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Introduction
This article is based on a study aimed at the improvement of the quality of teaching and learning 
mathematics using authentic real-life mathematics explorations. This involves paying closer 
attention to relationships between the manipulation of concrete material and the arising numerical 
values. We particularly focus on the early stages of the study and use two mathematical processes: 
representation, and reasoning and proof (National Council of Teachers of Mathematics [NCTM], 
2000), incorporating adaptive reasoning (Kilpatrick, Swafford & Findell, 2001). The study 
addresses some of the expectations with regard to the same processes within the context of the 
South African Mathematics Curriculum and Assessment Policy Statement (Department of Basic 
Education, 2011). Our specific concern was how teachers’ own learning of mathematical processes 
influence assessments of their learners. We limited the scope of this article by focusing on 
assessment of patterns arising from 2D and 3D shapes.

It has been a while since curricula developers and implementers strove for emphasis of both 
subject content and mathematical processes in mathematics teaching, learning and assessment 
(Kilpatrick et al., 2001; NCTM, 2000; Orton & Frobisher, 1996). There are many processes to be 
experienced and developed. Orton and Frobisher (1996) classified general processes into four 
categories: communication, operational, recording, and reasoning, which they claimed could 
contribute to some mathematical processes. They argued that these mathematical processes are 
not unique to mathematics, but play an important role in the establishment of new ideas and 
structures within mathematics. The NCTM (2000) described problem-solving, reasoning and 
proof, communication, connections, and representations as process standards. Kilpatrick et al. 
(2001) proposed five intertwining strands of mathematical proficiency: conceptual understanding, 
procedural fluency, strategic competence, adaptive reasoning, and productive disposition. The 
development of mathematical proficiency takes time and it would be interesting to analyse 
teachers’ assessments for process engagements.

It is recognised that, in addition to assessing content knowledge, assessments should provide 
insight into students’ ability to engage with mathematical processes (Davis, Smith, Roy & Bilgic, 
2014; Gulkilik & Arikan, 2012; Hunsader et al., 2014). Gulkilik and Arikan (2012) determined  

This article focuses mainly on two key mathematical processes (representation, and reasoning 
and proof). Firstly, we observed how teachers learn these processes and subsequently identify 
what and how to assess learners on the same processes. Secondly, we reviewed one teacher’s 
attempt to facilitate the learning of the processes in his classroom. Two interrelated questions 
were pursued: ‘what are the teachers’ challenges in learning mathematical processes?’ and ‘in 
what ways are teachers’ approaches to learning mathematical processes influencing how they 
assess their learners on the same processes?’ A case study was undertaken involving 10 high 
school mathematics teachers who enrolled for an assessment module towards a Bachelor in 
Education Honours degree in mathematics education. We present an interpretive analysis of 
two sets of data. The first set consisted of the teachers’ written responses to a pattern searching 
activity. The second set consisted of a mathematical discourse on matchstick patterns in a 
Grade 9 class. The overall finding was that teachers rush through forms of representation and 
focus more on manipulation of numerical representations with a view to deriving symbolic 
representation. Subsequently, this unidirectional approach limits the scope of assessment of 
mathematical processes. Interventions with regard to the enhancement of these complex 
processes should involve teachers’ actual engagements in and reflections on similar learning.
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pre-service secondary mathematics teachers’ views about 
using multiple representations in mathematics lessons. They 
found that, although the participants had concerns about the 
usage of multiple representations, they believed that using 
them was necessary for mathematics instruction. Davis  
et al. (2014) examined students’ opportunities to engage 
in reasoning and proving within exposition and task 
components of two US reform-oriented secondary algebra 
textbooks. Hunsader et al. (2014) analysed the extent to 
which students have opportunities to engage in the processes 
within the tests accompanying published textbooks. They 
intended to support teachers’ ability to make their own 
decisions about the efficacy of their assessment. Studies that 
investigate classroom instruction, or the actual assessments 
administered to students, continue to be important in order 
to support the development of specific pedagogical content 
knowledge. Because of this view, we were prompted to 
analyse 10 high school mathematics teachers’ learning of 
mathematical processes and how to assess them. In particular, 
we focused on the design of appropriate assessment rubrics 
and the facilitation of learning that takes into account those 
expectations. It is important that teachers’ values about 
assessment and their associated practices are consistent with 
each other and are both pedagogically sound.

Theoretical framework
This article is framed by the process standards as set out by 
the NCTM (2000) and Kilpatrick et al.’s (2001) theory of 
mathematics proficiency. The NCTM’s process standards 
describe ways in which all students learn the algebra content 
by engaging in problem-solving, reasoning and proof, 
communication, making connections, and multiple 
representations. According to Kilpatrick et al.’s (2001) theory, 
mathematics proficiency comprises five intertwined strands: 
conceptual understanding, procedural fluency, strategic 
competency, adaptive reasoning, and productive disposition. 
While the bigger study utilises all these mathematical 
processes and strands, we focus on representation, reasoning 
and proof incorporating adaptive reasoning to analyse how 
teachers learn these processes and, subsequently, learn how 
to assess learners on the same processes. We analyse the 
teachers’ learning from their written responses to a pattern 
searching activity.

The NCTM (2000) points out that representation refers both to 
process and to product. The emphasis is that students should 
have opportunities to view and to create multiple 
representations of mathematics graphically, numerically, 
algebraically, and verbally. Reasoning and proof should be a 
natural activity, an ongoing part of classroom discussions, no 
matter what mathematics topic is being studied. Particularly, 
‘students should expect to explain and justify their 
conclusions; … to clarify their thinking, … and to develop 
standards for high-quality mathematical reasoning’ (NCTM, 
2000, p. 342). Meanwhile, Kilpatrick et al. (2001, p. 5) say that 
adaptive reasoning comprises the ‘capacity for logical thought, 
reflection, explanation and justification’.

Methodology
We used case study research design to analyse 10 high school 
mathematics teachers’ learning of representations, reasoning 
and proof as mathematical processes and how to assess them 
within the context of their university studies towards a 
Bachelor in Education Honours degree in mathematics 
education. Data constructed in this manner, where we could 
actually talk directly to participants and see them behave and 
act within their context and ultimately reflect on their own 
learning, are a major characteristic of qualitative research 
(Creswell, 2007). We used two sets of data. The first set of data 
comprised the teachers’ written assessment task (Figure 1) 
submitted as part of the assessment requirements for a 
module that was delivered on a part-time basis. With the first 
six questions we took the teachers through a practical exercise 
that allowed them to learn, with understanding, the 
assessment of mathematical processes as expected in the 
other two questions.

The second set of data arose from the Grade 9 lesson activity 
of one of the teachers (Figure 2).

The class had 14 learners, 9 girls and 5 boys. They formed 
three groups: two of five members each and one with four 
members. This teacher’s class was selected to provide a 
window through which to see how the participants’ newly 
acquired knowledge and skills unfolded in an actual 
classroom environment.

Our analysis of the two sets of data was guided by the 
NCTM’s (2000) process standards of representation, 
reasoning and proof, and Kilpatrick et al.’s (2001) notion of 
adaptive reasoning. For the first data set we drew our 
analysis from the teachers’ responses to Item 5 and Item 8 
(see Figure 1). For Item 8 we analysed the teachers’ designed 
assessment criteria, targeting descriptions of the cells with 

1. Find the number of cubes in the pyramid above. 
2. Draw the next pyramid.
3. Find the number of cubes that are needed to build a pyramid that is 10
    cubes high.
4. In simpler language, explain how you solved the ques�ons above.
5. How many cubes will you need to build any pyramid similar to the one
    above?
6. Reflect on how you solved ques�on 5 and indicate those cri�cal
    issues/features/sub problems you had to resolve in the process. 
7. What should be assessed in the given pyramid ac�vity?
8. Design an assessment rubric for what you iden�fied in ques�on 7.

Pa�ern searching as a mathema�cal process – What and how to assess? 

FIGURE 1: Pyramid activity.
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the highest score to find out what and how they would 
assess. For the second data set, our analysis was guided by 
drawings that the learners produced in response to Item 4 
and their associated conversations to explain and justify 
their conclusions.

Ethical considerations
This qualitative study complied with the university’s ethical 
requirements. Approval was obtained from the relevant 
university structures and the 10 participants. The nature and 
purpose of the study were declared, inclusive of potential 
audiences and substantive foci. Erickson (1998) writes:

consent that is genuinely informed and without coercion 
reduces the risk of social harm because it affirms the dignity 
and respects the agency of those who will be involved in the 
study. (p. 1161)

We agreed on anonymity of the participants, hence no 
individual identities were divulged and pseudonyms were 
used. The teachers were beneficiaries of the study. They 
were inducted into the dynamics of what it means to learn 
and to assess mathematical processes with a view to 
teaching and assessing their own learners. 

Quality criteria
Prolonged engagement (semester), persistent observation, 
ongoing probing during a number of whole-class discussions, 
peer debriefing and member checks provided sufficient 
opportunity to hear the teachers’ voices, which contributed 
to establishing the credibility of this study (Bitsch, 2005; 
Guba & Lincoln, 1989). Recursive discussions with the 
teachers and sufficient descriptive data added to the 
confirmability and transferability of this study (Guba & 
Lincoln, 1989).

Findings and discussions
This section is organised according to the NCTM’s (2000) 
process standards of representation, reasoning and proof. 
The latter incorporates Kilpatrick et al.’s (2001) notion of 
adaptive reasoning. Each of the two process standards is 
further organised in relation to the teachers’ own learning 
of process skills and into assessment of their learners in 
this.

Representation
Representation as a process standard is attained when a 
learner can demonstrate the ability to:

•	 Create and use representations to organise, record, and 
communicate mathematical ideas.

•	 Select, apply, and translate among mathematical 
representations to solve problems.

•	 Use representations to model and interpret physical, 
social, and mathematical phenomena.

The activities that the participants engaged with in both 
data sets provided opportunities for exposure to all aspects 
of representation. The given pattern that the participants 
engaged with in the first data set is unique in the sense that 
the cubes were organised in a specific way to make the 
pyramid. The number of cubes that are required to construct 
any other pyramid can be found using a variety of methods. 
The pyramids can be dismantled and the individual cubes 
counted, cubes in a layer could be counted and subtotals 
added, the structure could be analysed and the counting 
done using the outcomes of that structural analysis, 
etcetera. The structural analysis of the pattern has the 
potential to lead to techniques that preserve mathematical 
ideas among the various representations. Only two 
methods became conspicuous from the teachers’ responses: 
counting cubes per layer of the pyramid, and counting 
cubes per layer and adding the subtotals. In each of these 
approaches we analyse the teachers’ own learning of the 
mathematics process of representation and their envisaged 
assessment of the process.

Cubes per layer
Seven respondents limited their calculations of the number 
of cubes in a particular layer of the pyramid. While the 
activity clearly asks for the number of cubes needed to 
build any pyramid similar to the one given, the participants 
interpreted that to require a number of cubes in any layer 
of a pyramid. Responses within this method also showed 
minor differences in terms of the additional techniques 
used.

The teachers’ own learning in using only layers: These are 
how three of the seven teachers explained their work:

MKK:  A general formula should be formulated that satisfies 
any number of cubes in each layer. I need a strategy to 
enable me to find the correct formula.

MAK: I extended the pyramid by extra layer.
 (i)  Write down the number of cubes in each layer of 

the pyramid.
 (ii) Find the relationship between the number of cubes.
MLN: The first pyramid has 1 cube 
 the second 1 + 4 = 5
 the third 5 + 8 = 13
 the fourth 13 + 12 = 25
  The number of cubes in the previous pyramid plus 

the pyramid number times 4 gives the number of cubes 

Learning ac�vity: Matchs�cks pa�ern

1. Construct a series (chain) of matchs�ck squares and complete 
    the table below:

Number of squares 1 2 3 4 n
Number of matchs�cks

2. How many matchs�cks do you need for the next square?
3. How many matchs�cks will you need to construct 16, 40 and 72
     squares? Show all your calcula�ons.
4. How many matchs�cks will you need to construct any number of
     squares?

FIGURE 2: Matchsticks pattern activity.

http://www.pythagoras.org.za


Page 4 of 10 Original Research

http://www.pythagoras.org.za Open Access

in the next pyramid, i.e. for pyramid 3, the total cubes 
will be

 T3 = 2(3)2 + 2(3) + 1
 = 25

The approaches fell short of addressing the total number of 
cubes required to build any pyramid. The numerical patterns 
generated from the approaches were a reflection of the 
pictorial patterns of the layers in a pyramid and not pictorial 
patterns of the pyramids themselves.

Once the numerical patterns were generated, the respondents 
applied three different techniques to arrive at the 
generalisation. The first technique (1 response) could be 
regarded as trial and error, as the generalisation was first 
presented and a few items were tried out. There is no clear 
evidence as to how such a generalisation was arrived at. For 
example, MLN had Tn = 2n2 + 2n + 1 as the general formula. 
MLN used n – 1 to compute the value for n. The value that is 
calculated as T3 is for the fourth pyramid. However, it is 
presented as the value for pyramid three. That is clearly a 
misrepresentation that defeats the purpose of harnessing this 
process skill.

With the second technique (2 responses), generalisation was 
arrived at through the use of ‘met before’ techniques of 
finding the differences between consecutive terms in the 
numerical patterns until a constant difference is found. It was 
MAK and MKK who used the technique, arriving at the 
conclusion that Tn = 2n2 – 2n + 1. While this generalisation is a 
true generalisation of the numerical pattern of the number of 
cubes in a layer, this representation has no structural relevance 
to the pictorial representation of the layer. The manipulation 
of the numerical patterns did not mimic the concrete 
manipulation of the pictorial representation of the layers.

Using the third technique (2 responses), generalisation was 
also given as Tn = 2n2 – 2n + 1. This outcome emanates from a 
different approach in analysing the numerical pattern. Each 
term in the sequence is seen as a sum of two consecutive 
squares – the square of n and that of (n – 1). STT and MMW 
provide examples of how that was arrived at.

STT:  Make a sequence of squaring the natural numbers: 
1; 4; 9; 16; 25 etc. Add the square numbers starting from 
the second term (e.g. 4 + 1; 9 + 4; …). This means 
I squared the level number and add level plus one 
squared (e.g. 12 + (1 – 1)2 = 1; 22 + (2 – 1)2 = 5).

[Here MMW shows how entries in the table were calculated.]

12 22 32 42 52

1 4 9 16 25

 + 1 + 4 + 9 + 16

L2 + (L – 1)2 = L2 + L2 – 2L + 1 = 2L2 – 2L + 1

The technique deployed by both STT and MMW can be 
regarded as sums of two consecutive squares. Expressing the 

generalisation in this way allows for a closer review of the 
pictorial representations of the layers of the pyramid with a 
view of determining what that translates into. The model 
allows for the interpretation of physical mathematical 
phenomena, a core aspect of representation.

The last two participants of the seven (MST and KAS) in this 
category had insufficient responses for what the activity had 
asked for. However, the opportunity to learn about the 
processes was not adversely affected. The issue is the depth 
of that learning and how that was translated into the designed 
assessment criteria in the context of representation.

The teachers’ approach to assessment of learning: The focus 
in this section falls on five of the seven participants whose 
responses were regarded as sufficient. While MLN had a 
completely irrelevant response (no connection between the 
response and Item 5), the other four teachers had similar 
responses. Two issues were targeted for assessment and 
those were the ability to recognise the pattern and the ability 
to generalise the pattern. Furthermore, the expectation of the 
four teachers in terms of the two criteria closely resembles 
how they dealt with the problem in Item 5. Here are how the 
four teachers expressed performance at the highest level in 
relation to the two criteria.

MKK:  Able to recognise observable, hidden and underneath 
cubes to extend the pattern Show outstanding 
understanding of relating number of cubes and layers

STT:  Ability to recognise cubes observable and hidden Show 
a complete understanding

MAK:  All occurrences mentioned and logically done Create a 
pattern using the observable, behind and underneath 
cubes and able to generalise the pattern

MMW: Ability to:

•	 recognise cubes, hidden and those underneath and 
could extend the pattern

•	 derive a formula

The responses were, to a limited extent, in line with one 
of the three aspects of representation: ‘create and use 
representations to organise, record, and communicate 
mathematical ideas’. The limitation of the responses is in 
relation to the amount of time spent on the manipulation of 
the way the layers are structured. In responding to Item 5, 
these teachers were content with the numbers without 
checking whether those numbers adequately communicated 
the structure of the layers. The drawing of the structures 
of the layers, analysing the structures, and subsequently 
recording the observations are the actions that make 
representation a process standard. However, there is no 
clear evidence that an in-depth attempt was made in that 
regard. MAK’s expectation that all occurrences should be 
mentioned and logically done can be tricky if considered 
out of context. At the lower levels he expects one, two, or 
three occurrences, while remaining unclear about what 
these occurrences are. However, if one reflects back on 
MAK’s own engagement with the activity, these occurrences 
could be the different layers of the pyramid.

MMW: Independent 1 2 3 4 … 10 n

Dependent 1 5 13 25 … ?

http://www.pythagoras.org.za
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The responses in relation to generalisation also show the 
participants’ obsession with symbolic representation that 
has no direct relation with the structural aspects of what 
is represented. It is not immediately clear what MKK 
and STT refer to by understanding, but that could be in 
line with what MMW regards as a formula that will help 
find the number of cubes per layer. Approached in this 
way, the opportunity for translation among mathematical 
representations is very limited. Again, the appreciation of 
the generalisation as a model for the pyramids is lost and 
therefore the opportunity to fully develop representation 
as a process standard is limited.

Cubes per layer and the totals for the pyramid
Three participants fell in this category. They first calculated 
the number of cubes per layer and then added the subtotals 
to find the required number of cubes for any pyramid.

The teachers’ own learning in using layers and pyramid 
totals: All three participants arrived at the generalisation of 

T n nn ( ) ( )= +2
3

 1
3

3 . The conclusion was reached using similar 

approaches, with MLL hinting at an additional strategy.

CKG:  Consider the number of layers per pyramid and number 
of cubes per layer. Number of cubes per pyramid is: 

  1; (1 + 5 = 6); (1 + 5 + 13 = 19); (1 + 5 + 13 + 25 = 44);  
(1 + 5 + 13 + 25 + 41 = 85)

 1; 6; 19; 44; 85; …
 First difference: 5; 13; 25; 41 – not constant
 Second difference: 8; 12; 16; 20 – not constant
  Third difference: 12 – 8 = 4; 16 – 12 = 4; 20 – 16 = 4 is 

constant, then the pattern is cubic

HMJ:  Write the pattern. Find the differences … first differences 
not common means – not a linear pattern, second 
differences not common – is not a quadratic pattern, the 
third difference is common therefore is a cubic pattern.

 First difference = 5; 13; 25; 41; 61; 85; 113; 145; 181
 Second difference = 8; 12; 16; 20; 24; 28; 32; 36
 Third difference = 4

MLL:  I used the conjecture I formulated in question 3 as basis 
for generalisation. Number of cubes per layer form a 
quadratic pattern, thus the rule is of the second degree. 
Squared the term number and multiplied it by two, 
subtracted different numbers for different layers. 
Different numbers I subtracted formed a linear pattern 
which enabled me to generalise the number of cubes 
per layer. Alternatively:

  Total number of cubes needed to build pyramids with 
layers 1 to 5 will be 1; 6; 19; 44; 85.

 Differences between consecutive terms:

1 6 19

25

13 16

44

41

85

5 13

8

4 4

  From prior knowledge, a pattern with a constant 
difference yields a linear pattern, and with second 
constant difference yields a quadratic pattern. The one 
with a third constant difference yields a cubic pattern: 

Tn = an3 + bn2 + cn + d, the challenge is to find the values 
of a, b, c, and d.

The three participants clearly worked towards establishing 
the number of cubes in a pyramid. Counting the cubes 
in each layer was considered as a step in that process. The 
need for justification for manipulation of the numerical 
patterns is evident in the responses. The implication of those 
manipulations on the structure of the layers is not, however, 
reflected in the way the subtotals were found, especially in 
CKG’s and HMJ’s responses. MLL hinted at an attempt to 
analyse the structure of the layers without concluding that 
aspect. Meanwhile, all the three responses show that once the 
numerical sequence was established, the general strategy of 
determining the differences among consecutive terms was 
used to arrive at a conclusion that the general pattern is a 
cubic one. That strategy was then correctly used to arrive at 
the generalisation of ( ) ( )= +T n nn   2

3
  1

3
.3

The teachers’ approach to assessment of learning: The 
three participants, while they generally highlighted both the 
ability to generate a pattern and generalise it, placed different 
emphasis on the two aspects. The expected performance at 
the highest levels in relation to the given criteria was as 
follows:

CKG:  Correctly count front, behind, hidden cubes and 
correctly draw next pyramid Correct manipulation of 
numbers, variables and operations and make a relevant 
conclusion

HMJ:  Use front, back and underneath to extend pattern Able 
to generalise correctly, logically and appropriately

MLL:  Total cubes per layer and per pyramid are correct. 
Correct description of the patterns in words or using 
conjectures or any mathematical calculation, for both 
cubes per layer and per pyramid Correct generalisation 
for both the number of cubes per layer and per pyramid

It was clear in all the responses that there was more than 
generalisation that was expected. HMJ wanted to see the 
logic, CKG wanted to see the manipulations of numbers and 
variables and the relevance of that in the conclusion, while 
MLL wanted descriptions or conjectures for both the layers 
and the totals. If strictly and consistently applied, these 
assessment rubrics could encourage the realisation of the 
core aspects of representation. However, in their current 
format, it is not clear that navigation between multiple 
representations is being encouraged. It is only when we take 
a look at how MLL facilitated learning in his classroom that 
this aspect became clearer.

MLL’s facilitation of the matchsticks activity
In engaging with the assigned activity to construct a series of 
chained squares, their associated number patterns and the 
generalisation thereof, three groups of learners in MLL’s 
classrooms used different approaches and representations. 
Initially, two patterns were generated. However, at the end 
there were three as a result of the amendment of one of them. 
Three distinct representations from two groups of learners 
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were observed from data set 2. The associated conversations 
also articulate the aspects of representation.

The two groups presented these drawings on the board. This 
was the drawing for Group 1:

This was the drawing for Group 2 and Group 3:

Jahi:  [Group 1] Each square required four matchsticks and 
for every additional square four matchsticks were 
required.

 16 squares: 16 × 4 = 64 matchsticks
 40 squares: 40 × 4 = 160 matchsticks
 72 squares: 72 × 4 = 288 matchsticks
 Any number of squares x × 4

Jahi:  [Saw how other learners frowned at the presentation, turned 
to one of them.] Bongi, what’s wrong?

Bongi: Are your drawings forming a chain?

Jahi:  [Looked at the drawings, turned to Bongi and then at her 
group silently asking for assistance.]

Kabo:  [From Group 1 walking towards the board.] Oh, a chain, 
they must be joined together. But it will not make a 
difference on our answer. [Redrew this amended drawing.]

Group 2 and Group 3 had the same series of matchstick 
squares, with same pattern and conjectures. However, Group 
3 could not generalise the pattern and Group 2’s generalisation 
did not show any relationship with their conjecture.

Thalan presented Group 2’s responses.

Thalan:  The first square required four matchsticks and for every 
additional square, three match-sticks were required.

 16 squares: 4 + 3 × 15 = 49 match-sticks
 40 squares: 4 + 3 × 39 = 121 match-sticks
 72 squares: 4 + 3 × 71 = 217 match-sticks
 Any number of squares: x × 3 + 1
  [He was questioned why the 4 disappeared in the generalisation 

and where the 1 came from. This had an effect on the group 
as Thalan changed the presentation and wrote for 16 squares: 
16 × 3 + 1 = 49]

Rof:  [from Group 3] I have a different general rule. For 
16 squares, they needed 4 + 3 × 15 = 49 matchsticks and 
15 which is multiplied by 3 is one less than 16. So the 
general rule is 4 + 3(x – 1) [Wrote it on the board]. Therefore, 
for any number x there will be 4 + 3(x – 1) matchsticks.

The learners agreed with Rof that his general rule was 
working and was observable in the conjecture. But the 
question raised was why there were two different 
generalisations that are both working. It was at this stage that 

the teacher, MLL, asked the learners to simplify the expression 
and see what would happen. There was much excitement 
when the expression reduced to the other group’s general 
rule of x × 3 + 1.

In MLL’s classroom activity, the learners’ descriptions, 
drawings, their general rules and numerical representations 
were all being interrogated with a view to establish direct 
connections among them. The 4 in the general formula was 
expected to be in the numerical representation (conjecture) 
and in the actual drawings. The learners were not only 
interested in the final general rule but clear translation 
among the different representations. The elements of the 
omnidirectional value in engaging with representations 
as a mathematics process were becoming evident. These 
kinds of learning interactions that we observed in MLL’s 
class take time to inculcate. The classroom learning 
environment allowed for demonstration of knowledge 
and skills commensurate with MLL’s assessment criteria 
(recognition, description in words or using conjectures or 
any mathematical calculation, and generalisation of the 
number pattern).

Reflective thoughts on representation
At this stage of the study, we observed that, when faced 
with an authentic mathematical problem that requires 
different facets of representation, teachers tend to rush 
into generation of numerical representations. This stage is 
then followed by manipulations with a view to deriving 
symbolic representations. The process is almost exclusively 
unidirectional and, thereby, limits the opportunity for the 
richness of each representation’s contribution in developing 
insights into other representations.

Reasoning and proof
Reasoning and proof as a mathematics process standard 
requires of learners to:

•	 recognise reasoning and proof as fundamental aspects of 
mathematics

•	 make and investigate mathematical conjectures
•	 develop and evaluate mathematical arguments and 

proofs
•	 select and use various types of reasoning and methods of 

proof.

During reasoning and proof, viewed from adaptive reasoning 
as a strand of mathematical proficiency, learners should 
develop capacity for logical thought, explanation, and 
justification. All of these traits were observable in almost all 
the responses in both data sets, although to varying degrees. 
The activity itself was designed to facilitate the learning of 
this process strand. For the data set that involved teachers 
(see Figure 1), Item 4 required that they explain how Item 3 
was resolved while Item 6 required critical reflection on how 
Item 5 was resolved. The responses to the latter item were 
used earlier. For the current process standard, we use 
responses to Item 3 and Item 4.
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One of the 10 participants (MST) gave a very brief response 
to the two activity items indicating that he used number 
series to arrive at an answer of 186 (total number of cubes). 
While 186 is incorrect, the lack of richer explanation made it 
difficult to establish his thought process. The responses of the 
other nine participants fell into three categories, viz. numerical 
approaches, numerical and symbolic approaches, and numerical, 
symbolic and pictorial approaches.

Numerical approaches
The numerical perspective of mathematics is very powerful 
as it constitutes the elementary nature of the discipline. Our 
interest at this point is how the participants’ own learning, 
which is dominated by numerical approaches, translates into 
the assessment of learners.

Teachers’ own learning in using numerical approaches: 
There were five participants who used a numerical 
approach. They used the existence of the numerical pattern 
as a justification for their response to Item 3. The strategy 
involved the establishment of the total number of cubes per 
layer, and subsequently adding those numbers to find the 
total for the pyramid. MKK’s and STT’s responses are used to 
demonstrate the strategy.

MKK
3. 670 cubes
  Identify the number of observable and hidden cubes in each 

layer. 

No. of layers 1 2 3 4 … 9 10

Cubes/layer 1 5 13 25 … 145 181

Total cubes per pyramid 1 6 19 44 … 489 670

 Alternatively:
 12 = 1
 22 = 4 + 12 = 5
 32 = 9 + 22 = 13
 42 = 16 + 32 = 25, etc.

STT
3.  The number of cubes needed to build a pyramid that is 10 

cubes high is 670.

Level Cubes/level Total cubes/pyramid

1 1 1
2 5 6
3 13 19

10 181 670

  For the total cubes per pyramid (e.g. 1 + 5 = 6, 1 + 5 + 13 = 19) 
I calculated the differences between successive terms 
and the common difference was found in the second 
difference. I used the common difference to generate the 
sequence for the number of cubes per level. I cumulated 
the generated pattern to get the total cubes for pyramid 
that is 10 levels high.

Both MKK and STT went into detail to demonstrate how 
they arrived at their answer to Item 3. That, on its own, 
demonstrated that the participants do value reasoning and 
proof as important aspects of mathematics. It is evident that 

more work was also done elsewhere before the results were 
captured in their tables. The first step of their response was 
to generate the number of cubes per layer and later add 
those to get the number for the pyramid. That is, the 
participants established and reasoned for their response 
by actually calculating all the previous sums until the 10th. 
The power of numerical pattern was preferred. The only 
structural property of the pictorial pattern that was used is 
the layered nature of the pyramid. The structure of the 
layers themselves did not feature. We also observed that 
MKK did pursue an alternative approach to establish the 
answer; however, that was also numerical. While both 
participants achieved their goal of determining the actual 
number of cubes required to build the required pattern, 
their limited focus on numerical approach constrains the 
opportunity of encountering the varied ways through 
which the answer can be established. The critical aspect of 
mathematics is not its ability to resolve a problem but its 
broadness in facilitating such a resolution. Justifying and 
proving the solution of the given problem using a single 
algebraic strategy of numerical pattern is less convincing as 
it falls short of room for a selection and use of various types 
of reasoning and methods of proof.

The teachers’ approach to assessment of learning: Indicators 
on what the participants valued in relation to assessment 
of learning are derived from their responses to Item 7 and 
Item 8 of the given activity. We again use MKK’s and STT’s 
responses. They both identified similar skills to be assessed 
with one difference.

Ability to:

•	 generate a number pattern.
•	 sequentially/logically record data.
•	 find relationship of layer and total cubes per layer.
•	 give a convincing explanation in a narrative/mathematical 

form.

The only difference was that MKK included ‘interpretation of 
word problems’ while STT had ‘ability to generalise’. As was 
observed with their own learning, the two participants value 
the generation of number pattern and relating that to layers 
and total number of cubes. The reasoning and proof is limited 
to ‘giving convincing explanation’. While this acknowledges 
the significance of reasoning and proof, it falls short of 
encouraging the varied nature of how that could be undertaken.

Numerical and symbolic approaches
By numerical and symbolic approaches, we refer to a 
scenario in which the strategy is considered credible when a 
symbolic generalisation is established. A numerical pattern 
is generated and analysed with a view to generalise it and 
only then is it applied to resolve prevailing problems.

Teachers’ own learning in using numerical and symbolic 
approaches: There were three participants in this category. In 
addition to what the participants in the previous category 
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did, this group went further to establish the generalisation 
for number of cubes per level and in other cases also for the 
pyramid. The generalisability of the number of cubes was 
considered reason enough to accept the response to Item 3. 
We use KAS’s and MLL’s responses to demonstrate the 
strategy.

KAS

No. of layers 1 2 3 4 5 6 7 8 9 10
No. of cubes 
per layer

1 5 13 25 41 61 85 113 145 181

Total cubes 
per pyramid

1 6 19 44 85 146 231 344 489 670

T1 = 12;  T2 = 22 + 1;  T3 = 32 + 4;  T4 = 42 + 9;  T5 = 52 + 16;  
T10 = 102 + 81 = 100 + 81 = 181

Square the number of layer and add the square of the previous 
number of layer.

MLL

Number of 
layer

Cubes/layer Total

1 1  = 2(1)2 – 1 
= 2(1)2 – 2(1) + 1 1 2

3
1 1

3
1

3( ) ( )= +

2 5  = 2(2)2 – 3 
= 2(2)2 – 2(2) + 1 6 2

3
2 1

3
2

3( ) ( )= +

3 13  = 2(3)2 – 5 
= 2(3)2 – 2(3) + 1 19 2

3
3 1

3
3

3( ) ( )= +

4 25  = 2(4)2 – 7 
= 2(4)2 – 2(4) + 1 44 2

3
4 1

3
4

3( ) ( )= +

10 2(10)2 – 2(10) + 1 = 181 2
3

10 1
3

10 670
3( ) ( )+ =

I created a conjecture that relates the number of layers, the 
numbers of cubes per layer and per pyramid. The conjecture 
holds for the first 5 terms of the pattern, hence I applied it to a 
pyramid 10 layers high.

In KAS’s case, the generalisation was with regard to the number 
of cubes per layer. While the origin of the idea is not clear, KAS 
used the sum of squares to arrive at the number of cubes per 
layer. The number of cubes for a pyramid is not problematised 
as it is the sum of cubes per layer. MLL worked with a conjecture 
for both the layers and the pyramid. Once it was established 
that the conjecture worked for a few items in the pattern, the 
idea was extended to establish the answer for Item 3.

The three participants in this group demonstrated their 
appreciation of reason and proof as valuable aspects of 
mathematics. The need to establish and test the conjectures 
was attempted which made their responses qualitatively 
different from those in the first category. However, more still 
needs to be done to address other aspects of reasoning and 
proof as the process standard requires. The multiplicity of 
methods of proof still need to be demonstrated. It is in the 
category that follows where the emergence of the idea is 
observable.

The teachers’ approach to assessment of learning: For  
the sake of continuity, KAS’s and MLL’s responses are 
used.

KAS: Skills to assess:
	 •	 Sequential/logical	recording	of	data
	 •	 Ability	to	relate	numbers
	 •	 Interpretation
	 •	 Generalisation,	and
	 •	 Substitution

MLL: Could assess ability to:
	 •	 	count	 the	 number	 of	 cubes	 per	 layer	 and	 per	

pyramid.
	 •	 	recognise	 a	 number	 pattern	 from	 the	 number	 of	

cubes per layer and per pyramid.
	 •	 	extend	 the	 number	 pattern	 by	 both	 drawing	 and	

working with the pattern recognised.
	 •	 	describe	 the	 pattern	 recognised	 on	 cubes	 per	 layer	

and per pyramid.
	 •	 	generalise	the	described	pattern	for	any	pyramid.
	 •	 verify	the	generalised	rule	for	the	patterns.

Evident in the two responses is that generalisation is 
not seen as an end in itself. There is clear expectation 
that the learning should include the application of the 
generalisation. Furthermore, MLL expects the ability to carry 
out the extensions not only numerically but also pictorially. 
The latter requires exploration and understanding of the 
structural aspects of the pictorial patterns. What remains 
unclear, however, is the ability of learners to relate structural 
properties of the pyramids with the numerical or symbolic 
patterns. This shortfall limits the potential for meaningful 
interpretation of the various strategies that can be used to 
address the problem.

Numerical, symbolic, and pictorial approach
Approaching learning from a variety of perspectives has a 
potential for triangulation, deeper and meaningful learning. 
In many respects, this is closer to the ideals of reasoning and 
proof as a mathematical process.

Teacher’s own learning with respect to numerical, symbolic 
and pictorial approach: Only one participant, MLN, 
unpacked and analysed the pictorial pattern and thus 
attempted to relate the structural properties of the layers and 
their numerical patterns. This is an important aspect in the 
development of reasoning and proof as a mathematics 
process standard. Analysis of pictorial patterns allows for 
meaning making and has the potential for multiplicity of 
reasoning and methods of proof.

MLN
Top-row Middle-row Bo�om-row
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3.
 1st top row = 1 cube
 2nd top row = 5 cubes
 3rd top row = 13 cubes
 
 10th top row = 181 cubes
  Number of cubes needed to build a pyramid that is 

10 cubes high is:
 1 + 5 + 13 + 25 + 41 + 61 + 85 + 113 + 145 + 181 = 670

5.  The number of cubes in the given pyramid was obtained 
by first drawing the view of each row of the pyramid 
and then add them. … Number of cubes for a pyramid 
10 cubes high was obtained by counting the number of 
cubes per row and then find the sum.

In this response it is clear how the numbers of cubes per layer 
were obtained. The relationship between the numerical and 
the pictorial patterns is clearer as compared to the previous 
cases. To an extent, the explanation is more convincing as the 
reorientation of the pictorial pattern reveals the hidden cubes. 
As an attempt to justify the response to the activity Item 3, 
MLN’s presentation had fewer uncertainties as both the pictorial 
and numerical patterns complemented each other. This double 
method of representation advanced the opportunity to acquire 
reasoning and proof as a mathematics process standard.

Teacher’s approach to assessment of learning: MLN’s 
approach to assessment was distinct as compared to other 
participants. Instead of the usual expectation of generating a 
pattern and ability to generalise, she emphasised geometric 
and problem-solving skills. This is how she responded to the 
task list of issues that should be considered for assessment.

MLN: Skills to assess
	 •	 	Drawing	 skills:	 Understanding	 how	 to	 draw	 the	

figure and the actual drawing skill
	 •	 Arrangements:	Area	models	and	set	models
	 •	 Counting:	Use	of	patterns	in	counting
	 •	 	Problem-solving:	 Understanding	 of	 the	 problem;	

taking risks; and justifying results

There is an obvious attempt to integrate geometric and 
algebraic skills in the assessment. The inclusion of problem-
solving skills also provides for further opportunities in which 
individual learners could bring additional skills into the 
problem. If properly applied, then this approach has the 
potential to encompass all the attributes of ‘reasoning and 
proof’. MLN’s invested energies in engaging with the given 
activity congruently translated into his expectations of what 
the learners should be able to do.

Reflective thoughts on reasoning and proof
The development of attributes for reasoning and proof 
require a culture of multiplicity in the resolution of problems. 
Both teachers and learners need to appreciate that it is not 
necessarily the final answer that is essential but the variety of 
ways of accomplishing the task matters. We have observed 
that while the participants demonstrated an appreciation for 
reasoning and proof, the preoccupation with the final answer 

limited explorations of other forms of proofs. The practice 
translates into limited scope of assessment.

Conclusion and implications
Mathematics process standards, as covered in this study,  
are broad and long term in nature. In engaging with them 
we acknowledge the need to take into account the bigger 
picture (Maoto, Masha, & Maphutha, 2016) that underpins 
each of those standards. The learning activities presented 
as part of this article were not meant to address 
these mathematical processes fully, but to set in motion 
a concerted effort to expose the participants to such 
mathematics processes. In closing, we revert back to the 
questions raised in the study.

Teachers’ challenges in learning mathematical 
processes
The presentation of the pictorial pattern that was used to 
engage the teachers offered multiple scenarios of engagement 
in the process of deriving symbolic representations. In 
addition to the various forms of experiences and interpretations 
that individual participants brought to the activity, the 
outcomes of the engagements were plenty. However, what 
became evident is the challenge of rushing the process 
towards numerical and symbolic representations. Once the 
numbers were derived from the pictorial representation, 
different levels of manipulation of the numbers became the 
main focus away from the structural aspects of the original 
figural pattern. For instance, while the activity item clearly 
asks for the number of cubes needed to build any pyramid 
similar to the one given, we observed 7 of the 10 participants 
interpreting and limiting themselves to calculating the 
number of cubes in a particular layer of the pyramid. This 
bottleneck in the generated pattern might be due to the 
perception of mathematics as being about numbers. 
The unidirectional approach that they used made it impossible 
for them to realise the discrepancies in their responses. 
Meanwhile, the other three participants remained focused 
and continued to find the totals for the pyramid as required; 
they missed the bigger picture in resolving the problem due to 
their confinement to numerical and symbolic patterns.

Justifying and proving a solution through a single strategy 
lacks rigour that is required for one to appreciate reasoning 
and proof as a mathematics process. In our case the function 
type determined by the non-linear nature of the task 
challenged the participants’ reasoning capabilities. While it 
was easier for them to generalise a linear pattern (generated 
from counting the cubes per layer), they had difficulty in 
generalising what emerged as a non-linear pattern. This 
confirms Jurdak and Mouhayar’s (2014) view that the 
development of reasoning in pattern generalisation is mainly 
due to experience rather than maturation. The slight 
moderation of MLN’s attempt to integrate the pictorial and 
numerical approaches better presented a double method of 
representation that complemented each other and thus 
advanced the opportunity to acquire reasoning and proof as 
a mathematics process standard (see Figure 3).
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MLN’s unpacking and analysis of the pictorial pattern 
provided her an opportunity to develop capacity for logical 
thought, explanation and justification. Investing more time 
in manipulating the different forms of representations, 
especially the pictorial or concrete representations, does 
contribute to richer insights into the ideas and concepts at 
play. Justification of the strategy is in its consistency of 
success in resolving a problem. While this provides some 
comfort, it is still not a replacement for a corroboration that is 
arrived at through varied forms of reasoning and proof. 
Authentic learning of mathematical processes requires that 
all representations be equally explored as that would lead to 
a smooth omnidirectional approach to learning. That kind of 
learning could be facilitated by teachers who have excellent 
translation abilities among multiple representations so that 
they could assist their learners to access and to comprehend 
abstract mathematical ideas.

Teachers’ learning and assessing of 
mathematical processes
To some extent, we observed that when complex knowledge 
and skills are involved, teachers’ own approaches to learning 
do reflect depth of their expectations of what would be 
learned. It was MLL and MLN who presented relatively 
better quality engagements in their learning and that led 
to qualitatively better expectations from their learners. 
However, what we observed from MLL’s actual 
implementation of his newly acquired skills in a classroom 
offers some hope. Learners’ ways of engaging with the 
activity offered more and better opportunities to acquire 
representation as a process skill. Links among different 
representations were being interrogated much more than 
MLL did in his own learning. The manipulatives (matchsticks) 
enhanced learners’ learning as they interrogated and 
established connections among their multiple representations. 
This aligns to Uribe-Flórez and Wilkins’s (2017) findings that 
the use of manipulatives encourages multiple representations 
and has a long-term effect on students’ learning as opposed 
to immediate achievement. We observed the value of an 
omnidirectional approach to the development of mathematics 
processes. More importantly, it emerged that meaningful 
assessment is learned in the context of the concepts that 
should be assessed. Deeper understanding of the concept 

opens possibilities for varied and meaningful assessment. 
Interventions with regard to the enhancement of these 
complex processes should involve teachers’ actual 
engagements in and reflections on similar learning.
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