
JOINT MODELLING OF SURVIVAL AND LONGITUDINAL 

OUTCOMES OF HIV/AIDS PATIENTS IN LIMPOPO PROVINCE, 

SOUTH AFRICA 

by 

 

KHEHLA DANIEL MOLOI  

 
THESIS 

 
Submitted in fulfillment of the requirements for the degree of 

 
DOCTOR OF PHILOSOPHY 

 
in 

 
STATISTICS 

 
in the 

 
FACULTY OF SCIENCE AND AGRICULTURE 

(School of Mathematical and Computer Sciences) 

 
at the 

 
UNIVERSITY OF LIMPOPO 

 

SUPERVISOR: PROF. YEHENEW GETACHEW KIFLE 

 
CO-SUPERVISOR: PROF. KHANGELANI ZUMA (HSRC, SOUTH AFRICA) 

 
 

2019 



Declaration 
 

 

 
 

I, Khehla Daniel Moloi, declare that the thesis hereby submitted to the Uni- 

versity of Limpopo, for the degree of Doctor of Philosophy (PhD) in Statistics 

has not been submitted by me before or anyone for a degree at this or any other 

University. This is my original work in design and execution, and that all ma- 

terial contained herein has been duly acknowledged throughout the thesis. 

 

 

 

 

 
 

Signature:............................ Date:................................. 

 

Khehla Daniel Moloi 

 

 

 

 

 

 

 

 

 

 

 

 
i 



Dedication 
 

 

 
 

This PhD work is dedicated to: 

 

 

My late mother and father: 

Evelyn and Daniel 

 

 
My wife: 

Manoko F Moloi 

 

 
My children: 

Moratuwa Nthabiseng, 

Lebohang Boitumelo (late), and 

Lehasa Polane Moloi 

 

 

 

 

 

 

 

 

 
 

ii 



Acknowledgments 
 

 

 
 

I would like to give thanks, praise to Almighty God for the strength, patience, 

wisdom and courage He instilled in me throughout the period of undertaking 

this study. Also, I would like to thank the Holy Spirit in leading and guiding 

me in times of hardship. 

 
I would wish to express my sincere gratitude to my supervisor Professor Yehe- 

new Gatechaw Kifle (University of Limpopo, South Africa) for his patience, pro- 

fessional guidance, and academic support throughout the writing of this thesis. 

He consistently allowed me to own this thesis, but steered me in the right di- 

rection whenever he thought I need it. My co-supervisor Professor Khangelani 

Zuma (HSRC, South Africa) for his support and guidance. 

 
I am also thanful to the Limpopo Department of Health in Limpopo Province 

for allowing me to use their HIV/AIDS dataset.  Special gratitude to Dr.       E. 

R. Andrinopoulou (University of Erasmus Medical Centre, Rotterdam, Nether- 

lands) for her guidance and contribution in writing this thesis. Many thanks 

to NRF-TDG reference number APP-TDG-071 for funding my visit to Univer- 

sity of Erasmus Medical Centre, Rotterdam, Netherlands, for collaborative re- 

search. The University of Limpopo is also acknowledged granting me with this 

opportunity to undertake this study. The Faculty of Science and Agriculture 

and Department of Statistics and Operations Research for funding my visit to 

University of Maryland Baltimore County, United States of America. Professor 

DoHwan Park and Professor Bimal Sinha from University of Maryland  Balti- 

iii 



 

more County, United States of America, as readers of this thesis, and I am 

deeply indebted to their valuable comments. Mr. Barry Mutasa from ANOVA 

Health Institute: Tzaneen, Limpopo Province, South Africa for his valuable 

contribution. 

 
Last but by no means the least special appreciation to my beloved family and 

especially spouse for providing unfailing support and continuous encourage- 

ment throughout my years of study and through the process and writing this 

thesis. m. 

 
 

Thank You All! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

iv 



 

 

 

 

 

 

Contents 

 
Declaration i 

Dedication ii 

Acknowledgments iii 

Table of Contents v 

List of Figures ix 

List of Tables xi 

Acronyms xii 

1 General Introduction 3 

1.1 Motivating Case Studies ................................................................................ 3 

1.1.1 Definition of HIV/AIDS ...................................................................... 3 

1.1.2 Transmission and Prevention of HIV/AIDS .................................. 4 

1.1.3 Status of HIV/AIDS in South Africa ............................................... 6 

1.1.3.1 Factors contributing to the spread of HIV ................... 11 

1.2 Problem Statement ........................................................................................ 12 

1.2.1 Purpose of the study ......................................................................... 13 

1.2.2 Aim ....................................................................................................... 14 

1.2.2.1 Objectives ............................................................................ 14 

1.3 Introducing the Limpopo Province HIV/AIDS Dataset ......................... 17 

v 



 

1.4 Modelling HIV/AIDS Longitudinal Dataset ............................................ 20 

1.4.1 Univariate Survival Models ............................................................ 20 

1.4.1.1 Censoring ............................................................................ 22 

1.4.1.2 Modelling the hazard function ...................................... 27 

1.4.2 Mixed-Effects Models for Longitudinal Dataset ........................ 30 

1.4.3 Joint Modelling of Longitudinal and Survival Dataset . . . 32 

2 Survival Analysis of HIV/AIDS Dataset 35 

2.1 Introduction ..................................................................................................... 35 

2.2 HIV/AIDS Dataset in Limpopo Province ................................................. 36 

2.3 Aim of the study ............................................................................................ 37 

2.3.1 Objectives ............................................................................................ 37 

2.4 Methods of Survival Data Analysis ........................................................... 38 

2.4.1 Non-parametric estimation of survival function ........................ 38 

2.4.2 Log-rank test ...................................................................................... 40 

2.4.3 Semi-Parametric Cox Proportional Hazard Models .................. 43 

2.4.4 Parametric Survival Models ........................................................... 44 

2.4.4.1 Accelerated Failure Time Models (AFT) ...................... 48 

2.4.4.2 Log-linear models ............................................................ 49 

2.4.4.3 Log-logistic ......................................................................... 52 

2.4.4.4 Log-normal ......................................................................... 52 

2.4.4.5 Generalised Gamma ......................................................... 53 

2.4.4.6 Maximum likelihood estimation for θ .......................... 53 

2.5 Comparison of Cox PH & Parametric Models ......................................... 55 

2.6 Results .............................................................................................................. 56 

2.6.1 Results from Cox Proportional Hazard Models .......................... 56 

2.6.2 Model diagnostics .............................................................................. 62 

2.6.3 Results from Parametric Models .................................................. 64 

2.7 Discussion ....................................................................................................... 70 

2.8 Study Limitation ............................................................................................ 75 

vi 



 

2.9 Conclusion ....................................................................................................... 76 

2.10 Recommendation ............................................................................................ 78 

3 Modelling of HIV/AIDS Dataset using Linear Mixed-Effects Mod- 

els 79 

3.1 Introduction ..................................................................................................... 79 

3.2 Aim .................................................................................................................... 89 

3.2.1 Objectives: ........................................................................................... 89 

3.3 Dataset ............................................................................................................. 90 

3.4 Methodology .................................................................................................... 90 

3.5 Quadratic time model using natural splines ........................................... 93 

3.6 Statistical Analysis ........................................................................................ 94 

3.7 Results .............................................................................................................. 94 

3.7.1 Model selection .................................................................................. 96 

3.7.2 Model diagnostics .............................................................................. 96 

3.8 Discussion ...................................................................................................... 104 

3.9 Conclusion ..................................................................................................... 104 

4 Joint Modelling of Survival and Longitudinal Outcomes 106 

4.1 Introduction ................................................................................................... 106 

4.2 Literature Review ........................................................................................ 108 

4.3 Aim .................................................................................................................. 110 

4.4 Methodology .................................................................................................. 111 

4.4.1 Data collection.................................................................................. 111 

4.4.2 Methods of Data Analysis .............................................................. 111 

4.5 Joint Model sub-structure .......................................................................... 114 

4.5.1 Joint Latent Class Models ............................................................ 118 

4.5.2 Accelerated Failure Time Joint Models ...................................... 122 

4.6 Data Analysis ................................................................................................ 124 

4.6.1 Joint Model diagnostics ................................................................. 132 

vii 



 

4.6.2 Dynamic prediction ......................................................................... 135 

4.7 Discussion ...................................................................................................... 141 

4.8 Conclusion ..................................................................................................... 146 

5 Conclusion 147 

5.1 Thesis summary ........................................................................................... 147 

5.2 Summary of the key findings..................................................................... 151 

5.3 Limitations of the thesis ............................................................................. 152 

5.4 Future research directions ......................................................................... 153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
viii 



 

 

 

 

 

 

List of Figures 

1.1 Study area Map ................................................................................................ 6 

1.2 Trend of HIV/AIDS incidence and prevalence from 2002 to 2015 

in South Africa. ................................................................................................. 7 

1.3 A sample of six HIV/AIDS patients with their time-to-death (in 

months). L refers to lost to follow-up from the study; D refers to 

the event death and A indicates that the person is still alive   at 

the end of the study ................................................................................................... 21 

1.4 A diagram showing the relationships between Y(t), observed lon- 

gitudinal data; X(t), trajectory function; S, survival; Z, treatment; 

γ, treatment effect on survival; β, treatment effect on longitudi- 

nal process; α, effect of longitudinal process on survival. ..................... 33 

1.5 Joint Models for Longitudinal and Survival Outcomes ........................ 33 

2.1 Different types of hazard functions that are often encountered in 

practice. Here our λ = 2 ................................................................................ 46 

2.2 Weibull hazard functions with (a) different scale(fixed γ  =   1.1) 

and (b) different shape parameters (fixed λ = 0.03). .............................. 47 

2.3 KM Survival curves by different covariates ............................................ 57 

2.4 Cox-Snell residual plot for different parametric AFT model ............... 63 

3.1 Normal Q-Q-plot ............................................................................................. 97 

3.2 Weibull AFT Model ........................................................................................ 97 

 

 

 
ix 



 

4.1 Kaplan-Meier estimator of event-free survival probabilities   for 

for females and males ................................................................................. 125 

4.2 Subject-specific longitudinal trajectory for logarithmic viral load 

for patients with and without an event .................................................. 126 

4.3 Fitted average longitudinal profiles of male and female for viral 

load for HIV patients with median age ................................................... 129 

4.4 Fitted average longitudinal evolutions for three class joint model 

of Limpopo AIDS dataset ........................................................................... 130 

4.5 Event-free survival probabilities for three  class  joint  model  of 

Limpopo AIDS dataset. ............................................................................... 131 

4.6 Marginal standardized residuals versus fitted values for the lon- 

gitudinal outcome for the Limpopo Province AIDS dataset. .............. 133 

4.7 Diagnostic plots for the joint model fitted to Limpopo AIDS dataset.135 

4.8 Cox-Snell residuals ...................................................................................... 136 

4.9 Cox-Snell residuals for Limpopo AIDS dataset. ................................... 137 

4.10 Martingale residuals versus  the  longitudinal  outcome  subject- 

specific fitted values of longitudinal outcome for Limpopo AIDS 

dataset. ........................................................................................................... 138 

4.11 Martingale residuals versus the subject-specific fitted values per 

gender for Limpopo AIDS dataset. ........................................................... 139 

4.12 Scatterplot of observed residuals versus fitted values for longitu- 

dinal process for Limpopo AIDS dataset. ............................................... 140 

4.13 Dynamic survival probabilities for patient 18 from Limpopo AIDS 

dataset during follow-up ............................................................................ 141 

4.14 Survival probability for patient 18. ......................................................... 142 

4.15 Dynamic predictions of longitudinal response for patient 18 from 

AIDS dataset. ................................................................................................ 145 

 

 

 
 

x 



 

 

 

 

 

 

List of Tables 

1.1 HIV/AIDS Prevalence, incidence and number of people living with 

HIV/AIDS in South Africa from 2002 to 2015. .......................................... 8 

1.2 HIV/AIDS patients on ART in South Africa by gender and service 

provider from 2007 to 2011. ......................................................................... 11 

1.3 Deaths from HIV/AIDS related illnesses in South Africa 2010-2015. 11 

1.4 Districts, Municipalities and number of Facilities in Limpopo Province. 18 

1.5 Limpopo Province HIV/AIDS Longitudinal Dataset .............................. 19 

2.1 Cox PH model for clinical stages, age, and interaction of clini- 

cal stages by age of HIV patients in Limpopo Province, utilising 

Breslow method in handling ties ................................................................ 60 

2.2 Hazard ratios from Cox proportional hazard model for HIV/AIDS 

dataset in Limpopo Province ....................................................................... 67 

2.3 Hazard ratios from Weibull proportional hazard model for HIV/AIDs 

patient’s dataset in Limpopo Province ...................................................... 69 

2.4 Akaike Information Criterion of six distributions fitted to the full 

model................................................................................................................. 70 

3.1 Information Criteria ...................................................................................... 95 

3.2 Estimates of fixed effects.............................................................................. 95 

3.3 Estimates of covariance parameters.......................................................... 96 

3.4 Information Criteria ...................................................................................... 96 

3.5 Estimates of fixed effects.............................................................................. 97 

3.6 Model selection ............................................................................................... 97 

xi 



 

3.7 Information Criteria ...................................................................................... 98 

3.8 Estimate of fixed, interaction and random effects ................................ 101 

3.9 Estimates of covariance parameters ........................................................ 102 

3.10 Information Criteria .................................................................................... 102 

3.11 Information Criteria .................................................................................... 103 

3.12 Results of Information Criterion among Three covariance Struc- 

ture Models .................................................................................................... 103 

4.1 Parameter Estimate for Extended Cox Model with time   depen- 

dent covariates .............................................................................................. 124 

4.2 Parameter Estimate for Joint Model ....................................................... 124 

4.3 A comparison of joint and Cox extended models ................................... 127 

4.4 Wald test for longitudinal process ............................................................ 127 

4.5 Likelihood Ratio test for Joint Models .................................................... 128 

4.6 Likelihood Ratio Test .......................................................................................... 128 

4.7 Posterior classification based on longitudinal and  time-to-event 

data ................................................................................................................. 129 

4.8 Mean of posterior probabilities in each class ......................................... 130 

4.9 Comparison between  accelerated  relative  risk  and  accelerated 

failure time models ...................................................................................... 132 

4.10 Parameter estimates and standard error for the Weibull model    

fitted to the AIDS dataset under the relative risk and accelerated 

failure time formulations ........................................................................... 132 

4.11 Prediction of conditional probabilities for event based on 200 Monte 

Carlo samples................................................................................................ 143 

4.12 Conditional probabilities for events ......................................................... 144 

4.13 Prediction of conditional probabilities for event based on 200 Monte 

Carlo samples................................................................................................ 144 

 

 

 
xii 



 

 

 

 

 

 

Acronyms 

 
AIC Akaike Information Criterion 

AIDS Acquired Immune Deficiency Syndrome 

ART Antiretroviral Therapy 

ARV Antiretroviral 

HAART Highly Active Antiretroviral Therapy 

HIV Annual Human Immunodeficiency Virus 

GBV Gender Base Violence 

HR Hazard Ratio 

IGC Individual Growth Curve 

KM Kaplan-Meier 

LGBTI Lesbian, Gay, Bisexual, Transgender and Intersex 

ML Maximum Likelihood 

LME Linear Mixed Effects 

MAR Missing at Random 

MCAR Missing Completely at Random 

MNAR Missing Not at Random 

REML Restricted Maximum Likelihood 

PH Proportional Hazard 

PMTCT Prevention of Mother to Child Transmissions 

SANAC South African National AIDS Council 

UNAIDS Joint United Nations Programme on HIV/AIDS 

WHO World Health Organisation 



 

General Introduction 2 



 

 

 

 

 

 

Chapter 1 

 
General Introduction 

 
1.1 Motivating Case Studies 

 
1.1.1 Definition of HIV/AIDS 

Human immunodeficiency virus (HIV) is a virus that attacks the immune sys- 

tem, which is our body’s natural defence against illness. The virus destroys a 

type of white blood cells in the immune system called a T-helper cell, and re- 

produce itself inside these cells. The T-helper cells are also referred to as CD4 

cells.  As HIV themselves destroys more CD4 cells and multiply themselves,  

it gradually breaks down a person’s immune system. If HIV is left untreated, 

it may take 10 to 15 years for the immune system to be so severely damaged 

to the extend that it can no longer defend itself at all. The speed of HIV pro- 

gresses depends on age, health and background of a patient [1]. 

 
Acquired Immune Deficiency Syndrome (AIDS) is caused HIV. AIDS stand for: 

Acquired means one gets infected with it; Immune Deficiency means a weak- 

ness in the body’s system that fights diseases; Syndrome means group of health 

problems that makes up a diseases. A person is said to have AIDS when their 

immune system is too weak to fight off infection, and they develop certain defin- 

ing symptoms and illnesses.  This is the last clinical stage of HIV, when infec- 
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tion is advanced, and if left untreated will lead to death. 

 

 
 

1.1.2 Transmission and Prevention of  HIV/AIDS 

HIV is transmitted from an infected person to another through direct contact 

of bodily fluids such as: 

i) blood transfusion; pre-seminal fluids; rectal fluids; vaginal fluids; 

 
ii) sharing a needle or syringe with an infected person since HIV can live in a 

used needle for 42 days depending on the temperature and other factors; 

iii) a baby being born when their mother is infected or drinking milk of in- 

fected mother [2]. 

 
 

A HIV negative persons can avoid being infected by: 

 
i) avoiding the use of recreational drugs which share needle or syringes; 

 
ii) reacting quickly if you believe that you have become exposed, through the 

use of post-exposure prophylaxis (PrEP) treatment. If treated within 72 

hours you may be able to prevent HIV infection; 

iii) avoiding contact with other people’s blood and certain other bodily fluids 

that can spread HIV [3]. 

Mother-to-child transmission of HIV is the most common way young babies 

contract the virus and happens when HIV is passed from a mother to her un- 

born baby during pregnancy, birth or breastfeeding. As a result, the South 

African National Department of Health came up with an effective prevention- 

of- mother-to-child-transmissions (PMTCT) programme that requires mothers 

and their babies to: 
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i) receive antenatal services and HIV testing during pregnancy; 

 
ii) have access to antiretroviral treatment (ART); 

 
iii) practice safe childbirth practices and appropriate infant feeding; 

 
iv) make use of infant HIV testing and other post-natal health care services. 

 
South Africa’s health guidelines for HIV/AIDS divided the national programme 

into the following three broad categories, namely Category 1: Antenatal care 

during pregnancy, Category 2: Labour and delivery and Category 3: Postnatal 

care after delivery. 

 
Category 1 (Antenatal care during pregnancy): When a pregnant woman vis- 

its a clinic, a midwife asks her to take a voluntary HIV testing. If she is found 

to be HIV positive, she is offered routine HIV counselling, and she has an op- 

tion of joining PMTCT programme for free. All HIV positive pregnant women 

or breastfeeding qualify for ART,  and the ART’S reduces the risk of mother   

to baby transmission and protects the mother’s health during and after preg- 

nancy. The ART’S should be taken as soon as possible after diagnosis prefer- 

ably within seven days [12]. 

 
Category 2 (Labour and delivery): When an HIV positive woman continues to 

take ART’S throughout her pregnancy, she is able to deliver natural, and, as a 

result transmission of HIV from mother to child is prevented. 

 
Category 3 (Postnatal care after delivery): Women continue to take their 

treatment as normal. All babies are given a dose of ART’s daily up until the 

mother stop breastfeeding. The baby is also given antibiotic treatment to pre- 

vent infection. Breastfeeding is generally encouraged, however, mothers are 

given a choice to either breastfeed for six months or give their babies formula 

feed [5]. 
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1.1.3 Status of HIV/AIDS in South  Africa 

HIV/AIDS is a major concern throughout the world. Though Sub-Saharan 

Africa is the most affected region. However, no country in the world can ig- 

nore the problem. This PhD study also focused on applying various modelling 

techniques to the HIV/AIDS dataset collected from a province located in the 

northern part of South Africa, namely Limpopo (Figure 1.1). 

Figure 1.1: Study area Map. 

 

 
Figure 1.2 below shows upwards trend of HIV prevalance from 2002 to 2015, 

indicating that the spread of HIV/AIDS was increasing each year in South 

African population, whereas, the incidence was decreasing tremendously. The 

continual decrease in HIV incidence and continual increase in HIV prevalence 

can be attributed to the fraction of individuals that are affected remains high. 

Table 1.1 shows that South Africa has the biggest and highest profile of   HIV 
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epidemic in the whole world, with an estimated 6.2 million people living with 

HIV in 2015. In the same year, there were approximately 380,000 new infec- 

tions while 180,000 died from AIDS-related illnesses [12]. 

 

 

Figure 1.2: Trend of HIV/AIDS incidence and prevalence from 2002 to 2015 in 

South Africa. 

 

 
Table 1.1 shows the HIV prevalence estimates and the total number of people 

living with HIV from 2002 to 2015. The total number of people living with 

HIV/AIDS in South Africa increased from an estimated 4.02 million in 2002 to 

6.19 million in 2015. In 2015, it was estimated that 11.22% of the total popu- 

lation was HIV positive. 
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Table 1.1: HIV/AIDS Prevalence, incidence and number of people living with 

HIV/AIDS in South Africa from 2002 to 2015. 
 

Year 

Prevalence (in %) Incidence Population with 

HIV/AIDS 

(in millions) 

Total 

Pop. 

(in %) 

Women Adults Youth (in %) 

2002 16.69 14.5 6.75 1.65 4.02 8.8 

2003 16.85 14.58 6.35 1.63 4.14 9.0 

2004 16.93 14.62 6.07 1.65 4.25 9.1 

2005 17.01 14.65 5.91 1.67 4.35 9.2 

2006 17.22 14.82 5.82 1.65 4.51 9.4 

2007 17.52 15.1 5.76 1.58 4.71 9.7 

2008 17.81 15.39 5.71 1.5 4.93 10.0 

2009 18.09 15.66 5.69 1.43 5.13 10.2 

2010 18.29 15.87 5.7 1.38 5.32 10.4 

2011 18.42 16.01 5.64 1.34 5.48 10.6 

2012 18.43 16.14 5.61 1.31 5.65 10.7 

2013 18.67 16.29 5.6 1.28 5.83 10.9 

2014 18.85 16.46 5.59 1.23 6.02 11.1 

2015 18.99 16.59 5.59 1.22 6.19 11.2 

Source:     http://www.tbfacts.org/hiv-statistics-south-africa 

 

However, South Africa has made huge improvement in getting people to test 

for HIV in recent years and is now almost meeting the first of the 90-90-90 tar- 

gets with 86% of people aware of their HIV status. This is inline with the 2014 

UNAIDS global target that 90% of all HIV-positive persons be aware of their 

HIV status, provide antiretroviral therapy (ART) for 90% of those diagnosed, 

and achieve viral suppression for 90% of those treated by 2020 [11]. 

 
The groups that are most affected by HIV in South Africa are: 

Group 1 (Sex workers): The national HIV prevalence among sex workers is es- 

timated at 57.7%. The study done by Slabbert et al., (2017) found that poverty, 

number of dependents they have and lack of alternative career opportunities 

were the cause for increase HIV risk for South Africa sex workers. The use of 

injection also exacerbated their vulnerability to HIV infection. 

http://www.tbfacts.org/hiv-statistics-south-africa
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Group 2 (Men who have sex with men): HIV prevalence among men who have 

sex with men in South Africa is now estimated at 26.8% [1]. Despite the exis- 

tence of South African constitution that protects the rights of lesbian, gay, bi- 

sexual and transgender communities, many men who have sex with men faces 

high level of social stigma and homophobic violence as result of traditional and 

conservative attitudes within the general population [8]. 

 
Group 3 (Transgender women): The transgender women in Sub-Sahara Africa 

are twice as likely to have HIV as men who have sex with men [9]. This com- 

munity has been neglected by both the policy and research in South Africa, 

either they have been excluded on the bases mis-categorisation as men who 

have sex with men. However, the South African AIDS Council’s lesbian, gay, 

bisexual, transgender, and intersex (LGBTI) and HIV Framework recognise 

transgender women as a key affected population. 

 
Group 4 (People who inject drugs): A 2016 study of people who inject drugs in 

five South Africa cities found 32% of men and 26% of women regularly share sy- 

ringes and other injection equipment and nearly half those re-use needles [10]. 

 
Group 5 (Children and orphans): In 2016 study found that, approximately 

320,000 children (aged 0 to 14) were living with HIV in South Africa, only 

55% of those were on treatment. However, new infections have declined among 

South African children, from 25,000 in 2010 to 12,000 in 2016. This is mainly 

due to the success of PMTCT programmes. The rate of mother-to-child trans- 

mission stood at 1.3% in 2017, down from 3.6% in 2011. This indeed puts South 

Africa on track for eliminating mother to child transmission of HIV [11]. 

 
Group 6 (Women, adolescent girls): HIV prevalence among young women in 

South Africa is nearly four times greater than that of men their age.     Young 
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women between the ages of 15 and 24 made up 37% of new infections in South 

Africa in 2016. To try and reduce this high rate of infection, young women and 

adolescent girls who are considered at high risk of HIV infection are now be- 

ing offered pre-exposure prophylaxis (PrEP) [12]. In may research literature, 

poverty, the low status of women and gender-based violence (GBV) have all 

been cited as reasons for the disparity in HIV prevalence between gender. In- 

deed GBV attributable to an estimated 20–25% of new HIV infections in young 

women. 

 
South Africa has the largest antiretroviral treatment (ART) programme glob- 

ally and these programmes has been largely funded from its domestic resources. 

In 2015, South Africa has invested more than 19,5 billion Rand annually to 

run its HIV/AIDS programmes [11]. Table 1.2 below shows that there ap- 

proximately 1,793,000 HIV positive persons in South Africa who were on ART 

programme in 2011, of which, 1,525,000 were on treatment in the public sec- 

tor, and more than 190,000 were on treatment in the private sector. While 

Non-Governmental Organisation (NGOs) had more than 78,000 HIV persons 

on their ART programme. 

 
Despite all these efforts from the National Department of Health, private sec- 

tor and NGOs, HIV prevalence still remains high (19.2 %) among the general 

population, although it varies markedly between provinces. There is a sub- 

stantial difference in HIV among the nine provinces and HIV statistics shows 

that the difference has been consistent over a number of years [13]. 

 
In Table 1.3, statistics for South Africa shows that there continue to be a very 

high number of HIV related deaths. In 2015 the number of people who died 

from HIV related illnesses was 162,445 which was 30.5% of all deaths in South 

Africa. 
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Table 1.2: HIV/AIDS patients on ART in South Africa by gender and service 

provider from 2007 to 2011. 
 

Year 

 2007 2008 2009 2010 2011 

 

Gender 

Men 

Women 

Children 

120,000 

228,000 

34,000 

183,000 

354,000 

51,000 

283,000 

553,000 

76,000 

396,000 

777,000 

114,000 

551,000 

1,090,000 

152,000 

Total 382,000 588,000 912,000 1,287,000 1,793,000 

 

Provider 

Public Sector 

Private Sector 

NGOs 

290,000 

68,000 

24,000 

470,000 

86,000 

32,000 

748,000 

117,000 

47,000 

1,073,000 

154,000 

60,000 

1,525,000 

190,000 

78,000 

Total 382,000 588,000 912,000 1,287,000 1,793,000 

Source:http://www.tbfacts.org/hiv-statistics-south-africa 

 

Table 1.3: Deaths from HIV/AIDS related illnesses in South Africa 2010-2015. 
 

Year 

HIV/AIDS 

related deaths 

Total Number 

of deaths 

Deaths that are 

from HIV/AIDS related illness (in %) 

2010 183 465 535 396 34.3 
2011 200 654 556 087 36.1 

2012 197 090 555 921 35.5 

2013 177 624 539 880 32.9 

2014 151 040 516 929 29.2 

2015 162 445 531 965 30.5 

Source:http://www.tbfacts.org/hiv-statistics-south-africa 

 

 
1.1.3.1 Factors contributing to the spread of HIV 

 
The main factors that contribute to the spread of HIV are the followings: poverty; 

inequality and social instability; high level of sexually transmitted infections; 

the low status of women; sexual violence; high mobility (particularly migrant 

labour); limited and uneven access to quality medical care; a history of poor 

leadership in the response to the epidemic and society leaders dying and leav- 

ing a generation of children growing up without the care and role models they 

will normally have. These afore-mentioned factors seem to be applicable even 

http://www.tbfacts.org/hiv-statistics-south-africa
http://www.tbfacts.org/hiv-statistics-south-africa
http://www.tbfacts.org/hiv-statistics-south-africa
http://www.tbfacts.org/hiv-statistics-south-africa
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here Limpopo Province, for example, in Phalaborwa town, which is a platinum 

mine town, HIV prevalence is very high because of migrant labourers. In addi- 

tion to above mentioned factors, many people in Limpopo Province do not know 

their HIV status because its discussion is often a taboo. Educating the society 

of how a person is infected and how HIV is transmitted will play a vital role 

in reducing the spread of HIV positive persons. Again, testing and counselling 

the infected person will help in reducing spread of HIV [14]. 

 
1.2 Problem Statement 

In most HIV/AIDS and related follow-up studies in South Africa and elsewhere 

in the world, it is common to collect data on repeated biomarker measurements, 

such as CD4 counts, viral load, as well as time-to-event variables, like time to 

death and time to default [15]. Moreover, such longitudinal HIV/AIDS data are 

clustered at various levels, including hospitals where patients are repeatedly 

followed-up [16]. Even though joint modelling is a complex modelling approach 

to handle such situations, it enables both longitudinal repeated biomarker 

measurements and survival possesses to be modelled together while taking 

into account the association between them. That is, by including a random ef- 

fect for longitudinal data in the survival model, the patterns of a biomarker’s 

performance and relationship between its progression and survival time can be 

characterised in a better way. In this way, joint modelling provides less biased 

estimates and more efficient inferences than separate models. 

 
Many data analysts or medical researchers analyse survival and longitudinal 

data separately, which results in more biased estimates for their parameters. 

Moreover, in the presence of clustering in the data, such as the one in the 

South African HIV/AIDS dataset, this problem becomes even worse. In the lit- 

erature, depending on the structure of the data at hand, there are a   number 
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of joint modelling approaches to be applied. These includes: shared parame- 

ter joint models, latent class joint models, and joint models in the presence of 

clustering. To our knowledge there is significantly less or little research work 

done in the South African context using various joint modelling approaches, 

that can handle different structures in the HIV/AIDS dataset with the aim of 

coming up with a good model that will improve the prediction of time-to-event 

variable, by considering all markers in the data and also enable the researcher 

to assess the joint evolution of the process at large. 

 

 
1.2.1 Purpose of the study 

The purpose of this study is to apply various modelling techniques to HIV/AIDS 

data in Limpopo Province, South Africa. Time to progression to AIDS or death 

is also recorded for each patient, although some subjects may withdraw early 

from the study or fail to experience the event by the time of study closure.    

In Chapter 2, analyses of HIV/AIDS data of Limpopo Province patients using 

survival data analyses is the main focus. In survival analyses we considered 

semi-parametric Cox model as well as parametric models and compare them. 

In Chapter 3 focused on analyses of HIV/AIDS longitudinal data (viral load)  

of Limpopo Province using linear mixed-effects models. A transformed loga- 

rithmic viral load will be a response variable, while our explanatory variables 

or covariates are: CD4 cell counts, age (at baseline), previous opportunistic 

infection (e.g., tuberculosis), gender, districts, health care facilities, and AIDS 

clinical stages. 

 
In Chapter 4, focused on analyses HIV/AIDS data by using joint model of longi- 

tudinal and time-to-event data. Here our objective in longitudinal studies is to 

characterise the relationship between a longitudinal response (viral load) pro- 

cess and a time-to-event.  Furthermore, basic joint models are explained,  and 
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it was assumed that the random effects underlie both longitudinal and sur- 

vival process. Moreover joint latent class joint models were considered in this 

study as well as dynamic prediction of conditional probabilities for an event for 

any randomly selected patient in Limpopo Province based on 200 Monte Carlo 

samples. These various modelling approaches were compared using various 

statistical methods and thereby coming up with a reasonably good model that 

will handle both the survival and longitudinal processes simultaneously. 

 

 
1.2.2 Aim 

The aim of the study is to apply various joint modelling techniques to the clus- 

tered HIV/AIDS data in Limpopo Province, South Africa, in order to come up 

with a good model that will simultaneously handle the survival and longitudi- 

nal outcomes. 

 
1.2.2.1 Objectives 

 
The objectives of the study are: 

 
i) to use Kaplan-Meier to compare the average evolutions between gender, 

districts, health care facilities, previous opportunistic infections, and AIDS 

clinical stages; 

ii) to compare the semi-parametric and parametric models; 

 
iii) to analysis survival data using both Cox proportional hazard and paramet- 

ric hazard models; 

iv) to describe the relationship between response variable and the covariates 

using linear mixed effect models; 

v) to show how longitudinal evolution of viral load is associated with time-to- 

death; 
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vi) to characterise viral dynamics in patient population and intra- and inter- 

subject variation; 

vii) to assume random effects that gives some structure to error terms that 

characterises individual variation due to some factor levels; 

viii) to demonstrate non-linear statistical framework as a basis for estimation 

of population and individual viral dynamics parameters and how models 

may be used to draw biological relevant interpretations and aid clinical 

decision-making within the context of Limpopo Province HIV/AIDS data; 

ix) perform separate longitudinal and survival analyses per outcome; 

 
x) establish the strength of association between the longitudinal evolution of 

viral load and hazard rate to death; 

xi) compare separate and joint models, and various association measures such 

as parametric joint and shared parameter models approach; 

xii) Compare average evolutions between males and females; 

 
xiii) show how marker-specific evolutions are related to each other ( association 

of the evolution); 

xiv) compute prediction for time to death for any randomly selected HIV posi- 

tive patient by considering patient’s viral load; 

xv) come up with good joint model(s) that will handle simultaneously both the 

repeated measurements as well as the survival outcomes in the presence 

of clustering in the South African HIV/AIDS dataset; and 

xvi) recommend to health decision-makers and policy-makers how the applica- 

tion of joint modelling techniques can be beneficiary to HIV/AIDS patients. 
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In Chapter 2, we will address the following objectives: Kaplan-Meier have been 

used as statistical tool to compare the average evolutions between gender, dis- 

tricts, health care facilities, previous opportunistic infections, and AIDS clini- 

cal stages;we will compare the semi-parametric and parametric models ; and, 

we will analyse survival data using both Cox proportional hazard and paramet- 

ric hazard model; and finally compare semi-parametric and parametric models. 

 
In Chapter 3 we will address the following objectives: we will describe the re- 

lationship between response variable and the covariates using linear mixed 

effect models and show how longitudinal evolution of viral load is associated 

with time-to-death. We will also characterise viral dynamics in patient popu- 

lation and intra- and inter-subject variation and assume random effects that 

gives some structure to error terms that characterises individual variation due 

to some factor levels. Finally, we will demonstrate non-linear statistical frame- 

work as a basis for estimation of population and individual viral dynamics pa- 

rameters and how models may be used to draw biological relevant interpreta- 

tions and aid clinical decision-making within the context of Limpopo HIV/AIDS 

data. 

 
In Chapter 4, we will address the following objectives: we will analyse HIV/AIDS 

data using linear mixed effects models and Cox extended semi-parametric mod- 

els; we will use shared parameter joint models to establish the strength of as- 

sociation between the longitudinal evolution of viral load and hazard rate to 

death; comparing separate and joint models, and various association measures 

such as parametric joint and shared parameter models approach; we will com- 

pare the average evolutions between males and females; showing how marker- 

specific evolutions are related to each other; computing prediction for time to 

death for any randomly selected HIV positive patient by considering patient’s 

viral load;    and come up with good joint model(s) that will handle simultane- 
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ously both the repeated measurements as well as the survival outcomes in the 

presence of clustering in the South African HIV/AIDS dataset. 

 
1.3 Introducing the Limpopo Province HIV/AIDS 

Dataset 

The dataset used in this thesis was a secondary data obtained from Limpopo 

Department of Health for the period 2001 to 2016. For the purpose of this 

study,more focus was on the data collected and recorded between 2011 January 

and 2017 January because of its reliability, since the data between 2001 to 2010 

December were haphazardly captured and recorded, and secondly, there were 

no National Department of Health guidelines by that time. The structure of 

the longitudinally collected HIV/AIDS dataset is presented in Table 1.5. 

 
Table 1.4 shows that Limpopo Department of Health has five districts, namely, 

Mopani District Municipality; Vhembe District Municipality; Capricorn Dis- 

trict Municipality; Waterberg District Municipality and Sekhukhune District 

Municipality and twenty five local municipalities (Figure 1.1). Limpopo De- 

partment of Health has a total of 543 health care facilities. These facilities 

comprise of Clinics, Community Health Centres, District Hospitals, Regional 

Hospitals, and Provincial Hospitals. The total number of HIV patients that 

were included in our study were 9215 across Limpopo Province, of which 2776 

(30.1%) died and 6439 (69.9%) were right censored. HIV/AIDS patients as de- 

fined by WHO were as follows: clinical stage I: 36.4%; clinical stage II: 36,5%; 

clinical stage III: 20.2%; and clinical stage IV: 6.9%. Furthermore, 6386 (69.3%) 

were females patients and 2829 (30.7%) males patients. 
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Table  1.4: Districts,  Municipalities  and  number  of  Facilities  in Limpopo 

Province. 
 

District Municipality Number of health care facilities 

 Aganang 12 
 

Capricorn 
Blouberg 

Molemole 

Lepelle-Nkumpi 

25 

9 

26 

 Polokwane 39 

Total 111 

 Ba-Phalaborwa 12 
 

Mopani 
Greater Giyani 

Greater Letaba 

Greater Tzaneen 

30 

23 

38 

 Maruleng 13 

Total 116 

 Ephraim Mogale 21 
 

Greater Sekhukhune 
Elias Motsoaledi 

Fetakgomo 

GreaterTubatse 

22 

16 

31 

 Makhuduthamaga 27 

Total 117 

 Makhado 54 
 

Vhembe 
Musina 

Mutale 

Thulamela 

4 

17 

56 

Total 131 

 Bela-Bela 5 
 Lephalale 11 

 

Waterberg 
Modimolle 

Mogalakwena 

Mookgophong 

5 

34 

4 

 Thabazimbi 9 

Total 68 



 

 

 

 

 

 

 

 
 

Table 1.5: Limpopo Province HIV/AIDS Longitudinal Dataset 
 

Id Dst Mn Sex Age Event PreOI Cs CD4 VL T StartDate EndDate 

1 Capricorn Molemole LM F 43 1 1 3 4.97 15.98 31 31/04/2012 23/07/2014 
2 Mopani Greater Giyani LM F 56 1 1 4 7.82 16.35 42 12/07/2011 17/12/2013 

3 Vhembe Makhado LM M 24 0 0 1 23.61 55.90 7 06/01/2011 11/07/2015 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9213 Sekhukhune Blouberg LM F 44 0 1 2 3.34 342.78 20 21/02/2013 28/06/2013 

9214 Waterberg Mogalakwena LM M 25 0 1 1 18.34 417.98 1 16/08/2014 26/01/2016 

9215 Capricorn Polokwane LM  M 1 1 4 3.88 667.89 14 12/09/2012 23/01/2013 

 
In Table 1.5 the 1st column contain the unique HIV patient’s identifier. The 2nd column contains 5 municipality 

districts (Dst) of Limpopo Province, and the 3rd column contains 25 local municipalities (Mn) corresponding to 5 

districts. The 4th column gives the sex of HIV patients. The 5th column is the age of HIV patient at the 1st visit 

to the clinic. The 6th column is the status of an event, taking the value one if the HIV patient died and zero if 

censored. The 7th column gives the Previous Opportunistic Infection (PreOI) status at the start of HAART, taking 

the value 1 if the patient was on TB treatment, and zero otherwise.  The 8th gives the AIDS clinical stage (Cs)     

of HIV patient based on WHO classification system for HIV infected patient: (Stage 1= Asymptomatic infection; 

Stage 2= Symptomatic infection; Stage 3= Advent opportunistic infections; Stage 4=ill-defining infections). The 9th 

column gives the square root of CD4 measurement at the baseline. The 10th column gives the natural logarithmic 

viral load (VL) measurements. The 11th column is the time taken for an event to occur since patient’s 1st visit to 

the clinic. 
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1.4 Modelling HIV/AIDS Longitudinal Dataset 

 
1.4.1 Univariate  Survival Models 

Survival is the phrase used to describe the analysis of a data that correspond 

to the time from a well-defined time origin until the occurrence of some par- 

ticular event or endpoint. If the event is the death of a patient, the resulting 

data would be literally survival times. However, the data of similar form can 

be obtained when the event is not necessarily fatal, for an example, the relief 

of a pain, or the occurrence of symptoms. The methodology can also be ap- 

plied to data from other application areas, such as survival times of animals 

in an experimental study, the time taken by an individual to complete a task 

in psychological experiment, etc., [17]. For the purpose of this study, survival 

analysis has been phrased in terms of the survival times of HIV/AIDS patients 

from the entry of study until event (death) occur. 

 
Special features of survival data (Figure 1.3): 

 
i) Firstly, survival data are generally not symmetrically distributed, but yield 

positively skewed histogram. As a consequence it would not be reasonable 

to assume that data comes from normal distribution. The challenge is 

circumvented by transforming the data to give a more symmetric distri- 

bution, for example by taking the square root, logarithms, hyperbolic sine, 

etc.; 

ii) Secondly, survival data times of an individual is said to be censored if the 

endpoint of interest has not be observed at the end of study or individual 

has been lost to follow-up. Lost to follow-up can occur when individual 

after being recruited to clinical trial, a patient moves to another part of the 

country, and can no longer be traced. Patient can also be censored if death 

is from another cause (e.g., car accident) that is known to be unrelated  to 
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Study Start Study End 

 
 
 
 

Time−to−death (months) 

 

Figure 1.3: A sample of six HIV/AIDS patients with their time-to-death (in 

months). L refers to lost to follow-up from the study; D refers to the event 

death and A indicates that the person is still alive at the end of the study. 

 

the treatment. 
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1.4.1.1 Censoring 

In reliability as well as survival analysis, greater interested was placed on a 

non-negative random variable T (T ≥ 0). This variable T can be discrete with 

values {0, 1, ...} or continuous on (0, ∞). Sometimes we cannot fully observe 

this random variable T but only observe some boundaries for this time. There 

is another variable C(C ≥ 0) which we call the censoring variable and which 

obscure the observation of T [18]. 

 

Survival censoring is broadly categorised into three types, namely: 

 
i) Type I or fixed censoring; 

 
ii) Type II censoring and 

 
iii) Type III censoring or random censoring. 

 
Type I or fixed censoring 

Let tc ∈ R be a fixed time point and take a sample lifetimes T1, T2, ..., Tn. Hence 

we get a sample Y1, Y2, ..., Yn , where 

 

Y =   
Ti,  if  Ti  ≤ Tc, 

tc,  if  Ti  > Tc, i = 1, 2, ..., n. 

 

 
(1.1) 

 

Example: The study stopped at a fixed time. 

 

Type II censoring 

Let r < n with r ∈ N and denoted by T1, T2, ..., Tn the ordered lifetimes. We 

observe until the rth  system fails. Hence, we get 

Y =   
Ti,  if  Ti  ≤ Tr, 

Tc,  if  Ti  > Tr, i = 1, 2, ..., n. 

 
 

(1.2) 
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Example: Industrial test trial. 

 

Type III censoring or random censoring 

Let C1, C2, ..., Cn be a sample of censoring times. We observed a sample couples 

(Y1, δ1), (Y2, δ2), ..., (Yn, δn) where, for i=1,2,...,n. 
 
 

Y  = min(T , C )   =   
Ti,  if  Ti  ≤ TCi ,

 

 

(1.3) 
i i i 

Ci,  if  Ti  > TCi , i = 1, 2, ..., n. 
 

 

δ  = I(T , C )   =   
1,  if  Ti  ≤ TCi ,

 

 

(1.4) 
i i i 

0,  if  Ti  > TCi , i = 1, 2, ..., n. 

 

In general we assume that, for i=1,2,...,n; Ti and Ci are independent. Right 

censoring occurs when a subject leaves the study before an event occurs, or the 

study before the event has occurred. For example, when we consider HIV/AIDS 

patients in Limpopo Province, South Africa, and the study ends within five 

year (2011 January - 2016 January). Those patients who survived by the end 

of study (January 2016) were censored or those patients who left the study at 

time tc and the event occurred (tc, ∞) were also censored. 

Left-censoring 

We observe a sample (Y1, δ1), (Y2, δ2), ..., (Yn, δn) where, for i=1, 2, . . . , n. 

Y  = max(T , C )   =   
Ti,  if  Ti  ≥ Ci

 

 

 
(1.5) 

i i i 

Ci,  if  Ti  < Ci 
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δi  = I(Ti ≥ C )   =   

1,  if  Ti  ≥ Ci 

 

(1.6) 

0,  if Ti < Ci 

Left-censoring occur when the actual survival time of individual is less than 

that observed. Left-censoring normally occur far less than right-censoring, and 

thus for the purpose of this study will be focusing on right-censored survival 

data. For example, the subject is said to be left censored if it is known that the 

failure occurs some time before the recorded follow-up period. For example, 

you conduct a study investigating factors influencing days to first oestrus in 

daily cattle. Population observation started at 40 days after calving but find 

that several cows in the group have already had an oestrus event. These cows 

are said to be left censored at 40 days. 

 

 
Survival and hazard  functions 

Suppose that the random variable T has a probability distribution with under- 

lying density function f (t). The distribution function is given by 

   t 

 
 

  
 

 

The survivor function, S(t), is defined as follows: 

 
S(t) = P (T ≥ t) = 1 − F (t). (1.7) 

 
Hence, survival function, can be used to represent the probability that an indi- 

vidual survives from the time of origin to some time beyond t. 

0 
f (u)du F (t) = P (T < t) = 

0 
F (t) = P (T < t) = f (u)du 
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The hazard function h(t) is defined as follows: 

 
P (t T t + δt T t) 

h(t)  = lim 

 
 

(1.8) 
δt→0 δt 

P (t T T t + δt) 1 
= lim [ ] 

δt→0 δt P (T ≥ t) 
F (t + δt) F (t) 1 

= lim [ ] 
δt→0 δt 
f (t) 

= 
S(t) 

S(t) 

 

It follows from equation (1.8) that 

 

h(t) = 
−d(logS(t)) 

S(t) 

 
 

(1.9) 

 

and so 

 

 
and 

 
S(t) = exp[−H(t)] (1.10) 

 

   t 

  
 

  
 

=  −logS(t) (1.12) 

 
H(t) is called cumulative hazard function. 

 

Survival Likelihood 

Due to the existence of censoring in survival data, the survival likelihood sig- 

nificantly different from classical likelihood for independent data without cen- 

soring. First, we will consider the construction of likelihood function for the 

right censoring. Next, we will give the general expression for the likelihood 

function accommodating left, right and interval censoring. 

 
Suppose we have a random sample of size n from a specific population with 

0 
λ(u)du (1.11) H(t) = 

0 
λ(u)du (1.11) H(t) = 
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n 

 

independent survival times T1, T2, ..., Tn. However, due to censoring, we don’t 

always have the opportunity observing these survival times. We denote C as 

the censoring process and C1, C2, ..., Cn the censoring times. Thus the observed 

data are the minimum of the survival time and censoring time for each subject 

in the sample and the indication whether or not the subject is censored. We 

have the observed data (Yi, δi), i = 1, 2, ..., n., where Yi  = min(Ti, Ci) is the time 

recorded,  and δi  indicates whether we observed an event or the subject was 

censored [17]. 

 
Let f (.)(F(.)) and g(.)(G(.)) denote probability density functions(distribution 

functions) for T an C, respectively. We assume that that T and C are indepen- 

dent. 

 

For the right censored data with random censoring, the likelihood contribution 

of an event time (yi, δi) is given by (1 − G(yi))f (yi).  On the other hand, for a 

right-censored observation (yi  = ci, δi  = 0) the contribution to the likelihood is 

given by (1 − F (yi))g(yi).  Hence, the likelihood is given by (owing to indepen- 

dence): 

 

n 

L = [(1 − F (yi))f (yi)]
δi [(1 − F (yi))g(yi)]

1−δi
 

i=1 

If we further assume that the distribution of the censoring times does not de- 

pend on the parameters of interest related to the survival function, called non- 

informative censoring [191, 20], the factor (1 − F (yi))
δi   and (g(yi))

1−δi   are not 

informative for inference on the survival function and, therefore, they can be 

deleted from the likelihood resulting in 
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n 

n 

 

 

 
n 

L   = (f (yi))
δi (S(yi))

1−δi
 

i=1 

n 

= (h(yi))
δi S(yi) (1.13) 

i=1 

 

or alternatively, with D the set of survival times and R the set of right censored 

times 

 

L = 
n 

f (yd) 
n

(S(yr)) 

The likelihood discussed above can be generalised to other types of censoring 

such as right, left and interval censoring. The likelihood expression for such 

data is given by 

L = 
n 

f (yi) 
n 

S(yi) 
n

(1 − S(yi)) 
n

(S(li) − S(ri)) (1.14) 

where D is the set of survival times, R is the set of right censored times, L is 

the set of left censored times and , I , is the set of interval censored times with 

li the lower limit and ri the upper limit of the interval. 

 
1.4.1.2 Modelling the hazard function 

 
The basic model for survival data to be considered in this study is the propor- 

tional hazard model. This model was first proposed by Cox (1972) and also 

come to be known as the Cox regression model. The model is based on the as- 

sumption that the hazard of death at any given time for individual in one group 

is proportional to the hazard at any given time for a similar individual in the 

other group. This is the assumption of proportional hazards, which underlies 

a number of methods for analysing survival data. The model is therefore re- 

ferred to as semi-parametric model since it consists of non-parametric baseline 

hazard function unspecified. The standard Cox proportional hazards model as- 

d∈D r∈R d∈D r∈R 

i∈D i∈R i∈L i∈I i∈D i∈R i∈L i∈I 
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sumes a hazard function of the form: 

 

 
 

hi(t) = h0(t) exp(Xi(t)β), i = 1, ..., n. (1.15) 

In equation (1.15) we assume the presence of covariates, where, 

• t represents the survival time. 

• h(t) is the hazard function determined by a set of p covariates (X1, X2, ..., Xp). 

• the coefficients (β1, β2, ..., βp) measure the impact (i.e., the effect size) of 

covariates. 

• the term h0(t) is called the baseline hazard function. It corresponds to 

the value of the hazard if all the Xi are equal to zero (the quantity exp(0) 

equals 1). The ‘tt  in h(t) reminds us that the hazard may vary over time. 

There are several important assumptions for appropriate use of the univariate 

Cox proportional hazards models, including: 

• independence of survival times between individuals in the sample. 

• multiplicative relationship between the predictors and the hazard. 

• constant hazard ratio over time. 

 
Parametric Survival Models 

 
When the Cox regression model is used in the analysis of survival data, there 

is no need to assume a particular form of probability distribution for survival 

times. On the other hand, if the assumption of a particular probability distri- 

bution for the data is valid, inferences based on such an assumption will be 

more precise. In particular, estimates of quantities such as relative hazards 

and median survival times will tend to have smaller standard errors than they 
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would in the absence of a distributional assumption [17]. 

 

A probability distribution which plays a central role in the analysis of survival 

data is the Weibull distribution, introduced by W. Weibull in 1951 in the context 

of industrial reliability testing. The hazard function of the Weibull distribution 

is given by: 

h(t) = λtγ(γ−1) (1.16) 

 
with γ, λ > 0, where λ is a scale parameter, and γ is a shape parameter. 

In parametric proportional hazards models we assume a particular parametric 

function for the baseline function λ0(t). A particular assumption in the case of 

Weibull corresponds to: 

h0(t) = λγtγ−1
 

 
When λ = 1 then the survival times has exponential distribution. 

 

 

Accelerated Failure Time Models 

 
The general form of an accelerated failure time (AFT) models is given by: 

 

log(T ) = βX + log(τ ) (1.17) 

where log(T) is the natural log of the time to failure event, βX is a linear com- 

bination of explanatory variables and log(τ ) is an error term. Using this ap- 

proach τ is the distribution of survival times when βX = 0. If we assume that τ 

follows a log-normal distribution, then log of survival times will have a normal 

distribution, which is equivalent to fitting a linear model to the natural log of 

survival time. Equation (1.17) can also be written as follows: τ  = exp(−βX)T 

or ln(τ ) = −βX + log(T ). Clearly, the linear combination of predictors in the 

model βX can act additively or multiplicatively on the log of time: they speed 

up or slow down time by a multiplicative factor. In this case exp(−βX) is called 
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accelerated parameter such that if exp(−βX)  >  1 time passes more quickly, 

if exp(−βX) =  1 time passes at a normal rate, and if exp(−βX) < 1 time 

passes more slowly. There are other AFT, namely: log-normal, log-logistic, and 

gamma, which can be expressed as accelerated time models. The accelerated 

failure time coefficients represents the expected change in log(T ) for one unit 

change in the predictor [25]. 

 
1.4.2 Mixed-Effects Models for Longitudinal   Dataset 

Linear mixed-effects models are important models that can be used to anal- 

yse correlated data. Such data include clustered observations, repeated mea- 

surements, longitudinal measurements, multivariate observations, etc. Linear 

mixed-effects models, like many other types of statistical models, describe a 

relationship between a response variable and some of the covariates that have 

been measured or observed along with the response. In mixed-effects models 

at least one of the covariates is a categorical covariate representing experimen- 

tal or observational unit in the dataset. In medical sciences the observational 

units are often the human or animal subjects in the study. In Agricultural Sci- 

ences, the experimental units may be the plots of land or the specific plants 

being studied [31]. 

 
In all of these cases the categorical covariate or covariates are observed at the 

set of discrete levels. We may use numbers, such as identifiers, to designate the 

particular levels that we observed but these numbers are simply labels. The 

important characteristic of a categorical covariate is that, at each observed 

value of the response, the covariate takes on the value of one of a set of distinct 

levels. 

 
If there is a set of possible levels of the covariate that is fixed and reproducible, 

l the covariate are modelled using fixed-effects parameters.  If the levels  that 
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we observed represent a random sample from the set of all possible levels ran- 

dom effects in the model is incorporated [28]. 

 
The linear mixed-effects models (LME) are defined as follows: 

 

Yi  = Xiβ + Zibi + εi, i = 1, 2, .., n. 

bi ∼ N (0, D), 

ε ∼ N (0, Σi), 

 

(1.18) 

 

where  βi=(β1, β2, ..., βp)
t   is  a  p × 1  vector  of  fixed  effects,  bi   =  (bi1, bi2, ..., biq )

t 

is a q × 1 vector of random effects, the ni × p matrix Xi and the ni × q ma- 

trix Zi are known design matrices may contain covariates, εi=(εi1, εi2, ..., εin )
t
 

represents random errors of the repeated measurements within-individual    i 

(cluster), D is a q × q variance-covariance matrix of the random effects, and Σi 

is a ni × ni covariance matrix of the within-individual errors. We assume that 

Σi = σ2In (homoscedastic conditional independence model) where In is the 
i 

ni × ni identity matrix, i.e., the within-individual measurements are assumed 

to be independent with constant variance. The value of σ2 represents the mag- 

nitude of the individual variations, and the value of Σ represents the mag- 

nitude of the between-individual variation, Wang and Taylor (2000) showed 

that LME model (1.18) is always identifiable if Σi   =  σ2Ini .  The fixed effects 

β are population-level parameters and are the same for all individuals, while 

random effects bi  are individual-level, representing individual variation from 

population-level parameters. Since individual shares the same random effects, 

the multiple measurements within each individual or cluster are correlated. 

The LME model allows unbalanced data in the response which is an advan- 

tage of mixed models. 
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1.4.3 Joint Modelling of Longitudinal and Survival Dataset 

To analyse the HIV/AIDS dataset in this study we will utilise the framework 

of joint models for longitudinal and survival data. The main idea behind these 

models is to couple a survival models for the continuous time-to-event process 

with mixed-effects model for longitudinal outcomes. The basic joint model is 

written as: 

 
yi(t)   =   xt(t)β + zt(t)bi + εi(t) (1.19) 

i i 

hi(t)   =   h0(t) exp[γtwi + α{xt(t)β + zt(t)bi}], t > 0 

where β denotes the vector with regression coefficients of the design matrix for 

the fixed effects xt(t) and zt(t) denotes the row vectors of the design matrix  for 
i i 

the random effects bi.  In particular, the fixed effects describe the average lon- 

gitudinal evolution in time, random effect describe how each patient deviates 

from this averaging evolution, where α quantifies the effect of the underlying 

longitudinal outcome to the risk for an event. If the value of α = 0 , it means 

that there is no association between the longitudinal marker and the event 

time, which means that information from the longitudinal marker does not im- 

prove on the estimate of the survival time association effect α compared with 

an analysis based on the time to event alone. In that case no joint model is 

needed and one can ignore the longitudinal data when carrying out the sur- 

vival analysis [72]. Moreover, it is assumed that the risk for the an outcome 

dependent event is associated with true an unobserved value of the longitudi- 

nal outcome (Figure 1.4). 

 
Figure 1.5 of basic form joint models assumes that the hazard function at any 

particular time point t, denoted by the vertical dashed line, is associated with 

the value of the longitudinal process (green line) at the same time point. The 

blue line represents the assumption behind the time-dependent Cox model, 
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Figure 1.4: A diagram showing the relationships between Y(t), observed longi- 

tudinal data; X(t), trajectory function; S, survival; Z, treatment; γ, treatment 

effect on survival; β, treatment effect on longitudinal process; α, effect of longi- 

tudinal process on survival. 
 

Figure 1.5: Joint Models for Longitudinal and Survival Outcomes. 

Source: Rizopoulos et. al, (2012) 

 
which posits that the value of longitudinal outcome remain constant between 

observation times. The framework of joint models can be used to account for 

both endogenous time-varying covariates and non-random dropout. Estimation 

of the joint model is based on the joint distribution of the two outcomes, and can 

be done either under maximum likelihood or under a Bayesian approach [172]. 
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Chapter 2 

 
Survival Analysis of HIV/AIDS 

Dataset 

 
2.1 Introduction 

In many clinical trials randomization is often used to evaluate new treatments 

for patients with human immune virus (HIV), and, in these HIV trials clinical 

progression of AIDS is used as the primary outcome. In our studies we will 

use viral load measurements as a marker for HIV. The recent development of 

assay techniques for quantifying HIV-1 RNA in HIV-infected patients makes it 

possible to use viral load (HIV-1 RNA copies) as surrogate marker to accelerate 

AIDS clinical trials. Prentice (1989) defined a good surrogate marker that it 

should have the following three properties: 

• The marker should be related to prognosis. 

• The distribution of values for the marker should be different for individ- 

uals receiving an effective treatment versus those receiving a placebo. 

• The beneficial effects of a good treatment should be mediated through its 

effect on the marker. That is, patients with the same value of a marker 

should have the same prognosis whether they are receiving prognosis or a 
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placebo. Clearly in such a case the better prognosis associated with a good 

treatment could be explained by the change in the value of the marker for 

that treatment. 

Some deterministic HIV-1 dynamics models have been develop to describe the 

interaction between HIV and its host cells in individual patients [152, 154, 153, 

151]. A stochastic model was also proposed [155]. The Bio-mathematicians 

and biologists developed models which were too complicated because they con- 

tained too many unknown parameters to be used in the analysis of real clinical 

data [156]. Recently, more simplified models have been proposed and applied 

to real virological data from clinical trials [157, 152]. These studies of HIV dy- 

namics have led to a new and a far better understanding of the pathogenesis 

of HIV infection. These HIV dynamics models provide a global better picture 

of virus elimination and production process during antiretroviral treatment 

(ART) for each individuals treatment. Hence, in evaluating the efficacy of anti- 

HIV treatments and understanding HIV infection pathogenesis it is of critical 

importance to estimate viral dynamics parameters for the whole population 

and as well as each individual patient in Limpopo Province, South Africa. 

 
2.2 HIV/AIDS Dataset in Limpopo Province 

The data of HIV/AIDS patients were collected at 543 health care facilities 

across Limpopo province by the Limpopo Department of Health. These fa- 

cilities comprise of district hospitals, regional hospitals, provincial hospital, 

community health centres, specialised sites, non-medical sites and clinics. The 

database contains the following variables for each patient: patient’s identifier, 

viral load, CD4 cell counts measurements, prescribed ART, gender, previous 

opportunistic infection, AIDS clinical stages, district, different types of health 

care facilities, etc. In this secondary data, there were 9215 patients diagnosed 

with HIV between January 2011 and January 2017.       The majority of these 
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patients were females accounting for 69.3% of the total HIV/AIDS patients in 

Limpopo Province. Mopani district accounted for 36.53% of 9215 HIV/AIDS 

patients. At the end of this period (30.1%) HIV/AIDS patients died and (69.9%) 

were rightly censored. These censored HIV/AIDS patients were either lost to 

follow-up, or migrated to other provinces or died at the end of the study. 

 

 

2.3 Aim of the study 

The aim of the study is to assess the risk factors associated with mortality rate 

among HIV positive patients in Limpopo Province, and how these risk factors 

contributes to high death rate in Limpopo Province. 

 

 
2.3.1 Objectives 

We will be addressing the following objectives in this chapter: 

 
i) to use Kaplan-Meier to compare the average evolutions between gender, 

districts, health care facilities, previous opportunistic infections, and AIDS 

clinical stages; 

ii) to analysis survival data using both Cox proportional hazard and paramet- 

ric models; and 

iii) to compare the semi-parametric and parametric models. 
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2.4 Methods of Survival Data Analysis 

 
2.4.1 Non-parametric estimation of survival   function 

Survival analysis is a collection of statistical procedures for the analysis of data 

in which the outcome variable of interest is time until an event occurs. By event 

we mean death, disease incidence, relapse from remission, or any designated 

experience of interest that may happen to an individual. When doing survival 

analysis, we usually refer to time variable as survival time. The capital T is 

denoted as a random variable for a person’s survival time, and small letter t as 

any specific value of interest for random variable T . 

 
In most survival analyses a key data analytical problem, called censoring is 

considered. In essence, censoring occurs when we have some information about 

individual survival time, but we do not know the time exactly. Most survival 

time data are right-censored, because the true survival time interval, which 

we do not really know, has been cut off (i.e., censored) at the right side of the 

observed time interval, giving us true survival time. 

 
We let δ be random variable defined as follows: 

δ =   
1,  if  T ≤ C, 

0,  if  T > C. 

which means that an individual is either died or censored. An individual who 

does not die, that is, does not get an event during study period, must have been 

censored either before or at the end of the study. 

The survival function S(t) gives the probability that a random variable T ex- 

ceeds the specific time t and defined as follows 



Survival Analysis of HIV/AIDS Dataset 39 
 

ni 

� 

   � � 
 

 
j j − j 

2 

 

 
 

S(t) = P (T > t) 

 
This is the probability that an event will not occur by time t. Kaplan and Meier 

(1958) developed an estimator for the survival function S(t), given by 

S�(t) = 
n

(1 − 
di 

)δi
 

 

where: 

ti≤t 

 

• di=number of patients died at ti; 

• ni=number of patients at risk before ti. 

 
This S(t) is called the Kaplan-Meier or product-limit estimator. The product- 

limit estimator is based on an assumption of non-informative censoring. Non- 

informative censoring means that knowledge of censoring time for an individ- 

ual provides no further information about the person’s likelihood of survival at 

a future time had the individual continue with the study. The Kaplan-Meier 

(KM) estimator provides an efficient means of estimating the survival function 

for right-censored data. Some properties for the KM estimator can be found  

in [161]. 

 
In this study we will apply Greenwood’s estimator(1926) of the variance of 

Kaplan-Meier estimator, which is defined by: 

 

V ar(S(t)) = S(t)2   dj 
 

n (n d ) 
tj ≤t 

 

(2.1) 

A pointwise 100(1 − α)% confidence interval for the survival function S(t) at 

time t0  (t0  is fixed time), termed the linear confidence interval is defined by 

S�(t0) ± z1− α 

I

V� ar(S�(t0)). 
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2.4.2 Log-rank test 

Log-rank test is a hypothetical test to compare the survival distributions of two 

or more samples. It is a non-parametric test and appropriate to use when data 

are right skewed and censored and censoring must be non-informative.Therefore, 

the whole survival function under the null hypothesis of different groups,would 

be compared. 

 
H0 : S1(t) = ... = SK (t), 0 < t < τ 

 
Since the true survival functions are unknown in each group, the non-parametric 

test would be opted for. 

Firstly, let us consider a simpler test where K = 2, then 

 
H0 : S1(t) = S2(t), 0 < t < τ 

 

Furthermore, suppose we observed, from the populations j = 0, 1 (Tj1, δj1), (Tj2, δj2), 

..., (Tjnj , δjnj ). 

Under H0, both populations are equal. 

 
Let the lifetimes τ1, τ2, ..., τk be k-ordered, distinct death times. Now, at the £−th 

death time, a 2 × 2 contingency table is as follows: 
 

Population Yes (Death) No (Alive) Total 

0 

1 

d0 

d1  

n0 − d0 

n1  − d1  

n0 

n1  

Total d  nl − d  n  

 
where dj   is the number of deaths and nj   is the number at risk in population 

j at this time. Under null hypothesis H0  and conditional on the marginals, dj 

has a hypergeometric distribution. That is, dj   ∼ Hypergeometric(n , d , nj ). 
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) = 
  

[
  

  

£ 

(d − )] 

[
  n1£ d£    2 

   di       δi 

 

Therefore, the mean and the variance of dj   is given by 

 

E(dj  
n1 d  

) = 
n 

 

with  
 

V ar(d n1 n0 dl(n  − d ) 
j 

n2(n − 1) 

Suppose that the sample size at each death time is very large, by the central 

limit theorem the hypergeometric distribution can be approximated by a nor- 

mal distribution. 

 
Let us assume that the contingency tables at different death times are inde- 

pendent, then the log-rank test is given by 

 
k 

 =1 

k 

 =1 

 
n1£ d£    2 

1 n£
 

n1£ n0£ d£ (n£ −d£ ) 

n2−1 

which is, under H0 is approximately χ2 distributed with df = 1. The log-rank 

test is a special case of the Terone-Ware class of tests, where 

 
k 
 =1 

 k 

w (d1  −  n£     
)] 

w2 n1£ n0£ d£ (n£ −d£ ) 
 

 

 =1 
 

and where w ≥ 0 are weights. 

n2−1 

 

 
 

 
 

 

 

 
Let S-(t) = 

n
 

 
 
 

 
ti≤t 

S-(ti)
p(1 − S-(ti))

q , p, q ≥ 0 

(1 − ni+1 ) . In a practical data analysis, the choice of weights 

is extremely important for the following reasons [28]: 

£ 

T = 

T = 

Test w  

Log-rank 

Wilcoxon 

Peto-Peto 

Harrington-Fleming (p,q) 

1 

n  

S-(ti) 
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• Log-rank test has optimal power to detect alternatives in which hazards 

are proportional; 

• Wilcoxon test is more ”sensitive” to ”early” differences in survival curves; 

and 

• Harrington-Fleming test with p = 0 , q > 0 is ”sensitive ” to ”later” differ- 

ences. Hence, it is recommended in literature that the choice of appropri- 

ate test should be made before seeing the data. 

 
To get desired trend survival curves for three or more ordered groups are com- 

pared. Thus study compared four AIDS clinical stages of HIV/AIDS patients 

using log-rank test for the trend: 

 
Ho :S1(t) = S2(t) = ... = SK (t),   t ≤ τ . 

HA :S1(t) ≥ S2(t) ≥ ... ≥ SK (t), t ≤ τ at leat one >. 
 
 

Then the test statistic is [17]: 

 
K 

T = j=1 

K 
j=1 

 
aj (Oj  − Ej ) 

k=1 aj akVjk 

 

∼ N (0, 1) . 

under H0, where a1 < a2 < ... < aK are ordered of scores and 

 

 
Oj = 

k 

dj  
 =1 

k 

Ej = nj d  
. n 

 =1 

 

 

The test for trend has higher statistical power than the normal log-rank test [17]. 
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2.4.3 Semi-Parametric Cox Proportional Hazard   Models 

In order to study the potential impact of covariates on time to event of that par- 

ticular process, a number of modelling approach has been developed, including 

proportional hazard (PH) model developed by Cox (1972). This proportional 

hazard model proved exceedingly useful in the analysis of survival data. This 

model specifies that the hazard function for the survival time T associated with 

p × 1 vector of covariates X takes the form: 

h(t|X) = h0(t)exp(X
t 

β) (2.2) 

where β1, ..., βp are regression coefficients, h0(t) ( baseline hazard) is the under- 

lying hazard function, which is unknown and unspecified non-negative func- 

tion of time, that does not depend on the covariates. 

 
This model has two kinds of assumptions that require verification before one 

can rely on statistical inferences and predictions the model yields. The first 

assumption is that the relationship between log hazard (log cumulative haz- 

ard) and a covariate is linear. The strength of this model is that h0(t) is left 

unspecified (unknown function). It represents the hazard of an individual with 

covariates equal to zero. The second assumption is the time independence of 

the covariates in the hazard function, that is, the ratio of the hazard function 

for two individuals with different regression vectors does not vary with time 

(the PH assumption). 

 
To estimate the coefficient β1, β2, ..., βp , Kalbfleisch and Prentice (2011) pro- 

posed a partial likelihood function based on a conditional probability of failure, 

assuming that there are no tied values in the survival times. Although the 

partial likelihood is not a full likelihood, the estimators obtained from this 

maximisation have been shown to be consistent and asymptotically normal. 
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However, in practice, tied survival times are common. Throughout the study 

the Breslow approximate likelihood function which assumes piecewise hazard 

between failure times [28, 29, 30] is applied to estimators for β1, β2, ..., βp . 

 
Cox-Snell residuals 

The Cox-Snell residual procedure is the most widely used in the analysis of 

survival data, and was first proposed by Cox and Snell (1968). The Cox-Snell 

results for the ith individual, i = 1, ..., n is given by 

 

 

 
where 

rcsi   = exp(β�i   xi)H�0(ti) (2.3) 

Λ�0(ti)  is  the  estimated  cumulative  hazard  function  at  time  ti.   If  the 

Cox’s regression model is satisfied, we get that ri is a censored sample of an 

exponential distribution with lambda equal to one. 

 
2.4.4 Parametric  Survival Models 

Cox’s semi-parametric model is the most frequently employed regression for 

survival data, however, parametric models may offer some advantages [28, 57]. 

Based on asymptotic results, Efron (1997) and Oakes (1997) showed that, un- 

der certain circumstances, parametric may lead to more efficient parameter 

estimates than the Cox model. When empirical information is sufficient, para- 

metric model models can provide some insight into the shape of the baseline 

hazard. Secondly, extrapolation of survival functions become possible, which, 

although speculatively, may be of interest to the applications. Fully parametric 

models involve stronger assumptions than semi-parametric models. The chal- 

lenge is to choose the appropriate parametric model because there is danger  

of mis-specification of the model, hence, the statisticians tend to prefer Cox 

model. 
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There are a number of parametric models that are frequently employed in sur- 

vival analysis to describe and model event times. In parametric proportional 

hazards model, a particular parametric distribution for the baseline hazard 

h0(t) of equation 2.2 is assumed. The distributions which are commonly used 

for survival time are Weibull, exponential, log-logistic, log-normal and gener- 

alised gamma. An assumption for the baseline hazard corresponds to: 

 
h0(t) = λγ(λt)γ−1 (2.4) 

 
with γ > 0, λ > 0, and γ is a shape parameter which allows the density to take 

a variety of shapes, depending on the value of the shape parameter, λ is a scale 

parameter and it provides information on the way the hazard is stretched out. 

 
When making this parametric assumption in equation 2.4 for the baseline haz- 

ard, it follows that the event times are Weibull distributed. The shape param- 

eter works in the following ways: 

• if γ < 1, then the hazard is monotonically decreasing with time. 

 
• if γ > 1, then the hazard is monotonically increasing with time. 

 
• if γ = 1, then the hazard is flat and have the exponential model. That is, 

Weibull nests the exponential model. 

 

 
The survival function for the Weibull is: 

 
S(t) = e−(λt)γ 

(2.5) 
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Figure 2.1: Different types of hazard functions that are often encountered in 

practice. Here our λ = 2 . 

 

and the density function is: 

 
f (t) = λγ(λt)γ−1e−(λt)γ 

(2.6) 
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using , Weibull likelihood is given by: 

 
N 

L = [λγ(λt)γ−1e−(λt)γ 

]di [e−(λt)γ 

]1−di (2.7) 
i=1 

 

 
 

Figure 2.2: Weibull hazard functions with (a) different scale(fixed γ = 1.1) and 

(b) different shape parameters (fixed λ = 0.03). 

 
An important aspect of the Weibull distribution is therefore its proportional 

hazards property:  Weibull distributed event times with the same parameter  

γ lead to the proportional hazard model. Weibull distributed event times are 

often used in practice because they seem to be able to describe the actual evo- 

lution of the hazard function in an appropriate way in many circumstances. 
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2.4.4.1 Accelerated Failure Time Models (AFT) 

 
The accelerated failure time model is an alternative if the proportional haz- 

ards assumptions does not hold. Different diagnostic tests have been devel- 

oped to evaluate the proportional hazard assumption [35]. In contrast to the 

proportional hazard model, the accelerated failure time model is the best char- 

acterised in terms of the survival function [32]. In the presence of covariates, 

the accelerated failure time model can be written as follows : 

 
hi(t) = exp(xtβ)h0(t exp(xtβ)) (2.8) 

i i 

 

When the parametric proportional model is Weibull, the baseline hazard func- 

tion is given by 

h0(t) = λγ(λt)γ−1 (2.9) 

 
and the event times follows Weibull distribution. As a results, the hazard given 

covariates for this parametric model can be written as: 

 
hi(t) = λγtγ−1(exp(xtβ))γ (2.10) 

and the survival function is given by: 

Si(t) = exp(−λγ−1 exp(γxtβ)). (2.11) 

and the density function is 

fi(t) = [exp(−λt exp(γx β))][λγt exp(γx β)] (2.12) 

 
Thus, all subjects have Weibull distributed event times with the same shape 

parameter but different scale parameters (Figure 2.2). 



Survival Analysis of HIV/AIDS Dataset 49 
 

i 

i 

i 

i 

i 

i 
σ 

σ 
i σ 

 

2.4.4.2 Log-linear models 

 
Instead of modelling the hazard functions, we can model the survival time di- 

rectly. The log-linear model is an example of such modelling, and it is given 

by: 

logTi = µ + xtα + σEi (2.13) 

 
where Ti the event time for subject i, µ the intercept, xi the vector of covariates 

for subject i, α the vector containing the covariate effects, σ the scale parame- 

ter, and Ei the random error term for subject i. The error term is assumed to 

have a fully specified distribution. 

 
In model (2.13), let us assume that Ei (error term) has Gumbel distribution, 

that is, 

Ei ∼ exp(e − exp(e)) − ∞ < e < ∞ (2.14) 

and exp(Ei) ∼ exp(1) (exponential law with mean one). 

The model in (2.13) can be written in terms of survival function as follows [32]: 

 

 

Si(t)  =  P (Ti > ti) = P (logTi > logti) 

=  P (µ + xtα + σEi > logti) 

=  P (Ei > (logt − µ − xtα/σ) 

=  P [exp(Ei) > exp((logt − µ − xtα/σ] 

= exp[− exp((logt − µ − xtα)/σ)]. 

 
The last expression can be re-written as 

 

S (t) = exp[− exp( 
−µ 

)t 
1  

exp(xt( 
α 

))]. (2.15) 

The Weibull accelerated failure time can be written in terms of the survival 
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function  
Si(t) = exp(−λt exp(ρxiβ). (2.16) 

 

when we compare equation (2.15) and (2.16), clearly the two models correspond 

as follows: 

λ = exp( −µ ) γ = σ−1 β = −α. 

On the other hand, the survival function for the Weibull proportional hazards 

model is given by 

Si(t) = exp(−λt exp(xiβ)). (2.17) 

Again, comparing (2.15) and (2.17), clearly the two models corresponding with 

λ = exp( −µ ), γ = σ−1, β = α . 
σ 

thus 

σ 
 
 

β = (−α) ∗ (σ). 
 

Therefore,  the parameter estimates from the log-linear model can be easily  

be transformed into parameter estimates for either the Weibull accelerated 

failure time model or Weibull proportional hazards model. For the proportional 

hazard model Duchateau (2007) derived the variance of a ratio (−α) ∗ (σ) of two 

parameter estimates as follows: 

 
V ar(β� ) = V ar( ). 

 

First, Duchateau (2007) used delta-method to

�

approximate the variance as fol- 

lows: 

Let us consider 

ζt = (ζ1, ..., ζk) 

 
and a univariate continuous function g(ζ). Now the Taylor expansion g(ζ) is 

given by 

g(ζ) ≈ g(ζ) + γt(ζ� − ζ) (2.18) 

σ 
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where ζ� is the maximum likelihood estimator of ζ with 

γt = ( 
∂(ζ) 

, ..., 
∂(ζ)

) 
∂ζ1 ∂ζk 

 

being the vector of the first partial derivatives evaluated at ζ. From 2.18 we 

obtained 

V ar[g(ζ)] ≈ γtV ar(ζ), γ 

where V ar(ζ) is the variance-covariance matrix of ζ. For the specific case of 

the Weibull proportional hazards model we have 

 
ζt = (µ, α, σ) 

 

and 

β--- = 
−α� 
σ 

We therefore have 

ζ
t 

= (0, 0, ..., 
−1 

, ..., 0, 
αj 

). 
o σ2 

Given many zeros, it is easy to observe that 

 
V ar(β� 

j )   =   γtV ar(ζ�)γ 
 

1 αj 

= V ar(α� ) − 2 
 σ

2 

Cov(α� , σ�) + V ar(σ�) 

 

An estimate for V ar(β) is obtained by using in (2.19) as estimates for V ar(α), 

and Cov(α , σ) the corresponding entries of the inverse of the observed   infor- �j   � 

mation matrix and by replacing αj and σ in by their corresponding estimates 

and σ obtained by fitting the log-linear models. α�j � 

j j 
j 

(2.19) 

σ3 
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Other Parametric survival Models 

 
In addition to Weibull distribution, other flexible and popular distributions for 

time to event data are log-logistic, log-normal and generalised gamma. 

 

 
2.4.4.3 Log-logistic 

 
A variable T has a log-logistic distribution if its logarithm follows the logistic 

distribution in (2.13) with density function 

 

 

fi(t) = exp 
exp(α)κtκ−1 

(1 + exp(α)tκ)2 
(2.20) 

 

and survival function 

 

 
and hazard function 

 

Si(t) = 

 
1 

1 + exp(α)tκ 

 

κtκ−1λk 

 

(2.21) 

 
with α ∈ R and κ > 0. 

 
2.4.4.4 Log-normal 

λi(t) = 
1 + (tλ)κ 

(2.22) 

 

Again, a variable T has a log-normal distribution if its logarithm follows the 

normal distribution in (2.13) with density function given by 

 

1 1 2 
 

  

(2.23) 

fi(t) =   exp[ (log(t) µ) ], tER 
t (2πγ) 

and survival function 

 

S (t) = 1 − Φ( ), tER (2.24) 

i √
γ

 

 

with µ ∈ R and γ > 0 and hazard function f (t) . 
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2.4.4.5 Generalised Gamma 

 
The generalised gamma models has a quite complicated specification involving 

two shape parameters . The density of the generalised gamma distribution is: 

λγ(λt)γκ−1 exp[−(λt)γ ] 
 

f (t) = 
Γ(κ) 

(2.25) 

 

where λi = exp(−(Xi)) is a scale parameter and ρ and κ are two shape param- 

eters. The two parameters allow for quite a flexible hazard rate, including a 

U- shape. The elegance characteristic of the generalised gamma model is that 

it nests several of the other parametric models as special cases: Weibull, ex- 

ponential, log-normal, and the standard gamma. Thus, these models are good 

for adjudicating between competing models. The shape parameter works as 

follows: 

 

• if κ = 1, the Weibull distribution is implied. 

• if κ = γ = 1, the exponential is implied. 

• if κ = 0, the log-normal is implied. 

• if γ > 0, the gamma distribution is implied. 

 
2.4.4.6 Maximum likelihood estimation for θ 

 
In survival analysis, some observations are censored, hence, estimation has to 

be adapted to censoring. Suppose we have a non-informative censored sample 

(Y1, ..., Yn) where 

 

 
 

with 

Yi  = min(Ti, Ci) δi  = I(Ti  ≤ Ci), i = 1, ..., n. 
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n 

 

• a sample T1, ..., Tn ∼ f (t, θ) lifetimes, where f is known and θ unknown. 

We denote the survival function by S(t, θ). 

• a sample C1, ..., Cn ∼ g(c) censoring times with survival function G(t). 

• Ti and Ci are independent. 

For an uncensored observation (δ = 1), the contribution to the likelihood is 

given by 

 

P (Y ≤ y, δ = 1)  =  P (min(T, C) ≤ y, T ≤ C) (2.26) 

=  P (T y, C T ) 
   y 

 
 

  
 

 

 

⇒ fY,δ=1(y, θ) = f (y, θ)G(y) 

For a censored observation (δ = 0), similarly we get 

 
fY,δ=0(y, θ) = g(y)S(y, θ) 

 

Hence we get the likelihood function 

 

L(θ) =  
n 

f (yi, θ)G(yi) × 
n 

g(yi)S(yi, θ) 

Since we assumed that the censoring is non-informative, we get 

 

L(θ)   = 
n 

f (yi, θ) × 
n 

S(yi, θ) (2.27) 
i,δ=1 

n 
i,δ=0 

= f (yi, θ)δi S(yi, θ)1−δi
 

i=1 

n 

= h(yi, θ)δi S(yi, θ)1−δi
 

i=1 

 

In practice, we always have covariates present, as a result we get similar  ex- 

o 

G(t)f (t)dt = 

o 
= G(t)f (t)dt 

i,δ=1 i,δ=0 
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pression for the likelihood: 
 

L(θ)   =   
n 

f (ti|xi, θ)δi S(ti|x ,θ )
1−δi (2.28) 

i=1 

n 

= λ(ti|xi, θ)δi S(ti|xi, θ) 
i=1 

 

We will get estimates for different parameters when we maximise this L(θ), 

and the maximum likelihood estimate for θ is asymptotic normal.  In the  full 

non-parametric case,  we assume the Cox proportional hazard model λ(t|x    = 

λ0(t) exp(xtβ). We now wish to estimate the regression parameter βt = (β1, ..., βq )
t. 

It is well known that the Cox partial likelihood function is given by 
 

n xt 

L(β) = ( 
exp i β

 
expxt

k β 
)δi (2.29) 

j=1 k∈nj 

 

To estimate β , L(β) is maximised. Although the partial likelihood is not a full 

likelihood, the estimators obtained from this maximisation have been shown 

to be consistent and asymptotically normal. 

 
2.5 Comparison of Cox PH & Parametric Models 

The proportional models are routinely employed for analysis of time-to-event 

data in medical research in the presence of covariates [178], however, para- 

metric models may offer advantages. If the assumption of proportional hazard 

(PH) is violated, then, the results from a PH model will be difficult to gener- 

alise to situations where the length of follow-up is different to that used in the 

analysis. Furthermore, it would be difficult to translate the results into the 

effect upon the expected median duration of illness for a patient in a clinical 

setting [54]. The second disadvantage of the PH model is that the underlying 

hazard function is common across all patients, for example, the hazard func- 

tions for any two patients with baseline h0  vector x1  and x2  are    constrained 
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to be proportional and the method of estimation is based on this, whereas, the 

method of estimation depends critically on evolving risk sets through time [55]. 

The PH model is considered to be semi-parametric and as such has advantage 

of being able to cope with variety of basic shapes for the common hazard func- 

tion across patients. 

 
The accelerated failure time (AFT) approach is an alternative strategy for the 

analysis of time to event data and can be suitable even when  hazards are  

not proportional and this family of models contains a certain form of PH as     

a special case. The results of AFT model may be easier to interpret and more 

relevant to clinicians, as they can be directly translated into expected reduc- 

tion or prolongation of median time to event, unlike the hazard ratio. Based 

on asymptotic results, Efron (1997) and Oakes (1997) showed that, under cer- 

tain circumstances, AFT approach leads to more efficient parameter estimates 

than PH models. With decreasing sample size, relative efficiencies may fur- 

ther change in favor of AFT models. When empirical information is sufficient, 

AFT models can provide some insight into the shape of the baseline hazard. 

Furthermore, extrapolation of survival functions becomes possible [56]. 

 
2.6 Results 

 
2.6.1 Results from Cox Proportional Hazard   Models 

The survival curves for HIV/AIDS patients in Limpopo Province are presented 

in Figure 2.3. The plots displayed distinct separation between curves, reflect- 

ing strong negative effects on the main effects, that is, gender, AIDS clinical 

stages, different types of health care facilities, TB status of a patient at ART 

initiation, age at baseline and five districts on the survival probabilities. 

 
In estimating these survival curves in univariate Cox proportional hazard model, 
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(a) Survival curves by gender (b) Survival curves by four clinical stages 

(c) Survival curves by six health care  fa- 

cilities (d) Survival curves by TB status 

 

(e) Survival curves by five districts. 

Figure 2.3: KM Survival curves by different covariates. 
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one covariate at the time was fitted in the model (Cox PH) while other covari- 

ates were fixed at zero or held constant; for example, when a KM curve for gen- 

der covariate was plotted, covariates such as districts, Previous Opportunistic 

Infection (PrevOI), clinical stages, health care facilities, CD4 counts, age at 

baseline, were all fixed at zero, so that survival curves for males and females 

can be compared effectively [121, 23]. 

 
Sub-figure 2.3a shows that there is a significant difference in survival times 

between males and females [ log-rank P< 0.0001], hence, the null hypothesis 

of no difference in survival times is rejected in favour of the alternative. The 

curves of females are above that of males, hence, it is concluded that females 

have significant longer survival times as whole. Therefore, morbidity and mor- 

tality were lower in females that in males. 

 
Sub-figure 2.3b shows survival curves of HIV/AIDS patients in Limpopo Province 

for the four AIDS clinical stages of HIV as describe by World Health Organi- 

sation (WHO). What is noticed first in Sub-figure 2.3b is that the curves are 

distict and parallel. Secondly, there is a significant difference in survival times 

between these four AIDS clinical stages [ log-rank P< 0.0001]. The survival 

curve of clinical stage I is far above all other survival curves, with clinical  

stage IV the lowest. Hence,  it is concluded that patients in clinical stage I  

have significantly the longest survival times, whereas patients in clinical stage 

IV have the lowest survival times. This is in agreement with similar findings 

by [80, 81, 82]. Therefore, the patients’ mortality rate were the highest in clin- 

ical stage IV and lowest in clinical stage I. 

 
Sub-figure 2.3c provides information about the survival times differences of 

HIV/AIDS patients in various health care facilities that are available in Limpopo 

Province. The survival curves show there is a significant difference in survival 
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times of patients in these six health care facilities [log-rank P< 0.0001]. it is 

noticed that survival curves of clinics and community health care centres & 

district hospitals are crossing (i.e. indicating non-proportional hazards) at the 

later time as a result of survival times having greater variance in patients’ care 

than the others. Since the crossing happens at the later stage time, weighted 

log-rank test using Harrington-Fleming method which is sensitive to later dif- 

ferences will be preferred (see section 2.5.2). The survival curve of Provincial 

Hospital is far above all survival curves, with survival curve of of Specialised 

Site at the bottom, and the test was significant. It is therefore concluded that 

patients attending health care at Provincial hospital have the longest survival 

times than any other health care facilities, with Specialised Site having pa- 

tients’ with shortest survival times. Furthermore, it is evident that morbidity 

and mortality were lowest in Specialised Sites than any other health care fa- 

cilities. 

 
Sub-figure 2.3d shows that there is a significant difference in survival times be- 

tween patients who experienced TB before they were diagnosed as HIV positive 

and patients who were TB free [ log-rank P< 0.0001]. Thus, the null hypoth- 

esis of no difference is rejected in favour of the alternative. Furthermore, the 

survival curve of patients who experienced TB before diagnosed with HIV is 

below that of patients who were TB free, hence, we conclude that patients who 

were TB free during diagnosis survive longer than those who experienced TB 

before. According to Suchindran et al., the risk of death in TB-HIV co-infected 

individual is double as compared with HIV infected individuals without TB. 

Other studies also report that the presence of TB co-infection is associated 

with higher mortality among HIV patients taking ART [60, 104, 103]. There- 

fore, mortality was higher with patients who experienced TB before than TB 

free patients. 
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Sub-figure 2.3e shows the survival curves of HIV/AIDS patients for five dis- 

tricts in Limpopo Province. There is a significant difference in survival curves 

in these five districts [ log-rank P< 0.0001]. The Mopani district curve lies well 

below all other district curves, with Waterberg well on top of the others. Hence, 

the null hypothesis of no difference in survival times is rejected in favour of 

the alternative. Thus, it is concluded that patients in Waterberg district have 

significantly longer survival times as a whole, with Mopani district patients 

shortest survival times. As a result, the morbidity and mortality in Mopani 

district is highest than any other district. 

 
Table 2.1: Cox PH model for clinical stages, age, and interaction of clinical 

stages by age of HIV patients in Limpopo Province, utilising Breslow method 

in handling ties. 
 

Covariate Parameter Estimates 

Standard 

Error 

Wald 

Chi-Square 

P-value 

Clinical stage II 

Clinical Stage III 

Clinical Stage IV 

β1 

β2 

β3 

0.7606 

1.70076 

2.1109 

0.07208 

0.06592 

0.07785 

111.4010 

665.6235 

735.4055 

< 0.0001 

< 0.0001 

< 0.0001 

Age β4 0.02575 0.00125 397.9842 < 0.0001 

Clinical Stage II × age 

Clinical Stage III × age 

Clinical Stage IV × age 

β5 

β6 

β7 

-0.0091 

-0.01159 

-0.00995 

0.00172 

0.00160 

0.00187 

1.2376 

52.4507 

28.3638 

< 0.2659 

< 0.0001 

< 0.0001 

 
Table 2.2 suggests that there is an interaction between patients in AIDS clini- 

cal stages III-IV and age. That is, the survival times for HIV+ patients depend 

on age in AIDS clinical stages III and IV because a local test for β6 = β7 = 0 will 

be rejected (P-value < 0.0001). Therefore, mortality rates for HIV+ patients in 

AIDS clinical stage III and IV dependent on age as compared with AIDS clin- 

ical stage I. Furthermore, Table 2.2 also suggests the mortality rate in AIDS 

clinical stage II patients by looking at a local test β5 = 0 (P-value =0.2659) will 

not be rejected. That is, the effect of AIDS clinical stage II on survival times 

for HIV-infected patients is the same for different age groups as compared with 

clinical stage I. Hence the interaction of clinical stage II by age may be dropped 
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from the full model because the relative risk does not depend on age. 

 

Table 2.2 gives the details of the Cox proportional hazard model fit. The im- 

portant covariates in predicting survival time were age (years), CD4 counts, 

gender, clinical stages of HIV, districts, previous opportunistic infections, and 

different types of health care facilities. The hazard for a patient one-year older 

is 1.02 times that of a patient younger, suggesting that an increase in age 

shortens survival time, and it is highly significant ( P< 0.0001). The relative 

risk of CD4 for HIV patients is 0.88 times that of lower CD4 count, showing 

that one-cell/µL increases for a patient’s results in a longer survival times, and 

it is highly significant. The hazard ratio for males of HIV patients is 2.169 

times than that of female patients, suggesting that the mortality rate of male 

is approximately twice that of female throughout the observed period, and it is 

highly significant (P < 0.0001). The estimated hazard ratios of death for Capri- 

corn, Mopani, Sekhukhune and Vhembe districts are 1.236, 2.595, 1.092, and 

1.411, respectively, as compared to that of Waterberg district, suggesting that 

Capricorn , Mopani and Vhembe districts have 24%, 160% and 41% higher haz- 

ards of death, respectively, than that of Waterberg district, and are all highly 

significant (P < 0.0001). The Sekhukhune district has 9% higher hazard of 

death as compared to that of Waterberg district, and it is moderately signifi- 

cant (P< 0.030). 

 
The estimated hazard ratios of death for clinical stage II, III, and IV are 2.142, 

3.710 and 5.996, respectively, as compared to that of clinical stage I. Show- 

ing that the clinical stage II, III, and IV have roughly 114%, 271% and 500% 

higher hazard of death, respectively, as compared with clinical stage I, and are 

all highly significant ( P< 0.0001). The estimated hazard ratio of death for pa- 

tients who experienced tuberculosis (TB) before diagnosed with HIV-infection 

is 2.12, suggesting that patients who experienced TB before have roughly 112% 
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higher hazard of death as compared to those who were TB free, and it is highly 

significant. The hazard ratios of death for Regional and Provincial Hospitals 

are 0.7356 and 0.3072 respectively as compared to that of Clinics & Mobile 

Clinics, suggesting lower hazard of death by 26.4% and 69.3% for Regional 

and Provincial Hospitals respectively, as compared to that of clinics, and are 

all highly significant (P< 0.0001). The hazard ratios of death for Community 

Care Centre, Non-Medical Sites, and Specialised Sites are 1.0479, 1.8116, and 

3.6921 respectively, as compared to clinics. That is an evidence that Commu- 

nity Care Centre, Non-Medical Sites, and Specialised Sites have higher hazard 

of death by approximately 5% , 81.2% and 269.2% respectively, as compared to 

that of clinics, and are all highly significant. 

 
2.6.2 Model diagnostics 

Figure 2.4 shows the Cox-Snell residuals plots from fitting the exponential, 

Weibull, log-logistic , log-normal, and generalised gamma models respectively 

with covariates gender, age at baseline, CD4 counts at baseline, districts, type 

of health care facilities, clinical stages, and previous opportunistic infections. 

We fitted these parametric AFT models in Figure 2.4 using Proc Lifereg SAS 

version 9.2 procedure. The Exponential and Log-normal models are not fitting 

well as they deviate from the straight lines, that is, sub-figure 3.1 and sub- 

figure 2.4d, respectively. The three other graphs (Weibull, log-logistic, and 

generalised gamma models) look similar and all are close to a straight line 

with unit slope and zero intercept. There is no significant difference observed 

with these three graphs. The results are similar to those obtained in table 2.5 

(Akaike Information Criterion of five distributions fitted to the full model). 

 
The difference among these three distributions are small with log-logistic dis- 

tribution being slightly better than the others, however, in Table 2.5 gener- 

alised gamma model was a preferred model because of the its lowest AIC value 
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(a) Exponential AFT Model (b) Weibull AFT Model 
 

(c) Log-logistic AFT Model (d) Log-normal AFT Model 
 

(e) Gamma distribution 

Figure 2.4: Cox-Snell residual plot for different parametric AFT model 

 
and that is consistent with the findings of [59] . The small AIC value could have 

been influenced by one or more parameter as compared with log-logistic distri- 
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bution. A paper by [50] suggested that Weibull is the best fitted parametric 

model for predicting survival following a diagnosis of AIDS and could be used 

for future projections of death from HIV/AIDS patients in Limpopo province 

for right censored data. However, based on our findings log-logistic model will 

be our final preferred model for our right censored data. 

 

 
2.6.3 Results from Parametric  Models 

Many parametric models are accelerated failure time (AFT) models rather than 

proportional hazard models. The standard parametric models are exponen- 

tial, log-logistic, log-normal and Weibull. The underlying assumption in these 

AFT models is that the effects of covariates act multiplicative with respect   

to survival time [28]. For Weibull distribution the AFT assumption holds, 

hence in Table 2.4, a one-unit difference in the age of a patient corresponds  

to a hazard ratio of exp(−.00445/γ) = exp(−0.007295) = 0.99273. The Weibull 

model suggests that the hazard of death for any given patient in Limpopo 

Province is approximately 0.99 times that for a patient one year younger, and 

it is highly significant (P< 0.0001). The patient CD4-counts hazard ratio is 

exp(0.000295/γ) = exp(0.0004836) = 1.00048 , that suggests that the hazard of 

death of any given patient is roughly 1.00 times for a patient with a CD4 count 

one-cells/µL higher, and it is highly significant(P< 0.0001). The hazard ratio for 

a male patient is 0.6495, shows that hazard of death for any male patient is 

0.6495 times that for female patient, and it is highly significant (P< 0.0001). 

 

In Table 2.3 the hazard ratios of patient in Mopani, Sekhukhune, Vhembe and 

Waterberg districts are 0.5359, 0.9561, 0.9165, and 1.0974, respectively, that 

suggest that the hazard of deaths of patients in these three districts are 0.54 

times, 0.96 times, 0.92 times higher than that of Capricorn district and are all 

highly significant (P< 0.0001). While Waterberg is 1.1 times lower than that of 
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Capricorn district, and it is highly significant (P< 0.0001). The hazard ratios 

of patients in Clinical stage II, III and IV are 0.20025, 0.06161, and 0.02373, 

respectively, which suggest that the death hazard of patients for clinical stage 

II,III, and IV is 0.20 times, 0.06 times and 0.02 times higher than that of clini- 

cal stage I, and it is highly significant (P< 0.0001). The hazard ratio of patients 

who had experienced TB treatment in the past is 0.71800, hence, the hazard 

for patients who experienced TB treatment in the past is 0.72 times lower than 

those who never experienced TB treatment before HIV was diagnosed, and it 

is highly significant (P< 0.0001). 

 
In Table 2.3 the hazard ratios of patients in Community Health Centres, Dis- 

trict Hospitals, Regional Hospitals, Provincial Hospital and Non-Medical Sites 

are 1.5135, 0.9595, 1.2484, 1.7970, and 0.6863, respectively. There is a suf- 

ficient evidence that suggest that hazard of death of patients in Community 

Health Centres, Regional Hospitals and Provincial Hospital are 1.51times, 

1.25times and 1.80 times, respectively, lower than that of clinics, and are highly 

significant (P< 0.0001). While the hazard ratios of patients in District Hospi- 

tals, Non-Medical Sites are 0.96times and 0.69times, respectively lower than 

that of clinics, and are highly significant (P< 0.0001). 

 
There is a sufficient evidence that suggests that hazard of death of patients  

in Community Health Centres and Provincial hospital are 1.5 times and 1.80 

times, respectively, higher than that of the clinics, and are highly significant 

(P< 0.05). There is also a sufficient evidence that suggests that hazard of 

death of patients District Hospitals and Non-Medical Sites are 0.96 times and 

0.69times, respectively, lower than that of the clinics, and are statistically non- 

significant (P> 0.05). Finally, there is a sufficient evidence that suggests that 

hazard of death of patients the Regional Hospitals are 1.2 times higher than 

that of clinics, however, they are statistically not significant (P> 0.05).    Since 
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the Weibull  distribution is skewed,  a  more appropriate and  more   tractable 

summary of the location of the distribution is the median survival time. In our 
1 

study, the population median survival time is [ln 2/λ�] γ�   = 14.4 months, while the 

population mean survival time is λ� γ�   Γ(1 + γ� ) =102.3 months. 

−1 1 



 

 

 

 

 

 

 

 

 

 

Table 2.2: Hazard ratios from Cox proportional hazard model for HIV/AIDS dataset in Limpopo Province. 
 

Univariate Analysis 

Covariate Parameter 

Estimate(βi) 

Std. Error 

(βi) 

HR 

[exp(βi)] 

95% CI 

(HR) 

P-value 

Age 0.0073463 0.0013362 1.0073733 ( 1.0047;1.0100) < 0.0001 
CD4 -0.0004894 0.0001171 0.9995107 ( 0.9993;0.9997) < 0.0001 

GENDERMale 

Female (Ref) 

0.4290153 

0.0000 

0.0396670 1.5357445 

1.0000 

(1.4209;1.6599) < 0.0001 

Mopani DM 0.6165256 0.0506981 1.8524805 (1.6773;2.0460) < 0.0001 
Sekhukhune DM 0.0448817 0.0605008 1.0459041 (0.9290 ; 1.1776) 0.030 

Vhembe DM 0.0887012 0.0664949 1.0927541 (0.9592;1.2449) < 0.0001 

Waterberg DM 

Capricorn DM (Ref) 

-0.0849743 

0 

0.0783749 0.9185359 

1.0000 

( 0.7877; 1.0710)  

Clinical Stage II 0.76163 0.02240 2.142 (2.050;2.2383) < 0.0001 
Clinical Stage III 1.31109 0.02082 3.710 (3.562;3.865) < 0.0001 

Clinical Stage IV 

Clinical Stage I (Ref) 

1.79108 

0.0000 

0.02416 5.996 

1.0000 

(5.719;6.287) < 0.0001 

PrevOI 

No PrevOI (Ref) 

0.3270792 

0.0000 

0.0614804 1.3869114 

1.0000 

(1.2295;1.5645) < 0.0001 

Community Health centres -0.4124507 0.0783964 0.6620258 (0.5677;0.7720) 0.0046 

District Hospitals 

Regional Hospitals 

0.0639858 

-0.2353223 

0.0612065 

0.1309825 

1.0660773 

0.7903161 

( 0.9456;1.2020) 

(0.6114;1.0216) 

0.0046 

< 0.0001 

Provincial Tertiary Hospital -0.5871451 0.2006980 0.5559121 (0.3751;0.8238) < 0.0001 

Non-Medical Sites 

Clinics (Ref) 

0.3807131 

0.0000 

0.1921661 1.4633277 

1.0000 

( 1.0041;2.1326) < 0.0001 

1 HR: Hazard ratio. 

CI: Confidence Interval. 
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Comparison of Cox Proportional Hazard and parametric 

models Results 

Table 2.4 compared the Cox proportional hazard and five parametric AFT full 

models of HIV/AIDS patients in Limpopo Province. The Akaike Information 

Criterion (AIC) reveals that parametric AFT models generally it fit the data 

better. The AIC and Cox-Snell residual graph (Sub-figure 2.4e) shows that 

generalised gamma model fitted our Limpopo Province HIV/AIDS data the 

best. Hence, Parametric regression models demonstrate better performance 

as compared with the Cox model for identifying risk factors for prognosis with 

Limpopo Province data. Our results is in agreement with Adelian et al., (2015) 

and Teshnizi and Ayatollahi, (2017) while research done by Saikia and Bar- 

man, (2016) found that Cox PH model was better than other parametric coun- 

terparts for esophagus cancer patients data. 



 

 

 

 

 

 
Table 2.3: Hazard ratios from Weibull proportional hazard model for HIV/AIDs patient’s dataset in Limpopo 

Province. 
 

Univariate Analysis 

Covariate Parameter 

Estimate(βi) 

Std. Error 

(βi) 

HR P-value 

intercept 4.738667 0.05570  < 0.0001 
Age -0.004450 0.00082 0.99273 < 0.0001 

CD4 0.000295 0.00007 1.00048 < 0.0001 

Male 

Female (Ref) 

-0.263290 

0.0000 

0.02440 

1.0000 

0.64946 < 0.0001 

Mopani DM -0.380558 0.03140 0.535867 < 0.0001 
Sekhukhune DM -0.027365 0.03690 0.95613 < 0.0001 

Vhembe DM -0.053213 0.04060 0.916463 < 0.0001 

Waterberg DM 

Capricorn DM (Ref) 

0.056707 

0.00000 

0.04780 

1.0000 

1.09742 < 0.0001 

Clinical Stage II -0.981000 0.01320 0.20025 < 0.0001 
Clinical Stage III -1.700001 0.01520 0.06161 < 0.0001 

Clinical Stage IV 

Clinical Stage I (Ref) 

-2.28200 

0.0000 

0.01730 

1.0000 

0.02373 < 0.0001 

PrevOI 

No PrevOI (Ref) 

-0.202083 

0.0000 

0.03750 

1.0000 

0.71800 < 0.0001 

Community Health Centres 0.252808 0.04790 1.5135 < 0.0001 
District Hospitals -0.041380 0.03730 0.9595 < 0.0001 

Regional Hospitals 0.135336 0.07980 1.2484 < 0.0001 

Provincial Tertiary Hospital 0.357543 0.12300 1.7970 < 0.0001 

Non-Medical Sites 

Clinics (Ref) 

-0.229605 

0.0000 

0.11700 

1.0000 

0.6863 < 0.0001 

1 HR: Hazard ratio. 

Ref : Reference. 

Scale(ρ)=0.61 
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Table 2.4: Akaike Information Criterion of six distributions fitted to the full 

model. 
 

Model Log-likelihood 

Number 

of covariates 

Number 

of parameters AIC 

Exponential -43318.18 16 1 86670.36 
Weibull -42573.93 16 2 85183.86 

Log-normal -42654.61 16 2 85345.21 

Log-logistic -42508.35 16 2 85052.70 

Generalised gamma -42422.84 16 3 84883.69 

Cox’s PH -44340 17 2 107234.13 

1  AIC: Akaike Information Criterion 

 

 

 

The HIV/AIDS patient data in Limpopo   Province 

The adequacy of the five parametric models was assessed (each with all covari- 

ates included) and their Akaike Information Criterion (AIC) values in Table 2.4 

was presented. The generalised gamma model has highest log-likelihood than 

the other models and the lowest AIC, indicating that this distribution may be 

the most accurate and the best fitted model. 

 
2.7 Discussion 

This study managed to determine the risk factors associated with HIV/AIDS 

patients in Limpopo Province, using parametric AFT models( viz. exponential, 

Weibull, log-normal, log-logistic and generalised gamma) and Cox proportional 

hazard model. The AFT models provided generally a better description of the 

data than Cox proportional model [70, 55]. We found that female patients had 

a better survival time than their male counterparts, which is consistent with 

Alioum et al., (2010) and Taylor-Smith et al., (2010) findings. However, Ra- 

mafedi et al., (1995) found that gender does not have any significant difference 

on survival time of HIV/AIDS patients, which is contrary to our findings. In 

our study a decrease in the CD4 cell counts resulted in shorter survival time 

for HIV/AIDS patients,    which is in agreement with the findings of other the 
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researchers in the literature. The CD4 counts were found to be an important 

prognostic marker of HIV/AIDS patients. The patients with CD4 counts less 

than 200 cells were more likely to die than patients with more than 350 cells 

per mm3, [60, 61, 64, 65, 66]. The results of our study had a strong inclina- 

tion for the generalised gamma AFT model, better than others based on AIC. 

Earlier papers by Nakhaee et al., (2011) suggested that Weibull is the best 

fitted AFT model for predicting survival after a patient has been diagnosed 

HIV infection. Our findings suggested that prognostic factors(viz. age(years), 

CD4 counts, WHO clinical stages, districts, previous opportunistic infection, 

type of facilities, and gender) were statistically significant (P< 0.0001). Most 

previous studies suggested that age is a significant prognostic factor and ac- 

cording to Bachani et al., (2010), Ghate at al., (2011) and Kee (2009) a younger 

person undergoing ART is more likely to survive longer as compared with an 

older person, that is, old age is associated with high risk of disease progression. 

 
Sub-figure 2.3(a) shows that there is gender difference in survival among men 

and women patients. A similar study was conducted by Cornell et al., (2012) 

in South African context, and they found that these gender differences were 

due to immunologic and virologic response to treatment. Secondly, men are 

more likely to be lost to follow-up than women. Thirdly, HIV-infected men have 

higher mortality on ART than women in South African programmes, but these 

differences are only explained by more advanced HIV disease at the time of 

ART initiation [75, 76, 74, 77]. 

 
Researchers are in agreement that dealing with human rights, especially women 

rights could be one of the solutions of reducing the prevalence of HIV/AIDS. 

Moreover, research concerns that women rights underlies most health care 

problems in developng countries. Therefore tackling human rights especially 

the improvement of women status would be another way    of dealing with the 
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fundamental reality. Empowering them has long been seen as an important 

public health goals [78, 79]. Where women are independent, society tend to be 

much healthier than would otherwise be expected, because it is usually women 

who fight for better service and living conditions for their families. New re- 

searchers in South Africa suggested that women empowerment is possible, and 

it can be done by designing programmes that offered small business loans to 

South African women living in impoverished rural villages in Limpopo,  one  

of South African’s poorest provinces. Similar micro-finance programmes have 

helped poor women in many developed countries from Bangladesh to Brazil to 

gain a degree of independence by setting up small enterprises such as buying 

and selling food, clothes or cosmetics. That programmes can be of value since 

it allows women to participate in economic activities [74]. These programmes 

in Limpopo Province may rekindle ambition and purpose in community long 

demoralised by lack of opportunities, discriminatory laws, and culture of in- 

equality that had numbed many poor people into dependency upon government 

welfare. 

 
Limpopo Province is the third poorest Province in South Africa, and is predom- 

inately rural. The unemployment rates are very high as in 2015 the unem- 

ployment was 20.1%. This study shows that Mopani district has the highest 

HIV/AIDS patients death rate (HR= 1.85248). Owing it to the fact that Mopani 

district is in a rural setting and there are no employment prospects, and as a 

result, active individuals in economic activities tend to go out in search for jobs. 

Studies done by Collinson et al., (2006) purported that male migration leads to 

high risk of sexual behaviour. Mining industry like Phalaborwa Mining Com- 

pany in Mopani district is an important sector for migrant labour in Mopani 

district, but other industries like construction and security have also become 

increasingly important employment sectors which are found in urban areas. As 

aresults of migration, infected men return home to infect their partners   over 
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weekends, Easters, and Christmas holidays. 

 

Other studies done in Limpopo province by Posel (2005) showed that rural resi- 

dents had moderate amount of knowledge related to HIV, many rural residents 

had misconceptions and myths about HIV. They believe that AIDS is a new 

form of other longstanding illness, which traditional healers can cure, and is 

called tindzhaka ( an illness caused by the breach of cultural taboos on sex 

during mourning period) . Many studies also showed that people had some 

knowledge about HIV/AIDS, particularly young people, who usually have ac- 

cess to mass media, and they also receive HIV education at school are worse 

affected. Sub-figure  2.4e, Table  2.2 and Table  2.3 show that mortality rate 

in Mopani district is very high compared to other four districts. A report from 

Joint United Nations Programme on HIV/AIDS and [49] indicated that rural 

populations might not be knowledgeable about HIV as was reported, because 

of high illiteracy levels, low level of education and poor infrastructure in the 

rural areas. These factors impeded access to health information as well as re- 

sources needed to prevent HIV infection. Study done by Mabunda et al., (2015) 

in Limpopo showed that, in spite of the AIDS awareness campaign going on in 

South Africa, some segments of the population do not get the message , specif- 

ically uneducated in rural areas. The researcher suggested support groups 

within the rural community as an effective method of educating these people 

about HIV/AIDS [118]. 

 
This study shows that death rate of patients in the fourth clinical stage was 

the highest as compared to other stages. In the fourth clinical stage it is where 

the patient’s vital organs ( eg., kidneys, heart) start collapsing, and patient 

experiences HIV wasting syndrome, pneumocystis pneumonia, Kaposi sarcoma 

and symptomatic HIV-associated nephropathy. 

Limpopo province recorded in 2008 a TB mortality rate of 12.4% with majority 
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of deaths recorded among the economically active age group (24-54 years). The 

mortality was significantly associated with older age, extra pulmonary site of 

disease, HIV co-infection, smear negative pulmonary tuberculosis (PTB) and 

previous history of TB [118]. The association between HIV infection and TB 

was evident in this present study:  HIV positive patients were more likely    

to have extra pulmonary TB (EPTE) and mortality was higher among those 

who had TB or history of TB. These findings are consistent with previous 

studies on high risk of deaths associated with HIV co-infection and other co- 

morbidities [44, 45, 46, 47].  In order for those who are TB-HIV co-infected   

to benefit from interventions such as co-trimoxazole preventive therapy (CPT) 

and HAART as advocated by [49], there must be HIV testing among all TB 

patients and intensified case findings for TB among people who are lining with 

HIV. Efforts in this regards need to be strengthened in Limpopo programme in 

order for the province to meet the global targets for all TB patients tested for 

HIV, and all TB patients living with HIV provided with an ART, and isoniazid 

preventive therapy for HIV positive people without active TB [49]. 

 
Clinics which are a primary health facility, are available, accessible and pro- 

vides ARV treatment to all HIV/AIDS patients in Limpopo. However, dis- 

tance to clinics and transportation remain a problem in rural areas of Limpopo 

province. Secondly, these rural based clinics close early due to staff shortage 

and high crime levels, which make it dangerous for staff to work late. The find- 

ings of this sudy proves that these clinics provide good services to HIV/AIDS 

patients resulting in low mortality rate.  Only the specialised site  2.3c, Ta-  

ble 3.8 and Table 2.3 have highest mortality rate. The patients in these health 

facilities ( Specialised Sites) are referred HIV/AIDS patients from the clinics. 
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SOFTWARE 

The SAS system, version 9.4, was used to perform all of the analyses and graph- 

ical presentation in this study. R version 3.5.0 (2018-04-23) , the Coxph(Surv(.)) 

procedure used to fit accelerated time models, Coxph was used to fit propor- 

tional hazards models, and survfit(Surv(.)) was used to compute Kaplan-Meier 

estimates. Furthermore, Proc Lifetest was used to in the computation of the 

residuals plotted in the exponential, Weibull, Log-normal, Log-logistic and gen- 

eralised gamma models described in the sub-section ”Model diagnostics”. 

 
2.8 Study Limitation 

The study limitation was that there were no sufficient statistical power due 

to minimum death rates (30%) with a very high censored (95.12%) HIV/AIDS 

patients in Limpopo Province. Secondly, the secondary data did not capture 

individuals level of education of which according to literature plays a vital role 

in the spread of HIV. Thirdly, the demography of individuals were not also 

considered which in one’s opinion would improve the data analysis. Fourthly, 

Ethical groups were also not considered when individual profile data captured. 

Due to big data, the researcher would not not able to group HIV/AIDS patients 

into groups,to establish which group of Limpopo population has the highest 

HIV/AIDS incidence. 

 
The interpretation of these results is subject to many important limitations. 

There were a substantial amount of missing data in this analysis, for example, 

there was high proportion of missing values for WHO clinical stages, and viral 

load. Patient’s occupational information was not available in Limpopo Province 

dataset to reflect prevalence among South African health workers, namely, 

medical professional and non-medical professional health workers. Research 

done by Shisana et al., (2004) in health workers across South Africa found 
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that non-professional had a HIV prevalence of 20.3% while professional had a 

prevalence of 13.7%. It is unknown as to whether similar cases in Limpopo as 

a Province do exists or not. 

 
The researcher lacked reliable CD4 cells counts, which are established pre- 

dictors of morbidity and mortality in our present study. However, the results 

strongly suggest that simple CD4 counts measurements can be useful alterna- 

tive prognostic marker. There might have been biased reporting, although the 

direction of such bias is difficult to predict. 

 
Chapter 2 of this study managed to address the following objectives: it com- 

pared the average evolutions between gender, districts, health care facilities, 

previous opportunistic infections, and AIDS clinical stages using Kaplan-Meier 

curves; it again compared the semi-parametric and parametric models; anal- 

ysed survival data using both Cox proportional hazard and parametric hazard 

models. 

 
2.9 Conclusion 

In this study, the Cox model and Accelerated Failure Time(AFT) model have 

been compared using HIV/AIDS patients data of Limpopo Province. The AFT 

model was fitted and diagnosed using Cox-Snell residuals, and the generalised 

gamma model provided a better fit to the studied Limpopo HIV/AIDS data with 

a lowest AIC value as a result the generalised gamma is a preferred model. The 

results obtained from Kaplan-Meier curves show that males survival time were 

shorter than their counterpart, and Mopani district experienced more deaths 

due to HIV infections than the other four districts. Cox proportional hazard 

models were better than AFT based on sign of coefficients. 
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We believe that our results better reflect the reality in a rural, peri-urban and 

urban of Limpopo Province, and thus, may be applicable to other provinces of 

South Africa with similar settings. Stigma and delay in seeking health care, 

lack of voluntary testing and counseling services, and health system delays  

in referral and ART initiation are possible reasons for continued progression 

to advanced stage of HIV/AIDS. The findings also indicated that it is critical 

that HIV/AIDS patients are diagnosed earlier in the clinics and referred to 

start with antiretroviral treatment. This sudy, Mopani district stood out to be 

a Limpopo District with the highest patients with HIV prevalence due to the 

fact that Mopani has more villages. In many intervention, a special attention 

should be given to people with a high risk of infection, which include but not 

limited to commercial sex workers but also migrant and partners of migrants. 

The TB prophylaxis drug could substantially reduce TB morbidity and mortal- 

ity among those with HIV and this is particularly important in the context of 

copper mines in Phalaborwa, platinum mine Mokopane, Burgerfort, Thabaz- 

imbi and Northam as well as chrome in Burgerfort, where the high rate of sil- 

icosis and HIV lead to a situation in which the incidences of TB is about 3000 

per 100 000 men per year [83]. More importantly, there has been few interven- 

tion programmes by provincial government, even on small scale, which attempt 

to reduce transmission among migrants and their rural or peri-urban or urban 

partners. Policy issues need to be addressed, including the nature and extent 

of migration, the rights of migrants, and the kind of services to which they 

have access. That must be conducted for those in both the formal and informal 

sectors, and even illegal migrants must be able to access the health services 

without fear of exposure. Finally, unless the issues of migration and disease 

are well understood and dealt with effectively, it unlikely that greater battle to 

control and manage AIDS will be won. The ultimate solution to the problem of 

pediatric AIDS lies in prevention of mother-to-child-transmission (MTCT) and 

prevent primary infection to women.  A population-based household survey in 
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South Africa found that 42% of those with HIV infection in South Africa were 

men [84]. A challenge is still that additional effort are needed to attract and 

retain men on treatment. 

 
2.10 Recommendation 

The effective HIV prevention remains an urgent priorities in South African 

strategies to date may have been partly effective in reducing risk among ed- 

ucated and mobile members of the society. It is possible that changes will 

emerge in all groups over time as safer-sex behaviour diffuse, leading to re- 

duction of HIV prevalence as witness to other Sub-Saharan African countries. 

More HIV/AIDS education and awareness to rural people is recommended so 

that they can stop consulting with traditional healers, because by the time they 

are diagnosed, they are either in symptomatic stage or advanced stage of HIV 

where kidneys begin to fail. If government can create more job in rural ar-  

eas that will results in reduction of unemployment and migrant labours who 

leave their families for months or so and work in urban areas or mines. Sec- 

ondly,there should be structural development that would be either bring labour 

markets closer to the rural setting or migrants frequently return to families. 

High level of knowledge and positive attitudes towards HIV prevention is rec- 

ommended. 

 

 
 



 

 

 

 

 

 

Chapter 3 

 
Modelling of HIV/AIDS Dataset 

using Linear Mixed-Effects 

Models 

 
3.1 Introduction 

The linear mixed model is a standard statistical methods to analyse change of 

time of a longitudinal Gaussian outcome and assess the effects of covariates 

on it [134, 126, 175, 117]. The earliest methods for analysis of longitudinal 

data was a mixed-effects analysis of variance (ANOVA), with a single random 

subject effects. The inclusion of a random subjects effects induced positive cor- 

relation among the repeated measurements on the same subjects. 

 
There exist different methods for analysing longitudinal data, and they mostly 

based on generalised linear models (GLM), however, GLM have their own sta- 

tistical weaknesses, because they violate the assumption of independent ob- 

servations. GLM estimate the model accurately on condition that data is of 

repeated-measure and balanced design. Unfortunately, that is not always true 

in practice,    and that condition (unbalanced repeated design) is hard to meet 
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and the use of traditional univariate and multivariate test statistics might 

increase Type 1 error under this condition [94, 106, 107]. In most cases ob- 

servations may not truly be independent due to high-level of clustering unit 

(consequently, clustering unit are correlated). The violation of independence 

observations in longitudinal data do not pose a serious problem to researchers 

because there exist a statistical technique to circumvent that problem when- 

ever it exists [107, 108, 109]. There is an increase interest to study the rate of 

change using individual growth curve (IGC) models. The IGC is an advanced 

technique for modeling within-person systematic change and between-person 

differences in developing outcome across different measurement of viral load 

over time. After we had specified different sets of models, we were able to ex- 

amine change in predictive effective way after addition of covariates. Many 

researchers advocate for the use of IGC when examining the longitudinal pat- 

tern over time  [106, 110]. 

 
The advantage of this technique provides researchers with more flexible and 

powerful approach when handling an unbalanced data( inconsistent time in- 

terval, missing data, unequal sample size). Secondly, it allows researchers to 

study both intra- and inter-individual differences in the growth parameters 

(e.g., slope and intercept) [111]. Thirdly, IGC retains all of the information 

and variability in the data when examining the rate of change in the inde- 

pendent variables [113]. That information was valuable in this study because 

it captured not only individuals variations in their initial status, but also in 

their rate of changes. Fourthly, IGC analyses estimate the changes parameters 

with greater precision when number of viral load increased.   Consequently,   

it improves the reliability of the growth parameters by reducing standard er- 

rors of the within-subjects change in growth parameters estimates [110, 113]. 

Clearly, this has an enormous advantage as compared to GLM. Fifthly, the ef- 

fects of predictors at higher-level (e.g.,  type of facilities,  districts) and   other 
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predictors on the individual growth can flexibly be added in the growth curve 

models [114]. In addition, it allows predictors of growth to be discrete or con- 

tinuous as well as time-variant or time-invariant. The time-variables in this 

study are gender and age (age at baseline), type of health care facilities, dis- 

tricts and previous opportunistic infections. 

 
Lastly, IGC is more powerful than other methods in examining the effects asso- 

ciated with repeated measurements as it model’s the covariance matrix, rather 

than imposing a certain type of structures as commonly used in traditional 

univariate and multivariate approach [115]. The covariance structure of re- 

peated measurements can be specified in IGC models, and, it allow researchers 

to examine true change and possible determinants of the structures by choos- 

ing an appropriate covariance structure for growth curve model, the variance 

would be reduced and allow researchers to specify a correct model that con- 

ceptualises the patterns change over time. The alternative to GLM, the linear 

mixed-effects models are commonly used for analyses of unbalanced, repeated- 

measurements design to understand change rate over time. Mixed-Effects 

models as presented by Harville (1997), Laird and Ware (1982), Jennrich and 

Schluchter (1986), Bates et al., (2014), Verbeke and Molenberghs (2000), Fox 

(2016) and others, have become popular for the analysis of longitudinal data 

because they are flexible and widely applicable. They are commonly used by 

various fields of social sciences, medical and biological sciences. In mixed ef- 

fects models, it is assumed that the unobserved heterogeneity at cluster levels 

cause intra-cluster correlation between responses, and hence the mean level of 

the responses and which can vary across clusters. Fixed effects and random 

effects are used to model such intra-cluster correlation. The main difference 

between fixed effects and random effects is that fixed effects assume that un- 

observed heterogeneity at cluster level is constant while random effects assume 

that such quantity is random. Thus, the estimation of fixed effects concern the 
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actual sizes of the cluster specific effects. When the number of clusters become 

large the number of fixed effects coefficients increases rapidly. However, the 

researchers are more interested in the distribution of random effects rather 

than the actual size of random effect coefficients. Generally, the random effects 

assumed to follow a zero mean multivariate normal distribution, and its covari- 

ance matrix become our key interest because it summarises the intra-cluster 

correlation. The challenge becomes when the number of random components 

becomes large, then the estimation of random effects in a mixed effects model 

involves a high dimensional covariance matrix that can greatly increase com- 

putational instability. Hence, identification of effective components of random 

effects is very crucial for the applied researchers to build more interpretable 

and ease the computational burden [125]. 

 
A general linear mixed effects (LME) models can be written as [134]: 

 

 

 

Yi  = Xiβ + Zibi + εi, i = 1, 2, .., n. 

bi ∼ N (0, D), 

ε ∼ N (0, Σi), 

 

(3.1) 

 

where  βi=(β1, β2, ..., βp)
t   is  a  p × 1  vector  of  fixed  effects,  bi   =  (bi1, bi2, ..., biq )

t 

is a q × 1 vector of random effects, the ni × p matrix Xi and the ni × q ma- 

trix Zi are known design matrices may contain covariates, εi=(εi1, εi2, ..., εin )
t
 

represents random errors of the repeated measurements within-individual i 

(cluster), D is a q × q variance-covariance matrix of the random effects, and Σi 

is a ni × ni covariance matrix of the within-individual errors. We assume that 

Σi = σ2In (homoscedastic conditional independence model) where In is the 
i 

ni × ni identity matrix, i.e., the within-individual measurements are assumed 

to be independent with constant variance. The value of σ2 represents the mag- 

nitude of the individual variation, and the value of Σ represents the magnitude 
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of the between-individual variation, Wang and Taylor (2000) showed that LME 

model 3.1 is always identifiable if Σi = σ2In . The fixed effects β are population- 

level parameters and are the same for all individuals, while random effects bi  

are individual-level, representing individual variation from population-level 

parameters. Since individual shares the same random effects, the multiple 

measurements within each individual or cluster are correlated. The linear 

mixed effects (LME) model allows unbalanced data in the response which is 

an advantage of mixed models. 

 

It follows from (3.1) that Yi  ∼ N (Xiβi  + Zibi, Σi) conditional on random effect 

bi. Let us suppose that f (yi|bi) is a conditional density function of Yi  and f (bi) 

be the corresponding density function. Thus the marginal density function of 

Yi is given by 
 

f (yi) = 

   

f (yi|bi)f (bi)dbi (3.2) 

where  f (yi|bi)  ∼  N (Xiβ, ZiDZt  + σ2In)     and  f (b)  ∼  N (0, D)  which  can  be 

shown to be the density function of a ni-dimensional normal distribution with 

mean vector Xiβ and variance-covariance matrix Vi = ZiDZt + Σi. 

The distributional assumption is made for effects in (3.1), since the sampled 

subjects are thought to represent a population of subjects. The matrix D is 

usually unstructured, but it can be structured such as a diagonal matrix [88]. 

 
Covariance  Structure choices 

Let us assume covariance structure is given by Σi = ZiΣZt + Ri which depends 

on Σ, and Ri is ni × ni matrices. We can choose some structure for Σ in the 

following possible way: 

• unstructured: all (q+1)(q+2)/2 unique parameters of Σ are free. 

• variance components: σ2 free and σkl = 0 if k /= l 
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• Compound symmetry : σ2 = σ2 + σ2 and σkl = σ2
 

 

• Autoregressive (1): σkl = σ2ρ|k−1| where ρ is autocorrelation. 

• Toeplitz: σkl=σ2ρ|k−1| + 1 where ρ1 = 1 

 
Unstructured  Covariance Matrix 

Let consider unstructured covariance matrix where all (q + 1)(q + 2)/2 unique 

parameters of Σ are free.  For example with q = 3 we have bi  = (bi0, bi1, bi2, bi3) 

and 

 
 

 
2 
0 

Σ  =
 10 

2 
20 

2 
30 

 

 
2 2 2 
01 02 01 

2 2 
1 12 13 

2 2 2 
21 2 23 

2 2 2 
31 32 3 

 

where 10 free parameters are the 4 variance parameters {σ2}3 and  the 6 

covariance parameters {σkl}, bi  = (bi0, bi1, bi2, bi3) 

 
Parameter Estimation for fixed  effects 

k  k=0 

 

Let α denote the vector of all variance-covariance parameters found in Vi = 

ZiDZt + Σi ( α consists of the q(q+1)/2 different elements in D and all param- 

eters in Σi). Again, let θ = (βt, αt)t be the vector of all parameters in marginal 

model Yi  ∼ N (Xiβ, ZiDZt + Σi). 

Thus, the marginal likelihood function is given by 

 

L(θ) = 
n

{(2π)− 
ni 

|V (α)|− 1  

× exp(− 
1 
(Y 

 

 

− X β) V (α)(Y − X β))} (3.3) 

 

 i=1 

i=1 

σ 

σ 

σ 

σ 

σ 

i 
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Case 1: Assume that α is known, then the maximum likelihood estimator 

(MLE) of β, conditional on α is given [134] by 

 
N N 

β� = 
 

(X tWiXi)
−1 
  

X tWiyi (3.4) 
i=1 i=1 

 

and its variance-covariance is given by 

 
N 

var(β) = (XtWiXi)
−1 (3.5) 

i=1 

 

where Wi = V −1(α). 

A sufficient condition for (3.4) to be unbiased it is that the E(Yi) should be cor- 

rectly specified as Xiβ , as well as var(Yi) = ZiDZt + Σi. Liang and Zeger (1986) 

proposed inferential procedure based on sandwich estimator for var(β�) by re- 

found to be consistent as long as E(Yi) was correctly specified. 
 
 

Case 2: When α is unknown. 

Let us assume that the estimator of α is available, then we can set Vi  = Vi(αα) = 

 

W −1. We can now replace Wi in (3.4) by Wi. The standard error of β can be 

obtained by replacing α by α. Dempster et al., (1981) found that this approach α α� 

has weakness in the sense that it does not take into account the variability in- 

troduced by estimating α that leads to the underestimation of the variability of 

β. Dempster et al., (1977) proposed EM algorithm for the calculation of MLE’s 

based on incomplete data and how it can be used for estimation of variance 

components in mixed-model analysis of variance. A decade later, Lindstrom 

and Bates (1988) used Newton-Raphson-based procedures to estimate all pa- 

rameters θ = (βt, αt)t in the mixed-model. The Statistical inference for a linear 

mixed effects (LME) model is based on maximum likelihood (ML) method or 

restricted maximum likelihood (REML) method [134, 90]. 

placing var(Yi) by rir
t, where ri = y 

i i 
placing var(Yi) by rir

t, where ri = y 
i i 

i 



Modelling of HIV/AIDS Dataset using Linear Mixed-Effects Models 86 
 

i=1 i i=1 i i 

� 
i 

 

 

REML is by default in many softwares, but we need to use maximum likelihood 

if we want to conduct likelihood ratio test.  For the purpose of this study, both 

fixed effects β and random effects b are estimated as follows 

β�=
 n    

(X tV i−1Xi)
−1 
 n

 

 
 

X tV −1yi, 

 

where Vi  = ZiDZt + σ2In and b̂i  = D� ΣtΣ −1(yi − Xβ̂). 
 

Parameter Estimation for random  effects 

In practice researchers are more interested in estimating the parameters in 

the marginal linear mixed models ( i.e., the fixed effects β and the variance 

components D and σ2 ). However,  it is quite useful and helpful to estimate  

the random effects bi, which reflects how much subject-specific profiles deviate 

from the overall mean profile evolving differently in time. It is also helpful to 

detect special profiles( i.e., individuals outliers) [172]. For the purpose of esti- 

mating random effects bi, we will use hierarchical model (3.3) as appropriate 

model, because the variability in the data can be explained these random ef- 

fects. The random effects naturally represents heterogeneity between subjects 

variability in the population, and that is also the case with our Limpopo AIDS 

dataset. Since the random effects in model (3.3) is assumed to be random vari- 

ables, Box and Tiao (1992), and Gelman et al (1995), used Bayesian approach 

to estimate bi. 

 
The marginal distribution of bi is a multivariate normal distribution with 

mean vector 0 and covariance D. In Bayesian literature, N(0,D) is called prior 

distribution of the parameter bi  because it does not depend on Yi. 

 

Let us suppose that f (yi|bi) is density function of Yi  conditioned on bi  , and f (bi) 

i i i 
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be a prior density function of bi, and thus the posterior density of bi  is given by: 
 

  f (y b )  f (b |y ) = 
 

     

(3.6) 

i i 
/ 

b f (y )|b f (b )db 
 

Lindley (1972) and Smith (1973) used the theory on general Bayesian linear 

models and showed that f (bi) is estimated by the mean of posterior distribution 

in (3.6) given by: 

 

bi(θ) = E[bi|Yi = yi] 

=  bif (bi|yi)dbi 

= DZtWi(α)(yi − Xiβ) 

 
 

(3.7) 

 

and the covariance matrix of corresponding estimator is; 
 
 

var(b�i) = DZt{Wi − WiXi(
  

X tWiXi)
−1X tWi}ZiD, (3.8) 

 
 

 

 

where Wi = V −1 [134]. Since the var(bi) underestimate the variability in (bi − 

bi), we usually uses 

var(bi − bi) = D − var(bi) (3.9) 

to assess the variation in (bi − bi), [134]. 

The unknown parameter β and α in (3.7), (3.8) and (3.9) are replaced by their 

maximum likelihood or restricted maximum likelihood estimates, and the re- 

sulting estimates for bi are called Empirical Bayes estimates. 

i=1 

i=1 

i i i i i 

N 
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Other estimation methods of linear mixed models 

Likelihood Ratio Test 

Given two nested models (M1 and M0) the likelihood ratio test (LRT) is given 

by [116]: 
L(M0) D = −2ln = 2[LL(M ) − LL(M )] 

 

 
where 

L(M1) 

 

• L(·) and LL(·) are the likelihood and log-likelihood, respectively. 

• M0  is null model with p parameters. 

• M1  is an alternative model with p+k parameters. 

Wilks’s theorem reveals that as n → ∞ ( the sample become very large)   then 

D ∼ χ2  where χ2  denotes chi-squared distribution with k degree of freedom. 

 
Inference for Fixed  effects 

We will use LRT idea to test fixed effects as follows: 

 
H0  : βk = 0 versus H1  : βk  /= 0 

 
and then compare D with χ2

 

 
 

Inference for random  effects 

H0 : σjk = 0 
 

versus 

H1  : σjk  > 0  if  j = k 

H1  : σjk  /= 0  if  j /= k. 

1 0 
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where σjk denotes the entry in cell j, k of Σ. We will use LRT idea to test 

hypotheses and compare to [116]: 

• χ2 distribution if j /= k 

• mixture of χ2  and 0 if j=k 

 
3.2 Aim 

The aim of this study was to apply linear mixed-effects models techniques in 

the analysis of HIV/AIDS patients in Limpopo Province, South Africa. 

 

 
3.2.1 Objectives: 

In this chapter we will be addressing the following objectives: 

 
i) to describe the relationship between response variable and the covariates 

using linear mixed effect models; 

ii) to show how longitudinal evolution of viral load is associated with time-to- 

death; 

iii) to characterise viral dynamics in patient population and intra- and inter- 

subject variation; 

iv) to assume random effects that gives some structure to error terms that 

characterises individual variation due to some factor levels; and 

v) to demonstrate non-linear statistical framework as a basis for estimation 

of population and individual viral dynamics parameters and how models 

may be used to draw biological relevant interpretations and aid clinical 

decision-making within the context of Limpopo HIV/AIDS data. 
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3.3 Dataset 

In this study, we used secondary data obtained from Limpopo Department of 

Health for repeated viral loads measurements of HIV/AIDS patients for the pe- 

riod January 2011 to 2016 January. After cleaning data, 6439 (69.9%) c patients 

were censored and 2776 (30.1%) patients had died. The following variables were 

recorded: gender, AIDS clinical stage as stipulated by WHO, district, previous 

opportunistic infection (e.g., tuberculosis), event (i.e., died ), type of health care 

facilities, CD4 count cell (at baseline) and viral loads. The viral loads were 

recorded at 3,6,12, 24,..., 132 months after initiation of ART treatment. The 

baseline CD4 cell counts were transformed by using square root, and viral load 

by natural logarithmic, and, the transformation of these raw data (viral loads 

and CD4 cell counts) were necessary in order to stabilise their variances(it is 

more normally distributed).  The viral load constitute an important marker   

of the strength of immune system. Hence, when the viral load of patient de- 

creases it is an indicative that the condition of the immune system of patient 

improves. 

 
The study protocol was approved by the Turfloop Research Ethics Committee 

(TREC) of University of Limpopo. In addition, permission was obtained from 

the Limpopo Province Department of Health Research Committee to use their 

secondary data. All data captured were without specific patient identifiers, to 

ensure the anonymity of the patients, and all the information obtained was 

treated with utmost confidentiality. 

 
3.4 Methodology 

Let  Yij   =  (yi1, yi2, ..., yini )
t   be  the  ni   repeated  measurements  of  the  response 

variable Y of patient i, i = 1, 2, ..., n, at time tij ,j = (1, 2, ..., ni). 
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Random Intercept Models with Linear  Time. 

A random intercept model with linear time has the following form: 

 
yij  = β0 + β1tij  + bi + εij (3.10) 

 
where 

• β0 is fixed effect intercept of the model. 

• β1 is the fixed slope of the model. 

• tij is the time variable for the j-th measurement of the i-th patient. 

• bi  ∼
iid  N (0, σ2) is the random intercept for the i-th patient. 

• εi ∼
iid N (0, σ2) is the Gaussian error term. 

The random intercept model’s assumptions are: 

• the relationship between T and Y is linear. 

• yij  and tij  are observed random variables. 

• bi  ∼
iid  N (0, σ2) is an unobserved random variable. 

• εi ∼
iid N (0, σ2) is an unobserved random variable. 

• bi  and εi  are independent of one another. 

• β0 and β1 are unknown constants. 
 

• (yij |tij ) ∼ N (β0 + β1tij , σ
2 ) where σ2

 = σ2 + σ2
 

 

Furthermore, we assume the covariance structure for random intercept model 

as follows: The conditional covariance between any two observations is 

σ2  = ωσ2,  if  h = i and, j = k, 

 

0,  if  h /= i. 

Cov(yhj , yik) = 
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where ω = 
σ

b
 

Y 

 

is the correlation between any two repeated measurements from 

the same patient. 

 

• if h = i , then Cov(yij , yik) = E[(bi + εij )(bi + εik)] = σ2
 

• if h /= i, then Cov(yhj , yik) = E[(bh + εhj )(bi + εik)] = 0 

 
Random Intercept and Slope Models with Linear   Time 

A random intercept and slope model with linear time has the following form: 

yij  = β0 + β1tij  + bi0 + bi1tij  + εij (3.11) 

for i = 1, ..., n and j = 1, ..., ni where 

 

• yij  is the response for j-th measurements of i-th subject. 

• β0 is fixed effect intercept of the model. 

• β1 is the fixed slope of the model. 

• βi1 is the linear time fixed slope for the i-th subject. 

• tij is the time variable for the j-th measurement of the i-th subject. 

• bi  ∼
iid  N (0, σ2) is the random intercept for the i-th subject. 

• εi ∼
iid N (0, σ2) is the Gaussian error term. 

The fundamental assumptions of the random intercept and slope models are: 

 

• the relationship between T and Y is linear; 

• tij  and yij  are observed random variables; 

• bi0  ∼
iid  N (0, σ2 ) and bi1  ∼

iid  N (0, σ2 ) are unobserved random variable; 
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• (bi0, bi1) ∼
iid  N (0, Σ), where: 

 

 

 

 
2 2 01 
 

Σ =   
2 2 

 
 

 

• εij ∼
iid N (0, σ2) is an unobserved random variable; 

• (bi0, bi1) and εij  are independent of one another; 

• b0 and b1 are unknown constants; and 
 

• (yij |tij ) ∼ N (b0 + bij , σ
2 ) where σ2

 = σ2 + 2σ01tij  + σ2t2
 + σ2

 

 

 

3.5 Quadratic time model using natural splines 

 
Quadratics splines 

A random intercept and slope model with non-linear time has the following 

form: 

yij  = β0 + βi1tij  + βi2t
2
 + bi0 + bi1tij  + bi2t

2
 + εij (3.12) 

 

for i = 1, ..., n and j = 1, ..., ni where 

• yij  is the response for j-th measurements of i-th subject. 

• β0 is fixed effect intercept of the model. 

• β1 is the fixed slope of the model. 

• βi1 is the linear time fixed slope for the i-th subject. 

• βi2 is the quadratic time fixed slope for the i-th subject. 

• tij is the time variable for the j-th measurement of the i-th subject. 
 

2  is the quadratic time variable for the j-th measurement of the i-th sub- 

ject 

0 
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• bi  ∼
iid  N (0, σ2) is the random intercept for the i-th subject. 

• εi ∼
iid N (0, σ2) is the Gaussian error term 

Clearly, bi0  allows each subject to have unique intercept, and bi1  allows each 

subject to have unique slope. 

 
3.6 Statistical Analysis 

 
3.7 Results 

The data were analysed using mixed effects models with maximum likelihood 

estimation. This method modeled individual change over time, explore differ- 

ences in change, and examine the effects of covariates and rate of growth. 

 
Model 1:  Unconditional Linear Growth Curve  Models 

The unconditional linear growth model is given by 

 
Yij  = β0j  + β1j tij  + εij 

 

where 

 

• β0 is the initial status for individual i. 

• β1 is the linear rate of change for individual i. 

• tij is the linear time for individual at time t. 

• εij is the residual in the outcome variable for individual i at time time t. 

The significant values in both the intercept and linear slope parameters indi- 

cate that the initial status and linear growth rate were not constant over time. 

The was significant linear increase in viral load (β  =  0.00154,    SE=0.00076, 
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Table 3.1: Information Criteria 
 

Log Likelihood -21979.46 

Akaike’s Information Criterion 43966.91 

Bayesian Information Criterion 43997.6 

Table 3.2: Estimates of fixed effects 
 

Parameter Estimates Std. Error P-value 

Intercept 2.176699 0.00962 < 0.05 

Time 0.001537 0.00076 < 0.05 

 
P < 0.05). The mean estimated initial status and linear growth rate for the 

sample were 2.18 and 0.0015, respectively.  That suggest that viral load    was 

2.18 and 0.002 increased with time. The random error terms associated with 

the intercept and linear time were significant (P  < 0.05), suggesting that  the 

variability in these parameters could be explained by between-individual pre- 

dictors. The correlation (β = −0.502) between intercept and linear growth pa- 

rameter was negative.  This suggest that patients with high viral loads had a 

slower linear decrease, whereas patients with low viral load had a faster de- 

crease in the linear growth over time. 

 
Model 2:  quadratic growth curve models 

The quadratic growth curve model is as follows 

 
Yij  = β0j  + β1j tij  + β2j (t

2 ) + εij 

 
where 

 

• β0 is the initial status for individual i. 

• β1 is the linear rate of change for individual i. 

• tij is the linear time for individual at time t. 

• εij is the residual in the outcome variable for individual i at time time t. 
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Table 3.3: Estimates of covariance parameters 
 

Residual 0.662977 

Intercept variance 0.54504 

Correlation -0.50200 

Table 3.4: Information Criteria 
 

Log Likelihood -21819.22 

Akaike’s Information Criterion 43652.45 

Bayesian Information Criterion 43706.16 

 
The results in Table  3.5 shows that all growth parameters were significant  

(P < 0.05) indicating that the were significant between-patients variations in 

the initial status, and linear and quadratic time trajectories. The significant 

linear effects for viral load was positive (β = 0.4500, SE=0.0906,P < 0.05 ) 

revealing that the rate of linear growth increase over time. The quadratic 

effect was also positive (β = 1.6098, SE = 0.2334,P < 0.05 ), showing that the 

rate of growth increase over time. Compared to the linear trajectory (0.45), the 

rate of quadratic was (1.6098) greater. Based on the above results, it showed 

that viral load marker increased from the beginning, and the trend continued. 

 
3.7.1 Model selection 

The quadratic model improved model fit over the linear model, hence both lin- 

ear and quadratic curve parameters were retained. Thus, indicate that the 

potential of curvature trajectories fit the data better. 

 
3.7.2 Model diagnostics 

Figure 3.1 shows Q-Q plots, and the points seem to fall about the straight 

line. The x-axis plots are the quantiles from the standard normal distribution 

with mean zero(0) and variance one(1). The quantiles plot does not raise any 

significant concern with the normality of the weighted residuals. 
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Table 3.5: Estimates of fixed effects 
 

Parameter Estimates Std. Error P-value 

Intercept 2.19827 0.01040 < 0.05 

T ime effect 0.45005 0.090618 < 0.05 

(T ime)2 effect 1.609814 0.23345 < 0.05 

Table 3.6: Model selection 
 

Model AIC BIC Log-Likelihood L.Ration P-value 

Linear Model 44231.12 44261.81 -22111.56   

Quadratic Model 44175.15 44228.87 -22080.58 61.96343 0.0001 
 

Figure 3.1: Normal Q-Q-plot Figure 3.2: Weibull AFT Model 

 
Model 3: Adding covariates to quadratic growth curve mod- 

els 

yij  = γ0i + γ1itime + γ2i(time)2 + γjiWj  + bji + εji 

 
where 

 

• yij  is the grand mean for viral load for the whole sample at time t. 

• γ0i  is the initial status of viral for the whole sample at time t. 

• γ2i is the quadratic slope of change relating to viral load for the whole 

sample at time r. 
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• bji  is the random effects(amount of variance) that are unexplained by the 

covariates. 

• γji is used to test whether the covariate is associated with growth param- 

eter. 

• Wj  is an explanatory variable to predict on inter-individual variation on 

outcome variable. 

• εij is an error term assumed to be independent and normally distributed, 

and the variance is equal across individual. 

 
Table 3.7: Information Criteria 

 

Log Likelihood -21229.24 

Akaike’s Information Criterion 42536.49 

Bayesian Information Criterion 42835.66 

 
Table 3.8 of estimate of fixed and random effects model, gender, age at baseline, 

CD4 counts, Sekhukhune district, Waterberg district, Clinical stages, commu- 

nity health care (CHC), District hospitals, Non-Medical hospitals were signifi- 

cant predictors of linear and quadratic models for patient’s viral load, but not 

associated with initial status, while Mopani district, Vhembe district, previous 

opportunistic infection( e.g. TB), Provincial Tertiary Hospital, Regional hospi- 

tals, Specialised Psychiatric hospitals were not. Regarding linear slope of pa- 

tients viral load, the male patients showed moderately faster rate of change of 

viral loads as compared with female patients(β = 0.009). In terms of quadratic 

growth, the male patients had faster rate of change as compared with female 

patients.   That suggest that the immune system of female patients is bet-   

ter than that male patients. Patient’s both linear and quadratic slopes age 

showed negative rate of change, which indicate that viral load growth rate de- 

crease with age. Thus, patient’s immune system improves as he grows older. 

The patient linear and quadratic growth rate of CD4 counts is decreasing 
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((β = −0.0110),(β = −0.0867), respectively) which indicate that patient’s vi- 

ral load change rate is increasing faster.  For  three Limpopo Provincial    dis- 

tricts, namely, Mopani, Sekhukhune and Waterberg districts both linear and 

quadratic rate of change are faster as compared to Capricorn district. That 

suggests that the growth rate of change of patient’s viral load in those districts 

is growing faster as compared to Capricorn district, which indicate that there 

were more deaths. The Vhembe district linear slope (β = 0.1015) showed posi- 

tive rate of change but the quadratic slope (β = −.5991) showed negative  rate 

of change. That suggested that viral load linear growth rate was faster and 

quadratic growth rate was slower as compared with Capricorn district. 

When we investigated the estimates for parameters in the mean structure 

shows that no significant interaction seems to be present between the gender, 

CD4 cell counts, districts, previous opportunistic infection health care facilities 

effects and linear and quadratic time effects, suggesting that only a patient’s 

intercepts are influenced by gender, CD4 cell counts, districts, previous oppor- 

tunistic infections,  and health care facilities and not the complete evolution  

of viral load over time. However, there is significant interaction between age 

effects and linear and quadratic time effects, which suggest that patient’s in- 

tercept and age effects is influenced by age for the entire evolution of viral load 

over time. 

 
Regarding the linear and quadratic slope ((β = 0.19725),(β = 1.4838), respec- 

tively) of patients who had experience previous opportunistic infection (e.g., 

tuberculosis) showed positive slopes, which indicate the growth rate of change 

of patient’s viral load was faster as compared to patients who had no previous 

opportunistic infections. That suggests that immune system of patients who 

did not experience opportunistic infection in the initiation of ARV were better. 

 
The predictors accounted for 1.1% (((0.6698313 − 0.6626046)\0.6698313) = 0.0108) 
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of the within-individual variations in patients viral load. That shows that  

only 1.1% of the overall variability in the patient’s viral load is explained by 

patients predictors. Singer et al.,  (2003) proposed using prototypical values  

to demonstrate the effect treatment on initial status and the rate of change 

across time, and that can be achieved by plotting graphs in regression [92]. We 

can obtain the fitted trajectories by substituting estimated values in quadratic 

model: Yij  = 3.090314+(0.503488)T ime+(4.611126)T ime2 +(0.254018)GENDER+ 

(−0.023747)Age+(−0.011201)CD4+(0.045234)Mopani+(−0.113935)Sekhukhune+ 

(0.021547)V hembe + (−0.098029)Waterberg + ... + (0.014187)T ime × GENDER + 

(0.918257)T ime2 × GENDER + ... +(0.437142)T ime × PrevOI +(1.401098)T ime2 × 

PrevOI. This method was used by other researchers [93]. 

 

Examining  Covariance Structure 

One of the advantages of Individual Growth Curve (IGC) is the availability to 

specify the within-individual error covariance structure that best fits the data. 

The purpose of testing different error covariance matrices is to describe how 

the error is distributed [94]. It examines whether the error imposed on the er- 

ror covariance structure of the parametric model fit well to the data [91]. This 

is critical when we examine unequally spaced and unbalanced data, which are 

commonly found in longitudinal studies. In fact the studies showed that the 

estimated variances of the parameter estimates are likely to be biased and 

inconsistent when repeated measurements are taken on the same individual 

across time [95, 96], and consequently affect the precision of estimating the ap- 

propriate model [97]. researchers advocated the use of this variance-covariance 

testing approach as it improves model predictions and statistic inferences, es- 

pecially when examining random effects models [98, 99]. In our study, three 

types of covariance structures that were commonly examined in the previous 

studies were tested [94, 100, 101, 102]. 
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Table 3.8: Estimate of fixed, interaction and random effects. 
 

Parameter Estimate 

Standard 

Error t-values P-value 

(Intercept) 3.033269 0.0460163 65.91732 0.0000 

Time effect 1.370642 0.5301040 2.58561 0.0098 

T ime2 effect 5.978602 1.3863940 4.31234 0.0000 

Main Effects     
GENDERMale 0.228046 0.0217828 10.46910 0.0000 

Age(baseline) -0.022125 0.0006799 -32.54080 0.0000 

CD4 -0.010817 0.0015159 -7.13576 0.0000 

Mopani DM 0.046500 0.0266073 1.74765 0.0805 

Sekhukhune DM -0.120330 0.0308688 -3.89811 0.0001 

Vhembe DM 0.026306 0.0351884 0.74756 0.4547 

Waterberg DM -0.106254 0.0369293 -2.87722 0.0040 

Clinical Stage 0.052534 0.0092627 5.67160 0.0000 

Previous Oppo. Infection 0.041710 0.0383993 1.08622 0.2774 

Community Health Care -0.107052 0.0265010 -4.03956 0.0001 

District Hospitals 0.097384 0.0271548 3.58625 0.0003 

Non-Medical Hospitals -0.203920 0.0828470 -2.46140 0.0139 

Provincial Tertiary Hospital -0.034701 0.0625836 -0.55448 0.5793 

Regional Hospitals 0.024863 0.0453837 0.54785 0.5838 

Specialised Psychiatric Hosp. -0.334497 0.6570908 -0.50906 0.6107 

Interaction Effects     
GENDERMale× Time effect 

GENDERMale × T ime2 effect 

Age × Time effect 

Age × T ime2 effect 

CD4× Time effect 

CD4× T ime2 effect 

Mopani DM × Time effect 

Mopani DM × T ime2 effect 

Sekhukhune DM× Time effect 

Sekhukhune DM× T ime2 effect 

Vhembe DM× Time effect 

Vhembe DM× T ime2 effect 

Waterberg DM × Time effect 

Waterberg DM × T ime2 effect 

Previous Opportunistic Infection× Time effect 

Previous Opportunistic Infection× T ime2 effect 

0.009358 

0.643006 

-0.011036 

-0.086695 

-0.044283 

-0.079587 

0.550689 

0.053720 

0.526100 

0.464644 

0.101496 

-0.599138 

0.538655 

1.817489 

0.197246 

1.483802 

0.3028661 

0.7811001 

0.0094666 

0.0249314 

0.0226292 

0.0583185 

0.3624434 

0.9381064 

0.3713780 

0.9430047 

0.4729320 

1.2454345 

0.9837451 

2.4020241 

0.6056174 

1.5418729 

0.03090 

0.82321 

-1.16576 

-3.47733 

-1.95688 

-1.36469 

1.51938 

0.05726 

1.41661 

0.49273 

0.21461 

-0.48107 

0.54756 

0.75665 

0.32569 

0.96234 

0.9754 

0.4105 

0.2438 

0.0005 

0.0505 

0.1725 

0.1288 

0.9543 

0.1567 

0.6223 

0.8301 

0.6305 

0.5841 

0.4493 

0.7447 

0.3360 

Random Effects     
var(b0i) 0.46039    
var(b1i) 0.90038 

var(b2i) 0.00001 

Residual variance     
var(εij ) = σ2

 0.43380    

 
Unstructured  Covariance Structure 

The unstructured covariance structure model often offers the best fit and is 

most commonly found in longitudinal data as it is the most parsimonious, 



Modelling of HIV/AIDS Dataset using Linear Mixed-Effects Models 102 
 

 

Table 3.9: Estimates of covariance parameters 
 

Residual 0.6612362 

Intercept variance 0.54430634 

Correlation -0.503 

 
which requires no assumption in the error structure [94]. In our Limpopo 

Province HIV, patients study, a quadratic model, the specified errors was of 

error covariance structure type. The print-out with specific results are dis- 

played in Table 3.8 with fixed effects estimates, its standard errors, t-test for 

parameters, significance test for the estimated variance components. The es- 

timated method was restricted maximum likelihood (REML) which is defaults 

in R programme. 

 
Compound  Symmetric Structure 

In order to examine whether the variance and correlation between each pair of 

observations are constant across time points, a compound symmetry covariance 

structure was tested. 

Table 3.10: Information Criteria 
 

-2Log Likelihood -21357.57 

Akaike’s Information Criterion 42777.14 

Bayesian Information Criterion 43014.96 

 

 
First-Order  Autoregressive(AR(1))  covariance structure 

In the First-Order Autoregressive (AR(1)) is assumed to be heterogeneous and 

the correlations between the two adjacent time points decline across measure- 

ment occasions. 



Modelling of HIV/AIDS Dataset using Linear Mixed-Effects Models 103 
 

 

Table 3.11: Information Criteria 
 

-2Log Likelihood -21338.17 

Akaike’s Information Criterion 42738.33 

Bayesian Information Criterion 42976.15 

Table 3.12: Results of Information Criterion among Three covariance Structure 

Models 
 

Covariance Structure -2log likelihood AIC BIC 

Compound symmetry -21357.57 42777.14 43014.96 

First-Order Autoregressive -21338.17 42738.33 42976.15 

 
Comparison Between Three Covariance Structure   Models 

Based on Table 3.13, it is observed that the smallest values in the three fit 

criterion were found in the First-Order Autoregressive( AR(1)) model. This 

suggest that the First-Order Autoregressive model was the best model in fit- 

ting the data . The correlated errors terms and heterogeneous variance might 

be due to the results of unequally spaced times points of measurements. If  

the time points were closely spaced, the possibility of modelling correlated er- 

rors might be higher than those scheduled far apart [107]. Hence the use of 

variance-covariance approach will definitely improve model predictions. 

 
Chapter 3 has successfully addressed the following objectives: the relationship 

between response variable and the covariates using linear mixed effect mod- 

els; we showed how longitudinal evolution of viral load is associated with time- 

to-death; we characterised the viral load dynamics in patient population and 

intra- and inter-subject variation; and assumed random effects that gave some 

structure to error terms that characterised individual variation due to some 

factor levels; we demonstrated non-linear statistical framework as a basis for 

estimation of population and individual viral dynamics parameters and how 

models might be used to draw biological relevant interpretations and aid clini- 

cal decision-making within the context of Limpopo Province HIV/AIDS dataset. 
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3.8 Discussion 

The study revealed that HIV/AIDS patients co-infected with tuberculosis (TB), 

the death rate is higher than patients that never experienced TB infection on 

initiation of ARV treatment. In similar study done in Limpopo Province it was 

found that there were more death caused by co-infected HIV patients and TB 

was quoted to be leading cause [118]. Other researchers revealed that tubercu- 

losis was associated with an increase risk of AIDS and death [119]. Individual 

Growth Curve model revealed that the women were in better health status   

as compared to men,and that can be attributed to their different lifestyles in 

Limpopo Province. The Limpopo Provincial strategic plan support our findings 

in their Provincial Strategic Plan 2012-2016, [120]. The analysis in this study 

revealed that HIV prevalence was very high in Mopani, Sekhukhune and Wa- 

terberg districts that can be attributed to high unemployment, migration, and 

mostly rural setting. Due to these poor socio-economic conditions, A significant 

of labour force or economically active people leave their families in search of 

employment elsewhere, mainly in the urban areas, mining industries or other 

sectors available for less educated people. Other researchers support our find- 

ing in Limpopo Province  [123, 85]. 

 

 

3.9 Conclusion 

Tuberculosis in HIV-infected patients is associated with increase risk of AIDS 

and death. Our findings support the view that prolonged immune activation 

induced by TB leads to prolonged increase of HIV replication and consequently 

accelerated disease progression. Unemployment, Mining industry, migration 

and less educated people are one of the main cause of spread of HIV epidemic. 
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Chapter 4 

 
Joint Modelling of Survival and 

Longitudinal Outcomes 

 
4.1 Introduction 

In HIV/AIDS studies, biomarkers such as viral load and CD4 counts are often 

collected repeatedly over time, in parallel to the time to an event of interest, 

such as death from any cause. These biomarkers are often measured with er- 

ror, as a result, we need to account for measurements errors when looking at 

how a time-varying biomarker is associated with an event of interest. These 

repeated measurements are often longitudinally recorded for each subject. The 

longitudinal studies are often affected by drop-out(informative) such as death, 

intermittent missingness visit or late entry. The longitudinal and survival pro- 

cess can be simultaneously linked in joint models [160]. The longitudinal data, 

such as viral load can be an important predictor to time-to-event. Classical 

models such as the linear mixed models for longitudinal and survival data do 

not take into account the dependencies between these two data types. Joint 

modelling is a powerful method that takes into account the dependency and 

association between longitudinal data and time-to-event data. Thus, joint mod- 

els for longitudinal data and time-to-event data are models that brings   these 
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two data types simultaneously into a single model so that one can infer depen- 

dence and association between the longitudinal biomarker and time-to-event to 

better understand and assess the effect on a treatment. In recent years, joint 

models have gain popularities amongst researchers because it reduces bias in 

estimates of treatment effects and provides improvement of efficiency in the 

assessment of treatment effects and other prognostic factors. These properties 

were recently demonstrated in Chen et al., (2004) as well as the analysis of 

Eastern Cooperative Oncology Group trial E1193 and simulation studies given 

there. A less biased estimate lead to a more accurate estimate of the treatment 

effects. For example, if a drug reduces the hazard of a particular disease by 

30%, then a joint model may lead to an estimated hazard ratio of 75%, whereas 

a conventional Cox model that does not incorporate the longitudinal data into 

analysis may yield a hazard ratio of 80%. In this particular case we conclude 

that joint model is less biased than Cox model. Secondly, joint models lead to 

estimates with smaller standard error (SE) than Cox model estimate in treat- 

ment effects. This is indeed promising because a smaller SE implies a more 

prices estimates. This phenomenon has a major and an important implications 

on the design of a study. Greater efficiency implies greater power and smaller 

samples sizes in designing clinical trials. Hence, incorporating longitudinal 

data into the design of study has the potential of yielding lower sample sizes 

with higher power as compared to Cox model [159]. 

 
Specifically, joint models for longitudinal data and survival data are frequently 

used in quality-of-life studies wherein we are interested in examining the as- 

sociation between patients quality-of-life and time to event end point [159].  

In HIV trials, viral loads measure how much human immunodeficiency virus 

(HIV) is in the blood, and these measurements are often measured repeatedly, 

hence it is in researchers interest to examine their association with time to 

death. 
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4.2 Literature Review 

In early development of joint models for longitudinal and survival data was 

primarily motivated from HIV/AIDS clinical trials, in particular, joint model- 

ing of survival data and longitudinal CD4 counts. These articles included [135, 

143, 136, 140, 139, 138, 142, 137, 145, 141]. Other approaches considering a 

multivariate longitudinal measure include [144, 146, 147]. However, an excel- 

lent overview in literature of joint modelling of longitudinal data was done by 

Yu et al., (2004), Tsiatis and Davidian (2004), and Rizopoulos (2012). 

 
Self and Pawitan (1992) developed joint models for a periodically observed 

marker of underlying disease progression and its relationship to disease-related 

endpoints. They used Cox Model with time-dependent covariates to specify the 

relationship between a marker and disease onset and use linear mixed model 

to describe the evolution of observed process. Partial likelihood was used in the 

estimation of parameters in Cox model, and assumed that variance of the co- 

variates in linear mixed model is fixed and known. DeGruttola and Tu (1994), 

applied classical joint model approach, and, in the estimation of parameters 

made use of an adaptation of the EM algorithm where the E-step consists of 

finding the expected log-likelihood conditional on the observed data [185]. 

 
Faucett and Thomas (1996) modelled a continuous covariate over time and si- 

multaneously relating the covariate to risk, and used the Markov Chain Monte 

Carlo (MCMC) technique of Gibbs sampling to estimate the posterior distri- 

bution of the unknown parameters of the model. Wulfsohn and Tsiatis (1997) 

estimated the parameters in Cox model when the longitudinal covariate is in- 

frequently measured with measurement error, assumed linear mixed effects 

model for the covariate process. Estimate of parameters were obtained by 

maximising the joint likelihood for the covariate process and the survival pro- 

cess.  Proust-Lima et al., (2012) introduced joint latent class models   (JLCM), 
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which consider the population of subjects as heterogeneous, and assume that 

it consists of homogeneous latent sub-groups of subjects that share the same 

marker trajectory and the same risk of event. Furthermore, it assumed that a 

latent class structure entirely captures the correlation between the longitudi- 

nal marker trajectory and the risk of event. Due to its flexibility in modelling, 

the dependency between the longitudinal marker and event time, as well as its 

ability to include covariates JLCM is well suited for prediction problem. The 

method of maximum likelihood, with log-likelihood is maximised using Mar- 

quardt algorithm with strigent convergence criteria. Henderson et al., (2000) 

proposed a linear mixed-effects model and serial correlation of longitudinal 

data with pure measurements error, with survival analysis was based on semi- 

parametric proportional hazard model with or without frailty term. The serial 

correlation processes allow the trend to vary with time and induce a within 

subject autocorrelation structure that may be thought of as arising from evolv- 

ing biological fluctuations in the process about smooth trend [163]. Song et al., 

(2002) proposed semi-parametric approach in joint modelling analysis which 

violated normality assumption and for the procedure that do not require para- 

metric random effects. Since normality assumption was relaxed they proposed 

likelihood approach to inferences which require only that the random effects 

have a distribution in a possible class with smooth densities. Verbeke and 

Lesaffre (1997); Tao et al., (1999); Heagerty and Kurland (2001); Zhang and 

Davidian (2001) suggested that mis-specification of random effects distribu- 

tion may lead to misleading inferences on certain model parameters. 

 
Brown and Ibrahim (2003) proposed semi-parametric Bayesian hierarchical 

joint models, wherein the distributional assumptions is relaxed for the lon- 

gitudinal model using Dirichlet process priors on the parameters defining the 

longitudinal model. The resulting posterior distribution is free of paramet-  

ric constrains,  resulting in more robust and efficient estimates.     Rizopoulos 
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and Ghosh (2011) proposed joint model considering multiple outcomes from 

Bayesian approach. 

 

 

4.3 Aim 

The study aimed at applying various joint modelling techniques to the clus- 

tered HIV/AIDS data in Limpopo Province, South Africa, in order to come up 

with a good model that will simultaneously handle the survival and longitudi- 

nal outcomes. 

 
Objective 

In this chapter we will address the following objectives: 

 
i) perform separate longitudinal and survival analyses per outcome; 

 
ii) establish the strength of association between the longitudinal evolution of 

viral load and hazard rate to death; 

iii) compare separate and joint models, and various association measures such 

as parametric joint and shared parameter models approach; 

iv) Compare average evolutions between males and females; 

 
v) show how marker-specific evolutions are related to each other (association 

of the evolution); 

vi) compute prediction for time to death for any randomly selected HIV posi- 

tive patient by considering patient’s viral load; and 

vii) recommend to health decision and policy-makers how the application of 

joint modelling techniques can be beneficiary to HIV/AIDS patients. 
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4.4 Methodology 

 
4.4.1 Data collection 

The secondary data used in this study were obtained from Limpopo Depart- 

ment of Health, South Africa. The study population consists of HIV+ patients, 

and started ART treatment any time between January 2011 to January 2016. 

Data from earlier period were excluded due to the fact that patients records 

were not properly kept across five districts. After data cleaning only 9215 of 

them satisfied inclusion criteria and hence were included in the study. At each 

patient visit, viral load and other covariates were recorded. Both survival and 

longitudinal data were extracted from patient’s profiles which contained pa- 

tient’s identification, gender, previous opportunistic infection, districts, type of 

health care facilities, viral load, CD4 cell counts, age at baseline, and patient 

clinical stage, see Table 1.5 in Chapter 1. The viral load was transformed in 

order to stabilise the variance and thereby to have a more normally distributed 

variable. Patient’s viral load is the longitudinal variable recorded at baseline 

at 6 , 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132 month visits.   The sam-     

ple showed missing data over time due to deaths unrelated to AIDS, dropouts, 

missing clinic visits and transfers to other health care facilities. 

 
4.4.2 Methods of Data  Analysis 

The Survival Sub-Model 

The Cox proportional hazard model is the most widely used semi-parametric 

survival regression, particularly, when interest is on an event outcome. For this 

type of model, we let T ∗ denote the true failure time for the i-th subject, and Ci 

the censoring time, then Ti = min(T ∗, Ci) represents the observed failure time 

for i-th patient, δi  = I(T ∗  ≤ Ci) the event indicator, with I(.) being the indicator 

function that takes the value 1 when T ∗   ≤ Ci, and 0 otherwise.  Now, the Cox 
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models can be expressed as follows: 
 

 
 

P (t T ∗ t + δt T ∗ t) 
λ(t)  = lim (4.1) 

δt→0 δt 

= λ0(t)exp(γtωi), t > 0 

 
where ωi are covariates that are associated with hazard, γ is the corresponding 

vector of regression coefficients and h0(t) is the baseline hazard. 

 
It is assumed that the hazard ratio ψ = λi(t) depends only on covariates, whose 

0 

value is fixed during the follow-up, such as gender, age, districts, previous op- 

portunistic infection and health care facilities remain constant in the time 

interval between visits. However, when the interest is also in investigating 

whether time-varying covariates are associated with the risk for an event, the 

extended Cox model may be the best model to use [171].  The excellent part   

of this model is that it postulate that the hazard for an event, at any time 

point t, is associated with the extrapolated value of the covariate at the same 

point [172]. However, the application of time-dependent covariates is much 

more complicated in practice than fixed model, hence their inclusion in a sur- 

vival model complicates the analysis. Furthermore, the extended Cox model  

is only theoretically valid for exogenous time-varying covariates because it is 

not appropriate when it comes to study biomarkers like viral load or cell CD4 

counts. The extended Cox model is inadequate in this regard because it as- 

sumes that from one visit to the next, the biomarkers level remains the same. 

Hence, when the researcher fit the extended Cox model ignoring this special 

characteristic result in bias for the estimated effects of a biomarker [173]. 
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Linear Mixed Effects Sub-model 

 
The evolution of each subject in time can be described effectively by a linear 

mixed effect models. Each subject in the population has his own subject-specific 

mean response profile over time. We now re-define these models, by letting 

yi(t) denote the repeated measurements for the i-th subject (i=1,2,...,n) at time 

t. The measurements could be obtained at the specific time points tij , j = 

1, 2, ..., ni . The general linear mixed model has the form: 

 xi(t)
tβ + zi(t)

tbi + εi(t) 

 
yi(t)   = bi  ∼ N (0, D), 

εi  ∼ N (0, σ2In  ), 

 

(4.2) 

 

where Xi and Zi are known design matrices, for fixed-effects regression coeffi- 

cients β are assumed to be normally distributed with mean zero and variance- 

covariance matrix D, and are assumed to be independent of error terms εi, 

and σ2 is the variance of the error terms. The linear mixed-effects models have 

unique feature in statistical models because they are able to account for the cor- 

relation within the measurements obtained from the same patients and it can 

also handle unequally spaced visits times [172]. The major challenge for the 

analysis of longitudinal data is the problem of missing data. Although longitu- 

dinal studies are designed to collect data on every subject in the sample at a set 

of pre-specified follow-up times, in practice, some subjects miss some of their 

planned visit for various reasons. Missing data poses several challenges in the 

design of longitudinal evolution studies and the analysis of data from these 

studies. The first statistical challenge is loss of efficiency, in the sense that 

the average longitudinal evolution are less precisely estimated [172, 188, 189]. 

Now, to compensate for that we need to enroll more patients to increase the 

power of the statistical test. Secondly, the missing data has the consequences 

of precision reduction, and as the result it affect method choices.  When  miss- 



Joint Modelling of Survival and Longitudinal Outcomes 114 
 

 

ing data are not properly handled, it will introduce bias and lead to misleading 

inferences. The missing data lead also to incomplete longitudinal responses. 

There exist different methods of analysis of incomplete longitudinal data and 

its appropriateness of different methods of analysis is determined by missing 

data mechanism [172]. Little et al., (2002) define three types of missing data 

mechanism as follows: 

• Missing Completely at Random (MCAR): Which postulate that the prob- 

ability that the responses are missing are unrelated to observed longitu- 

dinal outcome. As a result, under MCAR we can obtain valid inference 

using valid statistical procedures for the data at hand, while ignoring the 

process generating the data. For example if a patient moves to another 

health care facility or forgets an appointment. 

• Missing at Random (MAR): When assumed that the probability of miss- 

ingness depends on set of observed responses, but unrelated to the out- 

come that should have been obtained. For example, the patient leaves the 

study on doctors advice based on previously observed longitudinal mea- 

surements. 

• Missing Not at Random (MNAR): When the probability that the longitu- 

dinal responses are missing depends on observed and unobserved data. 

For example, a patient leaves the study due to an event, and the event  

is related with his HIV, including those that would have observed if they 

would kept attending the appointment. 

 

4.5 Joint Model sub-structure 

Joint models of longitudinal data and/or survival data have enjoyed great at- 

tention in literature over the past three decades. The importance of these 

models is well recognised, partly due to the fact that longitudinal data arise 
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frequently in practice. Despite the extensive literature on joint models, these 

models continue to be a very active area of current Biostatistics research since 

they offer many advantages over separate analysis of longitudinal data and or 

survival data [172]. Few issues may stand out for joint models. For example, 

the common assumption of the distributions for the models errors and random 

effects in joint models is normal in most of the studies, but this assumption 

lacked robustness against departure from normality. 

 
To analyse the Limpopo HIV/AIDS dataset, we will utilise the framework of 

joint models for longitudinal and survival data. The main purpose behind these 

models is to join survival model for the continuous time-to-event process with 

mixed-effects model for longitudinal outcome. The basic joint model is written 

as follows: 

 
yi(t)   =   xt(t)β + zt(t)bi + εi(t) (4.3) 

i i 

hi(t)   =   h0(t) exp[γtwi + α{xt(t)β + zt(t)bi}], t > 0 

 
where α quantifies the strength of the association between the marker and the 

risk for an event, and wi is the baseline covariates. It is assume that the risk for 

an outcome dependent dropout is associated with true and unobserved value of 

the longitudinal outcome [172]. However, the key assumption of joint model is 

that the random effects underlie both longitudinal and survival process. That 

means these random effects account for both the association between the lon- 

gitudinal and event outcome, and the correlation between the repeated mea- 

surements in the longitudinal process [173]. 

 
We postulate that joint models belong to the class of shared parameter models 

and define as follows: 

 

P (Y 0, Y m, T ∗) = 

   

P (Y 0, Y m)P (T ∗|bi)P (bi)dbi (4.4) 
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where T ∗ is the true time-to-event, Y 0 is the longitudinal measurements before 

T ∗, and Y m is the longitudinal measurements after T ∗. Thus, the association 

between the longitudinal process is explained by shared random effects bi. 

 
Stratified Joint models 

It it unrealistic to always assume that the sample at hand comes from a ho- 

mogeneous population. For example, HIV patients in health care facilities of 

Limpopo Province are different, those that receive health care in clinics are 

different than those receiving health care in regional hospitals. These patients 

are classified based on seriousness of their AIDS clinical stages. Patients in 

these health care facilities are assumed to be divided into different strata, with 

each strata having its own baseline hazard function, but common values for re- 

gression coefficients γ and α. Under the stratified relative risk joint model, the 

risk for patient i to belong to stratum k is given by: 

 
λik(t) = λ0k(t) exp{γ wi + αmi(t)} 

with λ0k(t) denoting the baseline hazard function of stratum k (k=1,...,r). The 

formulation of these stratified joint models assume that the effect of every co- 

variates is constant across the strata. But, this is not always a reasonable 

assumption, because in many cases some covariates may have a different ef- 

fect per strata. For example, it is reasonable to assume that the effect of age is 

the same across all health care facilities, but it will be unreasonable to assume 

that treatment effect is uniform across all health care facilities and also it may 

be less defendable [172]. 

 
Estimation of the Longitudinal  Outcome 

The  mean,  mode  and  median  of  wi(u|t)  is  derived  in  the  similar  manner  as 

that of conditional survival probabilities. The mean and the mode of posterior 
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distribution of random effects were found to be very close to each other, and 

therefore, we expect negligible difference between their estimators [172]. For 

practical purpose, the mode will be taken as preferred candidate since the pos- 

terior of our distribution is skewed. Again, obtaining standard errors of these 

estimators was found difficult because both random effects of the mean and 

mode were non-linear as a result can not be written in a closed-form, hence, 

Monte Carlo approach was used to derive the subject-specific mean and the 

median. 

Pr(Ti  ≥ u|Ti  > t, Yi(t); θ) = 

   

Pr(Ti  ≥ u|Ti  > t, Yi(t), bi; θ)p(bi|Ti  > t, Yi(t); θ)dbi 

= 

   

Pr(Ti  ≥ u|T > t, bi; θ)p(bi|Ti  > t, Yi(t); θ)dbi 

= 

    
Si{u|Mi(u, bi, θ); θ}

p(b |T
 
 
> t, Y (t); θ)db 

  
S {t|M (u, b , θ); θ} 
i i i 

(4.5) 

 

where Si denotes survival function. Based on (4.16) we can derive a first-order 

estimate of πi(u|t) using the empirical Bayes estimate for bi  as follows: 

π-(u|t) = Si{u|Mi(u, �b
(t)

, θ�; θ�}/Si{t|Mi(u, �b
(t)

, θ�; θ�} + O([ni(t)]
−1) (4.6) 

 
 

 

where θ� denotes the maximum likelihood estimates, b�i   denotes the mode of the 

conditional distribution log(bi|Ti  > t, Yi(t); θ), and ni(t) denotes the number of 

longitudinal responses for subject i by time t. Simulation studies have shown 

that this estimator work very well in practice, however, deriving its standard 

error and confidence intervals for πi(u|t) is difficult due to the fact that we need 

to account for the variability of both the maximum likelihood and empirical 

Bayes estimates [184]. To resolve this problem Proust-Lima at el., (2014) and 

Liang1 at el.,  (1986) proposed Monte Carlos scheme as an alternative.      The 

i i 

t 
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π�(u|t)) = L 
  

π (u|t) (4.9)i 

 

posterior expectation of (4.6) can be derived as follows: 

 
Pr(Ti  ≥ u|Ti  > t, Yi(t), Dn) = 

   

Pr(Ti  ≥ u|Ti  > t, Yi; θ)p(θ|Dn)dθ (4.7) 

when sample size is large enough then θ|Dn can be approximated by N (θ, var(θ)). 

We can use Monte Carlo simulation scheme in order to calculate the first-order 
L L 

t
 

estimator (4.15), but using θ and bi   instead of θ� and b�i  ,in order to propagate 

the uncertainty in the maximum likelihood and empirical Bayes estimates, re- 

spectively. Hence the median point estimate of π(u|t) is given: 

π(u|t)) = median{π (u|t), l = 1, ..., L} (4.8) 
� i 

and average point estimate is given by 

 
L 

−1 l 
 

l=1 
 

4.5.1 Joint Latent Class  Models 

There is another class of joint models called joint model latent class (JLCM) [180, 

187]. The motivation behind this type of joint models is to account for possible 

heterogeneity in the population, and it assumes that the sub-populations that 

constitute population are latent, in the sense that heterogeneity is not captured 

by any of the observed covariates [172]. This assumption of heterogeneity is 

quite relevant in medical research where different profiles of patients are ex- 

pected. For example, how AIDS progress after treatment, we normally observe 

different profiles of HIV+ patients.  Although little attention has been given   

to JLCM in research, yet, JLCM offers computationally attractive alternative 

to the shared random effect model (SERM) and is based on different assump- 

tions that link between the longitudinal and time-to-event component of the 

model [180]. The main difference between SERM and JLCM is that in SERM 

the link must be precisely defined than in JLCM. In our study we shall not de- 
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scribe other special joint models such as joint models based on pattern-mixture 

modelling or simple transformation models. 

 
Latent  class  membership probability 

In the latent class joint models, we assume a population of N subjects that 

can be divided into a finite number G of latent homogeneous sub-populations, 

and furthermore, there is unobserved class indicator ci = 1, ..., G ( a categorical 

latent variable) that denotes the class membership of the i-th subject, which 

equals g if subject i belong to latent class g (g =1,...,G). An individual has a 

probability πig of belong to latent class g, which is modelled using a multinomial 

logistic regression according to covariates Xπ [180]: 

 

expξ0g +Xt ξlg π = (4.10) 
ig G 

l=1 exp(ξ0l+Xt ξ1l) 

 

where ξ0g is the intercept for class g and ξ1g is the vector of class-specific pa- 

rameters associated with the vector of time-independent covariates Xπ . For 

identifiability, ξ0l  = 0 and ξ1l  = 0 

 
Class-specific  marker trajectory 

Each latent class is characterised by a class-specific marker trajectory. Now, 

given the latent class g, the vector of repeated measures of the longitudinal 

marker Yi  = (Yi(tij ), ..., Yi(tini )) is described at different times of measurement 

tij (j = 1, ..., ni) by a standard linear mixed model [134]: 

 

Yi(tij )|ci  = g = Zi(tij )
tuig  + Xli(tij )

tβg  + εi(tij ) (4.11) 

 
where the p-vector of class-specific random-effects uig  = ui|ci  = g ∼ N (µg , Bg ). 

The ni-vector of measurement error εi ∼ N (0, Σi). The variance-covariance 

matrix Bg can be common over classes or class-specific. However, when you 
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consider class-specific, usually Bg = ω2B with B unstructured and ωG = 1 to 

limit the number of parameters and identifiability concerns. The variance- 

covariance matrix Σi is usually restricted to σ2In for homoscedastic indepen- 

dent errors, however, εi can also be include a correlation process such as a 

Brownian motion or auto-regressive process. No overlap between Zi(tij ) and 

Xli(tij ) is assumed for identifiability [180]. 

 
Class-specific risk of event 

We let T ∗ denote the time-to-event of interest, Ci the censoring time, T = 

min(T ∗, Ci) and Ei = 1 for T ∗ ≤ Ci. Now given the latent class g, the risk of an 

event described using any survival model, or for simplicity we can consider a 

proportional hazard model [180]: 

 
λi(t|ci) = g(ζg , δg ) = λ0g (t, ζg ) exp (4.12) 

 
where Xei(t) is the r-vector of covariates associated with the r-vector of pa- 

rameter δg . The class-specific hazard stratified on the latent class structure 

or baseline hazard proportional in each latent class can be considered. The 

only parametric hazard functions such as Weibull, piecewise-constant or M- 

splines [180]. 

 
Posterior Classification 

The posterior classification can be obtained from the posterior estimates of the 

latent class membership probabilities as follows: 

p(Ti, δi, yi|ci  = g, bi; θ)   =   p(Ti, δi|ci  = g; θ)p(yi|ci  = g, bi; θ) 

p(yi|ci  = g, bi; θ)   = p(yi(tij )|ci  = g, bi; θ) 
j 
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Pr(ci  = g|Ti, δi, yi; θ) = 

 

These models assume that the correlations between the repeated measure- 

ments in the longitudinal outcome are captured by the random effects bi, whereas 

the association between the event time and longitudinal processes is explained 

by the shared latent class indicator ci. The major advantage of this type of 

model is that it allows for more flexible association structure compared to the 

classical joint models that assumes the same set of random effects bi  to account 

for both types of association [184]. Under the above conditional independence 

assumptions, a general latent class joint model is defined as follows: 

 

h (t c ) = h  (t) exp(γt w ), 

yi(t|ci  = g) = xt(t)βg  + zt(t)big  + εi(t), 

 
i  i 

 

P r(ci  = g) = exp(λt ui)/ 
 G    

exp(λt ui), 

 

where ui  denote the vector of covariates associated with these probabilities 

with corresponding vector of regression coefficients vector λt = (λt, ..., λt ) , with 
i G 

λG = 0 for identifiability. The random effects big ∼ N (µg , σ
2D) are assumed to 

be latent-class specific, and their covariance matrix is assumed to depend on ci 

only via the scalar variance parameter σ2. 

 
It is postulated that postulate that patients in different latent groups have both 

different longitudinal evolutions and different risks for an event [186]. 

 
Using the fitted model we can derive the posterior classification for the pa- 

tients in the sample, and to achieve that we take the maximum of the posterior 

probabilities as follows: 

 

� Pr(ci  = g; θ�)hi(Ti|ci  = g; θ�)δi Si(Ti|ci  = g; θ�)p(yi|ci  = g; θ�) 

Σl=1Pr(ci  = l; θ�)hi(Ti|ci  = l; θ�) i Si(Ti|ci  = l; θ�)p(yi|ci  = l; θ�) 

that is subject i is classified to group g, using c�i  = arg max[Pr(ci  = g|Ti, δi, yi; θ�)] 

g l=i g 

G δ 



Joint Modelling of Survival and Longitudinal Outcomes 122 
 

 

which is similar in spirit to empirical Bayes estimates for the random effects [187]. 

 

4.5.2 Accelerated Failure Time Joint  Models 

The accelerated failure time (AFT) joint models specify that the predictors act 

multiplicatively on the failure time or additively on the log failure time. The 

accelerated failure time joint model is defined as follows: 

 
log(Ti) = γtwi + σtεti (4.13) 

 
where σt is a scale parameter and εti is assumed to follow certain distribution, 

γt denotes the change in the expected log failure time for a unit change in the 

corresponding covariate wij .  Equivalently, a unit change in ωij  increases the 

failure time by a factor of exp(γj ). Weibull distribution Ti  is the only parametric 

distribution that accepts both a relative risk and an AFT model formulation. 

 
Dynamic Predictions for Survival Probabilities 

 
During a follow-up, for a specific patient and at a specific point, we would like 

to utilise available information we have to predict survival probabilities. This 

information is vital to physicians to gain better understanding of the disease 

dynamics, and ultimately take optimal decision at that specific time point. In 

these technological era, there is a trend in medical practice towards person- 

alised medicine, and there is a prominent role such individualised predictions 

can play in that respect, as a result there has been a lot of interest within joint 

modeling framework in that front [180, 182, 179, 181]. 

 
Rizopoulos (2012) put it more formally, based on a joint model fitted in a ran- 

dom sample Dn  = {Ti, δi, yi; i = 1, ..., n}, wherein we are interested in predicting 

survival probabilities for a new subject i that has provided a set of longitudinal 

measurements Yi  = {yi(s); 0 ≤ s < t} and has a vector of baseline covariates wi. 
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Since yi(t) has an important characteristic of the endogenous nature, it means 

that it is directly related to the failure mechanism. Hence, it is more relevant 

to focus on the conditional probabilities of survival time u > t, given survival 

up to t. That is, 

 

πi(u|t) = Pr(Ti
∗  ≥ u|Ti  > t, Yi(t), wi, Dn; θ∗), t > 0, (4.14) 

 
where θ∗ denotes the true parameter values. Clearly, from (4.14), when a new 

information is recorded for patient at time t
t 
> t, we can update these predic- 

tions and obtain πi(u|t
t 
), with u > t

t 
, and therefore proceed in a time dynamic 

manner. 

 
Dynamic Predictions for Longitudinal Outcomes 

 
Very often interest may lie in the prediction for longitudinal outcome. For ex- 

ample, in HIV-infected patients the CD4 counts and viral load are often used 

to determine when treatment should be initiated. In this setting it is critically 

important and helpful to the treating physician to gain an insight into pro- 

jected individual profile of the markers in order to initiate treatment sooner 

than later. 

 
For specific subject i who is still alive by follow-up time, Rizopoulos (2012) pro- 

posed that the expected value of longitudinal outcome at time u > t given his 

time point Yi(t) = {yi(s); 0 ≤ s < t} is given by: 

wi(u|t) = E(Yi(u)|Ti  > t, yi(t), Dn, θ}, u > t.  Similarly to the conditional proba- 

bilities (4.14), these predictions are dynamically updated in time as new addi- 

tional information is recorded for that subject. 
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4.6 Data Analysis 

 
Table 4.1: Parameter Estimate for Extended Cox Model with time dependent 

covariates 
 

Parameter coef exp(coef) se(coef) z-value P-value 

GENDERMale 

PrevOI 

0.412694 

0.2229941 

1.510882 

1.258525 

0.039784 

0.061708 

10.373 

3.726 

< 0.0001 

0.000194 
Mopani 0.079145 1.082361 0.050848 0.1.557 0.1119586 

Sekhukhune 0.036738 1.037421 0.060670 0.606 0.544825 

Vhembe 0.054984 1.056523 0.0666457 0.827 0.408036 

Waterberg 

CD4 

0.039727 

-0.030048 

1.040527 

0.970399 

0.078610 

0.0033385 

0.505 

-8.877 

0.613298 

< 0.0001 

AGE 0.018461 1.018632 0.001365 13.527 < 0.0001 

ClinicalStage 0.254948 1.290395 0.021227 12.011 < 0.0001 

Clinics 

District Hospitals 

-0.482472 

-0.072037 

0.617256 

0.930496 

0.078295 

0.0616696 

-6.162 

-1.168 

< 0.0001 

0.242967 

Regional Hospitals -0.243628 0783779 0.131121 -1.858 0.063163 

Provincial Hospitals -0.594715 0.551720 0.200768 -2.962 0.003055 

Psychiatric Hospitals 

V L log10 

-0.027432 

0.289777 

0.972941 

1.336129 

0.192086 

0.016631 

-0.143 

17.424 

0.886439 

< 0.0001 

 
Table 4.2: Parameter Estimate for Joint Model 

 

Parameter Value 

Standard 

Error 

95% 

Confidence Interval P-value 

GENDERMale 0.3157 0.0408 (0.2356;0.3957) <0.0001 
PrevOI 0.2092 0.0627 (0.08643;0.3320) 0.0008 

Mopani 0.0457 0.0515 (-0.0552;0.1465) 0.3747 

Sekhukhune 0.0627 0.0614 (-0.0577;0.1831) 0.3076 

Vhembe 0.0543 0.0673 (-0.0776;0.1862) 0.4193 

Waterberg 0.0437 0.0795 (-0.1120;0.1995) 0.5820 

CD4 -0.0247 0.0034 (-0.03134;-0.0180) <0.0001 

AGE 0.0227 0.0015 (0.0197;0.0258) <0.0001 

ClinicalStage 0.2111 0.0216 (0.1688;0.2534) <0.0001 

Community Health Centre -0.4276 0.0790 (-0.5824;-0.2728) <0.0001 

District Hospitals -0.0875 0.0626 (-0.2102;0.0352) 0.1626 

Regional Hospitals -0.2374 0.1322 (-0.4965;0.0217) 0.725 

Provincial Hospitals -0.5743 0.2031 (-0.9724;-.1763) 0.0047 

Psychiatric Hospitals 0.0364 0.1948 (-0.3454;0.4183) 0.8517 

Association Parameter (α) 0.5067 0.0599 (0.3893;0.6242) <0.0001 

 
We start our analysis by fitting the extended Cox model in which the logarith- 

mic viral load is taken as exogenous time-dependent covariate.  In the   model 
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Figure 4.1: Kaplan-Meier estimator of event-free survival probabilities for for 

females and males. 
 

terms we have λi(t)  =  λ0(t)exp[γtwi + αyi(t)] where yi(t) denotes the observed 

level of the logarithmic viral load and wi  are fixed covariates.   Parameter α 

quantifies the association between features of the marker. Contrary to the Cox 

model where λ0(t) is unspecified, here the baseline risk function is assumed 

piecewise-constant with three knots placed at equally spaced percentiles of the 

observed event times. In Table 4.1, the survival sub-model, we observed that 

viral load has indeed a strong association with the risk for death. A unit in- 

crease in the logarithmic viral load corresponds to a exp(−α) = 0.74 − fold 

increase in the risk for death (95% CI: 1.2933; 1.3804). Figure 4.1 depicts the 

Kaplan-Meier estimates of event-free survival for females and male groups. 
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Figure 4.2: Subject-specific longitudinal trajectory for logarithmic viral load for 

patients with and without an event . 

 
Clearly, females enjoy much event-free survival as compared with males. 

 

In order to fit our joint model using JM package in R, we need first to fit sepa- 

rately the linear mixed-effects and Cox models, and supply the returned objects 

as main arguments in the function jointModel(). We proceed by specifying and 

fitting a joint model that explicitly accounts for endogeneity of the viral load 

marker.   We  first  fit  the  linear  mixed-effects  model  yi(t)  =  β0  + β1t + βit
2  + 

bi0 + bi1t + εi(t) where in the fixed effects part, main effects were icluded, and 

in the random-effects design matrix we included an intercept and time term. 

In Figure 4.2, we investigated viral load and we observed that for any individ- 
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ual there seem to be linear. Hence in the mixed-effects model we would allow 

flexibility in the specification of these profiles in both fixed-effects and random- 

effects. 

 
The joint model in Table 4.2, we found a strong association between the viral 

load and the risk for death, with a unit increase in log(V iralload) corresponding 

to a exp(−α) = 0.6 − fold in the risk for death (95% :0.38927;0.62420). We will 

Table 4.3: A comparison of joint and Cox extended models 

 Extended Cox Model Joint Model 

variable log Hazard Ratio(se) Log Hazard Ratio(se) 

Viral load 0.2811(0.01531) 0.0159(0.0354) 

Assoct  0.3897(0.0529) 

 
use Wald test for testing whether each of the fixed effects β in the longitudinal 

sub-model are statistically different from zero, that is, 

 
H0 : β1 = β2 = ...β6 = 0 (4.15) 

HA  : βj  /= 0, j = 1, .., 6. 

 
The results in Table 4.4 indicate a strong overall time effects. However, the 

Table 4.4: Wald test for longitudinal process 

Variable Chisq df Pr(> |Chi|) 
Time 

GENDER 

64.1409 

7.3514 

4 

1 

< 0.0001 
0.0067 

PrevOI 

Age 

Time:GENDER 

0.5217 

49.5267 

7.3514 

1 

1 

1 

0.4701 

< 0.0001 

0.0067 

TIME:PrevOI 

Time:Age 

0.5217 

49.5267 

1 

1 

0.4701 

< 0.0001 

 
problem with Wald test for testing fixed effects of longitudinal sub-model is 

that it is based on standard errors which underestimate the true variability 

in β� because they do not take into account the variability by estimating the 
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variance components, that is, the variance matrix for random effects [185]. In 

joint models this problem could be exaggerated because we do not only ignore 

the fact that we estimate the variance components, but also that we need to 

estimate survival process. Hence, likelihood ratio tests are preferred in joint 

modelling. 

In order to implement likelihood ratio test in joint models, we need first fit the 

joint model under null hypothesis, that is, joint model with no covariates effect 

in the survival sub-model.   Table    4.5 shows that indeed there is association 

Table 4.5: Likelihood Ratio test for Joint Models 
 

Joint model AIC BIC log.Lik LRT df P-Value 

Joint Model 38291.61 38377.15 -19133.80    

Full Joint Model 38212.34 38305.01 -19093.17 81.27 1 < 0.0001 

 
between logarithmic viral load and risk for death for the advanced HIV infected 

patients of Limpopo Province AIDS dataset. 

Table 4.6: Likelihood Ratio Test 
 

 AIC BIC log.Lik LRT df P-value 
Basic Joint Model 38293.45 38386.12 -19133.72    

Full Joint Model 36203.33 36495.6 -18060.66 2146.12 28 < 0.0001 

 
Table 4.6 we tested as whether the covariates in the survival sub-model con- 

tributes something in explaining the variability in the risk for death of ad- 

vanced AIDS patients in Limpopo Province. Since AIC and BIC are smaller 

for full model, we conclude that there is an association between the logarith- 

mic of viral load and the risk for death for advanced HIV+ infected patients   

of Limpopo AIDS dataset, and the covariates in the survival sub-model con- 

tributes something in explaining the variability in the risk for death of the 

advanced AIDS patients, that is, the covariates have significant effects contri- 

bution in the risk for death. 
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Figure 4.3: Fitted average longitudinal profiles of male and female for viral 

load for HIV patients with median age. 

 
Latent Class Joint  Models 

Table 4.7: Posterior classification based on longitudinal and time-to-event data 
 

 Class 1 Class 2 Class 3 Total 

N 357 8231 627 9215 

% 3.87 89.32 6.8 1.00 

 
Table 4.7 demonstrates that class 2 (89.32%) contains the largest percentage 

of subjects , followed by class3 (6.8%) and thereafter class 1 (3.87%). 

In Table 4.8, the higher means of posterior probabilities (class 1: 0.8695; class 

2:0.9927 ; class 3:0.9492) for each class suggest that for the majority of patients 

class allocation was evident. 
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Figure 4.4: Fitted average longitudinal evolutions for three class joint model of 

Limpopo AIDS dataset . 

Table 4.8: Mean of posterior probabilities in each class 
 

Classes Prob 1 Prob 2 Prob 3 

Class 1 0.8695 0.0460 0.0845 
Class 2 0.0072 0.9927 0.0001 

Class 3 0.0467 0.0041 0.9492 

 
 

Figure 4.4 illustrates the average longitudinal evolutions of the logarithmic 

viral load for three latent classes, and Figure 4.5 show their corresponding 

event-free survival probabilities. It is quite evident that the model has identi- 

fied three distinct sub-populations.  In particular, class 1 with relatively  high 
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Figure 4.5: Event-free survival probabilities for three class joint model of 

Limpopo AIDS dataset. 

 
viral load levels, however, it does not enjoy high event-free survival rates. That 

is, in contrary, it has lowest event-free survival rate. Class 2 starts with rela- 

tively high viral load levels and drop to stable viral load levels, and thereafter 

enjoy a relatively moderate event-free survival rates. Class 3 starts with low 

viral load levels and then go up for short space of time and thereafter drop for 

stable viral load levels corresponding to the highest event-free survival rates. 
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Accelerated Failure  Time Models 

Table 4.9: Comparison between accelerated relative risk and accelerated fail- 

ure time models 
 

Model AIC BIC log.Lik 

Basic joint Model 45491.02 45562.31 -22735.51 

AFT Joint Model 48252.16 48323.45 -24116.08 

 
Since these models in Table 4.9 are not nested, they can be compared using 

information criteria. We observe that basic joint model has a smaller AIC and 

BIC, hence it is a preferred model. The parameter estimates and standard 

errors for the event process under the two models are presented in Table 4.10. 

Evidently, the estimated regression coefficients for the estimated covariates 

have different values and as well as opposite signs under the two joint models 

due to the fact that they have different interpretations. 

Table 4.10: Parameter estimates and standard error for the Weibull model 

fitted to the AIDS dataset under the relative risk and accelerated failure time 

formulations 
 

Relative Risk AFT 

Parameter Value Std.Error Value Std. Error 
Intercept -0.9837 0.0813 17.9838 0.5632 

GENDERMale 0.5000 0.0388 -3.2208 0.2500 

Assoct 0.3657 0.0230 -4.0355 0.1815 

log(shape) -2.9240 0.0605 -1.8299 0.0183 

 

 
4.6.1 Joint Model diagnostics 

Residuals for the longitudinal part 

 
It is essential that joint model assumptions are validated, and the standard 

tool to assess these assumptions are residuals plots. In particular, in the lon- 

gitudinal it is assumed that linear subject-specific evolutions in time for the 

logarithmic viral load, whereas in the survival part, the effect of true viral 
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loads is considered, and assume a piecewise-constant baseline risk function. 

For the fitted joint models these residuals for the longitudinal part are illus- 

trated in Figure 4.7, and it includes the plots of the subject-specific residu-  

als versus the corresponding fitted values, the Q-Q plot of the subject-specific 

residuals, and the marginal survival and cumulative risk functions for the 

event process. 

 
Residuals for the survival part 

 

Figure 4.6: Marginal standardized residuals versus fitted values for the longi- 

tudinal outcome for the Limpopo Province AIDS dataset. 

 
We observe in Figure 4.6 that for smaller fitted values we have more posi-  

tive than negative.  Small fitted values corresponds with higher levels of  log- 
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arithmic viral loads , which in turn corresponds to a worsening of patient’s 

condition and therefore higher chances of being censored. Thus, the residu- 

als corresponding to smaller values are only based on patient’s with a good 

health condition. Hence, due to dropout one can not differentiate with cer- 

tainty that the systematic trend observed in Figure 4.6 can be attributed to a 

mis-specification of the design matrix X of fixed effects [184]. Figure 4.10 shows 

a scatter-plot with superimposed loess curve. The grey solid line denotes the 

fit of loess smoother. Clearly, one can observe from the fitted values that there 

is huge deviation of the loess smoother from zero. When plot both the plots as 

well as loess smoother are plotted the result is shown in Figure 4.11. Great 

deviation from zero is observed for both females and males. We proceeded our 

residuals analysis for survival outcome by assessing the overall fit on the sur- 

vival sub-model using Cox-Snell residuals illustrated in Figure 4.9. The black 

solid line denotes Kaplan-Meier estimates of the survival functions of the Cox- 

Snell residuals with gender, and the grey solid line, the survival function. We 

observe lack of fit for the residuals values greater than 0.5. 
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Figure 4.7: Diagnostic plots for the joint model fitted to Limpopo AIDS dataset. 

 
4.6.2 Dynamic prediction 

In equation 4.14 the patient had survived up to the last point t on which the 

viral load was recorded, and will produce survival probabilities for a set of pre- 

defined u > t values, and the output is shown in Table 4.11. In fact Table 4.11 

are regular sequence of equidistant points from the minimum to the maximum 

observed event time as well as computed πi(u|t) for u > t in the sequence. The 

first row in our output in Table 4.11 corresponds to the last time point for which 
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Figure 4.8: Cox-Snell residuals. 

 
patient 18 was still event free and the corresponding estimates and 95% confi- 

dence interval. 

 

Table  4.13  shows  only  the  point  estimates  (πi(u|t))  .   When  the  Tables  4.11 

and 4.12 are compared, negligible difference is observed. However, Table 4.12 

yields a better accurate results because they properly approximate the inte- 

grals in the definition of πi(u|t). Tables 4.11 and 4.12 are true for any patients 

in our study. 

 

Figure4.14 depicts the survival probability of patient 18 from Limpopo dataset. 
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Figure 4.9: Cox-Snell residuals for Limpopo AIDS dataset. 

The red solid and dashed lines correspond to the mean and median estimators, 

respectively, and the 95% confidence pointwise intervals. The vertical dotted 

line in Figure 4.13 represent the time point of the last viral load measurements. 

The right of the vertical line, the solid line represent the median estimator for 

πi(u|t), and dotted lines correspond to the 95% pointwise confidence intervals. 

We observed that after the first (t=0) measurement the viral load increased 

while the rate of the conditional survival probabilities were decreasing.Clearly 

the health condition of the patient 18 was deteriorating drastically. 

We assume that in (4.14) the patient had survived up to the last point t on 

which the viral load was recorded.  Table 4.13 shows the conditional probabil- 
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Figure 4.10: Martingale residuals versus the longitudinal outcome subject- 

specific fitted values of longitudinal outcome for Limpopo AIDS dataset. 

 
ities for event of patient 18, and at 27 months she was sill event free, and it 

was the last time her viral load was recorded. For this patient the conditional 

probability that she will still be alive at month 28 is 0.9392 for the mean and 

0.9431 for the median, (95%:(0.8908;0.9681)). In our study we would prefer the 

median conditional probability because our posterior distribution is skewed. 

 
Dynamic Predictions for the Longitudinal   Outcome 

In Figure 4.15 each panel denotes the time point of the longitudinal measure- 

ments recorded for patient 18. The red points denote the predicted longitudinal 

trajectory, while the green points denote the 95% confidence intervals. The pre- 

diction for patient 18 are updated when additional log viral load measurements 

are recorded. The elaborative plot is shown in Figure 4.15. It was observed that 

the width of the predictions intervals become wider and wider as time progress, 

indicating that we have much believe that on prediction shortly after the  last 
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Figure 4.11: Martingale residuals versus the subject-specific fitted values per 

gender for Limpopo AIDS dataset. 

 
recorded available viral loads measurements. According to Rizopoulos (2011) 

the important features of these predictions intervals is that they are not re- 

stricted to be symmetric, since they are not based on an asymptotic normality. 

We expect Monte Carlo approach to provide a relatively good approximation to 

the true sampling distribution, and therefore obtain confidence intervals that 

have higher probability to satisfy the claimed intervals [184]. 

 
Chapter 4 the following objectives were addressed:  separate longitudinal and 
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Figure 4.12: Scatterplot of observed residuals versus fitted values for longitu- 

dinal process for Limpopo AIDS dataset. 

 
survival analyses per outcome was performed; the strength of association be- 

tween the longitudinal evolution of viral load and hazard rate to death was es- 

tablished; separate and joint models , and various association measures such 

as parametric joint and shared parameter models approach were compared; 

Furtheremore, the average evolutions between males and females were com- 

pared; how marker-specific evolutions are related to each other ( association  

of the evolution) was realised; prediction for time to death for any randomly 

selected HIV positive patient by considering patient’s viral load was computed; 

and came up with good joint model(s) that will handle simultaneously both the 

repeated measurements as well as the survival outcomes in the presence of 

clustering in the Limpopo Province HIV/AIDS dataset. 
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Figure 4.13: Dynamic survival probabilities for patient 18 from Limpopo AIDS 

dataset during follow-up. 

 

4.7 Discussion 

The researcher in HIV/AIDS study in Limpopo Province, employed joint model 

using secondary dataset of Department of Health showed the benefits of joint 

modelling when both the longitudinal and survival processes are associated 

with unknown covariates. The time-dependent Cox model provided a naive 

estimates of how individual’s viral load levels affect their survival and were 



Joint Modelling of Survival and Longitudinal Outcomes 142 
 

 

 

 
 

Figure 4.14: Survival probability for patient 18. 

 
compared with joint model analysis results. The results obtained from time- 

dependent Cox model as given in Table 4.1 agrees with previous results in 

Chapter 2 which indicated that patients with higher viral load levels have 

lesser survival rates. Table 4.2 also confirms that viral load is significantly 

associated with survival process of viral load patients, and thus shared param- 

eter model is appropriate to analyse the data. The joint model was built using 

JM package in R incorporating patients age at baseline, type of care facilities, 

clinical stages of AIDS according to World Health Organisation (WHO), CD4 

cell counts, districts, and previous opportunistic infections before initiation of 

ARV treatment.  The results is provided in Table 4.2.  The joint model results 
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Table 4.11: Prediction of conditional probabilities for event based on 200 Monte 

Carlo samples 
 

 Time Mean Median Lower Upper 

1 24.0000 1.0000 1.0000 1.0000 1.0000 

1 25.4353 0.9779 0.9793 0.9603 0.9884 

2 28.6148 0.9301 0.9345 0.8745 0.9633 

3 31.7942 0.8839 0.8908 0.7921 0.9389 

4 34.9736 0.8393 0.8478 0.7139 0.9151 

5 38.1530 0.7965 0.8063 0.6404 0.8918 

6 41.3324 0.7554 0.7663 0.5742 0.8690 

7 44.5118 0.7160 0.7276 0.5159 0.8466 

8 47.6912 0.6784 0.6902 0.4628 0.8242 

9 50.8706 0.6424 0.6538 0.4144 0.8006 

10 54.0500 0.6081 0.6191 0.3704 0.7772 

11 57.2295 0.5754 0.5857 0.3305 0.7541 

12 60.4089 0.5443 0.5540 0.2943 0.7313 

13 63.5883 0.5147 0.5234 0.2615 0.7092 

14 66.7677 0.4866 0.4945 0.2320 0.6879 

15 69.9471 0.4599 0.4674 0.2053 0.6667 

16 73.1265 0.4345 0.4416 0.1813 0.6454 

17 76.3059 0.4105 0.4161 0.1598 0.6251 

18 79.4853 0.3877 0.3919 0.1405 0.6055 

19 82.6648 0.3661 0.3688 0.1233 0.5865 

20 85.8442 0.3456 0.3470 0.1079 0.5681 

21 89.0236 0.3262 0.3272 0.0942 0.5503 

22 92.2030 0.3078 0.3077 0.0820 0.5331 

23 95.3824 0.2903 0.2890 0.0713 0.5165 

24 98.5618 0.2738 0.2716 0.0632 0.4987 

25 101.7412 0.2581 0.2554 0.0567 0.4794 

26 104.9206 0.2433 0.2391 0.0509 0.4603 

27 108.1000 0.2292 0.2229 0.0459 0.4414 

 
agree with preliminary analysis that those patients with higher viral loads 

levels have lesser survival rates. However, the districts did not have statistical 

significance to survival rates of HIV+ infected patients in Limpopo Province. 

The Community Health Care Centres, Provincial Tertiary Hospital were sta- 

tistically significant in survival rates of Limpopo AIDS patients as compared 

with patient care in clinics, whereas, districts hospitals, regional hospitals, and 

specialised psychiatric hospitals were not statistically significant. The age, pre- 



Joint Modelling of Survival and Longitudinal Outcomes 144 
 

 

Table 4.12: Conditional probabilities for events 
 

 Time Prediction Survival 

1 24.0000 1.0000 

1 25.4353 0.9787 

2 28.6148 0.9324 

3 31.7942 0.8874 

4 34.9736 0.8438 

5 38.1530 0.8015 

6 41.3324 0.7606 

7 44.5118 0.7212 

8 47.6912 0.6833 

9 50.8706 0.6468 

10 54.0500 0.6118 

11 57.2295 0.5783 

12 60.4089 0.5462 

13 63.5883 0.5156 

14 66.7677 0.4864 

15 69.9471 0.4585 

16 73.1265 0.4320 

17 76.3059 0.4068 

18 79.4853 0.3828 

19 82.6648 0.3601 

20 85.8442 0.3386 

21 89.0236 0.3182 

22 92.2030 0.2989 

23 95.3824 0.2806 

24 98.5618 0.2633 

25 101.7412 0.2470 

26 104.9206 0.2316 

27 108.1000 0.2171 

Table 4.13: Prediction of conditional probabilities for event based on 200 Monte 

Carlo samples 
 

 Time Mean Median Lower Upper 
1 27.0 1.0000 1.0000 1.0000 1.0000 

1 27.5 0.9466 0.9501 0.9042 0.9720 

2 28.0 0.9392 0.9431 0.8908 0.9681 

 
vious opportunistic infection, CD4 cell counts, and AIDS clinical stages were 

statistically significant, and they agree with our research results in Table 4.1. 
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Figure 4.15: Dynamic predictions of longitudinal response for patient 18 from 

AIDS dataset. 

 

The significance of the shared parameter that links the two processes (survival 

and longitudinal), and the reduction in the standard error of the parameters 

estimates when compared to independent sub-models estimates, indicates the 

necessity for joint model analysis of this dataset compared with the use of  in- 
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dependent of sub-models( Cox model and linear mixed-effects model). 

 

The viral load are a well-known biomarker of AIDS progression collected af- 

ter treatment. The JLCM on viral load using Limpopo Department of Health 

AIDS dataset aws illustrated. JLCM has proven to be a greater asset in pre- 

diction studies since it approximates any structure, even complex, of correlated 

data without prior assumptions. Since big dataset is used the dynamic predic- 

tive model was more reliable and estimates of the parameters were precise and 

less uncertain in individual predictions, as a results, the model satisfied the 

validation of the dynamic predictive tools on external dataset with different 

characteristic that is recommended in literature [180]. Furthermore, valida- 

tion of dynamic predictive tools from joint model on external data, and com- 

parison with other approaches such as survival models including the previous 

biomarker measures are described in [180]. 

 
4.8 Conclusion 

Whenever, the longitudinal and survival process are correlated, valid influence 

can be expected through the use of joint modelling approach. This has been 

successfully demonstrated using Limpopo Department of Health HIV/AIDS 

dataset to simultaneously model viral load fluctuations over time and their 

survival. The use of joint model compared with independent sub-models ( sur- 

vival and linear mixed-effects models) indeed showed a significant decrease in 

the standard errors. This reduction in biasness means that more accurate in- 

fluence can be made using joint models parameter estimates. 

Finally, all models fitted, tables, figures and parameters were estimated us- 

ing available R package: lcmm for JLCM and JM package for SREM in this 

Chapter 4. 



 

 

 

 

 

 

Chapter 5 

Conclusion 

 
 

 

 

 

 

5.1 Thesis summary 

The thesis was organised into four chapters with a view of analysing the fac- 

tors that contribute to the spread of HIV in Limpopo Province. Chapter 1 

looked at the definition of HIV, transmission of HIV/AIDS, prevention of HIV 

infection based on literature, status of HIV in South Africa, groups that are 

mostly affected by HIV/AIDS in South Africa. It also, looked at factors that 

contribute to the spread of HIV/AIDS globally according to literature. Fur- 

thermore, the survival sub-models, linear mixed-effects sub-models and joint 

models in the analysis of longitudinal data was introduced. However, more 

focus was placed on the analysis of longitudinal and time-to-event outcomes 

motivated by HIV/AIDS Limpopo department of health dataset. 

 
In Chapter 1, HIV prevention initiatives by South African National Health 

Department which cascades to Provincial Health Department are having a sig- 

nificant impact on mother-to-child transmissions, which are falling   dramati- 
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cally. New HIV infections overall has fallen drastically, the short term financ- 

ing of South African HIV epidemic is secure, however, for longer term, the 

government needs to explore other strategies in order to sustain and expand 

its progress. 

 
In Chapter 2, both semi-parametric (Cox proportional hazard models) and para- 

metric (Accelerated failure time) survival models to HIV/AIDS dataset obtained 

from Limpopo Department of Health were fitted. Furthermore, comparing 

these models and it was found that generalised gamma model provided a better 

fit to the study of Limpopo HIV/AIDS data with lowest AIC value as a result 

generalised gamma was a preferred model. To explore and identify potential 

risk factors for the HIV-infected patient’s survival rate, survival data was used. 

 
In Chapter 3, the linear mixed-effects models to longitudinal data using vi- 

ral load as biomarker was fitted. The evolution of each HIV/AIDS patient in 

time could be described effectively by linear mixed models. Each patient in the 

population has his/her patient-specific mean response profile over time. The 

quadratic linear mixed effects models were found to fit the data well. That the 

potential of curvature trajectory fit the data better. Linear mixed-effects mod- 

els were used to evaluate the progression of patient’s viral load. The covariates 

were age(at baseline), districts, AIDS clinical stages, type of health care facili- 

ties, CD4 cell counts and previous opportunistic infections. 

 
In Chapter 4, HIV/AIDS dataset was analysed using joint models. Joint models 

utilise both longitudinal and survival data. The joint model enabled to deter- 

mine the strength of association between the viral load (biomarker) and risk 

for an event. One of the advantage of joint model over survival sub-model and 

linear mixed sub-model is its dynamic prediction ability for longitudinal out- 

come. The use of joint model compared with independent sub-models ( survival 
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and linear mixed-effects models) indeed showed a significant decrease in the 

standard errors, consequently, the reduction of biasness and accurate param- 

eter estimates. More focus focused was on shared random-effects models that 

included characteristics of longitudinal biomarker as a predictor in the model 

for time-to-event. A less well-known approach of joint latent model was used, 

and it was assumed that a latent class structure entirely captures the correla- 

tion between the longitudinal biomarker trajectory and risk of the event using 

Limpopo Department of Health HIV/AIDS dataset. 

 
All the fifteen major objectives mentioned in chapter 1 under introduction sec- 

tion have been addressed successfully. In Chapter 2, the use of Kaplan-Meier in 

comparing the average evolutions between gender, districts, health care facili- 

ties, previous opportunistic infections, and AIDS clinical stages was addressed; 

comparing the semi-parametric and parametric models; and, analysing sur- 

vival data using both Cox proportional hazard and parametric hazard model 

were also addressed. 

 
In Chapter 3 addressed the following objectives: the relationship between re- 

sponse variable and the covariates using linear mixed effect models and showed 

how longitudinal evolution of viral load is associated with time-to-death. Also, 

the characteristics of viral dynamics in patients population the intra- and inter- 

subject variation and assume random effects that gives some structure to error 

terms that characterises individual variation due to some factor levels was ad- 

dressed. Finally, non-linear statistical framework as a basis for estimation of 

population and individual viral dynamics parameters was demonstrated and 

how these models may be used to draw biological relevant interpretations and 

aid clinical decision-making within the context of Limpopo HIV/AIDS dataset. 

 
In chapter 4, the following objectives addressed: separate and joint  longitudi- 
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nal and survival analyses per outcome; established the strength of association 

between the longitudinal evolution of viral load and hazard rate to death; com- 

parison of separate and joint models, and various association measures such 

as parametric joint and shared parameter models approach; compared the av- 

erage evolutions between males and females; we showed how marker-specific 

evolutions are related to each other; computation of prediction for time to death 

for any randomly selected HIV positive patient by considering patient’s viral 

load; and coming up with good joint model(s) that will handle simultaneously 

both the repeated measurements as well as the survival outcomes in the pres- 

ence of clustering in the Limpopo HIV/AIDS dataset. 
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5.2 Summary of the key findings 

The focus of the thesis was methodological aspect of survival, linear mixed- 

effect and joint models. The results are believed to better reflect the reality  

in a rural, peri-urban and urban of Limpopo Province, and , maybe could be 

applicable to other provinces of South Africa with similar setting. Stigma and 

delay in seeking health care, lack of voluntary testing and counsel services, 

and system delays in referral and ART initiation are perceived to be the major 

possible reasons for continued progression to advanced stages of HIV/AIDS. In 

our findings Mopani district stood out to be the Limpopo district with highest 

patients with HIV prevalence since it has more villages and mines. 

 
Tuberculosis is found to be highly associated with the increase risk of AIDS and 

death in HIV-infected patients. Our findings support the view that prolonged 

immune activation induced by TB leads to prolonged increase of HIV repli- 

cation and consequently accelerated disease progression. The TB prophylaxis 

drug could substantially reduce TB mortality and morbidity among those with 

HIV and that is particularly important in the context of copper mines in Pha- 

laborwa, platinum mine in Mokopane, Burgerfort, Thabazimbi and Northam, 

where the high rate of silicosis and HIV may lead to a situation in which the in- 

cidences of TB is about 3000 per 100000 men per year [83]. More importantly, 

there has been few intervention programmes by Provincial Government, even 

on small scale, which attempt to reduce transmission among migrants and 

their rural or peri-urban or urban partners. Policy issues need to be addressed, 

including the nature and extent of migration, the rights of migrants, and the 

kind of services they have access to. 

 
The Cox regression proportional hazard models and Accelerated Failure Time( 

AFT) models have been compared using HIV/AIDS patients data of Limpopo 

Province. The AFT model was fitted and diagnosed using Cox-Snell residuals, 
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and the Weibull model provided a better fit to the studied Limpopo HIV/AIDS 

data with a lowest AIC value, as a result the Weibull model is a preferred 

model. The results obtained from Kaplan-Meier curves show that males sur- 

vival time were shorter than their counterpart. Thus, females have significant 

longer survival times as whole as compared to their counterpart. That could be 

attributed to males life styles such as failing to take ARV as prescribed etc., 

 
The survival probability of any randomly selected HIV/AIDS patients in using 

dynamic prediction of joint models was predicted. The individualised predic- 

tion is quite important in the current technological era, because the physicians 

are able to take an informed decision about patient’s disease dynamics, and, 

the patient information can be updated as time progresses. 

 
5.3 Limitations of the thesis 

The major limitation of joint models observed so far is that it requires large 

computational power, thus resulting in slow convergence rate. Secondly, data 

obtained from Limpopo Health Department did not contain education level, 

race, marital status, occupation and or ethnicity of patients. These factors are 

very important to be considered for health decision- and policy makers in order 

to plan and draft policy to combat the scourge of HIV/AIDS. 
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5.4 Future research directions 

The future research is needed to improve the estimation techniques of sur- 

vival, linear mixed-effects, and joint models. Secondly, to develop or improve 

the computational prediction ability on survival probabilities of patients for 

much longer time than presently. This information of survival probabilities of 

patients is vital to physicians to gain a better understanding of the disease dy- 

namics. 

 
Research sould be conducted to include both the formal and informal sectors 

including illegal migrants; illegal migrants should also be able to access the 

health services without fear of exposure. AIDS clinical stages as time depen- 

dent covariates should be considered for future research. Again, the associ- 

ation between treatment (ARV) and virology of HIV+ patients should also be 

considered for future research. 
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