
THE DEVELOPMENT OF AN AUTOMATIC PRONUNCIATION ASSISTANT

by

TSHEPHISHO JOSEPH SEFARA

DISSERTATION

Submitted in fulfilment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

in the

FACULTY OF SCIENCE AND AGRICULTURE

(School of Mathematical and Computer Sciences)

at the

UNIVERSITY OF LIMPOPO

SUPERVISOR: Mr MJD Manamela

CO-SUPERVISOR: Dr TI Modipa

2019

ii

DEDICATION

This dissertation is dedicated to my family who sacrificed the time we should have

spent together.

iii

DECLARATION OF AUTHORSHIP

I, Tshephisho Joseph Sefara, declare that the dissertation entitled “THE

DEVELOPMENT OF AN AUTOMATIC PRONUNCIATION ASSISTANT”, is my

own work and has been generated by me as the result of my own original

research proposal. I confirm that where collaboration with other people has taken

place, or material from other researchers is included, the parties or material are

appropriately indicated in the acknowledgements or references. I further confirm

that this work has not been submitted to any other university for any other degree

or examination.

Sefara, T.J.

05/04/2019

Date

iv

ACKNOWLEDGEMENTS

As I finish this academic work, I would like to thank almighty God for giving the

strength, wisdom and guidance throughout the course of the research study. It is

a great pleasure to express my thanks to the following people for contributing

towards the success of this research study:

 Mr MJD Manamela and Dr TI Modipa, my supervisors, for their supervision

and guidance without which this work would not have been a reality;

 Credit has to be given to ARMSCOR and CSIR for the financial support

they provided for this research study;

 Special thanks must go to all the hard-working people that met with me

every day and gave their one hundred and ten percent effort during

evaluation of the system;

 Special thanks must go to my friends and colleagues, for their moral

support.

 Finally, I would like to thank my amazing family for their love and support.

v

ABSTRACT

The pronunciation of words and phrases in any language involves careful

manipulation of linguistic features. Factors such as age, motivation, accent,

phonetics, stress and intonation sometimes cause a problem of inappropriate or

incorrect pronunciation of words from non-native languages. Pronunciation of

words using different phonological rules has a tendency of changing the meaning

of those words. This study presents the development of an automatic

pronunciation assistant system for under-resourced languages of Limpopo

Province, namely, Sepedi, Xitsonga, Tshivenda and isiNdebele.

The aim of the proposed system is to help non-native speakers to learn

appropriate and correct pronunciation of words/phrases in these under-resourced

languages. The system is composed of a language identification module on the

front-end side and a speech synthesis module on the back-end side. A support

vector machine was compared to the baseline multinomial naive Bayes to build

the language identification module. The language identification phase performs

supervised multiclass text classification to predict a person’s first language based

on input text before the speech synthesis phase continues with pronunciation

issues using the identified language. The speech synthesis on the back-end

phase is composed of four baseline text-to-speech synthesis systems in selected

target languages. These text-to-speech synthesis systems were based on the

hidden Markov model method of development. Subjective listening tests were

conducted to evaluate the performance of the quality of the synthesised speech

using a mean opinion score test. The mean opinion score test obtained good

performance results on all targeted languages for naturalness, pronunciation,

pleasantness, understandability, intelligibility, overall quality of the system and

user acceptance. The developed system has been implemented on a “real-live”

production web-server for performance evaluation and stability testing using live

data.

vi

TABLE OF CONTENTS

DEDICATION .. ii

DECLARATION OF AUTHORSHIP ... iii

ACKNOWLEDGEMENTS... iv

ABSTRACT .. v

TABLE OF CONTENTS ... vi

LIST OF TABLES ... xiv

LIST OF FIGURES .. xv

LIST OF LISTINGS .. xix

LIST OF ABBREVIATIONS ... xx

1 CHAPTER 1: INTRODUCTION ... 1

1.1 Preamble ... 1

1.2 Motivation .. 3

1.3 Problem Statement.. 4

1.3.1 Aim .. 5

1.3.2 Objectives ... 5

1.3.3 Research Questions .. 6

1.4 Research Methods .. 6

1.5 Scientific Contribution .. 7

vii

1.6 Ethical Considerations ... 9

1.6.1 Informed Consent .. 9

1.6.2 Voluntary participation ... 9

1.6.3 Privacy and Confidentiality .. 10

1.6.4 Physical or Psychological Harm .. 10

1.7 Structure of Dissertation .. 10

2 CHAPTER 2: BACKGROUND .. 11

2.1 Introduction ... 11

2.2 Proper Names ... 12

2.3 Pronunciation .. 13

2.4 Supervised Learning Techniques .. 14

2.4.1 Multinomial Naive Bayes Classifier ... 15

2.4.2 Support Vector Machines .. 17

2.5 Language Identification ... 18

2.5.1 Language Identification for South African Languages 20

2.6 Toolkits for Classifier Implementation.. 22

2.6.1 WEKA .. 22

2.6.2 Scikit-learn .. 22

2.6.3 NLTK ... 22

viii

2.7 Components of a Typical TTS Synthesis System 23

2.7.1 Natural Language Processing ... 23

2.7.2 Digital Signal Processing ... 25

2.8 Evaluation of TTS Synthesis System .. 33

2.9 TTS Synthesis Application Areas .. 34

2.10 Speech Synthesis Systems Toolkits.. 36

2.10.1 Festival TTS .. 36

2.10.2 Speect TTS ... 36

2.10.3 IBM Watson TTS ... 36

2.10.4 Merlin .. 37

2.10.5 MARY TTS .. 37

2.11 Summary ... 38

3 CHAPTER 3: DESIGN AND IMPLEMENTATION 40

3.1 Introduction ... 40

3.2 Front-end Phase: Language Identification Module 42

3.2.1 Data Acquisition Pre-processing ... 42

3.2.2 N-gram Feature set ... 45

3.2.3 Machine-learning Algorithms ... 46

3.3 Back-end Phase: Speech Synthesis Module 53

ix

3.3.1 Datasets .. 53

3.3.2 Compiling MARY TTS Builder Tools ... 55

3.3.3 Natural Language Processing Modules ... 57

3.3.4 TTS Synthesis Modules .. 67

3.4 Integration of the LID and TTS Synthesis .. 78

3.5 Live Demonstration of the System .. 82

3.5.1 Server .. 82

3.5.2 Client – Internet Browser ... 85

3.5.3 Client – Android Application .. 85

3.6 Summary ... 87

4 CHAPTER 4: EVALUATION RESULTS .. 89

4.1 Introduction ... 89

4.2 Performance Measures of the Proposed System 90

4.2.1 Evaluation Metrics for LID ... 90

4.2.2 Subjective Evaluation Metrics for TTS ... 93

4.3 Evaluation Results and Analysis of the Developed Front-end LID 97

4.3.1 Kernel Parameter Selection .. 97

4.3.2 Multinomial Naive Bayes ... 99

4.3.3 SVM with Linear Kernel ... 101

x

4.3.4 SVM with RBF Kernel .. 102

4.3.5 SVM with Sigmoid Kernel .. 104

4.3.6 SVM with Polynomial Kernel ... 106

4.3.7 Final Model .. 107

4.4 Evaluation Results and Analysis of the Developed TTS.................... 109

4.4.1 Test for Intelligibility ... 110

4.4.2 Test for Naturalness .. 112

4.4.3 Test for Correct Pronunciation .. 113

4.4.4 Test for Pleasantness .. 114

4.4.5 Test for Understandability or Listening Effort 115

4.4.6 Test for the Overall Quality .. 115

4.4.7 Comparison with other Studies ... 116

4.5 Evaluation Results and Analysis of the Complete System Usability .. 117

4.6 Summary ... 120

5 CHAPTER 5: DISCUSSIONS ... 121

5.1 Classifier Model Comparison .. 121

5.2 Text-to-Speech Synthesiser .. 123

5.3 System Usability .. 123

5.4 Summary of the Findings .. 123

xi

6 CHAPTER 6: CONCLUSIONS .. 126

6.1 Introduction ... 126

6.2 Limitations and Challenges ... 126

6.3 Contributions of the Study ... 127

6.3.1 Language-specific Applications ... 127

6.3.2 Pre-processing Files .. 127

6.3.3 Importance of the Developed System ... 127

6.3.4 Speech Synthesis Results ... 128

6.3.5 Common Dataset .. 128

6.4 Future Work and Recommendations ... 128

6.4.1 Machine-learning Phase .. 128

6.4.2 Speech Synthesis Phase .. 129

6.5 Final Remarks ... 130

LIST OF PUBLICATIONS... 131

APPENDIX A: INSTALLATION GUIDE AND PATH VARIABLES – install.sh 133

APPENDIX B: PHONE SET FILES .. 135

B1: Sepedi phone set – allophone.nso.xml .. 135

B2: Tshivenda phone set – allophone.ven.xml ... 136

B3: IsiNdebele phone set – allophone.nbl.xml.. 137

xii

B4: Xitsonga phone set – allophone.tso.xml... 138

APPENDIX C: CREATING DICTIONARY – gen_dictionary.py 140

APPENDIX D: CLASSIFICATION FUNCTION – NamesPredictor.java 141

APPENDIX E: ANDROID SOURCE CODE .. 143

E.1: MainActivity.java ... 143

E.2: LanguageIdentification.java .. 146

E.3: Methods.java ... 146

E.4: PlayAudioManager.java .. 147

E.5: Activity_main.xml .. 147

E.6: Menu.xml .. 149

APPENDIX F: ANDROID APPLICATION UML DIAGRAM 150

APPENDIX G: CONSENT FORM .. 151

APPENDIX H: QUESTIONNAIRE .. 152

APPENDIX I: SPEECH SYNTHESISER – TEST CORPUS SAMPLES 156

I.1: Test corpus samples of intelligibility test... 156

I.2: Test corpus samples of MOS test .. 157

APPENDIX J: NATURAL SPEECH – TEST CORPUS SAMPLES 158

APPENDIX K: SENTENCE AND WORD ERROR RATE – error_rates.py 159

REFERENCES ... 160

xiii

xiv

LIST OF TABLES

Table 3.1: Language Locales ... 45

Table 3.2: Phone Set .. 59

Table 3.3: Phone Set Features ... 61

Table 3.4: General Configuration Settings ... 68

Table 3.5: Some HMM Voice Configuration ... 74

Table 3.6: Developed TTS Voice Sizes .. 76

Table 4.1: Confusion Matrix.. 91

file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698279
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698280
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698281
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698282
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698283
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698284
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698285

xv

LIST OF FIGURES

Figure 1.1: General TTS system showing text as input and speech waveform as

output (Baloyi, 2012). ... 2

Figure 2.1: Example of a binary classification. Adapted from Chang and Lin

(2011). .. 18

Figure 2.2: Typical flow of TTS synthesis system, adapted from Huang et al.

(2001). .. 24

Figure 2.3: Diagram of a rule-based formant synthesiser system adapted from

Huang et al. (2001). .. 25

Figure 2.4: An overview of a general unit-selection scheme. Adapted from Zen et

al. (2009). ... 27

Figure 2.5: HTS training phase adapted from Zen et al. (2009). 30

Figure 2.6: HTS speech generation adapted from Zen et al. (2009) 30

Figure 3.1: The diagram of the overall system interaction 41

Figure 3.2: Text corpora for training LID ... 43

Figure 3.3 Ten-fold cross validation. .. 47

Figure 3.4: Proposed supervised learning workflow ... 49

Figure 3.5: Number of sentences ... 54

Figure 3.6: Speech corpora duration comparison ... 54

Figure 3.7: Corpora size ... 55

Figure 3.8: Workflow for multilingual voice creation in MARY TTS builder.

Adapted from Schröder et al. (2011). ... 58

file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808089
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808089
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808090
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808090
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808091
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808091
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808092
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808092
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808093
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808093
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808094
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808095
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808096
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808097
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808098
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808099
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808100
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808101
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808102
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808103
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808103

xvi

Figure 3.9: Pronunciation dictionary setup ... 62

Figure 3.10: The output of current language locales installed in MARY TTS

synthesis system .. 66

Figure 3.11: HMM-based voice training in MARY TTS. Adapted from Würgler

(2011) ... 69

Figure 3.12: HMM-based speech synthesis steps .. 72

Figure 3.13: HMM-based voice creation in process ... 75

Figure 3.14: MARY TTS Component installer .. 77

Figure 3.15: MARY TTS GUI client .. 78

Figure 3.16: Design of the application client and server connection via wireless

connection .. 84

Figure 3.17: Android application demo ... 87

Figure 4.1: Accuracy of MNB on a 10-fold cross validation 100

Figure 4.2: The MNB accuracy using combination of features on a 10-fold cross

validation .. 101

Figure 4.3: Accuracy of linear SVM on a 10-fold cross validation................... 102

Figure 4.4: The linear SVM accuracy using combination of features on a 10-fold

cross validation ... 102

Figure 4.5: Accuracy of RBF SVM on a 10-fold cross validation 103

Figure 4.6: The RBF SVM accuracy using combination of features on a 10-fold

cross validation ... 104

Figure 4.7: Accuracy of sigmoid SVM on a 10-fold cross validation 105

file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808104
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808105
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808105
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808106
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808106
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808107
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808108
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808109
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808110
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808111
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808111
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808112
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808113
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808114
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808114
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808115
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808116
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808116
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808117
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808118
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808118
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808119

xvii

Figure 4.8: The sigmoid SVM accuracy using combination of features on a 10-

fold cross validation .. 105

Figure 4.9: Accuracy of polynomial SVM on a 10-fold cross validation 106

Figure 4.10: The polynomial SVM accuracy using combination of features on a

10-fold cross validation ... 107

Figure 4.13: Precision, recall and F-score for the 10-fold cross validation 108

Figure 4.14: Precision, recall and F-score results for the final model 108

Figure 4.15: Accuracy and RMSE using polynomial SVM for final model and 10-

fold cross validation .. 109

Figure 4.16: The SUS accuracy at sentence and word level for intelligibility of the

developed system. ... 110

Figure 4.17: The SER and WER for intelligibility of the developed system. ... 111

Figure 4.18: Results of test for naturalness of speech samples. 112

Figure 4.19: Results of test for pronunciation of speech samples. 113

Figure 4.20: Results of test for pleasantness of speech samples. 114

Figure 4.21: Results of test for understandability of speech samples. 115

Figure 4.22: Results of test for overall quality of speech samples. 116

Figure 4.23: Subjective 5-scale MOS of Xitsonga TTS 117

Figure 4.24: The fifteen percent of the evaluators disagreed that the application

is difficult... 118

Figure 4.25: The fifteen percent of the evaluators agreed to use the system on

their own ... 119

file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808120
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808120
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808121
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808122
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808122
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808123
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808124
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808125
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808125
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808126
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808126
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808127
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808128
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808129
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808130
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808131
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808132
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808133
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808134
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808134
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808135
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808135

xviii

Figure 5.1: Accuracy comparison on a 10-fold cross validation...................... 122

Figure 5.2: Accuracy comparison using combination of features on a 10-fold cross

validation .. 122

file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808136
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808137
file:///F:/thesis/Sefara_thesis_CORRECTIONS%201.docx%23_Toc1808137

xix

LIST OF LISTINGS

Listing 3.1: Extract of the WEKA ARFF used for creating the LID module 44

Listing 3.2: Languge modules included in marytts-languages project 64

Listing 3.3: Languge modules included in assembly-builder module 65

Listing 3.4: The WEKA Maven repository included in marytts-runtime module 79

Listing 3.5: Upgraded MaryHttpServer java file by including handler for pattern

/classify .. 80

Listing 3.6: Upgraded InfoRequestHandler Java file by including conditional

statement for pattern /classify ... 81

Listing 3.7: Configuration file added to nginx .. 83

Listing 3.8: Mary.sh file to restart the server ... 83

file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698159
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698160
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698161
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698162
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698163
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698163
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698164
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698164
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698165
file:///C:/Users/JosephSefara/Desktop/Sefara_tj_17%20Final%20Update-04-04-18.docx%23_Toc510698166

xx

LIST OF ABBREVIATIONS

API Application Programming Interface

ARFF Attribute-Relation File Format

CSIR Council for Scientific and Industrial Research

CSV Comma-Separated Values

DNN Deep Neural Network

DRT Diagnostic Rhyme Test

DSP Digital Signal Processing

EMOTIONML Emotion Markup Language

F0 Fundamental Frequency

FST Finite State Transducer

G2P Grapheme-to-Phoneme

GUI Graphical User Interface

HLTs Human Language Technologies

HMM Hidden Markov Model

HTS HMM-based Speech Synthesis System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ICT Information and Communication Technology

JSM Joint Sequence Model

LIBSVM Library for Support Vector Machine

LID Language Identification

LTS Letter-To-Sound

xxi

MAG Fourier Magnitude

MARY Modular Architecture for Research on speech sYnthesis

MFCCs Mel-frequency Cepstral coefficients

MGC Mel-Generalised Cepstral

MNB Multinomial Naive Bayes

MOS Mean Opinion Score

MRT Modified Rhyme Test

NCHLT National Centre for Human Language Technology

NLP Natural Language Processing

NLTK Natural Language Toolkit

PHP Hypertext Pre-Processor

POS Part-of-Speech

RBF Radial Basis Function

RMA Resource Management Agency

SADE South African Directory Enquiry

SAMPA Speech Assessment Methods Phonetic Alphabet

SER Sentence Error Rate

SOX Sound Exchange

SPEECT Speech Synthesis with Extensible Architecture

SPSS Statistical Parametric Speech Synthesis

SPTK Speech Signal Processing Toolkit

SSML Speech Synthesis Markup Language

SUS Semantically Unpredictable Sentence

xxii

SVC Support Vector Classification

SVM Support Vector Machine

TTS Text-to-Speech

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VPS Virtual Private Server

WEKA Waikato Environment for Knowledge Analysis

WER Word Error Rate

XML Extensible Markup Language

1

1 CHAPTER 1: INTRODUCTION

1.1 Preamble

Within the realm of human-computer interaction systems, there are human

language technologies (HLTs) that simplify communication between humans and

computational systems. These technologies are available for languages such as

English, Spanish, French and other well-known languages. HLT comprises text

and speech processing technologies. The speech technologies make it possible

for people to use computational devices such as mobile phones to access

information, use email systems or even do voice dialling in their first language.

The text technologies make it possible for people to manipulate historic textual

data to make future predictions (e.g. weather predictions, financial markets, and

others). Furthermore, text technologies are used to make spell checkers, and do

text normalisation, text analytics, and text classification tasks.

Text classification is a challenging task in computational, library and information

sciences. The main task involves the ability to classify or assign a text unit or

document to a pre-defined class (Botha et al., 2007). Text classification is used

as language identification (LID) in language-specific systems. An automatic LID

is a growing application of the speech processing technology that has many

practical uses. It can be used as a front-end system to a telecommunication

company - routing a caller to an appropriate human emergency operator -

depending on the correct identification of the caller’s language. It can be used in

multilingual speech recognition (Rao & Nandi, 2015), speech translation (Heck et

al., 2012), and document processing systems (Shukla et al., 2016).

LID is a problem of discovering the identity of the natural language of a given

spoken or textual content (Lamabam & Chakma, 2016). In text and speech

processing systems, LID of text units or documents is an important prerequisite

for systems such as an automatic machine translation, information extraction,

email spam filtering systems, topic identification systems, document

summarisation systems, pronunciation prediction and text-to-speech (TTS)

synthesis systems (Giwa & Davel, 2015).

2

A TTS synthesis system is a computational system that generates synthetic

speech from a given input text in a specific language (Zen et al., 2009). Figure

1.1 shows an example of a typical TTS synthesis system generating synthetic

speech from text. There are different kinds of speech synthesis methods that are

used when building synthetic voices. These methods include rule-driven

synthesis and data-driven synthesis. Data-driven synthesis includes hidden

Markov model (HMM)-based synthesis and concatenation synthesis. The HMM

speech synthesis system (or HTS – ‘H Triple S’) uses the statistical parametric

model that extracts speech parameters from the speech corpus to produce

equivalent sound of an input text (Zen et al., 2009). The TTS synthesis systems

for well-resourced languages are becoming more readily commercially available

in the market as the quality of these systems continues to improve rapidly. Mainly,

commercial systems apply the unit-selection based concatenation method to

generate high quality synthetic speech waveform. However, the unit-selection

approach demands a very large database to store the pre-recorded training

speech data. Avoiding such a problem, the HTS approach has successfully

evolved with appreciable improvements to the concatenative method in terms of

processing speed and utilisation time.

Figure 1.1: General TTS system showing text as input and speech waveform as output

(Baloyi, 2012).

3

1.2 Motivation

The area of speech processing research has gradually advanced over recent

decades with many systems developed with ability to produce natural sounding

synthetic speech (Zen et al., 2009). Research in the subfield of speech synthesis

has been powered by the increase of new and robust software applications that

have been developed (Pammi et al., 2010). These include, amongst others, the

reading out of manuscripts for collation, public announcements at public places

and information retrieval services over the telephone such as customer care

services or banking services (Violano & van Collie, 1992). In today’s electronic

digital age, the use of TTS synthesis technologies has increased exponentially in

mobile smartphones, computers, internet-based services, and dialogue systems.

A TTS synthesis system can be embedded in special equipment as a voice-

enabling tool for vocally challenged people1. FingerReader is one of the initiated

applications of TTS synthesis that assists visually impaired people to read

documents (Shilkrot et al., 2014). Most of the developed software applications

like word processors have capability to read words, phrases and sentences

aloud. These systems provide a way for the visually impaired people to read text

that would not be available to them. The current modern TTS synthesis systems

such as the Watson 2 TTS and Microsoft Speak 3 function can synthesise

documents such as Portable Document Format (Adobe Acrobat), emails,

Microsoft Word files and text files. For most South African indigenous official

languages, these enabling linguistic developments have not been attained by the

speech and language processing research community. The research community

in speech and language processing is rapidly improving its utility systems that

can read images using optical character recognition systems (Li et al., 2012). In

the 1970s, Texas Instruments’ “Speak and Spell”4 was the first educational toy

that applied speech synthesis in the field of computer-assisted education. The

1 Available at: http://www.hawking.org.uk/the-computer.html
2 Available at: http://www.ibm.com/watson/developercloud/text-to-speech/api/v1/
3 Available at: https://support.office.com/en-us/article/use-the-speak-text-to-speech-feature-to-
read-text-aloud-459e7704-a76d-4fe2-ab48-189d6b83333c
4 Available at: http://www.ti.com/corp/docs/company/history/timeline/eps/1970/docs/78-speak-
spell_introduced.htm

4

TTS synthesis systems are used in education institutions to improve learning the

pronunciation of new languages (Badenhorst et al., 2006).

1.3 Problem Statement

The pronunciation of words and phrases in any language involves careful

manipulation of stress, intonation, and articulation, frequently with reference to

some standard of correctness (Gilakjani & Ahmadi, 2011). Most of the time, the

pronunciation of words (particularly proper names from new or unfamiliar

languages) is difficult for non-native speakers of those languages. In our

approach, it is important and preferable to attempt identifying the first language

of a person using something like that person’s proper name details in order to

facilitate selection of appropriate tools to generate its correct pronunciation

(Llitjos & Black, 2001). Knowledge of or ability to predict the first language

associated with a word or a proper name may reduce the pronunciation difficulties

experienced by non-native speakers by appropriately applying phonetic rules

from that first language.

One of the language processing phenomena required in a multilingual

environment is mostly established using LID. In a multilingual environment like

South Africa, the problem of incorrect pronunciation of words or phrases from

other languages is sometimes caused by the following (Kenworthy, 1987):

 Phonetics – pronunciation of a word using different phonological rules.

 Age – production of speech is affected at different age groups.

 Motivation – lack of motivation to learn how to speak other languages.

 Accent – naturally, people use their first language accent to speak other

languages; the use of strong accent changes or distorts the meaning of

the words.

 Stress and intonation – randomly applying strong stress or intonation on

some words changes the meaning of those words.

5

The use of an LID system on the front-end in speech and language processing

systems helps to determine the language of an input audio or text before a TTS

synthesis system can produce corresponding synthetic speech. This has an

effect of reducing computational complexity and searching time (Rao & Nandi,

2015). Current estimates indicate that there are more than 7000 natural

languages in the world, but the TTS synthesis systems are not readily available

for thousands of under-resourced languages (Lewis et al., 2016), including South

African official languages. The unavailability of TTS synthesis systems worldwide

often leads to difficulties in correct pronunciation of words and phrases from most

of the under-resourced languages. One of the possible solutions to improve

quality of pronunciation in resource-scarce languages is to build TTS synthesis

systems for the benefit of assisting users in the learning of correct pronunciation

of other languages. To this end, the integration of a text-based LID system and a

TTS synthesis system may increase accuracy with automatic pronunciation of

proper names for under-resourced languages of Limpopo Province.

1.3.1 Aim

The aim of the study is to build a prototype software system that uses a trained

classifier to enhance pronunciation of words and phrases, particularly proper

names for Sepedi, Tshivenda, Xitsonga and isiNdebele.

1.3.2 Objectives

The objectives of this study are to:

a) Collect training text data consisting of proper names including surnames

or maiden names for the front-end LID system.

b) Acquire pre-recorded speech data to create synthetic voices in Sepedi,

Xitsonga, Tshivenda and isiNdebele.

6

c) Use appropriate machine-learning algorithms to train text-based LID front-

end system for classification of surnames into respective first languages.

d) Use a trained LID system to predict the first language of a person given

that person’s proper name.

e) Activate the TTS synthesis system of that first language to continue with

pronunciation guidance and training, using the predicted first language

automatically.

f) Evaluate the performance of integrated LID-TTS systems.

1.3.3 Research Questions

The main research questions of the study are as follows:

 Can a computational system use a person’s surname to predict the identity

the first language of that person?

 Can a computational system produce an appropriate pronunciation of

indigenous proper names?

1.4 Research Methods

The speech training data were acquired from the Lwazi (a word which means

“knowledge” in isiZulu) project in collaboration with the Council for Scientific and

Industrial Research (CSIR), South African Department of Arts and Culture, and

Department of Science and Technology (Language Resource Management

Agency, 2016). An appropriate text dataset with surnames was acquired from the

student database of University of Limpopo for the targeted under-resourced

languages. Appropriate classification methods were tried and tested before the

best method was selected to implement the proposed system. The acquired text

data was used to train machine-learning algorithms such as multinomial naive

Bayes (MNB) and support vector machines (SVMs) (Chang & Lin, 2011).

The Eclipse software and Waikato Environment for Knowledge Analysis (WEKA)

Java application programming interface (API) (Hall et al., 2009) were used to

build the LID model. A machine-learning classifier was trained and used as the

7

core LID module classifying any given input text. The accuracy of the trained

machine-learning classifier was evaluated on a dataset which was not used

during the training of the classifier. The Modular Architecture for Research on

speech sYnthesis (MARY) TTS synthesis system (Pammi et al., 2010), which

supports multilingual languages, was used to build new TTS synthesis voices in

Sepedi, Tshivenda, Xitsonga and isiNdebele. The system integration for a user-

friendly human-computer interface was built using Java programming language.

The evaluation of the performance of the developed system was conducted in a

form of a questionnaire survey, using first language speakers from different

professions. The data gathered from the survey was analysed using the mean

opinion score (MOS) method for naturalness, pronunciation, pleasantness,

understandability, intelligibility, overall quality of the system and user acceptance.

The MOS provides a numerical measure of the quality of human speech using a

Likert scale. The system was deployed to the production servers as a website for

performance evaluation on a “real-world” platform including test usability and

acceptability issues. An Android application was also developed. This application

acts as a client to the deployed system on the internet. The prototype TTS

synthesis system can be accessed on the website http://www.speechtech.co.za.

1.5 Scientific Contribution

This research project intends to deliver an intelligible and natural sounding TTS

synthesis prototype system that embeds a first language identification predictor

on the front-end, based on the surname of user. The integration of LID as a front-

end module has a greater chance of increasing the pronunciation quality of the

TTS synthesis system.

This study contributes to the provision of new attribute-driven LID systems to

facilitate selection of an appropriate first language speech synthesiser that will

assist with pronunciation of words/phrases/sentences in a specific under-

resourced language to non-native speakers of that language. This system can be

http://www.speechtech.co.za/

8

used as a learning tool in educational institutions to help and facilitate learners at

different levels to learn additional South African official languages. For a

multilingual region such as Limpopo Province with more than five official

languages and wherein the majority of people speaking three of those languages,

the outputs of this study may be helpful to people learning a second language.

This study is the first research study to create and deploy an automatic

pronunciation assistance system for targeted under-resourced South African

languages. The availability of diverse TTS synthesis systems for under-resourced

languages of South Africa is found to be low. There are four official languages of

South Africa (isiZulu, Sesotho, Afrikaans and isiXhosa) included in Google

translate1 excluding well-known global lingua franca, English. Although research

in TTS synthesis systems in South Africa is relatively young, many TTS synthesis

systems efforts occurring in South Africa have acquired international awareness

and exposure in terms of the quality and impact of the research work (Louw,

2008). This shows that more research work is still required on TTS synthesis

systems for all official South African languages, including their varied dialects

(Langa et al., 2012). The development of pronunciation assistance systems for

these languages tries to bridge the digital divide by striving to create user-friendly

interfaces. Speech synthesis systems have an important role of lessening the

impact of the historical linguistic discrimination and domination imposed onto

marginalised and under-resourced indigenous South African languages by

colonial powers. This study tries to enhance and elevate the recognition and use

of indigenous South African official languages in the broader information and

communication technology (ICT) sector.

This system can help people wishing to learn pronunciation of surnames and

praise names in Sepedi, Xitsonga, Tshivenda, and isiNdebele; an important

aspect within a typical greeting episode amongst people from differing speaker

population groups. A variety of TTS synthesis systems applications are available

in the following fields:

1 Available at: https://translate.google.com

9

a) Education – interactive language learning software may optimise

educational opportunities especially for disabled leaners (Singh & Kaur,

2015).

b) Economics – speech-based systems may improve customer services and

provide information about services and products.

c) Financial services – speech-driven automatic teller machines (Violano &

van Collie, 1992).

d) Telecommunications – in medical consultations (Kourkouta &

Papathanasiou, 2014).

e) (e) Information management – improved access to documents through

search engines.

1.6 Ethical Considerations

The term ethics is defined as a set of moral principles and rules aimed to protect

the interest of the participants when conducting research (Julnes & Bustelo,

2014). The following ethical issues were considered during the course of the

study:

1.6.1 Informed Consent

Informed consent was gained from the subjects by means of a written and verbal

agreement. The researcher informed subjects about the study, its goals, the

rights of the subjects, and information confidentiality.

1.6.2 Voluntary participation

The participants were informed that their participation in the study was voluntary

and they could withdraw at any time. Subjects were not forced to take part in the

study.

10

1.6.3 Privacy and Confidentiality

The subjects were assured that all the information will be treated in strict

confidence, their answers will be kept confidential, and no one will have access

to them. Data coding was used to link data to the study participants, and this code

was kept in privacy, so no names will be enclosed in analysis and report writing.

1.6.4 Physical or Psychological Harm

The researcher neither subjected the participants to any physical harm and nor

forced the participants to provide answers to questions they did not want to

answer.

1.7 Structure of Dissertation

The rest of the dissertation is organised as follows:

 Chapter 2 provides previous studies on LID and speech synthesis.

 Chapter 3 presents a detailed description of the design and

implementation of the integrated system.

 Chapter 4 presents the research findings of the study. The evaluation

metrics for LID front-end system and subjective listening test are

discussed. The optimum SVM parameters are outlined and the evaluation

procedure is presented.

 Chapter 5 presents the analysis of the performance results of LID system,

speech synthesis, system usability, and summary of the findings.

 Chapter 6 presents research limitation, provides contribution of this work,

recommends potential directions of the future and provides the conclusion

of the research study.

11

2 CHAPTER 2: BACKGROUND

In this chapter, we review the text classification technologies literature used in

machine-learning fields before giving an overview of the speech synthesis

methods and the components composing the state-of-the-art in TTS synthesis

systems. We also have a brief discussion of the application areas and current

development tools of the technology.

2.1 Introduction

The human language technologies (HLTs) make it simple for humans to

communicate with machines. These can furthermore assist corporate industries

and government departments to make e-services and information accessible to

the society at large in different languages. Most smart computational systems

such as Siri1 can use HLTs to facilitate man-machine communication. The HLTs

have an important task by participating in adjusting the historical linguistic

discrimination imposed onto under-resourced indigenous South African

languages by levelling the language playing field. The speech and language

technologies are the vital core part of HLTs. Their main purpose is to make

machines “speak”, “listen” and “understand” natural or human languages. This

chapter details the broader aspects of the background to text and speech

technology.

This chapter is organised as follows:

 Section 2.2 explains the importance of proper names in communication

episodes.

 Section 2.3 explains the importance of correct and appropriate

pronunciation.

 Section 2.4 overviews supervised machine-learning algorithms.

 Section 2.5 discusses applied LID studies.

1 Available at: http://www.apple.com/ios/siri/

12

 Section 2.6 discusses toolkits used for training and implementation of

classifiers.

 Section 2.7 briefly outlines basic components of TTS synthesis systems

including different types of speech synthesis methods such as formant

synthesis, articulatory synthesis, concatenative synthesis, and statistical

parametric speech synthesis (SPSS) using HMMs and deep neural

networks (DNNs).

 Section 2.8 details evaluation methods and factors or units in TTS

synthesis systems.

 Section 2.9 reviews application areas of TTS synthesis systems.

 Section 2.10 discusses toolkits used for development of TTS synthesis

systems.

2.2 Proper Names

In many cultures and traditions worldwide, people are given names from family

members and relatives; some may be named after a saint, family member,

weather, or a positive personality characteristic. These names may recall an

event or describe the position of the star at birth, or state a future ambition (Guma,

2001). Since people are unique, their names are also unique because these

names are attached to their cultural identity and they would not wish to have their

names mispronounced in conversations. Names, specifically surnames in the

culture of the Basotho of Southern Africa, carry important information about ones’

history such as physical original geographic location, identity, clan name (totem),

first language, culture and heritage, and ethnic group (Guma, 2001).

As the world becomes increasingly connected, cross-cultural communication

increases, and when mispronouncing one’s name, it is often deemed to be or

associated with a misinterpretation of that person’s identity. For instance,

continued mispronouncing a student's names may contribute to lessening or

belittling the identity of that student and this can lead to unexpected anxiety and

13

resentment which, in turn, can retard the student’s academic progress. My name

my identity1 is an American campaign that brings recognition of appreciating

one’s name and identity in schools. One of the main goals of this campaign is to

create a humble and caring culture in academic institutions that values diversity

as measured by name stories posted on social media.

2.3 Pronunciation

Most people agree that for someone to fluently pronounce a second language

like a native speaker, they most likely must have learned it at their childhood

stage. Conversely, if a learner does not begin to learn a second language until

adulthood, they would not have a native-like accent. These beliefs or

observations seem to be supported by cases of adults who learn to speak second

languages fluently but still maintain their first language accent (Gilakjani &

Ahmadi, 2011). There are factors that result in systematic pronunciation

differences between speakers including age, first language, accent (a manner of

pronunciation peculiar to a particular individual), speaker’s geographical location,

cultural groups and socio-economic status (Kenworthy, 1987).

In language education, Gilakjani (2012) defines pronunciation as a vital part of

foreign language learning since it directly affects the performance and

communicative competence of the learners. The important key and sine qua non

for language proficiency is the exposure to the target language, attitude,

motivation, and instruction of learning or teaching. There are pronunciation

features that may apply to any spoken language. Gilakjani (2012) identified the

most important features in English pronunciation to include segmental features

(phonemes) and prosody features (linking, stress and intonation). A prosodic

feature relates to small units of a sound within a word. This sound can be a

combination of consonants and vowels (Jurafsky & Martin, 2014).

1 Available at: https://www.mynamemyidentity.org/campaign/about

14

It is generally agreed that incorrect pronunciation of phonemes changes the

meaning of the word (Suortti & Lipponen, 2014). The sound of a typical vowel has

the following distinct and characteristic features: length, height, roundness and

frontness, and the consonant sound has the following distinct and characteristic

features: type, place of articulation, and voicing. These features constitute the

initial requirement during the development process of a new TTS voice

(Stavropoulou et al., 2014).

The knowledge of their probable first language can generally improve

pronunciation of proper names (Llitjos & Black, 2001). Machine-learning

technologies can be used to ascertain and predict the first language given a

person’s proper name. These technologies may use linguistic rules for a specific

language (rule-driven machine learning) or require learning proper names data

from a (un)labelled database (data-driven machine learning).

2.4 Supervised Learning Techniques

An automatic arrangement of documents is an important data mining research

matter since the advent of online text information. There are two types of

machine-learning approaches for classification of text documents, namely

supervised and unsupervised learning (Rana et al., 2016). In unsupervised

learning, the dataset is not labelled; instead the data can be clustered into

different classes, whereas in supervised learning, a classifier is developed

containing predefined class labels that are assigned to documents/text based on

the probability recommended by a training dataset of labelled documents/text.

Machine-learning algorithms can be used to automatically build LID classifiers

(Rana et al., 2016). The procedure of building a classifier can be seen as a

problem of supervised learning whereby an algorithm obtains a labelled dataset

to build the classifier. Several machine-learning techniques in text classification

have been applied, including n-gram rank ordering (Cavnar & Trenkle, 1994),

decision trees (Farid et al., 2014), logistic regression (Yuan et al., 2012), the naive

15

Bayes classifiers (Fourie et al., 2014), neural networks (Nicolaou et al., 2016), k-

nearest neighbour classifiers (Al-Badarenah et al., 2016), and support vector

machines (SVMs) (Fourie et al., 2014; Mabokela & Manamela, 2013).

2.4.1 Multinomial Naive Bayes Classifier

The naive Bayes classifier is a probabilistic model that uses the joint probabilities

of terms and classes to estimate the probabilities of classes given a test

document (Mitchell, 1997). There are two event models commonly used:

multivariate Bernoulli event model and multinomial event model, commonly called

MNB (Kibriya et al., 2004). MNB classifies text given a set of classes 𝐶 =

{𝑐1, 𝑐2, … , 𝑐𝑘}, and a set of unique words 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛}, and 𝑁 = {1,2, … , 𝑛}

defines the size of the vocabulary where 𝑘 > 1 and 𝑛 ≥ 𝑖 ≥ 1. Then MNB assigns

a test document 𝑑𝑖 to a class that has a highest probability 𝑝(𝑐|𝑑𝑖), as given by

the Bayes’ rule in Equation (2.1):

𝑝(𝑐|𝑑𝑖) =
𝑝(𝑐)𝑝(𝑑𝑖|𝑐)

𝑝(𝑑𝑖)
, 𝑐 ∈ 𝐶 (2.1)

From Equation (2.1), 𝑝(𝑐|𝑑𝑖) is the posterior probability of a class, and 𝑝(𝑐), the

prior probability of a class can be predicted by dividing the number of documents

in a class 𝑐 by the total number of documents; 𝑝(𝑑𝑖|𝑐) is the probability of a

document 𝑑𝑖 given its class 𝑐 and is calculated as:

𝑝(𝑑𝑖|𝑐) = (∑ 𝑓𝑛𝑖𝑛)! ∏
𝑃(𝑤𝑛|𝑐)

𝑓𝑛𝑖

𝑓𝑛𝑖!𝑛 , (2.2)

where 𝑓𝑛𝑖 denotes a count of word 𝑛 for test document 𝑑𝑖 and 𝑝(𝑤𝑛|𝑐) denotes

the probability of word 𝑛 given class 𝑐 and is estimated as:

𝑝̂(𝑤𝑛|𝑐) =
1+𝐹𝑛𝑐

𝑁+∑ 𝐹𝑥𝑐
𝑁
𝑥=1

, (2.3)

16

where 𝐹𝑥𝑐 is the number of word 𝑥 from all training documents belonging to class

𝑐, and the Laplace estimator is used to prime each word’s count with one to avoid

the zero-frequency problem. The normalization factor 𝑝(𝑑𝑖) in Equation (2.1) can

be determined using:

𝑝(𝑑𝑖) = ∑ 𝑝(𝑘)𝑝(𝑑𝑖|𝑘)|𝑐|
𝑘=1 (2.4)

From equation (2.2), the computational expensive terms (∑ 𝑓𝑛𝑖𝑛)! and ∏ 𝑓𝑛𝑖!𝑛 do

not depend on class 𝑐 and can be removed. Therefore, Equation (2.2) can be

rewritten as:

𝑝(𝑑𝑖|𝑐) = 𝛽 ∏ 𝑝(𝑤𝑛|𝑐)𝑓𝑛𝑖
𝑛 , (2.5)

where β is a constant and can also be removed. Equation (2.5) can be expanded

by substituting Equation (2.3) to form Equation (2.6):

𝑝(𝑑𝑖|𝑐) = ∏ (
1+𝐹𝑛𝑐

𝑁+∑ 𝐹𝑥𝑐
𝑁
𝑥=1

)
𝑓𝑛𝑖

𝑛 . (2.6)

Given the estimates of these parameters calculated from the training documents,

classification can be performed on test documents by calculating the posterior

probability in Equation (2.1). The right hand side of Equation (2.1) can be

expanded by substituting with Equation (2.4) and (2.6). Naive Bayes learning is

frequently used to solve text classification problems. This approach is known to

perform best on textual data to become the common baseline classifier in text

classifications (Fourie et al., 2014).

17

2.4.2 Support Vector Machines

A SVM is a technique based on the structural risk minimisation principle (Burges,

1998) that is defined as an inductive principle for model selection used for

learning from finite training data. A SVM is a popular machine-learning method

for regression, classification and other learning tasks (Suthaharan, 2016). The

SVMs were designed to solve problems with two classes initially, but can now be

used for more than two classes (also known as multiclass). Multiclass

classification is the problem of classifying instances into one of more than two

classes, and binary classification is a task of classifying instances into one of the

two classes. In a binary classification, the task is to find the decision surface that

separates the positive and negative training samples of a class with a maximum

margin (see Figure 2.1). Samples closest to the decision surface are called

support vectors. A margin is the distance from the decision hyperplane to the

support vectors. Figure 2.1 shows an example of a linearly separable data. Non-

separable data requires sophisticated classification algorithms. SVMs solve

multiclass classification using the kernel trick and slack variables (van Heerden,

2012). Chang and Lin (2011) developed a library for the support vector machine

(LibSVM) that supports various SVM formulations for regression, classification

and distribution estimation. Moreover, Chang and Lin (2011) discussed issues

such as solving SVM optimisation problems, probability estimates, multiclas

classification, theoretical convergence, and parameter selection. Some SVMs

contain parameters that need to be optimised for better performance. Some of

the kernels include, among others, linear, polynomial, radial basis function (RBF)

and sigmoid kernel. The formulations or equations of these kernels are further

discussed by Chang and Lin (2011). Even though SVMs do not support string

attributes, there are several data processing tools that can be utilised to convert

text into feature representation (Hall et al., 2009). This enables the use of SVMs

in text or document classification.

18

2.5 Language Identification

The goal of LID in speech and language processing is to classify a document or

text based on the language of the document or text. An automatic LID is an

essential requirement to any language-based processing. For instance, LID has

many practical uses, including pre-selecting a speech synthesiser depending on

the language of the input text in automatic machine translation systems. In text

and speech processing systems, identification of an input text is important for

applications such as an automatic machine translation, information extraction,

pronunciation prediction and speech synthesis systems. The task of identifying a

language from text or document is solved by applying text classification method.

This text classification (also known as text categorisation) is a task of

automatically associating a given text with one or more predefined classes

(Agarwal & Mittal, 2012). The classes can be nominal and hold types of weather,

gender, set of languages, or any other type of data.

Figure 2.1: Example of a binary classification. Adapted from Chang and Lin (2011).

19

Rule-based algorithms are used to solve the LID problem with prior linguistic

knowledge of the target language. Indhuja et al. (2014) used n-grams to

investigate the performance of statistical measures on a Devanagari script for LID

on text. They extracted features such as unigram, bigram and trigram at word

and character level. Bigrams are pair of consecutive words, syllables, or letters.

For example, a word “champion” has character bigrams ch, ha, am, mp etc. The

character level trigram reached an accuracy of 82%, while word level unigram

reached the highest accuracy of 88% when testing with all five languages. This

results shows that at word level the accuracy is high, meaning that words from

these five languages are written differently and do not overlap. Moreover, low

accuracy of trigrams can mean more features were identified as belonging to

more than one language. Similarly, Hannan and Sarma (2015) applied rule-based

analysis to design and implement the text-based LID system for Indian languages

(Assamese and Bodo) following an Assamese-Bengali script. For the best LID,

Unicode range, suffix and frequent word comparison were main features. The

Unicode range checks the Unicode of each character in a word. In their case

Unicodes between 0980 and 09FF are from an Assamese-Bengali script, and

Unicodes between 0900 and 097F are from a Devanagari script. The suffix

module accepts a word and verifies if the suffix of that word is available in the

generated suffix list, while the frequent word module compares the word with the

frequent words list. However, the algorithm reached 100% accuracy for a small

sized text file of approximately ten words. However, as the word size increases,

the accuracy of the Bodo language decreases to 77.35% while the accuracy of

the Assamese language remains above 97.75%. Devanagari script is a writing

system used in India for writing languages like Nepal, Marathi, Hindi, Sanskrit,

Bhojpuri and other dialects. However, Indhuja et al. (2014) and Hannan and

Sarma (2015) did not use recent well-performing statistical machine-learning

algorithms such as SVMs and decision trees, and can still be experimented with

on these languages using the same feature set.

As textual data is becoming more and more available online, the LID of web

pages is an initial requirement when processing multilingual web documents,

performing web page translation, and when retrieving data using web crawlers.

20

Kordestanchi and Naderi (2013) noted that language identification tools can

perform differently on the same dataset. They compared the tools used in LID of

web pages in Farsi (Persian), Arabic, and Urdu languages using n-grams as

features. The Java tools used were Java Text Categorization Library (JTCL)1,

Language Detection2, Tika3, and JLangDetect4. The Web pages were classified

according to a “clean web” data set that contains web pages that are similar to

text that is present in non-webpage noise-free documents, and an “ordinary web”

data set which contains web pages that are likely to have spelling or grammatical

errors and possibly having limited content. Kordestanchi and Naderi (2013) found

that JTCL and Language Detection outperformed other tools with respect to

accuracy measures including recall, precision, negative recall, and F-measure.

This study can further be extended to examine and minimise the root mean

squared errors that can help in reducing errors to achieve higher overall accuracy.

Persian texts are difficult to classify in text classification because there are no

explicit whitespaces included between words. This means proper word

segmentation is required before further processing. Farhoodi et al. (2011)

examined text classification using word level n-grams of different units from

newspaper corpus on Persian text. They observed that trigram language models

perform better, with or without linguistic pre-processing. They also examined the

influence of smoothing methods on the trigram language model, and a back-off

smoothing method obtained better accuracy outperforming add-one and absolute

discounting smoothing methods.

2.5.1 Language Identification for South African Languages

Although research in LID systems for South African official languages is relatively

young, a few LID efforts occurring in South Africa have acquired international

awareness and exposure in terms of the quality and impact of the research work

(Giwa & Davel, 2015; 2013; Botha & Barnard, 2012; Botha et al., 2007). Several

1 Available at: http://textcat.sourceforge.net/
2 Available at: https://github.com/shuyo/language-detection
3 Available at: https://tika.apache.org/1.1/detection.html
4 Available at: https://github.com/melix/jlangdetect

21

research projects in text processing technology has been done on LID of South

African indigenous languages. Botha et al. (2007) conducted the LID research to

address the problem of under-resourced languages of South Africa using SVMs,

naive Bayes and difference-in-frequency classifiers to investigate the accuracy

achievable for all eleven official languages of South Africa, with data obtained

from sources such as newspapers, the Bible, books, government documents and

periodicals. The SVMs performed better for an n-gram size of three units but

when increasing n-gram size to six units, the likelihood-based classifier

outperformed other classifiers. Giwa and Davel (2015) adapted a text-based LID

from their previous study (Giwa & Davel, 2014) to perform multilingual word

classification from two corpora: the South African Directory Enquiry (SADE)

corpus composed of Afrikaans, English, isiZulu and Sesotho, and the National

Centre for Human Language Technologies (NCHLT) 40k models using a joint

sequence model (JSM). The NCHLT 40k models showed better results than

SADE, with 81.79% to 79.99% F-measure difference respectively. Hence, the

adapted version of JSM provided good classification accuracy on a challenging

task.

Fourie et al. (2014) compared the SVM and MNB classifiers for named entity

classification of English and Afrikaans. They used WEKA toolkit to conduct the

experiments using MNB and SVM algorithms. Implementation of the baseline

SVM classifier was through Platt’s Sequential Minimal Optimization algorithm.

The data was converted with a string-to-word vector filter whereby words in the

data were defined as classes and strings were converted to decimal arrays. The

goal of named entity recognition and classification is to classify and recognise

textual units (commonly referred to as named entities). The classification of

proper names may be difficult in a situation where these names have idiosyncratic

spelling and some proper names are considered multilingual (in other words,

belonging to two or more languages). Their experiment showed that using 10-fold

cross-validation SVMs performed better than MNB models across all granularity

levels and both languages. Botha and Barnard (2012) also discussed various

factors that affect text-based LID accuracy. These factors included n-gram size,

text input size, training data, and machine learning algorithm employed, as well

22

as language similarities. Giwa and Davel (2013) discussed factors that influence

LID accuracy of individual words for official languages of South Africa. Their

experiment resulted with RBF SVM outperforming naive Bayes classifiers using

Witten-Bell smoothing technique.

2.6 Toolkits for Classifier Implementation

2.6.1 WEKA

Most studies in machine learning use WEKA toolkit (Hall et al., 2009). The WEKA

workbench is a collection of state-of-the-art data processing tools and machine

learning algorithms implemented in Java. WEKA provides extensive support for

the whole process of experimental data mining. It has the option of statistically

evaluating various learning methods, and visualising input data and learning

results. We use machine learning algorithms implemented in WEKA.

2.6.2 Scikit-learn

A Python-based scikit-learn is one popular machine-learning library written in

Python programming language (Pedregosa et al., 2011). It offers methods for

data mining and data analysis, including classification, regression, data

preparation, and many others.

2.6.3 NLTK

Natural language toolkit (NLTK) is a Python-based library that offers methods to

work with human language data (Bird, 2006). NLTK offers access to textual

corpora and lexical resources such as WordNet along with text analysis libraries

for regression, tokenisation, classification, tagging, and many others.

23

2.7 Components of a Typical TTS Synthesis System

This section details the basic architecture of a TTS synthesis system. The main

components of TTS synthesis system are natural language processing (NLP) and

digital signal processing (DSP). The modules of the NLP component are

reviewed. The types of speech synthesis are also reviewed.

The NLP component is capable of producing a phonetic transcription of the text

read, together with the desired intonation and rhythm (Huang et al., 2001), while

DSP is the process of modifying and analysing speech signals to improve its

performance based on linguistic features from NLP. DSP uses appropriate

speech synthesis methods for proper speech generation.

2.7.1 Natural Language Processing

The NLP modules shown in Figure 2.2 consist of the text, phonetic and prosodic

analysis that consists of the following sub-modules:

Document structure detection module in text analysis provides a context for all

other modules. Some elements of document structure including paragraph,

sentence, and word segmentation may have direct consequences for prosody.

Text normalisation module in text analysis converts acronyms, numbers, emails,

websites, dates, times, currencies, mathematical expressions, percentages,

measures, years, abbreviations, and other non-standard orthographic entities of

text into word format when needed.

Linguistic analysis module in text analysis recovers the syntactic constituency

and semantic features of words, phrases, clauses, and sentences.

Homograph disambiguation in phonetic analysis removes ambiguity from

homographs. Homographs are words that share same spelling but have different

meaning or pronunciation, for example, desert (/dI"z@:t/) as a verb or as a noun

(/"dEz@t/) in Speech Assessment Methods Phonetic Alphabet (SAMPA)

notation.

24

Morphological analysis module in phonetic analysis analyses component

morphemes to provide indication or hint for pronunciation of similar words.

Letter-to-sound (LTS) conversion module is the last step of the phonetic analysis.

Once all non-standard words are expanded and looked up in a pronunciation

dictionary, then unknown words need to be pronounced by converting series of

letters into a series of phones. This process is called grapheme-to-phoneme

(G2P) conversion (Vasek et al., 2016).

Prosodic analysis is the study of the intonational (includes prominence and

phrasing) and rhythmic aspects of language contextual analysis. Prosody can be

affected by emotion, mental state and speaker attitude (Taylor, 2009). From the

listener’s point of view, prosody consists of recovery of a speaker’s intentions and

systematic perception based on pauses, pitch, duration and loudness.

Figure 2.2: Typical flow of TTS synthesis system, adapted from Huang et al. (2001).

25

2.7.2 Digital Signal Processing

Speech synthesis takes place in the DSP component. Several speech synthesis

methods exist, including the rule-based and data-driven methods. Rule-based

method is sometimes called synthesis-by-rule and refers to a collection of rules

defining how to adjust the formant frequencies, duration, pitch, and other

parameters from one sound to another, while preserving continuity present in

physical systems like the human production system (Huang et al. 2001). Formant

and articulatory synthesis are good examples of rule-based synthesis. Data-

driven method includes the concatenation synthesis method that takes

advantage of the rich and large amount of speech corpus. The term

concatenative synthesis refers to the use of segments of pre-recorded speech

data to assemble the resulting speech waveform (Tiomkin et al. 2011).

2.7.2.1 Formant speech synthesis

Figure 2.3 describes a formant synthesiser receiving phonetic representation and

generating waveform from a set of parameters. Pitch and formants are shown as

the parameters of the synthesiser, but there are more than 40 parameters. Huang

et al. (2001) detailed the architecture of the formant speech synthesis. Formant

synthesisers can produce intelligible speech although the produced speech is far

from natural.

Figure 2.3: Diagram of a rule-based formant synthesiser system adapted from Huang et al.

(2001).

26

2.7.2.2 Articulatory speech synthesis

One way to synthesise speech is to try a direct simulation of human speech

production, and this procedure is called articulatory synthesis. Articulatory

synthesis is another rule-based synthesis that uses parameters that model the

mechanical motions of the articulators and the resulting distributions of volume

velocity and sound pressure in the lungs, larynx, and vocal and nasal tracts

(Flanagan et al., 1975). There are two challenges in articulatory synthesis. The

first challenge is data acquisition for the articulatory model and this data is

normally obtained from X-ray images that do not describe the degree of freedom

of the articulators. The second challenge is to discover stability across an

accurate model and a model that is simple to control and design (Klatt, 1987). In

general, this method was found to be the best approach to synthesise speech,

although the state-of-the-art in articulatory synthesis does not produce speech

with high quality as compared to that of formant or concatenative systems.

2.7.2.3 Concatenative speech synthesis

While the rule-based synthesis is quite intelligible, it is nonetheless sounding

unnatural because it is very difficult to store all the sounds of natural speech in a

minor set of manually derived rules. In concatenative synthesis, a speech

segment is synthesised by concatenating together several speech fragments

from the speech corpus (see Figure 2.4). Concatenative synthesis is a good

example of a corpus-based speech synthesis – sometimes called an example-

based approach. The advantage of this method is that each segment is

completely natural, and a high quality of speech output is expected. When

designing a concatenative speech synthesis, we can use diphones, syllables,

phonemes, words, and phrases. Diphone synthesis is one of concatenative

speech synthesis that produces flexible synthesised speech, although it lacks

naturalness, pleasantness and understandability (Lemmetty, 1999). A diphone is

an adjacent pair of phones. Diphones can be extracted from a set of nonsense

words or natural words. The nonsense word technique has the advantage of

27

being simpler to ensure diphone coverage of all possible sounds in the given

language.

Rousseau and Mashao (2005) developed a hybrid TTS synthesis system for

Afrikaans using a combination of diphone unit selection synthesis and diphone

concatenative synthesis. Their system was evaluated using subjective evaluation

obtaining good results on pleasantness, understandability, naturalness, and

overall impression. Tiomkin et al. (2011) developed a hybrid TTS synthesis

system that is optimal, natural, and has smooth transitions between adjacent

segments, by combining statistical and concatenative synthesis units. Kiflu and

Beshah (2012) developed a concatenative unit selection synthesis system for

Ethiopian language (Tigrinya). This is the first unit selection speech synthesis

system ever developed for Tigrinya. Uddin et al. (2015) developed a phoneme-

based TTS synthesis system for Bangla using a small corpus although distortion

Figure 2.4: An overview of a general unit-selection scheme. Adapted from Zen et al. (2009).

28

was the issue for longer words. Authors concluded that their system is more

natural, even though hearing tests were not conducted. Hearing tests so far are

the most accurate measure of synthetic speech quality. Sharma et al. (2015)

developed a bilingual TTS synthesis system for Assamese language using both

unit selection and HMM-based synthesis. The system was evaluated using the

subjective and objective methods. Sharma et al. (2015) used manual

segmentation to improve the quality of a database that resulted in decreasing

distortion of synthesised speech. Anil and Shirbahadurkar (2014) developed an

expressive TTS synthesis system based on pitch modification and prosodic word

detection. Authors reported that neutral speech can be converted into emotional

speech by modifying pitch frequency. Emotional speech is a speech that contains

emotional features such as excitement, sadness, happiness, and others. While

neutral speech is the speech that does not contains emotions. Aoga et al. (2016)

developed a unit selection speech synthesis for Yoruba language. The system

was implemented using the MARY TTS system. The subjective evaluation tests

resulted with MOS of 2.9 out of 5, which shows the system was acceptable,

although objective tests were not conducted. Louw et al. (2005) developed the

isiZulu speech synthesiser using ‘Multisyn’ unit selection synthesis.

Authors discussed the challenges encountered when developing the synthesiser

and their solutions. The problems included selection of appropriate phone units,

generation of reliable pronunciation, and developing a cost function that selects

and joins appropriate phone units. Mhlana (2011) developed the isiXhosa TTS

synthesis system to support e-services in marginalised rural areas of Eastern

Cape Province of South Africa. The system was tested and obtained acceptable

level of usability. Mohasi (2006) used a hybrid TTS synthesis system developed

by Rousseau and Mashao (2005) as a baseline to create another advanced

Sesotho language hybrid TTS synthesis system by applying intonation modelling

techniques, duration, and fundamental frequency on the unit selection hybrid

system. Mohasi (2006) conducted listening tests to assess speech quality and

this resulted in improved naturalness and fluency.

29

2.7.2.4 Statistical parametric speech synthesis using HMMs

In concatenative synthesis, synthetic speech is generated by concatenating pre-

recorded speech segments from the speech corpus. Its disadvantage is the

requirement of large amounts of speech training corpora and the effort needed to

calculate the concatenation cost. An alternative is to apply a statistical parametric

synthesis method. The SPSS is a model-based approach and conforms to

corpus-based synthesis. The SPSS might be described as generating the

average of some sets of similarly sounding speech segments (Black et al., 2007),

(Zen et al., 2009). This approach differs directly from unit selection synthesis to

preserve natural speech. However, SPSS has dominated the speech synthesis

research area over the last decade because they offer more benefits, including

less memory requirement to store model parameters, flexibility to change voice

characteristics (Yamagishi & Kobayashi , 2007), robustness (Yamagishi et al.,

2009), small footprint (Zen et al., 2009), and multilingual support (Gibson et al.,

2010).

In a typical SPSS system, parametric representations of speech including

spectral and excitation parameters from the speech corpus are extracted, then

train them using a set of generative models (e.g. HMMs). A maximum likelihood

criterion is normally used to predict the model parameters as

𝜆̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜆

 {𝑝(𝑦|𝑥, 𝜆)}, (2.7)

where 𝜆 is a set of acoustic models, 𝑦 is a set of acoustic features, and 𝑥 is a set

of linguistic features corresponding to 𝑦. The pictorial representation of Equation

(2.7) is shown in Figure 2.5.

30

The synthesis phase is shown in Figure 2.6. This phase extracts linguistic

features 𝑥 from text to be synthesised, generates most probable acoustic

features 𝑦 from set of predicted acoustic models 𝜆̂ , to maximise their output

probabilities as

𝑦̂ = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑦

 {𝑝(𝑦|𝑥, 𝜆̂)}. (2.8)

Finally, a speech output is built from parametric representation of speech. SPSS

that uses HMMs is referred to as the HTS method (Yoshimura et al., 1999). The

HTS engine is a toolkit commonly used to develop HMM-based voices (Zen et

al., 2007).

Baloyi (2012) developed a TTS synthesis system using HMMs for Xitsonga. This

is the first TTS synthesis system ever developed for Xitsonga at the University of

Limpopo. The system was evaluated using listening tests and good results were

Figure 2.5: HTS training phase adapted from Zen et al. (2009).

Figure 2.6: HTS speech generation adapted from Zen et al. (2009)

31

observed. Adiga and Prasanna (2014) developed a hybrid TTS synthesis by

combining HTS and unit selection speech synthesis. The speech sound units

were classified into vowel-like regions (e.g. vowel, semivowel, diphthong, nasal

sounds) and non-vowel regions (e.g. stop consonants, fricatives, affricatives).

The vowel-like regions were modelled from HMM framework and waveform units

were chosen from HTS. The non-vowel-like regions which were not properly

modelled by HMMs were picked from unit selection speech synthesis. The

verification of vowel and non-vowel like regions were obtained by manual and

automatic segmentation of speech signal. The hybrid system was compared to

HTS and unit selection speech synthesis using both objective and subjective

evaluations. The hybrid TTS synthesis system with manual segmentation

outperformed HTS system but unit selection speech synthesis performed better

than other systems. Mullah et al. (2015) developed a TTS synthesis system for

Indian English using the HTS. Authors used MOS to test naturalness and

intelligibility of the system. The system resulted with MOS of above 3 for both

naturalness and intelligibility. A TTS synthesis system for isiXhosa was

incorporated in development of a mobile platform for e-learning (Roux et al.,

2010). Stan et al. (2011) developed the HMM-based speech synthesis system

for Romanian language using a different sampling rate (16, 32 and 48 kHz) to

test the effectiveness of sampling rate on similarity, naturalness and intelligibility.

Stan et al. (2011) observed that down sampling speech data to 16 kHz degrades

similarity of speaker, however high sampling rate did not improve either

naturalness or intelligibility of synthetic speech. More advanced NLP modules

can try to increase performance of the TTS synthesis system.

The HMM-based synthesis systems suffer from speech quality caused by the

inadequacy of acoustic modelling (e.g. trajectory HMM), limitations of the vocoder

(e.g. speech transformation and representation using adaptive interpolation of

weighted spectrum), and over-smoothing of parameter generation (e.g. global

variance). The HMMs have been widely used in the development of speech

synthesis systems. An alternative generative model can be applied to overcome

these problems.

32

2.7.2.5 Statistical parametric speech synthesis using deep neural networks

(DNN)

Recent advanced deep machine-learning algorithms can be used to address

limitations of HMMs (Bengio, 2009). The decision trees in HTS that perform

mapping from linguistic contexts extracted from text to probability densities of

speech parameters are replaced by a DNN. Deep neural networks with multiple

hidden layers can perform better than having only one hidden layer although

learning such networks require high computational costs and becomes

impractical. However, with recent development of improved hardware (e.g. a

graphics processing unit) and software enabled us to train a DNN from large

training data. The deep neural networks have achieved good results in machine-

learning fields including pattern recognition, and automatic speech recognition

(Hinton et al., 2012). A DNN-based SPSS can be used to address the

conventional approach (Zen et al., 2013). A DNN was used to model the

relationship between input text and their acoustic realization. The DNN-based

approach showed potential to address the limitations in the conventional decision

tree-clustered context-dependent HMM-based approach. Zen et al. (2013)

applied subjective and objective evaluations to compare the performance of

DNN-based synthesis with HMM-based synthesis. Objective evaluations showed

the DNN-based approach obtaining better prediction of spectral and excitation

parameters than the HMM-based approach. Moreover, the DNN-based approach

achieved better preference over the HMM-based synthesis in the subjective

listening test. In a recent study, Van den Oord et al. (2016) applied a DNN

approach to generate raw audio from text. This approach outperformed the HMM-

based unit selection concatenative speech synthesiser (Gonzalvo et al., 2016)

and the long short-term memory recurrent neural network-based statistical

parametric speech synthesiser (Zen et al., 2016) in naturalness. However, the

HMM-based approach has reduced computational costs as an advantage over

the DNN-based approach.

33

2.8 Evaluation of TTS Synthesis System

The quality of synthesised speech is evaluated using objective and subjective

listening tests. Objective speech quality measures include, among others, linear

predictive coding-based measure, time-domain and frequency-weighted signal-

to-noise ratio measures, and composite measures (Hu & Loizou, 2008).

Composite measures are obtained by combining other objective measures to

create a new measure. More detailed objective measures are discussed by Hu

and Loizou (2008). Zen et al. (2013) used 5-th Mel-Cepstral coefficients while

Sharma et al. (2015) used first 13 Cepstral coefficients of cepstrum to conduct

objective evaluation. Beněk (2014) developed a TTS synthesis system for the

Czech language. Beněk only performed subjective evaluation and stated that

there are no objective tests (Beněk, 2014, p. 30). This is impossible, since

objective tests have been used before 2014 (Zen et al., 2013), (Hu & Loizou,

2008). Theoretically, the quality of speech is best measured via a listening test

where qualified evaluators listen to the synthesised speech and give quality

opinions using a Likert scale. This method is also known as an MOS test. The

quality of synthesised speech can be measured according to the following

properties: naturalness, intelligibility, listening effort1 , flexibility, pleasantness,

similarity, pronunciation, and other recent sophisticated measures. Naturalness

is the degree to which the synthesised speech sounds close to natural speech.

Intelligibility focuses on the ability for people to understand the synthesised

speech. The listening effort is sometimes used as a factor of intelligibility.

Flexibility focuses on how well the system handles out-of-vocabulary words and

other non-standard words. Pleasantness focuses on the pleasure that one

associates with listening to the synthesised voice. Similarity deals with how close

the synthesised speech is compared to that of the original speaker. Pronunciation

focuses on how well the synthesised speech pronounces words. In addition,

prosody is the main factor of pronunciation.

There are several methods used to test the quality of synthetic speech such as:

1 Popularly known as understandability

34

 Preference test (e.g. AB test) is used to compare two or more synthesised

speeches. It is a common practice to compare natural speech with a

synthesised speech.

 Analysis of variance can be derived to test factors of certain features

between synthesised speeches.

 MOS is used to rate synthesised speech on a Likert scale. MOS is

commonly used to measure naturalness, listening effort, pleasantness,

similarity, pronunciation, and flexibility (Viswanathan & Viswanathan,

2005).

 Diagnostic rhyme test (DRT) tests intelligibility of initial consonants

based on 96 pairs of confusable rhyming words (e.g. pond/bond or

tense/dense) (Greenspan et al., 1998). Evaluators listen to one word and

choose the correct one from the pair. The percentage of correct

identifications is used an intelligibility measure.

 Modified rhyme test (MRT) is commonly used to test intelligibility of

synthesised speech (House et al., 1965). This method focuses on either

initial or final consonants (e.g. went, dent, rent, bent, sent, tent). A list of

300 words contains 50 sets of 6 words. Evaluators must identify a single

word from a closed list of six words. The percentage of correct

identifications is used as an intelligibility measure.

 Semantically unpredictable sentences (SUS) can be used to test

speech quality at sentence level (Benoît et al., 1996).

 Word error rate (WER) and sentence error rate (SER) are commonly

used in speech recognition; however, these methods are currently

employed to measure intelligibility of synthesised speech.

2.9 TTS Synthesis Application Areas

Speech synthesis system makes it possible for people to use computational

devices such as smartphones to access information, use email systems or even

do voice dialling in their first language. In today’s electronic digital age, the use

35

of TTS synthesis technologies has increased exponentially in mobile

smartphones, computers, internet-based services, banking, and dialogue

systems 1 . Currently, access to computer-based information is an important

demand for social and technological evolution, and the use of human language

technology has increasingly become an essential technological evolution for

linguistic resources. In order to ensure that people have enough access to

information or linguistic resources given in their first language, these resources

should be electronically digitalised. For example, dictionaries are available in

digitalised audio format for different languages. Google voice search, Siri2 and

other voice-enabled speech applications are good examples of TTS synthesis

systems in mobile devices. Modern navigation systems use back-end TTS

synthesis speech navigation for faster guidance (Jeon et al., 2015). These

applications are embedded in vehicles, aeroplanes, and mobile devices (Ramani

et al., 2013).

These technologies enable humans to interact and communicate with machines,

and deliver valuable and useful e-services ranging from sciences, health,

economics, and education. Speech technology applications play an important

role in teaching and language learning. An increase in the development of such

systems enhances learning using computer-assisted language learning and

computer-assisted pronunciation training (CAPT). Developing CAPT systems for

pronunciation learning and teaching requires extensive linguistic resources and

experts. Chen and Li (2016) reviewed approaches and challenges used in CAPT

development. Eskenazi (1999) discusses a good analysis of using ASR for

training students to learn new languages. Yu and Wang (2016) proposed a

pronunciation visualisation instruction system based on an articulatory mesh

model. Their system was tested on students learning Chinese in second

language and achieved accuracy of 97.6% (after learning) from 68.4% (before

learning). Speech synthesis applications simplify language and pronunciation

1 Available at: http://www.acapela-group.com/voices/demo/
2 Available at: http://www.apple.com/ios/siri/

36

learning; such applications can be applied not only in language learning but

extended to subject-specific domains of learning.

2.10 Speech Synthesis Systems Toolkits

2.10.1 Festival TTS

The Festival TTS synthesis system is one of the well-known popular multilingual

TTS synthesis systems used for creating new synthetic voices in a limited domain

or an open vocabulary domain (Taylor et al., 1998). The Festival TTS system is

open source software allowing personal and commercial usage. The system uses

FestVox for building synthetic voices (Black & Lenzo, 2014). Festival TTS system

supports waveform generation using diphone-based unit selection and HTS

approach. This system has a large memory footprint and is relatively slow. Hence,

a small, fast runtime TTS engine called Flite was developed, aiming to provide

improvements with regards to speech, code size, data size, thread safety, and

portability of maintenance (Black & Lenzo, 2001).

2.10.2 Speect TTS

Speech synthesis with extensible architecture (Speect)1 is a multilingual TTS

synthesis system that offers various APIs (Louw, 2008). Speect has a capability

of creating new TTS synthesis voices. It offers python bindings for customisation

and implementation of advanced ideas. This program is under active

development at the CSIR2.

2.10.3 IBM Watson TTS

The IBM Watson3 TTS service is a cloud-based service that provides API to

synthesise text into speech in a variety of languages, accents, and voices. The

IBM Watson TTS supports speech synthesis markup language (SSML) for

translation of text into International Phonetic Alphabet or IBM Symbolic Phonetic

1 Available at: http://speect.sourceforge.net
2 Available at: http://www.csir.co.za/meraka/
3 Available at: http://www.ibm.com/watson/developercloud/text-to-speech/api/v1/

37

Representation. The IBM Watson TTS API consists of (a) synthetic voices, (b)

methods to synthesise text or SSML over internet, (c) pronunciation (a method

that shows pronunciation of a specified word), (d) custom model (that provides

methods for creation of custom voice models), and (e) custom words (that provide

methods that allow clients to manage word or translation pairs in a custom voice

model). Furthermore, IBM Watson consists of the following features:

 Interact – allow creation of dialog systems.

 Learn – use machine-learning to grow the subject matter expertise in

applications.

 Reason – provides customised recommendations by understanding

client’s emotion, tone, and personality.

 Understand – interpret data including unstructured texts, videos, images

and audios.

2.10.4 Merlin

Merlin is the latest open source toolkit to offer DNN-based speech synthesis (Wu

et al., 2016). Merlin toolkit provides the acoustic modelling functions, including

acoustic and linguistic feature normalisation, linguistic feature vectorisation,

neural network acoustic model training, and generation. Merlin is written in

Python and is not a complete TTS. Hence, it requires an external front-end

system such as Festival TTS. Merlin has been used in recent research work

(Valentini-Botinhao et al., 2015) (Wu et al., 2015) (Watts et al., 2016).

2.10.5 MARY TTS

The MARY TTS synthesis system is a tool for research development and

teaching in the domain of TTS synthesis (Schröder & Trouvain, 2003). The MARY

TTS system is an open source voice builder software designed to run on Java

(Schröder et al., 2011). New languages and synthetic voices can be created and

added to MARY TTS system (Pammi et al., 2010). Synthetic voices can be

created using unit selection synthesis or the HMM-based speech synthesis

approach. The program uses SAMPA format for transcription of a new language

38

module (Wells, 2005). The MARY TTS supports generation of phonemes from

text, generation of TEXTGRID file, generation of emotional speech via emotion

markup language (EmotionML), and prosody generation from MARY XML format

(Schröder & Breuer, 2004). EmotionML is commonly used for (a) manual

annotations of data, (b) generation of emotion-related system behaviour, (c) and

automatic recognition of emotion-related states from user behaviour. The

program documentation can be accessed from the MARY TTS GitHub web

page1. For this research work, the MARY TTS is used to develop the synthetic

voices.

2.11 Summary

The study of text-based LID is a well-known topic and many approaches have

been presented. Text-based LID can be approached from a pattern recognition

viewpoint by examining statistical attributes in text as feature measures. MNB is

the simple and effective method using n-gram statistics as features. Statistical

measures can depend on keywords, frequent words, or special letters found in a

document. The accuracy can be improved by increasing the feature

dimensionality. Various LID techniques have been discussed, including the

popular baseline MNB and robust SVMs. MNB can perform classification on

string data; however, SVMs require data transformation before classification. We

have discussed LID studies for South African languages and realised that

research for these languages is still open. Some of the toolkits used for text

classification have been discussed.

The NLP and DSP components of the TTS synthesis system have been

discussed. Various speech synthesis methods have been discussed and we

realised that the HTS approach is better than the DNN approach on computation

cost. The DNN approach requires massive amounts of memory when training,

with many hidden layers. The disadvantage of the unit selection concatenative

synthesis is the requirement of a large database and this negatively affects the

under-resourced languages. The advantage of the HTS approach is the ability for

1 Available at: https://github.com/marytts/marytts/wiki

39

development of new synthetic voices on a limited domain under normal

computational cost. We discussed evaluation methods of a TTS synthesis

system. The advantage of the SUS evaluation method is that there are no

semantic contextual cues to the intelligibility of the individual words. Several

measures of speech quality, including, among others, naturalness, and

intelligibility, were discussed. The application areas of TTS systems were

detailed. Several programs that are currently used to develop new advanced TTS

voices were also discussed. The next chapter gives the design and

implementation of the proposed system.

40

3 CHAPTER 3: DESIGN AND IMPLEMENTATION

In this chapter, we describe the datasets and the procedure for the

implementation of the pronunciation assistant, which is a combination of a front-

end LID and back-end TTS synthesis system. Two supervised machine-learning

methods are implemented to perform a three-way multiclass classification, and

to explore the LID accuracy that can be achieved for the following under-

resourced official languages of South Africa, namely Sepedi, Xitsonga,

isiNdebele and Tshivenda, using n-gram statistics as features. The development

toolkits deployed to implement back-end and front-end are both Java based.

Hence, WEKA toolkit has been used to build the LID model and MARY TTS

synthesis system has been used to build new TTS voices using HMM method.

3.1 Introduction

South Africa is a multilingual country with 11 official languages. The pronunciation

of words, mostly proper names, is difficult for non-native speakers, since most

proper names are written in native languages. However, knowing the native

language of the proper name may lead to the reduction of such pronunciation

difficulties. In our experiment, we aim to predict the first language associated with

an input surname for South African under-resourced official languages, namely,

Sepedi, Xitsonga Tshivenda and isiNdebele. To achieve this aim, we acquired

training textual data comprising of surnames usually associated with these

languages. We compared the machine-learning algorithms to select the best one

for building a text-based LID predictor for surnames classification. The LID front-

end component predictor is used to classify an input surname by predicting the

first language associated with that surname as shown in Figure 3.1. Once the

language is predicted, the TTS phase continues with the pronunciation rendition

of that surname using the predicted language. The LID systems discussed in

Chapter 2 (Literature review) are not available for testing on our training text data;

hence, no comparisons could be examined.

41

Figure 3.1: The diagram of the overall system interaction

42

The layout of this chapter is as follows:

 Section 3.2 discusses the LID dataset, features, deployed machine-

learning algorithms, and implementation of the classifier.

 Section 3.3 discusses the speech dataset, toolkits, procedure followed for

development and implementation of new languages and HMM voices.

 Section 3.4 explains the integration of both TTS and LID interfaces.

 Section 3.5 details the deployment of the system to the “real-life”

production server.

3.2 Front-end Phase: Language Identification Module

This section details the process, tools and methods used in developing the LID

for under-resourced languages. Rule-based and statistical methods are used for

text-based LID implementation. The rule-based approach requires linguistic

experts and a large amount of time is also required. Hence, we selected to use

the statistical machine-leaning method due to its flexibility, accuracy, and

robustness.

3.2.1 Data Acquisition Pre-processing

The training textual data for LID front-end has been acquired from the department

of ICT at the University of Limpopo. The training data consists of both surnames

and their corresponding first languages in Sepedi, Tshivenda, isiNdebele and

Xitsonga. The Sepedi text data is the highest, with 1100 surnames, followed by

Tshivenda with 1035 and Xitsonga with 908. IsiNdebele text data is less than 213,

which is not enough because it will cause biased results and misperformance of

the LID predictor; hence, it is excluded in the LID front-end development (See

Figure 3.2). The complete dataset contains 3043 surnames excluding isiNdebele.

43

The acquired training data was in Microsoft excel worksheet format and needed

to be converted to WEKA format. WEKA supports attribute-relation file format

(ARFF) and comma-separated values (CSV). The data was converted into CSV

using Microsoft excel, and then converted into attribute-relation file format (ARFF)

using WEKA toolkit. The easy way to introduce the datasets in WEKA is by using

the ARFF files. An example of an ARFF file is shown in Listing 3.1. The first

section of the ARFF file is the header information that contains relation

declaration and attribute declarations including the name of the relation, a list of

the attributes (the columns in the data section), and their datatypes. The datatype

can be –

 numeric (integer or real numbers),

 nominal,

 string,

 date,

 and relational (for multi-instance data).

Figure 3.2: Text corpora for training LID

0

200

400

600

800

1000

1200

Sepedi Tshivenda Xitsonga isiNdebele

N
u

m
b

e
r

o
f

s
u

rn
a
m

e
s

Surnames

44

The string attribute allows for the creation of datasets containing any arbitrary

textual values. This is important in data mining systems, as string attributes

datasets can be created and then used with filters in WEKA to manipulate and

convert string datasets to numeric or nominal sets or any desired target sets.

Nominal attributes are defined by specifying a list of possible values they can

take. The second section contains the data declaration line and the actual

instance lines. The @data declaration is a single line denoting the start of the

data segment in the file. Each instance is represented on a single line, with

carriage returns denoting the end of the instance and attribute values are

separated by commas. Attribute values must appear in the order in which they

are declared in the header section. An unknown or missing value is represented

by a question mark and this feature is used for the prediction of a surname (or

class) in the online demo (see project website (Sefara, 2017)).

Listing 3.1 shows an extract of the dataset file used in training the LID module.

This file consists of the relation (dataset), two attributes surname and class, and

@relation LanguageIdentification

@attribute surname string
@attribute class {nso, tso, ven}

@data
"MTHEBULE",tso
"MKHONTO",tso
"MAKARINGE",tso
"MASINA",tso
"SHIVAMBU",tso
"NEDZAMBA",ven
"NEVHUFUMBA",ven
"NELUVHALANI",ven
"TSHIVHANGANI",ven
"PHANDAVHUDZI",ven
"MOGANO",nso
"THABA",nso
"RASEEMELA",nso
"KGANYAGO",nso
"LETEBELE",nso
...

Listing 3.1: Extract of the WEKA ARFF used for creating the LID module

45

instance data values. Surname is a string attribute that stores the actual instances

values (surnames), while class is a nominal attribute that stores the list of

languages. All the surnames are labelled or tagged with their first languages in

the data section. This approach is called supervised learning wherein labelled

data is used in training a classifier model. The languages are represented by their

language codes (or locales). Table 3.1 shows language codes for representing

Sepedi (nso), Tshivenda (ven), Xitsonga (tso) and isiNdebele (nbl) under the

International Organization for Standardisation ISO 639-2:20081.

3.2.2 N-gram Feature set

Text-based LID problem can be tackled from a linguistic or statistical approach.

The linguistic approach would be the favourable choice where high classification

accuracies are expected although a large amount of linguistic expertise and

resources are required to code a language. However, for under-resourced

languages, such resources are not readily available therefore a statistical

approach becomes a viable alternative. Statistical language models can be built

from sequence of letters, words or n-grams. The character n-gram based models

are suitable for identification of individual and unique words. This is also the most

popular choice in the literature reviewed and we have restricted our feature sets

1 Available at: https://www.loc.gov/standards/iso639-2/php/code_changes.php

Table 3.1: Language Locales

Code Name

nso Sepedi

nbl isiNdebele

ven Tshivenda

tso Xitsonga

46

to character n-gram based features (Cavnar & Trenkle, 1994). The size of n can

increase the accuracy of the classifier; however, the accuracy decreases beyond

a certain level of n. Furthermore, much computation and memory usage is

needed for higher value of n. In most experiments, trigrams yield satisfactory

results (Fourie et al., 2014). Hence, we have restricted our concentration to the

cases of unigrams up to five grams.

Most classifiers, including SVMs, cannot handle string attributes, hence the

acquired training data needed to be processed using appropriate filters. The

WEKA toolkit contains supervised and unsupervised filters. The string-to-word-

vector filter is an unsupervised filter that converts string attributes into a set of

attributes representing word occurrence information from the text contained in the

strings. This filter supports word, word n-gram and character n-gram tokenisation.

Since our training data consists of single words, character n-gram is favourably

used to tokenise all the surnames by generating character n-grams of size one

to size five and then converting them to feature vectors.

3.2.3 Machine-learning Algorithms

Machine-learning algorithms can deliver optimal performance for prediction of a

class or category when applied on a high-performing computer. The project is set

up on a desktop computer with 2Gig of RAM and 2.94 GHz Intel (R) Core™ 2

Duo CPU. This research project used a text classification method as LID based

on n-gram features. There are many machine-learning algorithms applied in

pattern recognition, big data analytics, statistical analysis and text mining (Botha

& Barnard, 2008). However, SVM and multinomial naive Bayes (MNB) have

shown better performance on text identification (Fourie et al., 2014). The

supervised machine-learning models use associated learning algorithms that

recognise patterns and analyse data for regression analysis and classification.

Our experiments employed the MNB as our baseline classifier and the SVM

libraries for multiclass classification under different SVM kernels for K-fold cross-

validation in WEKA.

47

3.2.3.1 K-fold cross validation

Cross-validation is a technique to evaluate predictive models by partitioning the

original data into testing and training set. The cross-validation method consists of

K-fold cross-validation, random subsampling, and leave-one-out validation. The

K-fold cross-validation is used due to its properties of being easy, simple, and

using all data for training and testing. Moreover, K-fold cross-validation assists in

selecting the best model and its parameters to create the final model. We

performed K-fold cross-validation on our training set where K was set to 10 to (a)

balance the reliable estimates and computational costs and to (b) avoid biased

results.

As illustrated in Figure 3.3, the 10-fold cross-validation approach partitions the

corpus into 10 equal parts and performs training on 9 parts leaving one part for

testing. The cross-validation approach is repeated 10 times so that each partition

is used for training.

Figure 3.3 Ten-fold cross validation.

48

3.2.3.2 Multinomial naive Bayes

Naive Bayes classifier is a simple probability classifier based on Bayes theorem

(see Equation (3.1)) with independence assumptions. There are several

variations of naive Bayes, viz. MNB, Bernoulli naive Bayes and Binarised MNB.

The MNB is one of the classifiers that are often selected as baseline classifiers

in language detection tasks since they are less computationally intensive in both

memory and processor consumption (Giwa & Davel, 2013). Moreover, it performs

well under small or limited data conditions and takes shorter training time

compared to SVMs. During classification, the MNB learning is employed using

frequency estimate that determines parameters by computing the appropriate

frequencies from the data. A classifier based on MNB is implemented using an

open-source WEKA toolkit that contains many classification algorithms. More

details in the experimental setup are found in the next sections.

3.2.3.3 Support vector machines

Several classifiers based on SVMs are implemented using a freely customised

downloadable library for SVM called LibSVM on WEKA toolkit. The LibSVM is a

function on WEKA that allows the user to create SVM-based classifiers under

different kernels. The SVM uses kernels to allow non-separable data in the higher

dimensional feature space. The goal of an SVM classifier is to find an optimal

separating hyperplane, which maximises the margin of the training data. There

are various methods that can be used to solve SVM classification problem with

more than three classes (Hsu & Lin, 2002):

 Directed acyclic graph SVM is a novel algorithm for multi-class

classification.

 One-against-one or pairwise classification, where one binary SVM is

created for each pair of classes to separate vectors of one class from

vectors of the other class.

 One-against-all classification, where there is one binary SVM for each

class to separate vectors of one class from vectors of other classes.

49

LibSVM uses one-against-one classification method where a total of three

classifiers are constructed and classification is performed using a voting strategy.

The WEKA toolkit contains classifiers called filtered classifiers that can run an

arbitrary classifier on data that has been passed through a filter. In this

experimentation, filtered classifiers are used to run a classifier on filtered data.

This approach is shown in Figure 3.4.

3.2.3.4 Experiment setup

The experiments are focused on the SVM and MNB machine-learning methods.

The LibSVM contains various SVM kernels hence same dataset is applied for the

various kernels to examine their performance. In total, five experimental setups

are conducted.

a) Experiment 1: This experiment employed the baseline MNB classifier on the

original dataset. The MNB classifies text given a set of classes 𝐶 = {𝑐1, 𝑐2…𝑐𝑘}

and a set of unique words 𝑊 = {𝑤1, 𝑤2…𝑤𝑛} and 𝑁 = {1,2, … , 𝑛} defines the

size of the vocabulary where 𝑛 ≥ 𝑖 ≥ 1 and 𝑘 > 1. Then MNB assigns a test

Figure 3.4: Proposed supervised learning workflow

50

document 𝑑𝑖 to a class that has the highest probability P(𝑐|𝑑𝑖), which is given

by the Bayes’ rule:

P(𝑐|𝑑𝑖) =
P(𝑐)P(𝑑𝑖|𝑐)

P(𝑑𝑖)
 (3.1)

The following receipt is used to train the model.

weka.classifiers.bayes.NaiveBayesMultinomialText -P 0 -M 2.0 -

norm 1.0 -lnorm 2.0 -stopwords-handler weka.core.stopwords.Null

-tokenizer "weka.core.tokenizers.CharacterNGramTokenizer -max 3

-min 1" -stemmer weka.core.stemmers.NullStemmer

where min and max are ngram ranges.

b) Experiment 2: This experiment employed a LibSVM classifier using RBF

kernel on the original dataset. The RBF kernel is given by the formula,

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒−𝛾||𝑥𝑖−𝑥𝑗||2
, 𝛾 > 0, (3.2)

where 𝛾 is a kernel parameter.

The following receipt is used to train the model.

weka.classifiers.meta.FilteredClassifier -F

"weka.filters.unsupervised.attribute.StringToWordVector -R 1 -W

1000 -prune-rate -1.0 -N 0 -stemmer

weka.core.stemmers.NullStemmer -stopwords-handler

weka.core.stopwords.Null -M 1 -tokenizer

\"weka.core.tokenizers.CharacterNGramTokenizer -max 5 -min 4\""

-W weka.classifiers.functions.LibSVM -- -S 1 -K 2 -D 3 -G 0.0 -R

0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -W "1.0 1.0 1.0"

where min and max are ngram ranges and K is the kernel.

51

c) Experiment 3: This experiment employed a LibSVM classifier using sigmoid

kernel on the original dataset. The sigmoid kernel is given by the formula,

𝐾(𝑥𝑖, 𝑥𝑗) = tanh(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟), (3.3)

where 𝛾 and 𝑟 are kernel parameters.

The following receipt is used to train the model.

weka.classifiers.meta.FilteredClassifier -F

"weka.filters.unsupervised.attribute.StringToWordVector -R 1 -W

1000 -prune-rate -1.0 -N 0 -stemmer

weka.core.stemmers.NullStemmer -stopwords-handler

weka.core.stopwords.Null -M 1 -tokenizer

\"weka.core.tokenizers.CharacterNGramTokenizer -max 5 -min 4\""

-W weka.classifiers.functions.LibSVM -- -S 1 -K 3 -D 3 -G 0.0 -R

-0.95 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -W "1.0 1.0 1.0"

where min and max are ngram ranges and K is the kernel.

d) Experiment 4: This experiment employed a LibSVM classifier using

polynomial kernel on the original dataset. The polynomial kernel is given by

the formula,

𝐾(𝑥𝑖, 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)𝑑, 𝛾 > 0, (3.4)

where 𝛾, 𝑟, and 𝑑 are kernel parameters.

The following receipt is used to train the model.

weka.classifiers.meta.FilteredClassifier -F

"weka.filters.unsupervised.attribute.StringToWordVector -R

first-last -W 1000 -prune-rate -1.0 -N 0 -L -stemmer

weka.core.stemmers.NullStemmer -stopwords-handler

weka.core.stopwords.Null -M 1 -tokenizer

52

\"weka.core.tokenizers.CharacterNGramTokenizer -max 5 -min 4\""

-W weka.classifiers.functions.LibSVM -- -S 1 -K 1 -D 1 -G 0.0 -R

0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1

where min and max are ngram ranges and K is the kernel.

e) Experiment 5: This experiment employed a LibSVM classifier using linear

kernel on original dataset. The linear kernel is given by the formula:

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗. (3.5)

The following receipt is used to train the model.

weka.classifiers.meta.FilteredClassifier -F

"weka.filters.unsupervised.attribute.StringToWordVector -R 1 -W

1000 -prune-rate -1.0 -N 0 -L -stemmer

weka.core.stemmers.NullStemmer -stopwords-handler

weka.core.stopwords.Null -M 1 -tokenizer

\"weka.core.tokenizers.CharacterNGramTokenizer -max 5 -min 5\""

-W weka.classifiers.functions.LibSVM -- -S 1 -K 0 -D 3 -G 0.0 -R

0.0 -N 0.6 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -W "1.0 1.0 1.0"

where min and max are ngram ranges and K is the kernel.

All experiments are conducted using machine learning algorithms (MNB and

SVM) obtained from WEKA toolkit. Five models are built and saved to a local file

for future predictions. Each model is evaluated on 10-fold cross-validation. The

presentation and analyses of the output from these experiments are discussed in

the next chapter.

53

3.3 Back-end Phase: Speech Synthesis Module

There are different methods for producing synthetic speech from any given input

text that includes concatenative synthesis, articulatory synthesis, formant

synthesis, and HMM-based synthesis. This study focuses on synthetic voices

created from the preferred HMM-based synthesis system because of its following

advantages (Zen et al., 2009):

 Language independent architecture

 Small footprint

 Rapid prototyping of new voices

 Flexible synthesis parameters

 Fast and portable

This section covers the process undertaken to develop TTS synthesis system for

the targeted Sepedi, isiNdebele, Tshivenda and Xitsonga languages using HTS.

It details the acquired datasets used and explains the files and data used for

training the system. It also explains the required software development and

implementation phase.

3.3.1 Datasets

Two important requirements for building a new voice are waveform files and

corresponding transcription text files. The acquired training speech data shown

in Figure 3.5 is acquired from the Lwazi project. Four recruited and volunteering

mother tongue or first language speakers were engaged for the recording of

training data. About 1318 sentences in Sepedi are used to train Sepedi TTS voice

and 1000 sentences in Tshivenda are used to develop Tshivenda TTS voice,

while 994 sentences are used to train isiNdebele TTS voice and 910 sentences

are used to train Xitsonga TTS voice (see Figure 3.5). Both Sepedi and

Tshivenda audio waveform files are in female voice while both isiNdebele and

Xitsonga audio waveform files are in male voice. The recording durations are also

highlighted in Figure 3.6 with Xitsonga having a shorter duration of 1.28 hours

and Sepedi having the longer duration of 2.23 hours.

54

The corpus size for Sepedi is the highest compared to other languages with 274.6

MB. The larger size of the corpus helps with naturalness of the synthetic speech;

however, the training duration is much longer (Zen et al., 2009). Second highest

Figure 3.5: Number of sentences

1318

1000 994
910

0

200

400

600

800

1000

1200

1400

Sepedi Tshivenda isiNdebele Xitsonga

S
e
n

te
n

c
e
s

Languages

Figure 3.6: Speech corpora duration comparison

2.23

1.23

1.57

1.28

0

0.5

1

1.5

2

2.5

Sepedi Tshivenda isiNdebele Xitsonga

H
o

u
rs

Languages

55

corpus size is isiNdebele with 224.4 MB, followed by Xitsonga with 169.2MB.

Tshivenda had the smallest corpus size of 160.5 MB. The isiNdebele language

has the smallest number of sentences compared to the Tshivenda language, but

its corpus duration is higher than that of the Tshivenda language. This is

attributable to the fact that sentences in the isiNdebele corpus are longer (see

Figure 3.7).

3.3.2 Compiling MARY TTS Builder Tools

Additionally, some software packages had to be installed to create a working

environment before experiments are conducted. The following items comprise a

list of required software to execute MARY TTS synthesis system on a 32-bits

Ubuntu 14.04 Long-term support: build-essentials, git, mc, libc6-dev, libx11-dev,

libncurses5-dev, Sox, tcl-snack, g++, and python3-dev.

The Git tool is installed to clone MARY TTS SNAPSHOT 5.2 from GitHub1 to the

present research project environment. The MARY TTS software requires

installation of additional speech software packages to the current working

1 Available at: https://github.com/marytts/marytts

Figure 3.7: Corpora size

0

50

100

150

200

250

300

Sepedi Tshivenda isiNdebele Xitsonga

C
o

rp
o

ra
 s

iz
e
 (

M
B

)

Languages

56

environment. The following software packages are installed onto the Ubuntu

Linux platform before the MARY TTS builder is compiled:

 Open Java development kit 8: is used to run MARY TTS.

 Apache-maven-3.3.9: is used to compile MARY TTS.

 HTK-3.4.1.tar.gz and HDecode-3.4.1.tar.gz (HTK website, 2009): is a

toolkit for research in automatic speech recognition (ASR). Speech

generation depends on ASR, hence ASR tools are required.

 HTS-2.2_for_HTK-3.4.1.patch (Tokuda et al., 2016): used to modify HTK-

3.4.1 to form HMM-based Speech Synthesis System (HTS) that is used to

train HMM voices.

 Hts_engine_API-1.05 (Tokuda et al., 2011): is used to synthesize speech

waveform from HMMs trained by the HTS.

 Edinburgh_Speech_tools-2.4-release (King et al., 2003): is a library that

is written is C++ programming language and provides a range of tools for

common tasks found in speech processing. This library is used to extract

Mel-frequency Cepstral coefficients (MFCCs).

 Festvox-2.7.0-release (Black & Lenzo, 2014): helps to building synthetic

voices for limited domains.

 Festival-2.4-release (The Festival Speech Synthesis System , 2014): is a

multilingual TTS synthesis system that provides a platform for creating

new TTS synthesis systems.

 SPTK-3.6 (SPTK Working Group, 2012): contains speech signal

processing tools.

 Praat (Boersma & Weenink, 2013): is used for pitch marking and for

extracting speech signal features.

 EHMM_labeller (Black & Lenzo, 2014): is used for automatic labelling and

is included with latest version of MARY TTS synthesis system.

A script in Appendix A is used to install necessary packages and to set global

path variables. Additional installation instructions are mostly found in the file

named INSTALL inside each software package. These software packages are

freely downloadable and one should agree to and obey their licences.

57

The MARY TTS synthesis system was developed as a collaborative project of

Language Technology Lab at the German Research Centre for Artificial

Intelligence and the Institute of Phonetics at Saarland University (Pammi et al.,

2010). This system supports creation of new HMM-based and unit selection

synthetic voices from well-resourced to under-resourced languages. The adapted

workflow of the MARY TTS synthesis system for voice creation is illustrated in

Figure 3.8. This system is developed in Java and provides an easy to use

graphical user interface (GUI). The steps followed under transcription GUI and

basic NLP components are detailed in Section 3.3.3. The speech synthesis

system components are described in Section 3.3.4. The MARY TTS builder uses

a database from Wikipedia1 to create new language support. Some steps are

removed from the original workflow of Schröder et al. (2011) because this

research study is mainly focused on selected under-resourced languages not

available from the Wikipedia database.

3.3.3 Natural Language Processing Modules

The transcription GUI component used is a part of MARY TTS synthesis system

that is used to create new under-resourced language modules before speech

synthesis voices are created. The finite state transducer (FST) training procedure

requires a phone set file (allophone.xy.xml) and pronunciation dictionary (xy.txt)

in the target language. From this point, letters xy are used as a locale to refer to

all under-resourced language locales.

1 Available at: https://en.wikipedia.org/wiki/Wikipedia:Database_download

58

The Lwazi1 phone set is adapted and used to create the new phone set files that

are used by MARY TTS to recognise all phones involved in a target language.

The four languages phone set files are created for Sepedi, Tshivenda, isiNdebele

and Xitsonga as shown in Appendix B. The phone set file follows the SAMPA

1 Available at: http://hlt.mirror.ac.za/Phoneset/Lwazi.Phoneset.1.2.pdf

Figure 3.8: Workflow for multilingual voice creation in MARY TTS builder. Adapted

from Schröder et al. (2011).

59

representation format. Table 3.2 shows all consonants and vowels used in this

research project. The transcription GUI tool uses WEKA toolkit to create NLP

components in a form of a FST trained by J45 tree classifier. We have

encountered two difficulties when creating HMM voices (for Xitsonga and

isiNdebele) and language modules (for Xitsonga):

Challenge 1: The MARY transcription aligner uses a pipe character to align

phones. Since our phone sets contain pipe character, then the transcription tool

produced an error while compiling a new voice.

Solution 1: We used an alternative notation to phones that contain a pipe

character (see Appendix B for isiNdebele and Xitsonga phone set).

Problem 2: Furthermore, the Xitsonga has related phones (e.g. /d/, /dh/, /dl/,

/dlh/, /dy/, /dz/, /dzh/ and the transcription tool tries to classify or map these

phones to one letter “d”) compared to other languages. This caused the

transcription tool to produce the error (saying cannot handle multi-valued nominal

class). This error is mostly encountered where there are many similar phones

that are not related and none of them explicitly defines certain alphabets (from

English alphabets). The transcription tool is unable to define SAMPA phones for

Table 3.2: Phone Set

Language Consonants Vowels

isiNdebele

b, bh, c, ch, d, dl, dz, f, g, gc, gh, gq, h, hl, j, k, kgh, kh, l, m,

n, ng, nk, ny, p, ph, q, r, rh, s, t, th, tj, tjh, tl, tlh, ts, tsh, v, w,

y, z

a, e, i, o, u

Sepedi
b, bj, d, f, fs, fš, g, h, hl, j, k, kg, kh, l, m, my, n, ng, ny, p,

ph, ps, psh, pšh, r, s, t, th, tl, tlh, ts, tsh, tš, tšh, w, y, š
a, e, i, o, u

Tshivenda
b, d, dy, dz, dzh, f, fh, g, h, h, k, kh, l, m, n, n', ny, p, ph, r, s,

sh, sw, t, ts, tsh, v, w, x, y, yh, z, zh, zw
a, e, i, o, u

Xitsonga

b, by, c, ch, d, dh, dl, dlh, dy, dz, dzh, f, g, gh, h, hl, j, k, kh,

l, m, mh, n, n', ng, nh, njh, ny, p, ph, phy, py, q, r, rh, s, sw,

t, th, thy, tl, tlh, ty, v, vh, w

a, e, i, o, u

60

letters “c” and “j” automatically; hence, this causes WEKA to produce an error

while creating the NLP components shown in Figure 3.8.

Solution 2: Hence, we solved the issue by mapping SAMPA phones to an

alternative notation (see Appendix B for Xitsonga phone set).

Table 3.3 shows the features and their possible values. These features carry

important parts of a language including intonation, prosody, stress, and others.

In addition, this can be used for generating expressive or emotional speech. A

feature can carry only one value at a time. Feature values are described as

follows:

 ph is assigned to a SAMPA phonetic symbol of a vowel or consonant.

 vlng is assigned to 0 = n/a, s = short, l = long, d = diphthong,

and a = schwa

 vheight is assigned to 0 = n/a, 1 = high, 2 = mid-high, 3 = mid-low,

and 4 = low

 vfront is assigned to 0 = n/a, 1 = front, 2 = mid, and 3 = back

 vrnd is assigned to 0 = n/a, + = on, and – = off

 ctype is assigned to s = stop, f = fricative, a = affricative, n = nasal,

l = liquid, and r = approximant

 cplace is assigned to l = bilabial, a = alveolar, p = palatal, b = labio-dental,

d = dental, and v = velar

 cvox is assigned to 0 = n/a, + = on, and – = off

 casp is assigned to 0 = n/a, + = on, and – = off

 cpal is assigned to 0 = n/a, + = on, and – = off

61

In addition, the transcription GUI tool assigns a feature to zero when that feature

is not set or declared for a particular phone. By default, all phones must be

included in the phone set for a particular target language. The phone set

(allophone.xy.xml) file contains the following line declaring the name, language

and most importantly the features used in the file.

 <allophones name="sampa" xml:lang="xy"
 features="vlng vheight vfront vrnd ctype cplace cvox casp cpal">

3.3.3.1 Pronunciation Dictionary

The phoneme-based pronunciation dictionaries are obtained from the Lwazi

project. They are available at the language Resource Management Agency

(RMA) (Language Resource Management Agency, 2016) for Sepedi, Tshivenda,

isiNdebele and Xitsonga. The dictionaries used are the original versions of the

Table 3.3: Phone Set Features

Feature description Feature name Possible values

Phone ph Vowel or consonant

Vowel length vlng 0, s, l, d, and a

Vowel height vheight 0,1, 2, 3, and 4

Vowel frontness vfront 0, 1, 2, and 3

Vowel lip rounding vrnd 0, +, and -

Consonant type ctype s, f, a, n, l, and r

Consonant place cplace l, a, p, b, d, and v

Consonant voicing cvox 0, +, and -

Aspirated consonant casp 0, +, and -

Palatal consonant cpal 0, +, and -

62

Lwazi pronunciation dictionaries by Davel and Martirosian (2009). All the words

in the pronunciation dictionaries are manually checked and adapted to be

compatible with the transcription GUI tool. The details of the pronunciation

dictionaries are outlined in Figure 3.9.

The python script generating the dictionary is given in Appendix C. This script

outputs a phoneme-based pronunciation dictionary that contains words together

with their SAMPA phonetic description. This script also marks all the words

functional. The transformation format is as follows:

Original Transcription Transformed transcription

tshepišo ts_h E p_> I S O 1 0 → tshepišo ts_hEp_>iSO functional

magetla m a G E tl_> a 1 0 → magetla maGEtl_>a functional

The procedure used to adapt or transform the pronunciation dictionary to MARY

TTS is as follows:

i. Open input pronunciation dictionary file,

ii. Read the next line from the input file,

Figure 3.9: Pronunciation dictionary setup

4700

4800

4900

5000

5100

5200

5300

5400

5500

5600

5700

Sepedi Tshivenda isiNdebele Xitsonga

W
o

rd
 c

o
u

n
t

Languages

63

iii. Remove all single blank spaces,

iv. Split the line according to tabs

v. Create new line of string by joining an item at index 1, index 2 and

appending string “functional”; all items are separated by a blank space,

vi. Write a line to an output file

vii. Repeat step (ii) to (vi) until all lines are read from input file.

viii. Close output file.

3.3.3.2 Lexicon, Letter-to-Sound Rule and Part-of-Speech Tagger

The transcription tool is a user graphical interface that supports semi-automatic

procedure for transcribing new language database and automatic training of a

G2P rule file and a LTS rule file. The transcription tool is launched on the terminal

by the following command:

$./voice/sources/marytts/target/marytts-builder-5.2-

SNAPSHOT/bin/transcription.sh

On the transcription GUI tool, function words can be selected or checked.

Furthermore, the LTS predictor is trained and is used to predict the phonetic

description of words that are not transcribed. All functional words are saved in

order to build a primitive part-of-speech (POS) tagger that works on simple

context-free string matching. The transcription GUI tool generated the following

important files:

 xy.lts – LTS for transcribing unknown words,

 xy_lexicon.dict – phoneme-based pronunciation dictionary file,

 xy_lexicon.fst – grapheme-to-phoneme file,

 xy_pos.fst – POS tagger classifies and tags parts of a sentence according

to their classes or categories (classes can be prepositions, articles, verbs,

adjectives, and others). Functional words and content words are the only

two categories in the POS tagger creation,

64

where xy represents a locale of a target language as previously explained in

Table 3.1.

3.3.3.3 Implementation of New Language Modules

A minimal NLP module is built using the files generated by transcription GUI tool.

The simple way to build the NLP module for the new under-resourced language

is to modify the pre-existing language project with simple NLP components. One

of the projects in the MARY TTS synthesis system that contains simple NLP

components is adapted for the selected four target languages. The four under-

resourced language projects are renamed to marytts-lang-xy and saved to

directory at path /voice/sources/marytts/marytts-languages/.

The under-resourced language projects are created by adopting one of the pre-

existing language projects. The procedure to implement the minimal NLP module

is adopted from the MARY TTS GitHub page1.

The language projects are added to master pom (marytts/marytts-

languages/pom.xml) as a new subproject under modules tag (see Listing 3.2).

These language projects are also added as a dependency in the assembly-

runtime plugin (marytts/marytts-assembly/assembly-runtime/pom.xml)

and assembly-builder plugin (marytts/marytts-assembly/assembly-

builder/pom.xml) files using the code given in Listing 3.3.

1 Available at: https://github.com/marytts/marytts/wiki/New-Language-Support

...
<modules>
 <module>marytts-lang-nso</module>
 <module>marytts-lang-ven</module>
 <module>marytts-lang-nbl</module>

<module>marytts-lang-tso</module>
</modules>
...

Listing 3.2: Languge modules included in marytts-languages project

65

The final step is to build the full project. A new Maven directory is created inside

each language project called target and it contains the following executable Java

files (.jar) of the newly built language projects;

 marytts/marytts-languages/marytts-lang-nso/target/marytts-
lang-nso-5.2-SNAPSHOT.jar

 marytts/marytts-languages/marytts-lang-nbl/target/marytts-
lang-nbl-5.2-SNAPSHOT.jar

 marytts/marytts-languages/marytts-lang-ven/target/marytts-
lang-ven-5.2-SNAPSHOT.jar

 marytts/marytts-languages/marytts-lang-tso/target/marytts-
lang-tso-5.2-SNAPSHOT.jar

These Java files are saved to the MARY TTS builder and runtime at the following

directories respectively:

marytts/target/marytts-builder-5.2-SNAPSHOT/lib
marytts/target/marytts-5.2-SNAPSHOT/lib

...

<dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>marytts-lang-nso</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>marytts-lang-ven</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>marytts-lang-nbl</artifactId>
 <version>${project.version}</version>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>marytts-lang-tso</artifactId>
 <version>${project.version}</version>
 </dependency>
...

Listing 3.3: Languge modules included in assembly-builder module

66

The following commands are used to start the MARY TTS server on Ubuntu

terminal or Windows command prompt respectively:

$./voice/sources/marytts/target/marytts-5.2-
SNAPSHOT/bin/marytts-server

> voice\sources\marytts\target\marytts-5.2-SNAPSHOT\bin\marytts-
server.bat

These new languages can be tested by accessing this link

http://localhost:59125/locales on an internet browser. The link retrieves installed

locales or languages. The output contains all the locales installed in the MARY

TTS synthesis system as shown in Figure 3.10. Therefore, we have successfully

added a support for the four new under-resourced languages (nbl, nso, ven and

tso).

Figure 3.10: The output of current language locales installed in MARY TTS synthesis

system

http://localhost:59125/locale

67

3.3.4 TTS Synthesis Modules

This section details the steps followed to create new synthetic voices. There are

different kinds of speech synthesis methods that can be used when creating

synthetic voices. The HTS method is adopted to create the synthetic voices. This

method is selected since it requires a small training dataset, and is fast and

efficient.

3.3.4.1 Preparation

The acquired speech corpus dataset is of type waveform with sampling frequency

of 16 KHz. Moreover, the audio format is on mono channel with bitrate of 16 bit

per sample.

The acquired speech audio files are used to train HMM models for speech

synthesis. The corpus consists of speech utterances together with their

corresponding text annotation which helps to transcribe the speech sample and

to properly train the HMM models. The sentences are carefully numbered and

saved to a FestVox file called txt.done.data that is used when creating MARY

prompt or transcription files in which each sentence is saved to its text file. The

root directory for voice building is set to a directory at /voice/xy for each language.

The speech corpus is saved to the directory at /voice/xy/wav/ and the

transcription files are saved to the file at /voice/xy/txt.done.data.

The working directories need to be created before launching the voice import tool.

The four directories are created for each language. The settings in Table 3.4 are

configured according to the type of target voice by launching voice import tools

from the following command at root level on the terminal:

$./voice/sources/marytts/target/marytts-builder-5.2-

SNAPSHOT/bin/voiceimport.sh

68

On the new pop-up window, the working directory is selected and used during

the entire process of training a new voice. The db.estDir property is the path to

speech tools while db.gender is the gender of voice. The db.locale is the locale

of the language, db.marybase is the path to MARY TTS, and db.rootDir is the

working root directory. The db.samplingrate is the sampling rate of the recordings,

db.voicename is the name of the new voice, and db.wavDir is the path to audio

wave files. Other settings are filled automatically depending on the voice-building

path. After saving the general configuration settings, then the main window

appears showing the methods in Figure 3.11.

Table 3.4: General Configuration Settings

Property Value

db.estDir /voice/sources/speech_tools/

db.gender female (or male)

db.locale xy

db.marybase /voice/sources/marytts/

db.rootDir /voice/xy

db.samplingrate 16000

db.voicename new_language_voice_name

db.wavDir /voice/xy/wav/

69

Figure 3.11: HMM-based voice training in MARY TTS. Adapted from Würgler

(2011)

70

3.3.4.2 HMM-based Voice Training

The voice training process take several hours to complete building each TTS

voice depending on training corpus size and performance of the workstation or

computer used for training. This section details the procedure taken to develop

HMM-based voices by assuming that the installation instructions and declaration

of path variables given in Appendix A have been done.

Once the language support is implemented as discussed in Section 3.3.3, a new

voice is now ready to be created. We used the voice import tool for creating new

voices (Pammi et al., 2010). The tool is periodically updated on the MARY TTS

page on GitHub1 . The training of the new voice uses the main processing

components given in Figure 3.11. A component is executed by selecting or

checking the appropriate checkbox and then clicking on the “run” button.

Parameters and configurations of each module are accessed by clicking the

settings editor button next to the checkbox. The main modules shown in Figure

3.11 are explained below, according to their execution order (Pammi et al., 2010):

The PraatPitchmarker verifies the frequency range for male and female voices.

Settings for male voice have maximum pitch of 300 and minimum pitch of 75

while female voices have maximum pitch of 500 and minimum pitch of 100

(Pammi et al., 2010). The raw acoustics are saved to the directory at

/voice/xy/pm/*.

The MCEPMaker uses Edinburgh speech tools to extract MFCCs from all audio

wave files. The raw acoustics are saved to the directory at

/voice/sources/mcep/*.mcep.

The Festvox2MaryTranscriptions use the FestVox transcription file to create

MARY transcription files (separate text files). The results are saved to the

directory at /voice/xy/text/*.txt.

1 Available at: https://github.com/marytts/marytts/wiki/VoiceImportToolsTutorial

71

The Allophones Extractor processes the transcription file (txt.done.data) of the

speech audio files to generate a MARY extensible markup language (XML)

allophone files (initial allophones). This component requires a MARY TTS server.

The results are saved to the directory at /voice/xy/promp_allophones/*.xml.

The EHMM Labeller is an external component called by MARY TTS to label the

audio wave files using the corresponding transcriptions. This step may take

several hours to complete, depending on the amount of data used. The results

are saved to the directory at /voice/xy/ehmm/*. The following variable is set in the

component settings editor:

EHMMLabeler.ehmmDir = /voice/sources/marytts/lib/external/ehmm

The Label Pause Deleter removes pauses from label files. The results are saved

to the directory at /voice/xy/lab/*.lab. The following variable is set in the

component settings editor:

LabelPauseDeleter.pauseDurationThreshold = 10

The Phone Unit Label Computer converts the label format from EHMM to MARY.

This component inputs the lab directory and outputs the phone lab directory at

/voice/xy/phonelab/*.lab.

The Transcription Aligner verifies that labels and allophone files are correctly

aligned. The results are saved to the allophone directory (final allophones) at

/voice/xy/allophones/*.xml.

The Feature Selection confirms a list of all the features to be considered in the

next steps and saves the features to a file at /voice/xy/mary/features.txt. This

component extracts contextual and linguistic features such as vowel height,

vowel frontness, consonant place, consonant type, consonant roundness,

accent, stress, and others.

The Phone Unit Feature Computer extracts context feature vectors from the text

data. The component creates a phone features directory at

72

/voice/xy/phonefeatures/*.pfeats. This component requires the MARY TTS server

to be running.

The Phone Label Feature Aligner verifies that there is proper alignment between

phone features and phone labels. The results are displayed on the console,

saying, “0 problem”.

The next steps illustrate HMM voice creation showed in Figure 3.12.

The HMM Voice Data Preparation sets up the environment to create a HMM voice

and uses the following configuration file to check availability of the required

external programs, text and audio wave files and their paths:

/voice/sources/marytts/lib/external/externalBinaries.config. It converts all audio

wave files to raw files by using the Sound eXchange (SoX) tool.

The HMM Voice Configure configures voice properties. Both male and female

voices are available in the Lwazi corpus at 16 kHz and 16 bitrates. Table 3.5

Figure 3.12: HMM-based speech synthesis steps

73

shows different setting values used for configuring voices, including fast Fourier

transform length, frame length, frame shift, frequency wrapping, lower

fundamental frequency (F0), upper F0, and other settings remain as default.

These values depend on the sampling rate and gender of the voice.

The HMM Voice Feature Selection reads features created by the Feature

Selection component and generates a new list of features used to train the HMM

models. The results are saved to a file at /voice/xy/mary/hmmFeatures.txt.

The HMM Voice Make Data component uses the HTK tool patched with the code

provided by HTS to train HMMs. This step uses speech signal processing toolkit

(SPTK) and Snack to extract speech signal parameters including voicing

strengths for mixed excitations (STR), log F0 (LF0), Mel-generalised Cepstral

(MGC) coefficients and Fourier magnitudes (MAG) to form an acoustic parameter

vector (MGC+LF0+STR+MAG). This component executes in the /voice/xy/hts/

directory and generates question sets saved to the directory at

/voice/xy/hts/data/questions/*.hed.

74

The HMM Voice Make Voice uses a version of the speaker dependent training

scripts provided by HTS that was adapted to the MARY TTS platform by adding

sections for the acoustic parameter vector. As shown in Figure 3.13, this step

takes several hours to finish to execute the following script:

perl scripts/Training.pl scripts/Config.pm > logfile &

The HMM Voice Compiler compiles the voice project using Maven. The path to

Maven is set to /voice/soft/maven/bin. The new HHM-based voice components

are ready to be installed. The next section explains the procedure taken to install

the new HMM-based voices onto the MARY TTS synthesis system.

Table 3.5: Some HMM Voice Configuration

Property Value

HMMVoiceConfigure.fftLen 512

HMMVoiceConfigure.frameLen 400

HMMVoiceConfigure.frameShift 80

HMMVoiceConfigure.freqWarp 0.42

HMMVoiceConfigure.lowerF0 Male=40, Female=80

HMMVoiceConfigure.mgcBandWidth 24 (for cepstral form)

HMMVoiceConfigure.mgcOrder 24 (for cepstral form)

HMMVoiceConfigure.sampfreq 16000

HMMVoiceConfigure.speaker Speaker_name

HMMVoiceConfigure.upperF0 Male=280, Female=350

75

3.3.4.3 Implementation of New TTS Voice Components

The previous section explained the training procedures of new voices. This

section highlights the procedure of integrating new voices to the MARY TTS

synthesis system.

Table 3.6 shows the size of each developed voice. The HMM-based voices have

a small size compared to unit-selection voices (Zen et al., 2009). This training

process took less time to train each voice compared to when training unit-

selection TTS voices, which may take days to train. The HMM-based TTS

synthesis systems are robust, fast and efficient, and require less computation

costs. This enables the use of such systems in small storage devices like mobile

handsets, navigation devices, and many similar others.

Figure 3.13: HMM-based voice creation in process

76

After training the new under-resourced HMM-based voices, the results are four

installable zip files:

/voice/nso/mary/voice-sepedi-lwazi2-hsmm/target/voice-lwazi2-

sepedi-hsmm-5.2-SNAPSHOT.zip

/voice/nbl/mary/voice-lwazi2-ndebele-hsmm/target/voice-lwazi2-

ndebele-hsmm-5.2-SNAPSHOT.zip

/voice/ven/mary/voice-lwazi2-tshivenda-hsmm/target/voice-lwazi2-

tshivenda-hsmm-5.2-SNAPSHOT.zip

/voice/tso/mary/voice-lwazi2-xitsonga-hsmm/target/voice-lwazi2-

xitsonga-hsmm-5.2-SNAPSHOT.zip

These four installable zip files contain the HMM-based voices that are compatible

to the MARY TTS synthesis system. These files are saved to the MARY TTS

runtime download directory at:

/voice/sources/marytts/target/marytts-5.2-SNAPSHOT/download/

The MARY TTS component installer in Figure 3.13 is a GUI that is used to install

new languages and voices to the MARY TTS synthesis system. The following

command is used to launch the GUI component installer.

/voice/sources/marytts/target/marytts-5.2-SNAPSHOT/bin/marytts-

component-installer

Table 3.6: Developed TTS Voice Sizes

Voice Size

Sepedi 1.9 MB

Tshivenda 1.4 MB

isiNdebele 1.8 MB

Xitsonga 1.5 MB

77

The new voices are installed under their respective languages (locales). As

shown in Figure 3.14, the voice (e.g. lwazi2sepedi) is found under its language

(e.g. nso).

The MARY TTS GUI client can be accessed through the web address

http://localhost:59125 and through the GUI component on the Ubuntu Linux

platform at /voice/sources/marytts/target/marytts-5.2-SNAPSHOT/bin/marytts-

client or on the Microsoft windows operating system at

/voice/sources/marytts/target/marytts-5.2-SNAPSHOT/bin/marytts-client.bat

(see Figure 3.15).

Figure 3.14: MARY TTS Component installer

http://localhost:59125/

78

3.4 Integration of the LID and TTS Synthesis

This section details the implementation of the LID and TTS synthesis system

module as one system function (or patching the MARY TTS synthesis system to

support LID). The LID is integrated into MARY TTS synthesis system with

modifications and additions of certain Java files. Maven is used to install MARY

TTS synthesis system from source. The following sub-projects (or modules) are

included in the MARY TTS synthesis system during installation:

 marytts-languages

 marytts-builder

 marytts-runtime

 marytts-assembly

 marytts-client

Figure 3.15: MARY TTS GUI client

79

 marytts-common

 marytts-redstart

 marytts-signalproc

 marytts-transcription

 voice-cmu-slt-hsmm

The MARY TTS synthesis system uses mainly the runtime module to generate

new synthetic speech. As a result, this module is upgraded in order to support

machine-learning functions that implement classification functionality. The WEKA

software is added as a dependency to the runtime module by including the WEKA

repository in the maven project file at path

 /voice/sources/marytts/marytts-runtime/pom.xml (see Listing 3.4).

The MARY TTS synthesis system server is upgraded to support incoming text to

be classified. The “classify” extension or pattern (in Listing 3.5) is added to the

HttpRequestHandlerRegistry. The Java file used for handlers is found at path

/voice/sources/marytts/marytts-runtime/src/main/java/marytts/server/http/

MaryHttpServer.java.

HttpRequestHandlerRegistry maintains a map of hypertext transfer protocol

(HTTP) request handlers keyed by a request uniform resource identifier (URI)

pattern and InfoRequestHandler looks up a handler matching the given request.

The class InfoRequestHandler and SynthesisRequestHandler are called when

the pattern /classify and /process are matched respectively.

...
<dependency>
 <groupId> nz.ac.waikato.cms.weka </groupId>
 <artifactId> weka-dev </artifactId>
</dependency>
...

Listing 3.4: The WEKA Maven repository included in marytts-runtime module

80

MARY TTS system supports both sockets and HTTP protocols. It listens on HTTP

port 59125 with the following patterns:

 /classify – used for classification. It receives text and model from

hypertext markup language (HTML) form. Text represents a surname and

model represents the name of the model or classifier (where there may be

multiply classifiers). Finally, it returns the locale.

 /process – used for voice generation. It receives text and locale from

HTML form. Text represents the input surname and locale represents the

classified or chosen language. Finally, it returns the raw audio data.

The Java file InfoRequestHandler is upgraded to recognise the pattern /classify

(see extract of Listing 3.6). The LID usage uniform resource locator (URL) pattern

is as follows:

 http://localhost:59125/classify?text=surname&model=namesModel

As shown in extract of Listing 3.6, the classifyLang string variable stores the value

of text (surname) and model string variable stores the LID model name. If these

two variables are set, then they are passed as arguments to the constructor

method in class NamesPredictor. The contents of NamesPredictor.java file are

given in Appendix D. This Java file belongs to the package weka.classifiers. The

NamesPredictor class receives two parameters where the first parameter sets

the text and the second parameter sets the target classifier model. The method

makeInstance() is called from the constructor to prepare an instance to be

classified. This instance follows the WEKA ARFF file format and must match the

...
// Set up request handlers
HttpRequestHandlerRegistry registry = new HttpRequestHandlerRegistry();
registry.register("/process", new SynthesisRequestHandler());
InfoRequestHandler infoRH = new InfoRequestHandler();
registry.register("/classify", infoRH);
...

 Listing 3.5: Upgraded MaryHttpServer java file by including handler for pattern /classify

http://localhost:59125/classify?text=surname&model=namesModel

81

data that is used to train the target classifier model. The loadModel() method is

called by the constructor to use WEKA SerializationHelper to read or load the

model from local file. The class InfoRequestHandler calls the classify method

from NamesPredictor class to perform classification and returns the predicted

language locale.

The MARY TTS system is reinstalled using the following command from terminal:

voice/sources/marytts$ mvn install

The WEKA toolkit (weka.jar) is saved to the lib directory with other Java files of

MARY TTS synthesis system at

/voice/sources/marytts/target/marytts-5.2-SNAPSHOT/lib/*

The LID model (classifier) is saved to the same bin directory containing marytts-

server and marytts-client scripts at

/voice/sources/marytts/target/marytts-5.2-SNAPSHOT/bin/*

...
if (request.equals("classify")) {
 //Text classification starts here ...
 if (queryItems != null) {
 String classifyLang = queryItems.get("text");
 String model = queryItems.get("model");
 if (classifyLang != null) {
 if (model.equals("namesModel")) {
 NamesPredictor pred = new NamesPredictor(classifyLang,model);
 return pred.classify();
 }
 }
 }
 MaryHttpServerUtils.errorMissingQueryParameter(response, "'effect'");
 return null;
}
...

Listing 3.6: Upgraded InfoRequestHandler Java file by including conditional statement for
pattern /classify

82

3.5 Live Demonstration of the System

The TTS synthesis systems for well-resourced languages are becoming more

readily commercially available on the internet platform. Some of the available

multi-language commercial TTS synthesis systems are CereProc1, NeoSpeech2,

Cepstral3, IBM Watson4, and Acapela5 TTS demo. These TTS synthesis systems

do not reflect inclusion of indigenous South African official languages. Hence,

developing and deploying a prototype TTS synthesis system that covers some of

the under-resourced indigenous languages promotes technological footprint and

awareness of these languages and also helps encourage initiatives towards

retention and endorsement of the cultural identity of the languages.

This section details the implementation of the complete system. It explains the

commands used to set up the cloud-based server. It details the procedures used

to deploy the developed system. It also details the interaction of the developed

system with a client-based application. The development of the Android

application is explained.

3.5.1 Server

The MARY TTS synthesis system is deployed to a virtual private server (VPS)

running Ubuntu server 16.04 long-term support operating system installed with

Java. The VPS contains the following specifications that are technologically

sufficient to host the proposed system.

 1 core processor

 1 Gigabyte of random access memory

 50 Gigabytes of solid-state drive space

 64 bit operating system architecture

1 Available at: https://www.cereproc.com/
2 Available at: http://www.neospeech.com/
3 Available at: http://www.cepstral.com/en/demos/
4 Available at: http://text-to-speech-demo.mybluemix.net/
5 Available at: http://www.acapela-group.com/voices/demo/

83

The server is installed with nginx reverse proxy on port 80 to serve MARY TTS

synthesis system. A special service account is created named mary to run the

service and to manage installation files. The newly created account is given

ownership of the installation files that are saved to path /local/mary/.

A configuration file is added to /etc/nginx/sites-available/default with contents in

Listing 3.7. Then the nginx service is restarted.

The MARY TTS sysnthesis system server is started by running marytts-server

script from bin directory using the new mary account and the script was allowed

to run in the background. A cron job is set in order to restart the MARY TTS server

in case of any system crash or memory leakage or system reboot. A new bash

file is created with contents given in Listing 3.8. This bash file is made executable.

...
server {
 location / {
 proxy_pass http://127.0.0.1:59125;
}
...

Listing 3.7: Configuration file added to nginx

#!/bin/bash

Version to adapt to your system
VERSION=5.2

#Check if our service is currently running
ps auxw | grep marytts-server | grep -v grep

if the service is not running it returns a non zero to the environment
viriable,
in that case we start the service, else we ignore.
if [$? != 0]
then
 bash /local/mary/marytts/bin/marytts-server –Xmx150m
fi

Listing 3.8: Mary.sh file to restart the server

http://127.0.0.1:59125/

84

This file is saved to location /usr/local/bin/mary.sh. The cron job is set to 5 minutes

interval using the following command:

sudo crontab –e
*/5 * * * * /usr/local/bin/mary.sh

For every 5 minutes interval this cron job checks if the MARY TTS server is still

running, and it launches the mary.sh script that restarts the MARY TTS server if

is not running. The firewall is set up to allow incoming traffic on port 80 (HTTP).

The traffic received on port 80 is proxied to the MARY TTS synthesis system

server. The system is successfully deployed on the VPS as the server.

Application clients can access the system via internet connection (see Figure

3.16).

Figure 3.16: Design of the application client and server connection via

wireless connection

85

3.5.2 Client – Internet Browser

Client is an internet browser accessing the website on a web server. The website

is deployed to hide the VPS. It contains HTML and hypertext pre-processor (PHP)

scripts that point to the VPS for both voice generation and LID prediction of a

language. The system has API that can be found on the API tab on the website.

It explains how to fetch audio using HTML form. The live demonstration of the

system is available on the project website and can be accessed using the internet

connection on https://www.speechtech.co.za.

3.5.3 Client – Android Application

The application is developed for Android and tested on API version 23. As shown

in Figure 3.16, the application serves as a client that connects to the system on

the server-side. The surname and locale inputs are sent to the server and the

server acknowledges the connection and returns the audio data back to the client.

The application has the following four classes which are given in Appendix E:

MainActivity – this class sets the main layout to front and the layout contains text

areas and buttons.

LanguageIdentification – this class handles LID of surnames by creating HTTP

connection to the server. It receives surname and return locale.

Methods – this class contains methods needed by the main activity, including

network connection, verification of text, and text encoding.

PlayAudioManager – this class plays audio using media player instance. It

receives URL containing audio location.

The application GUI in Figure 3.17 contains (a) menu option with list of

languages, (b) Text Area and (c) three buttons namely Clear, Download and

Speak. These buttons are clickable and call certain methods defined with

setOnClickListener. The Clear button resets the Text Area when clicked, the

https://www.speechtech.co.za/

86

download button creates HTTP requests to download the audio, and the Speak

button when clicked applies the following procedure:

Step 1: Calls urlBuilder(model) method by passing model name as a parameter.

Step 2: If there is no surname parameter then a message is displayed to the user

and returns false, or else then encodes the surname by calling the method

encode_text(string) from class Method.

Step 3: Checks if the language is set by calling a method isempty(string) from

class Method, or else displays the message to the user to select the language.

Step 4: If the language is set to “detect”, then check if there is internet connection

by calling method isInternet from class Method. If internet is available, the URL

is built and passed to the LID class.

Step 4.1: The LID class creates HTTP connection to the server in the background

using an asynchronous task to classify the input surname parameter. If the

surname parameter is classified, then a message is displayed to the user stating

a classified language and the language is used to build the final URL (LID URL),

and returns true.

Step 5: If the user sets the language then a final URL is built (user URL) and

returns true.

Step 6: If step 4 or 5 returns true then it means the URL is built and the method

player(URL) is called with URL as parameter. This method calls class

PlayAudioManager to create MediaPlayer instance that plays the audio from a

given URL. The android application unified modelling language (UML) diagram

of all the classes is given in Appendix F. The UML diagram details the relationship

between the classes and all the member functions (methods) and variables.

87

3.6 Summary

In this chapter, we have discussed the most important steps of the

implementation phase in detail. The text and speech data used for training and

evaluation in all experiments were discussed. The speech technology and data

mining resources and toolkits to set up LID classifier and TTS experiments were

outlined. The feature set for creating LID is outlined. We have discussed the

supervised machine-learning algorithms. The pronunciation dictionaries used

were also discussed. We have discussed the steps followed when creating LID

classifier and TTS in Sepedi, Xitsonga, Tshivenda and isiNdebele. The

implementation phase of the proposed system was outlined. The developed

Figure 3.17: Android application demo

88

system is deployed to the production cloud server stability testing on real data.

The Android application and project website were also explained.

As captured in the first chapter, the aim of the research study was to develop a

TTS synthesis system that uses a trained classifier to enhance correct

pronunciation of words and phrases, particularly proper names for four under-

resourced languages of the Limpopo province, South Africa, namely Sepedi,

Tshivenda, Xitsonga and IsiNdebele. To achieve this goal, the following

objectives have been accomplished:

a) The acquisition of textual data in the form of a corpus containing surnames

was acquired from the University of Limpopo student database.

b) The speech training data was acquired from the Lwazi TTS corpus for four

languages.

c) We have used machine-learning classifiers to train LID model for

classification of surnames into respective first languages.

d) The LID model was used as a language predictor to identify a first

language given surname. This model forms a front-end phase of the

system. We built the baseline TTS synthesis modules in Sepedi, Xitsonga,

Tshivenda and isiNdebele. These modules serve as a back-end of the

system.

e) Once the identity of a language has been predicted from a given surname,

then an appropriate TTS synthesis system is activated to continue with

pronunciation guidance using the predicted first language.

The last objective is discussed in the next chapter, including evaluation metrics

and the results obtained. The results of the evaluation try to answer research

questions outlined in the first chapter.

89

4 CHAPTER 4: EVALUATION RESULTS

This chapter illustrates the methods used for evaluating the developed LID and

TTS synthesis system. It details the analysis of the results in an attempt to answer

the research questions stated:

 Can a computational system use a person’s surname to predict the identity

of the first-language of that person?

 Can a computational system produce an appropriate pronunciation of

indigenous proper names?

4.1 Introduction

The automatic pronunciation assistant is designed and implemented to be a

complete HMM-based TTS synthesis system implementing machine-learning

technologies. These learning technologies were applied during LID training and

the same classifier models were evaluated or tested on the same data using a n-

fold cross-validation. The prototype system is currently available on the internet

platform for further testing on real-world data.

In this chapter, the perceptual evaluations are described, illustrating the state of

our work. The following evaluation metrics were selected for distinct purposes:

 The test for intelligibility, the ability of a human listener to understand

and interpret the words and meaning of the synthesised utterances with

ease. Subjects are asked to listen and write down the synthesised

utterances.

 The test for quality, an abstract measure of pleasantness of voice,

naturalness of voice, and correct pronunciation of the utterance. Subjects

are asked to rate the speech quality on a 5-point Likert scale.

The layout is as follows:

 Section 4.2 discusses performance metrics used to measure the

performance of the LID component and speech synthesis phases.

90

 Section 4.3 discusses evaluation results of the LID component.

 Section 4.4 discusses MOS test results of the TTS synthesis phase.

 Section 4.5 discusses evaluation results of the entire system usability.

4.2 Performance Measures of the Proposed System

The user acceptance of the state-of-the-art speech technology systems depends

on the appropriate appraisal of the system performance. We evaluated the

performance of the proposed system by measuring the front-end LID system,

back-end TTS system and overall system usability separately.

4.2.1 Evaluation Metrics for LID

This section details the testing results obtained during LID evaluation on a 10-

fold cross-validation. The experimentation setup was defined from the previous

chapter (see Section 3.2 of Chapter 3). We have evaluated the performance of

each classifier model based on certain criteria to assess the prediction accuracy

of the classifier model. The performance of a trained model is determined by how

good the predictions reflect the actual classes. The evaluation measurements are

given in the following classification terms:

 FP = False positive means observations where the actual class is negative

and the predicted class is positive.

 TN = True negative means observations where the actual and predicted

class is negative.

 TP = True positive means observations where the actual and predicted

class is positive.

 FN = False negative means observations where the actual class is positive

and the predicted class is negative.

91

These classification terms are used when evaluating a supervised model wherein

a labelled observation is compared to a predicted observation such that the

confusion matrices can be generated from each experiment. Table 4.1 shows the

design of a confusion matrix from a binary classification.

The true positives and true negatives shown in blue font define surnames that

were correctly predicted. The following evaluation metrics were used to evaluate

the performance of the LID classifier models:

Accuracy is measured as the proportion of correctly identified surnames in the

test set, compared to all the surnames in the same test set. It is defined by the

equation:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃𝑖+𝑇𝑁𝑖

𝑇𝑃𝑖+𝑇𝑁𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
× 100% (4.1)

Where 𝑖 represent number of occurrences.

Precision is defined as the percentage of applicable surnames identified out of

all identified surnames. The equation for precision is given by:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
× 100% (4.2)

Table 4.1: Confusion Matrix

Model Class
Actual class

Positive Negative

Predicted class
Positive True Positive False Positive

Negative False Negative True Negative

92

Where 𝑖 represent number of occurrences.

Recall (or sensitivity) is defined as the percentage of applicable surnames

correctly predicted out of all applicable surnames in the collection and it is defined

by the equation:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
× 100% (4.3)

Where 𝑖 represent number of occurances.

F1 score is the weighted average of precision and recall. It takes both false

positives and false negatives into account. Intuitively, F1 score is more useful

where there is uneven class distribution. The F1 score formula is given by

𝐹1 =
2∗(𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (4.4)

Root mean-squared error (RMSE) is arguably the most essential criterion used

to evaluate the performance of a predictor. Its equation is represented by the

square root of the average of the squares of the differences between actual and

predicted values.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1 (4.5)

where 𝑛 is the total number of observations, 𝑦𝑖 is the actual values and 𝑦̂𝑖 is the

predicted values ∀𝑖 ∈ ℤ+ and 0 ∉ ℤ+.

93

4.2.2 Subjective Evaluation Metrics for TTS

Subjective listening tests were used to measure the intelligibility and quality of the

developed TTS voices. Thirty-two native speakers were recruited via a “word of

mouth” campaign to participate in the evaluation tests. No remuneration or gifts

were provided to participants in exchange for information. The participants were

University of Limpopo under-graduate and post-graduate students. They were

divided into four groups of mixed gender according to their native language. Each

group contained 8 participants to evaluate their first-language TTS voice. The

participants’ age ranged from 18 to 35 and the subjects had no prior experience

working with TTS synthesis systems. The participants agreed to sign a consent

form and answered the questionnaire given in Appendices G and H respectively.

The questionnaire is used to gather all the data required for evaluation of the

synthesised speech generated by the developed system against the natural

speech. Evaluations were conducted in a reasonably sound-controlled room with

no noise disturbances.

The intelligibility and quality of synthesised speech is measured using the

following example sentence, more sentences are given in Appendix I.

Buka e sepetše godimo ga lefase le le botse.
The book walked through the attractive
floor.

The sentences given in Appendix J were used to measure quality of natural

speech using MOS test. The sentences to measure natural speech were in 16-

bit linear pulse-code modulation (PCM) and were extracted from the speech

corpus. The TTS intelligibility tests are done using different methods including

DRT, MRT, SUS, and WER. The SUS method has an advantage of providing no

semantic contextual cues to the intelligibility of the individual words and hence it

is chosen for testing TTS intelligibility at sentence level and word level. The WER

is also used to measure intelligibility at word level. The quality of generated TTS

voices is measured using MOS test against the following factors:

understandability, pleasantness, pronunciation, and naturalness.

94

4.2.2.1 Semantically Unpredictable Sentences

The SUS test measures speech intelligibility in synthesised sentences that are

syntactically correct but semantically meaningless (Benoît et al., 1996). Five

sentences of different syntactic structure were constructed as recommended by

Benoît et al. (1996) and synthesised audio is played to the subject in a form of

mixed part-of-speech template like DET ADJ NOUN VERB ADJ (see Appendix

I.1). A good example of a SUS is “The model modal successful and the guide”.

To avoid learning effects, subjects listened to the sentences only once. An

additional three sentences were constructed and used in training session so that

participants were well aware of acoustic content of the audio. The participants

listened to the sentences synthesised by the developed synthesiser during the

testing session where they transcribed the synthetic utterances of the audio. The

participants wrote the sentences on a given questionnaire and those who have

unclear handwriting were asked to type on a computer. The percentage of correct

identifications is used as an intelligibility metric. The metric at word level is given

by:

𝑆𝑈𝑆𝑤 =
1

𝑆
∑

𝑤̂

𝑊

𝑆
𝑖=1 × 100% (4.6)

The metric at sentence level is given by:

𝑆𝑈𝑆𝑠 =
1

𝑆
∑ ŝ𝑆

𝑖=1 × 100% (4.7)

where 𝑤̂, 𝑊, 𝑠̂ and 𝑆 have the following meanings:

 𝑤̂ is the number of correctly identified words.

 𝑊 is the total number of words in a sentence.

 𝑠̂ is the number of correctly identified sentences.

 𝑆 is the total number of sentences.

95

4.2.2.2 Word Error Rate

A WER is a common metric used to measure the performance of an ASR or

machine translation system on word-level (Jurafsky & Martin, 2014). The WER is

used in subjective evaluation of intelligibility of TTS synthesis systems. The WER

is based on the minimum number of insertions, deletions and substitutions that

have to be performed to convert the generated text (or hypothesis) into the

reference text. The first step in calculating word error is to find the minimum edit

distance in words between the hypothesised and reference strings (Jurafsky &

Martin, 2014). The results of the calculations will be the minimum number of word

substitutions, word insertions, and word deletions necessary to match between

the correct and hypothesized strings. We have applied WER on five sentences

constructed by SUS test in the previous section. The intelligibility measure is

typically captured by the WER metric formulated as:

𝑊𝐸𝑅 =
𝑆+𝐼+𝐷

𝑁
× 100% (4.8)

Alternatively, SER is formulated as:

𝑆𝐸𝑅 =
𝑆𝑠

𝑁𝑠
× 100% (4.9)

where 𝑆, 𝐼, 𝐷 and 𝑁 have the following meanings:

 𝑆 is the number of word substitution errors.

 𝐼 is the number of word insertion errors.

 𝐷 is the number of word deletion errors.

 𝑁 is the total number of words.

 𝑆𝑠 is number of sentences with at least one word error.

96

 𝑁𝑠 total number of sentences.

The implementation of SER and WER is given as a python script in Appendix K.

The script receives a text file (as a parameter) that contains reference and

hypothesis sentences respectively. These sentences are separated by a carriage

return or line feed. The SER and WER results are printed on the terminal in

percentage notation.

4.2.2.3 Mean Opinion Score

The quality of speech is measured based on the categories; naturalness,

pleasantness, pronunciation, intelligibility, listening effort, flexibility, and similarity.

Evaluators rated the produced speech signal based on a five-point Likert scale

where 1 means “horrible” to 5 meaning “best”. A five-point Likert scale is chosen

to allow evaluators to give neutral answers. The MOS score is described below.

1. Bad means no meaning understood

2. Poor means effort required

3. Fair means moderate effort required

4. Good means no appreciable effort required

5. Excellent means no effort required

The mean of the responses is calculated to compute the MOS results. The

MOS is a performance metric applied to measure the quality of speech from

subjective evaluations and the metric is given by:

𝑀𝑂𝑆 = 𝑥̅ =
1

𝑛
∑ 𝑥𝑛

𝑖=1 (4.10)

where 𝑥 and 𝑛 have the following meanings:

97

 𝑥 is the score of the evaluator.

 𝑛 is the total number evaluators.

The value of 𝑛 is formulated as follows:

Eight subjects evaluate each synthetic voice and the highest possible score is

five. The default value of 𝑛 is the same as number of evaluators, hence 𝑛 = 8.

4.3 Evaluation Results and Analysis of the Developed Front-end LID

The data collected during the testing of the developed front-end LID was analysed

using descriptive statistics on a Microsoft Excel spreadsheet. The LID accuracy

can be affected by several factors including features, type of the employed

algorithm, target language, and the size of the evaluation and training data (Botha

& Barnard, 2012). The classifier models were tested on different n-gram features

to find the best features that can later be used for implementation of the system.

The MNB and SVM classifiers were used to find the best accuracy for those

features. The classifier models were built using a multiclass approach where each

class represents its language. The classifier models were trained and tested

using a 10-fold cross-validation on the same dataset of 3043 surnames of

different length. The main aim of the LID is to answer the research question: “Can

a computational system use a person’s surname to predict the identity of the first

language of that person?”

4.3.1 Kernel Parameter Selection

In order to calculate the optimum parameter selections, a parameter search

process must be used to select the optimal kernel parameter values, so that the

classifier can accurately discriminate unseen data (Chang & Lin, 2011). The

Cross Validation (CV) Parameter Selection is one of the classifiers in the WEKA

toolkit that searches the best model parameters on a given search interval for a

given cross validation (Kohavi, 1995). The SVMs can perform better with correct

98

values for the kernel parameters. The MNB and linear SVM do not require special

kernel parameters. The sigmoid SVM contains a gamma (𝜸) and coefficient (𝒓)

parameters that needed to be set. Hence, the CV Parameter Selection was

performed on positive gamma values of [0 to 20], and 𝜸 = 𝟎 was selected as the

best value for gamma. The value of coefficient parameter was selected as 𝒓 =

−𝟎. 𝟗𝟓 from the search interval of [-100 to 100]. We used the following recipe for

sigmoid SVM.

weka.classifiers.meta.CVParameterSelection -P "R -100.0 100.0

1.0" -P "G 0.0 20.0 1.0" -X 6 -S 1 -W

weka.classifiers.functions.LibSVM -- -S 1 -K 3 -D 3 -G 0.0 -R -

0.95 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -model

C:\Users\User\Documents\weka-3-8-0 -seed 1

The RBF SVM contains the gamma kernel parameter. The CV Parameter

Selection for RBF SVM was performed to find the value of gamma on the interval

[0 to 20], and 𝜸 = 𝟎 was selected as the best value. We used the following recipe

for RBF SVM.

weka.classifiers.meta.CVParameterSelection -P "G 0.0 20.0 1.0" -

X 6 -S 1 -W weka.classifiers.functions.LibSVM -- -S 1 -K 2 -D 3

-G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -model

C:\Users\User\Documents\weka-3-8-0 -seed 1

The polynomial SVM contains three kernel parameters, namely gamma,

coefficient and degree (𝒅). Gamma was searched on the interval of [0 to 20] and

𝜸 = 𝟎 was selected as the best value. The Coefficient was searched on the

interval [-100 to 100] and 𝒓 = 𝟎 was selected as the best value. The value for

degree parameter was searched on the interval [0 to 20] and 𝒅 = 𝟑 was selected

as the best value. We used the following recipe for polynomial SVM.

weka.classifiers.meta.CVParameterSelection -P "R -100.0 100.0

1.0" -P "G 0.0 20.0 1.0" -D "G 0.0 20.0 1.0" -X 6 -S 1 -W

weka.classifiers.functions.LibSVM -- -S 1 -K 1 -D 3 -G 0.0 -R

99

0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -model

C:\Users\User\Documents\weka-3-8-0 -seed 1

The parameter selection was performed on a 10-fold cross-validation. All the

support vector classification (SVC) experiments were performed using nu-SVC

because the results were better than that of C-SVC. The parameter selection for

larger numbers and nu parameter were not calculated because WEKA required

high computational costs and out of memory error was encountered on the low

computational power implementation platform used.

4.3.2 Multinomial Naive Bayes

The MNB model was built and evaluated on different character n-gram features.

Figure 4.1 shows the classification accuracy obtained using character n-grams of

size one up to five. The character unigrams (1-grams) achieved the lowest

accuracy of 56.23% that is very low because the unigram classification set

contained only the 26 letter English alphabet. The bigrams (2-grams) achieved

second highest accuracy of 68.62% while trigrams outperformed other n-gram

classification features with 69.34%. As shown in Figure 4.1, the trigrams (3-

grams) performed better than all other n-gram sizes. The accuracy starts to

decrease when n-gram size is further increased, and this is observed in most

studies in the literature, that the higher the n-gram is, the lower the accuracy.

100

Further tests were investigated by combining n-gram classification features. The

results on n-gram combinations for MNB classifier are shown in Figure 4.2 with

4-gram and 5-gram features resulting in the lowest accuracy of 63.42%. This is

because 4-gram and 5-gram features contain longer characters and cannot be

used to discriminate the whole dataset. The 1-gram to 3-gram features resulted

in accuracy of 69.64%; when adding 4-gram features the accuracy decreases to

69.54% and the accuracy further decreases to 69.24% when adding 5-grams.

The MNB achieved highest accuracy of 69.80% on 2-gram to 4-gram features.

Figure 4.1: Accuracy of MNB on a 10-fold cross validation

56.23

68.62 69.34

63.52

56.36

0

10

20

30

40

50

60

70

80

Unigram Bigram Trigram 4-gram 5-gram

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram)

101

4.3.3 SVM with Linear Kernel

The SVM performs best on a large amount of data. The robust SVM wrapper was

used to experiment with the feature sets on a linear kernel. The linear SVM

produced the lowest accuracy on unigrams and the accuracy further increased

on bigrams, reaching highest accuracy of 68.32%; then it decreased by 0.62%

on trigrams and further decreased on 4-gram and 5-gram achieving 55.73% (see

Figure 4.3). The decrease in accuracy was encountered when the features were

smaller in size and did not cover the whole feature space to make predictions on

new or unseen dataset. The bigrams and 5-grams were nearly the same, which

means the set of single characters and a 5-gram which was close to word level

performed very poorly on the dataset. As illustrated in Figure 4.4, the

classification features were mixed together and the accuracy reached above

70.00% on 2-3, 2-4, and 2-5 n-gram sets with 2-5 n-gram set having the higher

accuracy.

Figure 4.2: The MNB accuracy using combination of features on a 10-fold cross validation

67.73

69.64 69.54
69.24

69.77 69.80
69.34

68.45
67.99

63.42

60

62

64

66

68

70

72

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram range)

102

4.3.4 SVM with RBF Kernel

RBF kernel is most commonly used to classify non-linearly separable data at a

higher dimensional feature space. The RBF SVM produced accuracy of 61.12%

on unigrams and reached a higher peak on bigrams with accuracy of 68.81%

Figure 4.3: Accuracy of linear SVM on a 10-fold cross validation

55.77

68.32 67.70
62.64

55.73

0

10

20

30

40

50

60

70

80

Unigram Bigram Trigram 4-gram 5-gram

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram)

Figure 4.4: The linear SVM accuracy using combination of features on a 10-fold cross

validation

68.52

69.80 69.77 69.50
70.00 70.33 70.36

68.62
68.19

62.24

58

60

62

64

66

68

70

72

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram range)

103

(see Figure 4.5). When the number of n-grams increases, this results in a slight

decrease in accuracy. In most studies, trigrams perform well compared to other

n-grams (Fourie et al., 2014). In this research work, larger character n-gram size

has similar results with word unigram, since our data consists of single words.

Thus, this results in low accuracy.

The RBF SVM achieved the accuracy of 70.52% on 2-5 n-gram sets (see Figure

4.6). This shows that the use of kernel trick does increase the accuracy at a

certain feature level. The accuracy is above 69.00% at 1-2, 1-3, 1-4, 1-5, 2-3, 2-

4, and 2-5 n-gram sets; this can be further improved by using correct kernel

parameter 𝜸 (given in Equation 3.2).

Figure 4.5: Accuracy of RBF SVM on a 10-fold cross validation

61.12

68.81 67.56

61.19

53.96

0

10

20

30

40

50

60

70

80

Unigram Bigram Trigram 4-gram 5-gram

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram)

104

4.3.5 SVM with Sigmoid Kernel

The sigmoid SVM was trained according to Experiment 3 and achieved the lowest

accuracy of 45.15% on 5-grams (see Figure 4.7). This shows that 5-grams were

unable to correctly discriminate the classes or languages. The bigrams

outperformed other n-grams with an accuracy of 68.75%. The feature set was

increased to evaluate the sigmoid SVM on n-gram sets. As shown in Figure 4.8,

the n-gram sets 1-2, 1-3, 1-4, 1-5, 2-3, 2-4, and 2-5 performed well by reaching

above 69.00%, but the n-gram set 2-4 was the highest in accuracy.

Figure 4.6: The RBF SVM accuracy using combination of features on a 10-fold cross

validation

69.08
69.73 70.06 70.19 69.93

70.49 70.52

67.30 66.97

60.89

56

58

60

62

64

66

68

70

72

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram range)

105

Figure 4.7: Accuracy of sigmoid SVM on a 10-fold cross validation

60.27

68.75 67.33

59.65

45.15

0

10

20

30

40

50

60

70

80

Unigram Bigram Trigram 4-gram 5-gram

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram)

Figure 4.8: The sigmoid SVM accuracy using combination of features on a 10-fold cross

validation

69.37
69.96 69.93 69.60 69.70

70.42 70.39

67.50

66.12

59.68

54

56

58

60

62

64

66

68

70

72

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram range)

106

4.3.6 SVM with Polynomial Kernel

The polynomial SVM was evaluated and the accuracy was 51.36% on unigrams,

and 68.22% on bigrams. The bigrams outperformed other n-grams with a

difference of 0.39% for trigrams, 7.65% for 4-grams, and 20.01% for 5-grams as

shown in Figure 4.9. The polynomial SVM was further evaluated on combination

of n-gram. Most sets reached accuracy of above 68%, but the n-gram set 2-5 was

the highest with accuracy of 70.72% so far (see Figure 4.10).

Figure 4.9: Accuracy of polynomial SVM on a 10-fold cross validation

51.36

68.22 67.83

60.57

48.21

0

10

20

30

40

50

60

70

80

Unigram Bigram Trigram 4-gram 5-gram

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram)

107

4.3.7 Final Model

The cross-validation resampling method assists in selecting the best model on

unseen data. The polynomial SVM outperformed other algorithms on unseen

data. Thus, we further built the final model using the polynomial SVM on the

complete dataset. Figure 4.13 shows the results of a polynomial SVM on a 10-

fold cross-validation in terms of precision, recall and F-score measurements.

Figure 4.14 shows the results of a polynomial SVM in terms of precision, recall

and F-score measurements for the final model. The results of the final model

were higher than that with cross-validation because the model is built on known

data. On average, the precision of the final model increased from 71.30% to

Figure 4.10: The polynomial SVM accuracy using combination of features on a 10-fold cross

validation

68.85

70.16 69.77 70.10 69.83
70.49 70.72

67.07 66.87

60.86

54

56

58

60

62

64

66

68

70

72

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram range)

108

81.20%. Recall increased from 70.70% to 80.80% while F-score increased from

70.70% to 80.80%.

Figure 4.11: Precision, recall and F-score for the 10-fold cross validation

0

10

20

30

40

50

60

70

80

90

100

Sepedi Xitsonga Tshivenda Average

P
e
rc

e
n

ta
g

e

Languages

Precision Recall F-score

Figure 4.12: Precision, recall and F-score results for the final model

0

10

20

30

40

50

60

70

80

90

100

Sepedi Xitsonga Tshivenda Average

P
e
rc

e
n

ta
g

e

Languages

Precision Recall F-score

109

The final model resulted in an increase of accuracy from 70.72% to 80.77%. The

errors of the final model decreased by 8.38% (see Figure 4.15). This accuracy

was found to be reasonably adequate to make predictions of unknown dataset.

As a result, this model was implemented on the prototype system for automatic

LID feature.

4.4 Evaluation Results and Analysis of the Developed TTS

The data collected during the evaluation of the system was analysed using

descriptive statistics on a Microsoft Excel spreadsheet. The main aim of the TTS

synthesis system is to answer the research question: Can a computational

system produce an appropriate pronunciation of indigenous proper names?

Figure 4.13: Accuracy and RMSE using polynomial SVM for final model and 10-fold cross

validation

80.77

35.8

70.72

44.18

0

10

20

30

40

50

60

70

80

90

100

Accuracy RMSE

P
e
rc

e
n

ta
g

e

Performance Metrics

Final model 10-fold cross validation

110

4.4.1 Test for Intelligibility

Five sentences were constructed and eight evaluators performed the evaluation

for intelligibility of each item of synthetic speech. A total of 5 × 8 = 40 sentences

per language were used during the evaluation. The total number of words differed

per language. The total number of words for Sepedi, Xitsonga, Tshivenda, and

isiNdebele were 312, 240, 248, and 176 respectively. Figure 4.16 shows the

results of SUS method at sentence level and word level. The SUS accuracy at

word level is higher than those at sentence level. The SUS accuracy at word level

is above 90% for all the languages, with isiNdebele outperforming other

languages at an accuracy of 95%. These results are quite adequate for under-

resourced languages. Hence, from Figure 4.16 we see that the developed system

is quite intelligible.

Figure 4.14: The SUS accuracy at sentence and word level for intelligibility of the developed

system.

45

60

67.5

77.5

91.03 93.33 91.94
94.89

0

10

20

30

40

50

60

70

80

90

100

Sepedi Xitsonga Tshivenda isiNdebele

A
c
c
u

ra
c

y
(%

)

Languages

Sentence level Word level

111

The script in Appendix K was used to calculate both sentence and word error

rate. The SER is computed by counting the sentences which contain WER of

above zero. We have conducted error rates on SUS. These error tests were

conducted on SUS synthesised by the developed system and results are given

in Figure 4.17. We see that error rates significantly decrease from sentence to

word level. As such, WER shows errors found on each tested word. Sepedi

contained a total of 312 words while Xitsonga, Tshivenda, and isiNdebele

contained a total of 240, 248, and 176 words respectively. Sepedi obtained higher

WER of 14.82% compared to other languages. This may be caused by the

familiarity of the speaker with the language since the speaker’s geographical

location is populated with Setswana speaking people. IsiNdebele obtained good

results on both SER and WER. From these results, we see that all the built

synthetic voices are intelligible.

Figure 4.15: The SER and WER for intelligibility of the developed system.

55

40

30
27.5

14.82

5.91
8.29

5.12

0

10

20

30

40

50

60

Sepedi Xitsonga Tshivenda isiNdebele

P
e
rc

e
n

ta
g

e
(%

)

Languages

SER WER

112

4.4.2 Test for Naturalness

The system is evaluated for naturalness using the MOS test discussed in Section

4.2.2.3. The results in Figure 4.18 shows the synthesised speech compared to

the natural speech. Therein, the isiNdebele language synthesised speech

achieved higher MOS than other synthesised voices. The difference in MOS from

the isiNdebele language synthesised speech to the isiNdebele natural speech is

0.1. This means that isiNdebele language synthesised speech is close to very

natural sounding. The Sepedi language synthesised speech obtained the MOS

difference of 1.0 from natural voice and that means the Sepedi synthesised voice

was found to be more natural sounding. The Tshivenda language synthesised

speech achieved a gap of 0.5 from natural speech and that means Tshivenda

synthesised speech is found to be natural. The Xitsonga language synthesised

speech obtained MOS score of 4.6 which is 0.4 away from natural speech. This

means the Xitsonga synthesised speech is found to be natural. These results are

found to be acceptable for these training datasets and test sentences.

Figure 4.16: Results of test for naturalness of speech samples.

3.9

4.6 4.5

4.94.9 5 5 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sepedi Xitsonga Tshivenda isiNdebele

M
O

S

Languages

Synthesised Speech Natural Speech

113

4.4.3 Test for Correct Pronunciation

The system was evaluated for correct pronunciation using the MOS test. Figure

4.19 shows the evaluation results of the synthesised speech and natural speech.

The isiNdebele language synthesised speech obtained MOS score of 4.8 which

is 0.2 away from natural voice. This means isiNdebele language synthesised

speech pronounced words correctly. The Sepedi language synthesised speech

obtained MOS score of 3.6 which is lower than the others. This means that some

of the words were not pronounced the way evaluators expected. The Xitsonga

and Tshivenda languages synthesised speech obtained at least MOS score of

4.3, which means that their pronunciation was found to be excellent.

Figure 4.17: Results of test for pronunciation of speech samples.

3.6

4.5
4.3

4.8
5 5 5 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sepedi Xitsonga Tshivenda isiNdebele

M
O

S

Languages

Synthesised Speech Natural Speech

114

4.4.4 Test for Pleasantness

The MOS test was used to evaluate pleasantness of the system. Figure 4.20

illustrates the comparison of the synthesised speech and natural speech. The

isiNdebele language synthesised speech obtained MOS score of 4.9 which is 0.1

away from natural speech. This means the isiNdebele language synthesised

speech was very pleasant. The Sepedi language synthesised speech obtained

MOS score of 3.9 which means the speech was found to be pleasant to listen to.

The Tshivenda and Xitsonga languages synthesised speech obtained an MOS

score of above 4.3 which means the synthesised speech was found to be

pleasant.

Figure 4.18: Results of test for pleasantness of speech samples.

3.9

4.6

4.3

4.8
4.9

5
4.9

5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sepedi Xitsonga Tshivenda isiNdebele

Synthesised Speech Natural Speech

115

4.4.5 Test for Understandability or Listening Effort

The system was evaluated for required listening effort needed to understand the

synthesised speech (see Figure 4.21). The MOS test was used to test

understandability with isiNdebele language obtaining MOS score of 4.9 which

means that no effort was required to understand the synthesised speech. Sepedi,

Tshivenda, and Xitsonga obtained MOS scores of 4.1, 4.3 and 4.4 respectively;

this means that no appreciable effort was required to understand the synthesised

speech.

4.4.6 Test for the Overall Quality

The quality for the overall system was evaluated using MOS test. Figure 4.22

shows the results of the overall quality between synthesised and natural speech.

The Sepedi and Tshivenda synthesised speeches achieved MOS score of 4.1

Figure 4.19: Results of test for understandability of speech samples.

4.1
4.4 4.3

4.94.8
5 5 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sepedi Xitsonga Tshivenda isiNdebele

M
O

S

Languages

Synthesised Speech Natural Speech

116

and 4.3 respectively which means the speech quality was found to be acceptable.

Tshivenda and isiNdebele synthesised speeches obtained MOS score of 4.6 and

4.8 respectively which means the speech quality was found to be excellent.

4.4.7 Comparison with other Studies

The Xitsonga TTS synthesis system developed by Baloyi (2012) was the first TTS

developed for Xitsonga in South Africa. Figure 4.23 shows the evaluation results

of Xitsonga TTS developed by Baloyi (2012) and our Xitsonga TTS results. We

compared these systems because they both use HMMs as speech synthesiser

for the same language. The gap in the MOSs from the synthetic speech to the

natural speech decreased from 1.1 to 0.4 (64%) in naturalness. The MOS score

for pleasantness decreased from 1.4 to 0.4 (71%), while MOS score for

Figure 4.20: Results of test for overall quality of speech samples.

4.1

4.6

4.3

4.8
5 5 5 5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Sepedi Xitsonga Tshivenda isiNdebele

M
O

S

Languages

Synthesised Speech Natural Speech

117

understandability decreased from 1.1 to 0.6 (46%). The developed system

reduced the gap between natural speech and synthesised speech by more than

46%.

4.5 Evaluation Results and Analysis of the Complete System Usability

The evaluators tested the functionality and usability of the developed system. The

last section of the questionnaire in Appendix H contains the evaluation sheet in

Figure 4.21: Subjective 5-scale MOS of Xitsonga TTS

3.9
3.6

3.9

4.6 4.6
4.4

5 5 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Naturalness Pleasantness Understandability

M
O

S

Lanuages

HMM-based Xitsonga TTS from (Baloyi, 2012)

HMM-based Xitsonga TTS (current)

Natural speech (16-bit PCM)

118

terms of MOS test. After the evaluators familiarised themselves with the system

on the website they rated the following review statements:

Statement 1: The buttons are visible and easy to find.

All the evaluators strongly agreed with this statement.

Statement 2: Languages can be switched easily.

All the evaluators strongly agreed with this statement.

Statement 3: Text is visible and clear.

All the evaluators strongly agreed with this statement.

Statement 4: Layout and colours are displayed perfectly.

All the evaluators strongly agreed with this statement.

Statement 5: The application is difficult to understand.

Most of the evaluators strongly disagreed with this statement, but 15% of them

disagreed, with 33% (of 15%) coming from Xitsonga and Tshivenda speakers

and 17% (of 15%) coming from isiNdebele and Sepedi speakers (see Figure

4.24).

Figure 4.22: The fifteen percent of the evaluators disagreed that the application is difficult.

17%

33%33%

17%

Sepedi Xitsonga Tshivenda isiNdebele

119

Statement 6: I can use the application on my own.

Most of the evaluators strongly agreed to use the application on their own but

15% of them agreed. Figure 4.25 shows the 15% of evaluators who agreed per

language. Most speakers who agreed to use the application on their own were

Tshivenda speakers.

Statement 7: I felt very confident using the application.

All the evaluators strongly agreed with this statement.

Statement 8: I would recommend this application to someone else.

All the evaluators strongly agreed with this statement.

Statement 9: I would frequently use this application.

Most of the evaluators strongly agreed to use this application and only 9% of

them gave neutral answers.

Figure 4.23: The fifteen percent of the evaluators agreed to use the system on their own

20%

20%

40%

20%

Sepedi Xitsonga Tshivenda isiNdebele

120

Statement 10: This application can help me learn pronunciation of new

languages.

All the evaluators strongly agreed with this statement.

Statement 11: Would you recommend these voices to be integrated in future

devices?

All the evaluators strongly agreed with this statement.

4.6 Summary

We have seen from the LID results that the higher the number of different

languages or classes, the less the LID accuracy will be achievable. In other

words, the number of classes is inversely proportional to classification accuracy.

We have explained the LID results from various n-gram features. We observed

that n-gram set of two to five obtained better results on polynomial SVM. The final

model of the LID was built on the entire dataset. We have explained the

evaluation metrics and procedure taken to evaluate the speech generation

phase. Subjective perception listening tests were conducted using 32 students

and obtained good results after applying MOS test. The usability of the system

on the website was evaluated and good results were observed. The next chapter

provides a conclusion, summary of our findings and recommendations for future

work.

121

5 CHAPTER 5: DISCUSSIONS

This chapter explains the discussions of the results obtained in Chapter 4. The

first section discusses the comparison of the classifiers. It compares the results

of the classifiers on certain n-gram features. The second section discusses the

speech synthesiser while the third section discusses system usability. And lastly,

the last section discusses summary of the findings.

5.1 Classifier Model Comparison

We combine the results of the classifiers on 1-gram to 5-gram features in Figure

5.1 from Chapter 4. We observe the larger n-gram size decreases classification

accuracy on both the MNB and SVM kernels. The unigrams obtained better

accuracy of 61.12% on RBF SVM, compared to other algorithms. The bigrams

obtained accuracy of 68.00% on average using all the classification algorithms.

This shows that the bigrams were perfect to discriminate between the languages

(classes) compared to the unigrams. The trigrams on MNB performed better than

SVM with an accuracy of 69.34%. This shows that MNB classify well on trigrams

compared to other n-gram sizes. The accuracy decreased on 4-gram and 5-gram

for both MNB and SVM. This shows that trigrams were the turning point on our

dataset

We combine the results of the classifiers in Figure 5.2 from Chapter 4. The

combination of unigram and bigram resulted in accuracy of 69.37% on sigmoid

SVM. We added trigrams, and polynomial SVM achieved accuracy of 69.96%.

When 4-grams were added, the accuracy went up to 70.09% by RBF SVM. The

5-grams were added, but RBF SVM still obtained higher accuracy of 70.19%, and

MNB performed low at 69.24%. The unigrams were removed and left with 2- to

5-grams. The MNB did not perform well. However, polynomial SVM produced the

best results with 70.72% accuracy, which was found to be the highest result when

compared to all other results.

122

Figure 5.1: Accuracy comparison on a 10-fold cross validation

40

45

50

55

60

65

70

75

Unigram Bigram Trigram 4-gram 5-gram

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram)

POLYNOMIAL SVM SIGMOID SVM RBF SVM

LINEAR SVM MNB

Figure 5.2: Accuracy comparison using combination of features on a 10-fold cross

validation

54

56

58

60

62

64

66

68

70

72

1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5

A
c
c
u

ra
c

y
 (

%
)

Classification Features (N-gram range)

POLYNOMIAL SVM SIGMOID SVM RBF SVM

LINEAR SVM MNB

123

5.2 Text-to-Speech Synthesiser

We can see from the results that the developed system obtained high accuracy

from the SUS test at word level in Figure 4.16. This shows that the developed

system is intelligible enough to synthesise new words without the context of the

sentence. The WER rated below 10% for Xitsonga, Tshivenda and isiNdebele,

but Sepedi was an outlier with 14.82% of errors in Figure 4.17. This outlier is

caused by the accent of the Sepedi speaker with other language families of

Sepedi. We nonetheless find that the results show that the system is intelligible

enough to synthesise new words.

5.3 System Usability

We see from the results in Section 4.5 that most evaluators highly rated the user

interface and functionality of the application moving from one language to

another. All of the evaluators were confident after using the application and

agreed that the application is not difficult. They were able to play a synthesised

speech on their own without any help from someone. Some of the evaluators

gave neutral answers regarding if they would frequently use the application. The

evaluators agreed to that this application is helpful towards learning new

languages. Therefore, this satisfies the last objective.

5.4 Summary of the Findings

As discussed in chapter three and four, it was found that all the research

objectives were satisfied. We now try to answer the following research questions:

The first research question was formulated as follows: Can a computational

system use a person’s surname to predict the identity the first language of that

person?

To answer this research question, we compared the performance of MNB to SVM

kernels in the previous chapter. We showed that the features or n-grams are

important factors that can affect classification accuracy of text-based LID. Four

indigenous official languages of South Africa were employed for the study. These

124

languages belong to a number of closely related groups of languages. This

complicated the classification between languages. Two machine-learning

classifiers were contrasted in this study:

 The MNB, which obtained good results in previous studies of text

classification.

 The SVMs, which are more robust and complex classifiers. These

classifiers perform better when fitted with correct parameters.

Character n-grams were used as classification feature set, since the LID training

dataset contains single words; hence, word n-grams were found unsuitable for

this task. The string-to-word filter in WEKA was used to convert the dataset into

feature vectors, since SVM do not support string attributes. The classifiers were

deployed on unigrams, bigrams, trigrams, 4-grams and 5-grams. The trigrams

yielded good results on both MNB and SVMs. We further expanded the feature

set to contain a mixture of n-grams of different sizes and tested them on both

classifiers. The MNB achieved an accuracy of 69.34% on n-gram sets of two to

five grams, which acts as our baseline classifier. The polynomial SVM obtained

higher classification results of 70.72% accuracy on n-gram sets of two to five

grams. The final model was built on this feature set, using the polynomial SVM.

The classification accuracy of the final model was above 80%. In addition, the

classification errors decreased by 8.38%. This higher accuracy of 80% is enough

for text-based LID of under-resourced languages of South Africa. Since

polynomial SVM outperformed the baseline MNB (70.72% > 69.34%), we can

significantly conclude with 70.72% accuracy that a computational system can

reasonably use a person’s surname to identify the first language of that person.

The second research question was formulated as follows: Can a computational

system produce an appropriate pronunciation of indigenous proper names?

To answer this research question, we have developed the four baseline TTS

synthesis systems which were evaluated on correct pronunciation, naturalness,

pleasantness, understandability, intelligibility, and overall quality of synthesised

speech. The subjective listening tests were conducted. The participants gave

125

good results based on their opinions. The MOS test was used to evaluate the

system and good results were observed, which showed that the correct

pronunciation was found to be excellent. With these high results, we can

significantly conclude with a minimum MOS of 3.6 that a computational system

can produce an appropriate pronunciation of indigenous proper names.

Therefore, the developed pronunciation assistant can help reduce the surname

pronunciation problem for the indigenous official languages of South Africa as

experienced by non-native speakers.

126

6 CHAPTER 6: CONCLUSIONS

6.1 Introduction

This chapter summarises the conducted experimental research including the

limitations, scientific contribution, future work, and research questions. The layout

is as follows:

 Section 6.2 discusses research limitations and challenges.

 Section 6.3 discusses some of the contributions of this research work to

the scientific world.

 Section 6.4 provides recommendations and future work directions.

6.2 Limitations and Challenges

The study was conducted on a 32-bit Ubuntu desktop with two gigabytes of RAM.

The deep neural network techniques were not used because they require

massive computation resources. The two gigabytes RAM and 32-bit processor

was not enough to implement deep neural networks. The search for SVM

parameters was limited to 10 because the higher numbers resulted with a

computer not responding.

We have encountered challenges when creating the isiNdebele and Xitsonga

synthetic voices. The MARY TTS transcription aligner uses a pipe “|” character

to align phones. Since our phone sets contained pipe character, the transcription

tool produced an error while compiling a new voice. The solution was to use an

alternative notation to phones that contain a pipe character (see Appendix B for

isiNdebele and Xitsonga phone set).

The isiNdebele LID feature was not implemented due to inadequate data which

could cause the results to be biased. However, isiNdebele TTS synthesis was

implemented successfully.

We encountered challenges when recruiting people to participate and we used

maximum number of 32 people who agreed to participate. Hence, we evaluated

127

each system with groups of 8 people (8x4 systems). Similarly, 10 people were

used in the studies by Gahlawat et al. (2014) and Dagba and Boco (2014).

Therefore, it is sufficient to obtain good results when evaluating a speech

synthesiser with this number of participants.

6.3 Contributions of the Study

6.3.1 Language-specific Applications

 The developed LID can be used in any language-specific system to

classify surnames.

 The developed TTS synthesis system can be embedded in any language-

specific applications to provide synthesised speech.

6.3.2 Pre-processing Files

In the initial phase, when pre-processing was performed on the collected data, a

few scripts were developed that can help other researchers. Examples are:

 A bash script to prepare and install required programs for the MARY TTS

synthesis system (see Appendix A).

 A python script to generate a pronunciation dictionary compatible with

MARY TTS is given in Appendix C.

 Java file for patching MARY TTS to support LID is given in Appendix D.

 The source code of the Android application is given in Appendix E.

 A python script to calculate WER and SER is given in Appendix K.

6.3.3 Importance of the Developed System

 The system was deployed on the internet for further evaluations on “real-

world” data. Moreover, this system may be used by anyone ranging from

visually impaired people to students in schools.

 The system may help people learning pronunciation of surnames in

Sepedi, Xitsonga, Tshivenda, and isiNdebele.

128

 The system may provide a platform for supporting new research in the field

of ICT for language learning and teaching of South African official

languages.

 A detailed API of the developed system is given in the Methodology

chapter. The API may be utilised by any researcher to use the functions of

the developed system.

 A website of the system was deployed and may be used in any area of

speech technology or educational technologies.

6.3.4 Speech Synthesis Results

The Xitsonga synthetic voice was compared to the HMM-based Xitsonga TTS

synthesis system developed by Baloyi (2012). We have observed that our system

improved naturalness, pleasantness, and understandability by 64%, 71% and

46%. These high results are found to be excellent for these under-resourced

languages and their training data.

6.3.5 Common Dataset

Currently there are no common datasets for comparing text-based LID

performance on under-resourced languages.

6.4 Future Work and Recommendations

6.4.1 Machine-learning Phase

The observed LID accuracies can be increased by deploying other sophisticated

machine-learning algorithms such as DNN (van den Oord et al., 2016). In

addition, the training data for text-based LID can be increased to cover most

surnames.

This study can be further expanded by:

129

 covering classification of hyphenated (or so-called double-barrelled)

surnames (e.g. Sefara-Dzambukeri);

 including classification of multilingual surnames (e.g. Baloyi);

 including both first name and last name (e.g. Mathapelo Alice Sefara);

 including classification of words in general sentences.

The isiNdebele LID feature can be implemented by further obtaining enough

textual corpus.

6.4.2 Speech Synthesis Phase

 The text analysis phase can be further enhanced to normalise other

classes of input data elements such as numbers, currency, money and

other non-standard words to solve normalisation problems. This phase

was not fully implemented since the study is focused on surnames.

 The EHMM labeller was used to automatically label phones to their

corresponding utterances. Hand-labelling can be used to manually verify

labels even though it requires much linguistic expertise.

 Incorporating prosody into the system can be optimised to increase the

quality of synthesised speech.

 The SPSS systems suffer from poor quality caused by the inadequacy of

acoustic modelling (e.g. trajectory HMM), limitations of the vocoder (e.g.

STRAIGHT), and over-smoothing of parameter generation (e.g. global

variance). These can be enhanced by applying recent advanced deep

learning algorithms to replace HMMs.

 Additional under-resourced languages can be included to expand the

coverage.

 Sepedi synthetic voice performed low compared to other languages and

this can be improved by using a professional speaker who is fluent in

Sepedi.

 The evaluation of the speech synthesiser can further be evaluated with

more number of people and more number of sentences.

130

6.5 Final Remarks

This study presented an automatic pronunciation assistant system that

implemented machine-learning algorithm and speech synthesis in Sepedi,

Tshivenda, Xitsonga and isiNdebele. The automatic pronunciation assistant

synthesised speech that is rich in quality. A HMM-based method was used for

implementation of the developed system. Although it is commonly known that this

method does not produce high quality synthesised speech as compared to unit

selection-based systems, this method is very flexible, efficient, and requires less

training data. Furthermore, this method offers a room for adaptation and

development of TTS voices from under-resourced languages.

131

LIST OF PUBLICATIONS

Sefara, T.J., Manamela, M.J. & Modipa, T.I., 2017. Web-based automatic

pronunciation assistant. In Southern Africa Telecommunication Networks and

Applications Conference (SATNAC). Barcelona, pp. 112-117.

Mokgonyane, T.B., Sefara, T.J., Manamela, P.J., Manamela, M.J. & Modipa, T.I.,

2017. Development of a speech-enabled basic arithmetic m-learning application

for foundation phase learners, In 2017 IEEE AFRICON, Cape Town, pp. 794-799.

Malatji, P.T., Manamela, M.J. & Sefara, T.J., 2017. Second language learning

through accented synthetic voices. In South Africa International Conference on

Educational Technologies (SAICET). Pretoria, AARF, pp. 106-116.

Sefara, T.J., Manamela, M.J. & Malatji, P.T., 2016. Text-based language

identification for some of the under-resourced languages of South Africa. In 3rd

International Conference on Advances in Computing and Communication

Engineering (ICACCE-2016). Durban, IEEE, pp. 303-307.

Sefara, T.J. & Manamela, J.M., 2016. The development of local synthetic voices

for an automatic pronunciation assistant. In Southern Africa Telecommunication

Networks and Applications Conference (SATNAC). George, pp. 142-146.

Mokgonyane, T.B., Sefara, T.J., & Manamela, M.J., 2016. Speech-enabled

applications for foundation phase. In Southern Africa Telecommunication

Networks and Applications Conference (SATNAC). Work-in-progress, George, pp.

94-95.

Sefara, T.J., Manamela, M.J. & Malatji, P.T., 2016. Applying Speech Synthesis to

Basic Mathematics as a Language. In South Africa International Conference on

Educational Technologies (SAICET). Pretoria, AARF, pp. 243-253.

Malatji, P.T., Manamela, M.J. & Sefara, T.J., 2016. Creating Accented Text-To-

Speech English Voices to Facilitate Second Language Learning. In South Africa

International Conference on Educational Technologies (SAICET). Pretoria, AARF,

pp. 234-242.

132

Sefara, T.J., & Manamela, M.J., 2015. Towards Development of an Automatic

Pronunciation Assistant. In Southern Africa Telecommunication Networks and

Applications Conference (SATNAC). Work-in-progress, Hermanus, pp. 15-16.

133

APPENDIX A: INSTALLATION GUIDE AND PATH VARIABLES – install.sh

The following script was used to install all packages and libraries on the terminal.

More installation details are provided by software vendor and can also be found

on the world wide web. Ubuntu 14.04 LTS 32-bit was used for this research

project. All the software packages were downloaded and saved to the directory

/voice/sources/. The installations provided below are mainly guided by the

instructions on MARY TTS voice import tutorial on GitHub1.

#!/bin/bash
sudo apt-get update
sudo mkdir /voice
sudo chown -R $USER /voice/
sudo apt-get install build-essential git mc libc6-dev libx11-dev
libncurses5-dev sox tcl-snack g++ python3-dev openjdk-8-jdk
#Apache-maven
cd /voice/sources
tar xf apache-maven-3.3.9-bin.tar.gz -C /voice/soft/
mv /voice/soft/apache-maven-3.3.9 /voice/soft/maven
#HTK, HDecode and HTS
tar xf HTK-3.4.1.tar.gz
tar xf HDecode-3.4.1.tar.gz
mkdir hts
tar xf HTS-2.2_for_HTK-3.4.1.tar.bz2 -C hts
cd htk
patch -p1 -d . < ../hts/HTS-2.2_for_HTK-3.4.1.patch
./configure --prefix=/voice/soft/hts
make all hdecode
make install install-hdecode
cd ../
#HTS engine
tar xf hts_engine_API-1.05.tar.gz
cd hts_engine_API-1.05
./configure --prefix = /voice/soft/hts_engine
make
make install
cd ../
#Edinburgh Speech tools
tar xf speech_tools-2.4-release.tar.gz
cd speech_tools/
./configure
make
make test
cd ../
#Festvox
tar xf festvox-2.7.0-release.tar.gz
cd festvox/
./configure
make
cd ../
#Festival
tar xf festival-2.4-release.tar.gz
cd festival/

1 Available at: https://github.com/marytts/marytts/wiki/VoiceImportToolsTutorial

134

./configure
make
cd ../
#SPTK
tar xf SPTK-3.6.tar.gz
cd SPTK-3.6/
./configure --prefix=/voice/soft/SPTK
make
make install
cd ../
#Praat
mkdir /voice/soft/praat
tar xf praat6014_linux32.tar.gz -C /voice/soft/praat/
Path environment variables: alternatively these variables can be appended to
the .bashrc file located at /home/$USER/.bashrc
export HTSDIR=/voice/soft/hts
export FESTVOXDIR=/voice/sources/festvox
export FESTIVALDIR=/voice/sources/festival
export ESTDIR=/voice/sources/speech_tools
export SPTKDIR=/voice/soft/SPTK
export HTSEngine=/voice/soft/hts_engine
export MAVEN=/voice/soft/maven
export PATH=$PATH:$ESTDIR/bin:$ESTDIR/include:$ESTDIR/lib:$FESTVOXDIR:$HTSDIR/bin
 :$HTSEngine/bin:$ESTDIR/main:$FESTIVALDIR/bin:$SPTKDIR/bin:$MAVEN/bin

#Mary TTS and EHMM labeller
git config global http.postBuffer 2M
git clone https://github.com/marytts/marytts.git
#Alternatively, if the above command clones different version of MARY TTS
#then the source code for MARY TTS version 5.2 can be manually
#downloaded and extracted from GitHub at web address:
#https://github.com/marytts/marytts/archive/v5.2.tar.gz
cd marytts/lib/external/ehmm
make
export EHMM=/voice/sources/marytts/lib/external/ehmm/bin
cd ../
./check_install_external_programs.sh check
#Results: should display OK.
cd ../../
mvn install
#Results: A new folder called target was created, it contains the MARY TTS client and
voice builder located at /voice/sources/marytts/target/.

export MARYTTS=/voice/sources/marytts/target/marytts-builder-5.2-SNAPSHOT/bin

135

APPENDIX B: PHONE SET FILES

B1: Sepedi phone set – allophone.nso.xml

<allophones name="sampa" xml:lang="nso"
 features="vlng vheight vfront vrnd ctype cplace cvox casp">

 <silence ph="_"/>
 <!-- Vowels -->
 <vowel ph="i" vlng="s" vheight="1" vfront="1" vrnd="-"/> <!-- dira -->
 <vowel ph="u" vlng="s" vheight="1" vfront="3" vrnd="+"/> <!-- Pula -->
 <vowel ph="I" vlng="s" vheight="2" vfront="2" vrnd="-"/> <!-- tsela -->
 <vowel ph="E" vlng="s" vheight="3" vfront="1" vrnd="-"/> <!-- rema -->
 <vowel ph="O" vlng="s" vheight="3" vfront="3" vrnd="+"/> <!-- poo -->
 <vowel ph="a" vlng="s" vheight="4" vfront="1" vrnd="-"/> <!-- rata -->
 <vowel ph="U" vlng="s" vheight="2" vfront="2" vrnd="+"/> <!-- motho -->

 <!-- Stop consonants -->
 <consonant ph="p_h" ctype="s" cplace="l" cvox="0" casp="+"/> <!-- phela -->
 <consonant ph="p_>" ctype="s" cplace="l" cvox="0"/> <!-- pela -->
 <consonant ph="t_h" ctype="s" cplace="a" cvox="0" casp="+"/> <!-- thapo -->
 <consonant ph="t_>" ctype="s" cplace="a" cvox="0"/> <!-- topa -->
 <consonant ph="k_h" ctype="s" cplace="v" cvox="-" casp="+"/> <!-- Khudu -->
 <consonant ph="k_>" ctype="s" cplace="v" cvox="0"/> <!-- kudu -->
 <consonant ph="tl_>" ctype="s" cplace="a" cvox="-"/> <!-- tla -->
 <consonant ph="tl_h" ctype="s" cplace="a" cvox="-" casp="+"/><!--tlhabo -->

 <!-- Affricative consonants -->
 <consonant ph="tS_>" ctype="a" cplace="a" cvox="0"/> <!-- tšaka -->
 <consonant ph="tS_h" ctype="a" cplace="a" cvox="0" casp="+"/><!--tšhaba-->
 <consonant ph="ts_>" ctype="a" cplace="a" cvox="0"/> <!-- tsela -->
 <consonant ph="ts_h" ctype="a" cplace="a" cvox="0" casp="+"/><!--tshadi-->
 <consonant ph="kx" ctype="a" cplace="v" cvox="-"/> <!-- kgama -->
 <consonant ph="ps_>" ctype="a" cplace="a" cvox="-"/> <!-- psila -->
 <consonant ph="ps_h" ctype="a" cplace="a" cvox="0" casp="+"/><!--pshio-->
 <consonant ph="pS_h" ctype="a" cplace="p" cvox="0" casp="+"/> <!-- pšhatla-->
 <consonant ph="d_0Z" ctype="a" cplace="a" cvox="+"/> <!-- ja -->

 <!-- Fricative consonants -->
 <consonant ph="f" ctype="f" cplace="b" cvox="-"/> <!-- fofa -->
 <consonant ph="s" ctype="f" cplace="a" cvox="-"/> <!-- sesadi -->
 <consonant ph="S" ctype="f" cplace="a" cvox="-"/> <!-- šala -->
 <consonant ph="h" ctype="f" cplace="g" cvox="-"/> <!-- hema -->
 <consonant ph="h\" ctype="f" cplace="g" cvox="+"/> <!-- lehodu -->
 <consonant ph="K" ctype="f" cplace="a" cvox="-"/> <!-- hlaba -->
 <consonant ph="G" ctype="f" cplace="v" cvox="+"/> <!-- goga -->
 <consonant ph="B" ctype="f" cplace="l" cvox="+"/> <!-- baba -->
 <consonant ph="p\s" ctype="f" cplace="l" cvox="0"/> <!-- lefsifsi -->
 <consonant ph="p\S" ctype="f" cplace="l" cvox="-"/> <!-- Bofša -->
 <consonant ph="BZ" ctype="f" cplace="l" cvox="+"/> <!-- bjala -->

 <!-- Nasal consonants -->
 <consonant ph="m" ctype="n" cplace="l" cvox="0"/> <!-- ema -->
 <consonant ph="n" ctype="n" cplace="a" cvox="0"/> <!-- nama -->
 <consonant ph="J" ctype="n" cplace="p" cvox="0"/> <!-- nyaka -->
 <consonant ph="N" ctype="n" cplace="v" cvox="0"/> <!-- ngwana -->
 <consonant ph="m_j" ctype="n" cplace="b" cvox="0"/> <!-- myemyela -->

 <!-- Approximant consonants (semivowels) -->
 <consonant ph="r" ctype="r" cplace="a" cvox="0"/> <!-- rata -->
 <consonant ph="j" ctype="r" cplace="p" cvox="0"/> <!-- ya -->
 <consonant ph="w" ctype="r" cplace="v" cvox="+"/> <!-- wa -->

136

 <!-- Liquid consonants -->
 <consonant ph="l`" ctype="l" cplace="a" cvox="0"/> <!-- dira -->
 <consonant ph="l" ctype="l" cplace="a" cvox="0"/> <!-- lala -->
</allophones>

B2: Tshivenda phone set – allophone.ven.xml

<allophones name="sampa" xml:lang="ven"
 features="vlng vheight vfront vrnd ctype cplace cvox casp cpal">

 <silence ph="_"/>
 <!-- Vowels -->
 <vowel ph="i" vlng="s" vheight="1" vfront="1" vrnd="-"/> <!-- lisa -->
 <vowel ph="u" vlng="s" vheight="1" vfront="3" vrnd="+"/> <!-- luma -->
 <vowel ph="E" vlng="s" vheight="3" vfront="1" vrnd="-"/> <!-- rema -->
 <vowel ph="O" vlng="s" vheight="3" vfront="3" vrnd="+"/> <!-- mboho -->
 <vowel ph="a" vlng="s" vheight="4" vfront="1" vrnd="-"/> <!-- rafha -->

 <!-- Stop consonants -->
 <consonant ph="p_h" ctype="s" cplace="l" cvox="0" casp="+"/><!--phala-->
 <consonant ph="p_>" ctype="s" cplace="l" cvox="0" cpal="+"/><!--panda-->
 <consonant ph="b" ctype="s" cplace="l" cvox="+"/> <!-- bako -->
 <consonant ph="t_h" ctype="s" cplace="a" cvox="0" casp="+"/><!--hula-->
 <consonant ph="t_>" ctype="s" cplace="a" cvox="0"/> <!-- tafuna -->
 <consonant ph="d" ctype="s" cplace="a" cvox="+"/> <!-- daha -->
 <consonant ph="J\" ctype="s" cplace="p" cvox="+" casp="+"/><!--dyelo -->
 <consonant ph="k_h" ctype="s" cplace="v" cvox="-" casp="+"/> <!-- khuhu -->
 <consonant ph="k_>" ctype="s" cplace="v" cvox="0"/> <!-- kokodza -->
 <consonant ph="g" ctype="s" cplace="v" cvox="+"/> <!-- goga -->

 <!-- Affricative consonants -->
 <consonant ph="tS_h" ctype="a" cplace="a" cvox="0" casp="+"/><!--mutshila-->
 <consonant ph="ts_>" ctype="a" cplace="a" cvox="0"/> <!-- kutsimu -->
 <consonant ph="d_0Z" ctype="a" cplace="a" cvox="+"/> <!-- dzhena -->
 <consonant ph="dz" ctype="a" cplace="a" cvox="+"/> <!-- dzembe-->

 <!-- Fricative consonants -->
 <consonant ph="f" ctype="f" cplace="b" cvox="-"/> <!-- fana -->
 <consonant ph="v" ctype="f" cplace="b" cvox="+"/> <!-- vili -->
 <consonant ph="s" ctype="f" cplace="a" cvox="-"/> <!-- sala -->
 <consonant ph="z" ctype="f" cplace="a" cvox="+"/> <!-- zazamela -->
 <consonant ph="S" ctype="f" cplace="a" cvox="-"/> <!-- shavha -->
 <consonant ph="Z" ctype="f" cplace="a" cvox="+"/> <!-- zhaka -->
 <consonant ph="x" ctype="f" cplace="v" cvox="-"/> <!-- xa -->
 <consonant ph="h\" ctype="f" cplace="g" cvox="+"/> <!-- hana -->
 <consonant ph="B" ctype="f" cplace="l" cvox="+"/> <!-- vhavha -->
 <consonant ph="p\" ctype="f" cplace="l" cvox="-"/> <!-- fhala -->
 <consonant ph="sw" ctype="f" cplace="a" cvox="-"/> <!-- swara -->
 <consonant ph="zw" ctype="f" cplace="a" cvox="+"/> <!-- zwifha -->

 <!-- Nasal consonants -->
 <consonant ph="m" ctype="n" cplace="l" cvox="0"/> <!-- ima -->
 <consonant ph="n" ctype="n" cplace="a" cvox="0"/> <!-- nona -->
 <consonant ph="J" ctype="n" cplace="p" cvox="0"/> <!-- nyamalala -->
 <consonant ph="N" ctype="n" cplace="v" cvox="0"/> <!-- n'an'a -->

 <!-- Approximant consonants (semivowels) and Trills and Flaps-->
 <consonant ph="r" ctype="r" cplace="a" cvox="0"/> <!-- ranga -->
 <consonant ph="j" ctype="r" cplace="p" cvox="0"/> <!-- ya -->
 <consonant ph="w" ctype="r" cplace="v" cvox="+"/> <!-- wa -->

 <!-- Liquid consonants -->

137

 <consonant ph="l" ctype="l" cplace="a" cvox="0"/> <!-- lala -->
</allophones>

B3: IsiNdebele phone set – allophone.nbl.xml

<allophones name="sampa" xml:lang="nbl"
 features="vlng vheight vfront vrnd ctype cplace cvox casp">

 <silence ph="_"/>
 <!-- Vowels -->
 <vowel ph="i" vlng="s" vheight="1" vfront="1" vrnd="-"/> <!-- lima -->
 <vowel ph="u" vlng="s" vheight="1" vfront="3" vrnd="+"/> <!-- thunga -->
 <vowel ph="E" vlng="s" vheight="3" vfront="1" vrnd="-"/> <!-- sela -->
 <vowel ph="O" vlng="s" vheight="3" vfront="3" vrnd="+"/> <!-- bona -->
 <vowel ph="a" vlng="s" vheight="4" vfront="1" vrnd="-"/> <!-- lala -->

 <!-- Stop consonants -->
 <consonant ph="p_h" ctype="s" cplace="l" cvox="0" casp="+"/><!--iphaphu-->
 <consonant ph="p_>" ctype="s" cplace="l" cvox="0" casp="+"/> <!--iposo-->
 <consonant ph="b" ctype="s" cplace="l" cvox="+"/> <!-- khamba -->
 <consonant ph="b_<" ctype="s" cplace="l" cvox="+"/> <!-- bona -->
 <consonant ph="t_h" ctype="s" cplace="a" cvox="0" casp="+"/> <!-- thuta -->
 <consonant ph="t_>" ctype="s" cplace="a" cvox="0"/> <!-- itafula -->
 <consonant ph="d" ctype="s" cplace="a" cvox="+"/> <!-- idada -->
 <consonant ph="k" ctype="s" cplace="a" cvox="-"/> <!-- kela -->
 <consonant ph="k_h" ctype="s" cplace="v" cvox="-" casp="+"/> <!-- khamba -->
 <consonant ph="k_>" ctype="s" cplace="v" cvox="0"/> <!-- inkomo -->
 <consonant ph="g" ctype="s" cplace="v" cvox="+"/> <!-- igama -->

 <!-- Affricative consonants -->
 <consonant ph="tK_>" ctype="a" cplace="a" cvox="0"/> <!-- Itlawana -->
 <consonant ph="tK_h" ctype="a" cplace="a" cvox="-" casp="+"/> <!-- tlhaga -->
 <consonant ph="tS_>" ctype="a" cplace="a" cvox="0"/> <!-- utjani -->
 <consonant ph="tS_h" ctype="a" cplace="a" cvox="0" casp="+"/> <!—itjhatjha-->
 <consonant ph="ts_>" ctype="a" cplace="a" cvox="0"/> <!-- itsikiri -->
 <consonant ph="ts_h" ctype="a" cplace="a" cvox="0" casp="+"/> <!-- tshanya-->
 <consonant ph="kx" ctype="a" cplace="v" cvox="-"/> <!-- kghupula* -->
 <consonant ph="d_0Z" ctype="a" cplace="a" cvox="+"/> <!-- jabula -->
 <consonant ph="dz" ctype="a" cplace="a" cvox="+"/> <!-- idzila -->

 <!-- Fricative consonants -->
 <consonant ph="f" ctype="f" cplace="b" cvox="-"/> <!-- funa -->
 <consonant ph="v" ctype="f" cplace="b" cvox="+"/> <!-- vula -->
 <consonant ph="s" ctype="f" cplace="a" cvox="-"/> <!-- susa -->
 <consonant ph="z" ctype="f" cplace="a" cvox="+"/> <!-- Zala -->
 <consonant ph="x" ctype="f" cplace="v" cvox="-"/> <!-- rhonona -->
 <consonant ph="h" ctype="f" cplace="g" cvox="-"/> <!-- ihogo -->
 <consonant ph="K" ctype="f" cplace="a" cvox="-"/> <!-- hlala -->
 <consonant ph="K\" ctype="f" cplace="a" cvox="+"/> <!-- dlala -->

 <!-- Clicks consonants -->
 <consonant ph="1\" ctype="c" cplace="d" cvox="0"/> <!-- cima -->
 <consonant ph="1\g_0" ctype="c" cplace="d" cvox="+"/> <!-- gcina -->
 <consonant ph="1\h" ctype="c" cplace="d" cvox="0" casp="+"/><!--chacha-->
 <consonant ph="!\" ctype="c" cplace="p" cvox="0"/> <!-- qina -->
 <consonant ph="!\g_0" ctype="c" cplace="p" cvox="+"/> <!-- umgqomu -->
 <consonant ph="!_bh" ctype="c" cplace="p" cvox="0" casp="+"/><!--qhula-->

 <!-- Nasal consonants -->
 <consonant ph="m" ctype="n" cplace="l" cvox="0"/> <!-- mina -->
 <consonant ph="n" ctype="n" cplace="a" cvox="0"/> <!-- nina -->
 <consonant ph="J" ctype="n" cplace="p" cvox="0"/> <!-- inyama -->
 <consonant ph="N" ctype="n" cplace="v" cvox="0"/> <!-- nghala -->

138

 <!-- Approximant consonants (semivowels) and Trills and Flaps-->
 <consonant ph="r" ctype="r" cplace="a" cvox="0"/> <!-- rara -->
 <consonant ph="j" ctype="r" cplace="p" cvox="0"/> <!-- yena -->
 <consonant ph="w" ctype="r" cplace="v" cvox="+"/> <!-- wona -->

 <!-- Liquid consonants -->
 <consonant ph="l" ctype="l" cplace="a" cvox="0"/> <!-- lila -->
</allophones>

B4: Xitsonga phone set – allophone.tso.xml

<allophones name="sampa" xml:lang="tso"
 features="vlng vheight vfront vrnd ctype cplace cvox casp cpal">

 <silence ph="_"/>
 <!-- Vowels -->
 <vowel ph="i" vlng="s" vheight="1" vfront="1" vrnd="-"/> <!-- ribye -->
 <vowel ph="u" vlng="s" vheight="1" vfront="3" vrnd="+"/> <!-- huma -->
 <vowel ph="E" vlng="s" vheight="3" vfront="1" vrnd="-"/> <!-- hela -->
 <vowel ph="O" vlng="s" vheight="3" vfront="3" vrnd="+"/> <!-- songa -->
 <vowel ph="a" vlng="s" vheight="4" vfront="1" vrnd="-"/> <!-- aka -->

 <!-- Stop consonants -->
 <consonant ph="p" ctype="s" cplace="l" cvox="-"/> <!-- mpunga -->
 <consonant ph="p_h" ctype="s" cplace="l" cvox="0" casp="+"/> <!-- phanga -->
 <consonant ph="pj_e" ctype="s" cplace="l" cvox="-" cpal="+"/> <!-- pyopya -->
<consonant ph="pj_h" ctype="s" cplace="l" cvox="-" casp="+" cpal="+"/><!--phya-->
 <consonant ph="b" ctype="s" cplace="l" cvox="+"/> <!-- ba -->
 <consonant ph="b_<" ctype="s" cplace="l" cvox="+"/> <!-- baba -->
 <consonant ph="bj" ctype="s" cplace="l" cvox="+" cpal="+"/> <!-- byala -->
 <consonant ph="t_h" ctype="s" cplace="a" cvox="0" casp="+"/> <!-- thula -->
 <consonant ph="t_e" ctype="s" cplace="a" cvox="0"/> <!-- tatana -->
 <consonant ph="tj" ctype="s" cplace="a" cvox="-" cpal="+"/> <!-- tyatyasa -->
 <consonant ph="d" ctype="s" cplace="a" cvox="+"/> <!-- dedeleka -->
 <consonant ph="dj" ctype="s" cplace="a" cvox="+" cpal="+"/> <!-- dya -->
 <consonant ph="dh_v" ctype="s" cplace="a" cvox="+" casp="+"/> <!-- ndhambi-->
 <consonant ph="k" ctype="s" cplace="a" cvox="-"/> <!-- kula -->
 <consonant ph="k_h" ctype="s" cplace="v" cvox="-" casp="+"/> <!-- khoma -->
 <consonant ph="g" ctype="s" cplace="v" cvox="+"/> <!-- gamba -->
 <consonant ph="gh_v" ctype="s" cplace="v" cvox="+" casp="+"/> <!-- nghena -->
 <consonant ph="tl_e" ctype="s" cplace="a" cvox="-"/> <!-- tlanga -->
 <consonant ph="tl_h" ctype="s" cplace="a" cvox="-" casp="+"/> <!-- tlhari -->

 <!-- Affricative consonants -->
 <consonant ph="dK" ctype="a" cplace="a" cvox="+"/> <!-- dlala -->
 <consonant ph="dK_v" ctype="a" cplace="a" cvox="+" casp="+"/> <!-- ndlhazi-->
 <consonant ph="c" ctype="a" cplace="a" cvox="0"/> <!-- cina -->
 <consonant ph="c_h" ctype="a" cplace="a" cvox="0" casp="+"/> <!-- chukucha-->
 <consonant ph="j_h" ctype="a" cplace="a" cvox="+"/> <!-- jaha -->
 <consonant ph="dz`" ctype="a" cplace="a" cvox="+"/> <!-- dzwi, dzaha -->
 <consonant ph="dz`h_v" ctype="a" cplace="a" cvox="+" casp="+"/><!--ndzhaku-->

 <!-- Fricative consonants -->
 <consonant ph="f" ctype="f" cplace="b" cvox="-"/> <!-- famba -->
 <consonant ph="v" ctype="f" cplace="b" cvox="+"/> <!-- vhilwa -->
 <consonant ph="s" ctype="f" cplace="a" cvox="-"/> <!-- sila -->
 <consonant ph="z" ctype="f" cplace="a" cvox="+"/> <!-- muzumbi -->
 <consonant ph="S" ctype="f" cplace="a" cvox="-"/> <!-- xava -->
 <consonant ph="h_v" ctype="f" cplace="g" cvox="+"/> <!-- huma -->
 <consonant ph="K" ctype="f" cplace="a" cvox="-"/> <!-- hlamula -->
 <consonant ph="B" ctype="f" cplace="l" cvox="+"/> <!-- vona -->
 <consonant ph="s`" ctype="f" cplace="a" cvox="-"/> <!-- sweka -->

139

 <!-- Clicks consonants -->
 <consonant ph="1\" ctype="f" cplace="p" cvox="0"/> <!-- xiqoko -->

 <!-- Nasal consonants -->
 <consonant ph="m" ctype="n" cplace="l" cvox="0"/> <!-- kuma -->
 <consonant ph="n" ctype="n" cplace="a" cvox="0"/> <!-- manana -->
 <consonant ph="J" ctype="n" cplace="p" cvox="0"/> <!-- nyoka -->
 <consonant ph="N" ctype="n" cplace="v" cvox="0"/> <!-- ngulube -->
 <consonant ph="n'" ctype="n" cplace="a" cvox="0"/> <!-- ndzhaku -->
 <consonant ph="m_h" ctype="n" cplace="l" cvox="+" casp="+"/> <!-- mhaka -->
 <consonant ph="n_h" ctype="n" cplace="a" cvox="+" casp="+"/> <!-- mhamu -->

 <!-- Approximant consonants (semivowels) and Trills and Flaps-->
 <consonant ph="r" ctype="r" cplace="a" cvox="0"/> <!-- raha -->
 <consonant ph="rh_v" ctype="r" cplace="a" cvox="0" casp="+"/> <!-- rhama -->
 <consonant ph="j" ctype="r" cplace="p" cvox="0"/> <!-- yima -->
 <consonant ph="w" ctype="r" cplace="v" cvox="+"/> <!-- wa -->

 <!-- Liquid consonants -->
 <consonant ph="l" ctype="l" cplace="a" cvox="0"/> <!-- lomba -->
</allophones>

140

APPENDIX C: CREATING DICTIONARY – gen_dictionary.py

#!/usr/bin/env python
This script generates a dictionary (xy.txt) from a given pronunciation
dictionary
The new dictionary contains the actual word followed by its SAMPA pronunciation #
and is functional

import sys

if __name__ == '__main__':
 if len(sys.argv) < 2:
 print("Usage: " + sys.argv[0] +" inputFile")
 sys.exit()

inFile = open(sys.argv[1], 'r')
outFile = open('xy.txt', 'w')

for line in inFile:
 line = line.replace(' ', '')
 line = line.split('\t')
 line = line[0] + " " + line[1] + " functional\n"
 outFile.write(line)

outFile.close()
inFile.close()

141

APPENDIX D: CLASSIFICATION FUNCTION – NamesPredictor.java

package weka.classifiers;
import weka.classifiers.Classifier;
import weka.core.Attribute;
import weka.core.DenseInstance;
import weka.core.Instances;
import java.util.ArrayList;
import java.util.List;
/**
 * Class for Language Identification of Names
 *
 * @author Tshephisho Joseph Sefara
 * @institution University of Limpopo
 * @citation Master’s Thesis
 */
public class NamesPredictor {
 /**
 * String that stores the text to guess its language.
 */
 static String text;
 /**
 * Object that stores the instance.
 */
 static Instances instances;
 /**
 *String that stores locale of the predicted language
 */
 static String locale;
 /**
 * Object that stores the classifier.
 */
 static Classifier cls;
 /**
 * Creates the constructor.
 * @throws Exception
 */
 public NamesPredictor(String strText, String model) throws Exception {
 // sets text to be classified
 text = strText;
 // this function prepares the new instance
 makeInstance();
 // this function loads the classifier model
 loadModel(model);
 }
 /**
 * This method reads the classifier object or model.
 * @throws Exception
 */
 public static void loadModel(String modelName) throws Exception {
 cls = (Classifier) weka.core.SerializationHelper.read(modelName);
 }

 /**
 * This method creates an instance to be predicted.
 */
 public static void makeInstance() {
 // Create the header
 List<Attribute> attributeList = new ArrayList<Attribute>(2);
 // Create first attribute, the class
 List<String> values = new ArrayList<String>(3);
 values.add("nso");

142

 values.add("tso");
 values.add("ven");
 Attribute attribute1 = new Attribute("class", values);
 attributeList.add(attribute1);
 // Create second attribute, the text
 Attribute attribute2 = new Attribute("surname",(List<String>) null);
 attributeList.add(attribute2);
 // Build instance set with just one instance
 instances = new Instances("Test relation", (java.util.ArrayList<Attribute>)
attributeList, 1);
 // Set class index
 instances.setClassIndex(0);
 // Create and add the instance
 DenseInstance instance = new DenseInstance(2);
 instance.setDataset(instances);
 instance.setValue(attribute2, text);
 instances.add(instance);
 }
 /**
 * This method performs the classification of the instance
 * and returns a locale (string).
 * @throws Exception
 */
 public String classify() throws Exception {
 // Predicts a language given an instance
 double pred = cls.classifyInstance(instances.instance(0));
 locale = instances.classAttribute().value((int) pred);
 return locale;
 }
}

143

APPENDIX E: ANDROID SOURCE CODE

E.1: MainActivity.java

package za.co.speechtech.ttsdemo;
import android.app.DownloadManager;
import android.net.Uri;
import android.os.Bundle;
import android.os.Environment;
import android.support.v7.app.AppCompatActivity;
import android.view.Menu;
import android.view.MenuItem;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import static android.widget.Toast.makeText;
public class MainActivity extends AppCompatActivity {
 //private TextView mTextMessage;
 String locale=" "; //declare and initialise locale
 EditText area; //declare text area
 Button clear, speak, download; //declare buttons
 String text=" "; //declare and initialise text/surname
 String model = "namesModel"; //declare default predictor model
 String lidUrl; //address from language identification
 String userUrl; //address from user selection
 final static String [] locales = {"nso","tso","ven","nbl","en_US","detect"};
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 area = (EditText) findViewById(R.id.editText2);
 clear = (Button) findViewById(R.id.button1);
 //clear text area
 clear.setOnClickListener(new View.OnClickListener() {
 public void onClick (View view) {
 area.setText("");
 }
 });
 speak = (Button) findViewById(R.id.button2);
 //Plays audio file from remote site
 speak.setOnClickListener(new View.OnClickListener() {
 public void onClick (View view) {
 try {
 if(urlBuilder(model)) {
 player(locale.equals(locales[5]) ? lidUrl : userUrl);
 }
 } catch (IOException | InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }
 });
 download = (Button) findViewById(R.id.button);
 //Download audio file from remote site
 download.setOnClickListener(new View.OnClickListener() {
 public void onClick (View view) {
 try {
 if (urlBuilder(model))
 {
 String uri;

144

 if (!Methods.isempty(text)) {
 uri = locale.equals(locales[5]) ? lidUrl : userUrl;
 DownloadManager.Request req = new
DownloadManager.Request(Uri.parse(uri));

req.setDestinationInExternalPublicDir((Environment.DIRECTORY_DOWNLOADS),"audio.wav");

req.setNotificationVisibility(DownloadManager.Request.VISIBILITY_VISIBLE_NOTIFY_COMPL
ETED);
 req.allowScanningByMediaScanner();
 DownloadManager downloadManager = (DownloadManager)
getSystemService(DOWNLOAD_SERVICE);
 downloadManager.enqueue(req);
 }
 }
 }catch(IOException | InterruptedException | ExecutionException e){
 e.printStackTrace();
 }
 }
 });
 }
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }
 //sets languages based on user selection
 public boolean onOptionsItemSelected(MenuItem item) {
 int id = item.getItemId();
 switch (id) {
 case R.id.item1:
 locale = locales[0];
 return true;
 case R.id.item2:
 locale = locales[2];
 return true;
 case R.id.item3:
 locale = locales[1];
 return true;
 case R.id.item4:
 locale = locales[3];
 return true;
 case R.id.item5:
 locale = locales[4];
 return true;
 case R.id.item6:
 locale = locales[5];
 return true;
 }
 return super.onOptionsItemSelected(item);
 }
 //generate url based on user selection or automatic language identification
 public boolean urlBuilder(String model) throws IOException, ExecutionException,
InterruptedException {
 text = area.getText().toString().trim();
 if (Methods.isempty(text)){
 makeText(getBaseContext(), "Enter surname", Toast.LENGTH_SHORT).show();
 return false;
 }
 else {
 text = Methods.encode_text(text);
 }
 if (Methods.isempty(locale.trim())){

145

 makeText(getBaseContext(), "Select the language",
Toast.LENGTH_SHORT).show();
 return false;
 }
 if(locale.equals(locales[5])) {
 text = area.getText().toString().trim();
 text = Methods.encode_text(text);
 if (Methods.isInternet(getBaseContext())) {
 String urlAddress =
"http://www.speechtech.co.za/alltts/classify.php?text=" + text + "&model=" + model;
 LanguageIdentification LID = new LanguageIdentification();
 LID.execute(urlAddress);
 String language = LID.get();
 switch (language) {
 case "nso":
 makeText(getBaseContext(), "Language set to Sepedi",
Toast.LENGTH_LONG).show();
 break;
 case "tso":
 makeText(getBaseContext(), "Language set to Xitsonga",
Toast.LENGTH_LONG).show();
 break;
 case "ven":
 makeText(getBaseContext(), "Language set to Tshivenda",
Toast.LENGTH_LONG).show();
 break;
 case "nbl":
 makeText(getBaseContext(), "Language set to IsiNdebele",
Toast.LENGTH_LONG).show();
 break;
 default:
 makeText(getBaseContext(), "Language not detected",
Toast.LENGTH_LONG).show();
 return false;
 }
 //create URL based on identified language
 lidUrl =
"http://www.speechtech.co.za/alltts/download.php?INPUT_TEXT=" + text + "&LOCALE=" +
language + "&act=download";
 return true;
 }
 makeText(getBaseContext(), "No Internet Availability",
Toast.LENGTH_LONG).show();
 return false;
 }
 //create URL based on user selection
 userUrl =
"http://www.speechtech.co.za/alltts/download.php?INPUT_TEXT="+text+"&LOCALE="+locale+
"&act=download";
 return true;
 }
 //plays the audio given a URL
 public void player(String url) {
 //check internet status
 if (Methods.isInternet(getBaseContext()))
 try {
 PlayAudioManager.playWave(getApplicationContext(), url);
 } catch (Exception e) {
 e.printStackTrace();
 }
 else {
 makeText(getBaseContext(), "No Internet Availability",
Toast.LENGTH_SHORT).show();

146

 }
 }
}

E.2: LanguageIdentification.java

package za.co.speechtech.ttsdemo;
import android.os.AsyncTask;
import java.io.BufferedInputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
/**
 * Created by Tshephisho Joseph Sefara on 2017/03/12.
 *
 */
class LanguageIdentification extends AsyncTask<String , Void, String> {
 HttpURLConnection urlConnection = null;
 @Override
 protected String doInBackground(String... params) {
 StringBuilder response = new StringBuilder();
 try {
 URL url = new URL(params[0]);
 urlConnection = (HttpURLConnection) url.openConnection();
 InputStream in = new
BufferedInputStream(urlConnection.getInputStream());
 BufferedReader read = new BufferedReader(new InputStreamReader(in));
 String line;
 while ((line = read.readLine()) != null) {
 response.append(line);
 }
 } catch (IOException e){
 e.printStackTrace();
 }
 return response.toString();
 }
 public void onPostExecute (String results) {
 urlConnection.disconnect();
 }
}

E.3: Methods.java

package za.co.speechtech.ttsdemo;
import java.io.UnsupportedEncodingException;
import java.net.URLEncoder;
import android.content.Context;
import android.net.NetworkInfo;
import android.net.ConnectivityManager;
/**
 * Created by Tshephisho Joseph Sefara on 2017/03/12.
 * This class contains static methods
 */
class Methods {
 //Checks internet connectivity
 static boolean isInternet(Context c) {
 ConnectivityManager connect = (ConnectivityManager)
c.getSystemService(Context.CONNECTIVITY_SERVICE);

147

 NetworkInfo activeNet = connect.getActiveNetworkInfo();
 return activeNet != null && activeNet.getState() ==
NetworkInfo.State.CONNECTED;
 }
 //Check if the argument is empty
 static boolean isempty(String tempString) {
 return tempString.isEmpty() || tempString.length() == 0 ||
tempString.equals("");
 }
 //Use URLEncoder to encode the argument
 static String encode_text(String text) throws UnsupportedEncodingException {
 text = URLEncoder.encode(text, "UTF-8");
 return text;
 }
}

E.4: PlayAudioManager.java

package za.co.speechtech.ttsdemo;
import android.content.Context;
import android.media.MediaPlayer;
import android.net.Uri;
/**
 * Created by Tshephisho Joseph Sefara on 2017/03/12.
 *
 */
class PlayAudioManager {
 private static MediaPlayer mediaplayer;
 static void playWave (final Context context, final String urlPath) throws
Exception {
 if (mediaplayer == null) {
 mediaplayer = MediaPlayer.create(context, Uri.parse(urlPath));
 }
 mediaplayer.setOnCompletionListener(new MediaPlayer.OnCompletionListener() {
 @Override
 public void onCompletion(MediaPlayer arg0) {
 try {
 if (mediaplayer != null) {
 mediaplayer.reset();
 mediaplayer.release();
 mediaplayer = null;
 }
 }catch (Exception e){
 e.printStackTrace();
 }
 }
 });
 mediaplayer.start();
 }
}

E.5: Activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/container"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

148

 android:orientation="vertical"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:background="@color/colorAccent"
 tools:context="za.co.speechtech.ttsdemo.MainActivity"
 android:paddingTop="@dimen/activity_vertical_margin">
 <EditText
 android:id="@+id/editText2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentStart="true"
 android:layout_alignParentLeft="true"
 android:layout_alignParentEnd="true"
 android:layout_alignParentRight="true"
 android:textColor="#000000"
 android:ems="10"
 android:background="@drawable/textareaborder"
 android:padding="1dp"
 android:gravity="top"
 android:inputType="textMultiLine"
 android:layout_below="@+id/button1">
 <requestFocus />
 </EditText>
 <Button
 android:id="@+id/button1"
 style="@android:style/Widget.Button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignBottom="@+id/button2"
 android:layout_alignLeft="@+id/editText2"
 android:layout_alignParentTop="true"
 android:layout_alignStart="@+id/editText2"
 android:clickable="true"
 android:text="@string/button_clear"
 android:textSize="20sp"
 tools:text="@string/button_clear" />
 <Button
 android:id="@+id/button2"
 style="@android:style/Widget.Button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignEnd="@+id/editText2"
 android:layout_alignParentTop="true"
 android:layout_alignRight="@+id/editText2"
 android:clickable="true"
 android:text="@string/button_speak"
 android:textSize="20sp"
 tools:text="@string/button_speak" />
 <Button
 android:id="@+id/button"
 style="@android:style/Widget.Button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_above="@+id/editText2"
 android:layout_alignParentTop="true"
 android:layout_centerHorizontal="true"
 android:text="@string/button_download"
 android:textSize="20sp"
 tools:text="@string/button_download" />
</RelativeLayout>

149

E.6: Menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/item1" android:title="Sepedi"
android:orderInCategory="2"></item>
 <item android:id="@+id/item2" android:title="Tshivenda"
android:orderInCategory="3"></item>
 <item android:id="@+id/item3" android:title="Xitsonga"
android:orderInCategory="4"></item>
 <item android:id="@+id/item4" android:title="isiNdebele"
android:orderInCategory="5"></item>
 <item android:id="@+id/item5" android:title="English"
android:orderInCategory="6"></item>
 <item android:id="@+id/item6" android:title="Auto Detect"
android:orderInCategory="1"></item>
</menu>

150

APPENDIX F: ANDROID APPLICATION UML DIAGRAM

151

APPENDIX G: CONSENT FORM

University of Limpopo

Telkom Centre of Excellence for Speech Technology

Department of Computer Science

Office 1015 Mathematical Sciences Building

Private Bag X1106, SOVENGA, 0727, South Africa

Tel: (015) 268 2751, Fax: (015) 268 3487, Email: sefaratj@gmail.com

Dear Participant

My name is Tshephisho Joseph Sefara and I am a postgraduate student enrolled in the

Department of Computer Sciences at the University of Limpopo. I am conducting research on the

development of an automatic pronunciation system that uses voice and machine-learning

technologies. The purpose of the research is to build a voice-enabled system that uses a trained

classifier to enhance pronunciation of words and phrases, particularly surnames of the Sepedi,

Tshivenda, Xitsonga and isiNdebele mother tongue speakers. The information gathered here will

be used purely for academic purposes, but the final document will be a public document in the

form of a research report. I hereby invite you to participate in the research study to evaluate the

performance of the developed system.

Your participation in this research is voluntary and you are free to withdraw anytime. There will

be no remuneration or gifts in exchange for information provided. Your identity will remain

anonymous and the information you provide will be confidential. There are no known risks to

participation beyond those encountered in everyday life. You are entitled to withhold information

that you feel is too personal or sensitive to you and you can choose not to answer any of the

questions. The enclosed questionnaire has been designed to collect information on the quality

and intelligibility of the developed system. If you are willing and available to participate in this

research project, please sign below and answer the questions on the questionnaire as best you

can:

Consent Form Code (filled by interviewer): _____________

Signature: ______________ Date: ____/_____/2017 Place: ________________________

It should take approximately 15 minutes to complete. Thank you for agreeing to participate in this

research study.

THE DEVELOPMENT OF AN AUTOMATIC PRONUNCIATION ASSISTANT

mailto:sefaratj@gmail.com

152

Male Female

Yes No

Sepedi Xitsonga Tshivenda isiNdebele

Postgraduate Undergraduate

APPENDIX H: QUESTIONNAIRE

This questionnaire was presented to the evaluators where they evaluate ttwo

systems, namely, the developed system and natural speech recorded at 16-bit

PCM. System A represents the developed TTS synthesis system and system

B represents natural speech.

Introduction:

The aim of this questionnaire is to gather information to evaluate the performance of an automatic

pronunciation system that is presented to the evaluators. This evaluation form is completed once

the subjects have familiarised themselves with the system. The respondents MUST complete the

consent form before answering this questionnaire.

Instructions:

 Always give personal honest opinions.

 Select an appropriate answer were multiple answers are given by means of a cross (x).

 Answer all the questions as completely as possible.

Section 1: General Questions

1. Home language:

2. Level of study:

3. Gender:

4. Age range:

5. Are you familiar with text-to-speech synthesis systems?

Evaluation Form

18-35 36 and above

153

Section 2: Intelligibility

The researcher will play the audio files sequentially.

Write down each sentence before the researcher plays the next audio.

System A:

Audio 1:

Audio 2:

Audio 3:

Audio 4:

Audio 5:

154

Section 3: Speech Quality

This section is completed after five normal sentences are played to the

respondents. Please answer each question on a scale of 1 to 5 where:

MOS Quality Listening Effort

1 Bad No meaning understood

2 Poor Effort required

3 Fair Moderate effort required

4 Good No appreciable effort required

5 Excellent No effort required

Questions for System A 1 2 3 4 5

1. How was the pronunciation of words?

2. How was the naturalness of the voice?

3. How was the pleasantness of the voice?

4. How much effort was needed to listen and understand the
message?

5. How was the overall quality of the audio on all aspects?

Questions for System B 1 2 3 4 5

1. How was the pronunciation of words?

2. How was the naturalness of the voice?

3. How was the pleasantness of the voice?

4. How much effort was needed to listen and understand the
message?

5. How was the overall quality of the audio on all aspects?

155

Section 4: User Acceptance

This section is completed after the respondents have interacted with the system

on the website. Please answer each question on a scale of 1 to 5 where:

MOS Meaning

1 Strongly disagree

2 Disagree

3 Neither

4 Agree

5 Strongly agree

Questions 1 2 3 4 5

1. Buttons are visible and easy to find.

2. Languages can be switched easily.

3. Text is visible and clear.

4. Layout and colours are displayed perfectly.

5. The application was difficult to understand.

6. I can use the application on my own.

7. I felt very confident using the application.

8. I would recommend this application to someone
else.

9. I would frequently use this application.

10. This application can help me learn pronunciation
of new languages.

11. Would you recommend these voices to be
integrated in future devices?

156

APPENDIX I: SPEECH SYNTHESISER – TEST CORPUS SAMPLES

I.1: Test corpus samples of intelligibility test

The five sample sentences for intelligibility test of each language using syntactic

rules explained by Benoît et al. (1996) are shown below:

 Sepedi Text English Meaning

1.
Buka e sepetše godimo ga lefase le le
botse.

The book walked through the attractive
floor.

2. Komiki ya go hloka maatla e rata letšatši. The weak cup loves the day

3. Ruta ntlo le leoto. Teach the house and the leg.

4.
Go tla bjang gore bošego bo hloye letšatši le
le ntsho?

How does the night hate the black
sun?

5. Meetse a bone mohlare wo o hwilego. The water saw the tree that died.

 Tshivenda Text

6. Bugu yo tshimbila fhasi ho no tamisa.
The book walked through the attractive
floor.

7. Tshinwelo tshi sina nungo tshi funa Duvha. The weak cup loves the day

8. Funza nndu mulenzhe Teach the house and the leg

9. Vhusiku vhu vhenga hani Duvha litshwu
How does the night hate the black
sun?

10. Madi o vhona muri une wa khou fa The water saw the tree that died.

 Xitsonga Text

11. Buku yi fambile hole ndhawini yo navetisa.
The book walked through the attractive
floor.

12. Xinwelo xi rhandza siku. The cup loves the day

13. Dyondzisa yindlu na nenge. Teach the house and the leg

14.
Vusiku byi vanga hi ndlela yini vunyama bja
fambi?

How does the night hate the black
sun?

15. Mati ya vonile nsinya lowu fake. The water saw the tree that died.

 isiNdebele Text

16. Incwadi ikhambe ephasini isitubhe selihle
The book walked through the attractive
floor.

17. Ibhigiri elinganamandla lithanda ilanga The weak cup loves the day

18. Fundisa indlu nomlenze Teach the house and the leg

19.
Kuzanjani ukuthi ubusuku buzonde ilanga
elimnyama?

How does the night hate the black
sun?

20. Amanzi abone isihlahla esifileko. The water saw the tree that died.

157

I.2: Test corpus samples of MOS test

The five sample sentences for MOS test of each language are given below:

 Sepedi Text English Meaning

1.
Modipa o rata go etela mosadi wa gagwe

ma felelong a beke.

Modipa likes to visit his wife on

weekends.

2.

Mo ponong Modimo a mpontšha Moprista

yo Mogolo, a eme pele ga morongwa wa

Morena.

He showed me the high priest standing

before the angel of the LORD.

3. Thobela Manamela! Hello Manamela!

4. Mothapo o a bolela. Mothapo is speaking.

5. Ke wena Mokgalong? Are you Mokgalong?

 Tshivenda Text

6.
Mathoho utakalela uya hayani nga

lavhutanu
Mathoho likes to visit home on Fridays.

7. Aa vho Nemagovhani! Hello Nemagovhani!

8. Tshivhombela o thanya Tshivhombela is wise.

9. Ndi ini vho Netshivhulana vha mudivhale? Are you the famous Netshivhulana?

10. Ne ndo takala vhukuma I am fine, thank you

 isiNdebele Text

11. uMothwa ungumhlanyeli o wazekako. Mothwa is a famous farmer.

12. Lotjha Sibiya! Hello Sibiya!

13. uSindane ulele. Sindane is sleeping.

14. Unjani Mahlangu? How are you Mahlangu?

15.

Maucala ngendlela leyo uSindane

enzangakhona, uba ngumrhubhululi

omkhulu.

Looking at how Sindane is doing, he is

becoming a great researcher.

 Xitsonga Text

16. Mayindi u rhandza ku khongela a ri wexe. Mayindi likes to pray alone.

17.
Shikwambane hi yena ntsena mlungu

exikolweni.

Shikwambane is only the only white

person at school.

18. Xewani Baloyi! Hello Baloyi!

19. Kunjhani Dzambukeri? How are you Dzambukeri?

20. Tsakane u catile ahari exikolweni.
Tsakane got married while she was still

at school.

158

APPENDIX J: NATURAL SPEECH – TEST CORPUS SAMPLES

The HMM voices were built on secondary data and the following sentences

were extracted from the speech corpus to be used for MOS test

 Sepedi Text English Meaning

1. Botagwa bo ka bolaya. Drinking can kill you.

2.
Mešomo ya dikontraka e tla abelwa

banna fela.

Only men will be allocated contractual

jobs.

3. Se bolele ka mosadi wa go se botege. Do not talk about unfaithful woman.

4. Tokomane ya boitsebišo. Identity document

5. Kopano e tla tšwela pele. The meeting will continue.

 Tshivenda Text

6. Nahone hu na zwidini zwa hone. There is something bothering me.

7. Yakobo a ri u songo mpha tshithu. Jacob said do not give me anything.

8. Na zwifuiwa hezwi ndi zwanga. These animals are mine.

9. Ri khou lifhedzwa malofha awe zwino. We are being punished for his blood.

10. Ri vha rine nga mvelele heyi.
We are who we are because of this

culture.

 isiNdebele Text

11.
Ekuseni ngizokuza ngizokuhlola ilembe

lami.

In the morning I will come to check my

plough.

12. Akhe ugijime ngikutjele bona kwenzekeni.
May you hurry so I can tell you what

happenend.

13. Ngiyiqunte izipho ikukhu yathi ngiyilise.
I have cut off the chickens’ nails and it

said I should stop.

14.
Yarhubha yarhubha kodwana

yangalitholi.

It scratched and scratched but did not

find it.

15. Ikukhu yakhamba ihlengezela iya kibo. The chicken went about casually home.

 Xitsonga Text

16. I ntiyiso Khanyisa. It is the truth Khanyisa.

17. Hayikhona, ndza sola mani! No, I doubt!

18. Timhuti ti sungula ku khana. Everthing is quiet.

19. Va rhukaniwa ro vuyavuyani. They continually insulted them.

20. Hlomani na yena a ri kona. Even Hlomani was there.

159

APPENDIX K: SENTENCE AND WORD ERROR RATE – error_rates.py

#!/usr/bin/env python
This script calculate sentence and word error rate (SER and WER) using
Levenshtein distance. It receives a text file and test cases. The text file
contains sequence of sentences where the first sentence is the reference and
the second sentence is the hypothesis. Usage:
Sentence reference1
Sentence hypothesis1
Sentence reference2
Sentence hypothesis2 . . .
The SER and WER are displayed in percentage notation.
Usage: wer.py inputFile.txt #testCases

import sys
import numpy

if __name__ == '__main__':
 if len(sys.argv) < 3:
 print("Usage: " + sys.argv[0] +" inputFile #testCase")
 sys.exit()

inFile, wer, ser = open(sys.argv[1], 'r'), [], 0.0
for n in range(int(sys.argv[2])):
 ref = inFile.readline().split()
 ref_len = len(ref) + 1
 hyp = inFile.readline().split()
 hyp_len = len(hyp) + 1
 distance = numpy.zeros(ref_len * hyp_len, dtype=numpy.uint8)
 distance = distance.reshape(ref_len, hyp_len)
 #Build the matrix
 for x in range(ref_len):
 for y in range(hyp_len):
 if x == 0:
 distance[0][y] = y
 elif y == 0:
 distance[x][0] = x
 #Calculations
 for x in range(1, ref_len):
 for y in range(1, hyp_len):
 if ref[x-1] == hyp[y-1]:
 distance[x][y] = distance[x-1][y-1]
 else:
 substitution = distance[x-1][y-1] + 1
 insertion = distance[x][y-1] + 1
 deletion = distance[x-1][y] + 1
 distance[x][y] = min(substitution, insertion, deletion)
 #Calculate word error
 error = float(distance[len(ref)][len(hyp)]) / len(ref) * 100
 #Calculate sentence errors if there is word error
 if error != 0: ser += 1
 #Prepare word error list
 wer.append(error)
average_ser = ser / int(sys.argv[2]) * 100 #SER results
average_wer = sum(wer) / int(sys.argv[2]) #WER results
print ("Total SER = %.2f %%" % average_ser) #Display SER results
print ("Total WER = %.2f %%" % average_wer) #Display WER results
inFile.close()

160

REFERENCES

Adiga, N. & Prasanna, S.R., 2014. A hybrid text-to-speech synthesis using vowel

and non vowel like regions. In 2014 Annual IEEE India Conference (INDICON).

Pune, India, IEEE, pp. 1-5.

Agarwal, B. & Mittal, N., 2012. Text classification using machine learning methods

- a survey. In Second International Conference on Soft Computing for Problem

Solving (SocProS 2012). Jaipur, pp. 701-710.

Al-Badarenah, A. et al., 2016. Classifying Arabic text using KNN classifier.

International Journal of Advanced Computer Science and Applications (IJACSA),

7(6), pp. 259-268.

Anil, M.C. & Shirbahadurkar, S.D., 2014. Speech modification for prosody

conversion in expressive Marathi text-to-speech synthesis. In 2014 International

Conference on Signal Processing and Integrated Networks (SPIN). Noida, India,

IEEE, pp. 56-58.

HTK website, 2009. [Online] Available at: http://htk.eng.cam.ac.uk/ [Accessed 15

March 2016].

The Festival Speech Synthesis System , 2014. [Online] (2.4) Available at:

http://www.cstr.ed.ac.uk/projects/festival/ [Accessed 25 March 2016].

Language Resource Management Agency, 2016. [Online] Available at:

http://rma.nwu.ac.za [Accessed 04 May 2016].

Aoga, J.O., Dagba, T.K. & Fanou, C.C., 2016. Integration of Yoruba language

into MaryTTS. International Journal of Speech Technology, 19(1), pp. 151-158.

Badenhorst, J.A., Van Niekerk, D.R. & Barnard, E., 2006. Automatic systems for

assistance in improving pronunciations. In Proceedings of the Seventeenth

http://htk.eng.cam.ac.uk/
http://www.cstr.ed.ac.uk/projects/festival/
http://rma.nwu.ac.za/

161

Annual Symposium of the Pattern Recognition Association of South Africa

(PRASA). Parys, pp. 23-29.

Baloyi, N., 2012. A text-to-speech synthesis system for Xitsonga using hidden

Markov models. Master's thesis. Polokwane: University of Limpopo.

Beněk, T., 2014. Implementing and improving a speech synthesis system.

Master's thesis. Brno, Czech Republic: Brno University of Technology.

Bengio, Y., 2009. Learning deep architectures for AI. Foundations and Trends in

Machine Learning, 2(1), pp. 1-127.

Benoît, C., Grice, M. & Hazan, V., 1996. The SUS test: A method for the

assessment of text-to-speech synthesis intelligibility using Semantically

Unpredictable Sentences. Speech Communication, 18(4), pp. 381-392.

Bird, S., 2006. NLTK: The natural language toolkit. In Proceedings of the

COLING/ACL on Interactive Presentation Sessions. Sydney, Australia,

Association for Computational Linguistics, pp. 69-72.

Black, A.W. & Lenzo, K.A., 2001. Flite: a small fast run time synthesis engine. In

SSW4-2001. Perthshire, Scotland, pp. 157-162.

Black, A.W. & Lenzo, K.A., 2014. Festvox: building synthetic voices. [Document]

(2.7) Available at: http://www.festvox.org/bsv/ [Accessed 3 November 2016].

Black, A.W., Zen, H. & Tokuda, T., 2007. Statistical parametric speech synthesis.

In 2007 IEEE International Conference on Acoustics, Speech and Signal

Processing - ICASSP '07 (Volume:4). Honolulu, HI, IEEE, pp. IV1229 - IV1232.

Boersma, P. & Weenink, D., 2013. Praat: doing phonetics by computer. [Online]

Available at: http://www.fon.hum.uva.nl/praat/ [Accessed 20 March 2016].

Botha, G.R. & Barnard, E., 2008. Text-Based Language Identification for the

South African Languages. Gauteng Province, Republic of South Africa: Master's

thesis, University of Pretoria.

http://www.festvox.org/bsv/
http://www.fon.hum.uva.nl/praat/

162

Botha, G.R. & Barnard, E., 2012. Factors that affect the accuracy of text-based

lagnuage identification. Computer Speech and Language, 26(5), pp. 307-320.

Botha, G., Zimu, V. & Barnard, E., 2007. Text-based language identification for

South African languages. South African Institute of Electrical Engineers, 98(4),

pp. 141-146.

Burges, C.J., 1998. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2), pp. 121-167.

Cavnar, W.B. & Trenkle, J.M., 1994. N-gram based text categorization. In

Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and

Information Retrieval. Las Vegas, US, pp. 161-175.

Chang, C.-C. & Lin, C.-J., 2011. LIBSVM : A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2(3), pp. 1-27.

Chen, N.F. & Li, H., 2016. Computer-assisted pronunciation training: From

pronunciation scoring towards spoken language learning. In 2016 Asia-Pacific

Signal and Information Processing Association Annual Summit and Conference

(APSIPA). Jeju, IEEE, pp. 1-7.

Dagba, T.K., & Boco, C., 2014. A text to speech system for Fon language using

Multisyn algorithm. Procedia Computer Science, 35, pp. 447-455.

Davel, M. & Martirosian, O., 2009. Pronunciation dictionary development in

resource-scarce environments. In Proceedings of Interspeech. Brighton, UK, pp.

2851-2854.

Eskenazi, M., 1999. Using automatic speech processing for foreign language

pronunciation tutoring: Some issues and a prototype. Language Learning &

Technology, 2(2), pp. 62-76.

Farhoodi, M., Yari, A. & Sayah, A., 2011. N-gram based text classification for

Persian newspaper corpus. In Digital Content, Multimedia Technology and its

163

Applications (IDCTA), 2011 7th International Conference on. Busan, IEEE, pp.

55-59.

Farid, D.M. et al., 2014. Hybrid decision tree and naïve Bayes classifiers for multi-

class classification tasks. Expert Systems with Applications, 41(4), pp. 1937-

1946.

Flanagan, J.L., Ishizaka, K. & Shipley, K.L., 1975. Synthesis of speech from a

dynamic model of the vocal cords and vocal tract. The Bell System Technical

Journal, 54(3), pp. 485-506.

Fourie, W., Du Toit, J.V. & Snyman, D.P., 2014. Comparing support vector

machine and multinomial naïve Bayes for named entity classification of South

African languages. In Proceedings of the 2014 PRASA, RobMech and AfLaT

International Joint Symposium. Cape Town, pp. 183-188.

Gahlawat, M., Malik, A. & Bansal, P., 2014. Natural speech synthesiser for blind

persons using hybrid approach. Procedia Computer Science, 41, pp. 83-88.

Gibson, M. et al., 2010. Unsupervised cross-lingual speaker adaptation for HMM-

based speech synthesis using two-pass decision tree construction. In 2010 IEEE

International Conference on Acoustics, Speech and Signal Processing. Dallas,

TX, IEEE, pp. 4642-4645.

Gilakjani, A.P., 2012. A Study of Factors Affecting EFL Learners' English

Pronunciation Learning and the Strategies for Instruction. International Journal of

Humanities and Social Science, 2(3), pp. 119-128.

Gilakjani, A.P. & Ahmadi, M.R., 2011. Why is Pronunciation So Difficult to Learn?

English Language Teaching, 4(3), pp. 74-83.

Giwa, O. & Davel, M.H., 2013. N-gram based language identification of individual

words. In The 24th Annual Symposium of the Pattern Recognition Association of

South Africa (PRASA). Johannesburg, pp. 15-21.

164

Giwa, O. & Davel, M.H., 2014. Language identification of individual words with

joint sequence models. In Proceedings of 15th Annual Conference of the

International Speech Communication Association, INTERSPEECH. Singapore,

pp. 1400-1404.

Giwa, O. & Davel, M.H., 2015. Text-based language identification of multilingual

names. In Pattern Recognition Association of South Africa and Robotics and

Mechatronics International Conference (PRASA-RobMech). Port Elizabeth,

South Africa, IEEE, pp. 166-171.

Gonzalvo, X. et al., 2016. Recent advances in Google real-time HMM-driven unit

selection synthesizer. In Proceedings of Interspeech 2016. San Francisco, USA,

pp. 2238-2242.

Greenspan, S.L., Bennett, R.W. & Syrdal, A.K., 1998. An evaluation of

diagonastic rhyme test. International Journal of Speech Technology, 2(3), pp.

201-214.

Guma, M., 2001. The cultural meaning of names among Basotho of Southern

Africa: A historical and linguistic analysis. Nordic Journal of African Studies,

10(3), pp. 265-279.

Hall, M. et al., 2009. The WEKA Data Mining Software: An Update. SIGKDD

Explorations Newsletter, 11(1), pp. 10-18.

Hannan, A. & Sarma, S.K., 2015. Identification of Assamese and Bodo language

from text- an approach. International Journal of Engineering Research &

Technology (IJERT), 4(12), pp. 67-70.

Heck, M., Stuker, S. & Waibel, A., 2012. A hybrid phonotactic language

identification system with an SVM back-end for simultaneous lecture translation.

In 2012 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). Kyoto, IEEE, pp. 4857-4860.

165

Hinton, G. et al., 2012. Deep neural networks for acoustic modeling in speech

recognition. IEEE Signal Processing Magazine, 29(6), pp. 82-97.

House, A.S., Williams, C.E., Hecker, M.H. & Kryter, K.D., 1965. Articulation-

testing methods: Consonantal differentiation with a closed-response set. Journal

of the Acoustical Society of America, 37(1), pp. 158-166.

Hsu, C.W. & Lin, C.J., 2002. A comparison of methods for multiclass support

vector machines. IEEE Transactions on Neural Networks, 13(2), pp. 415-425.

Huang, X., Acero, A. & Hon, H.-W., 2001. Spoken language processing: A guide

to theory, algorithm, and system development. 1st ed. NJ, USA: Prentice Hall

PTR.

Hu, Y. & Loizou, P.C., 2008. Evaluation of objective quality measures for speech

enhancement. IEEE Transactions on Audio, Speech, and Language Processing,

16(1), pp. 229-238.

Indhuja, K. et al., 2014. Text based language identification system for Indian

languages following devanagiri script. International Journal of Engineering

Research & Technology (IJERT), 3(4), pp. 327-331.

Jeon, M. et al., 2015. Menu Navigation With In-Vehicle Technologies: Auditory

Menu Cues Improve Dual Task Performance, Preference, and Workload.

International Journal of Human-Computer Interaction, 31(1), pp. 1-16.

Julnes, G. & Bustelo, M., 2014. Proffesional values and ethics in evaluation.

American Journal of Education, 35(4), pp. 525-526.

Jurafsky, D. & Martin, J.H., 2014. Speech and language processing. Pearson

Prentice Hall.

Kenworthy, J., 1987. Teaching english pronunciation. New York: Longman. pp.

1-11.

166

Kibriya, A.M., Frank, E., Pfahringer, B. & Holmes, G., 2004. Multinomial naive

Bayes for text categorization revisited. In Australian Joint Conference on Artificial

Intelligence. Berlin, Heidelberg, Springer, pp. 488-499.

Kiflu, A. & Beshah, T., 2012. Unit selection based text-to-speech synthesizer for

Tigrinya language. HiLCoE Journal of Computer Science and Technology, 1(1),

pp. 13-21.

King, S. et al., 2003. Edinburgh Speech Tools Library. [Online] Available at:

http://www.cstr.ed.ac.uk/projects/speech_tools/manual-1.2.0/ [Accessed 16

March 2016].

Klatt, D.H., 1987. Review of text-to-speech conversion for English. Journal of the

Acoustic Society of America, 82(3), pp. 737-793.

Kohavi, R., 1995. Wrappers for performance enhancement and oblivious decision

graphs. Doctoral dissertation. Stanford University.

Kordestanchi, H. & Naderi, H., 2013. Performance comparison study of language

identification tools for identification of Farsi web pages. In on Information and

Knowledge Technology (IKT), 2013 5th Conference on. Shiraz, pp. 489-494.

Kourkouta, L. & Papathanasiou, I.V., 2014. Communication in Nursing Practice.

Materia Socio-Medica, 26(1), pp. 65-67.

Lamabam , P. & Chakma, K., 2016. A language identification system for code-

mixed English-Manipuri Social Media text. In 2016 IEEE International Conference

on Engineering and Technology (ICETECH). Coimbatore, India, IEEE, pp. 79-83.

Langa, R., Manamela, M.J. & Gasela, N., 2012. Synthesis of dialect speech for

an under-resourced language. In The Southern Africa Telecommunication

Networks and Applications Conference (SATNAC). George, pp. 160-161.

Laprie, Y. et al., 2013. Articulatory copy synthesis from cine x-ray films. In

INTERSPEECH-2013. Lyon, France, pp. 2024-2028.

http://www.cstr.ed.ac.uk/projects/speech_tools/manual-1.2.0/

167

Lemmetty, S., 1999. Review of speech synthesis technology. Master's thesis.

Espoo, Finland: Helsinki University of Technology.

Lewis, M.P., Simons, G.F. & Fennig, C.D., 2016. Ethnologue: Languages of the

World. [Online] Available at: http://www.ethnologue.com/ [Accessed 01 May

2016].

Li, Y.Q. et al., 2012. A Visual-Audio Assisting System for Senior Citizen Reading.

In Computer Science and its Applications. Springer Netherlands, pp. 667-675.

Llitjos, A.F. & Black, A.W., 2001. Knowledge of Language Origin Improves

Pronunciation Accuracy of Proper Names. In Proceedings of the EUROSPEECH.

Aalborg, pp. 1919-1922.

Louw, J.A., 2008. Speect: A multilingual text-to-speech system. In Proceedings

of the Nineteenth Annual Symposium of the Pattern Recognition Association of

South Africa (PRASA). Cape Town, South Africa, pp. 165-168.

Louw, J.A., Davel, M. & Barnard, E., 2005. A general-purpose isiZulu speech

synthesizer. South African Journal of African Languages, 25(2), pp. 92-100.

Mabokela, K.R. & Manamela, M.J., 2013. An integrated language identification

for code-switched speech using decoded-phonemes and support vector

machine. In Speech Technology and Human - Computer Dialogue (SpeD), 2013

7th Conference on. Cluj-Napoca, pp. 1-6.

Mhlana, S., 2011. Development of isiXhosa text-to-speech modules to support e-

services in marginalised rural areas. Master's thesis. East London, South Africa:

University of Fort Hare.

Mitchell, T.M., 1997. Machine Learning. International ed. McGraw Hill.

Mohasi, L., 2006. Design of an advanced and fluent Sesotho text-to-speech

system through intonation. Master's thesis. Cape Town, South Africa: University

of Cape Town.

http://www.ethnologue.com/

168

Mullah, H.E., Pyrtuh, F. & Singh, L.J., 2015. Development of an HMM-based

speech synthesis system for Indian English language. In 2015 International

Symposium on Advanced Computing and Communication (ISACC). Silchar,

India, IEEE, pp. 124-127.

Nicolaou, A., Bagdanov, A.D., Gomez-Bigorda, L. & Karatzas, D., 2016. Visual

script and language identification. In 2016 12th IAPR Workshop on Document

Analysis Systems (DAS). Santorini, IEEE, pp. 393-398.

Pammi, S., Charfuelan, M. & Schröder, M., 2010. Multilingual Voice Creation

Toolkit for the MARY TTS Platform. In Proceedings of the Seventh International

Conference on Language Resources and Evaluation (LREC'10)., pp. 19-21.

Pedregosa, F. et al., 2011. Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research , 12, pp. 2825-2830.

Ramani, R. et al., 2013. Vehicle Tracking and Locking System Based on.

International Journal of Intelligent Systems and Applications(IJISA), 5(9), pp. 86-

93.

Rana, M.R., Akbar, M.A., Ahmad, T. & Gulfam, S., 2016. A supervised learning

technique for language identification. International Journal of Computing,

Communication and Instrumentation Engineering (IJCCIE), 3(2), pp. 436-440.

Rao, K.S. & Nandi, D., 2015. Language Identification Using Excitation Source

Features. Springer International Publishing.

Rousseau, F. & Mashao, D., 2005. A hybrid text-to-speech system for Afrikaans.

In Proceedings of South African Telecommunication Networks and Applications

Conference (SATNAC). Central Drakensberg

Roux, J.C. et al., 2010. Incorporating speech synthesis in the development of a

mobile platform for e-learning. In Proceedings of the Seventh International

Conference on Language Resources and Evaluation: LREC'10, 2010. Valletta,

Malta, pp. 1507-1510.

169

Schröder, M. & Breuer, S., 2004. XML reperentation languages as a way of

interconnecting TTS modules. In INTERSPEECH-2004. Jeju Island, Korea, pp.

1889-1892.

Schröder, M., Charfuelan, M., Pammi, S. & Steiner, I., 2011. Open source voice

creation toolkit for the MARY TTS platform. In INTERSPEECH-2011. Florence,

Italy, pp. 3253-3256.

Schröder, M. & Trouvain, J., 2003. The German text-to-speech synthesis system

MARY: A tool for research, development and teaching. International Journal of

Speech Technology, 6(4), pp. 365-377.

Sefara, T.J., 2017. Demo of The Automatic Pronunciation Assistant. [Online]

Available at: https://www.speechtech.co.za [Accessed 15 March 2017].

Sharma, B., Adiga, N. & Prasanna, S.R., 2015. Development of Assamese text-

to-speech synthesis system. In TENCON 2015 - 2015 IEEE Region 10

Conference. Macao, China, IEEE, pp. 1-6.

Shilkrot, R. et al., 2014. FingerReader: a wearable device to support text reading

on the go. In CHI '14 Extended Abstracts on Human Factors in Computing

Systems. Ontario, Canada, ACM, pp. 2359-2364.

Shukla, M.K., Rana, A. & Banka, H., 2016. Classification of the Bangla script

document using SVM. In 2016 3rd International Conference on Recent Advances

in Information Technology (RAIT). Dhanbad, India, IEEE, pp. 182-185.

Singh, A. & Kaur, A., 2015. Case study of touch technology Used for teaching

physically disabled students. In MOOCs, Innovation and Technology in Education

(MITE), 2015 IEEE 3rd International Conference on. Amritsar, IEEE, pp. 392-395.

SPTK Working Group, 2012. Speech Signal Processing Toolkit (SPTK) website.

[Online] Available at: http://sp-tk.sourceforge.net/ [Accessed 20 March 2016].

https://www.speechtech.co.za/
http://sp-tk.sourceforge.net/

170

Stan, A., Yamagishi, J., King, S. & Aylett, M., 2011. The Romanian spech

synthesis (RSS) corpus: Buiding a high quality HMM-based speech synthesis

system using a high sampling rate. Speech Communication, 53(3), pp. 442-450.

Stavropoulou, P., Tsonos, D. & Kouroupetroglou, G., 2014. Language resources

and evaluation for the support of the Greek language in the MARY text-to-speech.

In Text, Speech and Dialogue: 17th International Conference, TSD 2014, Brno,

Czech Republic, September 8-12, 2014. Proceedings. Springer International

Publishing. pp. 523-528.

Suortti, O. & Lipponen, L., 2014. Phonological skills and ability to perceive

auditorily the structure of a word at the level of a single phoneme at ages 2–6.

Journal of Early Childhood Literacy, 14(4), pp. 510-533.

Suthaharan, S., 2016. Support Vector Machine. In Machine Learning Models and

Algorithms for Big Data Classification. New York, US: Springer. pp. 207-235.

Taylor, P., 2009. Text-to-Speech Synthesis. New York, USA: Cambridge

University Press.

Taylor, P., Black, A.W. & Caley, R., 1998. The architecture of the festival speech

synthesis system. In SSW3-1998. NSW, Australia, pp. 147-152.

Tiomkin, S., Malah, D., Shechtman, S. & Kons, Z., 2011. A hybrid text-to-speech

system that combines concatenative and statistical synthesis units. IEEE

Transactions on Audio, Speech, and Language Processing, 19(5), pp. 1278-

1288.

Tokuda, K. et al., 2016. The HMM-based speech synthesis system (HTS).

[Online] Available at: http://hts.sp.nitech.ac.jp [Accessed 19 March 2016].

Tokuda, K. et al., 2011. The HTS engine API. [Online] (1.05) Available at:

http://hts-engine.sourceforge.net/ [Accessed 10 March 2016].

http://hts.sp.nitech.ac.jp/
http://hts-engine.sourceforge.net/

171

Uddin, M.A. et al., 2015. Phoneme based Bangla text to speech conversion. In

2015 18th International Conference on Computer and Information Technology

(ICCIT). Dhaka, Bangladesh, IEEE, pp. 531-533.

Valentini-Botinhao, C., Wu, Z. & King, S., 2015. Towards minimum perceptual

error training for DNN-based speech synthesis. In INTERSPEECH-2015.

Dresden, Germany, pp. 869-873.

van den Oord, A. et al., 2016. Wavenet: A generative model for raw audio.

Computing Research Repository (CoRR), abs/1609.03499.

van Heerden, C.J., 2012. Efficient training of support vector machines and thier

hyperparameters. PhD thesis. Potchefstroom, South Africa: University of North-

West.

Vasek, M., Rozinaj, G. & Rybárová, R., 2016. Letter-To-Sound conversion for

speech synthesizer. In 2016 International Conference on Systems, Signals and

Image Processing (IWSSIP). Bratislava, Slovakia, IEEE, pp. 1-4.

Violano, M. & van Collie, S.-C., 1992. Retail Banking Technology: Strategies and

Resources That Seize the Competitive Advantage. New York: John Wiley &

Sons.

Viswanathan, M. & Viswanathan, M., 2005. Measuring speech quality for text-to-

speech systems: development and assessment of a modified mean opinion score

(MOS) scale. Computer Speech & Language, 19(1), pp. 55-83.

Watts, O. et al., 2016. From HMMs to DNNs: Where do the improvements come

from? In 2016 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). Shanghai, China, IEEE, pp. 5505-5509.

Wells, J.C., 2005. SAMPA - computer readable phonetic alphabet. [Online]

Available at: http://www.phon.ucl.ac.uk/home/sampa/ [Accessed 6 April 2016].

http://www.phon.ucl.ac.uk/home/sampa/

172

Würgler, S., 2011. Implementation and evaluation of an HMM-based speech

generation component for the SVOX TTS system. Master's thesis, Swiss Federal

Intitute of Technology, Zurich.

Wu, Z., Valentini-Botinhao, C., Watts, O. & King, S., 2015. Deep neural networks

employing multi-task learning and stacked bottleneck features for speech

synthesis. In 2015 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). South Brisbane, Australia, IEEE, pp. 4460-4464.

Wu, Z., Watts, O., King & King, S., 2016. Merlin: An open source neural network

speech synthesis system. In Proceedings of the 9th ISCA Speech Synthesis

Workshop. Sunnyvale, CA, pp. 202-207.

Yamagishi , J. & Kobayashi , T., 2007. Average-voice-based speech synthesis

using HSMM-based speaker adaptation and adaptive training. IEICE

Transactions on Information and Systems, 90(2), pp. 533-543.

Yamagishi, J. et al., 2009. Analysis of Speaker Adaptation Algorithms for HMM-

Based Speech Synthesis and a Constrained SMAPLR Adaptation Algorithm.

IEEE Transactions on Audio, Speech, and Language Processing, pp. 66-83.

Yoshimura, T. et al., 1999. Simultaneous modeling of spectrum, pitch and

duration in HMM-based speech synthesis. In Proc. Eurospeech. Budapest,

Hungary, pp. 2347-2350.

Yuan, G.-X., Ho, C.-H. & Lin, C.-J., 2012. An improved GLMNET for L1-

regularized logistic regression. Journal of Machine Learning Research, 13, pp.

1999-2030.

Yu, J. & Wang, Z., 2016. A realistic and reliable 3D pronunciation visualization

instruction system for computer-assisted language learning. In 2016 IEEE

International Conference on Bioinformatics and Biomedicine (BIBM). Shenzhen,

IEEE, pp. 786-789.

173

Zen, H. et al., 2016. Fast, compact, and high quality LSTM-RNN based statistical

parametric speech synthesizers for mobile devices. In Proceedings of

Interspeech 2016. San Francisco, USA, pp. 2273-2277.

Zen, H. et al., 2007. The HMM-based speech synthesis system (HTS) version

2.0. In SSW6-2007. Bonn, Germany, pp. 294-299.

Zen, H., Senior, A. & Schuster, M., 2013. Statistical parametric speech synthesis

using deep neural networks. In 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing. Vancouver, Canada, IEEE, pp. 7962-

7966.

Zen, H., Tokuda, K. & Black, A.W., 2009. Statistical parametric speech synthesis.

Speech Communication, 51(11), pp. 1039-1064.

