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ABSTRACT 

The pronunciation of words and phrases in any language involves careful 

manipulation of linguistic features. Factors such as age, motivation, accent, 

phonetics, stress and intonation sometimes cause a problem of inappropriate or 

incorrect pronunciation of words from non-native languages. Pronunciation of 

words using different phonological rules has a tendency of changing the meaning 

of those words. This study presents the development of an automatic 

pronunciation assistant system for under-resourced languages of Limpopo 

Province, namely, Sepedi, Xitsonga, Tshivenda and isiNdebele.  

The aim of the proposed system is to help non-native speakers to learn 

appropriate and correct pronunciation of words/phrases in these under-resourced 

languages. The system is composed of a language identification module on the 

front-end side and a speech synthesis module on the back-end side. A support 

vector machine was compared to the baseline multinomial naive Bayes to build 

the language identification module. The language identification phase performs 

supervised multiclass text classification to predict a person’s first language based 

on input text before the speech synthesis phase continues with pronunciation 

issues using the identified language. The speech synthesis on the back-end 

phase is composed of four baseline text-to-speech synthesis systems in selected 

target languages.  These text-to-speech synthesis systems were based on the 

hidden Markov model method of development. Subjective listening tests were 

conducted to evaluate the performance of the quality of the synthesised speech 

using a mean opinion score test. The mean opinion score test obtained good 

performance results on all targeted languages for naturalness, pronunciation, 

pleasantness, understandability, intelligibility, overall quality of the system and 

user acceptance. The developed system has been implemented on a “real-live” 

production web-server for performance evaluation and stability testing using live 

data.  
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1 CHAPTER 1: INTRODUCTION 

1.1 Preamble 

Within the realm of human-computer interaction systems, there are human 

language technologies (HLTs) that simplify communication between humans and 

computational systems. These technologies are available for languages such as 

English, Spanish, French and other well-known languages. HLT comprises text 

and speech processing technologies. The speech technologies make it possible 

for people to use computational devices such as mobile phones to access 

information, use email systems or even do voice dialling in their first language. 

The text technologies make it possible for people to manipulate historic textual 

data to make future predictions (e.g. weather predictions, financial markets, and 

others). Furthermore, text technologies are used to make spell checkers, and do 

text normalisation, text analytics, and text classification tasks.   

Text classification is a challenging task in computational, library and information 

sciences. The main task involves the ability to classify or assign a text unit or 

document to a pre-defined class (Botha et al., 2007). Text classification is used 

as language identification (LID) in language-specific systems. An automatic LID 

is a growing application of the speech processing technology that has many 

practical uses. It can be used as a front-end system to a telecommunication 

company - routing a caller to an appropriate human emergency operator - 

depending on the correct identification of the caller’s language. It can be used in 

multilingual speech recognition (Rao & Nandi, 2015), speech translation (Heck et 

al., 2012), and document processing systems (Shukla et al., 2016).  

LID is a problem of discovering the identity of the natural language of a given 

spoken or textual content (Lamabam & Chakma, 2016). In text and speech 

processing systems, LID of text units or documents is an important prerequisite 

for systems such as an automatic machine translation, information extraction, 

email spam filtering systems, topic identification systems, document 

summarisation systems, pronunciation prediction and text-to-speech (TTS) 

synthesis systems (Giwa & Davel, 2015).  
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A TTS synthesis system is a computational system that generates synthetic 

speech from a given input text in a specific language (Zen et al., 2009). Figure 

1.1 shows an example of a typical TTS synthesis system generating synthetic 

speech from text. There are different kinds of speech synthesis methods that are 

used when building synthetic voices. These methods include rule-driven 

synthesis and data-driven synthesis. Data-driven synthesis includes hidden 

Markov model (HMM)-based synthesis and concatenation synthesis.  The HMM 

speech synthesis system (or HTS – ‘H Triple S’) uses the statistical parametric 

model that extracts speech parameters from the speech corpus to produce 

equivalent sound of an input text (Zen et al., 2009). The TTS synthesis systems 

for well-resourced languages are becoming more readily commercially available 

in the market as the quality of these systems continues to improve rapidly. Mainly, 

commercial systems apply the unit-selection based concatenation method to 

generate high quality synthetic speech waveform. However, the unit-selection 

approach demands a very large database to store the pre-recorded training 

speech data. Avoiding such a problem, the HTS approach has successfully 

evolved with appreciable improvements to the concatenative method in terms of 

processing speed and utilisation time.  

 

 

Figure 1.1: General TTS system showing text as input and speech waveform as output 

(Baloyi, 2012). 
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1.2 Motivation 

The area of speech processing research has gradually advanced over recent 

decades with many systems developed with ability to produce natural sounding 

synthetic speech (Zen et al., 2009). Research in the subfield of speech synthesis 

has been powered by the increase of new and robust software applications that 

have been developed (Pammi et al., 2010). These include, amongst others, the 

reading out of manuscripts for collation, public announcements at public places 

and information retrieval services over the telephone such as customer care 

services or banking services (Violano & van Collie, 1992). In today’s electronic 

digital age, the use of TTS synthesis technologies has increased exponentially in 

mobile smartphones, computers, internet-based services, and dialogue systems. 

A TTS synthesis system can be embedded in special equipment as a voice-

enabling tool for vocally challenged people1. FingerReader is one of the initiated 

applications of TTS synthesis that assists visually impaired people to read 

documents (Shilkrot et al., 2014). Most of the developed software applications 

like word processors have capability to read words, phrases and sentences 

aloud. These systems provide a way for the visually impaired people to read text 

that would not be available to them. The current modern TTS synthesis systems 

such as the Watson 2  TTS and Microsoft Speak 3  function can synthesise 

documents such as Portable Document Format (Adobe Acrobat), emails, 

Microsoft Word files and text files. For most South African indigenous official 

languages, these enabling linguistic developments have not been attained by the 

speech and language processing research community. The research community 

in speech and language processing is rapidly improving its utility systems that 

can read images using optical character recognition systems (Li et al., 2012). In 

the 1970s, Texas Instruments’ “Speak and Spell”4 was the first educational toy 

that applied speech synthesis in the field of computer-assisted education. The 

                                            
1 Available at: http://www.hawking.org.uk/the-computer.html 
2 Available at: http://www.ibm.com/watson/developercloud/text-to-speech/api/v1/ 
3 Available at: https://support.office.com/en-us/article/use-the-speak-text-to-speech-feature-to-
read-text-aloud-459e7704-a76d-4fe2-ab48-189d6b83333c 
4 Available at: http://www.ti.com/corp/docs/company/history/timeline/eps/1970/docs/78-speak-
spell_introduced.htm 
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TTS synthesis systems are used in education institutions to improve learning the 

pronunciation of new languages (Badenhorst et al., 2006). 

 

1.3 Problem Statement 

The pronunciation of words and phrases in any language involves careful 

manipulation of stress, intonation, and articulation, frequently with reference to 

some standard of correctness (Gilakjani & Ahmadi, 2011). Most of the time, the 

pronunciation of words (particularly proper names from new or unfamiliar 

languages) is difficult for non-native speakers of those languages. In our 

approach, it is important and preferable to attempt identifying the first language 

of a person using something like that person’s proper name details in order to 

facilitate selection of appropriate tools to generate its correct pronunciation 

(Llitjos & Black, 2001). Knowledge of or ability to predict the first language 

associated with a word or a proper name may reduce the pronunciation difficulties 

experienced by non-native speakers by appropriately applying phonetic rules 

from that first language.   

One of the language processing phenomena required in a multilingual 

environment is mostly established using LID. In a multilingual environment like 

South Africa, the problem of incorrect pronunciation of words or phrases from 

other languages is sometimes caused by the following (Kenworthy, 1987): 

 Phonetics – pronunciation of a word using different phonological rules. 

 Age – production of speech is affected at different age groups. 

 Motivation – lack of motivation to learn how to speak other languages. 

 Accent – naturally, people use their first language accent to speak other 

languages; the use of strong accent changes or distorts the meaning of 

the words. 

 Stress and intonation – randomly applying strong stress or intonation on 

some words changes the meaning of those words. 



5 

The use of an LID system on the front-end in speech and language processing 

systems helps to determine the language of an input audio or text before a TTS 

synthesis system can produce corresponding synthetic speech. This has an 

effect of reducing computational complexity and searching time (Rao & Nandi, 

2015). Current estimates indicate that there are more than 7000 natural 

languages in the world, but the TTS synthesis systems are not readily available 

for thousands of under-resourced languages (Lewis et al., 2016), including South 

African official languages. The unavailability of TTS synthesis systems worldwide 

often leads to difficulties in correct pronunciation of words and phrases from most 

of the under-resourced languages. One of the possible solutions to improve 

quality of pronunciation in resource-scarce languages is to build TTS synthesis 

systems for the benefit of assisting users in the learning of correct pronunciation 

of other languages. To this end, the integration of a text-based LID system and a 

TTS synthesis system may increase accuracy with automatic pronunciation of 

proper names for under-resourced languages of Limpopo Province. 

 

 

1.3.1 Aim 

The aim of the study is to build a prototype software system that uses a trained 

classifier to enhance pronunciation of words and phrases, particularly proper 

names for Sepedi, Tshivenda, Xitsonga and isiNdebele. 

1.3.2 Objectives 

The objectives of this study are to: 

a) Collect training text data consisting of proper names including surnames 

or maiden names for the front-end LID system. 

b) Acquire pre-recorded speech data to create synthetic voices in Sepedi, 

Xitsonga, Tshivenda and isiNdebele. 
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c) Use appropriate machine-learning algorithms to train text-based LID front-

end system for classification of surnames into respective first languages.  

d) Use a trained LID system to predict the first language of a person given 

that person’s proper name.  

e) Activate the TTS synthesis system of that first language to continue with 

pronunciation guidance and training, using the predicted first language 

automatically.  

f) Evaluate the performance of integrated LID-TTS systems.  

1.3.3 Research Questions 

The main research questions of the study are as follows: 

 Can a computational system use a person’s surname to predict the identity 

the first language of that person? 

 Can a computational system produce an appropriate pronunciation of 

indigenous proper names? 

1.4 Research Methods 

The speech training data were acquired from the Lwazi (a word which means 

“knowledge” in isiZulu) project in collaboration with the Council for Scientific and 

Industrial Research (CSIR), South African Department of Arts and Culture, and 

Department of Science and Technology (Language Resource Management 

Agency, 2016). An appropriate text dataset with surnames was acquired from the 

student database of University of Limpopo for the targeted under-resourced 

languages. Appropriate classification methods were tried and tested before the 

best method was selected to implement the proposed system. The acquired text 

data was used to train machine-learning algorithms such as multinomial naive 

Bayes (MNB) and support vector machines (SVMs) (Chang & Lin, 2011).  

The Eclipse software and Waikato Environment for Knowledge Analysis (WEKA) 

Java application programming interface (API) (Hall et al., 2009) were used to 

build the LID model. A machine-learning classifier was trained and used as the 
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core LID module classifying any given input text. The accuracy of the trained 

machine-learning classifier was evaluated on a dataset which was not used 

during the training of the classifier. The Modular Architecture for Research on 

speech sYnthesis (MARY) TTS synthesis system (Pammi et al., 2010), which 

supports multilingual languages, was used to build new TTS synthesis voices in 

Sepedi, Tshivenda, Xitsonga and isiNdebele. The system integration for a user-

friendly human-computer interface was built using Java programming language.  

The evaluation of the performance of the developed system was conducted in a 

form of a questionnaire survey, using first language speakers from different 

professions. The data gathered from the survey was analysed using the mean 

opinion score (MOS) method for naturalness, pronunciation, pleasantness, 

understandability, intelligibility, overall quality of the system and user acceptance. 

The MOS provides a numerical measure of the quality of human speech using a 

Likert scale. The system was deployed to the production servers as a website for 

performance evaluation on a “real-world” platform including test usability and 

acceptability issues. An Android application was also developed. This application 

acts as a client to the deployed system on the internet. The prototype TTS 

synthesis system can be accessed on the website http://www.speechtech.co.za. 

 

1.5 Scientific Contribution 

This research project intends to deliver an intelligible and natural sounding TTS 

synthesis prototype system that embeds a first language identification predictor 

on the front-end, based on the surname of user. The integration of LID as a front-

end module has a greater chance of increasing the pronunciation quality of the 

TTS synthesis system. 

This study contributes to the provision of new attribute-driven LID systems to 

facilitate selection of an appropriate first language speech synthesiser that will 

assist with pronunciation of words/phrases/sentences in a specific under-

resourced language to non-native speakers of that language. This system can be 

http://www.speechtech.co.za/
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used as a learning tool in educational institutions to help and facilitate learners at 

different levels to learn additional South African official languages. For a 

multilingual region such as Limpopo Province with more than five official 

languages and wherein the majority of people speaking three of those languages, 

the outputs of this study may be helpful to people learning a second language.  

This study is the first research study to create and deploy an automatic 

pronunciation assistance system for targeted under-resourced South African 

languages. The availability of diverse TTS synthesis systems for under-resourced 

languages of South Africa is found to be low. There are four official languages of 

South Africa (isiZulu, Sesotho, Afrikaans and isiXhosa) included in Google 

translate1 excluding well-known global lingua franca, English. Although research 

in TTS synthesis systems in South Africa is relatively young, many TTS synthesis 

systems efforts occurring in South Africa have acquired international awareness 

and exposure in terms of the quality and impact of the research work (Louw, 

2008). This shows that more research work is still required on TTS synthesis 

systems for all official South African languages, including their varied dialects 

(Langa et al., 2012). The development of pronunciation assistance systems for 

these languages tries to bridge the digital divide by striving to create user-friendly 

interfaces. Speech synthesis systems have an important role of lessening the 

impact of the historical linguistic discrimination and domination imposed onto 

marginalised and under-resourced indigenous South African languages by 

colonial powers. This study tries to enhance and elevate the recognition and use 

of indigenous South African official languages in the broader information and 

communication technology (ICT) sector.  

This system can help people wishing to learn pronunciation of surnames and 

praise names in Sepedi, Xitsonga, Tshivenda, and isiNdebele; an important 

aspect within a typical greeting episode amongst people from differing speaker 

population groups. A variety of TTS synthesis systems applications are available 

in the following fields: 

                                            
1 Available at: https://translate.google.com 
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a) Education – interactive language learning software may optimise 

educational opportunities especially for disabled leaners (Singh & Kaur, 

2015). 

b) Economics – speech-based systems may improve customer services and 

provide information about services and products.  

c) Financial services – speech-driven automatic teller machines (Violano & 

van Collie, 1992). 

d) Telecommunications – in medical consultations (Kourkouta & 

Papathanasiou, 2014).  

e) (e) Information management – improved access to documents through 

search engines. 

 

1.6 Ethical Considerations 

The term ethics is defined as a set of moral principles and rules aimed to protect 

the interest of the participants when conducting research (Julnes & Bustelo, 

2014). The following ethical issues were considered during the course of the 

study: 

1.6.1 Informed Consent 

Informed consent was gained from the subjects by means of a written and verbal 

agreement. The researcher informed subjects about the study, its goals, the 

rights of the subjects, and information confidentiality.  

1.6.2 Voluntary participation 

The participants were informed that their participation in the study was voluntary 

and they could withdraw at any time. Subjects were not forced to take part in the 

study.  
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1.6.3 Privacy and Confidentiality 

The subjects were assured that all the information will be treated in strict 

confidence, their answers will be kept confidential, and no one will have access 

to them. Data coding was used to link data to the study participants, and this code 

was kept in privacy, so no names will be enclosed in analysis and report writing.  

1.6.4 Physical or Psychological Harm  

The researcher neither subjected the participants to any physical harm and nor 

forced the participants to provide answers to questions they did not want to 

answer.  

 

1.7 Structure of Dissertation 

The rest of the dissertation is organised as follows: 

 Chapter 2 provides previous studies on LID and speech synthesis. 

 Chapter 3 presents a detailed description of the design and 

implementation of the integrated system. 

 Chapter 4 presents the research findings of the study. The evaluation 

metrics for LID front-end system and subjective listening test are 

discussed. The optimum SVM parameters are outlined and the evaluation 

procedure is presented.  

 Chapter 5 presents the analysis of the performance results of LID system, 

speech synthesis, system usability, and summary of the findings.  

 Chapter 6 presents research limitation, provides contribution of this work, 

recommends potential directions of the future and provides the conclusion 

of the research study. 
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2 CHAPTER 2: BACKGROUND 

In this chapter, we review the text classification technologies literature used in 

machine-learning fields before giving an overview of the speech synthesis 

methods and the components composing the state-of-the-art in TTS synthesis 

systems. We also have a brief discussion of the application areas and current 

development tools of the technology. 

2.1 Introduction 

The human language technologies (HLTs) make it simple for humans to 

communicate with machines. These can furthermore assist corporate industries 

and government departments to make e-services and information accessible to 

the society at large in different languages. Most smart computational systems 

such as Siri1 can use HLTs to facilitate man-machine communication. The HLTs 

have an important task by participating in adjusting the historical linguistic 

discrimination imposed onto under-resourced indigenous South African 

languages by levelling the language playing field. The speech and language 

technologies are the vital core part of HLTs. Their main purpose is to make 

machines “speak”, “listen” and “understand” natural or human languages. This 

chapter details the broader aspects of the background to text and speech 

technology.  

This chapter is organised as follows: 

 Section 2.2 explains the importance of proper names in communication 

episodes. 

 Section 2.3 explains the importance of correct and appropriate 

pronunciation. 

 Section 2.4 overviews supervised machine-learning algorithms. 

 Section 2.5 discusses applied LID studies. 

                                            
1 Available at: http://www.apple.com/ios/siri/ 
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 Section 2.6 discusses toolkits used for training and implementation of 

classifiers. 

 Section 2.7 briefly outlines basic components of TTS synthesis systems 

including different types of speech synthesis methods such as formant 

synthesis, articulatory synthesis, concatenative synthesis, and statistical 

parametric speech synthesis (SPSS) using HMMs and deep neural 

networks (DNNs).  

 Section 2.8 details evaluation methods and factors or units in TTS 

synthesis systems.  

 Section 2.9 reviews application areas of TTS synthesis systems. 

 Section 2.10 discusses toolkits used for development of TTS synthesis 

systems. 

 

2.2 Proper Names 

In many cultures and traditions worldwide, people are given names from family 

members and relatives; some may be named after a saint, family member, 

weather, or a positive personality characteristic. These names may recall an 

event or describe the position of the star at birth, or state a future ambition (Guma, 

2001). Since people are unique, their names are also unique because these 

names are attached to their cultural identity and they would not wish to have their 

names mispronounced in conversations. Names, specifically surnames in the 

culture of the Basotho of Southern Africa, carry important information about ones’ 

history such as physical original geographic location, identity, clan name (totem), 

first language, culture and heritage, and ethnic group (Guma, 2001).  

As the world becomes increasingly connected, cross-cultural communication 

increases, and when mispronouncing one’s name, it is often deemed to be or 

associated with a misinterpretation of that person’s identity. For instance, 

continued mispronouncing a student's names may contribute to lessening or 

belittling the identity of that student and this can lead to unexpected anxiety and 
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resentment which, in turn, can retard the student’s academic progress. My name 

my identity1 is an American campaign that brings recognition of appreciating 

one’s name and identity in schools. One of the main goals of this campaign is to 

create a humble and caring culture in academic institutions that values diversity 

as measured by name stories posted on social media.  

 

2.3 Pronunciation 

Most people agree that for someone to fluently pronounce a second language 

like a native speaker, they most likely must have learned it at their childhood 

stage. Conversely, if a learner does not begin to learn a second language until 

adulthood, they would not have a native-like accent. These beliefs or 

observations seem to be supported by cases of adults who learn to speak second 

languages fluently but still maintain their first language accent (Gilakjani & 

Ahmadi, 2011). There are factors that result in systematic pronunciation 

differences between speakers including age, first language, accent (a manner of 

pronunciation peculiar to a particular individual), speaker’s geographical location, 

cultural groups and socio-economic status (Kenworthy, 1987).  

In language education, Gilakjani (2012) defines pronunciation as a vital part of 

foreign language learning since it directly affects the performance and 

communicative competence of the learners. The important key and sine qua non 

for language proficiency is the exposure to the target language, attitude, 

motivation, and instruction of learning or teaching. There are pronunciation 

features that may apply to any spoken language. Gilakjani (2012) identified the 

most important features in English pronunciation to include segmental features 

(phonemes) and prosody features (linking, stress and intonation). A prosodic 

feature relates to small units of a sound within a word. This sound can be a 

combination of consonants and vowels (Jurafsky & Martin, 2014).  

                                            
1 Available at: https://www.mynamemyidentity.org/campaign/about 
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It is generally agreed that incorrect pronunciation of phonemes changes the 

meaning of the word (Suortti & Lipponen, 2014). The sound of a typical vowel has 

the following distinct and characteristic features: length, height, roundness and 

frontness, and the consonant sound has the following distinct and characteristic 

features: type, place of articulation, and voicing. These features constitute the 

initial requirement during the development process of a new TTS voice 

(Stavropoulou et al., 2014).  

The knowledge of their probable first language can generally improve 

pronunciation of proper names (Llitjos & Black, 2001). Machine-learning 

technologies can be used to ascertain and predict the first language given a 

person’s proper name. These technologies may use linguistic rules for a specific 

language (rule-driven machine learning) or require learning proper names data 

from a (un)labelled database (data-driven machine learning). 

 

2.4 Supervised Learning Techniques 

An automatic arrangement of documents is an important data mining research 

matter since the advent of online text information. There are two types of 

machine-learning approaches for classification of text documents, namely 

supervised and unsupervised learning (Rana et al., 2016). In unsupervised 

learning, the dataset is not labelled; instead the data can be clustered into 

different classes, whereas in supervised learning, a classifier is developed 

containing predefined class labels that are assigned to documents/text based on 

the probability recommended by a training dataset of labelled documents/text. 

Machine-learning algorithms can be used to automatically build LID classifiers 

(Rana et al., 2016). The procedure of building a classifier can be seen as a 

problem of supervised learning whereby an algorithm obtains a labelled dataset 

to build the classifier. Several machine-learning techniques in text classification 

have been applied, including n-gram rank ordering (Cavnar & Trenkle, 1994), 

decision trees (Farid et al., 2014), logistic regression (Yuan et al., 2012), the naive 
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Bayes classifiers (Fourie et al., 2014), neural networks (Nicolaou et al., 2016), k-

nearest neighbour classifiers (Al-Badarenah et al., 2016), and support vector 

machines (SVMs) (Fourie et al., 2014; Mabokela & Manamela, 2013).  

2.4.1 Multinomial Naive Bayes Classifier 

The naive Bayes classifier is a probabilistic model that uses the joint probabilities 

of terms and classes to estimate the probabilities of classes given a test 

document (Mitchell, 1997). There are two event models commonly used: 

multivariate Bernoulli event model and multinomial event model, commonly called 

MNB (Kibriya et al., 2004). MNB classifies text given a set of classes  𝐶 =

{𝑐1, 𝑐2, … , 𝑐𝑘}, and a set of unique words 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛}, and 𝑁 = {1,2, … , 𝑛} 

defines the size of the vocabulary where 𝑘 > 1 and 𝑛 ≥ 𝑖 ≥ 1. Then MNB assigns 

a test document 𝑑𝑖 to a class that has a highest probability 𝑝(𝑐|𝑑𝑖), as given by 

the Bayes’ rule in Equation (2.1):   

𝑝(𝑐|𝑑𝑖) =
𝑝(𝑐)𝑝(𝑑𝑖|𝑐)

𝑝(𝑑𝑖)
, 𝑐 ∈ 𝐶    (2.1) 

 

From Equation (2.1), 𝑝(𝑐|𝑑𝑖) is the posterior probability of a class, and 𝑝(𝑐), the 

prior probability of a class can be predicted by dividing the number of documents 

in a class 𝑐  by the total number of documents; 𝑝(𝑑𝑖|𝑐) is the probability of a 

document 𝑑𝑖 given its class 𝑐 and is calculated as: 

𝑝(𝑑𝑖|𝑐) = (∑ 𝑓𝑛𝑖𝑛 )! ∏
𝑃(𝑤𝑛|𝑐)

𝑓𝑛𝑖

𝑓𝑛𝑖!𝑛 ,    (2.2) 

 

where 𝑓𝑛𝑖 denotes a count of word 𝑛 for test document 𝑑𝑖 and 𝑝(𝑤𝑛|𝑐) denotes 

the probability of word  𝑛 given class 𝑐 and is estimated as: 

𝑝̂(𝑤𝑛|𝑐) =
1+𝐹𝑛𝑐

𝑁+∑ 𝐹𝑥𝑐
𝑁
𝑥=1

,     (2.3) 
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where 𝐹𝑥𝑐 is the number of word 𝑥 from all training documents belonging to class 

𝑐, and the Laplace estimator is used to prime each word’s count with one to avoid 

the zero-frequency problem. The normalization factor 𝑝(𝑑𝑖) in Equation (2.1) can 

be determined using: 

𝑝(𝑑𝑖) = ∑ 𝑝(𝑘)𝑝(𝑑𝑖|𝑘)|𝑐|
𝑘=1     (2.4) 

 

From equation (2.2), the computational expensive terms (∑ 𝑓𝑛𝑖𝑛 )! and ∏ 𝑓𝑛𝑖!𝑛  do 

not depend on class 𝑐  and can be removed. Therefore, Equation (2.2) can be 

rewritten as: 

𝑝(𝑑𝑖|𝑐) = 𝛽 ∏ 𝑝(𝑤𝑛|𝑐)𝑓𝑛𝑖
𝑛 ,     (2.5) 

 

where β is a constant and can also be removed. Equation (2.5) can be expanded 

by substituting Equation (2.3) to form Equation (2.6): 

𝑝(𝑑𝑖|𝑐) = ∏ (
1+𝐹𝑛𝑐

𝑁+∑ 𝐹𝑥𝑐
𝑁
𝑥=1

)
𝑓𝑛𝑖

𝑛 .   (2.6) 

 

Given the estimates of these parameters calculated from the training documents, 

classification can be performed on test documents by calculating the posterior 

probability in Equation (2.1). The right hand side of Equation (2.1) can be 

expanded by substituting with Equation (2.4) and (2.6). Naive Bayes learning is 

frequently used to solve text classification problems. This approach is known to 

perform best on textual data to become the common baseline classifier in text 

classifications (Fourie et al., 2014).  
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2.4.2 Support Vector Machines 

A SVM is a technique based on the structural risk minimisation principle (Burges, 

1998) that is defined as an inductive principle for model selection used for 

learning from finite training data. A SVM is a popular machine-learning method 

for regression, classification and other learning tasks (Suthaharan, 2016). The 

SVMs were designed to solve problems with two classes initially, but can now be 

used for more than two classes (also known as multiclass). Multiclass 

classification is the problem of classifying instances into one of more than two 

classes, and binary classification is a task of classifying instances into one of the 

two classes. In a binary classification, the task is to find the decision surface that 

separates the positive and negative training samples of a class with a maximum 

margin (see Figure 2.1). Samples closest to the decision surface are called 

support vectors. A margin is the distance from the decision hyperplane to the 

support vectors. Figure 2.1 shows an example of a linearly separable data. Non-

separable data requires sophisticated classification algorithms. SVMs solve 

multiclass classification using the kernel trick and slack variables (van Heerden, 

2012). Chang and Lin (2011) developed a library for the support vector machine 

(LibSVM) that supports various SVM formulations for regression, classification 

and distribution estimation. Moreover, Chang and Lin (2011) discussed issues 

such as solving SVM optimisation problems, probability estimates, multiclas 

classification, theoretical convergence, and parameter selection. Some SVMs 

contain parameters that need to be optimised for better performance. Some of 

the kernels include, among others, linear, polynomial, radial basis function (RBF) 

and sigmoid kernel. The formulations or equations of these kernels are further 

discussed by Chang and Lin (2011). Even though SVMs do not support string 

attributes, there are several data processing tools that can be utilised to convert 

text into feature representation (Hall et al., 2009). This enables the use of SVMs 

in text or document classification.  
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2.5 Language Identification 

The goal of LID in speech and language processing is to classify a document or 

text based on the language of the document or text. An automatic LID is an 

essential requirement to any language-based processing. For instance, LID has 

many practical uses, including pre-selecting a speech synthesiser depending on 

the language of the input text in automatic machine translation systems. In text 

and speech processing systems, identification of an input text is important for 

applications such as an automatic machine translation, information extraction, 

pronunciation prediction and speech synthesis systems. The task of identifying a 

language from text or document is solved by applying text classification method. 

This text classification (also known as text categorisation) is a task of 

automatically associating a given text with one or more predefined classes 

(Agarwal & Mittal, 2012). The classes can be nominal and hold types of weather, 

gender, set of languages, or any other type of data. 

 

Figure 2.1: Example of a binary classification. Adapted from Chang and Lin (2011). 
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Rule-based algorithms are used to solve the LID problem with prior linguistic 

knowledge of the target language. Indhuja et al. (2014) used n-grams to 

investigate the performance of statistical measures on a Devanagari script for LID 

on text. They extracted features such as unigram, bigram and trigram at word 

and character level. Bigrams are pair of consecutive words, syllables, or letters. 

For example, a word “champion” has character bigrams ch, ha, am, mp etc. The 

character level trigram reached an accuracy of 82%, while word level unigram 

reached the highest accuracy of 88% when testing with all five languages. This 

results shows that at word level the accuracy is high, meaning that words from 

these five languages are written differently and do not overlap. Moreover, low 

accuracy of trigrams can mean more features were identified as belonging to 

more than one language. Similarly, Hannan and Sarma (2015) applied rule-based 

analysis to design and implement the text-based LID system for Indian languages 

(Assamese and Bodo) following an Assamese-Bengali script. For the best LID, 

Unicode range, suffix and frequent word comparison were main features. The 

Unicode range checks the Unicode of each character in a word. In their case 

Unicodes between 0980 and 09FF are from an Assamese-Bengali script, and 

Unicodes between 0900 and 097F are from a Devanagari script. The suffix 

module accepts a word and verifies if the suffix of that word is available in the 

generated suffix list, while the frequent word module compares the word with the 

frequent words list. However, the algorithm reached 100% accuracy for a small 

sized text file of approximately ten words. However, as the word size increases, 

the accuracy of the Bodo language decreases to 77.35% while the accuracy of 

the Assamese language remains above 97.75%. Devanagari script is a writing 

system used in India for writing languages like Nepal, Marathi, Hindi, Sanskrit, 

Bhojpuri and other dialects. However, Indhuja et al. (2014) and Hannan and 

Sarma (2015) did not use recent well-performing statistical machine-learning 

algorithms such as SVMs and decision trees, and can still be experimented with 

on these languages using the same feature set.  

As textual data is becoming more and more available online, the LID of web 

pages is an initial requirement when processing multilingual web documents, 

performing web page translation, and when retrieving data using web crawlers. 
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Kordestanchi and Naderi (2013) noted that language identification tools can 

perform differently on the same dataset. They compared the tools used in LID of 

web pages in Farsi (Persian), Arabic, and Urdu languages using n-grams as 

features. The Java tools used were Java Text Categorization Library (JTCL)1, 

Language Detection2, Tika3, and JLangDetect4. The Web pages were classified 

according to a “clean web” data set that contains web pages that are similar to 

text that is present in non-webpage noise-free documents, and an “ordinary web” 

data set which contains web pages that are likely to have spelling or grammatical 

errors and possibly having limited content. Kordestanchi and Naderi (2013) found 

that JTCL and Language Detection outperformed other tools with respect to 

accuracy measures including recall, precision, negative recall, and F-measure. 

This study can further be extended to examine and minimise the root mean 

squared errors that can help in reducing errors to achieve higher overall accuracy.  

Persian texts are difficult to classify in text classification because there are no 

explicit whitespaces included between words. This means proper word 

segmentation is required before further processing. Farhoodi et al. (2011) 

examined text classification using word level n-grams of different units from 

newspaper corpus on Persian text. They observed that trigram language models 

perform better, with or without linguistic pre-processing. They also examined the 

influence of smoothing methods on the trigram language model, and a back-off 

smoothing method obtained better accuracy outperforming add-one and absolute 

discounting smoothing methods. 

2.5.1 Language Identification for South African Languages 

Although research in LID systems for South African official languages is relatively 

young, a few LID efforts occurring in South Africa have acquired international 

awareness and exposure in terms of the quality and impact of the research work 

(Giwa & Davel, 2015; 2013; Botha & Barnard, 2012; Botha et al., 2007). Several 

                                            
1 Available at: http://textcat.sourceforge.net/ 
2 Available at: https://github.com/shuyo/language-detection 
3 Available at: https://tika.apache.org/1.1/detection.html 
4 Available at: https://github.com/melix/jlangdetect 
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research projects in text processing technology has been done on LID of South 

African indigenous languages. Botha et al. (2007) conducted the LID research to 

address the problem of under-resourced languages of South Africa using SVMs, 

naive Bayes and difference-in-frequency classifiers to investigate the accuracy 

achievable for all eleven official languages of South Africa, with data obtained 

from sources such as newspapers, the Bible, books, government documents and 

periodicals. The SVMs performed better for an n-gram size of three units but 

when increasing n-gram size to six units, the likelihood-based classifier 

outperformed other classifiers. Giwa and Davel (2015) adapted a text-based LID 

from their previous study (Giwa & Davel, 2014) to perform multilingual word 

classification from two corpora: the South African Directory Enquiry (SADE) 

corpus composed of Afrikaans, English, isiZulu and Sesotho, and the National 

Centre for Human Language Technologies (NCHLT) 40k models using a joint 

sequence model (JSM). The NCHLT 40k models showed better results than 

SADE, with 81.79% to 79.99% F-measure difference respectively. Hence, the 

adapted version of JSM provided good classification accuracy on a challenging 

task. 

Fourie et al. (2014) compared the SVM and MNB classifiers for named entity 

classification of English and Afrikaans. They used WEKA toolkit to conduct the 

experiments using MNB and SVM algorithms. Implementation of the baseline 

SVM classifier was through Platt’s Sequential Minimal Optimization algorithm. 

The data was converted with a string-to-word vector filter whereby words in the 

data were defined as classes and strings were converted to decimal arrays. The 

goal of named entity recognition and classification is to classify and recognise 

textual units (commonly referred to as named entities). The classification of 

proper names may be difficult in a situation where these names have idiosyncratic 

spelling and some proper names are considered multilingual (in other words, 

belonging to two or more languages). Their experiment showed that using 10-fold 

cross-validation SVMs performed better than MNB models across all granularity 

levels and both languages. Botha and Barnard (2012) also discussed various 

factors that affect text-based LID accuracy. These factors included n-gram size, 

text input size, training data, and machine learning algorithm employed, as well 
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as language similarities. Giwa and Davel (2013) discussed factors that influence 

LID accuracy of individual words for official languages of South Africa. Their 

experiment resulted with RBF SVM outperforming naive Bayes classifiers using 

Witten-Bell smoothing technique. 

 

2.6 Toolkits for Classifier Implementation 

2.6.1 WEKA 

Most studies in machine learning use WEKA toolkit (Hall et al., 2009). The WEKA 

workbench is a collection of state-of-the-art data processing tools and machine 

learning algorithms implemented in Java. WEKA provides extensive support for 

the whole process of experimental data mining. It has the option of statistically 

evaluating various learning methods, and visualising input data and learning 

results. We use machine learning algorithms implemented in WEKA. 

2.6.2 Scikit-learn 

A Python-based scikit-learn is one popular machine-learning library written in 

Python programming language (Pedregosa et al., 2011). It offers methods for 

data mining and data analysis, including classification, regression, data 

preparation, and many others. 

2.6.3 NLTK 

Natural language toolkit (NLTK) is a Python-based library that offers methods to 

work with human language data (Bird, 2006). NLTK offers access to textual 

corpora and lexical resources such as WordNet along with text analysis libraries 

for regression, tokenisation, classification, tagging, and many others. 
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2.7 Components of a Typical TTS Synthesis System 

This section details the basic architecture of a TTS synthesis system. The main 

components of TTS synthesis system are natural language processing (NLP) and 

digital signal processing (DSP). The modules of the NLP component are 

reviewed. The types of speech synthesis are also reviewed.  

The NLP component is capable of producing a phonetic transcription of the text 

read, together with the desired intonation and rhythm (Huang et al., 2001), while 

DSP is the process of modifying and analysing speech signals to improve its 

performance based on linguistic features from NLP. DSP uses appropriate 

speech synthesis methods for proper speech generation.  

2.7.1 Natural Language Processing 

The NLP modules shown in Figure 2.2 consist of the text, phonetic and prosodic 

analysis that consists of the following sub-modules:  

Document structure detection module in text analysis provides a context for all 

other modules. Some elements of document structure including paragraph, 

sentence, and word segmentation may have direct consequences for prosody. 

Text normalisation module in text analysis converts acronyms, numbers, emails, 

websites, dates, times, currencies, mathematical expressions, percentages, 

measures, years, abbreviations, and other non-standard orthographic entities of 

text into word format when needed.  

Linguistic analysis module in text analysis recovers the syntactic constituency 

and semantic features of words, phrases, clauses, and sentences. 

Homograph disambiguation in phonetic analysis removes ambiguity from 

homographs. Homographs are words that share same spelling but have different 

meaning or pronunciation, for example, desert (/dI"z@:t/) as a verb or as a noun 

(/"dEz@t/) in Speech Assessment Methods Phonetic Alphabet (SAMPA) 

notation. 
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Morphological analysis module in phonetic analysis analyses component 

morphemes to provide indication or hint for pronunciation of similar words.  

Letter-to-sound (LTS) conversion module is the last step of the phonetic analysis. 

Once all non-standard words are expanded and looked up in a pronunciation 

dictionary, then unknown words need to be pronounced by converting series of 

letters into a series of phones. This process is called grapheme-to-phoneme 

(G2P) conversion (Vasek et al., 2016).  

 

Prosodic analysis is the study of the intonational (includes prominence and 

phrasing) and rhythmic aspects of language contextual analysis. Prosody can be 

affected by emotion, mental state and speaker attitude (Taylor, 2009). From the 

listener’s point of view, prosody consists of recovery of a speaker’s intentions and 

systematic perception based on pauses, pitch, duration and loudness.  

 

Figure 2.2: Typical flow of TTS synthesis system, adapted from Huang et al. (2001). 
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2.7.2 Digital Signal Processing   

Speech synthesis takes place in the DSP component. Several speech synthesis 

methods exist, including the rule-based and data-driven methods. Rule-based 

method is sometimes called synthesis-by-rule and refers to a collection of rules 

defining how to adjust the formant frequencies, duration, pitch, and other 

parameters from one sound to another, while preserving continuity present in 

physical systems like the human production system (Huang et al. 2001). Formant 

and articulatory synthesis are good examples of rule-based synthesis. Data-

driven method includes the concatenation synthesis method that takes 

advantage of the rich and large amount of speech corpus. The term 

concatenative synthesis refers to the use of segments of pre-recorded speech 

data to assemble the resulting speech waveform (Tiomkin et al. 2011).  

2.7.2.1 Formant speech synthesis  

Figure 2.3 describes a formant synthesiser receiving phonetic representation and 

generating waveform from a set of parameters. Pitch and formants are shown as 

the parameters of the synthesiser, but there are more than 40 parameters. Huang 

et al. (2001) detailed the architecture of the formant speech synthesis. Formant 

synthesisers can produce intelligible speech although the produced speech is far 

from natural.  

 

 

 

Figure 2.3: Diagram of a rule-based formant synthesiser system adapted from Huang et al. 

(2001). 
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2.7.2.2 Articulatory speech synthesis 

One way to synthesise speech is to try a direct simulation of human speech 

production, and this procedure is called articulatory synthesis. Articulatory 

synthesis is another rule-based synthesis that uses parameters that model the 

mechanical motions of the articulators and the resulting distributions of volume 

velocity and sound pressure in the lungs, larynx, and vocal and nasal tracts 

(Flanagan et al., 1975). There are two challenges in articulatory synthesis.  The 

first challenge is data acquisition for the articulatory model and this data is 

normally obtained from X-ray images that do not describe the degree of freedom 

of the articulators. The second challenge is to discover stability across an 

accurate model and a model that is simple to control and design (Klatt, 1987). In 

general, this method was found to be the best approach to synthesise speech, 

although the state-of-the-art in articulatory synthesis does not produce speech 

with high quality as compared to that of formant or concatenative systems.  

2.7.2.3 Concatenative speech synthesis 

While the rule-based synthesis is quite intelligible, it is nonetheless sounding 

unnatural because it is very difficult to store all the sounds of natural speech in a 

minor set of manually derived rules. In concatenative synthesis, a speech 

segment is synthesised by concatenating together several speech fragments 

from the speech corpus (see Figure 2.4). Concatenative synthesis is a good 

example of a corpus-based speech synthesis – sometimes called an example-

based approach. The advantage of this method is that each segment is 

completely natural, and a high quality of speech output is expected. When 

designing a concatenative speech synthesis, we can use diphones, syllables, 

phonemes, words, and phrases. Diphone synthesis is one of concatenative 

speech synthesis that produces flexible synthesised speech, although it lacks 

naturalness, pleasantness and understandability (Lemmetty, 1999). A diphone is 

an adjacent pair of phones. Diphones can be extracted from a set of nonsense 

words or natural words. The nonsense word technique has the advantage of 
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being simpler to ensure diphone coverage of all possible sounds in the given 

language.  

 

Rousseau and Mashao (2005) developed a hybrid TTS synthesis system for 

Afrikaans using a combination of diphone unit selection synthesis and diphone 

concatenative synthesis. Their system was evaluated using subjective evaluation 

obtaining good results on pleasantness, understandability, naturalness, and 

overall impression. Tiomkin et al. (2011) developed a hybrid TTS synthesis 

system that is optimal, natural, and has smooth transitions between adjacent 

segments, by combining statistical and concatenative synthesis units. Kiflu and 

Beshah (2012) developed a concatenative unit selection synthesis system for 

Ethiopian language (Tigrinya). This is the first unit selection speech synthesis 

system ever developed for Tigrinya. Uddin et al. (2015) developed a phoneme-

based TTS synthesis system for Bangla using a small corpus although distortion 

 

Figure 2.4: An overview of a general unit-selection scheme. Adapted from Zen et al. (2009). 
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was the issue for longer words. Authors concluded that their system is more 

natural, even though hearing tests were not conducted. Hearing tests so far are 

the most accurate measure of synthetic speech quality. Sharma et al. (2015) 

developed a bilingual TTS synthesis system for Assamese language using both 

unit selection and HMM-based synthesis. The system was evaluated using the 

subjective and objective methods. Sharma et al. (2015) used manual 

segmentation to improve the quality of a database that resulted in decreasing 

distortion of synthesised speech. Anil and Shirbahadurkar (2014) developed an 

expressive TTS synthesis system based on pitch modification and prosodic word 

detection. Authors reported that neutral speech can be converted into emotional 

speech by modifying pitch frequency. Emotional speech is a speech that contains 

emotional features such as excitement, sadness, happiness, and others. While 

neutral speech is the speech that does not contains emotions. Aoga et al. (2016) 

developed a unit selection speech synthesis for Yoruba language. The system 

was implemented using the MARY TTS system. The subjective evaluation tests 

resulted with MOS of 2.9 out of 5, which shows the system was acceptable, 

although objective tests were not conducted. Louw et al. (2005) developed the 

isiZulu speech synthesiser using ‘Multisyn’ unit selection synthesis.  

Authors discussed the challenges encountered when developing the synthesiser 

and their solutions. The problems included selection of appropriate phone units, 

generation of reliable pronunciation, and developing a cost function that selects 

and joins appropriate phone units. Mhlana (2011) developed the isiXhosa TTS 

synthesis system to support e-services in marginalised rural areas of Eastern 

Cape Province of South Africa. The system was tested and obtained acceptable 

level of usability. Mohasi (2006) used a hybrid TTS synthesis system developed 

by Rousseau and Mashao (2005) as a baseline to create another advanced 

Sesotho language hybrid TTS synthesis system by applying intonation modelling 

techniques, duration, and fundamental frequency on the unit selection hybrid 

system. Mohasi (2006) conducted listening tests to assess speech quality and 

this resulted in improved naturalness and fluency.  
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2.7.2.4 Statistical parametric speech synthesis using HMMs 

In concatenative synthesis, synthetic speech is generated by concatenating pre-

recorded speech segments from the speech corpus. Its disadvantage is the 

requirement of large amounts of speech training corpora and the effort needed to 

calculate the concatenation cost. An alternative is to apply a statistical parametric 

synthesis method.  The SPSS is a model-based approach and conforms to 

corpus-based synthesis. The SPSS might be described as generating the 

average of some sets of similarly sounding speech segments (Black et al., 2007), 

(Zen et al., 2009). This approach differs directly from unit selection synthesis to 

preserve natural speech. However, SPSS has dominated the speech synthesis 

research area over the last decade because they offer more benefits, including 

less memory requirement to store model parameters, flexibility to change voice 

characteristics (Yamagishi & Kobayashi , 2007), robustness (Yamagishi et al., 

2009), small footprint (Zen et al., 2009), and multilingual support (Gibson et al., 

2010).  

In a typical SPSS system, parametric representations of speech including 

spectral and excitation parameters from the speech corpus are extracted, then 

train them using a set of generative models (e.g. HMMs). A maximum likelihood 

criterion is normally used to predict the model parameters as  

𝜆̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜆

 {𝑝(𝑦|𝑥, 𝜆)},     (2.7) 

 

where 𝜆 is a set of acoustic models, 𝑦 is a set of acoustic features, and 𝑥 is a set 

of linguistic features corresponding to 𝑦. The pictorial representation of Equation 

(2.7) is shown in Figure 2.5.  
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The synthesis phase is shown in Figure 2.6. This phase extracts linguistic 

features 𝑥  from text to be synthesised, generates most probable acoustic 

features 𝑦  from set of predicted acoustic models  𝜆̂ , to maximise their output 

probabilities as  

𝑦̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑦

 {𝑝(𝑦|𝑥, 𝜆̂)}.     (2.8) 

 

 

Finally, a speech output is built from parametric representation of speech. SPSS 

that uses HMMs is referred to as the HTS method (Yoshimura et al., 1999). The 

HTS engine is a toolkit commonly used to develop HMM-based voices (Zen et 

al., 2007).  

Baloyi (2012) developed a TTS synthesis system using HMMs for Xitsonga. This 

is the first TTS synthesis system ever developed for Xitsonga at the University of 

Limpopo. The system was evaluated using listening tests and good results were 

 

Figure 2.5: HTS training phase adapted from Zen et al. (2009). 

 

Figure 2.6: HTS speech generation adapted from Zen et al. (2009) 
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observed. Adiga and Prasanna (2014) developed a hybrid TTS synthesis by 

combining HTS and unit selection speech synthesis. The speech sound units 

were classified into vowel-like regions (e.g. vowel, semivowel, diphthong, nasal 

sounds) and non-vowel regions (e.g. stop consonants, fricatives, affricatives).  

The vowel-like regions were modelled from HMM framework and waveform units 

were chosen from HTS. The non-vowel-like regions which were not properly 

modelled by HMMs were picked from unit selection speech synthesis. The 

verification of vowel and non-vowel like regions were obtained by manual and 

automatic segmentation of speech signal. The hybrid system was compared to 

HTS and unit selection speech synthesis using both objective and subjective 

evaluations. The hybrid TTS synthesis system with manual segmentation 

outperformed HTS system but unit selection speech synthesis performed better 

than other systems. Mullah et al. (2015) developed a TTS synthesis system for 

Indian English using the HTS. Authors used MOS to test naturalness and 

intelligibility of the system. The system resulted with MOS of above 3 for both 

naturalness and intelligibility. A TTS synthesis system for isiXhosa was 

incorporated in development of a mobile platform for e-learning (Roux et al., 

2010).  Stan et al. (2011) developed the HMM-based speech synthesis system 

for Romanian language using a different sampling rate (16, 32 and 48 kHz) to 

test the effectiveness of sampling rate on similarity, naturalness and intelligibility. 

Stan et al. (2011) observed that down sampling speech data to 16 kHz degrades 

similarity of speaker, however high sampling rate did not improve either 

naturalness or intelligibility of synthetic speech. More advanced NLP modules 

can try to increase performance of the TTS synthesis system.  

The HMM-based synthesis systems suffer from speech quality caused by the 

inadequacy of acoustic modelling (e.g. trajectory HMM), limitations of the vocoder 

(e.g. speech transformation and representation using adaptive interpolation of 

weighted spectrum), and over-smoothing of parameter generation (e.g. global 

variance). The HMMs have been widely used in the development of speech 

synthesis systems. An alternative generative model can be applied to overcome 

these problems.  
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2.7.2.5 Statistical parametric speech synthesis using deep neural networks 

(DNN) 

Recent advanced deep machine-learning algorithms can be used to address 

limitations of HMMs (Bengio, 2009). The decision trees in HTS that perform 

mapping from linguistic contexts extracted from text to probability densities of 

speech parameters are replaced by a DNN. Deep neural networks with multiple 

hidden layers can perform better than having only one hidden layer although 

learning such networks require high computational costs and becomes 

impractical. However, with recent development of improved hardware (e.g. a 

graphics processing unit) and software enabled us to train a DNN from large 

training data. The deep neural networks have achieved good results in machine-

learning fields including pattern recognition, and automatic speech recognition 

(Hinton et al., 2012). A DNN-based SPSS can be used to address the 

conventional approach (Zen et al., 2013). A DNN was used to model the 

relationship between input text and their acoustic realization. The DNN-based 

approach showed potential to address the limitations in the conventional decision 

tree-clustered context-dependent HMM-based approach. Zen et al. (2013) 

applied subjective and objective evaluations to compare the performance of 

DNN-based synthesis with HMM-based synthesis. Objective evaluations showed 

the DNN-based approach obtaining better prediction of spectral and excitation 

parameters than the HMM-based approach. Moreover, the DNN-based approach 

achieved better preference over the HMM-based synthesis in the subjective 

listening test. In a recent study, Van den Oord et al. (2016) applied a DNN 

approach to generate raw audio from text. This approach outperformed the HMM-

based unit selection concatenative speech synthesiser (Gonzalvo et al., 2016) 

and the long short-term memory recurrent neural network-based statistical 

parametric speech synthesiser (Zen et al., 2016) in naturalness. However, the 

HMM-based approach has reduced computational costs as an advantage over 

the DNN-based approach.  
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2.8 Evaluation of TTS Synthesis System 

The quality of synthesised speech is evaluated using objective and subjective 

listening tests. Objective speech quality measures include, among others, linear 

predictive coding-based measure, time-domain and frequency-weighted signal-

to-noise ratio measures, and composite measures (Hu & Loizou, 2008). 

Composite measures are obtained by combining other objective measures to 

create a new measure. More detailed objective measures are discussed by Hu 

and Loizou (2008). Zen et al. (2013) used 5-th Mel-Cepstral coefficients while 

Sharma et al. (2015) used first 13 Cepstral coefficients of cepstrum to conduct 

objective evaluation. Beněk (2014) developed a TTS synthesis system for the 

Czech language. Beněk only performed subjective evaluation and stated that 

there are no objective tests (Beněk, 2014, p. 30). This is impossible, since 

objective tests have been used before 2014 (Zen et al., 2013), (Hu & Loizou, 

2008). Theoretically, the quality of speech is best measured via a listening test 

where qualified evaluators listen to the synthesised speech and give quality 

opinions using a Likert scale. This method is also known as an MOS test. The 

quality of synthesised speech can be measured according to the following 

properties: naturalness, intelligibility, listening effort1 , flexibility, pleasantness, 

similarity, pronunciation, and other recent sophisticated measures. Naturalness 

is the degree to which the synthesised speech sounds close to natural speech. 

Intelligibility focuses on the ability for people to understand the synthesised 

speech. The listening effort is sometimes used as a factor of intelligibility. 

Flexibility focuses on how well the system handles out-of-vocabulary words and 

other non-standard words. Pleasantness focuses on the pleasure that one 

associates with listening to the synthesised voice. Similarity deals with how close 

the synthesised speech is compared to that of the original speaker. Pronunciation 

focuses on how well the synthesised speech pronounces words. In addition, 

prosody is the main factor of pronunciation.  

There are several methods used to test the quality of synthetic speech such as: 

                                            
1 Popularly known as understandability 
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 Preference test (e.g. AB test) is used to compare two or more synthesised 

speeches. It is a common practice to compare natural speech with a 

synthesised speech.  

 Analysis of variance can be derived to test factors of certain features 

between synthesised speeches. 

 MOS is used to rate synthesised speech on a Likert scale. MOS is 

commonly used to measure naturalness, listening effort, pleasantness, 

similarity, pronunciation, and flexibility (Viswanathan & Viswanathan, 

2005).  

 Diagnostic rhyme test (DRT) tests intelligibility of initial consonants 

based on 96 pairs of confusable rhyming words (e.g. pond/bond or 

tense/dense) (Greenspan et al., 1998). Evaluators listen to one word and 

choose the correct one from the pair. The percentage of correct 

identifications is used an intelligibility measure. 

 Modified rhyme test (MRT) is commonly used to test intelligibility of 

synthesised speech (House et al., 1965). This method focuses on either 

initial or final consonants (e.g. went, dent, rent, bent, sent, tent). A list of 

300 words contains 50 sets of 6 words. Evaluators must identify a single 

word from a closed list of six words. The percentage of correct 

identifications is used as an intelligibility measure. 

 Semantically unpredictable sentences (SUS) can be used to test 

speech quality at sentence level (Benoît et al., 1996). 

 Word error rate (WER) and sentence error rate (SER) are commonly 

used in speech recognition; however, these methods are currently 

employed to measure intelligibility of synthesised speech.  

 

2.9 TTS Synthesis Application Areas 

Speech synthesis system makes it possible for people to use computational 

devices such as smartphones to access information, use email systems or even 

do voice dialling in their first language. In today’s electronic digital age, the use 
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of TTS synthesis technologies has increased exponentially in mobile 

smartphones, computers, internet-based services, banking, and dialogue 

systems 1 . Currently, access to computer-based information is an important 

demand for social and technological evolution, and the use of human language 

technology has increasingly become an essential technological evolution for 

linguistic resources. In order to ensure that people have enough access to 

information or linguistic resources given in their first language, these resources 

should be electronically digitalised. For example, dictionaries are available in 

digitalised audio format for different languages. Google voice search, Siri2 and 

other voice-enabled speech applications are good examples of TTS synthesis 

systems in mobile devices. Modern navigation systems use back-end TTS 

synthesis speech navigation for faster guidance (Jeon et al., 2015). These 

applications are embedded in vehicles, aeroplanes, and mobile devices (Ramani 

et al., 2013).  

These technologies enable humans to interact and communicate with machines, 

and deliver valuable and useful e-services ranging from sciences, health, 

economics, and education. Speech technology applications play an important 

role in teaching and language learning. An increase in the development of such 

systems enhances learning using computer-assisted language learning and 

computer-assisted pronunciation training (CAPT). Developing CAPT systems for 

pronunciation learning and teaching requires extensive linguistic resources and 

experts. Chen and Li (2016) reviewed approaches and challenges used in CAPT 

development. Eskenazi (1999) discusses a good analysis of using ASR for 

training students to learn new languages. Yu and Wang (2016) proposed a 

pronunciation visualisation instruction system based on an articulatory mesh 

model. Their system was tested on students learning Chinese in second 

language and achieved accuracy of 97.6% (after learning) from 68.4% (before 

learning). Speech synthesis applications simplify language and pronunciation 

                                            
1 Available at: http://www.acapela-group.com/voices/demo/ 
2 Available at: http://www.apple.com/ios/siri/ 
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learning; such applications can be applied not only in language learning but 

extended to subject-specific domains of learning. 

2.10 Speech Synthesis Systems Toolkits 

2.10.1 Festival TTS 

The Festival TTS synthesis system is one of the well-known popular multilingual 

TTS synthesis systems used for creating new synthetic voices in a limited domain 

or an open vocabulary domain (Taylor et al., 1998). The Festival TTS system is 

open source software allowing personal and commercial usage. The system uses 

FestVox for building synthetic voices (Black & Lenzo, 2014). Festival TTS system 

supports waveform generation using diphone-based unit selection and HTS 

approach. This system has a large memory footprint and is relatively slow. Hence, 

a small, fast runtime TTS engine called Flite was developed, aiming to provide 

improvements with regards to speech, code size, data size, thread safety, and 

portability of maintenance (Black & Lenzo, 2001).  

2.10.2 Speect TTS 

Speech synthesis with extensible architecture (Speect)1 is a multilingual TTS 

synthesis system that offers various APIs (Louw, 2008). Speect has a capability 

of creating new TTS synthesis voices. It offers python bindings for customisation 

and implementation of advanced ideas. This program is under active 

development at the CSIR2.  

2.10.3 IBM Watson TTS 

The IBM Watson3 TTS service is a cloud-based service that provides API to 

synthesise text into speech in a variety of languages, accents, and voices. The 

IBM Watson TTS supports speech synthesis markup language (SSML) for 

translation of text into International Phonetic Alphabet or IBM Symbolic Phonetic 

                                            
1 Available at: http://speect.sourceforge.net 
2 Available at: http://www.csir.co.za/meraka/ 
3 Available at: http://www.ibm.com/watson/developercloud/text-to-speech/api/v1/ 
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Representation. The IBM Watson TTS API consists of (a) synthetic voices, (b) 

methods to synthesise text or SSML over internet, (c) pronunciation (a method 

that shows pronunciation of a specified word), (d) custom model (that provides 

methods for creation of custom voice models), and (e) custom words (that provide 

methods that allow clients to manage word or translation pairs in a custom voice 

model). Furthermore, IBM Watson consists of the following features: 

 Interact – allow creation of dialog systems. 

 Learn – use machine-learning to grow the subject matter expertise in 

applications. 

 Reason – provides customised recommendations by understanding 

client’s emotion, tone, and personality. 

 Understand – interpret data including unstructured texts, videos, images 

and audios. 

2.10.4 Merlin 

Merlin is the latest open source toolkit to offer DNN-based speech synthesis (Wu 

et al., 2016). Merlin toolkit provides the acoustic modelling functions, including 

acoustic and linguistic feature normalisation, linguistic feature vectorisation, 

neural network acoustic model training, and generation. Merlin is written in 

Python and is not a complete TTS. Hence, it requires an external front-end 

system such as Festival TTS. Merlin has been used in recent research work 

(Valentini-Botinhao et al., 2015) (Wu et al., 2015) (Watts et al., 2016). 

2.10.5 MARY TTS 

The MARY TTS synthesis system is a tool for research development and 

teaching in the domain of TTS synthesis (Schröder & Trouvain, 2003). The MARY 

TTS system is an open source voice builder software designed to run on Java 

(Schröder et al., 2011). New languages and synthetic voices can be created and 

added to MARY TTS system (Pammi et al., 2010). Synthetic voices can be 

created using unit selection synthesis or the HMM-based speech synthesis 

approach. The program uses SAMPA format for transcription of a new language 
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module (Wells, 2005). The MARY TTS supports generation of phonemes from 

text, generation of TEXTGRID file, generation of emotional speech via emotion 

markup language (EmotionML), and prosody generation from MARY XML format 

(Schröder & Breuer, 2004). EmotionML is commonly used for (a) manual 

annotations of data, (b) generation of emotion-related system behaviour, (c) and 

automatic recognition of emotion-related states from user behaviour. The 

program documentation can be accessed from the MARY TTS GitHub web 

page1. For this research work, the MARY TTS is used to develop the synthetic 

voices. 

2.11 Summary  

The study of text-based LID is a well-known topic and many approaches have 

been presented. Text-based LID can be approached from a pattern recognition 

viewpoint by examining statistical attributes in text as feature measures. MNB is 

the simple and effective method using n-gram statistics as features. Statistical 

measures can depend on keywords, frequent words, or special letters found in a 

document. The accuracy can be improved by increasing the feature 

dimensionality. Various LID techniques have been discussed, including the 

popular baseline MNB and robust SVMs. MNB can perform classification on 

string data; however, SVMs require data transformation before classification. We 

have discussed LID studies for South African languages and realised that 

research for these languages is still open. Some of the toolkits used for text 

classification have been discussed. 

The NLP and DSP components of the TTS synthesis system have been 

discussed. Various speech synthesis methods have been discussed and we 

realised that the HTS approach is better than the DNN approach on computation 

cost. The DNN approach requires massive amounts of memory when training, 

with many hidden layers. The disadvantage of the unit selection concatenative 

synthesis is the requirement of a large database and this negatively affects the 

under-resourced languages. The advantage of the HTS approach is the ability for 

                                            
1 Available at: https://github.com/marytts/marytts/wiki 
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development of new synthetic voices on a limited domain under normal 

computational cost. We discussed evaluation methods of a TTS synthesis 

system. The advantage of the SUS evaluation method is that there are no 

semantic contextual cues to the intelligibility of the individual words. Several 

measures of speech quality, including, among others, naturalness, and 

intelligibility, were discussed. The application areas of TTS systems were 

detailed. Several programs that are currently used to develop new advanced TTS 

voices were also discussed. The next chapter gives the design and 

implementation of the proposed system. 
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3 CHAPTER 3: DESIGN AND IMPLEMENTATION 

In this chapter, we describe the datasets and the procedure for the 

implementation of the pronunciation assistant, which is a combination of a front-

end LID and back-end TTS synthesis system. Two supervised machine-learning 

methods are implemented to perform a three-way multiclass classification, and 

to explore the LID accuracy that can be achieved for the following under-

resourced official languages of South Africa, namely Sepedi, Xitsonga, 

isiNdebele and Tshivenda, using n-gram statistics as features. The development 

toolkits deployed to implement back-end and front-end are both Java based. 

Hence, WEKA toolkit has been used to build the LID model and MARY TTS 

synthesis system has been used to build new TTS voices using HMM method.  

3.1 Introduction 

South Africa is a multilingual country with 11 official languages. The pronunciation 

of words, mostly proper names, is difficult for non-native speakers, since most 

proper names are written in native languages. However, knowing the native 

language of the proper name may lead to the reduction of such pronunciation 

difficulties. In our experiment, we aim to predict the first language associated with 

an input surname for South African under-resourced official languages, namely, 

Sepedi, Xitsonga Tshivenda and isiNdebele. To achieve this aim, we acquired 

training textual data comprising of surnames usually associated with these 

languages. We compared the machine-learning algorithms to select the best one 

for building a text-based LID predictor for surnames classification. The LID front-

end component predictor is used to classify an input surname by predicting the 

first language associated with that surname as shown in Figure 3.1. Once the 

language is predicted, the TTS phase continues with the pronunciation rendition 

of that surname using the predicted language. The LID systems discussed in 

Chapter 2 (Literature review) are not available for testing on our training text data; 

hence, no comparisons could be examined.  
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Figure 3.1: The diagram of the overall system interaction 
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The layout of this chapter is as follows: 

 Section 3.2 discusses the LID dataset, features, deployed machine-

learning algorithms, and implementation of the classifier. 

 Section 3.3 discusses the speech dataset, toolkits, procedure followed for 

development and implementation of new languages and HMM voices. 

 Section 3.4 explains the integration of both TTS and LID interfaces.  

 Section 3.5 details the deployment of the system to the “real-life” 

production server. 

3.2 Front-end Phase: Language Identification Module 

This section details the process, tools and methods used in developing the LID 

for under-resourced languages. Rule-based and statistical methods are used for 

text-based LID implementation. The rule-based approach requires linguistic 

experts and a large amount of time is also required. Hence, we selected to use 

the statistical machine-leaning method due to its flexibility, accuracy, and 

robustness. 

3.2.1 Data Acquisition Pre-processing 

The training textual data for LID front-end has been acquired from the department 

of ICT at the University of Limpopo. The training data consists of both surnames 

and their corresponding first languages in Sepedi, Tshivenda, isiNdebele and 

Xitsonga. The Sepedi text data is the highest, with 1100 surnames, followed by 

Tshivenda with 1035 and Xitsonga with 908. IsiNdebele text data is less than 213, 

which is not enough because it will cause biased results and misperformance of 

the LID predictor; hence, it is excluded in the LID front-end development (See 

Figure 3.2). The complete dataset contains 3043 surnames excluding isiNdebele.  
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The acquired training data was in Microsoft excel worksheet format and needed 

to be converted to WEKA format. WEKA supports attribute-relation file format 

(ARFF) and comma-separated values (CSV). The data was converted into CSV 

using Microsoft excel, and then converted into attribute-relation file format (ARFF) 

using WEKA toolkit. The easy way to introduce the datasets in WEKA is by using 

the ARFF files. An example of an ARFF file is shown in Listing 3.1. The first 

section of the ARFF file is the header information that contains relation 

declaration and attribute declarations including the name of the relation, a list of 

the attributes (the columns in the data section), and their datatypes. The datatype 

can be – 

 numeric (integer or real numbers), 

 nominal, 

 string, 

 date, 

 and relational (for multi-instance data). 

 

Figure 3.2: Text corpora for training LID 
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The string attribute allows for the creation of datasets containing any arbitrary 

textual values. This is important in data mining systems, as string attributes 

datasets can be created and then used with filters in WEKA to manipulate and 

convert string datasets to numeric or nominal sets or any desired target sets. 

Nominal attributes are defined by specifying a list of possible values they can 

take. The second section contains the data declaration line and the actual 

instance lines. The @data declaration is a single line denoting the start of the 

data segment in the file. Each instance is represented on a single line, with 

carriage returns denoting the end of the instance and attribute values are 

separated by commas. Attribute values must appear in the order in which they 

are declared in the header section. An unknown or missing value is represented 

by a question mark and this feature is used for the prediction of a surname (or 

class) in the online demo (see project website (Sefara, 2017)).  

Listing 3.1 shows an extract of the dataset file used in training the LID module. 

This file consists of the relation (dataset), two attributes surname and class, and 

@relation LanguageIdentification 
 
@attribute surname string 
@attribute class {nso, tso, ven} 
 
 
@data 
"MTHEBULE",tso 
"MKHONTO",tso 
"MAKARINGE",tso 
"MASINA",tso 
"SHIVAMBU",tso 
"NEDZAMBA",ven 
"NEVHUFUMBA",ven 
"NELUVHALANI",ven 
"TSHIVHANGANI",ven 
"PHANDAVHUDZI",ven 
"MOGANO",nso 
"THABA",nso 
"RASEEMELA",nso 
"KGANYAGO",nso 
"LETEBELE",nso 
... 

Listing 3.1: Extract of the WEKA ARFF used for creating the LID module 
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instance data values. Surname is a string attribute that stores the actual instances 

values (surnames), while class is a nominal attribute that stores the list of 

languages. All the surnames are labelled or tagged with their first languages in 

the data section. This approach is called supervised learning wherein labelled 

data is used in training a classifier model. The languages are represented by their 

language codes (or locales). Table 3.1 shows language codes for representing 

Sepedi (nso), Tshivenda (ven), Xitsonga (tso) and isiNdebele (nbl) under the 

International Organization for Standardisation ISO 639-2:20081.  

 

3.2.2 N-gram Feature set 

Text-based LID problem can be tackled from a linguistic or statistical approach. 

The linguistic approach would be the favourable choice where high classification 

accuracies are expected although a large amount of linguistic expertise and 

resources are required to code a language. However, for under-resourced 

languages, such resources are not readily available therefore a statistical 

approach becomes a viable alternative. Statistical language models can be built 

from sequence of letters, words or n-grams. The character n-gram based models 

are suitable for identification of individual and unique words. This is also the most 

popular choice in the literature reviewed and we have restricted our feature sets 

                                            

1 Available at: https://www.loc.gov/standards/iso639-2/php/code_changes.php 

Table 3.1: Language Locales 

Code Name 

nso Sepedi 

nbl isiNdebele 

ven Tshivenda 

tso Xitsonga 
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to character n-gram based features (Cavnar & Trenkle, 1994). The size of n can 

increase the accuracy of the classifier; however, the accuracy decreases beyond 

a certain level of n. Furthermore, much computation and memory usage is 

needed for higher value of n. In most experiments, trigrams yield satisfactory 

results (Fourie et al., 2014). Hence, we have restricted our concentration to the 

cases of unigrams up to five grams.  

Most classifiers, including SVMs, cannot handle string attributes, hence the 

acquired training data needed to be processed using appropriate filters. The 

WEKA toolkit contains supervised and unsupervised filters. The string-to-word-

vector filter is an unsupervised filter that converts string attributes into a set of 

attributes representing word occurrence information from the text contained in the 

strings. This filter supports word, word n-gram and character n-gram tokenisation. 

Since our training data consists of single words, character n-gram is favourably 

used to tokenise all the surnames by generating character n-grams of size one 

to size five and then converting them to feature vectors.  

3.2.3 Machine-learning Algorithms 

Machine-learning algorithms can deliver optimal performance for prediction of a 

class or category when applied on a high-performing computer. The project is set 

up on a desktop computer with 2Gig of RAM and 2.94 GHz Intel (R) Core™ 2 

Duo CPU. This research project used a text classification method as LID based 

on n-gram features. There are many machine-learning algorithms applied in 

pattern recognition, big data analytics, statistical analysis and text mining (Botha 

& Barnard, 2008). However, SVM and multinomial naive Bayes (MNB) have 

shown better performance on text identification (Fourie et al., 2014). The 

supervised machine-learning models use associated learning algorithms that 

recognise patterns and analyse data for regression analysis and classification. 

Our experiments employed the MNB as our baseline classifier and the SVM 

libraries for multiclass classification under different SVM kernels for K-fold cross-

validation in WEKA.  
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3.2.3.1 K-fold cross validation 

Cross-validation is a technique to evaluate predictive models by partitioning the 

original data into testing and training set. The cross-validation method consists of 

K-fold cross-validation, random subsampling, and leave-one-out validation. The 

K-fold cross-validation is used due to its properties of being easy, simple, and 

using all data for training and testing. Moreover, K-fold cross-validation assists in 

selecting the best model and its parameters to create the final model. We 

performed K-fold cross-validation on our training set where K was set to 10 to (a) 

balance the reliable estimates and computational costs and to (b) avoid biased 

results. 

As illustrated in Figure 3.3, the 10-fold cross-validation approach partitions the 

corpus into 10 equal parts and performs training on 9 parts leaving one part for 

testing. The cross-validation approach is repeated 10 times so that each partition 

is used for training. 

 

 

Figure 3.3 Ten-fold cross validation. 
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3.2.3.2 Multinomial naive Bayes 

Naive Bayes classifier is a simple probability classifier based on Bayes theorem 

(see Equation (3.1)) with independence assumptions. There are several 

variations of naive Bayes, viz. MNB, Bernoulli naive Bayes and Binarised MNB. 

The MNB is one of the classifiers that are often selected as baseline classifiers 

in language detection tasks since they are less computationally intensive in both 

memory and processor consumption (Giwa & Davel, 2013). Moreover, it performs 

well under small or limited data conditions and takes shorter training time 

compared to SVMs. During classification, the MNB learning is employed using 

frequency estimate that determines parameters by computing the appropriate 

frequencies from the data. A classifier based on MNB is implemented using an 

open-source WEKA toolkit that contains many classification algorithms. More 

details in the experimental setup are found in the next sections. 

3.2.3.3 Support vector machines 

Several classifiers based on SVMs are implemented using a freely customised 

downloadable library for SVM called LibSVM on WEKA toolkit. The LibSVM is a 

function on WEKA that allows the user to create SVM-based classifiers under 

different kernels. The SVM uses kernels to allow non-separable data in the higher 

dimensional feature space. The goal of an SVM classifier is to find an optimal 

separating hyperplane, which maximises the margin of the training data. There 

are various methods that can be used to solve SVM classification problem with 

more than three classes (Hsu & Lin, 2002): 

 Directed acyclic graph SVM is a novel algorithm for multi-class 

classification. 

 One-against-one or pairwise classification, where one binary SVM is 

created for each pair of classes to separate vectors of one class from 

vectors of the other class. 

 One-against-all classification, where there is one binary SVM for each 

class to separate vectors of one class from vectors of other classes. 
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LibSVM uses one-against-one classification method where a total of three 

classifiers are constructed and classification is performed using a voting strategy. 

The WEKA toolkit contains classifiers called filtered classifiers that can run an 

arbitrary classifier on data that has been passed through a filter. In this 

experimentation, filtered classifiers are used to run a classifier on filtered data. 

This approach is shown in Figure 3.4.  

 

3.2.3.4 Experiment setup 

The experiments are focused on the SVM and MNB machine-learning methods. 

The LibSVM contains various SVM kernels hence same dataset is applied for the 

various kernels to examine their performance. In total, five experimental setups 

are conducted.  

a) Experiment 1: This experiment employed the baseline MNB classifier on the 

original dataset. The MNB classifies text given a set of classes 𝐶 = {𝑐1, 𝑐2…𝑐𝑘} 

and a set of unique words  𝑊 = {𝑤1, 𝑤2…𝑤𝑛} and 𝑁 = {1,2, … , 𝑛} defines the 

size of the vocabulary where 𝑛 ≥ 𝑖 ≥ 1 and 𝑘 > 1. Then MNB assigns a test 

 

Figure 3.4: Proposed supervised learning workflow 
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document 𝑑𝑖 to a class that has the highest probability P(𝑐|𝑑𝑖), which is given 

by the Bayes’ rule: 

P(𝑐|𝑑𝑖) =
P(𝑐)P(𝑑𝑖|𝑐)

P(𝑑𝑖)
    (3.1) 

The following receipt is used to train the model. 

weka.classifiers.bayes.NaiveBayesMultinomialText -P 0 -M 2.0 -

norm 1.0 -lnorm 2.0 -stopwords-handler weka.core.stopwords.Null 

-tokenizer "weka.core.tokenizers.CharacterNGramTokenizer -max 3 

-min 1" -stemmer weka.core.stemmers.NullStemmer 

where min and max are ngram ranges. 

b) Experiment 2: This experiment employed a LibSVM classifier using RBF 

kernel on the original dataset. The RBF kernel is given by the formula,  

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒−𝛾||𝑥𝑖−𝑥𝑗||2
, 𝛾 > 0,   (3.2) 

where 𝛾 is a kernel parameter. 

The following receipt is used to train the model. 

weka.classifiers.meta.FilteredClassifier -F 

"weka.filters.unsupervised.attribute.StringToWordVector -R 1 -W 

1000 -prune-rate -1.0 -N 0 -stemmer 

weka.core.stemmers.NullStemmer -stopwords-handler 

weka.core.stopwords.Null -M 1 -tokenizer 

\"weka.core.tokenizers.CharacterNGramTokenizer -max 5 -min 4\"" 

-W weka.classifiers.functions.LibSVM -- -S 1 -K 2 -D 3 -G 0.0 -R 

0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -W "1.0 1.0 1.0" 

where min and max are ngram ranges and K is the kernel.  
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c) Experiment 3: This experiment employed a LibSVM classifier using sigmoid 

kernel on the original dataset. The sigmoid kernel is given by the formula,  

𝐾(𝑥𝑖, 𝑥𝑗) = tanh( 𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟),   (3.3) 

where 𝛾 and 𝑟 are kernel parameters. 

The following receipt is used to train the model. 

weka.classifiers.meta.FilteredClassifier -F 

"weka.filters.unsupervised.attribute.StringToWordVector -R 1 -W 

1000 -prune-rate -1.0 -N 0 -stemmer 

weka.core.stemmers.NullStemmer -stopwords-handler 

weka.core.stopwords.Null -M 1 -tokenizer 

\"weka.core.tokenizers.CharacterNGramTokenizer -max 5 -min 4\"" 

-W weka.classifiers.functions.LibSVM -- -S 1 -K 3 -D 3 -G 0.0 -R 

-0.95 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -W "1.0 1.0 1.0" 

where min and max are ngram ranges and K is the kernel. 

d) Experiment 4: This experiment employed a LibSVM classifier using 

polynomial kernel on the original dataset. The polynomial kernel is given by 

the formula, 

𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)𝑑, 𝛾 > 0,   (3.4) 

where 𝛾, 𝑟, and 𝑑 are kernel parameters. 

The following receipt is used to train the model. 

weka.classifiers.meta.FilteredClassifier -F 

"weka.filters.unsupervised.attribute.StringToWordVector -R 

first-last -W 1000 -prune-rate -1.0 -N 0 -L -stemmer 

weka.core.stemmers.NullStemmer -stopwords-handler 

weka.core.stopwords.Null -M 1 -tokenizer 
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\"weka.core.tokenizers.CharacterNGramTokenizer -max 5 -min 4\"" 

-W weka.classifiers.functions.LibSVM -- -S 1 -K 1 -D 1 -G 0.0 -R 

0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 

where min and max are ngram ranges and K is the kernel. 

 

e) Experiment 5: This experiment employed a LibSVM classifier using linear 

kernel on original dataset. The linear kernel is given by the formula:  

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗.     (3.5) 

The following receipt is used to train the model. 

weka.classifiers.meta.FilteredClassifier -F 

"weka.filters.unsupervised.attribute.StringToWordVector -R 1 -W 

1000 -prune-rate -1.0 -N 0 -L -stemmer 

weka.core.stemmers.NullStemmer -stopwords-handler 

weka.core.stopwords.Null -M 1 -tokenizer 

\"weka.core.tokenizers.CharacterNGramTokenizer -max 5 -min 5\"" 

-W weka.classifiers.functions.LibSVM -- -S 1 -K 0 -D 3 -G 0.0 -R 

0.0 -N 0.6 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -W "1.0 1.0 1.0" 

where min and max are ngram ranges and K is the kernel. 

All experiments are conducted using machine learning algorithms (MNB and 

SVM) obtained from WEKA toolkit. Five models are built and saved to a local file 

for future predictions. Each model is evaluated on 10-fold cross-validation. The 

presentation and analyses of the output from these experiments are discussed in 

the next chapter. 
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3.3 Back-end Phase: Speech Synthesis Module 

There are different methods for producing synthetic speech from any given input 

text that includes concatenative synthesis, articulatory synthesis, formant 

synthesis, and HMM-based synthesis. This study focuses on synthetic voices 

created from the preferred HMM-based synthesis system because of its following 

advantages (Zen et al., 2009): 

 Language independent architecture 

 Small footprint 

 Rapid prototyping of new voices 

 Flexible synthesis parameters 

 Fast and portable 

This section covers the process undertaken to develop TTS synthesis system for 

the targeted Sepedi, isiNdebele, Tshivenda and Xitsonga languages using HTS. 

It details the acquired datasets used and explains the files and data used for 

training the system. It also explains the required software development and 

implementation phase.  

3.3.1 Datasets 

Two important requirements for building a new voice are waveform files and 

corresponding transcription text files. The acquired training speech data shown 

in Figure 3.5 is acquired from the Lwazi project. Four recruited and volunteering 

mother tongue or first language speakers were engaged for the recording of 

training data. About 1318 sentences in Sepedi are used to train Sepedi TTS voice 

and 1000 sentences in Tshivenda are used to develop Tshivenda TTS voice, 

while 994 sentences are used to train isiNdebele TTS voice and 910 sentences 

are used to train Xitsonga TTS voice (see Figure 3.5). Both Sepedi and 

Tshivenda audio waveform files are in female voice while both isiNdebele and 

Xitsonga audio waveform files are in male voice. The recording durations are also 

highlighted in Figure 3.6 with Xitsonga having a shorter duration of 1.28 hours 

and Sepedi having the longer duration of 2.23 hours.  
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The corpus size for Sepedi is the highest compared to other languages with 274.6 

MB. The larger size of the corpus helps with naturalness of the synthetic speech; 

however, the training duration is much longer (Zen et al., 2009). Second highest 

 

Figure 3.5: Number of sentences 
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Figure 3.6: Speech corpora duration comparison 
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corpus size is isiNdebele with 224.4 MB, followed by Xitsonga with 169.2MB. 

Tshivenda had the smallest corpus size of 160.5 MB. The isiNdebele language 

has the smallest number of sentences compared to the Tshivenda language, but 

its corpus duration is higher than that of the Tshivenda language. This is 

attributable to the fact that sentences in the isiNdebele corpus are longer (see 

Figure 3.7).  

 

3.3.2 Compiling MARY TTS Builder Tools 

Additionally, some software packages had to be installed to create a working 

environment before experiments are conducted. The following items comprise a 

list of required software to execute MARY TTS synthesis system on a 32-bits 

Ubuntu 14.04 Long-term support: build-essentials, git, mc, libc6-dev, libx11-dev, 

libncurses5-dev, Sox, tcl-snack, g++, and python3-dev. 

The Git tool is installed to clone MARY TTS SNAPSHOT 5.2 from GitHub1 to the 

present research project environment. The MARY TTS software requires 

installation of additional speech software packages to the current working 

                                            
1 Available at: https://github.com/marytts/marytts 

 

Figure 3.7: Corpora size 
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environment. The following software packages are installed onto the Ubuntu 

Linux platform before the MARY TTS builder is compiled: 

 Open Java development kit 8: is used to run MARY TTS. 

 Apache-maven-3.3.9: is used to compile MARY TTS. 

 HTK-3.4.1.tar.gz and HDecode-3.4.1.tar.gz (HTK website, 2009): is a 

toolkit for research in automatic speech recognition (ASR). Speech 

generation depends on ASR, hence ASR tools are required.  

 HTS-2.2_for_HTK-3.4.1.patch (Tokuda et al., 2016): used to modify HTK-

3.4.1 to form HMM-based Speech Synthesis System (HTS) that is used to 

train HMM voices. 

 Hts_engine_API-1.05 (Tokuda et al., 2011): is used to synthesize speech 

waveform from HMMs trained by the HTS. 

 Edinburgh_Speech_tools-2.4-release (King et al., 2003): is a library that 

is written is C++ programming language and provides a range of tools for 

common tasks found in speech processing. This library is used to extract 

Mel-frequency Cepstral coefficients (MFCCs). 

 Festvox-2.7.0-release (Black & Lenzo, 2014): helps to building synthetic 

voices for limited domains. 

 Festival-2.4-release (The Festival Speech Synthesis System , 2014): is a 

multilingual TTS synthesis system that provides a platform for creating 

new TTS synthesis systems.  

 SPTK-3.6 (SPTK Working Group, 2012): contains speech signal 

processing tools. 

 Praat (Boersma & Weenink, 2013): is used for pitch marking and for 

extracting speech signal features. 

 EHMM_labeller (Black & Lenzo, 2014): is used for automatic labelling and 

is included with latest version of MARY TTS synthesis system.  

A script in Appendix A is used to install necessary packages and to set global 

path variables. Additional installation instructions are mostly found in the file 

named INSTALL inside each software package. These software packages are 

freely downloadable and one should agree to and obey their licences. 
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The MARY TTS synthesis system was developed as a collaborative project of 

Language Technology Lab at the German Research Centre for Artificial 

Intelligence and the Institute of Phonetics at Saarland University (Pammi et al., 

2010). This system supports creation of new HMM-based and unit selection 

synthetic voices from well-resourced to under-resourced languages. The adapted 

workflow of the MARY TTS synthesis system for voice creation is illustrated in 

Figure 3.8. This system is developed in Java and provides an easy to use 

graphical user interface (GUI). The steps followed under transcription GUI and 

basic NLP components are detailed in Section 3.3.3. The speech synthesis 

system components are described in Section 3.3.4. The MARY TTS builder uses 

a database from Wikipedia1 to create new language support. Some steps are 

removed from the original workflow of Schröder et al. (2011) because this 

research study is mainly focused on selected under-resourced languages not 

available from the Wikipedia database.  

 

3.3.3 Natural Language Processing Modules 

The transcription GUI component used is a part of MARY TTS synthesis system 

that is used to create new under-resourced language modules before speech 

synthesis voices are created. The finite state transducer (FST) training procedure 

requires a phone set file (allophone.xy.xml) and pronunciation dictionary (xy.txt) 

in the target language. From this point, letters xy are used as a locale to refer to 

all under-resourced language locales.  

                                            
1 Available at: https://en.wikipedia.org/wiki/Wikipedia:Database_download 
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The Lwazi1 phone set is adapted and used to create the new phone set files that 

are used by MARY TTS to recognise all phones involved in a target language. 

The four languages phone set files are created for Sepedi, Tshivenda, isiNdebele 

and Xitsonga as shown in Appendix B. The phone set file follows the SAMPA 

                                            
1 Available at: http://hlt.mirror.ac.za/Phoneset/Lwazi.Phoneset.1.2.pdf 

 

Figure 3.8: Workflow for multilingual voice creation in MARY TTS builder. Adapted 

from Schröder et al. (2011). 
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representation format. Table 3.2 shows all consonants and vowels used in this 

research project.  The transcription GUI tool uses WEKA toolkit to create NLP 

components in a form of a FST trained by J45 tree classifier. We have 

encountered two difficulties when creating HMM voices (for Xitsonga and 

isiNdebele) and language modules (for Xitsonga): 

Challenge 1: The MARY transcription aligner uses a pipe character to align 

phones. Since our phone sets contain pipe character, then the transcription tool 

produced an error while compiling a new voice. 

Solution 1: We used an alternative notation to phones that contain a pipe 

character (see Appendix B for isiNdebele and Xitsonga phone set).  

 

Problem 2: Furthermore, the Xitsonga has related phones (e.g. /d/, /dh/, /dl/, 

/dlh/, /dy/, /dz/, /dzh/ and the transcription tool tries to classify or map these 

phones to one letter “d”) compared to other languages. This caused the 

transcription tool to produce the error (saying cannot handle multi-valued nominal 

class). This error is mostly encountered where there are many similar phones 

that are not related and none of them explicitly defines certain alphabets (from 

English alphabets). The transcription tool is unable to define SAMPA phones for 

Table 3.2: Phone Set 

Language Consonants Vowels 

isiNdebele 

b, bh, c, ch, d, dl, dz, f, g, gc, gh, gq, h, hl, j, k, kgh, kh, l, m, 

n, ng, nk, ny, p, ph, q, r, rh, s, t, th, tj, tjh, tl, tlh, ts, tsh, v, w, 

y, z 

a, e, i, o, u 

Sepedi 
b, bj, d, f, fs, fš, g, h, hl, j, k, kg, kh, l, m, my, n, ng, ny, p, 

ph, ps, psh, pšh, r, s, t, th, tl, tlh, ts, tsh, tš, tšh, w, y, š 
a, e, i, o, u 

Tshivenda 
b, d, dy, dz, dzh, f, fh, g, h, h, k, kh, l, m, n, n', ny, p, ph, r, s, 

sh, sw, t, ts, tsh, v, w, x, y, yh, z, zh, zw 
a, e, i, o, u 

Xitsonga 

b, by, c, ch, d, dh, dl, dlh, dy, dz, dzh, f, g, gh, h, hl, j, k, kh, 

l, m, mh, n, n', ng, nh, njh, ny, p, ph, phy, py, q, r, rh, s, sw, 

t, th, thy, tl, tlh, ty, v, vh, w 

a, e, i, o, u 
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letters “c” and “j” automatically; hence, this causes WEKA to produce an error 

while creating the NLP components shown in Figure 3.8.  

Solution 2: Hence, we solved the issue by mapping SAMPA phones to an 

alternative notation (see Appendix B for Xitsonga phone set).  

Table 3.3 shows the features and their possible values. These features carry 

important parts of a language including intonation, prosody, stress, and others. 

In addition, this can be used for generating expressive or emotional speech. A 

feature can carry only one value at a time. Feature values are described as 

follows: 

 ph is assigned to a SAMPA phonetic symbol of a vowel or consonant. 

 vlng is assigned to 0 = n/a, s = short, l = long, d = diphthong,  

and a = schwa 

 vheight is assigned to 0 = n/a, 1 = high, 2 = mid-high, 3 = mid-low,  

and 4 = low 

 vfront is assigned to 0 = n/a, 1 = front, 2 = mid, and 3 = back 

 vrnd is assigned to 0 = n/a, + = on, and – = off 

 ctype is assigned to s = stop, f = fricative, a = affricative, n = nasal,  

l = liquid, and r = approximant 

 cplace is assigned to l = bilabial, a = alveolar, p = palatal, b = labio-dental, 

d = dental, and v = velar 

 cvox is assigned to 0 = n/a, + = on, and – = off  

 casp is assigned to 0 = n/a, + = on, and – = off 

 cpal is assigned to 0 = n/a, + = on, and – = off 
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In addition, the transcription GUI tool assigns a feature to zero when that feature 

is not set or declared for a particular phone. By default, all phones must be 

included in the phone set for a particular target language. The phone set 

(allophone.xy.xml) file contains the following line declaring the name, language 

and most importantly the features used in the file.  

    <allophones name="sampa" xml:lang="xy" 
           features="vlng vheight vfront vrnd ctype cplace cvox casp cpal"> 
 

3.3.3.1 Pronunciation Dictionary 

The phoneme-based pronunciation dictionaries are obtained from the Lwazi 

project. They are available at the language Resource Management Agency 

(RMA) (Language Resource Management Agency, 2016) for Sepedi, Tshivenda, 

isiNdebele and Xitsonga. The dictionaries used are the original versions of the 

Table 3.3: Phone Set Features 

Feature description Feature name Possible values 

Phone ph Vowel or consonant 

Vowel length vlng 0, s, l, d, and a 

Vowel height vheight 0,1, 2, 3, and 4 

Vowel frontness vfront 0, 1, 2, and 3 

Vowel lip rounding vrnd 0, +, and - 

Consonant type ctype s, f, a, n, l, and r 

Consonant place cplace l, a, p, b, d, and v 

Consonant voicing  cvox 0, +, and - 

Aspirated consonant casp 0, +, and - 

Palatal consonant cpal 0, +, and - 
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Lwazi pronunciation dictionaries by Davel and Martirosian (2009). All the words 

in the pronunciation dictionaries are manually checked and adapted to be 

compatible with the transcription GUI tool. The details of the pronunciation 

dictionaries are outlined in Figure 3.9.  

 

The python script generating the dictionary is given in Appendix C. This script 

outputs a phoneme-based pronunciation dictionary that contains words together 

with their SAMPA phonetic description. This script also marks all the words 

functional. The transformation format is as follows: 

Original Transcription    Transformed transcription  

tshepišo ts_h E p_> I S O 1 0 → tshepišo ts_hEp_>iSO functional 

magetla m a G E tl_> a 1 0 → magetla maGEtl_>a functional 

 

The procedure used to adapt or transform the pronunciation dictionary to MARY 

TTS is as follows: 

i. Open input pronunciation dictionary file, 

ii. Read the next line from the input file, 

 

Figure 3.9: Pronunciation dictionary setup 
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iii. Remove all single blank spaces, 

iv. Split the line according to tabs 

v. Create new line of string by joining an item at index 1, index 2 and 

appending string “functional”; all items are separated by a blank space, 

vi. Write a line to an output file 

vii. Repeat step (ii) to (vi) until all lines are read from input file. 

viii. Close output file. 

3.3.3.2 Lexicon, Letter-to-Sound Rule and Part-of-Speech Tagger 

The transcription tool is a user graphical interface that supports semi-automatic 

procedure for transcribing new language database and automatic training of a 

G2P rule file and a LTS rule file. The transcription tool is launched on the terminal 

by the following command: 

$ ./voice/sources/marytts/target/marytts-builder-5.2-

SNAPSHOT/bin/transcription.sh 

On the transcription GUI tool, function words can be selected or checked. 

Furthermore, the LTS predictor is trained and is used to predict the phonetic 

description of words that are not transcribed. All functional words are saved in 

order to build a primitive part-of-speech (POS) tagger that works on simple 

context-free string matching. The transcription GUI tool generated the following 

important files: 

 xy.lts – LTS for transcribing unknown words,  

 xy_lexicon.dict – phoneme-based pronunciation dictionary file,  

 xy_lexicon.fst – grapheme-to-phoneme file, 

 xy_pos.fst – POS tagger classifies and tags parts of a sentence according 

to their classes or categories (classes can be prepositions, articles, verbs, 

adjectives, and others). Functional words and content words are the only 

two categories in the POS tagger creation,   
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where xy represents a locale of a target language as previously explained in 

Table 3.1.  

3.3.3.3 Implementation of New Language Modules 

A minimal NLP module is built using the files generated by transcription GUI tool. 

The simple way to build the NLP module for the new under-resourced language 

is to modify the pre-existing language project with simple NLP components. One 

of the projects in the MARY TTS synthesis system that contains simple NLP 

components is adapted for the selected four target languages. The four under-

resourced language projects are renamed to marytts-lang-xy and saved to 

directory at path /voice/sources/marytts/marytts-languages/.  

The under-resourced language projects are created by adopting one of the pre-

existing language projects. The procedure to implement the minimal NLP module 

is adopted from the MARY TTS GitHub page1.  

The language projects are added to master pom (marytts/marytts-

languages/pom.xml) as a new subproject under modules tag (see Listing 3.2). 

These language projects are also added as a dependency in the assembly-

runtime plugin (marytts/marytts-assembly/assembly-runtime/pom.xml) 

and assembly-builder plugin (marytts/marytts-assembly/assembly-

builder/pom.xml) files using the code given in Listing 3.3.  

 

                                            
1 Available at: https://github.com/marytts/marytts/wiki/New-Language-Support 

... 
<modules> 
 <module>marytts-lang-nso</module> 
 <module>marytts-lang-ven</module> 
 <module>marytts-lang-nbl</module> 

<module>marytts-lang-tso</module> 
</modules> 
... 

Listing 3.2: Languge modules included in marytts-languages project 
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The final step is to build the full project. A new Maven directory is created inside 

each language project called target and it contains the following executable Java 

files (.jar) of the newly built language projects;  

 marytts/marytts-languages/marytts-lang-nso/target/marytts-
lang-nso-5.2-SNAPSHOT.jar 

 marytts/marytts-languages/marytts-lang-nbl/target/marytts-
lang-nbl-5.2-SNAPSHOT.jar 

 marytts/marytts-languages/marytts-lang-ven/target/marytts-
lang-ven-5.2-SNAPSHOT.jar 

 marytts/marytts-languages/marytts-lang-tso/target/marytts-
lang-tso-5.2-SNAPSHOT.jar 

These Java files are saved to the MARY TTS builder and runtime at the following 

directories respectively: 

marytts/target/marytts-builder-5.2-SNAPSHOT/lib 
marytts/target/marytts-5.2-SNAPSHOT/lib 

 

... 

<dependency> 
    <groupId>${project.groupId}</groupId> 
    <artifactId>marytts-lang-nso</artifactId> 
    <version>${project.version}</version> 
  </dependency> 
  <dependency> 
    <groupId>${project.groupId}</groupId> 
    <artifactId>marytts-lang-ven</artifactId> 
    <version>${project.version}</version> 
  </dependency> 
  <dependency> 
    <groupId>${project.groupId}</groupId> 
    <artifactId>marytts-lang-nbl</artifactId> 
    <version>${project.version}</version> 
  </dependency>   
  <dependency> 
    <groupId>${project.groupId}</groupId> 
    <artifactId>marytts-lang-tso</artifactId> 
    <version>${project.version}</version> 
  </dependency> 
... 

Listing 3.3: Languge modules included in assembly-builder module 
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The following commands are used to start the MARY TTS server on Ubuntu 

terminal or Windows command prompt respectively: 

$ ./voice/sources/marytts/target/marytts-5.2-
SNAPSHOT/bin/marytts-server 

> voice\sources\marytts\target\marytts-5.2-SNAPSHOT\bin\marytts-
server.bat 

These new languages can be tested by accessing this link 

http://localhost:59125/locales on an internet browser. The link retrieves installed 

locales or languages. The output contains all the locales installed in the MARY 

TTS synthesis system as shown in Figure 3.10. Therefore, we have successfully 

added a support for the four new under-resourced languages (nbl, nso, ven and 

tso). 

 

 

Figure 3.10: The output of current language locales installed in MARY TTS synthesis 

system 

 

http://localhost:59125/locale
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3.3.4 TTS Synthesis Modules 

This section details the steps followed to create new synthetic voices. There are 

different kinds of speech synthesis methods that can be used when creating 

synthetic voices. The HTS method is adopted to create the synthetic voices. This 

method is selected since it requires a small training dataset, and is fast and 

efficient.  

 

3.3.4.1 Preparation  

The acquired speech corpus dataset is of type waveform with sampling frequency 

of 16 KHz. Moreover, the audio format is on mono channel with bitrate of 16 bit 

per sample.  

The acquired speech audio files are used to train HMM models for speech 

synthesis. The corpus consists of speech utterances together with their 

corresponding text annotation which helps to transcribe the speech sample and 

to properly train the HMM models. The sentences are carefully numbered and 

saved to a FestVox file called txt.done.data that is used when creating MARY 

prompt or transcription files in which each sentence is saved to its text file. The 

root directory for voice building is set to a directory at /voice/xy for each language. 

The speech corpus is saved to the directory at /voice/xy/wav/ and the 

transcription files are saved to the file at /voice/xy/txt.done.data. 

The working directories need to be created before launching the voice import tool. 

The four directories are created for each language. The settings in Table 3.4 are 

configured according to the type of target voice by launching voice import tools 

from the following command at root level on the terminal: 

$ ./voice/sources/marytts/target/marytts-builder-5.2-

SNAPSHOT/bin/voiceimport.sh 
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On the new pop-up window, the working directory is selected and used during 

the entire process of training a new voice. The db.estDir property is the path to 

speech tools while db.gender is the gender of voice. The db.locale is the locale 

of the language, db.marybase is the path to MARY TTS, and db.rootDir is the 

working root directory. The db.samplingrate is the sampling rate of the recordings, 

db.voicename is the name of the new voice, and db.wavDir is the path to audio 

wave files. Other settings are filled automatically depending on the voice-building 

path. After saving the general configuration settings, then the main window 

appears showing the methods in Figure 3.11.  

 

Table 3.4: General Configuration Settings 

Property Value 

db.estDir /voice/sources/speech_tools/ 

db.gender female (or male) 

db.locale xy 

db.marybase /voice/sources/marytts/ 

db.rootDir /voice/xy 

db.samplingrate 16000 

db.voicename new_language_voice_name 

db.wavDir /voice/xy/wav/ 
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Figure 3.11: HMM-based voice training in MARY TTS. Adapted from Würgler 

(2011) 
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3.3.4.2 HMM-based Voice Training 

The voice training process take several hours to complete building each TTS 

voice depending on training corpus size and performance of the workstation or 

computer used for training. This section details the procedure taken to develop 

HMM-based voices by assuming that the installation instructions and declaration 

of path variables given in Appendix A have been done.  

Once the language support is implemented as discussed in Section 3.3.3, a new 

voice is now ready to be created. We used the voice import tool for creating new 

voices (Pammi et al., 2010). The tool is periodically updated on the MARY TTS 

page on GitHub1 . The training of the new voice uses the main processing 

components given in Figure 3.11. A component is executed by selecting or 

checking the appropriate checkbox and then clicking on the “run” button. 

Parameters and configurations of each module are accessed by clicking the 

settings editor button next to the checkbox. The main modules shown in Figure 

3.11 are explained below, according to their execution order (Pammi et al., 2010): 

The PraatPitchmarker verifies the frequency range for male and female voices. 

Settings for male voice have maximum pitch of 300 and minimum pitch of 75 

while female voices have maximum pitch of 500 and minimum pitch of 100 

(Pammi et al., 2010). The raw acoustics are saved to the directory at 

/voice/xy/pm/*.  

The MCEPMaker uses Edinburgh speech tools to extract MFCCs from all audio 

wave files. The raw acoustics are saved to the directory at 

/voice/sources/mcep/*.mcep. 

The Festvox2MaryTranscriptions use the FestVox transcription file to create 

MARY transcription files (separate text files). The results are saved to the 

directory at /voice/xy/text/*.txt. 

                                            
1 Available at: https://github.com/marytts/marytts/wiki/VoiceImportToolsTutorial 
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The Allophones Extractor processes the transcription file (txt.done.data) of the 

speech audio files to generate a MARY extensible markup language (XML) 

allophone files (initial allophones). This component requires a MARY TTS server. 

The results are saved to the directory at /voice/xy/promp_allophones/*.xml. 

The EHMM Labeller is an external component called by MARY TTS to label the 

audio wave files using the corresponding transcriptions. This step may take 

several hours to complete, depending on the amount of data used. The results 

are saved to the directory at /voice/xy/ehmm/*. The following variable is set in the 

component settings editor:  

EHMMLabeler.ehmmDir = /voice/sources/marytts/lib/external/ehmm 

The Label Pause Deleter removes pauses from label files. The results are saved 

to the directory at /voice/xy/lab/*.lab. The following variable is set in the 

component settings editor:  

LabelPauseDeleter.pauseDurationThreshold = 10 

The Phone Unit Label Computer converts the label format from EHMM to MARY. 

This component inputs the lab directory and outputs the phone lab directory at 

/voice/xy/phonelab/*.lab.  

The Transcription Aligner verifies that labels and allophone files are correctly 

aligned. The results are saved to the allophone directory (final allophones) at 

/voice/xy/allophones/*.xml.  

The Feature Selection confirms a list of all the features to be considered in the 

next steps and saves the features to a file at /voice/xy/mary/features.txt. This 

component extracts contextual and linguistic features such as vowel height, 

vowel frontness, consonant place, consonant type, consonant roundness, 

accent, stress, and others.  

The Phone Unit Feature Computer extracts context feature vectors from the text 

data. The component creates a phone features directory at 
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/voice/xy/phonefeatures/*.pfeats. This component requires the MARY TTS server 

to be running. 

The Phone Label Feature Aligner verifies that there is proper alignment between 

phone features and phone labels. The results are displayed on the console, 

saying, “0 problem”.  

The next steps illustrate HMM voice creation showed in Figure 3.12.  

 

The HMM Voice Data Preparation sets up the environment to create a HMM voice 

and uses the following configuration file to check availability of the required 

external programs, text and audio wave files and their paths: 

/voice/sources/marytts/lib/external/externalBinaries.config. It converts all audio 

wave files to raw files by using the Sound eXchange (SoX) tool.  

The HMM Voice Configure configures voice properties. Both male and female 

voices are available in the Lwazi corpus at 16 kHz and 16 bitrates. Table 3.5 

 

Figure 3.12: HMM-based speech synthesis steps 
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shows different setting values used for configuring voices, including fast Fourier 

transform length, frame length, frame shift, frequency wrapping, lower 

fundamental frequency (F0), upper F0, and other settings remain as default. 

These values depend on the sampling rate and gender of the voice.  

The HMM Voice Feature Selection reads features created by the Feature 

Selection component and generates a new list of features used to train the HMM 

models. The results are saved to a file at /voice/xy/mary/hmmFeatures.txt. 

The HMM Voice Make Data component uses the HTK tool patched with the code 

provided by HTS to train HMMs. This step uses speech signal processing toolkit 

(SPTK) and Snack to extract speech signal parameters including voicing 

strengths for mixed excitations (STR), log F0 (LF0), Mel-generalised Cepstral 

(MGC) coefficients and Fourier magnitudes (MAG) to form an acoustic parameter 

vector (MGC+LF0+STR+MAG). This component executes in the /voice/xy/hts/ 

directory and generates question sets saved to the directory at 

/voice/xy/hts/data/questions/*.hed.  
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The HMM Voice Make Voice uses a version of the speaker dependent training 

scripts provided by HTS that was adapted to the MARY TTS platform by adding 

sections for the acoustic parameter vector. As shown in Figure 3.13, this step 

takes several hours to finish to execute the following script: 

perl scripts/Training.pl scripts/Config.pm > logfile & 

The HMM Voice Compiler compiles the voice project using Maven. The path to 

Maven is set to /voice/soft/maven/bin. The new HHM-based voice components 

are ready to be installed. The next section explains the procedure taken to install 

the new HMM-based voices onto the MARY TTS synthesis system. 

Table 3.5: Some HMM Voice Configuration 

Property Value 

HMMVoiceConfigure.fftLen 512 

HMMVoiceConfigure.frameLen 400 

HMMVoiceConfigure.frameShift 80 

HMMVoiceConfigure.freqWarp 0.42 

HMMVoiceConfigure.lowerF0 Male=40, Female=80 

HMMVoiceConfigure.mgcBandWidth 24 (for cepstral form) 

HMMVoiceConfigure.mgcOrder 24 (for cepstral form) 

HMMVoiceConfigure.sampfreq 16000 

HMMVoiceConfigure.speaker Speaker_name 

HMMVoiceConfigure.upperF0 Male=280, Female=350 
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3.3.4.3 Implementation of New TTS Voice Components 

The previous section explained the training procedures of new voices. This 

section highlights the procedure of integrating new voices to the MARY TTS 

synthesis system.  

Table 3.6 shows the size of each developed voice. The HMM-based voices have 

a small size compared to unit-selection voices (Zen et al., 2009). This training 

process took less time to train each voice compared to when training unit-

selection TTS voices, which may take days to train. The HMM-based TTS 

synthesis systems are robust, fast and efficient, and require less computation 

costs. This enables the use of such systems in small storage devices like mobile 

handsets, navigation devices, and many similar others.   

 

Figure 3.13: HMM-based voice creation in process 
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After training the new under-resourced HMM-based voices, the results are four 

installable zip files:  

/voice/nso/mary/voice-sepedi-lwazi2-hsmm/target/voice-lwazi2-

sepedi-hsmm-5.2-SNAPSHOT.zip 

/voice/nbl/mary/voice-lwazi2-ndebele-hsmm/target/voice-lwazi2-

ndebele-hsmm-5.2-SNAPSHOT.zip 

/voice/ven/mary/voice-lwazi2-tshivenda-hsmm/target/voice-lwazi2-

tshivenda-hsmm-5.2-SNAPSHOT.zip 

/voice/tso/mary/voice-lwazi2-xitsonga-hsmm/target/voice-lwazi2-

xitsonga-hsmm-5.2-SNAPSHOT.zip 

 

These four installable zip files contain the HMM-based voices that are compatible 

to the MARY TTS synthesis system. These files are saved to the MARY TTS 

runtime download directory at: 

/voice/sources/marytts/target/marytts-5.2-SNAPSHOT/download/ 

The MARY TTS component installer in Figure 3.13 is a GUI that is used to install 

new languages and voices to the MARY TTS synthesis system. The following 

command is used to launch the GUI component installer. 

/voice/sources/marytts/target/marytts-5.2-SNAPSHOT/bin/marytts-

component-installer 

Table 3.6: Developed TTS Voice Sizes 

Voice Size 

Sepedi 1.9 MB 

Tshivenda 1.4 MB 

isiNdebele 1.8 MB 

Xitsonga 1.5 MB 
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The new voices are installed under their respective languages (locales). As 

shown in Figure 3.14, the voice (e.g. lwazi2sepedi) is found under its language 

(e.g. nso).  

 

The MARY TTS GUI client can be accessed through the web address 

http://localhost:59125 and through the GUI component on the Ubuntu Linux 

platform at /voice/sources/marytts/target/marytts-5.2-SNAPSHOT/bin/marytts-

client or on the Microsoft windows operating system at 

/voice/sources/marytts/target/marytts-5.2-SNAPSHOT/bin/marytts-client.bat 

(see Figure 3.15). 

 

Figure 3.14: MARY TTS Component installer 

http://localhost:59125/
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3.4 Integration of the LID and TTS Synthesis 

This section details the implementation of the LID and TTS synthesis system 

module as one system function (or patching the MARY TTS synthesis system to 

support LID). The LID is integrated into MARY TTS synthesis system with 

modifications and additions of certain Java files. Maven is used to install MARY 

TTS synthesis system from source. The following sub-projects (or modules) are 

included in the MARY TTS synthesis system during installation: 

 marytts-languages  

 marytts-builder  

 marytts-runtime  

 marytts-assembly  

 marytts-client  

 

Figure 3.15: MARY TTS GUI client 
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 marytts-common  

 marytts-redstart  

 marytts-signalproc  

 marytts-transcription  

 voice-cmu-slt-hsmm 

The MARY TTS synthesis system uses mainly the runtime module to generate 

new synthetic speech. As a result, this module is upgraded in order to support 

machine-learning functions that implement classification functionality. The WEKA 

software is added as a dependency to the runtime module by including the WEKA 

repository in the maven project file at path 

 /voice/sources/marytts/marytts-runtime/pom.xml (see Listing 3.4). 

 

The MARY TTS synthesis system server is upgraded to support incoming text to 

be classified. The “classify” extension or pattern (in Listing 3.5) is added to the 

HttpRequestHandlerRegistry. The Java file used for handlers is found at path 

/voice/sources/marytts/marytts-runtime/src/main/java/marytts/server/http/ 

MaryHttpServer.java.  

HttpRequestHandlerRegistry maintains a map of hypertext transfer protocol 

(HTTP) request handlers keyed by a request uniform resource identifier (URI) 

pattern and InfoRequestHandler looks up a handler matching the given request. 

The class InfoRequestHandler and SynthesisRequestHandler are called when 

the pattern /classify and /process are matched respectively. 

... 
<dependency> 
 <groupId> nz.ac.waikato.cms.weka </groupId> 
 <artifactId> weka-dev </artifactId> 
</dependency>  
... 

Listing 3.4: The WEKA Maven repository included in marytts-runtime module 
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MARY TTS system supports both sockets and HTTP protocols. It listens on HTTP 

port 59125 with the following patterns: 

 /classify – used for classification. It receives text and model from 

hypertext markup language (HTML) form. Text represents a surname and 

model represents the name of the model or classifier (where there may be 

multiply classifiers). Finally, it returns the locale.  

 /process – used for voice generation. It receives text and locale from 

HTML form. Text represents the input surname and locale represents the 

classified or chosen language. Finally, it returns the raw audio data. 

The Java file InfoRequestHandler is upgraded to recognise the pattern /classify 

(see extract of Listing 3.6). The LID usage uniform resource locator (URL) pattern 

is as follows: 

 http://localhost:59125/classify?text=surname&model=namesModel  

As shown in extract of Listing 3.6, the classifyLang string variable stores the value 

of text (surname) and model string variable stores the LID model name. If these 

two variables are set, then they are passed as arguments to the constructor 

method in class NamesPredictor. The contents of NamesPredictor.java file are 

given in Appendix D. This Java file belongs to the package weka.classifiers. The 

NamesPredictor class receives two parameters where the first parameter sets 

the text and the second parameter sets the target classifier model. The method 

makeInstance() is called from the constructor to prepare an instance to be 

classified. This instance follows the WEKA ARFF file format and must match the 

... 
// Set up request handlers 
HttpRequestHandlerRegistry registry = new HttpRequestHandlerRegistry(); 
registry.register("/process", new SynthesisRequestHandler()); 
InfoRequestHandler infoRH = new InfoRequestHandler(); 
registry.register("/classify", infoRH);     
... 

 Listing 3.5: Upgraded MaryHttpServer java file by including handler for pattern /classify  

http://localhost:59125/classify?text=surname&model=namesModel
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data that is used to train the target classifier model. The loadModel() method is 

called by the constructor to use WEKA SerializationHelper to read or load the 

model from local file. The class InfoRequestHandler calls the classify method 

from NamesPredictor class to perform classification and returns the predicted 

language locale.   

The MARY TTS system is reinstalled using the following command from terminal: 

voice/sources/marytts$ mvn install 

The WEKA toolkit (weka.jar) is saved to the lib directory with other Java files of 

MARY TTS synthesis system at  

/voice/sources/marytts/target/marytts-5.2-SNAPSHOT/lib/* 

The LID model (classifier) is saved to the same bin directory containing marytts-

server and marytts-client scripts at 

/voice/sources/marytts/target/marytts-5.2-SNAPSHOT/bin/* 

 

... 
if (request.equals("classify")) { 
   //Text classification starts here ... 
   if (queryItems != null) { 
      String classifyLang = queryItems.get("text"); 
      String model = queryItems.get("model"); 
      if (classifyLang != null) { 
         if (model.equals("namesModel")) { 
            NamesPredictor pred = new NamesPredictor(classifyLang,model); 
            return pred.classify(); 
         } 
      } 
   } 
   MaryHttpServerUtils.errorMissingQueryParameter(response, "'effect'"); 
   return null; 
} 
... 

Listing 3.6: Upgraded InfoRequestHandler Java file by including conditional statement for 
pattern /classify  
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3.5 Live Demonstration of the System 

The TTS synthesis systems for well-resourced languages are becoming more 

readily commercially available on the internet platform. Some of the available 

multi-language commercial TTS synthesis systems are CereProc1, NeoSpeech2, 

Cepstral3, IBM Watson4, and Acapela5 TTS demo. These TTS synthesis systems 

do not reflect inclusion of indigenous South African official languages. Hence, 

developing and deploying a prototype TTS synthesis system that covers some of 

the under-resourced indigenous languages promotes technological footprint and 

awareness of these languages and also helps encourage initiatives towards 

retention and endorsement of the cultural identity of the languages.  

This section details the implementation of the complete system. It explains the 

commands used to set up the cloud-based server. It details the procedures used 

to deploy the developed system. It also details the interaction of the developed 

system with a client-based application. The development of the Android 

application is explained.  

3.5.1 Server 

The MARY TTS synthesis system is deployed to a virtual private server (VPS) 

running Ubuntu server 16.04 long-term support operating system installed with 

Java. The VPS contains the following specifications that are technologically 

sufficient to host the proposed system. 

 1 core processor  

 1 Gigabyte of random access memory 

 50 Gigabytes of solid-state drive space 

 64 bit operating system architecture 

                                            
1 Available at: https://www.cereproc.com/ 
2 Available at: http://www.neospeech.com/ 
3 Available at: http://www.cepstral.com/en/demos/ 
4 Available at: http://text-to-speech-demo.mybluemix.net/ 
5 Available at: http://www.acapela-group.com/voices/demo/ 
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The server is installed with nginx reverse proxy on port 80 to serve MARY TTS 

synthesis system. A special service account is created named mary to run the 

service and to manage installation files. The newly created account is given 

ownership of the installation files that are saved to path /local/mary/.  

A configuration file is added to /etc/nginx/sites-available/default with contents in 

Listing 3.7. Then the nginx service is restarted.  

 

The MARY TTS sysnthesis system server is started by running marytts-server 

script from bin directory using the new mary account and the script was allowed 

to run in the background. A cron job is set in order to restart the MARY TTS server 

in case of any system crash or memory leakage or system reboot. A new bash 

file is created with contents given in Listing 3.8. This bash file is made executable. 

 

... 
server { 
    location / { 
               proxy_pass http://127.0.0.1:59125; 
} 
... 

Listing 3.7: Configuration file added to nginx 

#!/bin/bash 
 
# Version to adapt to your system 
VERSION=5.2 
 
#Check if our service is currently running 
ps auxw | grep marytts-server | grep -v grep 
 
# if the service is not running it returns a non zero to the environment 
viriable, 
# in that case we start the service, else we ignore. 
if [ $? != 0 ] 
then 
    bash /local/mary/marytts/bin/marytts-server –Xmx150m 
fi 
 

Listing 3.8: Mary.sh file to restart the server 

 

http://127.0.0.1:59125/
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This file is saved to location /usr/local/bin/mary.sh. The cron job is set to 5 minutes 

interval using the following command:  

sudo crontab –e 
*/5 * * * * /usr/local/bin/mary.sh 

For every 5 minutes interval this cron job checks if the MARY TTS server is still 

running, and it launches the mary.sh script that restarts the MARY TTS server if 

is not running. The firewall is set up to allow incoming traffic on port 80 (HTTP). 

The traffic received on port 80 is proxied to the MARY TTS synthesis system 

server. The system is successfully deployed on the VPS as the server. 

Application clients can access the system via internet connection (see Figure 

3.16).  

 

 

Figure 3.16: Design of the application client and server connection via 

wireless connection 
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3.5.2 Client – Internet Browser 

Client is an internet browser accessing the website on a web server. The website 

is deployed to hide the VPS. It contains HTML and hypertext pre-processor (PHP) 

scripts that point to the VPS for both voice generation and LID prediction of a 

language. The system has API that can be found on the API tab on the website. 

It explains how to fetch audio using HTML form. The live demonstration of the 

system is available on the project website and can be accessed using the internet 

connection on https://www.speechtech.co.za. 

3.5.3 Client – Android Application 

The application is developed for Android and tested on API version 23. As shown 

in Figure 3.16, the application serves as a client that connects to the system on 

the server-side. The surname and locale inputs are sent to the server and the 

server acknowledges the connection and returns the audio data back to the client.  

The application has the following four classes which are given in Appendix E: 

MainActivity – this class sets the main layout to front and the layout contains text 

areas and buttons.  

LanguageIdentification – this class handles LID of surnames by creating HTTP 

connection to the server. It receives surname and return locale. 

Methods – this class contains methods needed by the main activity, including 

network connection, verification of text, and text encoding.  

PlayAudioManager – this class plays audio using media player instance. It 

receives URL containing audio location.   

The application GUI in Figure 3.17 contains (a) menu option with list of 

languages, (b) Text Area and (c) three buttons namely Clear, Download and 

Speak. These buttons are clickable and call certain methods defined with 

setOnClickListener. The Clear button resets the Text Area when clicked, the 

https://www.speechtech.co.za/
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download button creates HTTP requests to download the audio, and the Speak 

button when clicked applies the following procedure: 

Step 1: Calls urlBuilder(model) method by passing model name as a parameter. 

Step 2: If there is no surname parameter then a message is displayed to the user 

and returns false, or else then encodes the surname by calling the method 

encode_text(string) from class Method.  

Step 3: Checks if the language is set by calling a method isempty(string) from 

class Method, or else displays the message to the user to select the language. 

Step 4: If the language is set to “detect”, then check if there is internet connection 

by calling method isInternet from class Method. If internet is available, the URL 

is built and passed to the LID class. 

Step 4.1: The LID class creates HTTP connection to the server in the background 

using an asynchronous task to classify the input surname parameter. If the 

surname parameter is classified, then a message is displayed to the user stating 

a classified language and the language is used to build the final URL (LID URL), 

and returns true. 

Step 5: If the user sets the language then a final URL is built (user URL) and 

returns true. 

Step 6: If step 4 or 5 returns true then it means the URL is built and the method 

player(URL) is called with URL as parameter. This method calls class 

PlayAudioManager to create MediaPlayer instance that plays the audio from a 

given URL. The android application unified modelling language (UML) diagram 

of all the classes is given in Appendix F. The UML diagram details the relationship 

between the classes and all the member functions (methods) and variables. 
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3.6 Summary 

In this chapter, we have discussed the most important steps of the 

implementation phase in detail. The text and speech data used for training and 

evaluation in all experiments were discussed. The speech technology and data 

mining resources and toolkits to set up LID classifier and TTS experiments were 

outlined. The feature set for creating LID is outlined. We have discussed the 

supervised machine-learning algorithms. The pronunciation dictionaries used 

were also discussed. We have discussed the steps followed when creating LID 

classifier and TTS in Sepedi, Xitsonga, Tshivenda and isiNdebele. The 

implementation phase of the proposed system was outlined. The developed 

   

Figure 3.17: Android application demo 
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system is deployed to the production cloud server stability testing on real data. 

The Android application and project website were also explained.  

As captured in the first chapter, the aim of the research study was to develop a 

TTS synthesis system that uses a trained classifier to enhance correct 

pronunciation of words and phrases, particularly proper names for four under-

resourced languages of the Limpopo province, South Africa, namely Sepedi, 

Tshivenda, Xitsonga and IsiNdebele. To achieve this goal, the following 

objectives have been accomplished: 

a) The acquisition of textual data in the form of a corpus containing surnames 

was acquired from the University of Limpopo student database.  

b) The speech training data was acquired from the Lwazi TTS corpus for four 

languages.  

c) We have used machine-learning classifiers to train LID model for 

classification of surnames into respective first languages.  

d) The LID model was used as a language predictor to identify a first 

language given surname. This model forms a front-end phase of the 

system. We built the baseline TTS synthesis modules in Sepedi, Xitsonga, 

Tshivenda and isiNdebele. These modules serve as a back-end of the 

system.  

e) Once the identity of a language has been predicted from a given surname, 

then an appropriate TTS synthesis system is activated to continue with 

pronunciation guidance using the predicted first language.  

The last objective is discussed in the next chapter, including evaluation metrics 

and the results obtained. The results of the evaluation try to answer research 

questions outlined in the first chapter.  
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4 CHAPTER 4: EVALUATION RESULTS 

This chapter illustrates the methods used for evaluating the developed LID and 

TTS synthesis system. It details the analysis of the results in an attempt to answer 

the research questions stated:  

 Can a computational system use a person’s surname to predict the identity 

of the first-language of that person?  

 Can a computational system produce an appropriate pronunciation of 

indigenous proper names? 

4.1 Introduction 

The automatic pronunciation assistant is designed and implemented to be a 

complete HMM-based TTS synthesis system implementing machine-learning 

technologies. These learning technologies were applied during LID training and 

the same classifier models were evaluated or tested on the same data using a n-

fold cross-validation. The prototype system is currently available on the internet 

platform for further testing on real-world data.  

In this chapter, the perceptual evaluations are described, illustrating the state of 

our work. The following evaluation metrics were selected for distinct purposes: 

 The test for intelligibility, the ability of a human listener to understand 

and interpret the words and meaning of the synthesised utterances with 

ease. Subjects are asked to listen and write down the synthesised 

utterances. 

 The test for quality, an abstract measure of pleasantness of voice, 

naturalness of voice, and correct pronunciation of the utterance. Subjects 

are asked to rate the speech quality on a 5-point Likert scale.  

The layout is as follows: 

 Section 4.2 discusses performance metrics used to measure the 

performance of the LID component and speech synthesis phases. 
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 Section 4.3 discusses evaluation results of the LID component. 

 Section 4.4 discusses MOS test results of the TTS synthesis phase. 

 Section 4.5 discusses evaluation results of the entire system usability. 

 

4.2 Performance Measures of the Proposed System 

The user acceptance of the state-of-the-art speech technology systems depends 

on the appropriate appraisal of the system performance. We evaluated the 

performance of the proposed system by measuring the front-end LID system, 

back-end TTS system and overall system usability separately. 

 

4.2.1 Evaluation Metrics for LID 

This section details the testing results obtained during LID evaluation on a 10-

fold cross-validation. The experimentation setup was defined from the previous 

chapter (see Section 3.2 of Chapter 3). We have evaluated the performance of 

each classifier model based on certain criteria to assess the prediction accuracy 

of the classifier model. The performance of a trained model is determined by how 

good the predictions reflect the actual classes. The evaluation measurements are 

given in the following classification terms: 

 FP = False positive means observations where the actual class is negative 

and the predicted class is positive. 

 TN = True negative means observations where the actual and predicted 

class is negative. 

 TP = True positive means observations where the actual and predicted 

class is positive. 

 FN = False negative means observations where the actual class is positive 

and the predicted class is negative.  
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These classification terms are used when evaluating a supervised model wherein 

a labelled observation is compared to a predicted observation such that the 

confusion matrices can be generated from each experiment. Table 4.1 shows the 

design of a confusion matrix from a binary classification.  

 

 

The true positives and true negatives shown in blue font define surnames that 

were correctly predicted. The following evaluation metrics were used to evaluate 

the performance of the LID classifier models: 

Accuracy is measured as the proportion of correctly identified surnames in the 

test set, compared to all the surnames in the same test set. It is defined by the 

equation: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑖+𝑇𝑁𝑖

𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
× 100%    (4.1) 

Where 𝑖 represent number of occurrences. 

Precision is defined as the percentage of applicable surnames identified out of 

all identified surnames. The equation for precision is given by: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
× 100%   (4.2) 

Table 4.1: Confusion Matrix 

Model Class 
Actual class 

Positive Negative 

Predicted class 
Positive True Positive False Positive 

Negative False Negative True Negative 
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Where 𝑖 represent number of occurrences. 

 

Recall (or sensitivity) is defined as the percentage of applicable surnames 

correctly predicted out of all applicable surnames in the collection and it is defined 

by the equation: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
× 100%    (4.3) 

Where 𝑖 represent number of occurances. 

F1 score is the weighted average of precision and recall. It takes both false 

positives and false negatives into account. Intuitively, F1 score is more useful 

where there is uneven class distribution. The F1 score formula is given by 

𝐹1 =
2∗(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
    (4.4) 

 

Root mean-squared error (RMSE) is arguably the most essential criterion used 

to evaluate the performance of a predictor. Its equation is represented by the 

square root of the average of the squares of the differences between actual and 

predicted values. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1     (4.5) 

 

where 𝑛 is the total number of observations, 𝑦𝑖 is the actual values and 𝑦̂𝑖 is the 

predicted values  ∀𝑖 ∈ ℤ+ and 0 ∉ ℤ+.   
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4.2.2 Subjective Evaluation Metrics for TTS 

Subjective listening tests were used to measure the intelligibility and quality of the 

developed TTS voices. Thirty-two native speakers were recruited via a “word of 

mouth” campaign to participate in the evaluation tests. No remuneration or gifts 

were provided to participants in exchange for information. The participants were 

University of Limpopo under-graduate and post-graduate students. They were 

divided into four groups of mixed gender according to their native language. Each 

group contained 8 participants to evaluate their first-language TTS voice. The 

participants’ age ranged from 18 to 35 and the subjects had no prior experience 

working with TTS synthesis systems. The participants agreed to sign a consent 

form and answered the questionnaire given in Appendices G and H respectively. 

The questionnaire is used to gather all the data required for evaluation of the 

synthesised speech generated by the developed system against the natural 

speech. Evaluations were conducted in a reasonably sound-controlled room with 

no noise disturbances.  

The intelligibility and quality of synthesised speech is measured using the 

following example sentence, more sentences are given in Appendix I. 

Buka e sepetše godimo ga lefase le le botse. 
The book walked through the attractive 
floor. 

The sentences given in Appendix J were used to measure quality of natural 

speech using MOS test. The sentences to measure natural speech were in 16-

bit linear pulse-code modulation (PCM) and were extracted from the speech 

corpus. The TTS intelligibility tests are done using different methods including 

DRT, MRT, SUS, and WER. The SUS method has an advantage of providing no 

semantic contextual cues to the intelligibility of the individual words and hence it 

is chosen for testing TTS intelligibility at sentence level and word level. The WER 

is also used to measure intelligibility at word level. The quality of generated TTS 

voices is measured using MOS test against the following factors: 

understandability, pleasantness, pronunciation, and naturalness.  
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4.2.2.1 Semantically Unpredictable Sentences 

The SUS test measures speech intelligibility in synthesised sentences that are 

syntactically correct but semantically meaningless (Benoît et al., 1996). Five 

sentences of different syntactic structure were constructed as recommended by 

Benoît et al. (1996) and synthesised audio is played to the subject in a form of 

mixed part-of-speech template like DET ADJ NOUN VERB ADJ (see Appendix 

I.1). A good example of a SUS is “The model modal successful and the guide”. 

To avoid learning effects, subjects listened to the sentences only once. An 

additional three sentences were constructed and used in training session so that 

participants were well aware of acoustic content of the audio. The participants 

listened to the sentences synthesised by the developed synthesiser during the 

testing session where they transcribed the synthetic utterances of the audio. The 

participants wrote the sentences on a given questionnaire and those who have 

unclear handwriting were asked to type on a computer. The percentage of correct 

identifications is used as an intelligibility metric. The metric at word level is given 

by: 

 

𝑆𝑈𝑆𝑤 =
1

𝑆
∑

𝑤̂

𝑊

𝑆
𝑖=1 × 100%    (4.6) 

The metric at sentence level is given by: 

𝑆𝑈𝑆𝑠 =
1

𝑆
∑ ŝ𝑆

𝑖=1 × 100%    (4.7) 

 

where 𝑤̂, 𝑊, 𝑠̂ and 𝑆 have the following meanings: 

 𝑤̂ is the number of correctly identified words.  

 𝑊 is the total number of words in a sentence.  

 𝑠̂ is the number of correctly identified sentences. 

 𝑆 is the total number of sentences. 
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4.2.2.2 Word Error Rate 

A WER is a common metric used to measure the performance of an ASR or 

machine translation system on word-level (Jurafsky & Martin, 2014). The WER is 

used in subjective evaluation of intelligibility of TTS synthesis systems. The WER 

is based on the minimum number of insertions, deletions and substitutions that 

have to be performed to convert the generated text (or hypothesis) into the 

reference text. The first step in calculating word error is to find the minimum edit 

distance in words between the hypothesised and reference strings (Jurafsky & 

Martin, 2014). The results of the calculations will be the minimum number of word 

substitutions, word insertions, and word deletions necessary to match between 

the correct and hypothesized strings. We have applied WER on five sentences 

constructed by SUS test in the previous section. The intelligibility measure is 

typically captured by the WER metric formulated as: 

𝑊𝐸𝑅 =
𝑆+𝐼+𝐷

𝑁
× 100%    (4.8) 

 

Alternatively, SER is formulated as: 

 

𝑆𝐸𝑅 =
𝑆𝑠

𝑁𝑠
× 100%     (4.9) 

 

where 𝑆, 𝐼, 𝐷 and 𝑁 have the following meanings:  

 𝑆 is the number of word substitution errors. 

 𝐼 is the number of word insertion errors. 

 𝐷 is the number of word deletion errors. 

 𝑁 is the total number of words. 

 𝑆𝑠 is number of sentences with at least one word error. 



96 

 𝑁𝑠 total number of sentences. 

The implementation of SER and WER is given as a python script in Appendix K. 

The script receives a text file (as a parameter) that contains reference and 

hypothesis sentences respectively. These sentences are separated by a carriage 

return or line feed. The SER and WER results are printed on the terminal in 

percentage notation.    

 

4.2.2.3 Mean Opinion Score 

The quality of speech is measured based on the categories; naturalness, 

pleasantness, pronunciation, intelligibility, listening effort, flexibility, and similarity. 

Evaluators rated the produced speech signal based on a five-point Likert scale 

where 1 means “horrible” to 5 meaning “best”. A five-point Likert scale is chosen 

to allow evaluators to give neutral answers. The MOS score is described below.  

1. Bad means no meaning understood  

2. Poor means effort required 

3. Fair means moderate effort required 

4. Good means no appreciable effort required 

5. Excellent means no effort required 

The mean of the responses is calculated to compute the MOS results. The 

MOS is a performance metric applied to measure the quality of speech from 

subjective evaluations and the metric is given by: 

 

𝑀𝑂𝑆 = 𝑥̅ =
1

𝑛
∑ 𝑥𝑛

𝑖=1       (4.10) 

 

where 𝑥 and 𝑛 have the following meanings: 



97 

 𝑥 is the score of the evaluator. 

 𝑛 is the total number evaluators. 

The value of 𝑛 is formulated as follows: 

Eight subjects evaluate each synthetic voice and the highest possible score is 

five. The default value of 𝑛 is the same as number of evaluators, hence 𝑛 = 8. 

 

4.3 Evaluation Results and Analysis of the Developed Front-end LID  

The data collected during the testing of the developed front-end LID was analysed 

using descriptive statistics on a Microsoft Excel spreadsheet. The LID accuracy 

can be affected by several factors including features, type of the employed 

algorithm, target language, and the size of the evaluation and training data (Botha 

& Barnard, 2012). The classifier models were tested on different n-gram features 

to find the best features that can later be used for implementation of the system. 

The MNB and SVM classifiers were used to find the best accuracy for those 

features. The classifier models were built using a multiclass approach where each 

class represents its language. The classifier models were trained and tested 

using a 10-fold cross-validation on the same dataset of 3043 surnames of 

different length. The main aim of the LID is to answer the research question: “Can 

a computational system use a person’s surname to predict the identity of the first 

language of that person?” 

4.3.1 Kernel Parameter Selection 

In order to calculate the optimum parameter selections, a parameter search 

process must be used to select the optimal kernel parameter values, so that the 

classifier can accurately discriminate unseen data (Chang & Lin, 2011). The 

Cross Validation (CV) Parameter Selection is one of the classifiers in the WEKA 

toolkit that searches the best model parameters on a given search interval for a 

given cross validation (Kohavi, 1995). The SVMs can perform better with correct 
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values for the kernel parameters. The MNB and linear SVM do not require special 

kernel parameters. The sigmoid SVM contains a gamma (𝜸) and coefficient (𝒓) 

parameters that needed to be set. Hence, the CV Parameter Selection was 

performed on positive gamma values of [0 to 20], and 𝜸 = 𝟎 was selected as the 

best value for gamma. The value of coefficient parameter was selected as 𝒓 =

−𝟎. 𝟗𝟓 from the search interval of [-100 to 100]. We used the following recipe for 

sigmoid SVM. 

weka.classifiers.meta.CVParameterSelection -P "R -100.0 100.0 

1.0" -P "G 0.0 20.0 1.0" -X 6 -S 1 -W 

weka.classifiers.functions.LibSVM -- -S 1 -K 3 -D 3 -G 0.0 -R -

0.95 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -model 

C:\Users\User\Documents\weka-3-8-0 -seed 1 

The RBF SVM contains the gamma kernel parameter. The CV Parameter 

Selection for RBF SVM was performed to find the value of gamma on the interval 

[0 to 20], and 𝜸 = 𝟎 was selected as the best value. We used the following recipe 

for RBF SVM. 

weka.classifiers.meta.CVParameterSelection -P "G 0.0 20.0 1.0" -

X 6 -S 1 -W weka.classifiers.functions.LibSVM -- -S 1 -K 2 -D 3 

-G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -model 

C:\Users\User\Documents\weka-3-8-0 -seed 1 

The polynomial SVM contains three kernel parameters, namely gamma, 

coefficient and degree (𝒅). Gamma was searched on the interval of [0 to 20] and 

𝜸 = 𝟎 was selected as the best value. The Coefficient was searched on the 

interval [-100 to 100] and 𝒓 = 𝟎 was selected as the best value. The value for 

degree parameter was searched on the interval [0 to 20] and 𝒅 = 𝟑 was selected 

as the best value. We used the following recipe for polynomial SVM. 

weka.classifiers.meta.CVParameterSelection -P "R -100.0 100.0 

1.0" -P "G 0.0 20.0 1.0" -D "G 0.0 20.0 1.0"  -X 6 -S 1 -W 

weka.classifiers.functions.LibSVM -- -S 1 -K 1 -D 3 -G 0.0 -R 
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0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -model 

C:\Users\User\Documents\weka-3-8-0 -seed 1 

The parameter selection was performed on a 10-fold cross-validation. All the 

support vector classification (SVC) experiments were performed using nu-SVC 

because the results were better than that of C-SVC. The parameter selection for 

larger numbers and nu parameter were not calculated because WEKA required 

high computational costs and out of memory error was encountered on the low 

computational power implementation platform used.   

4.3.2 Multinomial Naive Bayes  

The MNB model was built and evaluated on different character n-gram features. 

Figure 4.1 shows the classification accuracy obtained using character n-grams of 

size one up to five. The character unigrams (1-grams) achieved the lowest 

accuracy of 56.23% that is very low because the unigram classification set 

contained only the 26 letter English alphabet. The bigrams (2-grams) achieved 

second highest accuracy of 68.62% while trigrams outperformed other n-gram 

classification features with 69.34%. As shown in Figure 4.1, the trigrams (3-

grams) performed better than all other n-gram sizes. The accuracy starts to 

decrease when n-gram size is further increased, and this is observed in most 

studies in the literature, that the higher the n-gram is, the lower the accuracy. 
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Further tests were investigated by combining n-gram classification features. The 

results on n-gram combinations for MNB classifier are shown in Figure 4.2 with 

4-gram and 5-gram features resulting in the lowest accuracy of 63.42%. This is 

because 4-gram and 5-gram features contain longer characters and cannot be 

used to discriminate the whole dataset. The 1-gram to 3-gram features resulted 

in accuracy of 69.64%; when adding 4-gram features the accuracy decreases to 

69.54% and the accuracy further decreases to 69.24% when adding 5-grams. 

The MNB achieved highest accuracy of 69.80% on 2-gram to 4-gram features.  

 

Figure 4.1: Accuracy of MNB on a 10-fold cross validation 
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4.3.3 SVM with Linear Kernel 

The SVM performs best on a large amount of data. The robust SVM wrapper was 

used to experiment with the feature sets on a linear kernel. The linear SVM 

produced the lowest accuracy on unigrams and the accuracy further increased 

on bigrams, reaching highest accuracy of 68.32%; then it decreased by 0.62% 

on trigrams and further decreased on 4-gram and 5-gram achieving 55.73% (see 

Figure 4.3). The decrease in accuracy was encountered when the features were 

smaller in size and did not cover the whole feature space to make predictions on 

new or unseen dataset. The bigrams and 5-grams were nearly the same, which 

means the set of single characters and a 5-gram which was close to word level 

performed very poorly on the dataset. As illustrated in Figure 4.4, the 

classification features were mixed together and the accuracy reached above 

70.00% on 2-3, 2-4, and 2-5 n-gram sets with 2-5 n-gram set having the higher 

accuracy.   

 

Figure 4.2: The MNB accuracy using combination of features on a 10-fold cross validation 
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4.3.4 SVM with RBF Kernel  

RBF kernel is most commonly used to classify non-linearly separable data at a 

higher dimensional feature space. The RBF SVM produced accuracy of 61.12% 

on unigrams and reached a higher peak on bigrams with accuracy of 68.81% 

 

Figure 4.3: Accuracy of linear SVM on a 10-fold cross validation 
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Figure 4.4: The linear SVM accuracy using combination of features on a 10-fold cross 

validation 
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(see Figure 4.5). When the number of n-grams increases, this results in a slight 

decrease in accuracy. In most studies, trigrams perform well compared to other 

n-grams (Fourie et al., 2014). In this research work, larger character n-gram size 

has similar results with word unigram, since our data consists of single words. 

Thus, this results in low accuracy.  

 

 

The RBF SVM achieved the accuracy of 70.52% on 2-5 n-gram sets (see Figure 

4.6). This shows that the use of kernel trick does increase the accuracy at a 

certain feature level. The accuracy is above 69.00% at 1-2, 1-3, 1-4, 1-5, 2-3, 2-

4, and 2-5 n-gram sets; this can be further improved by using correct kernel 

parameter 𝜸 (given in Equation 3.2).  

 

 

 

Figure 4.5: Accuracy of RBF SVM on a 10-fold cross validation 
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4.3.5 SVM with Sigmoid Kernel  

The sigmoid SVM was trained according to Experiment 3 and achieved the lowest 

accuracy of 45.15% on 5-grams (see Figure 4.7). This shows that 5-grams were 

unable to correctly discriminate the classes or languages. The bigrams 

outperformed other n-grams with an accuracy of 68.75%. The feature set was 

increased to evaluate the sigmoid SVM on n-gram sets. As shown in Figure 4.8, 

the n-gram sets 1-2, 1-3, 1-4, 1-5, 2-3, 2-4, and 2-5 performed well by reaching 

above 69.00%, but the n-gram set 2-4 was the highest in accuracy.  

 

 

 

Figure 4.6: The RBF SVM accuracy using combination of features on a 10-fold cross 

validation 
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Figure 4.7: Accuracy of sigmoid SVM on a 10-fold cross validation 
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Figure 4.8: The sigmoid SVM accuracy using combination of features on a 10-fold cross 

validation 
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4.3.6 SVM with Polynomial Kernel  

The polynomial SVM was evaluated and the accuracy was 51.36% on unigrams, 

and 68.22% on bigrams. The bigrams outperformed other n-grams with a 

difference of 0.39% for trigrams, 7.65% for 4-grams, and 20.01% for 5-grams as 

shown in Figure 4.9. The polynomial SVM was further evaluated on combination 

of n-gram. Most sets reached accuracy of above 68%, but the n-gram set 2-5 was 

the highest with accuracy of 70.72% so far (see Figure 4.10).  

 

 

 

 

 

 

 

Figure 4.9: Accuracy of polynomial SVM on a 10-fold cross validation 
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4.3.7 Final Model  

The cross-validation resampling method assists in selecting the best model on 

unseen data. The polynomial SVM outperformed other algorithms on unseen 

data. Thus, we further built the final model using the polynomial SVM on the 

complete dataset. Figure 4.13 shows the results of a polynomial SVM on a 10-

fold cross-validation in terms of precision, recall and F-score measurements. 

Figure 4.14 shows the results of a polynomial SVM in terms of precision, recall 

and F-score measurements for the final model. The results of the final model 

were higher than that with cross-validation because the model is built on known 

data. On average, the precision of the final model increased from 71.30% to 

 

Figure 4.10: The polynomial SVM accuracy using combination of features on a 10-fold cross 

validation 

 

 

68.85

70.16 69.77 70.10 69.83
70.49 70.72

67.07 66.87

60.86

54

56

58

60

62

64

66

68

70

72

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram range)



108 

81.20%. Recall increased from 70.70% to 80.80% while F-score increased from 

70.70% to 80.80%.  

 

 

 

 

Figure 4.11: Precision, recall and F-score for the 10-fold cross validation 
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Figure 4.12: Precision, recall and F-score results for the final model 
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The final model resulted in an increase of accuracy from 70.72% to 80.77%. The 

errors of the final model decreased by 8.38% (see Figure 4.15). This accuracy 

was found to be reasonably adequate to make predictions of unknown dataset. 

As a result, this model was implemented on the prototype system for automatic 

LID feature. 

 

 

4.4 Evaluation Results and Analysis of the Developed TTS 

The data collected during the evaluation of the system was analysed using 

descriptive statistics on a Microsoft Excel spreadsheet. The main aim of the TTS 

synthesis system is to answer the research question: Can a computational 

system produce an appropriate pronunciation of indigenous proper names? 

 

Figure 4.13: Accuracy and RMSE using polynomial SVM for final model and 10-fold cross 

validation 
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4.4.1 Test for Intelligibility 

Five sentences were constructed and eight evaluators performed the evaluation 

for intelligibility of each item of synthetic speech. A total of 5 × 8 = 40 sentences 

per language were used during the evaluation. The total number of words differed 

per language. The total number of words for Sepedi, Xitsonga, Tshivenda, and 

isiNdebele were 312, 240, 248, and 176 respectively. Figure 4.16 shows the 

results of SUS method at sentence level and word level. The SUS accuracy at 

word level is higher than those at sentence level. The SUS accuracy at word level 

is above 90% for all the languages, with isiNdebele outperforming other 

languages at an accuracy of 95%. These results are quite adequate for under-

resourced languages. Hence, from Figure 4.16 we see that the developed system 

is quite intelligible. 

 

 

Figure 4.14: The SUS accuracy at sentence and word level for intelligibility of the developed 

system. 
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The script in Appendix K was used to calculate both sentence and word error 

rate. The SER is computed by counting the sentences which contain WER of 

above zero. We have conducted error rates on SUS. These error tests were 

conducted on SUS synthesised by the developed system and results are given 

in Figure 4.17. We see that error rates significantly decrease from sentence to 

word level. As such, WER shows errors found on each tested word. Sepedi 

contained a total of 312 words while Xitsonga, Tshivenda, and isiNdebele 

contained a total of 240, 248, and 176 words respectively. Sepedi obtained higher 

WER of 14.82% compared to other languages. This may be caused by the 

familiarity of the speaker with the language since the speaker’s geographical 

location is populated with Setswana speaking people. IsiNdebele obtained good 

results on both SER and WER. From these results, we see that all the built 

synthetic voices are intelligible.   

 

 

 

Figure 4.15: The SER and WER for intelligibility of the developed system. 
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4.4.2 Test for Naturalness 

The system is evaluated for naturalness using the MOS test discussed in Section 

4.2.2.3. The results in Figure 4.18 shows the synthesised speech compared to 

the natural speech. Therein, the isiNdebele language synthesised speech 

achieved higher MOS than other synthesised voices. The difference in MOS from 

the isiNdebele language synthesised speech to the isiNdebele natural speech is 

0.1. This means that isiNdebele language synthesised speech is close to very 

natural sounding. The Sepedi language synthesised speech obtained the MOS 

difference of 1.0 from natural voice and that means the Sepedi synthesised voice 

was found to be more natural sounding. The Tshivenda language synthesised 

speech achieved a gap of 0.5 from natural speech and that means Tshivenda 

synthesised speech is found to be natural. The Xitsonga language synthesised 

speech obtained MOS score of 4.6 which is 0.4 away from natural speech. This 

means the Xitsonga synthesised speech is found to be natural. These results are 

found to be acceptable for these training datasets and test sentences.  

 

 

Figure 4.16: Results of test for naturalness of speech samples. 
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4.4.3 Test for Correct Pronunciation 

The system was evaluated for correct pronunciation using the MOS test. Figure 

4.19 shows the evaluation results of the synthesised speech and natural speech. 

The isiNdebele language synthesised speech obtained MOS score of 4.8 which 

is 0.2 away from natural voice. This means isiNdebele language synthesised 

speech pronounced words correctly. The Sepedi language synthesised speech 

obtained MOS score of 3.6 which is lower than the others. This means that some 

of the words were not pronounced the way evaluators expected. The Xitsonga 

and Tshivenda languages synthesised speech obtained at least MOS score of 

4.3, which means that their pronunciation was found to be excellent.    

 

 

Figure 4.17: Results of test for pronunciation of speech samples. 
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4.4.4 Test for Pleasantness 

The MOS test was used to evaluate pleasantness of the system. Figure 4.20 

illustrates the comparison of the synthesised speech and natural speech. The 

isiNdebele language synthesised speech obtained MOS score of 4.9 which is 0.1 

away from natural speech. This means the isiNdebele language synthesised 

speech was very pleasant. The Sepedi language synthesised speech obtained 

MOS score of 3.9 which means the speech was found to be pleasant to listen to. 

The Tshivenda and Xitsonga languages synthesised speech obtained an MOS 

score of above 4.3 which means the synthesised speech was found to be 

pleasant.  

 

 

 

 

Figure 4.18: Results of test for pleasantness of speech samples. 
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4.4.5 Test for Understandability or Listening Effort 

The system was evaluated for required listening effort needed to understand the 

synthesised speech (see Figure 4.21). The MOS test was used to test 

understandability with isiNdebele language obtaining MOS score of 4.9 which 

means that no effort was required to understand the synthesised speech. Sepedi, 

Tshivenda, and Xitsonga obtained MOS scores of 4.1, 4.3 and 4.4 respectively; 

this means that no appreciable effort was required to understand the synthesised 

speech.  

 

 

4.4.6 Test for the Overall Quality 

The quality for the overall system was evaluated using MOS test. Figure 4.22 

shows the results of the overall quality between synthesised and natural speech. 

The Sepedi and Tshivenda synthesised speeches achieved MOS score of 4.1 

 

Figure 4.19: Results of test for understandability of speech samples. 
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and 4.3 respectively which means the speech quality was found to be acceptable. 

Tshivenda and isiNdebele synthesised speeches obtained MOS score of 4.6 and 

4.8 respectively which means the speech quality was found to be excellent.  

 

 

 

4.4.7 Comparison with other Studies 

The Xitsonga TTS synthesis system developed by Baloyi (2012) was the first TTS 

developed for Xitsonga in South Africa. Figure 4.23 shows the evaluation results 

of Xitsonga TTS developed by Baloyi (2012) and our Xitsonga TTS results. We 

compared these systems because they both use HMMs as speech synthesiser 

for the same language. The gap in the MOSs from the synthetic speech to the 

natural speech decreased from 1.1 to 0.4 (64%) in naturalness. The MOS score 

for pleasantness decreased from 1.4 to 0.4 (71%), while MOS score for 

 

Figure 4.20: Results of test for overall quality of speech samples. 
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understandability decreased from 1.1 to 0.6 (46%). The developed system 

reduced the gap between natural speech and synthesised speech by more than 

46%. 

 

 

 

 

 

4.5 Evaluation Results and Analysis of the Complete System Usability 

The evaluators tested the functionality and usability of the developed system. The 

last section of the questionnaire in Appendix H contains the evaluation sheet in 

 

Figure 4.21: Subjective 5-scale MOS of Xitsonga TTS 
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terms of MOS test. After the evaluators familiarised themselves with the system 

on the website they rated the following review statements: 

Statement 1: The buttons are visible and easy to find. 

All the evaluators strongly agreed with this statement. 

Statement 2: Languages can be switched easily.  

All the evaluators strongly agreed with this statement. 

Statement 3: Text is visible and clear. 

All the evaluators strongly agreed with this statement. 

Statement 4: Layout and colours are displayed perfectly. 

All the evaluators strongly agreed with this statement. 

Statement 5: The application is difficult to understand. 

Most of the evaluators strongly disagreed with this statement, but 15% of them 

disagreed, with 33% (of 15%) coming from Xitsonga and Tshivenda speakers 

and 17% (of 15%) coming from isiNdebele and Sepedi speakers (see Figure 

4.24). 

 

 

Figure 4.22: The fifteen percent of the evaluators disagreed that the application is difficult.  
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Statement 6: I can use the application on my own. 

Most of the evaluators strongly agreed to use the application on their own but 

15% of them agreed. Figure 4.25 shows the 15% of evaluators who agreed per 

language. Most speakers who agreed to use the application on their own were 

Tshivenda speakers.  

 

    

Statement 7: I felt very confident using the application. 

All the evaluators strongly agreed with this statement. 

Statement 8: I would recommend this application to someone else. 

All the evaluators strongly agreed with this statement. 

Statement 9: I would frequently use this application. 

Most of the evaluators strongly agreed to use this application and only 9% of 

them gave neutral answers. 

 

Figure 4.23: The fifteen percent of the evaluators agreed to use the system on their own 
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Statement 10: This application can help me learn pronunciation of new 

languages. 

All the evaluators strongly agreed with this statement. 

Statement 11: Would you recommend these voices to be integrated in future 

devices? 

All the evaluators strongly agreed with this statement. 

4.6 Summary 

We have seen from the LID results that the higher the number of different 

languages or classes, the less the LID accuracy will be achievable. In other 

words, the number of classes is inversely proportional to classification accuracy. 

We have explained the LID results from various n-gram features. We observed 

that n-gram set of two to five obtained better results on polynomial SVM. The final 

model of the LID was built on the entire dataset. We have explained the 

evaluation metrics and procedure taken to evaluate the speech generation 

phase. Subjective perception listening tests were conducted using 32 students 

and obtained good results after applying MOS test. The usability of the system 

on the website was evaluated and good results were observed. The next chapter 

provides a conclusion, summary of our findings and recommendations for future 

work. 
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5 CHAPTER 5: DISCUSSIONS 

This chapter explains the discussions of the results obtained in Chapter 4. The 

first section discusses the comparison of the classifiers. It compares the results 

of the classifiers on certain n-gram features. The second section discusses the 

speech synthesiser while the third section discusses system usability. And lastly, 

the last section discusses summary of the findings.  

5.1 Classifier Model Comparison 

We combine the results of the classifiers on 1-gram to 5-gram features in Figure 

5.1 from Chapter 4. We observe the larger n-gram size decreases classification 

accuracy on both the MNB and SVM kernels. The unigrams obtained better 

accuracy of 61.12% on RBF SVM, compared to other algorithms. The bigrams 

obtained accuracy of 68.00% on average using all the classification algorithms. 

This shows that the bigrams were perfect to discriminate between the languages 

(classes) compared to the unigrams. The trigrams on MNB performed better than 

SVM with an accuracy of 69.34%. This shows that MNB classify well on trigrams 

compared to other n-gram sizes. The accuracy decreased on 4-gram and 5-gram 

for both MNB and SVM. This shows that trigrams were the turning point on our 

dataset 

We combine the results of the classifiers in Figure 5.2 from Chapter 4. The 

combination of unigram and bigram resulted in accuracy of 69.37% on sigmoid 

SVM. We added trigrams, and polynomial SVM achieved accuracy of 69.96%. 

When 4-grams were added, the accuracy went up to 70.09% by RBF SVM. The 

5-grams were added, but RBF SVM still obtained higher accuracy of 70.19%, and 

MNB performed low at 69.24%. The unigrams were removed and left with 2- to 

5-grams. The MNB did not perform well. However, polynomial SVM produced the 

best results with 70.72% accuracy, which was found to be the highest result when 

compared to all other results. 
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Figure 5.1: Accuracy comparison on a 10-fold cross validation 
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Figure 5.2: Accuracy comparison using combination of features on a 10-fold cross 

validation 
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5.2 Text-to-Speech Synthesiser 

We can see from the results that the developed system obtained high accuracy 

from the SUS test at word level in Figure 4.16. This shows that the developed 

system is intelligible enough to synthesise new words without the context of the 

sentence. The WER rated below 10% for Xitsonga, Tshivenda and isiNdebele, 

but Sepedi was an outlier with 14.82% of errors in Figure 4.17. This outlier is 

caused by the accent of the Sepedi speaker with other language families of 

Sepedi. We nonetheless find that the results show that the system is intelligible 

enough to synthesise new words. 

5.3 System Usability 

We see from the results in Section 4.5 that most evaluators highly rated the user 

interface and functionality of the application moving from one language to 

another. All of the evaluators were confident after using the application and 

agreed that the application is not difficult. They were able to play a synthesised 

speech on their own without any help from someone. Some of the evaluators 

gave neutral answers regarding if they would frequently use the application. The 

evaluators agreed to that this application is helpful towards learning new 

languages. Therefore, this satisfies the last objective.  

5.4 Summary of the Findings 

As discussed in chapter three and four, it was found that all the research 

objectives were satisfied. We now try to answer the following research questions:   

The first research question was formulated as follows: Can a computational 

system use a person’s surname to predict the identity the first language of that 

person?  

To answer this research question, we compared the performance of MNB to SVM 

kernels in the previous chapter. We showed that the features or n-grams are 

important factors that can affect classification accuracy of text-based LID. Four 

indigenous official languages of South Africa were employed for the study. These 
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languages belong to a number of closely related groups of languages. This 

complicated the classification between languages. Two machine-learning 

classifiers were contrasted in this study: 

 The MNB, which obtained good results in previous studies of text 

classification. 

 The SVMs, which are more robust and complex classifiers. These 

classifiers perform better when fitted with correct parameters. 

Character n-grams were used as classification feature set, since the LID training 

dataset contains single words; hence, word n-grams were found unsuitable for 

this task. The string-to-word filter in WEKA was used to convert the dataset into 

feature vectors, since SVM do not support string attributes. The classifiers were 

deployed on unigrams, bigrams, trigrams, 4-grams and 5-grams. The trigrams 

yielded good results on both MNB and SVMs. We further expanded the feature 

set to contain a mixture of n-grams of different sizes and tested them on both 

classifiers. The MNB achieved an accuracy of 69.34% on n-gram sets of two to 

five grams, which acts as our baseline classifier. The polynomial SVM obtained 

higher classification results of 70.72% accuracy on n-gram sets of two to five 

grams. The final model was built on this feature set, using the polynomial SVM. 

The classification accuracy of the final model was above 80%. In addition, the 

classification errors decreased by 8.38%. This higher accuracy of 80% is enough 

for text-based LID of under-resourced languages of South Africa. Since 

polynomial SVM outperformed the baseline MNB (70.72% > 69.34%), we can 

significantly conclude with 70.72% accuracy that a computational system can 

reasonably use a person’s surname to identify the first language of that person.  

The second research question was formulated as follows: Can a computational 

system produce an appropriate pronunciation of indigenous proper names? 

To answer this research question, we have developed the four baseline TTS 

synthesis systems which were evaluated on correct pronunciation, naturalness, 

pleasantness, understandability, intelligibility, and overall quality of synthesised 

speech. The subjective listening tests were conducted. The participants gave 
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good results based on their opinions. The MOS test was used to evaluate the 

system and good results were observed, which showed that the correct 

pronunciation was found to be excellent. With these high results, we can 

significantly conclude with a minimum MOS of 3.6 that a computational system 

can produce an appropriate pronunciation of indigenous proper names.  

Therefore, the developed pronunciation assistant can help reduce the surname 

pronunciation problem for the indigenous official languages of South Africa as 

experienced by non-native speakers. 
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6 CHAPTER 6: CONCLUSIONS 

6.1 Introduction 

This chapter summarises the conducted experimental research including the 

limitations, scientific contribution, future work, and research questions. The layout 

is as follows:  

 Section 6.2 discusses research limitations and challenges. 

 Section 6.3 discusses some of the contributions of this research work to 

the scientific world. 

 Section 6.4 provides recommendations and future work directions. 

6.2 Limitations and Challenges 

The study was conducted on a 32-bit Ubuntu desktop with two gigabytes of RAM. 

The deep neural network techniques were not used because they require 

massive computation resources. The two gigabytes RAM and 32-bit processor 

was not enough to implement deep neural networks. The search for SVM 

parameters was limited to 10 because the higher numbers resulted with a 

computer not responding.  

We have encountered challenges when creating the isiNdebele and Xitsonga 

synthetic voices. The MARY TTS transcription aligner uses a pipe “|” character 

to align phones. Since our phone sets contained pipe character, the transcription 

tool produced an error while compiling a new voice. The solution was to use an 

alternative notation to phones that contain a pipe character (see Appendix B for 

isiNdebele and Xitsonga phone set).  

The isiNdebele LID feature was not implemented due to inadequate data which 

could cause the results to be biased. However, isiNdebele TTS synthesis was 

implemented successfully.  

We encountered challenges when recruiting people to participate and we used 

maximum number of 32 people who agreed to participate. Hence, we evaluated 
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each system with groups of 8 people (8x4 systems). Similarly, 10 people were 

used in the studies by Gahlawat et al. (2014) and Dagba and Boco (2014). 

Therefore, it is sufficient to obtain good results when evaluating a speech 

synthesiser with this number of participants.  

6.3 Contributions of the Study  

6.3.1 Language-specific Applications 

 The developed LID can be used in any language-specific system to 

classify surnames.  

 The developed TTS synthesis system can be embedded in any language-

specific applications to provide synthesised speech. 

6.3.2 Pre-processing Files 

In the initial phase, when pre-processing was performed on the collected data, a 

few scripts were developed that can help other researchers. Examples are: 

 A bash script to prepare and install required programs for the MARY TTS 

synthesis system (see Appendix A). 

 A python script to generate a pronunciation dictionary compatible with 

MARY TTS is given in Appendix C. 

 Java file for patching MARY TTS to support LID is given in Appendix D. 

 The source code of the Android application is given in Appendix E. 

 A python script to calculate WER and SER is given in Appendix K. 

6.3.3 Importance of the Developed System 

 The system was deployed on the internet for further evaluations on “real-

world” data. Moreover, this system may be used by anyone ranging from 

visually impaired people to students in schools.  

 The system may help people learning pronunciation of surnames in 

Sepedi, Xitsonga, Tshivenda, and isiNdebele. 
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 The system may provide a platform for supporting new research in the field 

of ICT for language learning and teaching of South African official 

languages. 

 A detailed API of the developed system is given in the Methodology 

chapter. The API may be utilised by any researcher to use the functions of 

the developed system. 

 A website of the system was deployed and may be used in any area of 

speech technology or educational technologies. 

6.3.4 Speech Synthesis Results 

The Xitsonga synthetic voice was compared to the HMM-based Xitsonga TTS 

synthesis system developed by Baloyi (2012). We have observed that our system 

improved naturalness, pleasantness, and understandability by 64%, 71% and 

46%. These high results are found to be excellent for these under-resourced 

languages and their training data.     

6.3.5 Common Dataset 

Currently there are no common datasets for comparing text-based LID 

performance on under-resourced languages.  

  

6.4 Future Work and Recommendations 

6.4.1 Machine-learning Phase 

The observed LID accuracies can be increased by deploying other sophisticated 

machine-learning algorithms such as DNN (van den Oord et al., 2016). In 

addition, the training data for text-based LID can be increased to cover most 

surnames.  

This study can be further expanded by: 



129 

 covering classification of hyphenated (or so-called double-barrelled) 

surnames (e.g. Sefara-Dzambukeri);  

 including classification of multilingual surnames (e.g. Baloyi); 

 including both first name and last name (e.g. Mathapelo Alice Sefara); 

 including classification of words in general sentences.  

The isiNdebele LID feature can be implemented by further obtaining enough 

textual corpus. 

6.4.2 Speech Synthesis Phase 

 The text analysis phase can be further enhanced to normalise other 

classes of input data elements such as numbers, currency, money and 

other non-standard words to solve normalisation problems. This phase 

was not fully implemented since the study is focused on surnames.  

 The EHMM labeller was used to automatically label phones to their 

corresponding utterances. Hand-labelling can be used to manually verify 

labels even though it requires much linguistic expertise.  

 Incorporating prosody into the system can be optimised to increase the 

quality of synthesised speech. 

 The SPSS systems suffer from poor quality caused by the inadequacy of 

acoustic modelling (e.g. trajectory HMM), limitations of the vocoder (e.g. 

STRAIGHT), and over-smoothing of parameter generation (e.g. global 

variance). These can be enhanced by applying recent advanced deep 

learning algorithms to replace HMMs.  

 Additional under-resourced languages can be included to expand the 

coverage. 

 Sepedi synthetic voice performed low compared to other languages and 

this can be improved by using a professional speaker who is fluent in 

Sepedi. 

 The evaluation of the speech synthesiser can further be evaluated with 

more number of people and more number of sentences. 
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6.5 Final Remarks 

This study presented an automatic pronunciation assistant system that 

implemented machine-learning algorithm and speech synthesis in Sepedi, 

Tshivenda, Xitsonga and isiNdebele. The automatic pronunciation assistant 

synthesised speech that is rich in quality. A HMM-based method was used for 

implementation of the developed system. Although it is commonly known that this 

method does not produce high quality synthesised speech as compared to unit 

selection-based systems, this method is very flexible, efficient, and requires less 

training data. Furthermore, this method offers a room for adaptation and 

development of TTS voices from under-resourced languages.  
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APPENDIX A: INSTALLATION GUIDE AND PATH VARIABLES – install.sh 

The following script was used to install all packages and libraries on the terminal. 

More installation details are provided by software vendor and can also be found 

on the world wide web. Ubuntu 14.04 LTS 32-bit was used for this research 

project. All the software packages were downloaded and saved to the directory 

/voice/sources/. The installations provided below are mainly guided by the 

instructions on MARY TTS voice import tutorial on GitHub1. 

#!/bin/bash  
sudo apt-get update 
sudo mkdir /voice 
sudo chown -R $USER /voice/ 
sudo apt-get install build-essential git mc libc6-dev libx11-dev  
libncurses5-dev sox tcl-snack g++ python3-dev openjdk-8-jdk 
#Apache-maven 
cd /voice/sources  
tar xf apache-maven-3.3.9-bin.tar.gz -C /voice/soft/ 
mv /voice/soft/apache-maven-3.3.9 /voice/soft/maven 
#HTK, HDecode and HTS 
tar xf HTK-3.4.1.tar.gz 
tar xf HDecode-3.4.1.tar.gz 
mkdir hts 
tar xf HTS-2.2_for_HTK-3.4.1.tar.bz2 -C hts 
cd htk 
patch -p1 -d . < ../hts/HTS-2.2_for_HTK-3.4.1.patch 
./configure --prefix=/voice/soft/hts 
make all hdecode 
make install install-hdecode 
cd ../ 
#HTS engine 
tar xf hts_engine_API-1.05.tar.gz 
cd hts_engine_API-1.05 
./configure --prefix = /voice/soft/hts_engine 
make 
make install 
cd ../ 
#Edinburgh Speech tools  
tar xf speech_tools-2.4-release.tar.gz 
cd speech_tools/ 
./configure 
make 
make test 
cd ../ 
#Festvox 
tar xf festvox-2.7.0-release.tar.gz 
cd festvox/ 
./configure 
make 
cd ../ 
#Festival 
tar xf festival-2.4-release.tar.gz 
cd festival/ 

                                            
1 Available at: https://github.com/marytts/marytts/wiki/VoiceImportToolsTutorial 
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./configure 
make 
cd ../ 
#SPTK 
tar xf SPTK-3.6.tar.gz 
cd SPTK-3.6/ 
./configure --prefix=/voice/soft/SPTK 
make 
make install 
cd ../ 
#Praat 
mkdir /voice/soft/praat 
tar xf praat6014_linux32.tar.gz -C /voice/soft/praat/ 
# Path environment variables: alternatively these variables can be appended to  
# the .bashrc file located at /home/$USER/.bashrc  
export HTSDIR=/voice/soft/hts 
export FESTVOXDIR=/voice/sources/festvox 
export FESTIVALDIR=/voice/sources/festival 
export ESTDIR=/voice/sources/speech_tools 
export SPTKDIR=/voice/soft/SPTK 
export HTSEngine=/voice/soft/hts_engine 
export MAVEN=/voice/soft/maven 
export PATH=$PATH:$ESTDIR/bin:$ESTDIR/include:$ESTDIR/lib:$FESTVOXDIR:$HTSDIR/bin 
       :$HTSEngine/bin:$ESTDIR/main:$FESTIVALDIR/bin:$SPTKDIR/bin:$MAVEN/bin 
 
#Mary TTS and EHMM labeller 
git config global http.postBuffer 2M 
git clone https://github.com/marytts/marytts.git  
#Alternatively, if the above command clones different version of MARY TTS  
#then the source code for MARY TTS version 5.2 can be manually  
#downloaded and extracted from GitHub at web address:  
#https://github.com/marytts/marytts/archive/v5.2.tar.gz 
cd marytts/lib/external/ehmm 
make 
export EHMM=/voice/sources/marytts/lib/external/ehmm/bin 
cd ../ 
./check_install_external_programs.sh check 
#Results: should display OK. 
cd ../../ 
mvn install 
#Results: A new folder called target was created, it contains the MARY TTS client and 
voice builder located at /voice/sources/marytts/target/. 

export MARYTTS=/voice/sources/marytts/target/marytts-builder-5.2-SNAPSHOT/bin 
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APPENDIX B: PHONE SET FILES 
 

B1: Sepedi phone set – allophone.nso.xml 
 
<allophones name="sampa" xml:lang="nso" 
    features="vlng vheight vfront vrnd ctype cplace cvox casp"> 
  
    <silence ph="_"/> 
    <!-- Vowels  --> 
    <vowel ph="i" vlng="s" vheight="1" vfront="1" vrnd="-"/> <!-- dira  --> 
    <vowel ph="u" vlng="s" vheight="1" vfront="3" vrnd="+"/> <!-- Pula  --> 
    <vowel ph="I" vlng="s" vheight="2" vfront="2" vrnd="-"/> <!-- tsela  --> 
    <vowel ph="E" vlng="s" vheight="3" vfront="1" vrnd="-"/> <!-- rema  --> 
    <vowel ph="O" vlng="s" vheight="3" vfront="3" vrnd="+"/> <!-- poo  --> 
    <vowel ph="a" vlng="s" vheight="4" vfront="1" vrnd="-"/> <!-- rata  --> 
    <vowel ph="U" vlng="s" vheight="2" vfront="2" vrnd="+"/> <!-- motho  --> 
 
    <!-- Stop consonants --> 
    <consonant ph="p_h" ctype="s" cplace="l" cvox="0" casp="+"/> <!-- phela  --> 
    <consonant ph="p_>" ctype="s" cplace="l" cvox="0"/> <!-- pela  --> 
    <consonant ph="t_h" ctype="s" cplace="a" cvox="0" casp="+"/> <!-- thapo  --> 
    <consonant ph="t_>" ctype="s" cplace="a" cvox="0"/> <!-- topa  --> 
    <consonant ph="k_h" ctype="s" cplace="v" cvox="-" casp="+"/> <!-- Khudu  --> 
    <consonant ph="k_>" ctype="s" cplace="v" cvox="0"/> <!-- kudu  --> 
    <consonant ph="tl_>" ctype="s" cplace="a" cvox="-"/> <!-- tla  --> 
    <consonant ph="tl_h" ctype="s" cplace="a" cvox="-" casp="+"/><!--tlhabo --> 
 
    <!-- Affricative consonants --> 
    <consonant ph="tS_>" ctype="a" cplace="a" cvox="0"/> <!-- tšaka  --> 
    <consonant ph="tS_h" ctype="a" cplace="a" cvox="0" casp="+"/><!--tšhaba--> 
    <consonant ph="ts_>" ctype="a" cplace="a" cvox="0"/> <!-- tsela  --> 
    <consonant ph="ts_h" ctype="a" cplace="a" cvox="0" casp="+"/><!--tshadi--> 
    <consonant ph="kx" ctype="a" cplace="v" cvox="-"/> <!-- kgama  --> 
    <consonant ph="ps_>" ctype="a" cplace="a" cvox="-"/> <!-- psila  --> 
    <consonant ph="ps_h" ctype="a" cplace="a" cvox="0" casp="+"/><!--pshio--> 
    <consonant ph="pS_h" ctype="a" cplace="p" cvox="0" casp="+"/> <!-- pšhatla--> 
    <consonant ph="d_0Z" ctype="a" cplace="a" cvox="+"/> <!-- ja  --> 
 
    <!-- Fricative consonants --> 
    <consonant ph="f" ctype="f" cplace="b" cvox="-"/> <!-- fofa  --> 
    <consonant ph="s" ctype="f" cplace="a" cvox="-"/> <!-- sesadi  --> 
    <consonant ph="S" ctype="f" cplace="a" cvox="-"/> <!-- šala  --> 
    <consonant ph="h" ctype="f" cplace="g" cvox="-"/> <!-- hema  --> 
    <consonant ph="h\" ctype="f" cplace="g" cvox="+"/> <!-- lehodu  --> 
    <consonant ph="K" ctype="f" cplace="a" cvox="-"/> <!-- hlaba  --> 
    <consonant ph="G" ctype="f" cplace="v" cvox="+"/> <!-- goga  --> 
    <consonant ph="B" ctype="f" cplace="l" cvox="+"/> <!-- baba  --> 
    <consonant ph="p\s" ctype="f" cplace="l" cvox="0"/> <!-- lefsifsi  --> 
    <consonant ph="p\S" ctype="f" cplace="l" cvox="-"/> <!-- Bofša  --> 
    <consonant ph="BZ" ctype="f" cplace="l" cvox="+"/> <!-- bjala  --> 
      
    <!-- Nasal consonants --> 
    <consonant ph="m" ctype="n" cplace="l" cvox="0"/> <!-- ema  --> 
    <consonant ph="n" ctype="n" cplace="a" cvox="0"/> <!-- nama  --> 
    <consonant ph="J" ctype="n" cplace="p" cvox="0"/> <!-- nyaka  --> 
    <consonant ph="N" ctype="n" cplace="v" cvox="0"/> <!-- ngwana  --> 
    <consonant ph="m_j" ctype="n" cplace="b" cvox="0"/> <!-- myemyela  -->     
  
    <!-- Approximant consonants (semivowels) --> 
    <consonant ph="r" ctype="r" cplace="a" cvox="0"/> <!-- rata  --> 
    <consonant ph="j" ctype="r" cplace="p" cvox="0"/> <!-- ya  --> 
    <consonant ph="w" ctype="r" cplace="v" cvox="+"/> <!-- wa  --> 
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    <!-- Liquid consonants --> 
    <consonant ph="l`" ctype="l" cplace="a" cvox="0"/> <!-- dira  --> 
    <consonant ph="l" ctype="l" cplace="a" cvox="0"/> <!-- lala  --> 
</allophones>  

 

B2: Tshivenda phone set – allophone.ven.xml 
 
<allophones name="sampa" xml:lang="ven" 
    features="vlng vheight vfront vrnd ctype cplace cvox casp cpal"> 
 
    <silence ph="_"/> 
    <!-- Vowels  --> 
    <vowel ph="i" vlng="s" vheight="1" vfront="1" vrnd="-"/> <!-- lisa --> 
    <vowel ph="u" vlng="s" vheight="1" vfront="3" vrnd="+"/> <!-- luma --> 
    <vowel ph="E" vlng="s" vheight="3" vfront="1" vrnd="-"/> <!-- rema --> 
    <vowel ph="O" vlng="s" vheight="3" vfront="3" vrnd="+"/> <!-- mboho --> 
    <vowel ph="a" vlng="s" vheight="4" vfront="1" vrnd="-"/> <!-- rafha --> 
 
    <!-- Stop consonants --> 
    <consonant ph="p_h" ctype="s" cplace="l" cvox="0" casp="+"/><!--phala--> 
    <consonant ph="p_>" ctype="s" cplace="l" cvox="0" cpal="+"/><!--panda--> 
    <consonant ph="b" ctype="s" cplace="l" cvox="+"/> <!-- bako  --> 
    <consonant ph="t_h" ctype="s" cplace="a" cvox="0" casp="+"/><!--hula--> 
    <consonant ph="t_>" ctype="s" cplace="a" cvox="0"/> <!-- tafuna --> 
    <consonant ph="d" ctype="s" cplace="a" cvox="+"/> <!-- daha --> 
    <consonant ph="J\" ctype="s" cplace="p" cvox="+" casp="+"/><!--dyelo --> 
    <consonant ph="k_h" ctype="s" cplace="v" cvox="-" casp="+"/> <!-- khuhu  --> 
    <consonant ph="k_>" ctype="s" cplace="v" cvox="0"/> <!-- kokodza --> 
    <consonant ph="g" ctype="s" cplace="v" cvox="+"/> <!-- goga  --> 
 
    <!-- Affricative consonants --> 
    <consonant ph="tS_h" ctype="a" cplace="a" cvox="0" casp="+"/><!--mutshila--> 
    <consonant ph="ts_>" ctype="a" cplace="a" cvox="0"/> <!-- kutsimu --> 
    <consonant ph="d_0Z" ctype="a" cplace="a" cvox="+"/> <!-- dzhena  --> 
    <consonant ph="dz" ctype="a" cplace="a" cvox="+"/> <!-- dzembe-->  
 
    <!-- Fricative consonants --> 
    <consonant ph="f" ctype="f" cplace="b" cvox="-"/> <!-- fana  --> 
    <consonant ph="v" ctype="f" cplace="b" cvox="+"/> <!-- vili  --> 
    <consonant ph="s" ctype="f" cplace="a" cvox="-"/> <!-- sala  --> 
    <consonant ph="z" ctype="f" cplace="a" cvox="+"/> <!-- zazamela  --> 
    <consonant ph="S" ctype="f" cplace="a" cvox="-"/> <!-- shavha  --> 
    <consonant ph="Z" ctype="f" cplace="a" cvox="+"/> <!-- zhaka  --> 
    <consonant ph="x" ctype="f" cplace="v" cvox="-"/> <!-- xa  --> 
    <consonant ph="h\" ctype="f" cplace="g" cvox="+"/> <!-- hana  --> 
    <consonant ph="B" ctype="f" cplace="l" cvox="+"/> <!-- vhavha  --> 
    <consonant ph="p\" ctype="f" cplace="l" cvox="-"/> <!-- fhala  --> 
    <consonant ph="sw" ctype="f" cplace="a" cvox="-"/> <!-- swara  --> 
    <consonant ph="zw" ctype="f" cplace="a" cvox="+"/> <!-- zwifha  --> 
  
    <!-- Nasal consonants --> 
    <consonant ph="m" ctype="n" cplace="l" cvox="0"/> <!-- ima  --> 
    <consonant ph="n" ctype="n" cplace="a" cvox="0"/> <!-- nona  --> 
    <consonant ph="J" ctype="n" cplace="p" cvox="0"/> <!-- nyamalala  --> 
    <consonant ph="N" ctype="n" cplace="v" cvox="0"/> <!-- n'an'a  --> 
 
    <!-- Approximant consonants (semivowels) and Trills and Flaps--> 
    <consonant ph="r" ctype="r" cplace="a" cvox="0"/> <!-- ranga  --> 
    <consonant ph="j" ctype="r" cplace="p" cvox="0"/> <!-- ya  --> 
    <consonant ph="w" ctype="r" cplace="v" cvox="+"/> <!-- wa  --> 
 
    <!-- Liquid consonants --> 
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    <consonant ph="l" ctype="l" cplace="a" cvox="0"/> <!-- lala  --> 
</allophones> 

 

B3: IsiNdebele phone set – allophone.nbl.xml 
 
<allophones name="sampa" xml:lang="nbl"  
    features="vlng vheight vfront vrnd ctype cplace cvox casp"> 
 
    <silence ph="_"/> 
    <!-- Vowels  --> 
    <vowel ph="i" vlng="s" vheight="1" vfront="1" vrnd="-"/> <!-- lima --> 
    <vowel ph="u" vlng="s" vheight="1" vfront="3" vrnd="+"/> <!-- thunga --> 
    <vowel ph="E" vlng="s" vheight="3" vfront="1" vrnd="-"/> <!-- sela --> 
    <vowel ph="O" vlng="s" vheight="3" vfront="3" vrnd="+"/> <!-- bona --> 
    <vowel ph="a" vlng="s" vheight="4" vfront="1" vrnd="-"/> <!-- lala --> 
 
    <!-- Stop consonants --> 
    <consonant ph="p_h" ctype="s" cplace="l" cvox="0" casp="+"/><!--iphaphu--> 
    <consonant ph="p_>" ctype="s" cplace="l" cvox="0" casp="+"/> <!--iposo--> 
    <consonant ph="b" ctype="s" cplace="l" cvox="+"/> <!-- khamba --> 
    <consonant ph="b_&lt;" ctype="s" cplace="l" cvox="+"/> <!-- bona --> 
    <consonant ph="t_h" ctype="s" cplace="a" cvox="0" casp="+"/> <!-- thuta  --> 
    <consonant ph="t_>" ctype="s" cplace="a" cvox="0"/> <!-- itafula --> 
    <consonant ph="d" ctype="s" cplace="a" cvox="+"/> <!-- idada --> 
    <consonant ph="k" ctype="s" cplace="a" cvox="-"/> <!-- kela --> 
    <consonant ph="k_h" ctype="s" cplace="v" cvox="-" casp="+"/> <!-- khamba --> 
    <consonant ph="k_>" ctype="s" cplace="v" cvox="0"/> <!-- inkomo --> 
    <consonant ph="g" ctype="s" cplace="v" cvox="+"/> <!-- igama --> 
 
    <!-- Affricative consonants --> 
    <consonant ph="tK_>" ctype="a" cplace="a" cvox="0"/> <!-- Itlawana --> 
    <consonant ph="tK_h" ctype="a" cplace="a" cvox="-" casp="+"/> <!-- tlhaga --> 
    <consonant ph="tS_>" ctype="a" cplace="a" cvox="0"/> <!-- utjani --> 
    <consonant ph="tS_h" ctype="a" cplace="a" cvox="0" casp="+"/> <!—itjhatjha--> 
    <consonant ph="ts_>" ctype="a" cplace="a" cvox="0"/> <!-- itsikiri --> 
    <consonant ph="ts_h" ctype="a" cplace="a" cvox="0" casp="+"/> <!-- tshanya--> 
    <consonant ph="kx" ctype="a" cplace="v" cvox="-"/> <!-- kghupula* --> 
    <consonant ph="d_0Z" ctype="a" cplace="a" cvox="+"/> <!-- jabula --> 
    <consonant ph="dz" ctype="a" cplace="a" cvox="+"/> <!-- idzila -->  
 
    <!-- Fricative consonants --> 
    <consonant ph="f" ctype="f" cplace="b" cvox="-"/> <!-- funa --> 
    <consonant ph="v" ctype="f" cplace="b" cvox="+"/> <!-- vula  --> 
    <consonant ph="s" ctype="f" cplace="a" cvox="-"/> <!-- susa --> 
    <consonant ph="z" ctype="f" cplace="a" cvox="+"/> <!-- Zala --> 
    <consonant ph="x" ctype="f" cplace="v" cvox="-"/> <!-- rhonona  --> 
    <consonant ph="h" ctype="f" cplace="g" cvox="-"/> <!-- ihogo --> 
    <consonant ph="K" ctype="f" cplace="a" cvox="-"/> <!-- hlala --> 
    <consonant ph="K\" ctype="f" cplace="a" cvox="+"/> <!-- dlala --> 
  
    <!-- Clicks consonants --> 
    <consonant ph="1\" ctype="c" cplace="d" cvox="0"/> <!-- cima --> 
    <consonant ph="1\g_0" ctype="c" cplace="d" cvox="+"/> <!-- gcina --> 
    <consonant ph="1\h" ctype="c" cplace="d" cvox="0" casp="+"/><!--chacha--> 
    <consonant ph="!\" ctype="c" cplace="p" cvox="0"/> <!-- qina --> 
    <consonant ph="!\g_0" ctype="c" cplace="p" cvox="+"/> <!-- umgqomu --> 
    <consonant ph="!_bh" ctype="c" cplace="p" cvox="0" casp="+"/><!--qhula--> 
  
    <!-- Nasal consonants --> 
    <consonant ph="m" ctype="n" cplace="l" cvox="0"/> <!-- mina --> 
    <consonant ph="n" ctype="n" cplace="a" cvox="0"/> <!-- nina --> 
    <consonant ph="J" ctype="n" cplace="p" cvox="0"/> <!-- inyama --> 
    <consonant ph="N" ctype="n" cplace="v" cvox="0"/> <!-- nghala --> 
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    <!-- Approximant consonants (semivowels) and Trills and Flaps--> 
    <consonant ph="r" ctype="r" cplace="a" cvox="0"/> <!-- rara --> 
    <consonant ph="j" ctype="r" cplace="p" cvox="0"/> <!-- yena --> 
    <consonant ph="w" ctype="r" cplace="v" cvox="+"/> <!-- wona --> 
 
    <!-- Liquid consonants --> 
    <consonant ph="l" ctype="l" cplace="a" cvox="0"/> <!-- lila --> 
</allophones> 

 

B4: Xitsonga phone set – allophone.tso.xml 
 
<allophones name="sampa" xml:lang="tso" 
  features="vlng vheight vfront vrnd ctype cplace cvox casp cpal"> 
  
    <silence ph="_"/> 
    <!-- Vowels  --> 
    <vowel ph="i" vlng="s" vheight="1" vfront="1" vrnd="-"/> <!-- ribye  --> 
    <vowel ph="u" vlng="s" vheight="1" vfront="3" vrnd="+"/> <!-- huma  --> 
    <vowel ph="E" vlng="s" vheight="3" vfront="1" vrnd="-"/> <!-- hela  --> 
    <vowel ph="O" vlng="s" vheight="3" vfront="3" vrnd="+"/> <!-- songa  --> 
    <vowel ph="a" vlng="s" vheight="4" vfront="1" vrnd="-"/> <!-- aka  --> 
 
    <!-- Stop consonants --> 
    <consonant ph="p" ctype="s" cplace="l" cvox="-"/> <!-- mpunga  --> 
    <consonant ph="p_h" ctype="s" cplace="l" cvox="0" casp="+"/> <!-- phanga  --> 
    <consonant ph="pj_e" ctype="s" cplace="l" cvox="-" cpal="+"/> <!-- pyopya --> 
<consonant ph="pj_h" ctype="s" cplace="l" cvox="-" casp="+" cpal="+"/><!--phya--> 
    <consonant ph="b" ctype="s" cplace="l" cvox="+"/> <!-- ba  --> 
    <consonant ph="b_&lt;" ctype="s" cplace="l" cvox="+"/> <!-- baba  --> 
    <consonant ph="bj" ctype="s" cplace="l" cvox="+" cpal="+"/> <!-- byala  --> 
    <consonant ph="t_h" ctype="s" cplace="a" cvox="0" casp="+"/> <!-- thula  --> 
    <consonant ph="t_e" ctype="s" cplace="a" cvox="0"/> <!-- tatana  --> 
    <consonant ph="tj" ctype="s" cplace="a" cvox="-" cpal="+"/> <!-- tyatyasa -->     
    <consonant ph="d" ctype="s" cplace="a" cvox="+"/> <!-- dedeleka  --> 
    <consonant ph="dj" ctype="s" cplace="a" cvox="+" cpal="+"/> <!-- dya  --> 
    <consonant ph="dh_v" ctype="s" cplace="a" cvox="+" casp="+"/> <!-- ndhambi--> 
    <consonant ph="k" ctype="s" cplace="a" cvox="-"/> <!-- kula  --> 
    <consonant ph="k_h" ctype="s" cplace="v" cvox="-" casp="+"/> <!-- khoma  --> 
    <consonant ph="g" ctype="s" cplace="v" cvox="+"/> <!-- gamba  --> 
    <consonant ph="gh_v" ctype="s" cplace="v" cvox="+" casp="+"/> <!-- nghena --> 
    <consonant ph="tl_e" ctype="s" cplace="a" cvox="-"/> <!-- tlanga  --> 
    <consonant ph="tl_h" ctype="s" cplace="a" cvox="-" casp="+"/> <!-- tlhari --> 
 
    <!-- Affricative consonants --> 
    <consonant ph="dK" ctype="a" cplace="a" cvox="+"/> <!-- dlala  --> 
    <consonant ph="dK_v" ctype="a" cplace="a" cvox="+" casp="+"/> <!-- ndlhazi--> 
    <consonant ph="c" ctype="a" cplace="a" cvox="0"/> <!-- cina  --> 
    <consonant ph="c_h" ctype="a" cplace="a" cvox="0" casp="+"/> <!-- chukucha--> 
    <consonant ph="j_h" ctype="a" cplace="a" cvox="+"/> <!-- jaha  --> 
    <consonant ph="dz`" ctype="a" cplace="a" cvox="+"/> <!-- dzwi, dzaha  --> 
    <consonant ph="dz`h_v" ctype="a" cplace="a" cvox="+" casp="+"/><!--ndzhaku--> 
 
    <!-- Fricative consonants --> 
    <consonant ph="f" ctype="f" cplace="b" cvox="-"/> <!-- famba  --> 
    <consonant ph="v" ctype="f" cplace="b" cvox="+"/> <!-- vhilwa  --> 
    <consonant ph="s" ctype="f" cplace="a" cvox="-"/> <!-- sila  --> 
    <consonant ph="z" ctype="f" cplace="a" cvox="+"/> <!-- muzumbi  --> 
    <consonant ph="S" ctype="f" cplace="a" cvox="-"/> <!-- xava  --> 
    <consonant ph="h_v" ctype="f" cplace="g" cvox="+"/> <!-- huma  --> 
    <consonant ph="K" ctype="f" cplace="a" cvox="-"/> <!-- hlamula  --> 
    <consonant ph="B" ctype="f" cplace="l" cvox="+"/> <!-- vona  --> 
    <consonant ph="s`" ctype="f" cplace="a" cvox="-"/> <!-- sweka  --> 
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    <!-- Clicks consonants --> 
    <consonant ph="1\" ctype="f" cplace="p" cvox="0"/> <!-- xiqoko  --> 
     
    <!-- Nasal consonants --> 
    <consonant ph="m" ctype="n" cplace="l" cvox="0"/> <!-- kuma  --> 
    <consonant ph="n" ctype="n" cplace="a" cvox="0"/> <!-- manana  --> 
    <consonant ph="J" ctype="n" cplace="p" cvox="0"/> <!-- nyoka  --> 
    <consonant ph="N" ctype="n" cplace="v" cvox="0"/> <!-- ngulube  --> 
    <consonant ph="n'" ctype="n" cplace="a" cvox="0"/> <!-- ndzhaku  --> 
    <consonant ph="m_h" ctype="n" cplace="l" cvox="+" casp="+"/> <!-- mhaka  --> 
    <consonant ph="n_h" ctype="n" cplace="a" cvox="+" casp="+"/> <!-- mhamu  --> 
 
    <!-- Approximant consonants (semivowels) and Trills and Flaps--> 
    <consonant ph="r" ctype="r" cplace="a" cvox="0"/> <!-- raha  --> 
    <consonant ph="rh_v" ctype="r" cplace="a" cvox="0" casp="+"/> <!-- rhama  --> 
    <consonant ph="j" ctype="r" cplace="p" cvox="0"/> <!-- yima  --> 
    <consonant ph="w" ctype="r" cplace="v" cvox="+"/> <!-- wa  --> 
 
    <!-- Liquid consonants --> 
    <consonant ph="l" ctype="l" cplace="a" cvox="0"/> <!-- lomba  --> 
</allophones> 
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APPENDIX C: CREATING DICTIONARY –  gen_dictionary.py 

#!/usr/bin/env python 
# This script generates a dictionary (xy.txt) from a given pronunciation 
# dictionary 
# The new dictionary contains the actual word followed by its SAMPA pronunciation # 
and is functional 
 
import sys 
 
if __name__ == '__main__': 
    if len( sys.argv ) < 2: 
        print( "Usage: " + sys.argv[0] +" inputFile" ) 
        sys.exit() 
   
inFile = open( sys.argv[1], 'r' ) 
outFile = open( 'xy.txt', 'w' ) 
 
for line in inFile: 
    line = line.replace( ' ', '' ) 
    line = line.split( '\t' ) 
    line = line[0] + " " + line[1] + " functional\n" 
    outFile.write( line ) 
  
outFile.close() 
inFile.close() 
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APPENDIX D: CLASSIFICATION FUNCTION – NamesPredictor.java 

package weka.classifiers; 
import weka.classifiers.Classifier; 
import weka.core.Attribute; 
import weka.core.DenseInstance; 
import weka.core.Instances; 
import java.util.ArrayList; 
import java.util.List; 
/** 
 * Class for Language Identification of Names 
 * 
 * @author   Tshephisho Joseph Sefara 
 * @institution University of Limpopo 
 * @citation  Master’s Thesis 
 */ 
public class NamesPredictor { 
   /** 
    * String that stores the text to guess its language. 
    */ 
   static String text; 
   /** 
    * Object that stores the instance. 
    */ 
   static Instances instances; 
   /** 
    *String that stores locale of the predicted language  
    */ 
    static String locale;  
   /** 
    * Object that stores the classifier. 
    */ 
    static Classifier cls; 
   /** 
    * Creates the constructor. 
    * @throws Exception 
    */ 
   public NamesPredictor(String strText, String model) throws Exception { 
      // sets text to be classified 
      text = strText;    
      // this function prepares the new instance 
      makeInstance();  
      // this function loads the classifier model 
      loadModel(model);  
   } 
   /** 
    * This method reads the classifier object or model. 
    * @throws Exception 
    */ 
   public static void loadModel(String modelName) throws Exception { 
         cls = (Classifier) weka.core.SerializationHelper.read(modelName); 
   } 
    
   /** 
    * This method creates an instance to be predicted. 
    */ 
   public static void makeInstance() { 
      // Create the header 
      List<Attribute> attributeList = new ArrayList<Attribute>(2); 
      // Create first attribute, the class 
      List<String> values = new ArrayList<String>(3);  
      values.add("nso");  
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      values.add("tso");  
      values.add("ven");  
      Attribute attribute1 = new Attribute("class", values); 
      attributeList.add(attribute1); 
      // Create second attribute, the text 
      Attribute attribute2 = new Attribute("surname",(List<String>) null); 
      attributeList.add(attribute2); 
      // Build instance set with just one instance 
      instances = new Instances("Test relation", (java.util.ArrayList<Attribute>) 
attributeList, 1);            
      // Set class index 
      instances.setClassIndex(0); 
      // Create and add the instance 
      DenseInstance instance = new DenseInstance(2); 
      instance.setDataset(instances); 
      instance.setValue(attribute2, text); 
      instances.add(instance); 
   } 
   /** 
    * This method performs the classification of the instance  
    * and returns a locale (string). 
    * @throws Exception 
    */ 
   public String classify() throws Exception { 
         // Predicts a language given an instance 
      double pred = cls.classifyInstance(instances.instance(0)); 
      locale = instances.classAttribute().value((int) pred); 
      return locale;     
   } 
} 
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APPENDIX E: ANDROID SOURCE CODE 

E.1: MainActivity.java 

package za.co.speechtech.ttsdemo; 
import android.app.DownloadManager; 
import android.net.Uri; 
import android.os.Bundle; 
import android.os.Environment; 
import android.support.v7.app.AppCompatActivity; 
import android.view.Menu; 
import android.view.MenuItem; 
import android.view.View; 
import android.widget.Button; 
import android.widget.EditText; 
import android.widget.Toast; 
import java.io.IOException; 
import java.util.concurrent.ExecutionException; 
import static android.widget.Toast.makeText; 
public class MainActivity extends AppCompatActivity { 
    //private TextView mTextMessage; 
    String locale=" "; //declare and initialise locale 
    EditText area; //declare text area 
    Button clear, speak, download; //declare buttons 
    String text=" "; //declare and initialise text/surname 
    String model = "namesModel"; //declare default predictor model 
    String lidUrl; //address from language identification 
    String userUrl; //address from user selection 
    final static String [] locales = {"nso","tso","ven","nbl","en_US","detect"}; 
    @Override 
    protected void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.activity_main); 
        area = (EditText) findViewById(R.id.editText2); 
        clear = (Button) findViewById(R.id.button1); 
        //clear text area 
        clear.setOnClickListener(new View.OnClickListener() { 
            public void onClick (View view) { 
                area.setText(""); 
            } 
        }); 
        speak = (Button) findViewById(R.id.button2); 
        //Plays audio file from remote site 
        speak.setOnClickListener(new View.OnClickListener() { 
            public void onClick (View view) { 
                try { 
                    if(urlBuilder(model)) { 
                        player(locale.equals(locales[5]) ? lidUrl : userUrl); 
                    } 
                } catch (IOException | InterruptedException | ExecutionException e) { 
                    e.printStackTrace(); 
                } 
            } 
        }); 
        download = (Button) findViewById(R.id.button); 
        //Download audio file from remote site 
        download.setOnClickListener(new View.OnClickListener() { 
            public void onClick (View view) { 
                try { 
                    if (urlBuilder(model)) 
                    { 
                        String uri; 



144 

                        if (!Methods.isempty(text)) { 
                            uri = locale.equals(locales[5]) ? lidUrl : userUrl; 
                            DownloadManager.Request req = new 
DownloadManager.Request(Uri.parse(uri)); 
                            
req.setDestinationInExternalPublicDir((Environment.DIRECTORY_DOWNLOADS),"audio.wav"); 
                            
req.setNotificationVisibility(DownloadManager.Request.VISIBILITY_VISIBLE_NOTIFY_COMPL
ETED); 
                            req.allowScanningByMediaScanner(); 
                            DownloadManager downloadManager = (DownloadManager) 
getSystemService(DOWNLOAD_SERVICE); 
                            downloadManager.enqueue(req); 
                        } 
                    } 
                }catch(IOException | InterruptedException | ExecutionException e){ 
                        e.printStackTrace(); 
                } 
            } 
        }); 
    } 
    public boolean onCreateOptionsMenu(Menu menu) { 
        getMenuInflater().inflate(R.menu.main, menu); 
        return true; 
    } 
    //sets languages based on user selection 
    public boolean onOptionsItemSelected(MenuItem item) { 
        int id = item.getItemId(); 
        switch (id) { 
            case R.id.item1: 
                locale = locales[0]; 
                return true; 
            case R.id.item2: 
                locale = locales[2]; 
                return true; 
            case R.id.item3: 
                locale = locales[1]; 
                return true; 
            case R.id.item4: 
                locale = locales[3]; 
                return true; 
            case R.id.item5: 
                locale = locales[4]; 
                return true; 
            case R.id.item6: 
                locale = locales[5]; 
                return true; 
        } 
        return super.onOptionsItemSelected(item); 
    } 
    //generate url based on user selection or automatic language identification 
    public boolean urlBuilder(String model) throws IOException, ExecutionException, 
InterruptedException { 
        text = area.getText().toString().trim(); 
        if (Methods.isempty(text)){ 
            makeText(getBaseContext(), "Enter surname", Toast.LENGTH_SHORT).show(); 
            return false; 
        } 
        else { 
            text = Methods.encode_text(text); 
        } 
        if (Methods.isempty(locale.trim())){ 
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            makeText(getBaseContext(), "Select the language", 
Toast.LENGTH_SHORT).show(); 
            return false; 
        } 
        if(locale.equals(locales[5])) { 
            text = area.getText().toString().trim(); 
            text = Methods.encode_text(text); 
            if (Methods.isInternet(getBaseContext())) { 
                String urlAddress = 
"http://www.speechtech.co.za/alltts/classify.php?text=" + text + "&model=" + model; 
                LanguageIdentification LID = new LanguageIdentification(); 
                LID.execute(urlAddress); 
                String language = LID.get(); 
                switch (language) { 
                    case "nso": 
                        makeText(getBaseContext(), "Language set to Sepedi", 
Toast.LENGTH_LONG).show(); 
                        break; 
                    case "tso": 
                        makeText(getBaseContext(), "Language set to Xitsonga", 
Toast.LENGTH_LONG).show(); 
                        break; 
                    case "ven": 
                        makeText(getBaseContext(), "Language set to Tshivenda", 
Toast.LENGTH_LONG).show(); 
                        break; 
                    case "nbl": 
                        makeText(getBaseContext(), "Language set to IsiNdebele", 
Toast.LENGTH_LONG).show(); 
                        break; 
                    default: 
                        makeText(getBaseContext(), "Language not detected", 
Toast.LENGTH_LONG).show(); 
                        return false; 
                } 
                //create URL based on identified language 
                lidUrl = 
"http://www.speechtech.co.za/alltts/download.php?INPUT_TEXT=" + text + "&LOCALE=" + 
language + "&act=download"; 
                return true; 
            } 
            makeText(getBaseContext(), "No Internet Availability", 
Toast.LENGTH_LONG).show(); 
            return false; 
        } 
        //create URL based on user selection 
        userUrl = 
"http://www.speechtech.co.za/alltts/download.php?INPUT_TEXT="+text+"&LOCALE="+locale+
"&act=download"; 
        return true; 
    } 
    //plays the audio given a URL 
    public void player(String url) { 
        //check internet status 
        if (Methods.isInternet(getBaseContext())) 
            try { 
                PlayAudioManager.playWave(getApplicationContext(), url); 
            } catch (Exception e) { 
                e.printStackTrace(); 
            } 
        else { 
            makeText(getBaseContext(), "No Internet Availability", 
Toast.LENGTH_SHORT).show(); 



146 

        } 
    } 
} 

 

E.2: LanguageIdentification.java 

package za.co.speechtech.ttsdemo; 
import android.os.AsyncTask; 
import java.io.BufferedInputStream; 
import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStream; 
import java.io.InputStreamReader; 
import java.net.HttpURLConnection; 
import java.net.URL; 
/** 
 * Created by Tshephisho Joseph Sefara on 2017/03/12. 
 * 
 */ 
class LanguageIdentification extends AsyncTask<String , Void, String> { 
    HttpURLConnection urlConnection = null; 
    @Override 
    protected String doInBackground(String... params) { 
        StringBuilder response  = new StringBuilder(); 
        try { 
            URL url = new URL(params[0]); 
            urlConnection = (HttpURLConnection) url.openConnection(); 
            InputStream in = new 
BufferedInputStream(urlConnection.getInputStream()); 
            BufferedReader read = new BufferedReader(new InputStreamReader(in)); 
            String line; 
            while ((line = read.readLine()) != null) { 
                response.append(line); 
            } 
        } catch (IOException e){ 
            e.printStackTrace(); 
        } 
        return response.toString(); 
    } 
    public void onPostExecute (String results) { 
        urlConnection.disconnect(); 
    } 
} 

 

E.3: Methods.java 

package za.co.speechtech.ttsdemo; 
import java.io.UnsupportedEncodingException; 
import java.net.URLEncoder; 
import android.content.Context; 
import android.net.NetworkInfo; 
import android.net.ConnectivityManager; 
/** 
 * Created by Tshephisho Joseph Sefara on 2017/03/12. 
 * This class contains static methods 
 */ 
class Methods { 
    //Checks internet connectivity 
    static boolean isInternet(Context c) { 
        ConnectivityManager connect = (ConnectivityManager) 
c.getSystemService(Context.CONNECTIVITY_SERVICE); 
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        NetworkInfo activeNet = connect.getActiveNetworkInfo(); 
        return activeNet != null && activeNet.getState() == 
NetworkInfo.State.CONNECTED; 
    } 
    //Check if the argument is empty 
    static boolean isempty(String tempString) { 
        return tempString.isEmpty() || tempString.length() == 0 || 
tempString.equals(""); 
    } 
    //Use URLEncoder to encode the argument 
    static String encode_text(String text) throws UnsupportedEncodingException { 
        text = URLEncoder.encode(text, "UTF-8"); 
        return text; 
    } 
} 

 

E.4: PlayAudioManager.java 

package za.co.speechtech.ttsdemo; 
import android.content.Context; 
import android.media.MediaPlayer; 
import android.net.Uri; 
/** 
 * Created by Tshephisho Joseph Sefara on 2017/03/12. 
 * 
 */ 
class PlayAudioManager { 
    private static MediaPlayer mediaplayer; 
    static void playWave (final Context context, final String urlPath) throws 
Exception { 
        if (mediaplayer == null) { 
            mediaplayer = MediaPlayer.create(context, Uri.parse(urlPath)); 
        } 
        mediaplayer.setOnCompletionListener(new MediaPlayer.OnCompletionListener() { 
            @Override 
            public void onCompletion(MediaPlayer arg0) { 
                try { 
                    if (mediaplayer != null) { 
                        mediaplayer.reset(); 
                        mediaplayer.release(); 
                        mediaplayer = null; 
                    } 
                }catch (Exception e ){ 
                    e.printStackTrace(); 
                } 
            } 
        }); 
        mediaplayer.start(); 
    } 
} 
 

E.5: Activity_main.xml 

<?xml version="1.0" encoding="utf-8"?> 
<RelativeLayout 
    xmlns:android="http://schemas.android.com/apk/res/android" 
    xmlns:tools="http://schemas.android.com/tools" 
    android:id="@+id/container" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent" 
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    android:orientation="vertical" 
    android:paddingBottom="@dimen/activity_vertical_margin" 
    android:paddingLeft="@dimen/activity_horizontal_margin" 
    android:paddingRight="@dimen/activity_horizontal_margin" 
    android:background="@color/colorAccent" 
    tools:context="za.co.speechtech.ttsdemo.MainActivity" 
    android:paddingTop="@dimen/activity_vertical_margin"> 
    <EditText 
        android:id="@+id/editText2" 
        android:layout_width="fill_parent" 
        android:layout_height="wrap_content" 
        android:layout_alignParentBottom="true" 
        android:layout_alignParentStart="true" 
        android:layout_alignParentLeft="true" 
        android:layout_alignParentEnd="true" 
        android:layout_alignParentRight="true" 
        android:textColor="#000000" 
        android:ems="10" 
        android:background="@drawable/textareaborder" 
        android:padding="1dp" 
        android:gravity="top" 
        android:inputType="textMultiLine" 
        android:layout_below="@+id/button1"> 
        <requestFocus /> 
    </EditText> 
    <Button 
        android:id="@+id/button1" 
        style="@android:style/Widget.Button" 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:layout_alignBottom="@+id/button2" 
        android:layout_alignLeft="@+id/editText2" 
        android:layout_alignParentTop="true" 
        android:layout_alignStart="@+id/editText2" 
        android:clickable="true" 
        android:text="@string/button_clear" 
        android:textSize="20sp" 
        tools:text="@string/button_clear" /> 
    <Button 
        android:id="@+id/button2" 
        style="@android:style/Widget.Button" 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:layout_alignEnd="@+id/editText2" 
        android:layout_alignParentTop="true" 
        android:layout_alignRight="@+id/editText2" 
        android:clickable="true" 
        android:text="@string/button_speak" 
        android:textSize="20sp" 
        tools:text="@string/button_speak" /> 
    <Button 
        android:id="@+id/button" 
        style="@android:style/Widget.Button" 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:layout_above="@+id/editText2" 
        android:layout_alignParentTop="true" 
        android:layout_centerHorizontal="true" 
        android:text="@string/button_download" 
        android:textSize="20sp" 
        tools:text="@string/button_download" /> 
</RelativeLayout> 
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E.6: Menu.xml 

<?xml version="1.0" encoding="utf-8"?> 
<menu xmlns:android="http://schemas.android.com/apk/res/android"> 
    <item android:id="@+id/item1" android:title="Sepedi" 
android:orderInCategory="2"></item> 
    <item android:id="@+id/item2" android:title="Tshivenda" 
android:orderInCategory="3"></item> 
    <item android:id="@+id/item3" android:title="Xitsonga" 
android:orderInCategory="4"></item> 
    <item android:id="@+id/item4" android:title="isiNdebele" 
android:orderInCategory="5"></item> 
    <item android:id="@+id/item5" android:title="English" 
android:orderInCategory="6"></item> 
    <item android:id="@+id/item6" android:title="Auto Detect" 
android:orderInCategory="1"></item> 
</menu> 
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APPENDIX F: ANDROID APPLICATION UML DIAGRAM 
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APPENDIX G: CONSENT FORM 

 

University of Limpopo 

Telkom Centre of Excellence for Speech Technology 

Department of Computer Science 

Office 1015 Mathematical Sciences Building 

Private Bag X1106, SOVENGA, 0727, South Africa 

Tel: (015) 268 2751, Fax: (015) 268 3487, Email: sefaratj@gmail.com  

 

 

Dear Participant   

My name is Tshephisho Joseph Sefara and I am a postgraduate student enrolled in the 

Department of Computer Sciences at the University of Limpopo. I am conducting research on the 

development of an automatic pronunciation system that uses voice and machine-learning 

technologies. The purpose of the research is to build a voice-enabled system that uses a trained 

classifier to enhance pronunciation of words and phrases, particularly surnames of the Sepedi, 

Tshivenda, Xitsonga and isiNdebele mother tongue speakers. The information gathered here will 

be used purely for academic purposes, but the final document will be a public document in the 

form of a research report. I hereby invite you to participate in the research study to evaluate the 

performance of the developed system. 

Your participation in this research is voluntary and you are free to withdraw anytime. There will 

be no remuneration or gifts in exchange for information provided. Your identity will remain 

anonymous and the information you provide will be confidential. There are no known risks to 

participation beyond those encountered in everyday life. You are entitled to withhold information 

that you feel is too personal or sensitive to you and you can choose not to answer any of the 

questions. The enclosed questionnaire has been designed to collect information on the quality 

and intelligibility of the developed system. If you are willing and available to participate in this 

research project, please sign below and answer the questions on the questionnaire as best you 

can: 

Consent Form Code (filled by interviewer): _____________ 

Signature: ______________ Date: ____/_____/2017     Place: ________________________ 

It should take approximately 15 minutes to complete. Thank you for agreeing to participate in this 

research study.  

THE DEVELOPMENT OF AN AUTOMATIC PRONUNCIATION ASSISTANT 

mailto:sefaratj@gmail.com
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Male  Female  

 

Yes No 

 

Sepedi Xitsonga Tshivenda isiNdebele  

 

 

Postgraduate Undergraduate  

 

 

APPENDIX H: QUESTIONNAIRE 

This questionnaire was presented to the evaluators where they evaluate ttwo 

systems, namely, the developed system and natural speech recorded at 16-bit 

PCM. System A represents the developed TTS synthesis system and system 

B represents natural speech.  

                    

Introduction: 

The aim of this questionnaire is to gather information to evaluate the performance of an automatic 

pronunciation system that is presented to the evaluators. This evaluation form is completed once 

the subjects have familiarised themselves with the system. The respondents MUST complete the 

consent form before answering this questionnaire.  

 

Instructions:  

 Always give personal honest opinions. 

 Select an appropriate answer were multiple answers are given by means of a cross (x).  

 Answer all the questions as completely as possible. 

Section 1: General Questions  

1. Home language:  

 

 

2. Level of study:  

 

 

3. Gender:  

 

4. Age range:  

 

5. Are you familiar with text-to-speech synthesis systems? 

  

Evaluation Form 

18-35 36 and above 
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Section 2: Intelligibility 

The researcher will play the audio files sequentially. 

Write down each sentence before the researcher plays the next audio.  

System A: 

Audio 1:  

 

Audio 2: 

 

Audio 3:  

 

Audio 4:  

 

Audio 5:  
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Section 3: Speech Quality  

This section is completed after five normal sentences are played to the 

respondents. Please answer each question on a scale of 1 to 5 where:  

MOS Quality Listening Effort 

1 Bad No meaning understood  

2 Poor Effort required 

3 Fair Moderate effort required 

4 Good No appreciable effort required 

5 Excellent No effort required 

Questions for System A 1 2 3 4 5 

1. How was the pronunciation of words? 
     

2. How was the naturalness of the voice? 
     

3. How was the pleasantness of the voice? 
     

4. How much effort was needed to listen and understand the 
message?      

5. How was the overall quality of the audio on all aspects? 
     

 

Questions for System B 1 2 3 4 5 

1. How was the pronunciation of words? 
     

2. How was the naturalness of the voice? 
     

3. How was the pleasantness of the voice? 
     

4. How much effort was needed to listen and understand the 
message?      

5. How was the overall quality of the audio on all aspects? 
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Section 4: User Acceptance 

This section is completed after the respondents have interacted with the system 

on the website. Please answer each question on a scale of 1 to 5 where: 

MOS Meaning  

1 Strongly disagree  

2 Disagree  

3 Neither  

4 Agree  

5 Strongly agree 

  

Questions 1 2 3 4 5 

1. Buttons are visible and easy to find. 
 

    

2. Languages can be switched easily. 
 

    

3. Text is visible and clear. 
 

    

4. Layout and colours are displayed perfectly. 
 

    

5. The application was difficult to understand. 
 

    

6. I can use the application on my own. 
 

    

7. I felt very confident using the application. 
 

    

8. I would recommend this application to someone 
else.  

    

9. I would frequently use this application. 
 

    

10. This application can help me learn pronunciation 
of new languages.  

    

11. Would you recommend these voices to be 
integrated in future devices?  
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APPENDIX I: SPEECH SYNTHESISER – TEST CORPUS SAMPLES 

I.1: Test corpus samples of intelligibility test  

The five sample sentences for intelligibility test of each language using syntactic 

rules explained by Benoît et al. (1996) are shown below:  

  

 Sepedi Text English Meaning 

1.  
Buka e sepetše godimo ga lefase le le 
botse. 

The book walked through the attractive 
floor. 

2.  Komiki ya go hloka maatla e rata letšatši. The weak cup loves the day 

3.  Ruta ntlo le leoto. Teach the house and the leg. 

4.  
Go tla bjang gore bošego bo hloye letšatši le 
le ntsho? 

How does the night hate the black 
sun? 

5.  Meetse a bone mohlare wo o hwilego.  The water saw the tree that died. 

 Tshivenda Text   

6.  Bugu yo tshimbila fhasi ho no tamisa. 
The book walked through the attractive 
floor. 

7.  Tshinwelo tshi sina nungo tshi funa Duvha. The weak cup loves the day 

8.  Funza nndu mulenzhe Teach the house and the leg 

9.  Vhusiku vhu vhenga hani Duvha litshwu 
How does the night hate the black 
sun? 

10.  Madi o vhona muri une wa khou fa The water saw the tree that died. 

 Xitsonga Text   

11.  Buku yi fambile hole ndhawini yo navetisa. 
The book walked through the attractive 
floor. 

12.  Xinwelo xi rhandza siku. The cup loves the day 

13.  Dyondzisa yindlu na nenge. Teach the house and the leg 

14.  
Vusiku byi vanga hi ndlela yini vunyama bja 
fambi? 

How does the night hate the black 
sun? 

15.  Mati ya vonile nsinya lowu fake. The water saw the tree that died. 

 isiNdebele Text   

16.  Incwadi ikhambe ephasini isitubhe selihle 
The book walked through the attractive 
floor. 

17.  Ibhigiri elinganamandla lithanda ilanga The weak cup loves the day 

18.  Fundisa indlu nomlenze Teach the house and the leg 

19.  
Kuzanjani ukuthi ubusuku buzonde ilanga 
elimnyama? 

How does the night hate the black 
sun? 

20.  Amanzi abone isihlahla esifileko. The water saw the tree that died. 
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I.2: Test corpus samples of MOS test 

The five sample sentences for MOS test of each language are given below: 

  

 Sepedi Text English Meaning 

1.  
Modipa o rata go etela mosadi wa gagwe 

ma felelong a beke.  

Modipa likes to visit his wife on 

weekends. 

2.  

Mo ponong Modimo a mpontšha Moprista 

yo Mogolo, a eme pele ga morongwa wa 

Morena. 

He showed me the high priest standing 

before the angel of the LORD. 

3.  Thobela Manamela! Hello Manamela! 

4.  Mothapo o a bolela. Mothapo is speaking. 

5.  Ke wena Mokgalong? Are you Mokgalong? 

 Tshivenda Text 

6.  
Mathoho utakalela uya hayani nga 

lavhutanu 
Mathoho likes to visit home on Fridays. 

7.  Aa vho Nemagovhani! Hello Nemagovhani! 

8.  Tshivhombela o thanya Tshivhombela is wise. 

9.  Ndi ini vho Netshivhulana vha mudivhale? Are you the famous Netshivhulana? 

10.  Ne ndo takala vhukuma I am fine, thank you 

 isiNdebele Text 

11.  uMothwa ungumhlanyeli o wazekako. Mothwa is a famous farmer.  

12.  Lotjha Sibiya! Hello Sibiya! 

13.  uSindane ulele.  Sindane is sleeping. 

14.  Unjani Mahlangu? How are you Mahlangu? 

15.  

Maucala ngendlela leyo uSindane 

enzangakhona, uba ngumrhubhululi 

omkhulu. 

Looking at how Sindane is doing, he is 

becoming a great researcher. 

 Xitsonga Text 

16.  Mayindi u rhandza ku khongela a ri wexe. Mayindi likes to pray alone. 

17.  
Shikwambane hi yena ntsena mlungu 

exikolweni. 

Shikwambane is only the only white 

person at school. 

18.  Xewani Baloyi! Hello Baloyi! 

19.  Kunjhani Dzambukeri?  How are you Dzambukeri? 

20.  Tsakane u catile ahari exikolweni. 
Tsakane got married while she was still 

at school. 
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APPENDIX J: NATURAL SPEECH – TEST CORPUS SAMPLES 

The HMM voices were built on secondary data and the following sentences 

were extracted from the speech corpus to be used for MOS test 

 

  

 Sepedi Text English Meaning 

1.  Botagwa bo ka bolaya. Drinking can kill you. 

2.  
Mešomo ya dikontraka e tla abelwa 

banna fela. 

Only men will be allocated contractual 

jobs. 

3.  Se bolele ka mosadi wa go se botege. Do not talk about unfaithful woman. 

4.  Tokomane ya boitsebišo. Identity document 

5.  Kopano e tla tšwela pele. The meeting will continue. 

 Tshivenda Text 

6.  Nahone hu na zwidini zwa hone. There is something bothering me. 

7.  Yakobo a ri u songo mpha tshithu. Jacob said do not give me anything. 

8.  Na zwifuiwa hezwi ndi zwanga. These animals are mine. 

9.  Ri khou lifhedzwa malofha awe zwino. We are being punished for his blood. 

10.  Ri vha rine nga mvelele heyi. 
We are who we are because of this 

culture. 

 isiNdebele Text 

11.  
Ekuseni ngizokuza ngizokuhlola ilembe 

lami. 

In the morning I will come to check my 

plough. 

12.  Akhe ugijime ngikutjele bona kwenzekeni. 
May you hurry so I can tell you what 

happenend. 

13.  Ngiyiqunte izipho ikukhu yathi ngiyilise. 
I have cut off the chickens’ nails and it 

said I should stop. 

14.  
Yarhubha yarhubha kodwana 

yangalitholi. 

It scratched and scratched but did not 

find it. 

15.  Ikukhu yakhamba ihlengezela iya kibo. The chicken went about casually home. 

 Xitsonga Text 

16.  I ntiyiso Khanyisa. It is the truth Khanyisa. 

17.  Hayikhona, ndza sola mani! No, I doubt! 

18.  Timhuti ti sungula ku khana. Everthing is quiet. 

19.  Va rhukaniwa ro vuyavuyani. They continually insulted them. 

20.  Hlomani na yena a ri kona. Even Hlomani was there. 
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APPENDIX K: SENTENCE AND WORD ERROR RATE – error_rates.py 

#!/usr/bin/env python 
# This script calculate sentence and word error rate (SER and WER) using  
# Levenshtein distance. It receives a text file and test cases. The text file  
# contains sequence of sentences where the first sentence is the reference and  
# the second sentence is the hypothesis. Usage: 
# Sentence reference1 
# Sentence hypothesis1 
# Sentence reference2 
# Sentence hypothesis2 . . . 
# The SER and WER are displayed in percentage notation. 
# Usage: wer.py inputFile.txt #testCases 
 
import sys 
import numpy 
 
if __name__ == '__main__': 
    if len( sys.argv ) < 3: 
        print( "Usage: " + sys.argv[0] +" inputFile #testCase" ) 
        sys.exit() 
     
inFile, wer, ser = open( sys.argv[1], 'r' ), [], 0.0 
for n in range( int( sys.argv[2] ) ): 
    ref = inFile.readline().split() 
    ref_len = len( ref ) + 1 
    hyp = inFile.readline().split() 
    hyp_len = len( hyp ) + 1 
    distance = numpy.zeros( ref_len * hyp_len, dtype=numpy.uint8 ) 
    distance = distance.reshape( ref_len, hyp_len ) 
    #Build the matrix 
    for x in range( ref_len ): 
        for y in range( hyp_len ): 
            if x == 0: 
                distance[0][y] = y 
            elif y == 0: 
                distance[x][0] = x   
    #Calculations 
    for x in range( 1, ref_len ): 
        for y in range( 1, hyp_len ): 
            if ref[x-1] == hyp[y-1]: 
                distance[x][y] = distance[x-1][y-1] 
            else: 
                substitution = distance[x-1][y-1] + 1 
                insertion    = distance[x][y-1] + 1 
                deletion     = distance[x-1][y] + 1 
                distance[x][y] = min( substitution, insertion, deletion ) 
    #Calculate word error 
    error = float( distance[len( ref )][len( hyp )]) / len( ref ) * 100 
    #Calculate sentence errors if there is word error 
    if error != 0: ser += 1 
    #Prepare word error list 
    wer.append( error )  
average_ser = ser / int( sys.argv[2] ) * 100  #SER results 
average_wer = sum(wer) / int( sys.argv[2] )   #WER results 
print ( "Total SER = %.2f %%" % average_ser ) #Display SER results 
print ( "Total WER = %.2f %%" % average_wer ) #Display WER results 
inFile.close() 
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