hypothesis

for each level that has zero variation.

• Phase iii

The VPCs for each level were calculated in order to evaluate the ratio of variation in teenage

pregnancy statuses that is unexplained by the covariates lying at each level. Thereafter, the

ICC will also be calculated. The ICC measures the degree of similarity that is expected to be

between teenage pregnancy statuses within households and/or female teenagers.

• Phase iv

In this last phase, this work tested whether the relationship between some significant covariate/s

and teenage pregnancy varies across households and/or female teenagers. This was achieved by

adding random slope effects of the corresponding covariant at a particular level.

1.4 Scientific Contribution

The results of this study can be used in dealing with the complexity of multilevel social science

data structures and analysis to social science data scientists and researchers. Data scientists

would realise the relevance of proper planning when gathering information at different levels

of human society and/or social relationships. Moreover, this would also accommodate other

future complex scientific methods to analyse social science data. Social science researchers will

realise the ways of analysing multilevel social science data, which is using data to its maximum

potential. Moreover, this study will add value to scientific approaches of understanding and

dealing with analyses of social and health issues.
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1.5 Ethical Consideration

This study uses secondary data that involve people residing at Mpukunyoni, KwaZulu-Natal.

In this regard, the required data include information on human subjects. This means that we

have assured that

• the data are kept in a secured environment and that only sanctioned users have access to

the information,

• we will not issue or allow others to release the files or data therein to any individual,

• we will not use or allow others to use the information, except only for the listed objectives

of this study,

• we will not issue, or allow others to issue, any data that identifies individuals, households

or village directly or indirectly, and

• the dataset remains the property of Africa center.
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Chapter 2

Literature Review

In this chapter, sections 2.1, 2.2 and 2.3 discuss the history, reasons for multilevel models and

possible multilevel data structure, respectively. This chapter further elaborates on some possible

outcome data for social studies such as pregnancy in section 2.4, while section 2.5 highlights

application of multilevel modelling to various studies over the years. The last section of this

chapter (section 2.7) highlights some of the statistical software packages that are able to fit

multilevel models.
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2.1 History

Over the past 30 years, scholars such as De Leeuw and Kreft (1986), Luke (2004), De Leeuw

et al. (2008), Goldstein (2011), Hox and Roberts (2011), and Wang et al. (2011) have presented

solid histories and extensive theories on multilevel models (MLMs). MLMs have gained popu-

larity since their introduction in the mid 1980’s (Wang et al., 2011). Although MLMs were first

applied in educational and sociology studies, Wang et al. (2011) point out that these models

can be applied in many study areas. Other application areas of these models include, but are

not confined to psychology, public health, and economics (Bini et al., 2009).

In preference to MLM, researchers use various names such as, random coefficient model, hi-

erarchical model, mixed linear model, variance component model, and random effect model

(De Leeuw et al., 2008; Goldstein, 2011). Scholars refer to MLM as a statistical technique

that is used by researchers as a methodology to analyse data with nested sources of variability

(Goldstein, 2011; Singer, 1998). Example of such data can be people in families, students in

schools, employees in firms, and animals in litters (Snijders, 2011).

2.2 Reasons for multilevel models

2.2.1 Theoretical reasons

According to Luke (2004), data structures in many studies are naturally multilevel; hence,

appropriate modelling techniques should be considered for such data. Researchers have long

acknowledged, before 1980’s, the problems of ignoring hierarchical structures (Luke, 2004).

De Leeuw et al. (2008) also indicated that social science, economics, and bio-statistics researchers

were concerned, in the mid-1980’s, about failure to model hierarchical data structure (HDS). As

this failure resulted into incorrect inference, researchers in economics and bio-statistics resorted

to using analysis of variance (ANOVA) models (De Leeuw et al., 2008). However, others

opted to perform ordinary least square analysis for each group-level, which also ignored similar

characteristics that are shared at a particular group-level.

Luke (2004) further stated that the existence of mathematical concepts of MLMs did not stop

researchers to use simplistic single-level methods. This was because the statistical software to

execute the MLM analysis were not yet developed. For example, researchers in social science

collect data from multiple population and erroneously ignore the nested nature when doing the

analysis (Luke, 2004). In addition, Luke (2004) emphasised that relationships discovered at
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one particular group-level are not always similar to other group-level. For this understanding,

scholars have a responsibility to employ appropriate methodologies such as MLM to assess

group-level effects for nested data structure.

2.2.2 Statistical reasons

Most of the mathematical statistical reasons as to why researchers prefer MLMs when analysing

HDSs are mainly because of misleading inferences that other techniques give. Goldstein (1986)

argued that the reality of hierarchical data presented problems of model specification because

of lack of independence between measurements, however, MLMs are able to deal this problem.

Multilevel models are sometimes called mixed models (Snijders, 2011) and are different from

contextual analysis. Contextual analysis is an analysis that was developed in the social science

to analyse mainly the effects of social context based on individual behaviour (Snijders, 2011).

Furthermore, Snijders (2011) defined mixed models as statistical models that are the combina-

tion of regression analysis and ANOVA where some of the coefficients are assumed to be fixed

and others are random.

Many social researchers were previously using single-level statistical techniques on the data

that are naturally multilevel by pooling the group level information into individual level; hence

ignoring the groups (Luke, 2004). These allowed the use of multiple regression, which however

created two mathematical problems (Luke, 2004). Firstly, the individual error term of the model

carries the un-modelled contextual information which violates the assumption of correlated er-

rors (Luke, 2004; Hox and Roberts, 2011). Secondly, the method assumes that all regression

coefficients are equal for all groups. Moreover, some researchers resorted to using ANOVA or

analysis of covariance (ANCOVA) to encounter for grouping of individuals’ information. How-

ever, the statistical problem arises as the number of groups increases, that is, all groups are

treated as fixed effects. Even more, the ANCOVA deals only with balanced data/design. The

issues discussed reduce the power of the model.

When dealing with data that follows a hierarchical structure, observations that belong to the

same group are generally dependent. Statistically, this means that intra-class correlation is

non-zero; hence, single level models are inappropriate to analyse such data (Hox and Roberts,

2011). Also, using ordinary least squares regression to analyse multilevel data underestimates

the standard errors of conventional statistical tests (Hox and Roberts, 2011).
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2.3 Hierarchical and non-hierarchical data structures

2.3.1 Hierarchical data structures

HDSs are noticeable in human and biological sciences (De Deleeuw et al., 2007; Goldstein, 2011;

Hox and Roberts, 2011). The most commonly cited example of a hierarchically structured data

is in education, in which students are grouped in classes, classes grouped in schools, schools are

grouped in districts, and so on (De Deleeuw et al., 2007; Bini et al., 2009; Creemers et al., 2010;

Goldstein, 2011). Some of the experimental designs lead to hierarchically structured data, such

as, clinical trials selected from a number of randomly chosen groups of individuals. Goldstein

(2011) refers to hierarchical data as consisting of units nested at different levels or units grouped

at different levels.

Other examples of HDS are seen in the health and social sciences, where population (e.g. people

or animals) are grouped within social structures (e.g. families); political structures (e.g. polit-

ical parties); cultural structures (e.g. ethnic groups); or physical environment (e.g. ecological

or biological environments). Shepelev (2011) is of an opinion that the identification of HDS is

similar to identifying personalising reference characteristics. Some researchers refer to MLMs as

hierarchical linear models because of their data structure name “hierarchical” (O’Connell and

Reed, 2012).

The application of MLMs in many studies is restricted to situations involving a purely hierar-

chical data structure (Johnson, 2012).

Cities

Individuals

a) Two level pure HDS

Countries

Cities

Individuals

b) Three level pure HDS

Figure 2.1: Classification diagram for two and three level pure hierarchical data structures.

Figure 2.1 shows the two pure HDSs where from a group of individuals, an individual is nested

within one and only one city. Moreover, a city is also nested within one and only one country.

CHAPTER 2. LITERATURE REVIEW 10



ASSESSING VARIANCE COMPONENTS OF MULTILEVEL MODELS FOR SOCIAL SCIENCE DATA

2.3.2 Non-hierarchical data structures

In most studies that involve multilevel modelling, researchers assume that the structures of the

populations from which the data have been drawn are hierarchical, whereas is some cases this

cannot be justified (De Deleeuw et al., 2007; Johnson, 2012). De Deleeuw et al. (2007), and

Goldstein (2011) suggested and discussed other multilevel data structures that are sometimes

confused with purely HDS. For example, the work by Aunsmo et al. (2009) used a complex

data structure that is both hierarchical and cross-classified which clearly indicates the differ-

ence between the two. This section will discuss non-hierarchical cross-classified and multiple

membership data structures.

• Two-level cross-classified data structure

The cross-classified models result from a cross-classified data structure (CCDS). A CCDS oc-

curs when a unit is classified within more than one group at the same hierarchy level (Zaccarin

and Rivellini, 2002; Bini et al., 2009). Figure 2.2 shows a social science CCDS example where

individuals are classified by both their respective families and the organisations they work for.

Individuals

OrganisationsFamilies

Figure 2.2: A classification diagram for cross-classified individuals within families and organisations.

In Figure 2.2, it is clear that both the organisations and families are level 2 clusters, hence in-

dividuals are cross-classified by these level 2 clusters. These means that there is pure hierarchy

from individuals to families they come from and individuals to organisations they work for. One

other example is in health where patients are cross-classified by general practitioner and hospi-

tal. There are more complex two-level cross-classification data structures such as longitudinal

data.

• Multiple membership

Multiple membership data structures (MMDSs) are like the hierarchical structure, the difference

is that the units are members of more than one higher-level unit, thus students may enrol in

more than one institution or school (Goldstein, 2011). In order to illustrate a basic structure

for two-level multiple memberships, consider examples in: a) education, where students change

institution over the course of their education and each institution has an effect on their edu-
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cation; and b) health, where children at the hospital are seen by several nurses and doctors at

the time of their treatment. In these examples, more than one higher-level unit from the same

classification influences the lower level units being the students or children at the hospital. For

example, a classification diagram that can represent the aforementioned education example,

where st denotes student and inst denotes institution, is demonstrated in Figure 2.3:

st1 st2 ... st1654

inst1 inst2 ... inst20

Figure 2.3: A two-level classification diagram for MMDS of students within institutions

The arrows pointing to institutions (at level 2) clearly show that students are nested within

multiple institutions (e.g. student 1 is nested within institutions 2 and 20). This example can

be extended to a longitudinal study where average marks of students are recorded for a given

number of years, say three years. This means that for each student there will be a measurement

for each of the three year at level 1, thereby extending Figure 2.3 to a three level HDS, thus

st1 st2 ... st1654

Average mark of students’ education for a particular year

inst1 inst2 ... inst20

Figure 2.4: A three-level classification diagram for multiple membership dataset of yearly average mark

for students within institutions

In Figure 2.4, the measurements are purely nested within students at level 2, while students

are not purely nested within institutions. Other complex data structures arises when there is a

mixture of two different non-hierarchical data structures.
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2.4 Application of multilevel models to the study of teenage pregnancy

2.4.1 Nonlinear outcome data

Goldstein (2011) is of an opinion that other kinds of data structures are represented well in

terms of nonlinear rather than linear models. Nonlinear models are generally considered when

discrete response data are modelled. MLMs do not exist only where response or dependent

variable is continuously distributed, but also when it is categorical. Hall and Clutter (2004),

Goldstein (2011), and Tolvanen et al. (2011) also indicated that nonlinear mixed effects models

are resourceful in growth data.

Hall and Clutter (2004) conducted a study using multivariate multilevel nonlinear mixed ef-

fects models in order to describe simultaneously several plot-level time quantity characteristics.

Tolvanen et al. (2011) conducted a study that discusses and presents a new approach for the

estimation of a nonlinear growth curve component with fixed and random effects in multi-

level modelling. This approach can be used to estimate change in longitudinal data. A study

conducted by Natesan et al. (2010) discussed the formulation of graded response models in

nonlinear MLMs framework. This formulation estimates item parameters while investigating

the group-level effects for specific covariates using Bayesian estimation.

The study that was conducted by Bhat (2000) demonstrated that many spatial analyses es-

timated a discrete response variable. In the work of Bhat (2000), multilevel cross-classified

data of a discrete response variable were fitted using a mixed logit model that includes spatial

heterogeneity.

2.4.2 Longitudinal outcome data

In section 2.3, we have already illustrated some examples of data structures that are collected

from longitudinal studies. MLMs for longitudinal data allow researchers to model the between

individual and within individual research questions (Singer and Willett, 2003). A longitudinal

study happens in an occasion where a particular response is recorded for some subject over

time or a given fixed time (sometimes called fixed occasion). Since MLMs are able to deal with

data that are unbalanced, they come handy for the analysis of longitudinal data or repeated

measurements (Snijders, 2011). Generally, continuous repeated measures can be modelled using

multilevel random coefficient model, while the discrete ones are modelled using the multilevel

logistic regression model (Rabe-Hesketh and Skrondal, 2008). In the context of MLMs, time

variate measurements are usually at level 1, hence, longitudinal outcome data.
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Kwok et al. (2008) conducted a study which validates the use of multilevel modelling and its

advantages in analysing longitudinal data. The study by Kwok et al. (2008) used data from a

sample of individuals with intra-articular fractures of the lower extremity from the University

of Alabama at Birmingham’s Injury Control Research Centre. Kwok et al. (2008) illustrated an

overview of models and procedures for analysing longitudinal data under the multilevel mod-

elling framework, which includes 1) a simple linear growth model; a model with a time-invariant

covariate; and 2) more complicated growth models with different between- and within-individual

covariance structures; and nonlinear models.

The work done by Dagum et al. (2009) focused primarily on analysing the university student

achievements in order to support planning, control and decision processes in a Higher Education

area. Dagum et al. (2009) used data collected from 2001 to 2006 that revealed an important

finding on how to deal with longitudinal data. The results used different approaches of analysing

longitudinal data, which indicated that a nonlinear growth model provides good estimates.

Lodico et al. (2006), Bini et al. (2009), Aitkin and Aitkin (2011), and Attanasio and Capursi

(2011) have improved the quality of longitudinal research using MLMs and latent growth mod-

els. Authors such as Kwok et al. (2008), and Gustafsson (2013) demonstrated practises and

advantages of analysing longitudinal data using MLM and LGM.

2.5 Evidence for the existence and application of multilevel models over

the years

2.5.1 School effectiveness

Goldstein (2011) highlighted that it has been an interesting study by educational researchers to

examine students’ performance or achievements at schools and universities. Bini et al. (2009)

have compiled a book that incorporates researches that elaborate on techniques that deal with

educational effectiveness. When using MLMs in a study of school effectiveness, where students

are grouped within schools, there are a number of advantages that motivate the use of MLMs

(Bini et al., 2009). These are to enable researchers to

• investigate the relationship between explanatory and outcome factors;

• estimate statistically and efficiently the regression coefficients;

• almost accurately estimate standard errors, confidence intervals, and significance tests by

using information about the groups; and
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• explore the extent to which differences in average examination results between schools are

accountable in terms of the characteristics of the students.

The fundamental to methodological progress in studies of school effectiveness depends on the

development of suitable models for the analysis of multilevel data (Hall and Clutter, 2004).

Most of the researches use multilevel modelling to investigate school and teacher effectiveness

(Bini et al., 2009). Hill and Rowe (1996) indicated that identifying key issues in the design

of studies for investigating the relative importance of class and school effects should generate

different findings for different studies.

Methodological requirements for valid inferences in school effectiveness studies are long term

longitudinal data and proper statistical modelling of multilevel data (Goldstein, 1997). The

work of Goldstein (1997) highlighted that it is important to use appropriate MLMs to model

the complexities of school, class, and student level data.

Fox (2004) conducted a school effectiveness study that is concerned with exploring differences

within and between schools. The study suggested that variance component models are gener-

ally appropriate for the analysis of school effectiveness in educational research (Fox, 2004). Fox

(2004) extends the random effects model in order to handle measurement error using a response

model which lead to a random effects item response theory model. The extended random effects

models are also usable and suitable for a longitudinal study, where measurements of subjects

on the same outcome are observed numerous points in time (Fox, 2004).

A multilevel modelling study conducted by Fielding and Yang (2005) discussed the complexi-

ties of educational processes, the structure, and the need for disentangling effects beneath the

level of the school. This study also introduced and debated the ordinal response multilevel

crossed random-effects models for educational grades, the advanced level grades cross-classified

by student and teaching group within a number of institutions (Fielding and Yang, 2005). The

work of Fielding and Yang (2005) revealed that multilevel modelling techniques can handle the

teachers’ effects on several teachers’ contributions to provision and on each teacher dealing with

several groups. This means that the analysis brought conclusions on the sources of variation in

educational progress, and predominantly the effect of teachers.

Proceedings of the integration between multilevel models and agent-based models by Salgado

and Marchione (2011) indicated that MLMs are pioneers for dealing with the analyses of two

or more levels hierarchical data. Salgado and Marchione (2011) focused on differential school
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effectiveness analysis in order to provide a basis for comparison. Although this is the case,

it was further deduced that MLMs cannot provide a causal mechanism that can explain the

differences in school performances (Salgado and Marchione, 2011).

Costantini and Vitale (2011) performed a longitudinal analysis using multilevel model because

of a common issue of undergraduate students obtaining their degree after the expected time

at most Italian universities. The results of the study suggested a reform, which intended to

reduce the gap between the average number of years in which a student complete the education

programme and the official deadline established by the university regulations (Costantini and

Vitale, 2011).

Green et al. (2011) applied a multilevel model technique to estimate the level of variation across

schools in students’ reports of non-physical bully victimisation and identify school-level pre-

dictors of bullying. The study further investigated, using multilevel models, the indicators of

academic performance, emotional well-being, and school safety at school-level. The results of

their study indicated that a specific group of students was significantly associated with bullying,

after controlling for individual-level covariates and demographic controls (Green et al., 2011).

2.5.2 Causality

For the reason that units under study are manipulated experimentally using random allocation,

Goldstein (2011) argues that causal inferences are more popular in the natural sciences. Gold-

stein (2011) further indicated that there is an extensive acceptance for results of experiments

to be used over space and time. In the studies of causation, numerous concerns addressed by

MLMs are somehow straightforward predictions (Goldstein, 2011). For example, in teenage

pregnancy study, researchers might be interested in knowing the causes of female differences,

and in predicting which teenage group is at risk. Scholars such as Gitelman (2005), VanderWeele

(2010), and Gustafsson (2013) have studied causal effects using multilevel modelling technique.

In the study conducted by Gitelman (2005), the overall outcomes depending on group character-

istics, group membership, and treatment were developed to provide a structure for stipulating

causal effects of treatment in the multilevel setting. The work done by VanderWeele (2010)

revealed findings that are classified within the context of multilevel modelling, causal inference,

direct and indirect effects interference, longitudinal data, neighbourhood effects, mediation, and

potential outcomes. Gustafsson (2013) indicated that, in educational effectiveness research, it

is often difficult to make reliable inferences about cause and effect relations. For this reason,
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Gustafsson (2013) conducted a study on causal inference in educational effectiveness research,

in which three methods were used to investigate the effects of homework on students’ achieve-

ment.

The study by Gustafsson (2013) identified main categories of threats to valid causal inference

from observational data, and discussed designs and analytic approaches that protect against

them. These three different methods were applied to dataset of 22 countries that participated

in both the trends in international mathematics and science study. The data contain informa-

tion about a sample of Grade 8 students between 2003 and 2008. The study applied a 2-level

regression that separates student-level relations from class-level relations in order to, firstly,

investigate the effects of the time spent on homework on mathematics achievement. Secondly,

to investigate instrumental variables regression, using teacher-reported homework time to in-

strument student-reported homework time. Lastly, to examine the differences in analysis that

are investigating country-level changes between 2003 and 2008.

2.5.3 Multivariate outcome data

Multivariate models are models that look simultaneously at a number of dependent variables as

functions of independent variables (Goldstein, 2011). These models enable the researcher to deal

with a wide range of problems, such as missed responses, matrix design for survey, and other

methods for dealing with missing data structures. In some cases, measurements are missing by

design rather than at random, hence special applications are needed. Like in a rotation designs

or matrix sample designs, an individual unit has on it, one subset of measurements made.

Goldstein (2011) noted that researchers use multivariate multilevel model as the basis for han-

dling missing data in multilevel models. These models are able to analyse data even if some of

the responses are missing, hence the researcher does not have to go through special procedures

of dealing with missing data.

A study conducted by Thum (2003), developed a procedure for measuring how much is gained

by students in a pre-test and post-test situation against a target score on the post-test. Thum

(2003) further employed a Bayesian implementation of a multivariate mixed model for repeated

test scores from individual students. The approach has shown its strength in a straightforward

estimation of the productivity index where its uncertainty in the form of a productivity profile

was represented. The approach had further simplified a Bayesian effect size analysis that does

not appeal to non-central t or F distributions.
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2.5.4 Survey data

Green et al. (2011) remarked that in some literature sample survey data, researchers highlight

that it is important to consider the clustering in complex sample designs. For example, geo-

graphical unit is most of the times the first stage-sampling unit when conducting a survey.

Based on Green et al. (2011), multilevel modelling is more advantageous than the traditional

sampling design as it views the population structure of potential interest in itself, and it is mostly

utilised for collection and analysis of data based on the higher level units of the population.

Even though these models are able to model directly the clustered data, the use of weight when

analysing is important for reflecting the sampling design such as patterns of non-response, and

in order for the robust population to be obtained, thus allowing for protection against serious

model mis-specification (Green et al., 2011). Multilevel models in sample surveys are occa-

sionally used on data that is from a complex survey involving unequal sampling probabilities,

multistage sampling, and stratification (Rabe-Hesketh and Skrondal, 2006). It is noteworthy

to highlight that it is advantageous to fit a multilevel model to explore the population data

structures even if a survey does not involve clustering or stratification.

Green et al. (2011) highlighted that in most of the sample surveys, clustering and stratification

sampling are involved because of their importance in increasing precision for a given cost for

a given total sample size. When comparing clustering and stratification, the former is able to

reduce survey costs and increase standard errors of estimates, while the latter tends to reduce

standard errors. Nonetheless, the main key of survey is to find balance between survey cost and

standard error. Rabe-Hesketh and Skrondal (2006) is of the opinion that when dealing with

MLMs with an arbitrary number of levels, a pseudo-likelihood approach for allowing inverse

probability weights can be implemented by using adaptive quadrature.

2.6 Evidence for application of multilevel models in african data

Several studies have applied MLMs on datasets collected across Africa (Ukwuani et al., 2003;

Wiysonge et al., 2012; Tomita and Burns, 2013). The studies cover the areas of, but not

limited to, epidemiology, psychology, and health. Work by Tomita and Burns (2013) used

South African data to measure the magnitude of the variation in depression as an outcome

generated by neighborhood-level social capital. On the other hand, the study by Wiysonge

et al. (2012) used data from sub-Saharan Africa, in which countries were clustering factor at

level 2 of an MLM.
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2.7 Software packages for multilevel modelling

It has been noted by researchers such as Kwok et al. (2008), and Van Buuren (2011) that

statistical analysis system (SAS) and statistical package for the social sciences (SPSS) software

packages can be used to perform multilevel models and latent growth modelling technique to

analyse longitudinal data. In addition, the book of Rabe-Hesketh and Skrondal (2008) have

also shown that Statistics and Data (STATA) software package and R software (Vaughn, 2008)

are also suitable for performing multilevel modelling technique for linear and nonlinear models.
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Chapter 3

Data Description and Exploration

In this 3rd chapter we discuss the population, structure and variables that are considered in

the study. We further explore the variables of the dataset and their relationships. Finally, this

chapter provides a brief summary and conclusion that respond to the first objective of this work.
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3.1 Population and Data Structure

3.1.1 Population

In this work, census data for health and demographic surveillance system are used. The data

are collected and provided by the Africa Center, KwaZulu-Natal (KZN) in South Africa. The

data consist of population of female teenagers whose pregnancy status was observed during the

census years 2011 to 2015 in Mpukunyoni rural area, KZN. This population of female teenagers

include 11544 females aged 13 to 19. These are females who were born between 1992 and 2002,

inclusive. For the reason that some groups of females from the population of female teenagers,

will be observed for at least one of the census year, there are five sub-populations of female

teenagers that are formed by each census year. The variable spft is used to denote all five sub-

populations of female teenagers. In this work, 2011, 2012, 2013, 2014 and 2015 are respectively

representing, the first, second, third, fourth and fifth sub-populations. Table 3.1 shows the

observed number of female teenagers for each spft.

Table 3.1: Population of female teenagers for each spft, 2011 - 2015.

spft Birth year interval N (%)

2011 1992-1998 7732 (22.1)

2012 1993-1999 7391 (21.1)

2013 1994-2000 6959 (19.9)

2014 1995-2001 6623 (18.9)

2015 1996-2002 6317 (18.0)

mean (µ) 7004 (20.0)

std. (σ) 510 (1.5)

N is the number of female teenagers

Table 3.1 shows that 2011 with 7732 female teenagers has the highest sub-population, while

the lowest with 6317 is recorded in the year 2015. This table also shows that the number of

female teenagers in Mpukunyoni has been decreasing over years. However, the observed sub-

populations are fairly distributed across the years since no sub-population is below or above 2σ

of each spft.

Moreover, we expect to find some groups of females who are observed only in the 2011 or 2015

sub-populations. For example, a female who was 19 years old in 2011 would not be included

in the remainder of the sub-populations, while a 13-year old female who was observed in 2015

would not be observed in the previous sub-populations. This means that female teenagers are
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not observed equally; hence, the data are unbalanced (Steele, 2008). Furthermore, some female

teenagers might not have been observed for some sub-populations because of death, migration or

other reasons. Table 3.2 summarises the possible patterns or combinations of observed number

of female teenagers in all sub-populations.

Table 3.2: Number of observed females per pattern of subpopulations.

Pattern of spft

2011 2012 2013 2014 2015 N (%)

1 1 1 1 1 2775 (24.0)

1 . . . . 1402 (12.1)

1 1 . . . 1368 (11.9)

1 1 1 . . 1134 (9.8)

1 1 1 1 . 1053 (9.1)

. 1 1 1 1 919 (8.0)

. . 1 1 1 906 (7.9)

. . . 1 1 861 (7.5)

. . . . 1 856 (7.4)

(other patterns) 270 (2.3)

Total 11544 (100.0)

N is the number of female teenagers

From Table 3.2, 2775 (24.0%) female teenagers have been observed in all five sub-populations,

followed by 1402 (12.1%) female teenagers who were observed only in 2011. From the third

highest to the fifth highest numbers of female teenagers, there are those who were observed in

the first two (11.9%), first three (9.8%) and first four (9.1%) sub-populations.. We also note

that the number of female teenagers who were observed between the last four sub-populations

and the last sub-population has been decreasing. This explains the reduction in the number of

female teenagers from 2011 to 2015, which was observed in Table 3.1.

3.1.2 Data structure

Based on the multilevel data structures (discussed in section 2.3), the data for this work form

a two level data structure. As we have seen in Table 3.2, there are cases where more than

one measurement of teenage pregnancy status is observed for one female, meaning that this

measurements are at level 1 while female teenagers (denoted by id) are at level 2. We can

simply say that measurements of teenage pregnancy are clustered by female teenagers. Table

3.3 presents the number of unique identifiers and the number of units at each level.
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Table 3.3: The number of unique identifiers and units within the levels.

Level Level name Range Unique identifiers Units

1 Measurements of pregnancy status [2011, 2015] 5 35022

2 Female teenagers [0, 11544] 11544 11544

In Table 3.3, the are 11544 unique identifications of female teenagers at level 2, thereby con-

firming the population of female teenagers in this study. Hypothetically, if the same group of

female teenagers were observed for five census years, level 1 will have 5× 11544 = 57720 units.

However, since the sizes of sub-populations are not equal, only 35022 units were recorded. The

number units, 11544 which are equal to the number of unique identifiesr at level 2 means that

no female teenager was repeated at level 2. This implies that there is no possibility of multiple

membership data structure. Furthermore, cross-classified structure is not possible because there

is only one level 2 cluster. A classification diagram, Figure 3.1, summarises a two level data

structure of the dataset for this work.

Female teenagers

Measurements of pregnancy status

Figure 3.1: Classification diagram for a two level pregnancy dataset (a).

In Figure 3.1, the arrow pointing to the female teenagers indicates that the measurements

of pregnancy status at level 1 are nested within female teenagers at level 2. However, this

diagram does not indicate the different sub-populations that are presented in Tables 3.1 and

3.2. For example, in our dataset id1’s pregnancy status was recorded only in 2011 while the

pregnancy status for id2 and id11544 are recorded for the last four and first four sub-populations,

respectively. The data structure for the selected ids can be represented in a more elaborative

classification diagram (Figure 3.2).

id1 id2 ... id11544

2011 2012 2013 2014 2015

Figure 3.2: Classification diagram for a two level pregnancy dataset (b).

In Figure 3.2, it is clear that the arrows pointing to id1, id2 and id11544 indicate that pregnancy

CHAPTER 3. DATA DESCRIPTION AND EXPLORATION 23



ASSESSING VARIANCE COMPONENTS OF MULTILEVEL MODELS FOR SOCIAL SCIENCE DATA

statuses were recorded for the first, last four and first four sub-populations, respectively.

3.2 Variables of the dataset

3.2.1 Response variable

The response variable of interest, in this work, is the pregnancy status and it is denoted by ps.

This is a response variable that takes the values 0 “no” or 1 “yes”; responding to a question

of females being pregnant or not pregnant. Table 3.4 shows the frequencies of pregnancies of

females by census year.

Table 3.4: The number of observations for each pregnancy status category by year.

2011 2012 2013 2014 2015 Mean

ps N (%) N (%) N (%) N (%) N (%) N (%)

no 7464 (96.5) 7194 (97.3) 6791 (97.6) 6483 (97.9) 6232 (98.7) 6833 (97.6)

yes 268 (3.4) 197 (2.7) 168 (2.4) 140 (2.1) 85 (1.3) 172 (2.5)

N is the number of observations for each ps category

The observed average proportion of teenage pregnancies from 2011 to 2015 is 2.5% across spft

(see Table 3.4). Table 3.4 shows that the proportion within spft has been decreasing from

2011 to 2015.

3.2.2 Covariates

Our dataset includes three categorical covariates, namely age of the female, the number of house-

hold membership and the number of pregnancies the female had before observation. These three

covariates are also recorded at each census year.

• Census year

In the previous sections census year was presented as a factor variable spft, which represents

different sub-populations. However, census year can also be treated as a measurement of oc-

casions, denote by year that records values 0, 1, 2, 3 and 4, representing census years 2011,

2012, 2013, 2014 and 2015, respectively. This is because some female teenagers are studied at

least once across year.

However, we can further show the frequency of number of measurements of occasion (denoted

by nyear). Thus, we compute the number of non-missing response observations per id and

examine the distribution of these numbers across female teenagers.
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Figure 3.3: Histogram for the frequency of number of occasion measurements across females.

Figure 3.3 shows the same number, 2775, as in Table 3.2 for female teenagers who were observed

in all five subpopulations. We also note that number of females who were observed only once

are also higher than those who were observed two, three or four times.

• Age of the female teenage

Female age is a categorical covariate which is denoted by age and it varies within spft and

across year. It is coded as 0 (used as a reference category), 1, 2, 3, 4, 5 or 6 for females who

are 13, 14, 15, 16, 17, 18 or 19 years old, respectively.

Table 3.5: The number of observations for each female age category within spft and across year.

2011 2012 2013 2014 2015 across year

age N (%) N (%) N (%) N (%) N (%) N (%)

13 1048 (13.6) 1061 (14.4) 996 (14.3) 899 (13.6) 856 (13.5) 4860 (13.9)

14 1110 (14.4) 1009 (13.6) 1001 (14.4) 942 (14.2) 861 (13.6) 4923 (14.1)

15 1112 (14.4) 1067 (14.4) 957 (13.8) 954 (14.4) 906 (14.3) 4996 (14.3)

16 1085 (14.0) 1072 (14.5) 1016 (14.6) 926 (14.0) 919 (14.6) 5018 (14.3)

17 1072 (13.8) 1041 (14.1) 1026 (14.7) 981 (14.8) 903 (14.3) 5023 (14.3)

18 1155 (14.9) 1035 (14.0) 986 (14.2) 976 (14.7) 940 (14.9) 5092 (14.5)

19 1150 (14.9) 1106 (15.0) 977 (14) 945 (14.3) 932 (14.8) 5110 (14.6)

Total 7732 (22.1) 7391 (21.1) 6959 (19.9) 6623 (18.9) 6317 (18.0) 35022 (100.0)

N is the number of observations for each age category

In all the categories of age, but 13, the number of observations reduces from 2011 to 2015.

We also note fluctuations in the number of observations between ages within spft and across
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year.

• The number of household membership for a female

The variable name idhhms denotes the number of households a female is a member to. It

takes the category values 0, 1, 2 and 3 which represent 1, 2, 3 and 4 household membership for

a female, respectively. This is a categorical variable that also varies within and across year.

Table 3.6: The number of females for each household membership category within spft and across

year.

2011 2012 2013 2014 2015 across year

idhhms N (%) N (%) N (%) N (%) N (%) N (%)

1 6815 (88.1) 6633 (89.7) 6366 (91.5) 6149(92.9) 5913(93.6) 31876(91.0)

2 820 (10.6) 704 (9.5) 560 (8.1) 452(6.8) 390(6.2) 2926(8.4)

3 91 (1.2) 50 (0.7) 33 (0.5) 22(0.3) 14(0.2) 210(0.6)

4 6 (0.1) 4 (0.1) 0 (0.0) 0(0.0) 0(0.0) 10(0.0)

Total 7732(100.0) 7391(100.0) 6959(100.0) 6623(100.0) 6317(100.0) 35022(100.0)

N is the number of observations for each idhhms category

For both within spft and across year, the observations are decrease as household membership

increases (see Table 3.6). We also see, in this table, that from 2013 to 2015 there were no female

teenagers belonging to 4 households.

• The number of pregnancies the female teenager had before census year of observation

The number of pregnancies the female teenager had before census year of observation is denoted

by nch and it is also categorised by 4 values (0, 1, 2 and 3).

Table 3.7: The number of pregnancies the female teenager had before year of observation within spft

and across year.

2011 2012 2013 2014 2015 across year

nch N (%) N (%) N (%) N (%) N (%) N (%)

0 7381 (95.5) 7078 (95.8) 6737 (96.8) 6405 (96.7) 6137 (97.2) 33738 (96.3)

1 330 (4.3) 294 (4) 207 (3) 208 (3.1) 177 (2.8) 1216 (3.5)

2 20 (0.3) 19 (0.3) 14 (0.2) 9 (0.1) 3 (0.1) 65 (0.2)

3 1 (0.0) 0 (0.0) 1 (0.0) 1 (0.0) 0 (0.0) 3 (0.0)

Total 7732 (100.0) 7391 (100.0) 6959 (100.0) 6623 (100.0) 6317 (100.0) 35022 (100.0)

N is the number of observations for each category of nch

Table 3.7 shows that 330, 20 and 1 female teenager(s in spft1 had already been pregnant once,
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twice and thrice before they were observed in 2011, respectively.

3.3 Data exploration

This section starts by examining the descriptive statistics of the response variable, which include

assessing its mean and standard deviation. Thereafter, this section will examine the relationship

between ps and all covariates.

3.3.1 Examining the mean and standard deviation of variables

Table 3.8 presents the mean, standard deviation, minimum and maximum of ps by within spft

and across year.

Table 3.8: Descriptive summary of teenage pregnancy status and all four covariates.

N Mean Std. Dev. Min Max

2011 7732 0.034 0.183 0 1

2012 7391 0.027 0.161 0 1

2013 6959 0.024 0.153 0 1

2014 6623 0.021 0.144 0 1

2015 6317 0.013 0.115 0 1

across year 35022 0.025 0.155 0 1

N is the number of observed pregnancy status

The estimated mean across census years is 0.025, which deduces that there is approximately

2.5% chance of a teenage pregnancy across year. Using the estimated value (π̂), the standard

deviation in Table 3.8 is expected to be equal to π̂(1 − π̂) = 0.025(0.975), which is indeed the

same. In order to confirm the value of the mean as well as the possible alternatives of the

response variable, we use the results in Table 3.4. Clearly the results in Table 3.8 confirm that

indeed the 2.5% is distributed to the females whose ps is yes. Table 3.8 also shows that there

is a variation of pregnancy status within spft. This variation of ps can be examined for each

covariate across census years and within each sub-population.

3.3.2 Exploring the relationship of pregnancy status and the covariates

Unlike in linear regression where we could plot a line graph to examine a bivariate relationship

between the response and covariates, such a line graph will not be very informative. For this

reason, a line graph of proportions of teenage pregnancy across and within census years by

each covariate could be calculated and plotted against the across categories of the covariates.
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The relationships between the proportions of teenage pregnancy spft and across year by age,

idhhms and nch are, respectively, presented using line graphs in Figures 3.4, 3.5 and 3.6.

Figure 3.4: The relationship proportion of teenage pregnancy and age.

In Figures 3.4 - 3.6, the constant lines (dash-dot) are proportions of pregnancy status which

are the mean values for each sub-population in Table 3.8. The green dash lines, in Figures 3.4,

3.5 and 3.6, represent the proportions that are averaged over each covariate age, idhhms and

nch, respectively. On the other hand, the rest of the non-constant line plots are averaged over

each sub-population and each covariate.

Figure 3.5: The relationship proportion of teenage pregnancy and idhhms.
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Figure 3.6: The relationship proportion of teenage pregnancy and nch.

Figure 3.6 shows a small variation of proportion of pregnancy status between sub-populations

when the number of pregnancies the female had before she was observed is between 0 and 1.

This same case is also seen for ages 13-15 in Figure 3.4.

The proportions for female teenagers age between 13 and 15 are all lower than the average

proportion for each sub-population. This means that, on average, the female teenagers age

between 13 and 15 are less likely to get pregnant. In Figures 3.4, 3.5 and 3.6, we also note

that proportions of teenage pregnancy increases as age increase within each spft and across

year. This suggests a positive linear relationship between teenage pregnancy and age of female

teenagers. The proportions of 2012 (red solid line) are almost similar to the across year by age

(green dash line) in all figures (see Figures 3.4, 3.5 and 3.6).

Nonetheless, Figure 3.5 shows a high variation in proportions between sub-populations for each

category of idhhms. The same case of high variation is also observed in Figure 3.6 for nch

between 2 and 3. Although the linear relationship of proportions and idhhms is not clear,

it becomes clear from the second category idhhms that there is a negative relationship (see

Figure 3.5). The highest proportions of approximately 10% is observed when the number of

pregnancies the female had before she was observed is 3 in spft4 (see Figure 3.6). This is

followed by a proportion which is just above 8% for females who are 18 years old in spft1 (see

Figure 3.4).
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3.4 Summary

In summary, we have observed teenage pregnancy status (denoted by ps) of 11544 female

teenagers across five census years. However, for each census year a female from a population of

female teenagers of size 11544 was observed at most once within each census year but at least

once across (see table 3.2). The data in this work are purely hierarchical, in which multiple

teenage pregnancy measurements at level 1 are clustered by females (denoted by id) at level 2.

There are 35022 (data lines of the dataset) teenage pregnancy measurements that were observed

across census years.

In addition to the variables ps and id, the dataset for this work include 5 other variables

that are treated as covariates (spft, year, age, idhhms and nch). The variable ps is the

response variable that records whether a female teenager is pregnant or not. All five covariates

are categorical but three (age, idhhms and nch) are female characteristics that changes over

time covariate year. Even more, spft is treated as a factor covariate in order to account for

different sub-populations.

Based on the observed relationship between main covariates and teenage pregnancy, teenage

pregnancy increases as age increases but reduces as year and idhhms increases. However,

there is no clear relationship between nch and teenage pregnancy. We have also seen that these

relationships vary across the sub-populations, hence it important to investigate interaction of

each covariate with year.

Going forward, this work will use generalised linear models and their extensions in order to model

teenage pregnancy status given the nature of the variables id, spft, year, age, idhhms and

nch.
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Chapter 4

Prediction of the Probability of

Teenage Pregnancy using a Logit

GLM

The sections of this chapter include introduction on generalised linear models (GLMs), method-

ology of GLM for binary data, specification and fitting a multiple logistic regression model, and

conclusion.
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4.1 Introduction

In the context of generalised linear models (GLMs) the response variables Yi are assumed to be

generated from some specific distribution in the exponential family (Molenberghs and Verbeke,

2005). In our study the response variable is binary, hence the section on methodology of GLM

in this chapter will cover linear predictor, link function, distribution and maximum likelihood

estimation for binary data.

The logit and probit link functions can be utilised to perform analysis for discrete outcome data

(Rabe-Hesketh and Skrondal, 2008). Nonetheless, we exclusively consider the logit function as

it is sufficient to map the logistic regression model (LRM) to a linear predictor. The Bernoulli

probability density function will be considered for the discussion of the distribution of LRM

because it deals with response data that are having two possible outcomes (Czepiel, 2002; Molen-

berghs and Verbeke, 2005). More often, in GLMs for either continuous or discrete response, the

expected value of the response given some covariates is usually of interest (Molenberghs and

Verbeke, 2005). For example, for a simple linear regression model written as Yi = β0 +β1xi+εi;

researchers are more interested in a linear predictor β0 + β1xi, which is the expectation of yi

given the covariates xi.

4.2 Methodology of generalised linear model for binary data

4.2.1 Definition of generalised linear models

To define GLM in general, we first let an independent set of response variables, Y1, Y2, ..., YN ,

correspond to p-dimensional vectors of covariate, x1, x2, ...xN . We further assume that the

Yi’s are having a probability density function f(yi|θi, ρ) belonging to an exponential family. The

GLM is then defined as

E(yi|xi) = µ = g(x′iβ) (4.2.1)

wherein E(yi|xi) is the expected value of yi given the covariates xi and µ is the mean. This

expectation can be written as some known function, g(·), of a covariate vector, xi and a p-

dimension vector with fixed unknown coefficients, β. Alternatively, we can write the linear

function by use of the inverse function of h(·), sometimes written as g−1(·), thus

h(E(yi|xi)) = g−1(E(yi|xi)) = x′iβ.
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4.2.2 Formulation of generalised linear models for binary data

Binary data are obtained in a setup where their data take two possible options, in which a specific

option is true and another is false. These options can include, for instance, a trial succeeding or

failing; or a person being dead or alive. Habitually, data scientists and analysts would represent

these options as 0 and 1, where 0 would mean “no” and 1 “yes”. In a binary response data setup,

the expectation of a particular response given some covariates is a probability value, thereby

predicting a value between 0 and 1. This probability is commonly referred to as probability of

success and it is expressed mathematically as

E(yi|xi) = µ = P (yi = 1|xi) (4.2.2)

where µ is the mean. Conversely, P (yi = 0|xi) (equal to 1− P (yi = 1|xi)) is the probability of

failure. For the reason that P (yi = 1|xi) is restricted between the values 0 and 1, the E(yi|xi)

results in a nonlinear predictor function that can be written as,

P (yi = 1|xi) = g(β0 + β1xi), (4.2.3)

same as in Model (4.2.1). By introducing a link function h(·) such that g(·) is an inverse link

function, it follows that function (4.2.3) is equivalent to

h (P (yi = 1|xi)) = β0 + β1xi. (4.2.4)

As in linear regression, Model (4.2.4) allows us to examine the relationship that some covariates

(e.g. dummy and/or polynomial) can have on the binary responses. We will make use of the

logit function. The logit function is defined as

logit(π) = log

(
π

1− π

)
.

Therefore, the expression (4.2.4) can be derived to

logit (P (yi = 1|xi)) ≡ log

(
P (yi = 1|xi)

1− P (yi = 1|xi)

)
= β0 + β1xi,

(4.2.5)

which is called a logistic regression model with one covariate. In a case where p covariates

xi1, xi2, ..., xip are considered, expression (4.2.5) can be extended to

log

[
P (yi = 1|xi)

1− P (yi = 1|xi)

]
= β0 + β1xi1 + β2xi2 + ...+ βpxip

=

p∑
k=0

βkxik,

(4.2.6)
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where xi0 = 1. A logistic regression model with p > 1 covariates is called a multiple logistic

regression model (MLRM). The left hand side of equation (4.2.6) can be interpreted as the log

of the odds of a success against a failure. The positive value of the coefficient β indicates an

increase in the odds of success while a negative value indicates a decrease. The odds of success

given some covariates can thus be derived as

Odds(yi = 1|xi) = e
∑p
k=0 βkxik . (4.2.7)

Furthermore, the probability of success given some covariates is given by

P (yi = 1|xi) =
Odds(yi = 1|xi)

1 + Odds(yi = 1|xi)
. (4.2.8)

As a result, the probability of success can be predicted using this function

P (yi = 1|xi) =
e
∑p
k=0 βkxik

1 + e
∑p
k=0 βkxik

, (4.2.9)

which is referred to as the inverse logit function of the linear predictor (logit−1[P (yi = 1|xi)]).

4.2.3 Distribution of binary data

Following the concept and notation illustrated by Molenberghs and Verbeke (2005), a probability

density function that is of exponential family can be expressed as,

f(y) ≡ f(y|θ, φ) = eφ
−1[yθ−ψ(θ)]+c(y,φ), (4.2.10)

A Bernoulli probability density for an independent set of response variables, Y1, Y2, ..., YN , where

Yi takes on values 0 or 1 and follows a Bernoulli distribution with P (yi = 1|xi) = πi,

Yi ∼ Bernoulli(πi)

is written as

f(yi|θ, φ) = e
yilog

(
πi

1−πi

)
+log(1−πi), (4.2.11)

and can be rewritten as

f(yi) = πyii (1− πi)(1−yi). (4.2.12)

In expression (4.2.12), the term φ is equal to 1 and θ is a function of π. The mean, µ = π, and

the variance of the mean, v(µ) = π(1−π), are derived using the first and second moments. The

variance, v(µ), is generally written as φv(µ) and it is called the variance function. Estimation

of the regression coefficients is done using the principle of maximum likelihood, which will be

discussed in subsection 4.2.4.
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4.2.4 Maximum likelihood estimation of binary data

The likelihood function is the probability density function. The only difference is that the

likelihood function, L(·), is a function of the parameter, β, given the fixed responses y. A GLM

likelihood function can be derived using the exponential density function in expression (4.2.10)

as,

f(yi|θi, φ) = eφ
−1[y1θ1−ψ(θ1)]+c(y1,φ) × ...× eφ−1[yNθN−ψ(θN )]+c(yN ,φ)

= eφ
−1
∑N
i=1 [yiθi−ψ(θi)]+

∑N
i=1 c(yi,φ)

= L(β|yi, φ).

(4.2.13)

The log-likelihood function l(β|yi, φ), which is the natural logarithm of the likelihood function

(log[L(β|yi, φ)]), is commonly used in practice to derive the likelihood estimate, as this simplifies

calculations. The log-likelihood function for general GLM is

l(β|yi, φ) =
1

φ

N∑
i=1

[yiθi − ψ(θi)] +

N∑
i=1

c(yi, φ). (4.2.14)

We can derive the log-likelihood function for a probability density function of a Bernoulli dis-

tribution by substituting the following terms

yiθi − ψ(θi) = ylog

(
π

1− π

)
and ψ(θi) = log(π − 1)

as done in functions (4.2.12) and (4.2.14). Thus,

l(β|yi, φ) =

N∑
i=1

yilog

(
πi

1− πi

)
+

N∑
i=1

log(1− πi)

=
N∑
i=1

yilog
(
e
∑p
k=0 βkxik

)
+

N∑
i=1

log

(
1− e

∑p
k=0 βkxik

1 + e
∑p
k=0 βkxik

)

=
N∑
i=1

yi

p∑
k=0

βkxik +
N∑
i=1

log

(
1

1 + e
∑p
k=0 βkxik

)

=

N∑
i=1

(
yi

[
p∑

k=0

βkxik

]
− log

(
1 + e

∑p
k=0 βkxik

))
(4.2.15)

is the log-likelihood function for a logistic regression with a Bernoulli distribution.

4.3 Specifying and fitting a logit generalised linear model

Our analysis will use the data with an intention to predict the log odds of teenage pregnancy for

females during the census years of 2011 to 2015 at the area of Mpukunyoni, KNZ. This dataset

has already described and explored in chapter 3. The purpose of this analysis is to estimate,
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using maximum likelihood, the coefficients of several covariates that are suspected to have an

effect on teenage pregnancy. We will in this manner use these coefficients to predict and picture

the relationship of the predicted teenage pregnancy probabilities and values of the covariates.

Furthermore, we will likewise take note of the Akaike information criterion (AIC) value that

we will use to select the best model.

The analysis includes selected variables, namely year, age, idhhms and nch from our dataset.

The other covariates that will be added during the model building are interactions between year

and other covariates.

In the subsections of this section, we will build a logit GLM or LRM. Thus, we shall fit a

logit GLM to predict the probability of teenage pregnancy (P (p̂si)) given the covariates, where

i = 1, 2, ..., 35022 and psi = 1 indicates a female teenager who is pregnant. We use the no-

tation βyear, βage, βihm and βnch to denote the fixed effects of yeari, agei, idhhmsi and

nchi. Furthermore, the effects of the interaction of year and other covariates (year×age,

year×idhhms and year×nch) is denoted by βyage, βyihm and βynch, respectively. The in-

clusion of covariates in the final model depends on whether the coefficient is significant at 5%

level of significance in the univariate model.

4.3.1 Model building

The model assumes a single and unique population across census years (year). Our model

building start by fitting a null empty logit GLM. This is a model with no covariates and it is

written as

logit(πi) = β0 (4.3.1)

where xi is a vector of covariates and β0 is the intercept. The estimates of Model (4.3.1)

shows that on average the log odds of teenage pregnancy is -3.684, which is the magnitude of

β0 (see Table 4.1). It is expected that when β0 is exponentiated and divided by one plus the

exponentiated value (e−3.684/(1 + e−3.684) = 0.0245), it is equal to the across year proportion

of teenage pregnancy as presented in Table 3.8.

The next step of the logit GLM building we takes into consideration that year is an important

covariate or grouping factor; hence, it is added first before adding other covariates, thus

logit(πi) = β0 + βyearyeari. (4.3.2)
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The likelihood estimates of Model (4.3.2) are also shown in Table 4.1. At 5% level of significance,

Model (4.3.2) estimates show that year is a significant negative effect with a magnitude of

approximately 0.207 on the log odds of teenage pregnancy (see Table 4.1). Moreover, the

inclusion of year increases the magnitude of β0 to -3.332. This means that the probability of

teenage pregnancy for a female in 2011 is estimated as e−3.332/(1 + e−3.332) = 0.0345 and it is

approximately equal to the proportion in Table 3.8. Since the effect of year reduces the log

odd of teenage pregnancy by 3.332, the probability of teenage pregnancy in 2012, 2013, 2014

and 2015 will be approximately 0.028, 0.023, 0.019 and 0.015.

The logit GLM building is continued by adding the effect of idhhms and nch to Model (4.3.2),

thus

logit(πi) = β0 + βyearyeari + βageagei + βihmidhhmsi + βnchnchi (4.3.3)

Table 4.1 also shows that by including other main covariates (Model (4.3.2)), only age effect is

significant at 5% significant level. However, idhhms and nch are not significant at 5% level

of significance. The effect of these insignificant covariates will be removed one-by-one based on

the z statistics closer to zero (see Table 4.1) . The estimates were obtained by fitting models

logit(πi) = β0 + βyearyeari + βageagei + βnchnchi (4.3.4)

and

logit(πi) = β0 + βyearyeari + βageagei. (4.3.5)

The estimates of Model (4.3.5) in Table 4.1 show that the intercept and main covariates year

and age are significant with all p-values of less than 0.001.

Moreover, one other interest that was explored in Chapter 3 was whether the effect of age on

teenage pregnancy depends on the census year. We therefore add the interaction effect of the

two significant covariates year and age to Model (4.3.5). This interaction covariate is denoted

by year × age.

logit(πi) = β0 + βyearyeari + βageagei + βyageyeari × agei (4.3.6)

Model (4.3.6) estimates indicate that the effect of year × age is non-significant. This means

that Model (4.3.5) is the only model with significant fixed effects.
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Table 4.1: Estimates of model building for a logit GLM of pregnancy status.

Model

Covariate (4.3.1) (4.3.2) (4.3.3) (4.3.4) (4.3.5) (4.3.6)

Intercept -3.684∗∗∗ -3.332∗∗∗ -5.525∗∗∗ -5.528∗∗∗ -5.542∗∗∗ -5.588∗∗∗

(-106.59) (-64.27) (-44.20) (-44.47) (-44.61) (-31.39)

year -0.207∗∗∗ -0.208∗∗∗ -0.207∗∗∗ -0.210∗∗∗ -0.180∗

(-8.12) (-8.07) (-8.07) (-8.17) (-2.07)

age 0.549∗∗∗ 0.549∗∗∗ 0.557∗∗∗ 0.567∗∗∗

(22.73) (22.73) (23.42) (15.84)

idhhms -0.0189

(-0.18)

nch 0.191 0.191

(1.78) (1.78)

year × age -0.01

(-0.36)

z statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

4.3.2 Model selection and interpretation of a better fit model

Model selection is done using AIC value which provides a statistic that determines power of the

fitted model (Akaike, 2011). The AIC value is calculated using the formula AIC = −2ln[l(β)] +

2k, where k is the number of estimated coefficients (Akaike, 2011). A lower AIC value indicates

a better fit. The AIC results for all models in Table 4.1 are summarised in Table 4.2.

Table 4.2: Akaike’s information criterion for each logit GLM of pregnancy status.

Model

Covariate (4.3.1) (4.3.2) (4.3.3) (4.3.4) (4.3.5) (4.3.6)

Observations 35022 35022 35022 35022 35022 35022

l(β) -4029.84 -3995.66 -3619.52 -3619.54 -3621.04 -3620.973

df 1 2 5 4 3 4

AIC 8061.67 7995.31 7249.05 7247.08 7248.08 7249.95

Based on the AIC results in Table 4.2, Model (4.3.4) has the lowest AIC value of 7247.08.

However, this model include an insignificant effect of nch; hence, the model cannot be selected as
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a better fit. On the other hand Model (4.3.5) in Table 4.1 has the lowest AIC value, after Model

(4.3.4), of 7248.08; hence Model (4.3.5) is better fit logit GLM to predict teenage pregnancy.

Table 4.3 presents the likelihood estimates of a better fit logit GLM of pregnancy status.

Table 4.3: Likelihood estimates of a better fit logit GLM of pregnancy status.

Covariate Effect Std. Err. z-value p−value [95% Conf. Interval]

Intercept -5.542 0.124 -44.610 0.000 [-5.785, -5.298]

year -0.210 0.026 -8.170 0.000 [-0.260, -0.159]

age 0.557 0.024 23.420 0.000 [0.510, 0.604]

Based on the results in Table 4.3, the final model that is of better fit is written as,

logit(πi) = −5.542− 0.21yeari + 0.557agei. (4.3.7)

Model (4.3.7) will be interpreted and used to predict the probabilities of teenage pregnancy

given year and age.

Based on Model (4.3.7), the magnitude of β0 = −5.542 suggests that the probability of teenage

pregnancy for a 13-year old female teenager in 2011 is estimated as e−5.542/(1 + e−5.542) =

0.0039. For every 1 additional year to the age of a female teenager, the log odds of teenage

pregnancy will increase by 0.557, in 2011. However, this log odds will be reduced every year by

a value 0.210, which means that the corresponding log odds of teenage pregnancy for the year

2012, 2013, 2014 and 2015 are -5.752, -5.962, -6.172 and -6.382, respectively.

4.3.3 Prediction of the probability of teenage pregnancy

The predictions of the probabilities using Model (4.3.7) are calculated individually by substi-

tuting the data point of the subjected main covariates into Equation (4.2.9) while holding other

predictors at their base (meaning category zero). Nonetheless, Model (4.3.7) shows that the

probabilities of teenage pregnancy are predicted by year and age.

The interaction covariate between year and age was not significant; therefore the predictions

of teenage pregnancy based on age by year would not be valid. However, probability predic-

tions that are averaged over age will be done for when year is held at zero (base) and when

it is not.

Figure 4.1 shows predicted probabilities of teenage pregnancy averaged over age across year

and within 2011.
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Figure 4.1: The relationship of probabilities and proportion of teenage pregnancy with female’s ages.

In Figure 4.1, the dotted lines are the predicted probabilities whereas the solid one is the actual

proportion that is averaged over age. As expected, the risk of teenage pregnancy is higher for

older females. The probability predictions across census year seem to be below the one for

2011. This means that, in 2011, the risk of teenage pregnancy was higher for older females than

when census years are averaged. Nonetheless, these probabilities are slightly different from the

proportions; hence, they are slightly acceptable.

Figure 4.2: The relationship of probabilities and proportion of teenage pregnancy with census year.

Figure 4.2 further shows the predicted probabilities of teenage pregnancy averaged over year
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across age and within 13-year old females. Although the plotted line in Figure 4.2 shows that

the risk of teenage pregnancy decreases as census year increases, these probabilities are much

lower for 13-year old females. Given this and the predicted probabilities across female age,

this confirms that older female teenagers are at higher risk of teenage pregnancy than those

younger ones. Over and above, by excluding the effect of age 14 to 19 years, the risk of teenage

pregnancy is definitely underestimated.

4.4 Logit generalised linear model building with census year as a factor

covariate

In the previous logit GLM population differences effect across census years have been pushed

aside. However, this section treats census year (year) as a factor covariate, spft.

4.4.1 Adding to the effect of different sub-populations to a null logit GLM

With the reference category of spft set as 2011, a logit GLM with covariate year only will be

written as

logit(πi) = β0 + (βp22012i + βp32013i + βp42014i + βp52015i) (4.4.1)

where β0 is the fixed intercept. On the other hand,

• βp2 is the slope of some female in 2012 sub-population (here there is a zero effects of

female teenagers in 2011, 2013, 2014 and 2015),

• βp3 is the slope of some female in 2013 sub-population (here there is a zero effects of

female teenagers in 2011, 2012, 2014 and 2015),

• βp4 is the slope of some female in 2014 sub-population (here there is a zero effects of

female teenagers in 2011, 2012, 2013 and 2015) and

• βp5 is the slope of some female in 2015 sub-population (here there is a zero effects of

female teenagers in 2011, 2012, 2013 and 2014).

The results of Model (4.4.1) are presented in Table 4.4. The shows the maximum likelihood

estimates of the categories of spft on log odds of teenage pregnancy. Based on these estimates,

the probabilities of teenage pregnancy for female teenagers in 2011, 2012, 2013, 2014 and 2015

sub-populations are 0.034, 0.027, 0.024, 0.021 and 0.013, respectively. This values tie with the

actual proportions of teenage pregnancy in Table 3.8. However, the value of AIC = 7996.857
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Table 4.4: Likelihood estimates of Model (4.4.1).

Covariate Effect Std. Err. z-value p−value [95% Conf. Interval]

Intercept -3.327 0.062 -53.51 0.000 [-3.449, -3.205]

spft

2012 -0.271 0.095 -2.840 0.004 [-0.458, -0.084]

2013 -0.373 0.100 -3.730 0.000 [-0.568, -0.177]

2014 -0.508 0.106 -4.810 0.000 [-0.716, -0.301]

2015 -0.968 0.126 -7.700 0.000 [-1.214, -0.722]

l(β) = −3993.429, Observations = 35022, AIC = 7996.857

for Model (4.4.1) is larger than that value of Model (4.3.2) by a difference of 1.545. This means

that Model (4.4.1) predicts teenage pregnancy better than Model (4.3.2).

4.4.2 Adding to the effect age of the female to a logit GLM with sub-population effect

Since the models in section 4.3 suggested that age of the female (age) is a significant factor of

teenage pregnancy risk, the effect of age can be added to Model (4.4.1), thus

logit(πi) = β0 + (βp22012i + βp32013i + βp42014i + βp52015i) + βageagei. (4.4.2)

The effect of the female’s age is still represented by the magnitude of βage. Table 4.5 presents

the results of the Model (4.4.2).

Table 4.5: Likelihood estimates of Model (4.4.2).

Covariate Effect Std. Err. z-value p−value [95% Conf. Interval]

Intercept -5.545 0.129 -42.900 0.000 [-5.798, -5.291]

spft

2012 -0.270 0.097 -2.790 0.005 [-0.459, -0.08]

2013 -0.355 0.101 -3.500 0.000 [-0.553, -0.156]

2014 -0.509 0.107 -4.760 0.000 [-0.719, -0.299]

2015 -0.990 0.127 -7.810 0.000 [-1.238, -0.741]

age 0.557 0.024 23.430 0.000 [0.511, 0.604]

l(β) = −3618.443, Observations = 35022, AIC = 7248.885

The results in Table 4.5 show that age of a female together with all the sub-population categories

are significant at 5% level of significance. Although this is the case, Model (4.4.2) is not better
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than Model (4.3.5) because of the AIC value that is large by 0.805. This means that Model

(4.3.5) is still a better fit logit GLM for teenage pregnancy.

4.4.3 Adding to the interaction effect of age of the female and each sub-population

Since age and spft are risk factors of teenage pregnancy, Model (4.4.2) can be extended such

that it investigates the effect of their interaction. That is,

logit(πi) = β0 + (βp22012i + βp32013i + βp42014i + βp52015i) + βageagei

+ (βpage22012× agei + βpage32013× agei

+ βpage42014× agei + βpage52015× agei)

(4.4.3)

where βpage1, βpage2, βpage3 and βpage4 are, respectively, the effect of 2012 × agei, 2013 × agei,

2014 × agei and 2015 × agei. Even in this case 2011 × agei is the reference category of the

variable spft× age.

The result in Table 4.6 shows the likelihood estimates for fitting Model (4.4.3). The interaction

Table 4.6: Likelihood estimates of Model (4.4.3).

Covariate Effect Std. Err. z-value p−value [95% Conf. Interval]

Intercept -5.518 0.211 -26.180 0.000 [-5.931, -5.105]

spft

2012 -0.636 0.342 -1.860 0.063 [-1.305, 0.034]

2013 -0.113 0.324 -0.350 0.727 [-0.749, 0.522]

2014 -0.425 0.354 -1.200 0.230 [-1.120, 0.270]

2015 -1.136 0.445 -2.550 0.011 [-2.008, -0.263]

age 0.552 0.043 12.970 0.000 [0.468, 0.635]

spft× age

2012× age 0.076 0.068 1.120 0.263 [-0.057, 0.209]

2013× age -0.052 0.066 -0.780 0.433 [-0.182, 0.078]

2014× age -0.018 0.072 -0.250 0.804 [-0.158, 0.123]

2015× age 0.030 0.089 0.340 0.732 [-0.143, 0.204]

l(β) = −3616.754, Observations = 35022, AIC = 7253.508

effect of age of the female and each sub-population are not risk factors of teenage pregnancy

since the p-value for each category of spft× age is more than 0.05. This suggests, as in the
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estimate of Model (4.4.3), that age and spft do not depend on each other to predict the risk

of teenage pregnancy.

4.5 Summary

As a conclusion to this chapter, we fitted a logit GLM that predicts teenage pregnancy. The

estimates suggest that pregnancy status can be predicted using both census year and age of the

female teenager. However, we have also discovered that the interaction of the predictors is not

important for predicting teenage pregnancy. This means that these predictors do not depend on

each other to predict teenage pregnancy. All logit GLM that fitted the effect of idhhms and

nch indicated that these covariates are not risk factors of teenage pregnancy. Although a logit

GLM that takes account of the population differences was fitted, Model (4.3.7) that estimates

the effects of year and age is a better model for predicting teenage pregnancy.

Using Model (4.3.7), the predicted probabilities of teenage pregnancy that are averaged over

age or across census year slightly tie with the observed proportions. Nonetheless, given that the

models in this chapter are fitted under the assumption that every teenage pregnancy status is

for one unique female; thus, all psi are independent of each other. In view of the facts of data

structure for this study, some females have been observed more than once across the five census

years. This means that there are different psi for the same female, say psti (where t = 0, 1, ..., 4

representing categories of year/spft and i = 1, 2, ..., 11011 representing each unique female).

The response term, psti, allows us to identify a teenage female at a specific census year.

Despite the fact that other predicted probabilities are acceptable, it is clear that the clustering

effect has been pushed aside; hence the predictions might be inequitable. The issue of clustering

will be covered in the next chapter where the same data are analysed using generalised linear

mixed model to account for clustering effect.
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Prediction of the Probability of

Teenage Pregnancy using a Logit

GLMM

This chapter introduces the generalised linear mixed models (GLMM) and then discusses the

methodology of GLMM for the context of binary data. The work in this chapter will further

fit two level GLMMs to model teenage pregnancy, in which a better model will be selected and

interpreted
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5.1 Introduction

We have seen in chapter 3 that some females have been observed more than once over different

years; making our data longitudinal. Our investigation in chapter 4 has just fitted the model that

permits estimations of predictor variable to change across females, along these lines accepting

that these estimations are independent. In any case, one method for composing a model that

can consider the variability of responses within females is by modifying the Model (4.2.6) as

log

[
P (yti = 1|xti)

1− P (yti = 1|xti)

]
=

p∑
k=0

βkxtik, (5.1.1)

where xti0 = 1 and yti represent the teenage pregnancy status at year “census year” of t

(t=0,1,2,3,4) within id “female id” i (i = 1, 2, ..., N). Model (5.1.1) is not different from the

model used in chapter 4, however, it can be used to estimate parameters of a GLM with unknown

correlation between responses (Rabe-Hesketh and Skrondal, 2008). Even more, Model (5.1.1)

is a fixed effect model and this model is not designed to appropriately fit correlated data such

as longitudinal and/or clustered.

Chapter 3 uncovered that information required in this review are with three levels of hierarchy;

hence, two clusters are to be taken into account when discussing the methodology of generalised

linear mixed model (GLMM). For straightforwardness and consistency, both the methodology

and analysis of this chapter will utilise indexes t, i and j for level 1, level 2 and level 3,

respectively.

5.2 Methodology of generalised linear mixed model for binary data

The GLMM is a model that estimates the degree of dependence among responses of the same

cluster (Molenberghs and Verbeke, 2005). GLMMs are sometimes referred to as multilevel

generalised linear models. GLMMs are an extension of GLM that adds a random cluster effect

to account for the correlation of the data. Formulation of GLMM model for binary data is

similar to Model (5.1.1) except that a random effect must be included. In this chapter, the

general formulation of this extension is also adopted from the concept and formulation used

by Molenberghs and Verbeke (2005). This section will first layout the general formulation of

GLMM, thereafter use the Bernoulli distribution and logit link to setup a GLMM for binary

response data. This section will further discuss random intercept and slope of a logit model

together with parameters and variance components estimation.
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5.2.1 Formulation of GLMM

For the reason that the responses vary within a specific cluster, we let t = 1, ..., ni represent the

level 1 units, where i = 1, ..., N denote the cluster units in level 2. As in GLM, Yti are assumed

to be independent with cluster specific regression parameter. Following the exponential family

defined in Equation (4.2.10), Yti can be assumed to have the following densities

fi(yi) ≡ f(yij |θti, φ) = eφ
−1[ytiθti−ψ(θti)]+c(yti,φ). (5.2.1)

In Function (5.2.1), θti is a natural parameter that can, through a link function, be represented

as a linear predictor ηti while φ is a scalar parameter. In exponential probability density, the

functions ψ(·) and c(·, ·) are all known. Just as in the formulation of GLM, the mean µti is of

interest and it is estimated using a linear predictor with regression parameters that are fixed

(β) and that are cluster specific random effects (υi). Thus,

h(µti) = x′tiβ + z′tiυi = ηti (5.2.2)

where h(·) is some known link function for two covariate vectors xti and zti. The term υi is

a vector of random effects that are following multivariate normal distribution with mean zero

and variance-covariance matrix Συ. Likewise, ηti is a linear predictor. The expected value of

the response variable given the random effect and the covariates is equal to µti = E(Yti|υi,xti).

However, Model (5.2.2) is an all-purpose GLMM where h(·) can be replaced with a known

specific link function and Function (5.2.1) can correspond to a specific distribution for the

response variable at hand.

5.2.2 GLMM for binary response data

Suppose Yti is a set of independent responses within a specific cluster and it takes values 0 for

no or 1 for yes. The indexes t (t = 1, 2, .., ni) and i (i = 1, 2, .., N) represent level 1 units and

level 2 units , respectively. The response measurement Yti can be assumed to follow a Bernoulli

distribution with parameter πti. A logit link function, logit(πti) = log((πti/(1 − πti)) can be

used to map a binary response data to a linear predictor function h(·) in Model (5.2.2). That

is,

logit(πti) ≡ log[odds(yti = 1)] = x′tiβ + z′tiυi. (5.2.3)

where πti in this case, is the probability of Yti = 1 given the random effect and covariates values

that is also represented as E(Yti|υi,xti). Model (5.2.3) is known as a two level GLMM because

the response measurements are clustered within one cluster. The predicted values of πti are

CHAPTER 5. PREDICTION OF THE PROBABILITY OF TEENAGE PREGNANCY USING A LOGIT GLMM 47



ASSESSING VARIANCE COMPONENTS OF MULTILEVEL MODELS FOR SOCIAL SCIENCE DATA

given by

πti =
ex
′
tiβ+z′tiυi

1 + ex
′
tiβ+z′tiυi

= µti.

5.2.3 Random part of a logit GLMM

Considering a data structure where ni observations are within N clusters, yti are responses

for each observation t = 1, ..., ni in cluster i = 1, ..., N . Consider also a covariate xti as an

observation effect. By letting zti = 1 in Model (5.2.3), a two level random intercept model for

a binary response yti can be written as

log[odds(yti = 1)] = β0 + β1xti + υ
(2)
0i (5.2.4)

where υ0i ∼ N(0, σ2
υ0(2)) and σ2

υ0(2) is the parameter that represents the degree of heterogeneity

of the N clusters and it is referred to as the level 2 variance of the random intercept.

The value of β0, when xti and υ0i are kept at zero, indicates the log odds of the response being

equal to one. The value of β1 is the magnitude that is added on β0 when there is a 1 unit

increase on the covariate xti while υ0i are kept at zero. This means that for the effect of xti on

the log odds of the response being equal to one while υi are kept at zero, β1 is a cluster specific

effect because it is the effect measured for the observations within a specific cluster (namely

the cluster for which υ0i = 0). The magnitude of υ0i represent the effect of the ith cluster and

the intercept for such cluster effect is given by β0 + υ0i. Testing for cluster effect is the null

hypothesis that there is no within cluster variation against that there is a significant within

cluster variation, thus

H0: σ2
υ0(2) = 0 (no within cluster variation)

H1: σ2
υ0(2) > 0 (significant cluster variation).

A random slope effect of zti can be added to the model (5.2.4), thus

log[odds(yti = 1)] = β0 + β1xti + υ
(2)
0i + υ

(2)
1i zti, (5.2.5)

where both the random intercept υ
(2)
0i and random slope υ

(2)
1i are normally distributed with mean

zero and variance σ2
υ0(2) and σ2

υ1(2). Since the covariance between the cluster intercept and slope

σ2
υ01(2) is assumed not to be zero, then υ

(2)
0i and υ

(2)
1i follow a bivariate normal distribution with

mean zero and variance-covariance matrix Συ. Just as the random intercept model, β0 + υ
(2)
1i

is the slope of the relationship of log odd that yti = 1 when the covariate xti and the random

intercept υ0i are kept at zero.
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5.2.4 Maximum likelihood parameter estimation of GLMM

Although there are a number of ways such as Bayesian approach to estimate the parameter in

GLMMs, this work will formulate the maximum likelihood estimation method. By maximising

the marginal likelihood that is obtained by taking the integration of the random effects, one

can fit the GLMM. The models involved so far in this chapter are with cluster specific effect say

υ
(L)
l , which are inferences that follow a random effect approach, where L represents the cluster

level and l is the cluster index. The υ
(L)
l is said to be a random vector where its attributes are

independently drawn from a known distribution.

All models in this work assume Bernoulli distribution, which is a special case of binomial

distribution. For simplicity, we consider a two level binomial model where yti are number of

successes from a Bernoulli trial, thus only one replication. For N clusters with ni response

measurements, the density function of Ytj given υ
(2)
[i] in the form of (5.2.1) is given by

f(Ytj |υ(2)
[i] ) = e

∑ni
t=1 yti(x

′
tiβ+z′tiυi)−log(1+ex

′
tiβ+z

′
tiυi ), (5.2.6)

where

ytiθti = yti(x
′
tiβ + z′tiυi), ψ(θti) = log(1 + ex

′
tiβ+z′tiυi) and c(yti, φ) = 1.

The index t takes on values t = 1, ..., ni which are measurements for units at level 1 for each

cluster i = 1, 2, ..., N units at level 2.

This means for one level 2 random effect υ
(2)
i ∼ N(0, σ2

υ(2)) and one fixed effect β of xti, the

likelihood function that can be derived from the density log(πti/(1− πti)) = xtiβ + υ
(2)
i is

L(β, σ2
υ(2)|Ytj) =

∫ −∞
∞

ni,N∏
t,i

P (Ytj |β, σ2
υ(2))dυ

(2)
[i]

=

∫ −∞
∞

ni,N∏
t,i

P (Ytj |β,υ(2)
[i] )f(υ

(2)
[i] |σ

2
υ(2))dυ

(2)
[i]

=

N∏
i=1

∫ −∞
∞

ni∏
t=1

eyti(x
′
tiβ+z′tiυi)

1 + eyti(x
′
tiβ+z′tiυi)

× e
−υ(2)i /2σ2

υ(2)

(2σ2
υ(2))

1/2
dυ

(2)
i .

(5.2.7)

The resulting likelihood function can be computed or evaluated by using the adaptive quadrature

or Laplace approximation approaches.

5.2.5 Variance components estimation for binary response data GLMM

Although there are several ways to examine the variance components of mixed models, our

study focused on the variance partition coefficients (VPC) and intraclass correlation coefficients
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(ICC). The VPC reports the proportion of the response variance that lies at each level of the

model hierarchy while ICC reports the expected degree of similarity between responses within

a given cluster. Consider a two level model without any covariates, thus

log[odds(yti = 1)] = β0 + υ
(2)
0i , (5.2.8)

where β0 is a fixed intercept that is unknown. The terms υ
(2)
0i are the level 2 random intercepts

which are assumed to be normally distributed with mean zero and variance σ2
υ0(2). The level 1

errors for a logistic model are assumed to be normally distributed with mean zero and variance

e = π2/3 = 3.29; hence, the total variance is calculated as

var(log[odds(yti = 1)]) = var(β0 + υ
(2)
0i ) = π2/3 + σ2

υ0(2)
(5.2.9)

Variance partition coefficients

The VPC for a two level model reports two types of coefficients; i.e. the level two and level one

VPC, calculated as

V PC(2)
υ =

σ2
υ0(2)

π2/3 + σ2
υ0(2)

and (5.2.10a)

V PC(1)
e =

π2/3

π2/3 + σ2
υ0(2)

, (5.2.10b)

respectively. When the coefficients V PC
(2)
υ and V PC

(1)
e are multiplied by 100, they are inter-

preted, respectively, as the percentage of the variation that lies between level 2 clusters; and

within level two clusters between level 1 units.

Intraclass correlation coefficients

A two level logit GLMM estimates two ICC values, but one is important, thus ICC
(2)
υ . This

value measures the correlation between level one measurements that belong to the same cluster

at level two. It is then calculated as

ICC(2)
υ = ρ(2) =

σ2
υ0(2)

π2/3 + σ2
υ0(2)

. (5.2.11)

For a two level GLMM this value is similar to the value of V PC
(2)
υ . However, for a GLMM with

more than 2 levels V PC
(2)
υ is not always equal to ICC

(2)
υ = ρ(2). For example, a three level

logit GLMM reports three ICC values but only two (ICC
(2)
υ and ICC

(3)
υ ) are important. The

magnitudes of ICC
(2)
υ and ICC

(3)
υ for a three level logit GLMM are computed as

ICC(2)
υ = ρ(2) =

σ2
υ0(2) + σ2

υ0(3)

π2/3 + σ2
υ0(2) + σ2

υ0(3)

and (5.2.12a)
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ICC(3)
υ = ρ(3) =

σ2
υ0(3)

π2/3 + σ2
υ0(2) + σ2

υ0(3)

, (5.2.12b)

respectively. Surely given that the numerator of the calculation of V PC
(2)
υ will include only the

σ2
υ0(2), the results will be different from ICC

(2)
υ . Generally, an m levels ICC can be written as

ICC(L)
υ = ρ(L) =

∑L
l=1 σ

2
υ0(l)

π2/3 +
∑m

l=2 σ
2
υ0(l)

, (5.2.13)

where L = 1, 2, ...,m. L is the level of hierarchy and l is the cluster index. The magnitude of

ICC
(2)
υ closer to 1 indicates that the level 1 measurements are highly correlated for ones that

belonging to the same cluster attributes. Due to the fact that the variance components are non-

negative, the point estimate say ρ̂(L), will always be between 0 and 1. This means, in order to

calculate the confidence interval, the calculation will maintain to use the logit transformation.

The (1−α)100% confidence interval of the logit of ρ(L) with a standard error of ŜEρ(L), is given

by (
logit(ρ̂(L))− zα/2

SEρ̂(L)

ρ̂(L)(1− ρ̂(L))
, logit(ρ̂(L)) + zα/2

SEρ̂(L)

ρ̂(L)(1− ρ̂(L))

)

where zα/2 is one minus half of alpha of the standard normal distribution.

5.3 Specifying and fitting a Logit GLMM for teenage pregnancy

5.3.1 Null model

Just like in chapter 4, this section starts by fitting a null logit model, but with female id as

cluster effect. Thus

logit(πti) = β0 + υ
(2)
0i , (5.3.1)

where β0 is the fixed intercept for log odd of measurements of teenage pregnancies and υ
(2)
0i

is the random intercept for female cluster. The results of Model (5.3.1) maximum likelihood

estimates are shown in Table 5.1.

Unlike the results of a logit GLM, the GLMM estimates show the fixed effects and the random

effects. Table 5.1 shows that the magnitude of the fixed intercept (β0) is -3.957 with p-value less

than 0.001. This means the log odds of teenage pregnancy for an average female (υ
(2)
0i = 0) is

-3.957. The random effects intercept shows that the variance σ2
υ0(2) = 0.598 is significant with a

p-value less than 0.01. This means that there is strong evidence that teenage pregnancy varies

within female cluster. Based on the aforementioned estimates of Model (5.3.1), the intercept
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Table 5.1: Maximum likelihood estimates for null mixed logit model with female random effect.

Covariate Effect Std. Err. z-value [χ2
(1)] p−value [95% Conf. Interval]

Fixed effects

Intercept -3.956 0.099 -40.16 0.000 [-4.150, -3.764]

Random effects

σ2
υ0(2) 0.598 0.207 [8.69] 0.0016 [0.304, 1.176]

l(β) = −4025.491, Observations = 35022, AIC = 8054.981

of female i is −3.957 + υ
(2)
0i . Thus, the probability of teenage pregnancy for female i can be

calculated as

πti =
e−3.957+υ

(2)
0i

1 + e−3.957+υ
(2)
0i

.

The value of β0 for Model (5.3.1) is less than the one for Model (4.3.1) by 0.273, meaning

that an average of 0.273 log odds is accounted for by the random intercept, υ
(2)
0i . The random

intercepts estimate for each female can be estimated using Model (5.3.1) or by simulating from

a normal distribution with mean µυ0(2) = 0 and variance σ2
υ0(2) = 0.598.

We can further examine the female random effect using Model (5.3.1) estimated female level

intercepts and their respective standard errors. It is expected that some of the females have

the same estimates of the random intercepts. Table 5.2 shows the number of females with the

same random intercepts estimates from the lowest to highest.

One can see from Table 5.2 that almost 7.1% of the female teenagers have a positive log odds

of teenage pregnancy. Given that most of the females are with negative, these suggest that

teenage pregnancy are below average. We could also make a plot of estimates and include the

95% of confidence interval in order to observe which random intercept rank include zero; hence,

Figure 5.1. It is clear that the 95% confidence interval for all the estimated random intercepts

except one do not overlap the zero red line (see Figure 5.1). In this figure we also notice that the

width of the confidence intervals are approximately equal, indicating that the standard errors

are also approximately the same for all ranks.

5.3.2 Adding census year fixed effect

As in chapter 4, we have seen that census year (year) is an important covariate which is used as

measure of occasion and to distinguish between different sub-populations. This model building
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Table 5.2: Female random intercept estimates for group of females.

υ
(2)
0 Rank υ

(2)
0 Std. Err. N (%)

1 -0.053 0.754 2541 (22.011)

2 -0.043 0.757 1795 (15.549)

3 -0.033 0.761 1938 (16.788)

4 -0.022 0.765 2128 (18.434)

5 -0.011 0.769 2318 (20.08)

6 0.506 0.741 227 (1.966)

7 0.523 0.747 163 (1.412)

8 0.541 0.753 128 (1.109)

9 0.559 0.759 181 (1.568)

10 0.578 0.766 92 (0.797)

11 1.042 0.722 7 (0.061)

12 1.069 0.731 13 (0.113)

13 1.098 0.740 9 (0.078)

14 1.129 0.750 3 (0.026)

15 1.588 0.710 1 (0.009)

N denotes the number of females

Figure 5.1: Caterpillar plot of random intercept by rank with 95% confidence interval for a null GLMM.

will further extend Model (5.3.1) by including census year (year) as covariates. Fitting the next

model we use subscript ti on year to model census year effect for some female (i = 1, 2..., 11544)

in a specific census year (t = 1, 2, 3, 4, 5). This means that such a model takes into account the
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different five sub-populations. The logit GLMM with census year effect is represented as

logit(πti) = β0 + βyearyearti + υ
(2)
0i , (5.3.2)

where βyear is the magnitude of the fixed effect of census year on the log odds of teenage

pregnancy. The likelihood estimates for this model are shown in Table 5.3.

Table 5.3: Maximum likelihood estimates for Model (5.3.2).

Covariate Effect Std. Err. z-value [χ2
(1)] p−value [95% Conf. Interval]

Fixed effects

Intercept -3.501 0.106 -33.08 0.000 [-3.709, -3.294]

year -0.203 0.026 -7.86 0.000 [-0.253, -0.152]

Random effects

σ2
υ0(2) 0.350 0.191 [3.36] 0.0334 [0.120, 1.021]

l(β) = −3993.976, Observations = 35022, AIC = 7993.952

The estimates of Model (5.3.2) indicate that the fixed effect of year equal -0.203 is significant

with a p-value less than 0.001 (see Table 5.4). Although this is the case, we see that the

variation of teenage pregnancy estimated by Model (5.3.2) has reduced by approximately 41.5%

of the variance σ2
υ0(2) in Model (5.3.1). This means that the distribution of census years (year)

strongly differ across females. Even in these estimates for Model (5.3.2), there is evidence that

teenage pregnancy varies within females because σ2
υ0(2) is significant with a p-value of less 0.05.

We could again use the caterpillar plot to examine the random intercepts estimates and change

in the number of ranks (see Figure 5.2). We see in this plot that the number of ranks of random

intercepts has increased from the estimates of using the null GLMM; justifying the difference

in the distribution of census years across females. We also notice that all the 95% confidence

interval overlap the zero line.

We could also compare the estimates of Models (4.3.2) and (5.3.2). The magnitude of the β0

and effect of year on the log odds of teenage pregnancy for an average female, in Model (4.3.2),

has respectively reduced by 0.169 and increased by 0.004. This means about 0.165 log odds of

teenage pregnancy that was observed in Model (4.3.2) estimates is accounted for by the random

intercept for an average female in 2012.
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Figure 5.2: Caterpillar plot of random intercept by rank with 95% confidence interval for Model 5.3.2.

5.3.3 Adding other main covariates effect

Going forward, Model (5.3.2) will be extended by adding simultaneously the main covariates

age, idhhms and nch, thus

logit(πti) = β0 + βyearyearti + βageageti + βihmidhhmsti + βnchnchti + υ
(2)
0i , (5.3.3)

where βage, βihm and βnch denote the fixed effects of age, idhhms and nch, respectively for

a specific female in a particular census year. The covariates effects will then be removed one-

by-one from Model (5.3.3) based on significant status at 5% level of significance.

The likelihood estimates of Model (5.3.3) that are presented in Table 5.4 indicate that both fixed

effects of idhhms and nch are insignificant at 5% level of significance. However, idhhms has

a z-value closer to zero; therefore at 5% level of significance, there is a strong evidence against

its effect on the log odds of teenage pregnancy.

Based on the aforementioned findings, the next model to be fitted will remove the effect of

idhhms, thus

logit(πti) = β0 + βyearyearti + βageageti + βnchnchti + υ
(2)
0i . (5.3.4)

The magnitude of the fixed effect of nch still suggests that there is no effect of nch on the log

odds of teenage pregnancy at 5% level of significance (see Table 5.4). This means that another

model can be fitted without the effect of nch, thus

logit(πti) = β0 + βyearyearti + βageageti + υ
(2)
0i . (5.3.5)
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For Model (5.3.5) estimates in Table 5.4, we see that all the fixed effect including the fixed

intercept are significant with a p-value less than 0.001.

Table 5.4: Estimates of model building for a logit GLMM of pregnancy status.

Model

Covariate (5.3.3) (5.3.4) (5.3.5)

Fixed effects

Intercept -5.528∗∗∗ (-44.19) -5.599∗∗∗ (-44.47) -5.654∗∗∗ (-35.87)

year -0.208∗∗∗ (-8.07) -0.207∗∗∗ (-8.07) -0.211∗∗∗ (-8.15)

age 0.549∗∗∗ (22.73) 0.549∗∗∗ (22.73) 0.559∗∗∗ (23.16)

idhhms -0.0189 (-0.18)

nch 0.191 (1.78) 0.191(1.78)

Random-effects

σ2
υ0(2) 5.23× 10−11 [0.00] 6.38× 10−10 [0.00] 0.111 [0.37]

z statistics in round parentheses () χ2
(1) statistics in square parentheses []

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

With regard to Models (5.3.3) and (5.3.4), the variance of the σ2
υ0(2) is very small (closer

to zero) such that the fixed effect estimates are approximately equal to Model (3) and (4)

estimates in Table 4.1. This suggests that female clustering has no significant impact on the

teenage pregnancy. Model (5.3.5) has estimated a variance of teenage pregnancy within females

as σ2
υ0(2) = 0.111. Nonetheless, all the variance estimates in Table 5.4 are not significant since

their χ2 values at 1 degree of freedom have p-values greater than 0.05. This means by including

the fixed effect of age, idhhms and/or nch, teenage pregnancy does not vary within females

at 5% level of significance.

5.3.4 Variance components

Unlike GLM, GLMM provides an additional statistic called ICC. For the reason that σ2
υ0(2) of

Models (5.3.3) and (5.3.4) are very much closer to zero, the ICC values for these models will

not be estimated. Table 5.5, shows the ICC estimates for Models (5.3.1), 5.3.2 and (5.3.5) in

Table 5.7.

The two level null model, Model (5.3.1), allows us to evaluate correlation between teenage

pregnancy status of the same female together with the extent of between female variation in

teenage pregnancy status. Table 5.5 reports a female cluster ICC value for Models (5.3.1),
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Table 5.5: ICC estimates for each model.

Model ICC Std. Err. [95% Conf. Interval]

(5.3.1) 0.154 0.045 [0.084, 0.263]

(5.3.2) 0.096 0.047 [0.035, 0.237]

(5.3.5) 0.032 0.051 [0.001, 0.453]

(5.3.2) and (5.3.5) of 0.154, 0.096, and 0.32 respectively. These values suggest that there is

15.4%, 9.6% and 3.2% of the variation of teenage pregnancy which is accounted for by females

given, respectively,

• that there is no fixed effect,

• the effect of census year, and

• the effect of census year and age of a female.

5.3.5 Adding the random effect of census year

However before these predictions, we can fit another model that allows census year effect to

vary across females. Thus

logit(πti) = β0 + βyearyearti + υ
(2)
0i + υ

(2)
1i yeartj , (5.3.6)

where υ
(2)
1i is said to be the random effect of year and it is normally distributed with mean

zero and variance σ2
υ1(2). The estimates of these model are shown in Table 5.6.

Table 5.6: Maximum likelihood estimates for null mixed logit model with female random effect.

Covariate Effect Std. Err. z-value [χ2
(1)] p−value [95% Conf. Interval]

Fixed effects

Intercept -3.501 0.106 -33.08 0.000 [-3.709, -3.294]

year -0.203 0.026 -7.86 0.000 [-0.253, -0.152]

Random effects

σ2
υ1(2) 9.27× 10−17 2.24× 10−9

[3.36] [0.186]
[0.000, 0.000]

σ2
υ0(2) 0.350 0.191 [0.120, 1.021]

l(β) = −3993.976, Observations = 35022, AIC = 7993.952
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In these results it is clear that census year does not vary across females. This is because the

likelihood ratio test for the random slope effect (υ
(2)
1i ) shows a χ2 with 2 degrees of freedom of

3.36 having a p-value = 0.186 which is greater than 0.05.

5.3.6 Model Selection

The AIC results for Models (5.3.1) to (5.3.5) are shown in Table 5.7.

Table 5.7: Akaike’s information criterion for each logit GLMM of pregnancy status.

Model

Covariate (5.3.1) (5.3.2) (5.3.3) (5.3.4) (5.3.5)

Observations 35022 35022 35022 35022 35022

l(β) -4025.49 -3993.98 -3619.52 -3619.54 -3620.85

Parameters 2 3 6 5 4

AIC 8054.98 7993.95 7251.05 7247.08 7249.71

Based on these results, Model (5.3.4) followed by Model (5.3.5) and then Model (5.3.3) seem to

have a better fit based on their AIC values. Furthermore, the Models (5.3.3) and (5.3.4) have

the same AIC values with Models (4.3.3) and (4.3.4) estimates in Table 4.1, respectively. In both

models, the fixed effects nch, idhhms and/or the random intercept υ
(2)
0i are not significant.

These models are not of better fit when compared to Model (5.3.2).

Even more, Model (5.3.6) had the same AIC value of 7993.95 but υ
(2)
1i was not significant. This

means that Model (5.3.2) is a better logit GLMM fit for teenage pragnancy data for this work;

hence it will be used for probability predictions.

5.3.7 Interpretation of a better fit logit GLMM for teenage pregnancy

Based on the results of the logit GLMM for this work, Model (5.3.2) will be used to predict

probability teenage pregnancy. The equation resulting from the likelihood estimates Model

(5.3.2) is written as

ηti = −3.501− 0.203yearti + υ
(2)
0i ,

where υ
(2)
0i is normally distributed with µυ0(2) = 0 and σ2

υ0(2) = 0.35. The estimated fixed

intercept of -3.501, which is the log odds that female is pregnant during census year 2011, means

that the probability of a teenage female being pregnant is equal to e−3.501/(1+e−3.501) = 0.029.

The magnitude of the effect of census year equal -0.203 means that for each 1 year increase
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to a census year, the log odds of teenage pregnancy is expected to decrease by 0.203, when

controlling for female difference. The estimate of the random intercept line for each ith female

can be estimated as −3.501 + υ̂
(2)
0i . This means that the log odds of teenage pregnancy are

expected to differ for female i by a value υ̂
(2)
0i .

5.3.8 Probability predictions of teenage pregnancy

To predict the probabilities, we take the inverse logit of ηti, thus

πti =
eηti

1 + eηti
,

where πti is the probability of teenage pregnancy for some female i in census year t. The

probability predictions can be calculated for cluster specific and probability averaged.

• Cluster specific probability predictions

For these predictions we use the estimated random intercepts of the female cluster to substitute

the term υ
(2)
0i and therefore compute probabilities. From Table 5.2, Model (5.3.2) has predicted

29 different random intercepts. Meaning we expect to have at least 5 × 29 = 145 predicted

probability values.

• Population averaged probability predictions

There are two ways to compute population averaged probabilities. The first one is to average

the cluster specific probabilities for each census year, thus,

πt =
1

t population size

t population size∑
i=1

πti,

where t = 0, 1, 2, 3, 4.

The second one is to simulate the M values of υ
(2)
0i from a normal distribution N(0, 0.35) for

each of the G = 29 groups of females per census year. For M = 1000, it means for each group

of females per census year, we can compute

π
(m)
tg =

e−3.501−0.203yeartg+υ
(2)m
0g

1 + e−3.501−0.203yeartg+υ
(2)m
0g

,

where m = 1, 2, ..., 1000, t = 0, 2, 3, 4 and g = 1, 2..., 29. Thereafter, average within each census

year the probabilities, π
(m)
tg , thus

πt =
1

M ×G

29∑
g=1

1000∑
m=1

π
(m)
tg
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where t = 0, 1, 2, 3, 4. These simulated values will be substituted in the equation to predict πti

and then averaged over census year.

Figures 5.3 and 5.4 are plotted using all the aforementioned calculations. Figure 5.3 com-

pares the cluster specific and population averaged predictions while Figure 5.4 compares the

population averaged predictions using the estimated and simulated random intercepts.

Figure 5.3: Cluster specific and population averaged probability of teenage pregnancy by census year

using estimated random intercepts.

Figure 5.4: Comparison of the population averaged probability of teenage pregnancy by census year

using the estimated and simulated random intercepts.

In Figure 5.3, each blue dash line represents the cluster specific probabilities for each group of
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females by census year. The green dash line (in Figures 5.3 and 5.4) is the population averaged

predicted probabilities over years that used the estimated random intercepts while the red dash

line (in Figure 5.4) used the simulated random intercepts. The green solid line is the observed

proportion of teenage pregnancy over census year.

As expected, all the predicted probabilities are reducing over year. The cluster specific pre-

dictions form some three groups with probability of teenage pregnancy in 2011 below 0.03

(first group), approximately 0.04 (second group) and above 0.05 but below 0.06 (third group).

Nonetheless, it is also clear that within this group the probabilities in 2011 still differ. This

means that indeed teenage pregnancy varies within females when census year is taken into ac-

count. We also see that a single line of probability predictions for cluster specific is way above

the rest of the population averaged predictions. However, in all the predicted blue dash lines,

we also observe, approximately, a constant change of probabilities of teenage pregnancy across

female groups.

Judging from the green population averaged dash line, the number of females with probabilities

in 2011 below 0.03 is extremely higher than that of females with probabilities approximately

0.04 and above 0.05 combined. This is because the green population averaged, the dash line,

slightly ties with the first group.

Moreover, the red line seems to tie with the observed proportions but just about 0.04 above the

green dash line. Over and above, the probabilities of teenage pregnancy are on average below

0.03 when using teenage pregnancy of our dataset, but below 0.035 when teenage pregnancy

status are sampled from a normally distributed population.

5.4 A Logit GLMM building for teenage pregnancy by sub-population

As in chapter 4, this chapter also fits a logit GLMM that takes into account of the sub-population

differences. This means in Model (5.3.2), year effect will be replaced with spft, thus

logit(πti) = β0 + (βp22012i + βp32013i + βp42014i + βp52015i) + υ
(2)
0i , (5.4.1)

where the effect of a female in 2012, 2013, 2014 and 2014 are βp2, βp3, βp4 and βp5, respectively.

The fixed and the random intercepts are, respectively, represented by β0 and υ
(2)
0i . Model (5.4.1)

was further extended by including the effect of age.

logit(πti) = β0 + (βp22012i + βp32013i + βp42014i + βp52015i) + βageageti + υ
(2)
0i , (5.4.2)
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Table 5.8 shows Models (5.4.1 and 5.4.2) likelihood estimates.

Table 5.8: Estimates of model building for a logit GLMM of pregnancy status by sub-population.

Model

Covariate (5.4.1) (5.4.2)

Fixed effects

Intercept -3.499∗∗∗ (-31.44) -5.601∗∗∗ (-35.11)

spft

2012 -0.269∗∗ (-2.80) -0.273∗∗ (-2.81)

2013 -0.363∗∗∗ (-3.60) -0.357∗∗∗ (-3.51)

2014 -0.495∗∗∗ (-4.64) -0.514∗∗∗ (-4.77)

2015 -0.953∗∗∗ (-7.51) -0.995∗∗∗ (-7.80)

age 0.559∗∗∗ (23.17)

Random effects

σ2
υ0(2) 0.356∗ [3.45] 0.109 [0.36]

Akaike’s information criterion estimates

Observations 35022 35022

l(β) -3991.704 -3618.261

df 6 7

AIC 7995.409 7250.523

t statistics in round parentheses ()

χ2
(1) statistics in square parentheses []

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

In both estimates of Models (5.4.1 and 5.4.2) the fixed effects and the intercept are all highly

significant because their p-values are less than 0.01 (see Table 5.8). However, the random

intercept for Model (5.4.1) estimates is significant while the one for Model (5.4.2) is not. Even

though Model (5.4.1) seems to have significant effects and intercepts, its AIC value of 7995.409

suggests that Model (5.3.2) with AIC of 7993.952 predicts teenage pregnancy better.

5.5 Summary

This chapter has addressed the last three objectives of the work and specified a multilevel

model or generalised linear mixed model which was used to model teenage pregnancy data.

The model revealed that only census year (year) is a significant effect on teenage pregnancy at
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5% level of significance. This means that age of the female teenager, the number of household

a female teenager belongs to and the number of children the female teenager had before year

of observation are not significant predictors of teenage pregnancy when female cluster is taken

into account.

Further more, this chapter has also suggested that the effect of census year does not vary across

females. This means for every female the risk of teenage pregnancy changes the same for all

the females as census year changes.

The variance components for the better fit model suggested that 9.6% variation of teenage

pregnancy which is accounted for by female cluster given 0.203 negative effect census year.

Which also means that there is a 0.096 correlation of teenage pregnancy status for same female

teenagers. This correlation is considered as moderate or reasonable given that 29 groups of

random intercepts estimate were formed out of 11544 females.
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Chapter 6

Model Extensions and More

Complex Data Structure

In this chapter, section 6.1 extends a two level teenage pregnancy dataset that was used in

chapters 4 and 5 to a three level dataset. The chapter will further, in section 6.2, specify and

build logit generalised linear mixed model with household cluster effect. Summary and conclusion

will also be provided towards the end of this chapter
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6.1 Population and Data structure

In chapters 4 and 5 our models used a two level dataset with measurements of teenage pregnancy

at level 1 and female teenagers at level 2. However, as we have seen in chapter 3, the variable

idhhms shows that each female belongs to one or more household. In this chapter, we expand

our data to a three level data structure where households are at level three. Table 6.1 is the

extension of Table 3.3 by including household cluster.

Table 6.1: The number of unique identifiers and units within the levels.

Level Level name Range Unique identifiers Units

1 Measurements of pregnancy status [2011, 2015] 5 38398

2 Female teenagers [1, 11544] 11544 11544

3 Households [1, 7863] 7863 7863

From Table 6.1 we observe that the number of level one units have increased from 35022 to

38398. This is because some female teenagers belong to more than one household. Figure 6.1

show a classification diagram for three level data structure. We also see that there are 7863

households while female population is still 11544.

hh1 hh2 ... hh7863

id1 id2 ... id11544

spft1 spft2 spft3 spft4 spft5

Figure 6.1: Classification diagram for the three level dataset.

It is clear from Figure 6.1 that females are nested within households, for example, id2 is nested

within hh2. It is also clear that some females are nested within multiple households, for example,

id1 is nested within hh1 and hh2. This means there exists a multiple membership classification

of females at level three; hence a multiple membership data structure. Moreover, in some cases

different females are clustered by the same household, for example, id1 and id2 are nested within

hh2. This means, it is of interest to check whether there is any variation in teenage pregnancy
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for females coming from the same household.

Table 6.2 indicate that several female belongs to multiple households.

Table 6.2: The number of observations for each household membership category by year.

2011 2012 2013 2014 2015 across year

idhhms N (%) N (%) N (%) N (%) N (%) N (%)

1 6815 (77.87) 6633 (80.82) 6366 (83.93) 6149 (86.37) 5913 (87.8) 31876 (83.01)

2 1640 (18.74) 1408 (17.16) 1120 (14.77) 904 (12.70) 780 (11.58) 5852 (15.24)

3 273 (3.12) 150 (1.83) 99 (1.31) 66 (0.93) 42 (0.62) 630 (1.64)

4 24 (0.27) 16 (0.19) 0 (0.00) 0 (0.00) 0 (0.00) 40 (0.10)

Total 8752 (100.0) 8207 (100.0) 7585 (100.0) 7119 (100.0) 6735 (100.0) 38398 (100.0)

N is the number of observations for each idhhms category

Contrary to the results from Table 3.6, our data here shows that there are 8752, 8207, 7585,

7119 and 6735 data lines for sub-populations of 2011, 2012, 2013, 2014 and 2015, receptively

(see Table 6.2). By including the household level, the number of observations have increased

by 3376 from 35022. The female teenagers with one household membership in Table 3.6 are the

same as in Table 6.2 for each sub-population and across census year. However, for household

membership equalling to 2, 3 and 4, the number of females in Table 3.6 are multiplied by 2, 3

and 4 for each sub-population and across census year, respectively. This means that for 2011

sub-population, data across main covariates was repeated for 917 female teenagers, which is

calculated as (1640/2) + (273/3) + (24/4) from Table 6.2. By performing this calculation for

the total column, we can see that information for 3146 females were duplicated, of which 5852,

630 and 40 observations were respectively duplicated once, twice and thrice.

Given that there was some changes in the number of observations, it would be interesting to still

check the relationship between the proportions of teenage pregnancy and all main covariates.

The Figures 6.2 (a) to 6.2 (d) show the relationship plot of proportions of teenage pregnancy,

respectively, with year, age, idhhms and nch. The calculation of the proportions in these

plots will be for both two level data and the three level multilevel datasets in which they are

averaged over each covariate.

Figure 6.2 shows some differences of the two datasets for the relationship between proportions

and census year from 2011 to 2014. The other differences, though slightly, are observed for 18

year old females and for females with 1 and 2 children before year of observation. On the other

hand, the relationship between the number of household membership and proportion of teenage
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(a) (b)

(c) (d)

Figure 6.2: The relationship of probabilities of teenage pregnancy with year, age, idhhms and nch.

pregnancy for both datasets are the same. These slight differences might mean that the effect of

these covariates would not differ much from the ones that were estimated in chapters 4 and/or

5.

6.2 Specifying and fitting a Logit GLMM for teenage pregnancy with

household cluster effect

The models that will be fitted in this chapter follow the same methodology that was illustrated

in chapter 5 for GLMM. This means that the effect of multiple membership at household level

will be ignored; hence, the assumption made would be that a female belongs to one household

at each census year. This section starts by building a two level logit model with a household

cluster because some groups of teenage pregnancy measurements are also clustered by some

specific household. Thereafter, this section will fit a three level logit model with both female
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and household cluster.

6.3 Model building of a two level logit GLMM for teenage pregnancy

The same concept that was used in chapters 4 and 5 of fitting first the null model followed by

adding year then adding other main covariates is also used. Table 6.3 shows the results of a

two level logit GLMM building with only household cluster.

Table 6.3: Estimates for a two level logit GLMM building of pregnancy status with household cluster.

Model

Covariate (6.3.1a) (6.3.1b) (6.3.1c) (6.3.1d) (6.3.1e) (6.3.1f)

Fixed effects

Intercept -3.753∗∗∗ -3.372∗∗∗ -5.523∗∗∗ -5.534∗∗∗ -5.544∗∗∗ -5.577∗∗∗

(-55.06) (-43.38) (-46.21) (-46.80) (-46.94) (-33.24)

year -0.203∗∗∗ -0.208∗∗∗ -0.206∗∗∗ -0.208∗∗∗ -0.186∗

(-8.32) (-8.42) (-8.40) (-8.47) (-2.24)

age 0.551∗∗∗ 0.551∗∗∗ 0.556∗∗∗ 0.563∗∗∗

(23.94) (23.94) (24.56) (16.70)

idhhms -0.0451

(-0.61)

nch 0.140 0.141

(1.32) (1.33)

year× age -0.00454

(-0.27)

Random effects

σ2
υ0(3) 0.158 0.0691 2.50e-32 9.46e-33 1.57e-32 4.69e-29

[1.22] [0.56] [0.00] [0.00] [0.00] [0.00]

z statistics in round parentheses (), χ2
(1) statistics in square parentheses []

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The results of Models (6.3.1a)-(6.3.1f) in Table 6.3 were obtained by fitting the following two

level logit GLMM,

logit(πtj) = β0 + υ
(3)
0j , (6.3.1a)

logit(πtj) = β0 + βyearyeartj + υ
(3)
0j , (6.3.1b)

logit(πtj) = β0 + βyearyeartj + βageagetj + βihmidhhmstj + βnchnchtj + υ
(3)
0j , (6.3.1c)
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logit(πtj) = β0 + βyearyeartj + βageagetj + βnchnchtj + υ
(3)
0j , (6.3.1d)

logit(πtj) = β0 + βyearyeartj + βageagetj + υ
(3)
0j , and (6.3.1e)

logit(πtj) = β0 + βyearyeartj + βageagetj + βyageyearij × ageij + υ
(3)
0j , (6.3.1f)

respectively. The term β0 is a fixed intercept while υ
(3)
0j is the random intercept of the household

cluster, in which j = 1, 2, ..., 7863. The random intercept is normally distributed with mean

zero and variance σ2
υ0(3), where (3) indicates household cluster. The fixed effects of year, age,

idhhms, nch and year× age are the magnitude of βyear, βage, βihm and βnch.

As in chapters 4 and 5, the main fixed effects of idhhms , nch and the interaction effect

year × age are not significant at 5% level of significance. Even more, none of the models

produce evidence that teenage pregnancy varies within households. This is because all variances

are insignificant with p-values of more than 0.05 level of significance. For this reason, none of

the logit GLMM with household cluster can be used for probability predictions of teenage

pregnancy.

6.3.1 Model building for three level logit GLMM

Just as other model building in this dissertation, this analysis starts by fitting a null model of

teenage pregnancy, but this time with both female and household cluster, thus

logit(πtij) = β0 + υ
(2)
0i + υ

(3)
0ij , (6.3.2)

where β0 is a fixed intercept. The random intercept υ
(2)
0i of female cluster and υ

(3)
0ij of house-

hold cluster are assumed to follow a multivariate normal distribution with mean vector 0 and

variance-covariance matrix Συ. The estimates of Model (6.3.2) that are shown in Table 6.5

indicate that the fixed intercept β0 is significant at 5% level of significance.

The estimated variance within female cluster between households was observed as 0.59 while

within household variance, σ2
υ0(3) = 2.46× 10−32, is very close to zero (see Model (6.3.2) results

in Table 6.5). These results also shows that the random intercept υ
(2)
0i is significant at 5%

level of significance while υ
(3)
0j is not. This means that teenage pregnancy does not vary within

household; hence, there is no effect of the household cluster.

For illustration purposes, we examine the magnitude of the VPC and ICC, in which we will

show that a three level mixed model report the VPC
(2)
υ value that is different from the ICC

(2)
υ

value. Table 6.4 shows the variance components estimates of Model (6.3.2).
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The ICC
(3)
υ = 6.34 × 10−33 suggest that there is an extremely small correlation of teenage

Table 6.4: Variance components of female and household random effect, Model (6.3.2).

Components Coef. Std. Err. [95% Conf. Interval]

Females level

ICC
(2)
υ 0.152 0.043 [0.085, 0.257]

VPC
(2)
υ 0.152

Households level

ICC
(3)
υ 6.34× 10−33 8.93× 10−18 [.,1]

VPC
(3)
υ 6.34× 10−33

pregnancies in the same household. For the reason that VPC
(3)
υ = ICC

(3)
υ = 6.34 × 10−33, the

variation of teenage pregnancy that lies between is approximately 0. However, ICC
(2)
υ = 0.152,

means that there is a reasonable correlation of teenage pregnancy for the same female. In Table

6.4, the values of VPC
(2)
υ are 6.34 × 10−33 and 0.152; hence, 15.2% of the variation in teenage

pregnancy lies within households between females. Although it was expected that the magni-

tudes of VPC
(2)
υ and ICC

(2)
υ are different, it is not the case. This is because the value of σ2

υ0(3)

is very small such that it is approximately zero.

The model fitted for the estimates of Model (6.3.2) in Table 6.5 added a fixed effect βyear of

census year to Model (6.3.2), thus

logit(πtij) = β0 + βyearyeartj + υ
(2)
0i + υ

(3)
0ij . (6.3.3)

The results indicated that both the fixed intercept and the effect of census year were significant

at 5% level of significance. However, both the random intercept effect of female and household

cluster are insignificant; hence, Model (6.3.3) cannot be used as a logit GLMM that predicts

teenage pregnancy.

Model building of the three level logit GLMM, further added the effect of other main covariates

(idhhms and nch) to Model (6.3.3), thus

logit(πtj) = β0 + βyearyeartj + βageagetj + βihmidhhmstj + βnchnchtj + υ
(3)
0j , (6.3.4a)

logit(πtj) = β0 + βyearyeartj + βageagetj + βnchnchtj + υ
(3)
0j , and (6.3.4b)

logit(πtj) = β0 + βyearyeartj + βageagetj + υ
(3)
0j . (6.3.4c)

logit(πtj) = β0 + βyearyeartj + βageagetj + βyageyearij × ageij + υ
(3)
0j . (6.3.4d)

CHAPTER 6. MODEL EXTENSIONS AND MORE COMPLEX DATA STRUCTURE 70



ASSESSING VARIANCE COMPONENTS OF MULTILEVEL MODELS FOR SOCIAL SCIENCE DATA

The effects of idhhms (in the Model (6.3.4a)) and nch (in the Models (6.3.4a) and (6.3.4b))

were found not to be significant at 5% level of significance. On the other hand, Model (6.3.4c)

indicated that the fixed effects of year and age were significant with p-values of less than

0.001; hence Model (6.3.4d). Nonetheless, the interaction effect of census year and age of the

female was also found insignificant at 5% significance level.

Table 6.5: Estimates of model building for a three level logit GLMM of pregnancy status.

Model

Covariate (6.3.2) (6.3.3) (6.3.4a) (6.3.4b) (6.3.4c) (6.3.4d)

Fixed effects

Intercept -3.949∗∗∗ -3.506∗∗∗ -5.523∗∗∗ -5.534∗∗∗ -5.601∗∗∗ -5.641∗∗∗

(-41.89) (-34.69) (-46.21) (-46.80) (-37.62) (-28.86)

year -0.200∗∗∗ -0.208∗∗∗ -0.206∗∗∗ -0.209∗∗∗ -0.184∗

(-8.10) (-8.42) (-8.40) (-8.45) (-2.20)

age 0.551∗∗∗ 0.551∗∗∗ 0.558∗∗∗ 0.566∗∗∗

(23.94) (23.94) (24.29) (16.51)

idhhms -0.0451

(-0.61)

nch 0.140 0.141

(1.32) (1.33)

year× age -0.00531

(-0.32)

Random effects

σ2
υ0(2) 0.590∗∗ 0.348 4.67e-32 1.65e-30 0.109 0.112

[2.99] [1.90] [0.00] [0.00] [0.63] [0.65]

σ2
υ0(3) 2.46e-32 1.60e-33 9.55e-33 3.60e-33 4.92e-30 2.52e-29

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

z statistics in round parentheses (), χ2
(1) statistics in square parentheses []

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Apart from the reason that the fact of the ignorance of multiple membership data structure,

random part of the estimates indicates that the variance at level 3 are neglectable as they are

very close to zero. Hence, we will not use the three-level models for the prediction of teenage

pregnancy.
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6.4 Summary

The intention of this chapter was to build a two and three level logit GLMM with household

cluster that can be used to predict teenage pregnancy. However, the results obtained from the

analysis indicated that household cluster has no effect on teenage pregnancy. This is because

the variances at this cluster were very small (approximately zero). Chung and Beretvas (2012)

indicated that ignoring the fact of multiple membership at a particular cluster underestimates

the variance at that cluster. This means that the small variance at household level might have

been caused by the assumption of a pure hierarchy of females within households for the dataset

in this chapter.

Nonetheless, the work in this chapter has illustrated how one can fit a three level logit GLMM

on a pure hierarchical data structure. Even more, this chapter leaves us with a question as to

whether, by using appropriate MLM to fit a multiple membership data structure, the household

cluster will indeed not have an effect on teenage pregnancy.
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Chapter 7

Summary, Conclusions and

Recommendations

This chapter summarises the research work embraced in all six chapters. The chapter will

thereafter draw conclusions and suggest recommendations for further studies.
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7.1 Summary

7.1.1 Chapters 1 and 2

The overall goal of this dissertation is to demonstrate the importance of using generalised lin-

ear mixed models to fit and assess variance components of the nested nature of social science

data. Chapter 1 specified that the intended aim was stretched out into five objectives. The first

objective of this study was accomplished in chapter 3 that explored the multilevel structure

of teenage pregnancy and chapter 5 that specified appropriate model to fit the presumed data

structure. In exploring the data structure of this work, chapter 3 suggested a two level hierar-

chical structure with at most five measurements of teenage pregnancy that are purely nested

within females. This data structure was explored in chapter 2, in which possible multilevel data

structures were discussed.

7.1.2 Chapters 3

In chapter 2, a pure two level hierarchical data structure is observed when level one units

(measurements of teenage pregnancy) are nested into one and only one level two unit (female

teenager) (Goldstein, 2011). This exploration of data also revealed seven variables in which

one is the response variable, one is a cluster variable and five are covariates. Pregnancy status,

denoted by ps is a binary response variable that can be either “yes” or “no”. The variable

id that denotes female teenagers is the cluster at level two. The covariate spft is the only

factor variable and it indicates the 2011, 2012, 2013, 2014 and 2015 sub-population of female

teenagers. Census year denoted by year is also a covariate that captures the years 2011, 2012,

2013, 2014 and 2015 but respectively substituted by categories 0, 1, 2, 3 and 4 in order to

measure time where 0 is the reference category. This means that spft and year are used

interchangeably. The other three covariates denoted by age, idhhms and nch are age of the

female, number of households a female belong to and the number of children the female had

before year of observation, respectively. The covariates age, idhhms and nch are the only

characteristics of the female teenager that are available in teenage pregnancy dataset.

7.1.3 Chapter 4 and 5

Table 7.1 shows the summarised estimates for better fit GLMs and GLMMs in chapter 4 and

chapter 5. Secondly, chapter 4 addressed the objective (b) that intended to fit the presumed

multilevel data structure. This was conducted with a purpose to examine the effect of the

aforementioned covariates but intentionally ignoring the clustering of measurements of teenage
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Table 7.1: Likelihood estimates of the better fit GLM and GLMM.

Model

Covariate (4.3.2) (5.3.2) (4.3.5) (5.3.5)

Fixed effects

Intercept -3.332∗∗∗ (-64.27) -3.501∗∗∗ (-33.09) -5.542∗∗∗ (-44.61) -5.599∗∗∗ (-35.88)

year -0.207∗∗∗ (-8.12) -0.203∗∗∗ (-7.86) -0.210∗∗∗ (-8.17) -0.211∗∗∗ (-8.15)

age 0.557∗∗∗ (23.42) 0.559∗∗∗ (23.16)

Random effects

σ2
υ0(2) 0.350∗ [3.36] 0.111 [0.181]

Variance Components

ICC/VPC 0.096 0.032

Akaike’s information criterion estimates

df 2 3 3 4

AIC 7995.312 7993.952 7248.077 7249.705

t statistics in round parentheses (), χ2
(1) statistics in square parentheses []

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

pregnancy at female cluster. Chapter 4 builds two logit generalised linear models of which the

first fits the effect year together with the effect of three other covariates. The results revealed

that among the four effects, only year and age are risk factors of teenage pregnancy at 0.05

significance level. This means that, at 5% level of significance, there was no evidence of the

effect of idhhms, nch and the interaction of effect of year and age on teenage pregnancy.

The second logit GLM fits the effect of spft together with the effect of the resulting significant

covariate year. Even in the model that accounts for sub-population differences, only spft and

age were significant. The estimates of the effect of the categories of spft tied exactly with the

observed proportions of teenage pregnancy. Nonetheless, the final logit GLM with year effect

stands out to be the better one than that with spft effect because of their AIC values. The

predictions using the better fit logit GLM, logit(πi) = −5.542−0.21yeari+0.557agei, indicated

that the probabilities of teenage pregnancy are high for older female teenagers in 2011 and

across census year. These predictions also indicated that teenage pregnancy in 2011 was higher

at each female age compared to across census year. On the other hand, the probabilities of

teenage pregnancy are very low for 13 year old females for each census year compared to 14-19

year old females. This means that by not considering the 14-19 year old females the predicted

probabilities will differ drastically with the observed proportions. Moreover, the predicted
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probabilities slightly tie with the observed proportion even though clustering has been ignored.

Thirdly, chapter 5 addressed objective (c) in which a two level multilevel or generalised linear

mixed model was used to examine the effects that the aforementioned covariates has on teenage

pregnancy. Chapter 5 also built two models, one with year and another with spft fixed

effect. As in chapter 4, the model with year effect was better, thus logit(πti) = −3.501 −

0.203yearti + υ
(2)
0i . However, different from the results of a better logit GLM, the better logit

GLMM suggested that there was no effect of age, idhhms and nch at 5% level of significance.

This means that year was the only significant effect on teenage pregnancy. However, the better

logit GLMM also included the female cluster effect that indicated that teenage pregnancy varies

within females. Taking into consideration that the better logit GLMM fitted the nested nature

of the pregnancy data, this model is considered a better fit despite the comparison of the AIC

values with the better fit logit GLM. Supposably if age of the female teenager was not one of

the covariates, a logit GLM with only year would be considered as a better fit logit GLM,

thus logit(πi) = −3.332 − 0.207yeari. By comparing the supposed estimate with the ones of a

better fit logit GLMM, the fixed intercept is over estimated by 0.169 while the fixed effect of

census year is under estimated by 0.04 when female cluster is ignored. Although the differences

are not that much, it is a fact that by ignoring the nested nature of the data can indeed lead

to misleading estimates; leading to incorrect conclusions. Even more, the AIC of the supposed

logit GLM is higher than that of a better fit logit GLMM by 1.36; hence, the prediction of

probabilities are compromised when clustering effect is pushed aside.

To address the fourth objective of this work, chapter 5 also computed the variance partition and

intraclass correlation coefficients in order to examine the effects of female cluster on teenage

pregnancy. The better fit logit GLMM indicated that there is a significant effect of the female

cluster on teenage pregnancy. This conclusion was made because the p-value of the χ2 with 1

degrees of freedom of critical value for the variance of teenage pregnancy within female cluster

was found to be less than 0.05. Chapter 5 further used the variance to calculate the VPC and

ICC of the female cluster that are both 0.096. This value means that 9.6% of the variation in

teenage pregnancy lies between the females and also that there is, from a scale of 0 to 1, there is

0.096 correlation of teenage pregnancies for the same females. Although this suggests reasonable

differences of teenage pregnancy within female cluster, there are very small similarities of teenage

pregnancies for the same females.

Furthermore, after the realisation of a significant effect of census year, this study is also able
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to address the objective (e) that intended to asses whether this effect varies across females.

However, the variance of census year across female cluster was not significant. Meaning that

the effect of census year on teenage pregnancy does not differ across female teenagers.

7.2 Conclusions and Recommendations

Clearly, the analyses conducted and presented in chapters 3, 4 and 5 have addressed all objectives

of this dissertation; thereby accomplishing the main aim of this work. That is, given that data

in social and health science are nested in nature it is important to use appropriate models to

assess variance components. Although generalised linear models with a logit link are able to

model binary data, it is evident that logit generalised linear mixed models are able to fit binary

data and also assess variance components. Based on the results comaprison of chapters 4 and 5,

it is clear that the differences and similarities that are generated by clustering are essential. This

means that it is important that both data scientists and researchers should see the relevance of

having some knowledge on GLMM or MLM statistical methods prior to collection and analysis

planning.

Moreover, Chapter 6 expanded the two level data structure to a three level with household at

level 3. In this three level data structure, a complex structure than that of pure hierarchical was

observed where some females are clustered by more than one household. This means there exists

a multiple membership classification of females at level three; hence, a multiple membership data

structure that was discussed in chapter 2. Nonetheless, the analysis undertaken in chapter 6

ignored the fact of multiple membership assuming pure hierarchy between female and household

level. After fitting a two level (household at level 2) and three level (with female at level 2 and

household at level 3) logit GLMM, the results thereof suggested that the household cluster has

no effect on teenage pregnancy.

Although chapter 6 revealed that female teenagers are nested within multiple households, the

scope of this study did not covered multiple membership multilevel models. The reason for this

non-coverage is also due to the large number of household which make the computations of the

household random effect complex and time consuming. Given this challenges, the future line

of this work will focus on social and health science data that are either multiple membership

data structures and/or a mixture of the three data structures which were discussed in chapter

2. This will also require statisticians and statistics software developers to use approximation

method which are able to estimate both the fixed and the random effects, faster and effectively.
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Appendix A

Fitting Logit GLMs

A.1 Logit generalised linear models stata codes in chapter 4

A.1.1 Load a two level teenage pregnancy dataset

use ”file path”, replace

A.1.2 Fitting and Building Logit generalised linear model (GLM)

//Model (4.3.1): Fit a null logit GLM and store estimates as est1

eststo: glm ps, family(binomial 1) link(logit)

//Model (4.3.2): Add the effect of year to Model (4.3.1) and store estimates as est2

eststo: glm ps (year), family(binomial 1) link(logit)

//Model (4.3.3): Add the effects of age, idhhms and nch to Model (4.3.2) and store estimates as est3

eststo: glm ps (year) age idhhms nch, family(binomial 1) link(logit)

//Model (4.3.4): Remove the effect of idhhms to Model (4.3.3) and store estimates as est4

eststo: glm ps (year) age nch, family(binomial 1) link(logit)

//Model (4.3.5): Remove the effect of nch to Model (4.3.4) and store estimates as est5

eststo: glm ps (year) age, family(binomial 1) link(logit)

//Model (4.3.6): Add the effect of year× age to Model (4.3.5) and store estimates as est6

eststo: glm ps (year) age c.year#c.age, family(binomial 1) link(logit)

//Produce AIC statistics for all six logit GLM in Table 4.2

estimates stats est1 est2 est3 est4 est5 est6

//Clear all stored estimates

eststo clear
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Appendix B

Fitting Logit GLMMs

B.1 Logit generalised linear mixed models stata codes in chapter 5

B.1.1 Load a two level teenage pregnancy dataset

use ”file path.dta”, replace

B.1.2 Null generalised linear mixed model

//Model (5.3.1): Fit a null logit GLMM with female cluster (id) and store estimates as est1

eststo: meqrlogit ps ||id:, variance

//Produce statistics AIC for Model (5.3.1)

estat ic

B.1.3 Adding the census year fixed effect

//Model (5.3.2): Fit Model (5.3.1)+ year with female cluster (id) and store estimates as est2

meqrlogit ps year ||id:, variance

//Produce AIC for Model (5.3.1)

estat ic

B.1.4 Building a logit GLMM that adds, to Model (5.3.2), other main covariates

//Model (5.3.3): Add the effect of age, idhhms and nch to Model (5.3.2) and store estimates as est3

eststo: meqrlogit ps (year) age idhhms nch ||id:, variance

//Model (5.3.4): Remove the effects of idhhms to Model (5.3.3) and store estimates as est4

eststo: meqrlogit ps (year) age nch ||id:, variance

//Model (5.3.5): Remove the effect of nch to Model (5.3.4) and store estimates as est5

eststo: meqrlogit ps (year) age ||id:, variance

//Produce AIC statistics for all five logit GLMM

estimates stats est1 est2 est3 est4 est5

//Clear all stored estimates

eststo clear

85



ASSESSING VARIANCE COMPONENTS OF MULTILEVEL MODELS FOR SOCIAL SCIENCE DATA

B.2 Logit generalised linear mixed models stata codes in chapter 6

B.2.1 Load a three level teenage pregnancy dataset

use ”file path.dta”, replace

B.2.2 Building a two level logit GLMM with a household cluster

//Model (6.3.1a):Null logit GLMM with the effect of υ
(3)
0j and store estimates as est1

eststo: meqrlogit ps ||hh:, variance

//Model (6.3.1b): Add the effect of year to Model (6.3.1a) and store estimates as est2

eststo: meqrlogit ps year ||hh:, variance

//Model (6.3.1c): Add the effects of age, idhhms and nch to Model (6.3.1b) and store estimates as est3

eststo: meqrlogit ps (year) age idhhms nch ||hh:, variance

//Model (6.3.1d): Remove the effect of idhhms to Model (6.3.1c) and store estimates as est4

eststo: meqrlogit ps (year) age nch ||hh:, variance

//Model (6.3.1e): Remove the effect of nch to Model (6.3.1d) and store estimates as est5

eststo: meqrlogit ps (year) age ||hh:, variance

//Model (6.3.1f): Add the interaction effect of year × age to Model (6.3.1e) and store estimates as est5

eststo: meqrlogit ps (year) age c.year#c.age ||hh:, variance

//Produce AIC statistics for all five logit GLMM

estimates stats est1 est2 est3 est4 est5

//Clear all stored estimates

eststo clear

B.2.3 Building a three level logit GLMM with female cluster and household cluster

//Model (6.3.1a):Null logit GLMM with the effect of υ
(3)
0i and υ

(3)
0ij and store estimates as est1

eststo: meqrlogit ps ||hh: ||id:, variance

//Model (6.3.1b): Add the effect of year to Model (6.3.1a) and store estimates as est2

eststo: meqrlogit ps year ||hh: ||id, variance

//Model (6.3.1c): Add the effects of age, idhhms and nch to Model (6.3.1b) and store estimates as est3

eststo: meqrlogit ps (year) age idhhms nch ||hh: ||id, variance

//Model (6.3.1d): Remove the effect of idhhms to Model (6.3.1c) and store estimates as est4

eststo: meqrlogit ps (year) age nch ||hh: ||id, variance

//Model (6.3.1e): Remove the effect of nch to Model (6.3.1d) and store estimates as est5

eststo: meqrlogit ps (year) age ||hh: ||id, variance

//Model (6.3.1f): Add the interaction effect of year × age to Model (6.3.1e) and store estimates as est5

eststo: meqrlogit ps (year) age c.year#c.age ||hh: ||id, variance

//Produce AIC statistics for all five logit GLMM

estimates stats est1 est2 est3 est4 est5

//Clear all stored estimates

eststo clear
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