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ABSTRACT 

In an effort to align the current research with the country’s biofuel strategy, the aim of 

the study was to utilize banana pseudostem in the production of fungal cellulolytic 

enzymes and bioethanol through fermentation of the banana pseudostem 

hydrolysate. The selection of microorganisms was based on the ability of the fungi to 

grow on agar containing Avicel (microcrystalline cellulose) followed by assaying for 

cellulases in the form of endoglucanase and total cellulase activity. Ten fungal 

isolates obtained from screening process showed positive endoglucanase activity on 

carboxymethyl cellulose – Congo Red agar plate. The six fungal isolates selected 

based on high cellulase activity belonged to Trichoderma and Aspergillus genera.  

In submerged fermentation (SmF), the maximum cellulase and endoglucanase 

production under optimal conditions by all fungal isolates was achieved in media with 

an initial of pH 6.5 at 30 °C. Under these conditions, the total cellulase activity was 

9.79 filter paper units (FPU)/mL and endoglucanase activity 45.2 U/mL for 

Trichoderma longibrachiatum LMLUL 14-1 and total cellulase activity of 7.7 FPU/mL 

and endoglucanase activity of 32.7 U/mL for Trichoderma harzianum LMLUL 13-5. 

These cellulase activities were higher than in the crude enzymes system for all 

Aspergillus fumigatus. The production conditions for maximum β-glucosidase varied 

amongst the Aspergillus spp. For example, Aspergillus fumigatus LMLUL 13-4 had 

produced higher β-glucosidase activity in a medium with an initial pH of 6.5 and at an 

incubation temperature of 30 °C whereas A. fumigatus LMLUL 13-1 had produced 

higher β-glucosidase activity at an initial pH of 7.0 and at 35 °C. 

Solid state fermentation (SSF) to produce cellulase enzymes system was influenced 

by temperature, nature of the substrate (i.e. moisture, modification) and culturing 

technique/strategy (i.e. monoculture versus co-culture). Higher cellulase enzymes 

system was produced under the conditions of 30 °C, 75% moisture content of 

untreated (native) BPS and pH 6.5. All the fungi investigated, produced thermo-

tolerant and acidophilic cellulase and endoglucanase, whilst β-glucosidase is both 

acidophilic and alkaliphilic. The cellulase enzymes complex of T. harzianum 

LMLBP07 13-5 is most stable, followed by A. fumigatus LMLPS 13-4 and the least 

stable cellulase enzymes complex was for T. longibrachiatum LMLULSA 14-1.   
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For the pretreatment of BPS, the material was first subjected to three different 

pretreatment conditions; namely alkaline (3% NaOH), acid (5% H2SO4) and hot 

water (autoclave method) pretreatment to remove lignin and loosen the cellulose 

structure. After the pretreatments, alkaline method exposed more cellulose than 

other pretreatments methods. The alkaline pretreated BPS contained 52.3% 

cellulose, 10.8% hemicellulose and 8.7% lignin, which is 2.3-fold more cellulose and 

0.48-fold less hemicellulose as well as 0.6-fold less lignin to the native BPS. 

The enzymatic saccharification of the alkaline pretreated BPS at different substrate 

loadings at 50 °C for 76 hours by an individual crude cellulase enzymes system from 

T. longibrachiatum LMLSAUL 14-1 and T. harzianum LMLBP07 13-5 cultures were 

used at a final concentration of 10 FPU/g. Saccharification released maximum 

glucose of 43.5 g/L and 20.1 g/L form alkaline pretreated BPS by crude cellulase 

enzymes from T. longibrachiatum LMLSAUL 14-1 and T. harzianum LMLBP07 13-5 

measured at the highest solid loading. 

The production of bioethanol was carried out in separate hydrolysis and fermentation 

(SHF). Fermentation of nutrient supplemented BPS hydrolysate with an initial pH of 

5.0 by S. cerevisiae UL01 occurred at 30 °C for 48 hours. The maximum ethanol 

concentration obtained after fermentation was 17.6 g/L corresponding to ethanol 

yield of 60% of the maximum theoretical yield. In conclusion, banana pseudostem is 

a suitable alternative substrate for the production of second-generation bioethanol.  
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CHAPTER 1 

GENERAL INTRODUCTION 

Tapping into valuable agricultural wastes from the existing farmland might preserve 

the rich diversity of plants considered to be important and desirable from being 

destroyed by Man’s attempts to produce biofuel. 

1.1. Overview  

The South African government, through the Department of Energy (DoE), has 

launched a quest for cleaner (or green) renewable and sustainable energy. Such 

renewable energy would include energy from biomass, wind, solar and small-scale 

hydro energy plants (DoE, 2015). The principal goal in developing renewable energy 

is to mitigate the climate change effect, for energy security and rural development 

(GBEP, 2008). In an effort to support this process, the government granted a fuel 

levy tax reduction of 30% for biofuels (BFAP, 2005).  

Biofuels include bioethanol, biodiesel and biogas which are all derived from the 

biochemical interaction of microorganisms and organic matter (Gasparatos et al., 

2013). These biofuels are classified as first, second and third generation technology 

(Lee & Lavoie, 2013; Nigam & Singh, 2011): The first generation biofuels are 

produced from food biomass such as starch, sugar and oil crops while those of the 

second generation are produced from a variety of non–food lignocellulosic biomass 

and municipal solid wastes. The third generation on the other hand are produced 

from micro-algae and seaweeds. 

The production of first generation biofuels is in an advanced state with the 

processing and production technologies well understood. Some of the emerging 

countries like Brazil, China, Thailand, and Colombia etc. have successfully 

implemented strategies on first generation biofuel industry (Eisentraut, 2010). The 

leading countries in the first generation technology for biofuel production are the 

United State of America (USA) and Brazil, with production volumes, increased at a 

steady pace since 2007 http://www.ethanolrfa.org/resources/industry/statistics/world/  

http://www.ethanolrfa.org/resources/industry/statistics/world/
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The state of bioethanol production in S.A., particularly bioethanol dates back to the 

1920s when ethanol derived from sugarcane was mixed with petrol until the 1960s 

due to low international crude oil prices (DoME, 2007). Between the 1970s and 1990 

S.A. developed the Fischer-Tropsch process to convert both coal and natural gas to 

petroleum as a fuel source in response to sanctions put on the apartheid government 

(Winkler, 2006). Since 2008, the government of S.A. has adopted the biofuel industry 

strategy which envisages the production of bioethanol at a quantity of about 400 

million litres, i.e. 2% of the total national fuel consumption (Fundira & Henley, 2017). 

The selected feedstock for the production includes sugarcane and sugar beet for the 

bioethanol, and sunflower, canola and soya, for biodiesel. However, based on DoE 

(2013), grain sorghum and sugarcane have been identified as the most appropriate 

commercial crops for bioethanol due to the fact that large volumes of these crops are 

already grown nationally and sufficient experience exists to allow for expansion of 

those crops production.  

Currently, bioethanol is more costly as compared to the cost of fossil fuel simply 

because large scale production of bioethanol is based on food crops such as 

sugarcane and maize (corn), (Karmee, 2016). Therefore, there is a demand for 

alternative, untapped and abundant renewable biomass in the development of 

bioethanol. Lignocellulosic biomass presents an opportunity especially for Africa to 

intensify investment and also attract investments for research and development of 

renewable energy from non-food biomass for bioethanol production. Lignocellulosic 

biomass consists of three polymeric compounds: cellulose entrapped in 

hemicellulose and lignin. According to Nigam and Singh (2011), biofuels produced 

from lignocellulosic biomass also have the advantage of generating low GHG in the 

environment.  

Second-generation bioethanol production process requires the production of 

cellulases or the availability of cellulases, pretreatment of lignocellulosic biomass, 

saccharification (hydrolysis) of biomass, fermentation and distillation. Cellulases are 

increasingly becoming important in the biofuel industry (Yan & Wu, 2013). 

Cellulases, namely exoglucanases, endoglucanases and β-glucosidase hydrolyse β-

1,4 glycosidic linkages in the cellulose chains. These enzymes are synthesised and 

secreted by numerous microorganisms including fungi, bacteria, actinomycetes etc. 
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The efficiency of enzymes secretion and composition is different and diverse from 

one microorganism to another, even at the strain level (Jayasekara & Ratnayake, 

2019).  Cellulases are secreted either as free extracellular or cell surface bound 

enzymes.  

The synthesis of cellulases in Trichoderma is inducible and it can be affected by 

various carbon sources such as cellulose, lactose, cellobiose 7A, 8A, 9A and in the 

presence of 5% glycerol, a catabolite repressor.  In the presence of glycerol as 

carbon source, the levels of the enzymes are reduced (Montenecourt et al., 1981). 

The control of cellulase production in filamentous fungi is beyond the transcription 

and translation processes of the structural genes. The hypersynthetic capacity and 

the greater ability of the microorganism to transport the proteins to the external 

environment will cause overproduction of cellulases (Montenecourt et al., 1981).    

The information about the mechanism of secretion of proteins in filamentous fungi is 

steadily becoming available. The proposed secretory pathway of proteins in animal 

cells involves a series of processing steps; glycosylation, packaging into secretory 

vesicles, movement to the site of exportation and release to the external 

environment. Fungi lack Golgi apparatus – subcellular structures essential for 

processing extracellular proteins in mammalian cells. The absence of Golgi in fungi 

has necessitated the need to identify the processing structures and sequences of 

events involved in the protein synthesis and transportation to the external 

environment (Montenecourt et al., 1981). Gosh et al. (1982) revealed a Golgi-like 

apparatus in fungi which do not have a stacked appearance similar to the eukaryotes 

and some fungi showed many individual endoplasmic reticulum associated saccules. 

A thorough knowledge of secretory pathway of cellulases will assis in the selection of 

organisms which efficiently secrete cellulases, and selection of organisms whose 

secretory pathways have less frequent mutations. Further information on secretory 

pathways of cellulases in different organisms is reviewed by Yan & Wu (2013).  

The S.A. government has endorsed the development and use of second generation 

biofuel technologies (DoME, 2006). Due to constraints related to additional 

availability of land, the second generation biofuel industries should focus on 

agricultural and forestry residues as an available source of lignocellulosic biomass 

without a need for additional land cultivation (Eisentraut, 2010). South Africa’s 
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agriculture and forestry industry generate a substantial amount of lignocellulosic 

residues such as maize stover, sugarcane bagasse, wheat straw, saw mill and paper 

mill sludge (Lynd et al., 2003). The utilisation of these residues by the biofuel 

industry in the production of bioethanol would lessen the current constrains on the 

use of food-biomass. The choice of raw material depends on the location and 

availability of the feedstock, among other factors. Globally, many countries including 

S.A. have embarked on research to study the utilisation of lignocellulosic materials 

for the production of secondary generation biofuels (Parawira & Tekere, 2011). 

In order to meet or exceed the required target for bioethanol, South Africa has taken 

advantage of the established agricultural sectors such as sugar, sweet sorghum, etc. 

These agricultural sectors generate massive waste during the processing of crops 

for various uses. For instance, the sugar sector produces approximately 27 million 

tons of sugarcane. For every 100 tons of sugarcane 13 tons and 15 tons of 

sugarcane bagasse are produced. Bagasse is a waste product containing starch and 

can be used to produce bioethanol (BFAP, 2005). However, the conversion of 

bagasse to ethanol ratio is not high. Thus, about 15 tons of bagasse could produce 

around 3.4 tons of ethanol. Therefore, bagasse yields a lower percentage of ethanol 

than sugar, i.e. 5.7 tons of ethanol (BFAP, 2005). 

Over a decade ago, South Africa’s sorghum industry with a marginal increase in the 

land used for plantation of sorghum has experienced a great increase in the total 

quantity that is produced/or harvested. About 340 000 tons of sorghum have been 

harvested from 120 000 hectares of land during planting season of 2003/2004. There 

are three types of products resulting from sorghum processing, which can be used 

for bioethanol production. Such products include grains, sugar juice extract and the 

bagasse (BFAP, 2005). 

Bananas are tropical plants that are grown under sub-optimal, sub-tropical conditions 

in South Africa and are available throughout the year (DAFF, 2011). Bananas and 

plantains are staple diets in other parts of Africa. The banana plant is herbaceous of 

the genus Musa and cultivated for mainly fruit production. There are about 25 – 80 

species of the genus Musa (Tock, et al., 2010). However, during harvesting and 

post-harvesting of the banana fruit, a massive waste (banana biomass) is produced 

in the form of leaves, rachis, pseudostem, rejected banana fruits and peels. This 
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banana biomass can be classified as amylaceous (i.e. banana pulp and banana fruit) 

and lignocellulosic biomass such as leaves, rachis, and pseudostem (Velásquez-

Arrendondo et al., 2010; Tock et al., 2010). Approximately 80% of the banana 

biomass generated is made up of banana pseudostem (Tock, et al., 2010). 

According to Santa-Maria et al. (2013) little research efforts have been undertaken in 

the bioconversion of banana biomass into ethanol (Santa-Maria et al., 2013).   

In the quest to explore the alternative available natural resources in S.A., and to 

diversify the feedstock for the production of bioethanol, the current study had 

identified banana pseudostem to be an attractive and a potential biomass due to its 

reported high holocellulose and low lignin composition (Li et al., 2010; Abdul Khalil et 

al., 2006). Holocellulose refers to the sum of cellulose and hemicellulose present in 

the biomass. Low lignin of the biomass is believed to require less severe processing, 

also called pretreatment. The availability and abundance of banana pseudostem in 

S.A will be discussed under the literature review.   

The view of this study is that the use of banana pseudostem would benefit both the 

biofuel and agriculture industry if the technology becomes successful and does not 

negatively impact on the food (fruit) chain for the following reasons: (a) Eventually 

the production of bioethanol will also boost the profit of the farmers, including the 

local small household production. (b) It will create additional jobs in the farming 

sector to improve the social well-being of the neighbouring communities in Limpopo 

and other provinces. (c) The focus on banana pseudostem will ensure the 

preservation of the biodiversity (plant diversity) while aiming at reducing greenhouse 

gas (GHG) emissions. (d) The banana pseudostem is a renewable, under-utilised 

agricultural waste that is available throughout the year and its cost is likely to be 

relatively low. (e) The use of pseudostem would contribute additional volumes of 

bioethanol to the country’s production volume. 

It is a known fact that the geographic location of the Cavendish cultivar of M 

acuminate or any other Musa species could possibly influence the chemical 

compositions of lignocellulose content in the banana pseudostem. For that reason, 

only evaluate the potential of the banana pseudostem from the Cavendish cultivar of 

Musa acuminate grown at Allesbeste farm in the area of Tzaneen in Limpopo 

suitability as a feedstock for bioethanol production will be evaluated.  
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Unlike the first generation of technology, which is relatively uncomplicated, the 

second generation of technology has challenges. The main challenge of the second 

generation technology for bioethanol production is the complexity and recalcitrant 

nature of the lignocellulosic biomass during processing steps such as pretreatment 

and hydrolysis (Balan, 2014; Nigam & Singh, 2011). 

1.2. Research hypothesis 

The hypothesis of this study is that through the selection of fungal isolates that 

inhabit and are adapted to banana plantation site or to related herbaceous plant, a 

potential fungal isolate(s) that produce cellulases that effectively hydrolyse banana 

pseudostem to fermentable sugars can be obtained, leading to the successful 

production of ethanol 

1.3. Aim and objectives of the research  

The aim of the study is to utilize banana pseudostem in the production of fungal 

cellulolytic enzymes and ethanol through fermentation of the banana pseudostem 

hydrolysate. 

Specific objectives were: 

i. To screen and select for fungi that produce cellulase and to optimise the 

production conditions in submerged fermentation. 

ii. To produce cellulase using banana pseudostem as a substrate in solid state 

fermentation and optimise the conditions. 

iii. To evaluate the efficiency of different pretreatment methods such as hot-

water, alkaline and acid pretreatments in increasing the susceptibility of 

banana pseudostem to hydrolysis. 

iv. To hydrolyse the pretreated banana pseudostem with the “in-house” produced 

cellulases. 

v. To produce ethanol from banana pseudostem hydrolysate using separate 

hydrolysis and fermentation. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Banana production 

The banana plant is a large annual herbaceous flowering plant of the genus Musa 

(Fig. 2.1). It is a tall arborescent monocotyledon with a false stem (pseudostem) 

consisting of leaf sheaths and underground true stem (corm) that is able to produce 

suckers through vegetative reproduction (Mukhopadhyay et al., 2008). The 

pseudostem is a clustered cylindrical aggregation of leaf stalk bases, Fig. 2.1 (Tock 

et al., 2010; Mukhopadhyay et al., 2008). 

 

Figure 2.1.  The Banana plant (Source: image is taken by the author at Allesbeste 
farm) 

The plant is native to India and eastern Asia (Malaysia and Japan) and some 

varieties are genetically linked with other varieties from Africa (Nelson et al., 2006). 

Banana is cultivated over 130 countries along the tropical and subtropical region of 
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Capricorn (Mohapatra et al., 2010). According to the Agri-food business 

development centre, S.A was ranked 30th country in the world in banana production 

(DARD, 2016). Over the last years, banana the second largest fruit produced 

globally has contributed approximately 16% of the world’s total fruit production (FAO, 

2009). In the developing world, banana is the fourth most important food after rice, 

wheat and maize (INIBAP, 2000). 

South Africa is a relatively small banana grower in terms of global hectares. Banana 

and other subtropical fruits are cultivated mainly in three provinces; Mpumalanga, 

Limpopo and Kwa-Zulu Natal. Based on the annual average quantity produced 

during the period 2015/2016, the country produced 401400 tons of bananas as 

shown in Table 2.1 (DAFF, 2016; DAFF, 2015). 

Table 2.1. The production of subtropical fruit from 2011/12 to 2015/16 (DAFF, 2016).  

Fruit types Annual seasons in tons 

2011/12 2012/13 2013/14 2014/15 2015/16 

Avocados 88100 87000 97700 98200 82800 

Bananas 371300 392300 463400 424400 401400 

Pineapples 108700 96800 96700 95800 98900 

Mangoes 65100 52600 57600 75700 41000 

Papayas 12700 14900 13700 15900 11100 

Granadillas 0.500 0.800 0.700 0.700 0.700 

Litchis 7800 5600 8300 8300 7500 

Guavas 23700 33600 31600 31900 30200 

The main banana cultivar grown in Limpopo province is “Pisang Awak”, ABB 

genome (70%), followed by “Cavendish”, AAA genome, (30%) of Musa acuminate 

(De Beer & Sigawa, 2010). The banana plant requires 10 – 14 months depending on 

the geographic climate condition and soil type for it to bear fruit (Chaurasia et al., 

2017). It bears banana fruit once in its life cycle and for every cycle of production; 

four times of wastes are generated. Banana wastes range from rotten fruit, peels, 

fruit-bunch stem, leaves, pseudostem and rhizome (Abdullah et al., 2014). After the 

harvesting of the banana fruit, banana pseudostem becomes available in abundance 



9 
 

as waste which is either left to rot at the local dumpsite and pollute the surrounding 

environment or left to decompose at the plantation to serve as organic soil fertiliser 

Fig. 2.2.  

 

Figure 2.1.  A - Fresh banana pseudostem after the harvest of banana fruit in 

banana plantation at the farm, Allesbeste in Tzaneen area, Limpopo, South Africa. B 

- Decomposing banana pseudostem. 

The common practices regarding management of banana waste generated by local 

communities in the villages are that banana wastes are discarded into rivers, lake 

and near by the road thereby causing environmental problems, Fig. 2.3. 
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Figure 2. 2. Disposal of banana pseudostem after the harvest of banana fruit by the 

local community in Mankweng area, Limpopo, South Africa. A - Fresh cut 

pseudostem. B - Old sun-dried pseudostem. 

The generated banana waste is approximately 88% of the whole banana plant (Low 

et al., 2015; Elanthikkal et al., 2010) and about 60 – 80 t/ha is made of banana 

pseudostem alone (Meena et al., 2015). The banana waste has the potential to be 

utilised as biomass for biofuel production and other metabolites such as enzymes. 

Bananas are available throughout the seasons of the year and this, in turn, implies 

that the banana pseudo-stem will be available all year round. An alternative 

environmental remediation of agricultural wastes, particularly banana pseudostem is 

to produce bioethanol (Kannahi & Megala, 2017). 

2.2. Chemical composition of banana pseudostem 

The moisture content of fresh banana pseudostem is about 94 – 96 % (Farjana 

Begum et al., 2014 – 2015; Li et al., 2010). The pseudostem is a lignocellulosic 

material made up of cellulose, hemicellulose and lignin as the major components. 

The cellulose content is 31 – 44%, hemicellulose 12 – 33% and lignin 6 – 14%, 

Table 2.2. The chemical composition of  BPS shows higher holocellulose (cellulose + 

hemicellulose) content more than other agricultural residues such as rice straw, 

wheat straw, corn stover etc. that are used for bioethanol production and it also 

contains low lignin compared to woody biomass as shown in Table 2.2. The amount 
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of each polymer in each plant is variable in different portions of the same plant and 

may be influenced by the cultivar age of a plant and the geographic location of 

cultivation (Jahn et al., 2011). 

Table 2.1. Chemical composition of lignocellulosic biomass (adapted from Sun and 

Cheng 2002). 

Plant biomass Cellulose (%) Hemicellulose (%) Lignin (%) 

Hardwood stems 
 40 – 55 25 – 40 18 – 25 

Softwood stems 
 45 – 50 25 – 35 23 – 35 

Nut shells 
 25 – 30 25 – 30 30 -40 

Corn cobs 
 45 35 15 

Grasses 
 25 – 40 35 – 50 10 – 30 

Paper 
 85 – 99 0 0 – 15 

Wheat straws 
 30 50 15 

Sorted refuse 
 60 20 20 

Leaves 
 15 – 20 80 – 85 0 

Cotton seed hairs 
 80 – 95 5 – 20 0 

News papers 
 40 – 50 25 – 40 18 – 30 

Waste paper from 
chemical pulps 60 – 70 10 – 20 5 – 10 

Solid cattle manure 
 1.6 – 4.7 1.4 – 3.3 2.7 – 5.7 

Coastal Bermuda 
grass 25 35.7 6.4 

Switch grass 
 45 31.4 12 

Swine waste 
 6.0 28 N/A 

Primary wastewater 
solids 8 – 15 N/A 24 – 29 

*Banana 
pseudostem 31 – 44 12 – 33 6 – 13 
*Souza et al., 2017; Li et al., 2016; Farjana Begum et al., 2014 – 2015; Gabhane et al., 2014; Thakur 
et al., 2013; Li et al., 2010; Bilba et al., 2007; Oliveira et al., 2007; Cordeiro et al., 2004 
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2.3. Applications of banana Pseudostem 

Banana by-products such as pseudostem, leaves, inflorescence, fruit stalk/rachis 

etc. are undervalued and often regarded as agricultural waste (Padam et al., 2012). 

The overall waste generated by a single plant can make up approximately 80% of 

the total plant mass (Shah et al., 2005). A huge portion of the waste is made up of 

the pseudostem. Some of the pseudostems generated during harvest are left to rot 

in the plantation site to replenish some of the nutrients in the soil (Kennedy 2009), 

whereas most of the pseudostem are dumped at the nearby site (dump site) and left 

unutilised. 

Given the need to continuously create and invent new products with value added 

applications in various industries, some researchers have paved a new and 

alternative approach to develop bio-products by recycling banana wastes (Padam et 

al., 2012). The pseudostem has application in the making of ropes, crafts, textile, 

paper and boards (Abdullah et al., 2014; Uma et al., 2005). The pseudostem fibers 

are also used to reinforce epoxy composite and the fibers increased the tensile 

strength of the epoxy by 40% (Maleque et al., 2005). Paul, (2015, Ph.D. thesis) used 

the sap from banana pseudostem as a precursor to develop bio-resin using 

pseudostem fibers as the reinforcement and thus forming a biodegradable bio-

composite for the automotive industry, e.g. Bumper. The pseudostem fibers are 

comparable in their physical strength and cellulose content to the other fibrous by-

products (Uma et al., 2005).  

In the textile industry, banana pseudostem fibers were used for making traditional 

handcrafts and clothes (Kennedy, 2009). In the paper and pulp industry, pseudostem 

fibers from Musa acuminate colla cv. cavendish was found to have a high burst index 

and breaking length, alone or in combination with other common pulps (Cordeiro et 

al., 2005). In making greaseproof paper (Marella et al., 2014; Goswami et al., 2005), 

the pseudostem pulp from Musa parasidica L. showed increased burst index, tensile 

index, tear index and oil resistibility when compared with bamboo pulp (Goswami et 

al., 2005). 

Heavy metals (lead, chromium, cadmium, mercury and zinc) pose a health threat to 

humans because the availability of these metals in wastewater might contaminate 
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drinking water systems, boreholes, dams etc. (Metcheva et al., 2010). Cleaning an 

environment contaminated with heavy metals is a costly exercise and therefore, 

cheaper alternative absorbers are required (Padam et al., 2012). Musa species have 

been used to generate the fibres that are used for bioremediation and as natural 

water purifiers (Uma et al., 2005). Noeline et al. (2005) have found that 

formaldehyde polymerised banana pseudostem is an  effective absorber in cleaning 

lead (II) in a batch reactor, while a carboxylated banana pseudostem have been  

reported to be a good mercury (II) absorber (Anirudhan et al., 2007). Becker et al. 

(2013) used banana pseudostem as an adsorbent to remove chromium (Cr IV) from 

aqueous solution. The fibres extracted from banana pseudostem, stalk and leaves 

were used to remove acid green dye from aqueous solution and the fibers 

possessed adsorption capacity of 8 to 18 mg/g (Karim et al., 2016). 

Recently, there has been a growing interest in using banana agro-waste in enzyme 

and biofuel production in order to generate energy. Dabhi et al. (2014) have used 

banana pseudostem as a substrate to produce cellulolytic enzymes under solid state 

fermentation by a bacterial consortium and other enzyme production by Aspergillus 

niger (Bhavsar & Bhalerao, 2012) and Pleurotus species, namely P. ostreatus and P. 

sajor-caju (Reddy et al., 2003). Banana pseudostem was also used for biogas 

production (Li et al., 2016; Pei et al., 2014). Several studies have also demonstrated 

the potential use of banana pseudostem as a substrate in the production of 

bioethanol (Guerrero et al. 2018; Souza et al., 2014; Souza et al., 2013; Filho et al., 

2013; Reddy et al., 2011; Reddy et al., 2009). Souza et al. (2014) found that the acid 

(2% H2SO4) hydrolysis of pseudostem can efficiently release glucose. However, the 

inhibitory compound such as 5-hydroxymethyl-2-furaldehyde (HMF) formed during 

the process can result in low ethanol level. It is thus imperative to optimise 

saccharification and fermentation processes to obtain high ethanol level (Souza et 

al., 2014). The focus should be on the development of efficient enzymatic cocktail 

formulations to achieve maximum saccharification and the use of more robust yeast 

strains the tolerate inhibitors to increase the ethanol yield (Guerrero et al., 2018) 

2.4. Lignocellulosic biomass 

Lignocellulose cell walls are comprised of cellulose, hemicellulose, and lignin in 

varying proportions. However, this ratio differs amongst the type of plants, such as 
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hardwood, softwood and herbaceous plants. In addition to the three major 

components, lignocellulose contains a small amount of pectin, nitrogenous 

compounds and ash (Chen, 2014). In plant cell walls, the cellulose micro-fibrils are 

encrusted in lignin and hemicellulose in a complex architecture as illustrated in Fig. 

2.4 (Mussatto & Teiseira, 2010). This, together with crystallinity of cellulose makes 

untreated cellulose biomass recalcitrant to enzymatic hydrolysis in order to release 

fermentable sugars (Wu et al., 2011a; Sánchez, 2009). 

 

Figure 2.4.  A schematic of lignocellulosic plant cell wall structure whereby the 

cylinders correspond to cellulose fiber bundles that are surrounded by hemicellulose-

the darker bold lines and the rings represent lignin (Mussatto & Teiseira, 2010). 

2.4.1. Cellulose structure 

Cellulose is a fibrous, tough water insoluble substance which is found in the 

protective cell wall of plants, particularly in stalks, stems, trunks and all woody 

portions of plant tissues (Ơsullivan, 1997). Cellulose is a linear polymer of glucose 

units that are linked by β-1,4-glycosidic bonds to form cellobiose. This is depicted by 

its empirical formula (C6H10O5)n and it's chemical structural illustrated in Fig. 2.5 

(Sandgren et al., 2005).  

 

Figure 2.3.  Chemical structure of cellulose (Sandgren et al., 2005). 
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The end of the glucan chain with anomeric carbon that is not linked to next glucose 

is referred to as reducing end of the polymer. The other end of the polymer is called 

non-reducing end (Sandgren et al., 2005). The length of the cellulose chains, i.e. the 

degree of polymerisation (DP) varies from 2000 glucose units or even less units in 

the primary wall and up to 15000 or more units in the secondary walls (Quiroz-

Castaneda & Folch-Mallol, 2013; Sandgren et al., 2005; Cowling, 1958). The 

molecules of cellulose are bound by hydrogen bonds or van der Waals forces as 

depicted in Fig. 2.6 (Sánchez, 2009; Cowling, 1958), which hold cellulose into 

microfibrils form. This hydrogen bonding within the cellulose chains may act to 

determine the “straightness” of the chain. Inter-chain hydrogen bonds might 

introduce order or disorder into the structure depending on the bonds regularity 

(Sánchez, 2009; Ơsullivan, 1997). 

 

Figure 2.6. Cellulose chains held together by hydrogen bonds (Sánchez, 2009). 

Chain regions that are containing highly orientated (ordered) are called crystalline 

and those regions that are less ordered are called amorphous as shown in Fig. 2.7. 

These regions are interspersed along the cellulose chains (Lynd et al., 2002; 

Cowling, 1958).  
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Figure 2.7. Homopolymer structure of crystalline and amorphous cellulose 

(https://www.sciencedirect.com/topics/chemistry/homopolysaccharide/31/Jan/2019). 

The crystalline nature of cellulose implies a structural order in which all of the atoms 

are fixed in discrete positions with respect to one another. When individual micro-

fibrils are tightly packed, it prevents the penetration by enzymes including the small 

molecules of water (Lynd et al., 2002). Twists and bends in the cellulose fibrils 

prevent an orderly arrangement in the amorphous regions (Quiroz-Castaneda & 

Folch-Mallol, 2013). 

2.4.2. Hemicellulose structure 

Hemicellulose is the second most abundant renewable source that can be converted 

to useful end products (Satyanarayana et al., 2012). Hemicelluloses are 

heterogeneous polymers which are easily hydrolysed by acids to their monomeric 

components made up of pentoses (D-xylose and D-arabinose), hexoses (D-glucose, 

D-mannose and D-galactose) and sugar acids. (Pérez et al., 2002; Sjӧholm et al., 

2000; Sjostrom, 1993). Hemicellulose found in hardwood differs from hemicellulose 

in softwood. Hardwood contains mainly glucuronoxylan while softwood contains 

mostly glucomannans (Chen, 2014; Kumar et al., 2008; Pérez et al., 2002; Jeffries, 

1994). Hemicelluloses are classified according to the main sugar residue in the 

backbone, for example, xylans, mannans, and glucans with xylans and mannans 

being the most prevalent (Saha, 2003; Pérez et al., 2002). Xylan is the principal 

component of hemicellulose in most plant cell walls comprising about 1/3 of the total 

https://www.sciencedirect.com/topics/chemistry/homopolysaccharide/31/Jan/2019
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plant biomass; it has a β-1-4-D-xylopyranose backbone with a variety of side chains 

(Prade, 1996). The composition and linkages of the side chains determine the 

specific type of xylan (Gielkens et al., 1997). Xylan types include linear homoxylan, 

arabinoxylan, glucuronoxylan and glucunoarabinoxylan (Saha, 2003). The exact 

chemical composition and structural features of hemicellulose differ across plant 

species, subcellular location and developmental stage of a plant (Saha, 2003). 

Grasses (graminaceous plants) containing a high level of α-L-arabinofuranosides 

and acetyl groups linked to β-1-4-D-xylan backbone by α-(1-2,3) linkages, are 

termed arabinoxylans. The esterified acetyl groups are attached to the hydroxyl 

group of carbon 2 or carbon 3. The hardwood (Angiosperm) xylans are highly 

substituted with 4-O-methyl-glucuronic acid and acetyl groups, hence are called 

glucuronoxylans, Fig. 2.8a. The 4-O-methyl-glucuronic acid is linked to the xylan 

backbone by α-(1-2) glycosidic bonds while the ester linked acetyl groups are 

attached to hydroxyl groups of carbon 2 or 3 (Pérez et al., 2002; Sjӧholm et al., 

2000; Jeffries, 1994). In contrast, the softwood (Gymnosperm) xylans are not 

acetylated, but the xylan backbone is linked at carbon 2 with 4-O-methyl-α-D-

glucuronic acid and carbon 3 with α-L-arabinofuranosyl moiety. In softwood, 

hemicellulose is dominated by galactoglucomannan making up 15 – 20% of dry 

weight and with xylan constituting about 7 – 10% of the biomass dry weight (Sjӧholm 

et al., 2000). The softwood glucomannan has galactose side branch linked by α-(1-6) 

linkages to the main mannose chain, Fig. 2.8b (Pérez et al., 2002; Jeffries, 1994).  
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Figure 2.4. (a) A structure of O-acetyl-4O-methylglucuronoxylan from angiosperms. 

(b) A structure of O-acetyl-galactoglucomanna from gymnosperms (Perez et al., 

2002). 

2.4.3. Lignin and its structure 

Lignin is the third plant polymer and provides the flexibility and strength required for 

by plants. Lignin is aromatic and hydrophobic polymer synthesised from one, two, or 

three different phenyl-propanoids namely ρ-coumaryl alcohol (ρ-hydroxyphenyl 

propanol), sinapyl alcohol (syringyl propanol) and coniferyl alcohol (quaiacyl 

propanol), as shown in Fig. 2.9 (Boerjan et al., 2003), which are singly derived from 

the amino acid phenyalamine through the enzymatic process (Leisola et al., 2012; 

Jeffries, 1994). These phenyl-propane units are linked to each other by irregular 

coupling of C-C and C-O (Chen, 2014). The proportions of the three structural 

monomers vary in different families of plants (Chen, 2014; Leisola et al., 2012).  
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Figure 2.5. Structure of lignin formed by the polymerization of the three phenolic 

alcohols, (Boerjan et al., 2003). 

In softwood, the principal constituent of lignin is coniferyl alcohol, whereas the lignin 

of hardwood is composed of coniferyl and sinapyl alcohols (Chen, 2014; Perez et al., 

2002; Jeffries, 1994). Grass lignin contains all the three phenolic alcohols. The lignin 

inter-monomer linkages are similar in all softwoods, hardwoods and grasses 

(Jeffries, 1994). The polymerization of phenolic alcohols produces a heterogeneous 

structure as shown in Fig. 2.9, whose basic units are linked by C-C and aryl-ether 

linkages with aryl-glycerol β-aryl ether being the predominant structure (Perez et al., 

2002). 

2.5. Lignocellulosic biomass processing 

Current advances in industrial biotechnology offer great opportunities for economic 

use of agricultural and industrial residues, which are an abundant source of 

lignocellulose material (Yousuf, 2012). The residual plant biomass considered as 

waste can be converted into various value added products including biofuels, 

chemicals, improved animal feeds and human nutrients (Howard et al., 2003). 

However, the inherent structure of lignocellulosic biomass; i.e. cellulose, 

hemicellulose and lignin intertwined into a tight network present a major challenge in 

the processing (hydrolysis) of such biomass to fermentable sugars (Dekker, 2016; 

Yousuf, 2012). 
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The presence of lignin, an aromatic biopolymer, acts as a barrier by shielding the 

polysaccharides from microbial attack and enzymatic (cellulase and hemicellulase) 

accessibility to the carbohydrates (Dekker, 2016). Therefore, pretreatment is 

necessary for the polysaccharide components to become accessible to hydrolytic 

enzymes, which will yield monosaccharide sugars, mainly glucose and xylose 

(Dekker, 2016). The term pretreatment refers to a process of inducing a structural 

change in lignocellulosic biomass from its native (original) form, which is recalcitrant 

to enzymatic hydrolysis, into a form that is prone to hydrolysis (Lynd et al., 2002). 

Lignocellulosic biomass is processed for ethanol production through three key 

stages (Balat et al., 2008), namely: (1) Removal of lignin to expose hemicellulose 

and cellulose prior to hydrolysis. (2) Hydrolysis of cellulose and hemicellulose to 

produce sugars which includes glucose, xylose, arabinose, pentose, galactose and 

mannose. (3) Fermentation of sugars to ethanol. 

2.5.1. Pretreatment of lignocellulosic biomass 

Pretreatment methods are reported to have improved the digestibility of 

lignocellulosic biomass such as perenial grass and agricultural wastes. For example, 

Wu et al. (2011a) had attributed the improvement in the enzymatic digestibility of the 

alkali pretreated sugarcane stem (bagasse) to the disruption of carbohydrate-lignin 

complex. The significance of pretreatment in cellulosic bioethanol production has 

been realised and many of the pretreatment strategies have been developed to 

enhance the reactivity of cellulose and to increase the yield of sugar monomers, i.e. 

glucose and xylose (Brodeur et al., 2011). The ultimate goal of pretreatment 

methods is to improve the rate of enzymatic hydrolysis and increase yields of 

fermentable sugars from cellulose by altering or removing structural barriers (Dekker, 

2016; Ding et al., 2012). The pretreated biomass is more easily hydrolysed than the 

raw biomass even though the amount of the lignin content in both materials was 

approximately the same (Agbor et al., 2011). Hemicellulose is amorphous and more 

easily hydrolysed than cellulose. The structural features of cellulose such as the 

degree of crystallinity, DP and the surface area are known to limit accessibility to 

enzymes and affect the rate of enzymatic hydrolysis of cellulose (Dekker et al., 

2016).  
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It has been noted that not all the pretreatment efforts achieve substantial 

delignification (lignin removal); the structure of lignin may be altered without removal 

due to changes in chemical properties of lignin (Agbor et al., 2011). Delignification 

causes swelling in biomass, disrupts the lignin structure, increases cellulose internal 

surface area and accessibility of cellulose fibers to cellulolytic enzymes (Agbor et al., 

2011). The extent of delignification is considered as a key indicator for the selection 

of the pretreatment conditions required for efficient hydrolysis of sugarcane bagasse 

(Wu et al., 2011a). Figure 2.10 illustrates the structure of lignin (outer thick black 

lines) surrounding the cellulose microfibrils (inner semi-straight lines) and 

hemicellulose (irregular lines coiled around the cellulose). Upon pretreatment, the 

lignin seal is broken and the oligosaccharides from either hemicellulose or cellulose 

are dissolved and cellulose is partially disrupted (Hsu et al., 1980). 

 

Figure 2.10. Schematic representation of the effect of pretreatment on cellulose 

structure (adapted from Hsu et al., 1980). 

According to some authors (Brodeur et al., 2011; Kumar et al., 2009; Mosier et al., 

2005), pretreatment method applied on lignocellulose biomass must ensure that; (1) 

lignin structure is broken. (2) the biomass surface area available for enzymatic attack 

is increased by increasing pore size. (3) Cellulose crystallinity is reduced in order to 

enhance enzymatic digestibility of biomass. (4) high levels of fermentable sugars are 

attained. (5) degradation or loss of carbohydrates is avoided. (6) the formation of 

inhibitory byproducts to subsequent hydrolysis and fermentation process is 

minimised. Pretreatment methods that completely disrupt the highly-ordered 

cellulose structure and the lignin carbohydrate complex or remove lignin or increase 

surface area accessible to enzymes have been shown to promote hydrolysis and 
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speed up the rate and the extent of hydrolysis of cellulose in various pretreated 

lignocellulose biomass (Dekker, 2016). 

Pretreatment methods are also classified as physical, chemical, biological, 

hydrothermal and a combination of a hybrid method combining either chemical or 

physical method with hydrothermal. Chemical pretreatment uses dilute acid (H2SO4, 

H3PO4, HCl etc), alkaline (NaOH, H2O2, NH3 etc) and gases (CO2, SO2, Ozone etc), 

whereas physical method involves milling and grinding, and microwave irradiation. 

The hydrothermal method includes steam pretreatment and hot water pretreatment 

(Dekker, 2016; Menon & Rao, 2012; Kumar et al., 2009; Sun & Cheng, 2002). These 

pretreatment methods impact on lignocellulosic biomass differently, especially 

regarding the structure and chemical composition of the same biomass. For 

instance, hydrothermal and acidic pretreatments solubilise hemicellulose fraction 

whereas, alkaline pretreatment removes lignin.  

 Pretreatment such as milling retains the biomass initial chemical composition of the 

lignocellulose. Steam or hydrothermal and acidic pretreatments do not reduce 

cellulose crystallinity significantly, while ionic-liquid based technique can change 

crystalline cellulose form into amorphous cellulose form and significantly increase 

the enzymatic hydrolysis rates and yields (Silva et al., 2013; Kumar et al., 2009). 

These pretreatment methods have been extensively reviewed (Rabemanolontsoa & 

Saka, 2015; Chaturvedi & Verma, 2013; Menon & Rao 2012; Agbor et al., 2011; 

Brodeur et al., 2011; Hendriks & Zeeman, 2009). 

2.5.1.1. Chemical pretreatment of lignocellulosic biomass 

Chemical pretreatment method has been developed extensively and used primarily 

for delignification of lignocellulosic material. The most commonly used chemical 

pretreatments include acid and alkali based approaches (Bensah & Mensah, 2013). 

Hemicelluloses are unstable to chemical pretreatments and can be easily removed 

under mild conditions. However, the overall effect of mild pretreatment of the 

biomass on enzymatic hydrolysis can depend on the chemical composition of 

lignocellulosic materials, especially on the structure and content of lignin which 

becomes difficult to extract (Ioelovich & Morag, 2012). Many of the pretreatment 

methods have a common goal which is either to remove lignin or alter its structure 
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and sometimes to solubilize the hemicellulose. The choice of pretreatment should 

consider the overall compatibility of feedstocks, enzymes and subsequent fermenting 

organisms (Menon & Rao, 2012). 

 

(a) Acid pretreatment of lignocellulose biomass 

Dilute acid method is developed for biomass pretreatment and it significantly 

improves the efficiency of subsequent enzymatic hydrolysis step (Binod et al., 2011). 

Dilute acid pretreatment allows for the deconstruction of lignocellulosic biomass 

structure and the release of sugar monomers, mostly derived from hemicellulose. 

The amorphous and branched nature of hemicellulose makes it more easily 

accessible to hydrolysis agents. This structure allows for the diffusion of acids which 

accelerate the hydrolytic process. Therefore, dilute acid pretreatment selectively 

removes and hydrolyses hemicellulose (Silva et al., 2013). This fact is also 

dependent on the processing conditions, which can be mild or severe. Dilute acid 

pretreatment of lignocellulosic biomass is an effective method which predominantly 

affects hemicellulose with little impact on lignin degradation (Silverstein et al., 2007).  

Dilute sulphuric acid (0.5% v/v) pretreatment improved cellulose and lignin content of 

wheat straw with a great reduction of hemicellulose at high temperature (160 °C) and 

treatment time of 10 minutes (Agrawal et al., 2015). Zhang et al. (2011) also reported 

an increase of cellulose and lignin content in H2SO4 (1% w/v and 180 °C in an 

autoclave for 10 min) pretreated sweet sorghum bagasse and about 90% solubilised 

hemicellulose. At a temperature of 130 °C, 0.5% H2SO4 and on a longer time period, 

hemicellulose was completely solubilised in banana pseudostem with biomass loss 

of approximately 60%. About 25 – 35% of lignin was removed during H2SO4 

pretreatment of banana pseudostem (Idrees et al., 2013). The differences in H2SO4 

pretreated biomass (Wheat straw and banana pseudostem) could be attributed to 

the incubation period since the lignin content in their untreated biomass is similar.  

According to Anwar et al. (2014), apart from chemical agents used in the 

pretreatment process, temperature and time of treatment are important factors that 

impact on the alteration of the biomass structure. Dilute acid pretreatment of rice 

straw and sugarcane bagasse using 1.5 % v/v H2SO4 at 121 °C for  10 – 60 min had 

increased cellulose content in rice straw from 40 to 60% and 35 to 49.9% in 
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sugarcane bagasse and almost completely solubilised hemicellulose (Kumar & 

Parikh, 2015). The loosening of structure and increase of cellulose content could 

potentially lead to achieving higher biomass digestibility. However, the increased 

lignin content could hinder enzymatic hydrolysis (Ioelovich & Morag, 2012). Dilute 

acid pretreatment (140 °C, 40 min and 0.98% w/v H2SO4) of Poplar biomass resulted 

in the production of inhibitory compounds namely, furfural, acetic acid, formic acid 

and 5-hydroxymethyl-2-furaldehyde (HMF) that hindered both enzymatic 

saccharification and fermentation processes. The inhibitory effect of these 

compounds was minimised by washing the pretreated Poplar biomass with water 

and recovery of 5.3 times more glucose and increased ethanol yield was attained 

(Frederick et al., 2013). 

(b) Alkaline pretreatment of lignocellulosic biomass 

During alkaline pretreatment, the lignocellulosic biomass undergoes two reactions, 

namely solvation and saponification. These reactions cause the structure of 

lignocellulose to swell, decrease the degree of polymerisation thereby making the 

lignocellulose components more accessible to enzymatic degradation and microbial 

attack. The pretreatment also causes the solubilisation, redistribution and 

condensation of lignin leading to a modification of crystalline cellulose. The 

effectiveness of alkaline pretreatment depends on the physical structure and 

composition of biomass and the pretreatment condition (Sindhu et al., 2015). 

Alkaline pretreatment increases biomass utilisation rate and yield of sugar after 

enzymatic hydrolysis more than both untreated and acid pretreated biomass 

(Ioelovich & Morag, 2012). The most common used alkali solutions for pretreatment 

are sodium hydroxide (NaOH), calcium hydroxide (CaOH), ammonium hydroxide 

(NH4OH) and potassium hydroxide (KOH), (Sindhu et al., 2015). Cao et al. (2012) 

compared the effects of four different pretreatments methods with the aim of 

enhancing enzyme digestibility of sweet sorghum bagasse, using sodium hydroxide 

(both dilute 2% NaOH and concentrated 20% NaOH), hydrogen peroxide (H2O2) in 

combination with alkaline solutions (2% NaOH – 5% H2O2), and autoclaving. It was 

observed that concentrated NaOH (20%) resulted in a high (83.7%) loss in biomass 

dry matter and high solubilisation of hemicellulose in sweet sorghum bagasse (Cao 

et al., 2012).  
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Wu et al., (2011b) reported an increased loss of hemicellulose in sweet sorghum 

bagasse at higher concentration of NaOH and low temperature, 25 °C. Sodium 

hydroxide (2% v/v) autoclaving followed by immersion in hydrogen peroxide 

pretreatment had greatly increased the cellulose content of the sorghum bagasse, 

solubilised more of hemicellulose and removed lignin better, compared to all other 

methods investigated. Combination of alkaline solutions (NaOH – H2O2) in the 

pretreatment improved the solubilisation of hemicellulose and removal of lignin while 

it retained its high cellulose content (Cao et al., 2012). Soaking of rice straw and 

barley straw in aqueous ammonia (15 wt%, weight percent) at a moderate 

temperature revealed that enzymatic digestibility of both biomass at concentration of 

5 wt% were enhanced by 85% and 95%, respectively  (Park & Kim, 2012). Sodium 

sulphide (Na2S), sodium sulphite (Na2SO3) and NaOH both at a concentration of 

0.5% v/v and high temperature (130 °C) have been shown to remove lignin in 

banana pseudostem completely resulting in more than 90% enzymatic hydrolysis 

(Idrees et al., 2013). Alkaline pretreatment (80 °C, 39 min, 018 g NaOH and 0.06 g 

lime per gram of raw biomass) of wheat straw resulted in 93.1% conversion of 

cellulose to glucose after enzymatic hydrolysis (35 FPU/g) and which achieved 

80.3% of monosaccharides namely, glucose, xylose and arabinose (Jaisamut et al., 

2013) 

In another study, mild alkaline pretreatment (NaOH 0.5% v/v, room temperature, 24 

hours) of rice straw had increased cellulose content from 40% to 60% while  that for  

sugarcane bagasse increased from 35 to 49.9% (Kumar & Parikh, 2015). Lignin 

removal in rice straw and sugarcane bagasse was 61% and 45%, respectively. 

There was also a marginal loss in hemicellulose for both biomass (Kumar & Parikh, 

2015). Wang et al. (2010) showed that a concentration of NaOH (2 – 3%) and time 

(60 – 90 min) removed 80 – 85% of lignin and solubilised approximately 60% of 

hemicellulose with little effect on cellulose (glucan) content of coastal Bermuda 

grass. Low et al. (2015) also investigated various concentrations of NaOH (1, 2, 4 & 

7% w/v) at room temperature on delignification of banana pseudostem. Their results 

revealed that NaOH (4% w/v) increased cellulose content to 73%, with greater 

delignification than all other concentrations with an increase in accessibility of the 

carbohydrate. The concentration of NaOH (7% w/v) has been shown to reduce the 

amount of holocellulose (cellulose plus hemicellulose) content (Low et al., 2015). 
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Other authors have reported that at higher concentration of NaOH, a greater 

delignification of lignin occurs concomitantly with solubilisation of hemicellulose (Low 

et al., 2015; Cao et al., 2012; Wu et al., 2011b). The loss of hemicellulose is 

attributed to the amorphous structure of hemicellulose which makes it easily 

degradable. These findings by Cao et al. (2012) on sweet sorghum bagasse (20% 

NaOH) and Low et al., 2015 on banana pseudostem  (7% NaOH) pretreatment 

suggest that for each biomass, it is imperative that critical concentration is 

determined due to differences in lignocellulose matrix and composition. The effect of 

temperature, time, and chemical concentration on the alteration of the biomass 

structure differs from one biomass to another due to the level of crystallinity in the 

material which can also be influenced by age of the biomass. 

Generally, chemical pretreatment methods have been extensively studied on 

different types of biomass. However, these methods are costly due to requirements 

of chemical and high energy input in the process and in addition, the need for 

specialised reactors that are resistant to corrosion. As a result, a moderate or low 

cost efficient pretreatment process is essential for economic viability of 

lignocellulosic bioethanol production. 

(c) Hydrothermal pretreatment of lignocellulosic biomass 

The hydrothermal method is a relatively mild pretreatment that requires no catalysts 

and it is a non-corrosive process. According to Iroba et al. (2013), water and heat are 

not sufficient to disrupt the lignin or create pores on the biomass matrix for 

subsequent hydrolysis. On the contrary, Jőnsson & Martin, (2016) and Taherzadeh & 

Karimi (2008) stated that under high pressure water penetrates into biomass, 

hydrates cellulose and removes most of the hemicellulose and minor part of lignin. 

The solubilisation of hemicellulose is catalysed by hydronium ions resulting from 

water auto-ionisation (dissociation) (Jőnsson & Martin, 2016). Thus, the auto-

dissociation equilibrium constant (Kw) of water is equal to 0.01x10-12 at 25 °C and 

6x10-12 at 230 °C. The values above represent the dissociation of water into H+ and 

OH-. At high temperatures, more concentration of catalytic protons are generated 

through the dissociation process (Ladisch et al., 2013). 
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Van Walsum et al. (1996) reported the hydrothermal pretreatment (220 °C, 2 min) of 

sugarcane bagasse, aspen chips (3 mm) and mixed hardwood-flour (-60+70 mesh) 

which yielded 90% conversion to ethanol at an enzyme load of 30 FPU/g in 75 h. 

Hydrothermal pretreatment of herbaceous material (Prairie cord grass) resulted in 

97.96% of pretreatment conversion rate and 94.53% of enzymatic hydrolysis (15 

FPU/g and 60 U/g β-glucosidase) conversion rate in studies by Lei et al. (2013). 

Liquid hot water pretreatment (180 °C for 20 min, solid: liquid ratio 1:10) of reed 

resulted in cellulosic conversion rate of 82.59% after enzymatic hydrolysis, 30 FPU/g 

(Lu et al., 2012). In another study by Ko et al. (2014), the LHW pretreatment severity 

(180 – 210 °C for 5 – 15 min) on the properties of hardwood lignin and enzymatic 

hydrolysis of cellulose revealed that structural changes in lignin occurred and lignin 

content was increased, which led to reduced enzymatic hydrolysis (40 FPU/g) of 

cellulose.  

Another advantage of hydrothermal (e.g. autoclave) pretreatment is that it minimises 

the loss in biomass dry matter (Cao et al., 2012). However, at high temperatures 

(185 – 250 °C) hydrothermal pretreatment produces acetic acid from the thermally 

labile O-acetyl groups attached to the xylose residues that make up hemicellulose 

(heteroxylan) polymer (Dekker, 2016) and the catalytic action of water results in 

hydrolysis of cellulose to monosaccharides which are later degraded to aldehydes 

and humic substances (Ladisch et al., 2013; Gromov 2016). Depending upon the 

conditions such as temperature and time, the hemicellulose fraction can be 

hydrolysed into mono- and oligosaccharide (Dekker, 2016). The formation of 

fermentation inhibitors could be minimised by controlling the pH close to neutral 

values (Jőnsson & Martin, 2016). Most of the inhibitors and hemicellulose were 

found in the pre-hydrolysate which is a liquid fraction obtained after pretreatment (Lei 

et al., 2013). 

(d) Biological pretreatment of lignocellulosic biomass 

Chemical pretreatment requires high energy input and generates effluent that may 

be hazardous to the environment. As such, biological pretreatment becomes an 

alternative method that alters the structure of lignocellulosic biomass. Biological 

pretreatment is performed by culturing microorganisms (e.g. fungi and 

actinobacteria) which then synthesize and secrete hydrolytic enzymes and oxidative 
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enzymes (Chaturvedi & Verma, 2013; Pérez et al., 2002; Ilmén et al., 1997) which 

enable them to utilise the complex plant polysaccharides for growth. In nature, fungi 

colonize the plant debris and in a symbiotic relationship with other microorganisms, 

they secrete assortment of proteins and complex of enzyme systems to hydrolyse 

plant polysaccharides. However, not all microorganisms are able to secrete a 

significant amount of such complex enzyme systems for biotechnological 

applications (Benoliel et al., 2013).  

Three different wood decaying fungi include brown-rot, white-rot and soft-rot fungi. 

The soft-rot fungi’s hyphae occupy the decaying, cylindrical cavities within the 

secondary walls of wood cells and rarely present in the lumens, unlike the brown-rot 

and white-rot (Cowling, 1958). The white-rot fungi have the capability to utilise both 

the carbohydrates polysaccharides (i.e. cellulose and hemicellulose) and lignin, 

whereas the brown-rot fungi which evolved from white-rot fungi can selectively 

degrade carbohydrates polysaccharides of wood, leaving lignin-rich residue in the 

soil (Canam et al., 2013; Cowling, 1958). White-rot fungi and Streptomyces species 

can achieve delignification of a plant biomass (Berrocal et al., 1997). Efficient 

degradation of lignin depends on the lignolytic enzymes such as lignin peroxidase 

(LiPs), manganese peroxidase (MnPs) and laccase (Sindhu et al., 2015). During the 

pretreatment, microorganisms require extracellular hydrogen peroxide (H2O2) to 

support the oxidative turnover of LiPs and MnPs responsible for lignolysis. The H2O2 

can be provided by extracellular oxidases that reduce molecular oxygen to H2O2 with 

synergistic oxidation of co-substrate. The most studied and characterised 

extracellular H2O2-generating enzymes are glyoxal oxidase (GLOX) and aryl alcohol 

oxidase (AAO) (Souza, 2013). The biological pretreatment is considered inexpensive 

and easy to operate. However, a large scale operation leads to higher operational 

costs for the following reasons: (1) the process requires a large sterile area and 

maintenance of sterility during the process. (2) carbohydrates - sugar monomers 

from the hydrolysis of cellulose and hemicellulose are consumed by the cultured 

microorganism(s) leading to lower product output. 

Du et al., (2011) reported an 82% hydrolysis yield after 28 days of biological 

pretreatment of corn stalks by Irpex lacteus, a white-rot fungus capable of producing 

both hydrolytic and oxidative enzymes. The drawback of biological pretreatment is 
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the long residence time (10 – 44 days) and it becomes inconvenient for industrial 

application (Chaturvedi & Verma, 2013; Agbor et al., 2011). However, biological 

pretreatment can be a suitable method of biomass containing low lignin content 

(Agbor et al., 2011) and the by-products produced during the pretreatment have a 

less inhibitory effect to the subsequent hydrolysis step (Sindhu et al., 2015). 

A white-rot fungus that poses high selective degradation for lignin over cellulose is 

essential to fungal pretreatment of lignocellulosic biomass for bioethanol production 

(Wan & Li, 2012). Previously, Reddy et al. (2003) reported two white-rot fungi, 

Pleurotus ostreatus and P. sajor-caju with low levels of endoglucanase (CMCase), 

cellulase (FPase) and high laccase activities. Improvement of such strains through 

genetic engineering or mutagenesis and even screening for natural cellulase 

deficient white-rot fungus would be a breakthrough for biological pretreatment 

without loss of fermentable sugars. 

2.5.2. Hydrolysis of lignocellulosic biomass 

This is the production step of lignocellulosic hydrolysate (fermentable sugars – 

glucose). In the hydrolysis process, the sugars are released from carbohydrate 

chains. The hydrolysis of hemi-(cellulose) chains can be achieved by acid hydrolysis 

and enzymatic hydrolysis. 

2.5.2.1. Acid hydrolysis of lignocellulosic biomass 

Acid hydrolysis is an important method for the recovery of sugar monomers from 

cellulose and hemicellulose polymers from lignocellulosic biomass (Anwar et al., 

2014). Concentrated mineral acids such as H2SO4 and HCl are commonly used in 

hydrolysis. The concentrated acid disrupts the hydrogen bonding between cellulose 

chains thereby converting it to a completely amorphous state. De-crystalized 

cellulose forms homogenous gelatin with the acid and in this form cellulose is 

extremely susceptible to hydrolysis. Homogeneous gelatin – acid mixture reacts in 

the presence of water at modest temperature to provide rapid hydrolysis to glucose 

(Binod et al., 2011; Kumar et al., 2009). Hydrolysis of lignocellulose using 

concentrated acid achieves near-theoretical sugar yields and results in less 
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degradation of products than the commonly used dilute acid hydrolysis process (Moe 

et al., 2012; Binod et al., 2011).  

The molecular mechanism of acid-catalysed hydrolysis of cellulose (cleavage of β-

glycosidic bond) follows the pattern illustrated in Fig. 2.11 (Xiang et al., 2003). Acid 

hydrolysis proceeds in three steps. The reaction starts with a proton from acid 

interacting rapidly with the glycosidic oxygen linking two sugar units thereby forming 

a conjugate acid. The cleavage of the C-O bond and breakdown of conjugate acid to 

the cyclic carbonium ion take place, which adopts a half-chair conformation. After a 

rapid addition of water, free sugar and a proton are liberated (Xiang et al., 2003). 

While concentrated acid hydrolysis results in more released fermentable sugars, the 

process is toxic, corrosive and hazardous. It requires reactors that are resistant to 

corrosion (Chaturvedi & Verma, 2013; Binod et al., 2011).  

 

Figure 2.6. Mechanism of acid catalysed hydrolysis of β-1-4 glucan (Xiang et al., 

2003). 

These drawbacks make the downstream process expensive (Binod et al., 2011).  

Monosaccharide products can be further reduced to undesirable products. The 

process conditions are crucial in preventing undesirable reactions, which could 

promote a decrease in monosaccharide yields by the formation of sugar-derived 

inhibitory compounds outlined below; 

With I: anhydro glucose plus H* radical 
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       II: anhydro glucose intermediate including O* radical (with high energy) 

       II’: anhydro glucose intermediate including O* radical (without high energy) 

       III: fragment from anhydro unit includes C* radical 

       III’: anhydro glucose intermediate includes C* radical            

Concentrated acid pretreatment of lignocellulose biomass solubilises hemicellulose 

completely and cellulose, leaving lignin unaffected (Anwar et al., 2014; Chaturvedi & 

Verma, 2013). The mechanism of acid hydrolysis reaction of hemicellulose is 

described in Fig. 2.12 below by (Herrera et al., 2002). 

(1) The diffusion of protons through the wet lignocellulosic matrix 

(2) The protonation of the ether-oxygen link between sugar monomers 

(3) The breakage of the ether bond and generation of a carbocation as an 

intermediate 

(4) The solvation of the carbocation with water 

(5) The regeneration of protons and the cogeneration of sugar monomers, 

oligomers and polymers, depending on the ether connection that is broken. 

(6) Distribution of the products in the liquid phase   

(7) Restart of the process from step 2 

 

Figure 2. 12. A simplified mechanism of acid catalysed hydrolysis of hemicellulose 

(Herrera et al., 2002). 

In acid hydrolysis, the final product, mainly sugar (glucose or xylose) does not pose 

an inhibitory effect on the hydrolysis reaction. 
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2.5.2.2. Enzymatic hydrolysis of lignocellulosic biomass 

Enzymatic hydrolysis of cellulose is carried out by cellulase enzymes system. The 

term “Cellulase enzymes system” refers to multiple enzymes involved in complete 

hydrolysis of cellulose namely; exoglucanase (exo-1,4-β-glucanases, EC 3.2.1.91) 

endoglucanase (endo-1,4-β-glucanases, EC 3.2.1.4) and β-glucosidases (β-D-

glucoside glucohydrolase, EC 3.2.1.21) Enzymatic hydrolysis is more desirable  than 

the use of inorganic catalysts, because enzymes are highly specific and can function 

in mild process conditions. However, there are limitations to the use of enzymes in 

industrial processes. Firstly, most enzymes are relatively unstable at high 

temperatures. Secondly, the cost of enzyme production and purification are high and 

it is difficult to recover them from the reaction mixtures. These limiting factors had 

prompted extensive research for cellulases with improved thermo-stability (Verardi et 

al., 2012; Taherzadeh & Karimi, 2007). Enzymatic hydrolysis of cellulose to glucose 

by cellulase occurs under mild conditions of pH 4.5 – 5.0 and temperature 40 – 50 

°C. Effective enzymatic hydrolysis of cellulosic biomass is more influenced by the 

type (i.e. structural features of cellulose) and concentration of biomass or substrate 

(Yang et al., 2011; Sun & Cheng, 2002) and often the cellulase loading is in the 

range of 7 to 33 FPU/g substrate (Sun & Cheng, 2002). Major drawbacks of 

enzymatic hydrolysis are the inhibitory effect of the product (glucose) on hydrolysis 

reaction and long hydrolysis time (Taherzadeh & Karimi, 2007). The next section 

provides a description of the enzymes involved in depolymerisation of cellulose and 

hemicellulose polymers. The depolymerisation of cellulose is effected by cellulases 

whereas hemicellulose involves a group of enzymes called hemicellulases. 

2.5.2.2.1. Cellulase and their mode of action 

Cellulase is a class of enzyme with different specificities to catalyse the hydrolysis of 

glycosidic bonds within cellulose (Khan et al., 2016; Jecu, 2000). The enzymatic 

hydrolysis of cellulose involves exoglucanases, endoglucanases, and β-glucosidases 

which exhibit high specificity for the β-1.4 glycosidic linkages (Jecu, 2000). 

Cellulolytic enzyme system from filamentous fungi, particularly Trichoderma reesei 

contains two exoglucanases or cellobiohydrolases (CBH1 and CBH2), four 

endoglucanases (EG1, EG2, EG3 and EG4) and one β-glucosidase (Kumar et al., 

2008). For a complete hydrolysis of cellulose, the three enzymes act synergistically 
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to catalyse the hydrolysis process, Fig. 2.13 (Khan et al., 2016; Saini et al., 2015a; 

Yoon et al., 2014; Kumar et al., 2008). The efficiency of cellulose hydrolysis depends 

on the type of biomass and a balance of the cellulase enzymes (Khare et al., 2015). 

 

 

Figure 2.13. Hydrolysis action of endoglucanase, cellobiohydrolase and β-

glucosidase on cellulose (Yoon et al., 2014). 

(a) Endoglucanase 

The endogucanase catalyses the random cleavage of internal bonds of the cellulose 

chain thereby generating new two ends, which is the reducing and non-reducing 

ends (Saini et al., 2015a; Kumar et al., 2008). The random cleavage of 

endoglucanase on the soluble cellulose derivatives (amorphous) causes a rapid 

decrease in chain length. When acting on cellodextrins-glucose polymers of varying 

length (i.e. two or more glucose monomers), the rate of hydrolysis increases with the 

degree of polymerisation within the limits of substrate solubility with cellobiose and 

cellotriose being the major final products. 

(b) Exoglucanase 

Exoglucanases attack the chain ends of cellulose molecule thereby releasing 

cellobiose (Saini et al., 2015a; Kumar et al., 2008). It also cleaves glucose units 

successively from the non-reducing end of glucan (cellulose). Exoglucanases are 

distinguished from β-glucosidase by their preference for substrate of longer chain 

length and by their inversion of their product (Saini et al., 2015a). Accumulation of 

cellobiose inhibits cellulase activity (Isaacs, 1984). 
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(c) β-glucosidase 

β-glucosidases are active on cello-oligosaccharides up to cellohexaose and 

cellobiose to release glucose  monomer units (Maitan-Alfenas et al., 2015; Saini et 

al., 2015a; Kumar et al., 2008; Isaacs, 1984). Most β-glucosidases are active on a 

range of β-dimers of glucose and their rate of hydrolysis of cellobiose decreases 

markedly as the degree of polymerisation of the substrate increases (Saini et al., 

2015a). The end product of hydrolysis of glucose is a fermentable sugar and can be 

converted into ethanol by fermenting microorganisms. The excessive accumulation 

of glucose during hydrolysis leads to inhibition of β-glucosidase in a non-competitive 

mechanism (Isaacs, 1984). 

2.5.2.2.2. The structure of fungal cellulase 

Glycoside hydrolases (GHs) including cellulase have been classified into 115 

families based on amino acids sequence similarities and crystal structures. A large 

number of cellulase genes are found in 13 GHs families, namely 1, 3, 5, 6, 7, 8, 9, 

12, 26, 44, 45, 51 and 48. Cellulase like activities has also been proposed for 

families 61 and 74 (Schulein, 2000). Based on the Carbohydrate-Active Enzyme 

database (CAZy; http://www.cazy.org), the three-dimensional structures of more than 

50 cellulases are available, with the exception of family GHs3. It is important to note 

that all cellulases cleave β-1,4-glucosidase bonds, but display a variety of topologies 

ranging from β-sheet to β/α-barrels, to α-helical proteins (Zhang & Zhang, 2013).  

Some families, e.g. GHs6 and GHs7 contain enzymes with great different and 

mechanistically synergistic activities. Other families such as GHs1 and GHs3 contain 

many enzymes with the same activity (i.e. cleavage of glycosidic bond in cellobiose), 

whilst some of these enzymes have subtle differences in substrate specificity (Payne 

et al., 2015). Family GH7 contains both CBH (Cle7A) and EG (Cel7B) based on the 

same protein fold, i.e. folded β-sheet sandwich. The endoglucanases that are found 

in GH families 5, 7, and 12 catalyze the hydrolysis of glycosidic bonds with retention 

of configuration (Payne et al., 2015).  

Typically, fungal cellulase has two separate domains: a catalytic binding domain 

(CBDs) and non-catalytic carbohydrate (or cellulose) binding domain, which are 

http://www.cazy.org/
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linked by a short poly-linker region to the catalytic domain at the N- or C-terminal, 

Fig. 2.14 (Sajith et al., 2016; Zhang & Zhang 2013; Kuhad et al., 2011).  

 

Figure 2.7. A schematic representation of the two-domain structure found in 

cellulases. The catalytic domain (CD) is linked to the cellulose binding domain (CBD) 

by a distinct linker region, which is often glycosylated (Sajith et al., 2016). 

The active site of the catalytic domain may be topological, tunnel, cleft or pocket in 

shape in order to allow efficient hydrolysis of the substrate (Hildén & Johansson, 

2004). A comparison of the GH family of either bacterial or fungal species reveals 

quantitative patterns in linker characteristics. For instance, multimodular fungal GH6 

and GH7 cellulase exhibit significant differences in linker length, with GH6 cellulase 

linker average length of 42 and GH7 30 amino acid residues (Payne et al., 2015). 

The amino acid content of bacterial and fungal linkers differed significantly with 

higher Proline found in bacterial cellulase linkers (Payne et al., 2015) and higher 

Serine-Threonine content in fungal cellulase linker (Sajith et al., 2016; Payne et al., 

2015; Kuhad et al., 2011). 

Cellobiohydrolase (CBHs) is the most studied exoglucanase. Different CBH with 

catalytic domain/or modules belongs to GHs families 5, 6, 7, 9, 48 and 74 glycoside 

hydrolases. Aerobic fungal CBH belongs to GH6 and GH7 only, whilst anaerobic 

fungal CBH is in GH family 48. In contrast, aerobic bacterial CBHs falls in GH 

families 6 and 48, while anaerobic bacterial CBHs are in GH family 9 as well as 

family 48. The most significant topological feature of CBH’s catalytic module is the 

tunnel structure which is formed by two surface loops, Fig. 2.15. In the case of family 
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7 CBH, the tunnel may cover entirely the active site or only part of the active site 

may be covered by family 48 CBH (Zhang & Zhang, 2013). 

In general, fungal endoglucanases possess a catalytic domain with or without a 

CBD, whilst bacterial endoglucanase may possess multiple CBD and other domains 

with unknown functions. The catalytic domains of most endoglucanases have a 

cleft/grove-shaped active site which allows the endoglucanase to bind and cleave 

the cellulose chain to generate soluble cellodextrins or insoluble cellulose fragments 

(Zhang & Zhang, 2013). Figure 2.15 shows the crystal structure of GH6 

Thermobifida fusca endoglucanase Cel6A (TfCel6A) and Humicola insolens 

exoglucanase Cel6A (HiCel6A). 

 

Figure 2.8. Crystal structures of GH6 endoglucanase and exoglucanase. (A) The 

structure of endoglucanase TfCel6A, which exhibit a deep cleft at the active site. (B) 

The structure of exoglucanase HiCel6A, in which the active site bears an extended 

loop that forms a tunnel (Zhang & Zhang, 2013). 

2.5.2.2.3. Hemicellulase and their mode of action 

Hemicellulases are classified according to: (1) the substrate they act upon, (2) the 

bonds they cleave and (3) their patterns of product formation. However, a greater 

variety exists among the endo-xylanases and β-xylosidases (Jeffries 1994). 

Hemicellulases are various enzymes responsible for the degradation of 

hemicellulose polymer. For instance, in hardwood, xylan is the main carbon 

backbone, in which its degradation requires endo-1,4-β-xylanase, β-xylosidase, α-

glucuronidase, α-L-arabinofuranosidase and acetyl xylan esterase acting together on 
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different heteropolymer sites, as shown in Fig. 2.16 (Kumar et al., 2008). In 

softwood, the glucomannans backbone is cleaved by β-mannanase and β-

mannosidase (Kumar et al., 2008). A notable distinction is that endo-1,4-β-xylanase 

(EC 3.2.1.8) produce oligosaccharides from random cleavage of xylan whilst xylan 

1,4-β-xylosidase (EC 3.2.1.37) acts on xylan oligosaccharides to produce xylose. 

Some endo-xylanases show a greater specificity towards straight chain substrates 

and others have specificity for frequent side chains or branching chains (Jeffries, 

1994). 

 

Figure 2.16. Chemical structure of hemicellulose and target site of enzymatic 

hydrolysis of the polymer (Kumar et al., 2008). 

The end products in the hydrolysis are mixtures of sugars mainly xylose, glucose, 

arabinose, galactose and mannose and these sugar mixtures vary from one plant to 

another. 

2.6. Fermentation 

The fermentation process involves the use of microorganisms to produce various 

products such as enzymes (proteins), bioethanol, acids, and other by-products. In 

this section, only the literature on enzyme and ethanol production will be reviewed. 
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2.6.1. Microorganisms in enzymes (cellulase and hemicellulose) production 

Microorganisms are an attractive source of enzymes because they can be cultured in 

large numbers in a relatively short period by established fermentation techniques. 

However, the production of enzymes is influenced by the genetic make-up of the 

microorganisms, nutrition, and environmental factors (Olaniyi & Oyesiji, 2015; 

Norouzian, 2008). Many microorganisms in nature, mostly bacteria and fungi are 

capable of producing biomass degrading enzymes, Table 2.3. Screening and 

selection of cellulase producing microorganisms from nature is one way of getting 

novel cellulases.  Newly isolated microorganisms are potential sources of new genes 

encoding enzymes with unique properties (Khan et al., 2016).  

Cellulolytic enzymes that are secreted by such microbial population belong to 

classes of glycoside hydrolases (GHs), (Yang et al., 2011; König et al., 2002). More 

emphasis will be on the fungi owing to the advanced progress made in the “know-

how” of enzymes they produce. The importance of fungi had been recognised in 

several biotechnological industries for their improvement of various aspects of the 

final product through the secreted enzymes (Soares et al., 2012). Fungal cell 

factories produce approximately 40 – 50% of the value of industrial enzymes 

(Paloheimo et al., 2016). 

Trichoderma species are soil borne with greenish-yellow to red spores with potential 

to colonise plant materials and efficiently utilise the substrate in contact and possess 

the ability to survive under different environments (Schuster & Schmoll, 2010; 

Samuels, 1996). 
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Table 2.3. Microbial community with cellulolytic abilities (Adapted from Khan et al., 

2016) 

Microorganisms Examples of cellulase producers 

Fungi Soft-rot fungi 

 Aspergillus niger; A. nidulus; A. oryzae; A. terreus; Fusarium solani; F. 

oxysporum; Humicola insolens; H. grisea; Trichoderma longibrachiatum; T. 

harzianum; T. reesei; T. atroviride; Chaetomium cellulyticum; C. 

thermophilum; Neurospora crassa; Penicillium fumigosum; P. occitanis; P. 

brasilianum; P. decumbens; P. echinulatum; Melanocarpus albomyces; 

Thermoascus aurantiacus; Mucor cirnelloides 

Brown-rot fungi 

Coniophora puteana; Lanzites trabeum; Poria placenta; Tyromyces palustris; 

Fomitopsis sp. 

White-rot fungi 

Phanerochaete chrysosporium; Sporotrichum thermophile; Tramets versicolor; 

Agaricus arvensis; Pleurotus ostreatus; Phlebia gigantean 

Bacteria Aerobic bacteria 

 Acinetobacter junii; A. anitratus; Acidothermus cellulolyticus; Anoxybacillus sp; 

Bacillus subtilis; B. pumilus; B. amyloliquefaciens; B. licheniformis; B. circulan; 

B. flexus; Bacteriodes sp; Cellulomonas biazotea; Cellvibrio gilvus; 

Eubacterium cellulosolvens; Geobacillus sp; Microbispora bispora; 

Paenibacillus curdlanolyticus; Pseudomonas cellulose; Salinvibrio sp; 

Rhodothermus marinus 

 Anaerobic bacteria 

Acetivibrio cellulolyticus; Butyrivibrio fibrisolvens; Clostridium thermocellum; 

C. cellulolyticum; C. acetobutylium; C. papyrosolvens; Fibrobacter 

succinogens; Ruminococcus albus 

Actinomycetes Cellulomonas fimi, C. biazotea, C. uda; Streptomyces drozdowiczii; S. 

lividans; Thermomonospora fusca; T. curvata 
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The kingdom fungi have approximately 200 species of Aspergillus which produce a 

great number of extracellular enzymes with biotechnological applications. Such 

species can be isolated from soil, decomposing plants and air. Some of the most 

studied Aspergillus species include A. flavus, A. niger, A. oryzae, A. nidulus, A. 

fumigatus, A. clavatus, A. glaucus, A. ustus and A. versicolar (Soares et al., 2012). 

Most commercial cellulase is produced by Trichoderma spp. with a few of the 

enzymes from A. niger (Taherzadeh & Karimi, 2007). Cellulase produced by 

Trichoderma sp. lacks sufficient β-glucosidase activity and requires the addition of β-

glucosidase to fully convert cellobiose into glucose (Agrawal et al., 2015; Ha et al., 

2011) and Aspergillus ssp. produce large quantities of β-glucosidase into the 

medium (Sørensen et al., 2011; Sternberg et al., 1977). 

The past decades have seen growing interests both from academic and industrial 

researchers in using cellulase for the production of second generation bioethanol 

with substantial investment by various government institutions in the development of 

enzymes, and discovery of other microbial strains in nature. With the emergence of 

biotechnology tools such as bioinformatics, mutagenesis, gene-deletion  (gene-

knockout) etc., it has become possible to screen and improve or develop new 

microorganisms (enzyme source) that offers more desirable traits, including higher 

specific activities, improved thermal stability, resistance to inhibitors and improved 

synergism amongst various enzymes such as cellulase, hemicellulose, pectinase 

and proteinase activities that maximise sugar yields at low cost (Paloheimo et al., 

2016; Yang et al., 2011).  

A continuing effort to exploit natural resources will lead to the discovery of new 

“multi-activity” microorganisms with all required enzymes for second generation 

bioethanol and low protease level or new genes encoding for novel cellulase with 

unique properties. Low protease producing strains are needed for successful and 

cost-effective industrial enzyme production business. 

2.6.2. Enzymes (cellulase and hemicellulase) production 

Enzymes have played important roles in the biotechnological processes involved in 

the production of food and beverages, detergent, clothing, paper industry, 

pharmaceuticals, dairy and biofuel industry (Soares et al., 2012). The production of 
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enzymes is achieved primarily through fermentation techniques. Such techniques 

are classified into submerged fermentation and solid state fermentation.  The key 

essential steps involved in the production are: (1) Screening and selection of 

potential strains that produce cellulase. (2) Selection of inducing substrate and/or in 

the case of solid state fermentation a lignocellulosic substrate’s cellulose content 

may be enriched by pretreatment. (3) Cultivation of selected strain for production of 

enzymes. (4) Downstream processing – harvesting, purification and product 

recovery. 

2.6.2.1. Submerged fermentation 

Submerged fermentation (SmF) technique is best suited for microorganisms that 

require high moisture content. Traditionally, vast majority of microbial industrial 

enzymes (> 75%) that are used in commercial applications are produced by SmF 

method in which the selected microorganisms (bacteria and fungi) are cultivated in 

liquid nutrient rich medium containing inducing substrate for a particular enzyme of 

interest (Khan et al., 2016; Paloheimo et al., 2016; Subramaniyam & Vimala, 2012; 

Renge et al., 2012; Zhuang et al., 2007).  

The substrate is utilised quickly and the bioactive compounds (e.g. enzymes, 

antibiotics etc.) are secreted into the broth. One other important advantage of SmF is 

the easy and perfect mixing that ensures that microorganisms, nutrients and 

metabolites are evenly distributed within the reactor (Gervais & Molin, 2003). 

Another advantage in SmF is easy purification of product (Khan et al., 2016). T. 

harzianum was able to produce endoglucanase activity of 168 U/mL when grown on 

0.5% banana flour, an activity that was much higher  than when CMC was used (146 

U/mL) as a substrate (Rubeena et al., 2013).  

Different Trichoderma species were also assessed for their abilities to produce 

cellulase enzymes. T. reesei strain FCBP-364, T. viride strain FCBP-142 and T. 

harzianum FCBP-325 were found to produce endoglucanase activity of 53.42/U/mL, 

52.97 U/mL and 49.42 U/mL, respectively when CMC was used as carbon source 

(Shafigue et al., 2009). In other studies, T. harzianum produced cellulase enzymes 

system; exoglucanase (7.8 U/mL), endoglucanase (0.79 U/mL) and 0.92 U.mL of β-

glucosidase (Ahmed et al., 2009). T. harzianum strain (L04) produced 
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endoglucanase (62.2 U/L.h), exoglucanase (10.2 U/L.h) and β-glucanase (52.0 

U/L.h) using sugarcane bagasse (Benoliel et al., 2013). Another strain of T. 

harzianum IOC-3844 when grown on pretreated sugarcane bagasse produced 

cellulase activity of 445 U/L FPase, 6358 U/L endoglucanase and 742 U/L β-

glucanase (Castro et al., 2010). Under optimised conditions using the statistical 

method, and central composite rotational design (CCRD) T. harzianum IOC-3844 

produced cellulase with activity of 1225 U/L FPase, 27017 U/L endoglucanase and 

609 U/L β-glucanase (Rocha et al., 2013). 

Leghlimi et al. (2013) investigated the effect of temperature on the production of 

cellulase. They reported that T. longibrachiatum (GHL) produced 10.61 U/mL of 

endoglucanase activity, 2.04 (U/mL) FPase and 1.32 U/L β-glucosidase at 35 °C and 

T. reesei Rut C-30 had 13.67 U/mL of endoglucanse, 2.78 U/mL FPase and 0.62 

U/ml of β-glucosidase at 30 °C. The results indicate that the stimulatory effect of 

temperature on the secretion of cellulase varies from one species to another within 

the same genus. Overall, the results indicate that improvement of these Trichoderma 

species could result in higher cellulase activity been produced.  

The major drawback of SmF is the considerable costs involved in concentrating the 

enzymes from the aqueous medium (Zhuang et al., 2007). Submerged fermentation 

may be achieved through different fermentation systems namely, batch fermentation, 

semi-batch fermentation and continuous fermentation system. The most appropriate 

strategy of choice depends on the kinetic properties of the microorganism in addition 

to the aspects of process economics (Olsson & Hahn-Hägerdal 1996).  

2.6.2.1.1. Batch fermentation 

Batch fermentation is a fermentation process in which the medium containing the 

substrate and fermenting microorganism are introduced into the bioreactor under 

controlled environmental conditions and the system remains closed for the entire 

period of fermentation. The batch fermentation is a low cost and easy to operate with 

reduced risks of contamination (Paola et al., 2011; Olsson & Hahn-Hägerdal 1996).  
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2.6.2.1.2. Fed-batch fermentation 

This is a process conceived for fermenting microorganisms prone to substrate 

inhibition (Andrietta et al., 2011). Fed-batch fermentation is a semi-open system in 

which periodic controlled addition of substrate (or at times substrate with other 

essential nutrients) occurs during the process at a concentration lower than the 

inhibition concentration of a substrate in order to obtain higher final product 

concentration. The fed-batch process provides better yields and productivity than the 

batch process (Paola et al., 2011; Olsson & Hahn-Hägerdal 1996). Application of 

Fed-batch system in the fermentation of lignocellulose hydrolysate is shown to have 

“in-situ” detoxification through the action of fermenting microorganism (Paola et al., 

2011). 

2.6.2.1.3. Continuous fermentation  

In continuous fermentation, a substrate is constantly added to the reaction vessel 

and corresponding flow of fermented medium (product) is removed to keep the 

reaction volume constant. Moreover, the balance between feed and discharge is 

maintained for long and sufficient time to achieve steady-state operation with no 

changes in the onditions within the reactor. When compared to a batch system, 

continuous system’s mode of operation offers a reduced vessel down time for 

cleaning and filling by providing volumetric productivity that can translate into smaller 

reactor volumes and lower capital investment plus ease of control at steady state 

(Brethauer & Wyman 2010; Olsson & Hahn-Hägerdal 1996). 

2.6.2.2. Solid state fermentation 

Solid state fermentation (SSF) is considered a three phase heterogeneous process 

comprising of solid, liquid and gaseous phase. It offers potential benefits for the 

microbial cultivation for bioprocesses and product development (Gervais & Molin, 

2003; Thomas et al., 2013). In comparison with submerged fermentation, SSF has 

low capital costs for equipment, high volumetric productivity, produces less waste 

water (effluent), also produces relatively high concentrated product and shows 

reduced operational costs, Fig. 2.17 (Zhuang et al., 2007; Pandey, 2003; Pandey et 

al., 1999; Dueňas et al., 1995). In SSF the substrate is a solid material and the 
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substrate differs in composition, chemical nature, mechanical properties, particle 

size, water retention capacity etc. The substrate must also possess sufficient 

moisture to facilitate assimilation of nutrients to support microbial growth (Thomas et 

al., 2013). The solid material could either provide necessary carbon and other 

nutrients or it may be an inert material impregnated with rich nutritional medium to 

support growth of microorganisms growing on it (Pandey, 2000; Thomas et al., 

2013). An example of the most utilised substrate in SSF is agro-industrial residues, 

which are of low cost and attractive for bioprocessing (Thomas et al., 2013). In the 

case of lignocellulosic substrate, it is generally a practice to pretreat the material 

either chemically or mechanically to make the substrate accessible for microbial 

growth (Pandey, 2000). The use of agricultural waste in bioprocesses may help to 

mitigate environmental problems caused by waste disposal (Reddy et al., 2003). 

 

Figure 2.9. Flow charts of enzyme production using submerged fermentation (SmF) 

method compared to solid state fermentation, SSF (Zhuang et al., 2007). 

Bacteria (Bacillus sp, Pseudomonas sp etc.), yeasts (Endomicopsis burtonii, 

Schwanniomyces castelli etc) and fungi (Aspergillus sp, Fusarium sp, Trichoderma 

sp etc) can grow on solid substrate; however, the filamentous fungi are the best 

adapted microorganisms (Raimbault, 1998). The hyphal mode of growth enables the 

fungi to penetrate into the pores or intra-particles of the solid substrate to access the 

available nutrients and secrete hydrolytic enzymes (Raimbault, 1998). Fungi grow 

better in the undisturbed substrate (non-stirred environment), hence this makes 

unstirred SSF the best choice (Lee, 1997) and the higher product titres in SSF are 

due to the fact that the process mimics the natural habitat of the microorganisms, 
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and the activity is increased (Pandey, 2003). The main enzymes produced by 

lignocellulolytic fungi are cellulase, hemicellulose, pectinase and lignases (Tengerdy 

& Szakacs, 2003). Trichoderma and Aspergillus species have been used the most 

for the production of cellulase, xylanase, pectinases, etc. while amylolytic enzymes 

have been produced by Aspergillus and Rhizopus (Pandey et al., 1999). 

A major challenge in SSF is the mixing ability, and high viscosity that results in great 

shear force that damage microbial cells during growth. The water mass transfer is 

strongly related to other parameters such as aeration and temperature. Aeration 

plays a crucial role in the attempt to improve microbial growth by controlling water 

content (therefore, water activity), removal of volatile compounds, and CO2 together 

with the heat generated during the metabolism while providing O2 for aerobic growth 

(Gervais & Molin, 2003). It is difficult to monitor and control parameters such as pH, 

temperature, dissolved gas etc. than in submerged fermentation (Lee, 1997).  

Temperature directly influences microbial growth and secondary metabolite 

formation. During SSF, high heat accumulates in the process, which results in early 

cessation of growth and affects product formation. Solid state fermentation can be 

classified based on inoculum type; single (pure culture) or mixed culture. In pure 

culture, a single strain is used in fermentation whereas in a mixed culture using 

different microorganisms for biological processes, e.g. enzyme production or 

bioconversion of agro-industrial materials, different cultures are used (Bhargav et al., 

2008). In monoculture, A. fumigatus SK1 cultivated on untreated oil palm trunk 

produced cellulolytic and xylanase enzymes (Ang et al., 2013). T. longibrachiatum 

produced xylanase activity of 592.7 U/g substrate (Azin et al., 2007).  

In an effort to improve the production of hydrolytic enzymes, several studies 

investigated the effect of using mixed substrate and mixed culture amongst others to 

enhance the production levels and activities of the enzymes. In some instances, 

combinations of mixed substrate and mixed culture are used in SSF. Kilikian et al. 

(2014) reported cellulase activity of 10.6 FPU/g produced by Myceliophthora 

thermophile M77 grown on mixed substrates of soybean bran and sugarcane 

bagasse (10:90), initial moisture of 80% at 45 °C. The activity was 4.4 times higher 

than the production on a single substrate, wheat bran (Kilikian et al., 2014).  
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In mixed culture SSF, microbial strain compatibility is a critical factor and it has to be 

established case by case for each application. Once the microbial compatibility is 

established a cheaper substrate may be used in mixed culture SSF for production of 

enzyme without compromising on enzyme yields obtained in the case of single 

culture fermentation (Gutierrez-Correa et al., 1999). Dueňas et al. (1995) had found 

that co-culturing of Trichoderma reesei LM-UC4 and Aspergillus phoeniers QM239 in 

SSF yielded cellulase activity of 28 U/L.h whilst 10 U/L.h was attained in single SSF. 

Again, SSF by T. reesei LM-UC4 also lacked β-glucosidase activity (Dueňas et al., 

1995). Co-culturing of T. reesei and A. oryzae resulted in maximum cellulase activity 

of 10.7 FPU/g.ds and β-glucosidase of 10.7 U/g.ds under the optimal conditions at 

30 °C, pH 5 and 70% of moisture level (Brijwani et al., 2010). 

2.7. Ethanol production 

Ethanol (CH3CH2OH) is a liquid substance that is colourless, volatile and it has a 

slight odour. Ethanol production can be achieved by three processes (John, 1969 in 

Demirbaş, 2005) such as (1) chemical production – which involves hydration of 

alkanes (synthetic process), (2) biochemical process – involving fermentation of 

carbohydrates, and (3) hydrolysis and fermentation of lignocellulosic hydrolysate. A 

distinction is drawn between ethanol and bioethanol. Ethanol is synthesised by 

hydration of ethylene and bioethanol is produced by fermentation of sugars from 

biomass (e.g. maize and sugarcane), and lignocellulosic biomass (forest residues 

and agricultural wastes) (Roozbehani et al., 2013). 

2.7.1. Chemical production of ethanol (Synthetic production of ethanol) 

The ethanol is produced through indirect and direct hydration processes using 

sulphuric acid (H2SO4). The ethanol produced using the above processes is non-

renewable. The indirect process begins with the hydrocarbon feedstock containing 

35 – 95% ethylene being exposed to 95 – 98% H2SO4 to form mono-sulphate and 

subsequently hydrolysed with sufficient water to produce 50 – 60% aqueous 

sulphuric acid solution. The ethanol is then separated from dilute sulphuric acid. The 

resulting acid is concentrated and recycled back to the process. This process is 

summarised by chemical reactions below (Demirbaş, 2005): 
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 CH2=CH2 + H2SO4 → CH3CH2OSO3H                            (1) 

 CH3CH2OSO3H + H2O → CH3CH2OH + H2SO4              (2) 

Alternatively ethanol can be produced from acetylene process through direct 

hydration of ethylene in the present of a catalyst such as H2SO4 and HgSO4 

(mercuric sulphate) to form acetaldehyde. Acetaldehyde can be readily reduced by 

catalytic hydrogenation to ethyl alcohol. The process is summarised below: 

 C2H2 + H2O → CH3CHO                                                   (3) 

 CH3CHO + H2 → CH3CH2OH                                           (4) 

The synthetic process has some advantages; more ethanol volumes can be 

produced in a short time and requires little or no purification process steps. Global 

interest to reduce greenhouse gas emission led to increasing demand in the usage 

of renewable resource for ethanol production through biochemical processes 

(Demirbaş, 2005). 

2.7.2. Biochemical production of ethanol (bioethanol) 

Saccharomyces cerevisiae has been studied extensively for its ability to produce 

ethanol through glycolysis (Embden-Meyerhof-Parnas, EMP pathway) – a process 

by which one molecule of glucose is metabolised and two molecules of pyruvate are 

produced (Madigan et al., 2000). Fermentation of glucose by yeast to produce 

ethanol involves a series of coordinated enzymatic reactions, Fig. 2.18. The 

enzymes involved in the fermentation of glucose include hexokinase, (HK), 

phosphoglucoisomerase, (PGI), phosphofructokinase, (PFK), fructose bisphosphate 

aldolase, (FBPA), triose phosphate isomerase, (TPI), glyceraldehydes-3-phosphate 

dehydrogenase, (GAPDH), phosphoglycerate kinase, (PGK), 

phosphoglyceromutase, (PGM), enolase, (ENO), pyruvate kinase, (PYK), pyruvate  

decarboxylase, (PDC) and alcohol dehydrogenase, (ADH) (Madigan et al., 2000).  
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Figure 2.10. Metabolic pathway of ethanol fermentation in S. cerevisiae (Madigan et 

al., 2000). 

The simplest form of reaction through which yeast produce ethanol is shown below 

(Balat, 2006): 

(Glucose) C6H12O6 → Ethyl alcohol 2(CH3CH2OH) + Carbon dioxide 2(CO2)                        

Under anaerobic conditions, the pyruvate is further reduced to ethanol with the 

release of CO2. Other by-products that are produced during the process include 

glycerol (making up approximately 1% w/v), organic acids and higher alcohols at 

much lower levels (Bai et al., 2008; Ingledew, 1999). Theoretical yield is 0.511 g for 

ethanol and 0.489 for CO2 on the basis of glucose metabolised. In the process, two 

ATPs produced are used to drive the biosynthesis of yeast cells which involves a 

variety of energy requiring reactions. Therefore, ethanol production is tightly coupled 

with yeast cell growth (Bai et al., 2008).  

The sugar and starch crops are feedstock for first generation bioethanol while 

lignocellulosic is the feedstock for second generation bioethanol production. 

Bioethanol production from sugar based crops such as sugarcane, molasses, sugar 
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beet and sweet sorghum, involves direct assimilation of the simple sugars (glucose, 

fructose and sucrose) by the fermenting microorganisms and converting them into 

bioethanol. The fermentable sugars from sugar based crops are extracted by milling 

or crushing followed by fermentation (Devarapalli & Atiyeh, 2015). In contrast, starch 

and cellulose feedstock are made up of glucose units linked together by glycosidic 

bonds to form polymers and these feedstocks cannot be directly utilised to produce 

bioethanol by natural yeasts. A key step in the production of bioethanol from 

biomass is the conversion of complex carbohydrates (e.g. starch, cellulose and 

hemicellulose) through a process called saccharification to simple sugars that are 

fermented by microorganisms (Zhuang et al., 2007). Figure 2.19 summarises key 

processes involved in the bioethanol production through exploitation of renewable 

biomass such as sugar crops, starch crops and lignocellulosic material (Sriroth et al., 

2012).  

 

 

Figure 2.11. Schematic view of bioethanol production by fermentation process using 

sugar, starch and lignocellulosic feedstock (Sriroth et al., 2012). 
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2.7.2.1. Bioethanol production from sucrose containing materials 

Sugar cane, either its cane juice or cane molasses is the most important feedstock 

used in tropical and sub-tropical countries for bioethanol production. European 

countries use beet molasses as a feedstock (Winner Network, 2002). The 

conversion of sucrose into ethanol is a simple process because it does not require 

hydrolysis step. The disaccharide (Sucrose, a dimer of fructose and glucose) can be 

broken down directly by the fermenting yeast cells and the other advantage is that 

conditioning of the cane juice or molasses favours the hydrolysis of sucrose 

(Cardona & Sánchez, 2007).  

2.7.2.2. Bioethanol production from starch materials 

Starch feedstock (corn and wheat) is most utilised for bioethanol production in North 

America and Europe. In tropical countries, other starchy crops as tubers (e.g. 

cassava) can be used for commercial production of bioethanol (Cardona & Sánchez, 

2007). Starch is made up of 30% of long chains of D-glucose molecules linked 

together by α-1,4 glycosidic bonds(amylose)  and about 70% of highly branched 

polymer with α-1,6 glycosidic bonds, amylopectin (Bothast & Schlicher, 2005; 

Badger, 2002). Bioethanol production from corn is a well-established technology 

(Devarapalli & Atiyeh, 2015). Starch is not directly assimilated and fermented by 

yeast.  

The bioethanol production starts by corn undergoing either dry milling or wet milling 

process. Both starch obtained from the dry milling (producing about 67% of 

bioethanol) and wet milling making about 33% are treated the same way during the 

bioethanol production (Bothast & Schlicher, 2005). The conversion of starch to 

glucose begins firstly by thermostable α-amylase hydrolysing α-1,4 glycosidic linkage 

of starch polymer to soluble dextrins which is heated to over 100 °C to liquefy the 

mash. Secondly, glucoamylase with an optimum temperature of 65 °C is added to 

convert the liquefied starch to glucose. The resulting glucose can be readily 

fermented to bioethanol (Sriroth et al., 2012; Hahn-Hägerdal et al., 2006; Bothast & 

Schlicher, 2005). The last enzymatic stage (glucoamylase) can be performed either 

by separate hydrolysis and fermentation, SHF or simultaneous saccharification and 

fermentation, SSF (Bothast & Schlicher, 2005).  
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2.7.2.3. Bioethanol production from lignocellulosic material 

Lignocellulose biomass is the most abundant raw material and a more complex 

substrate than starch (Lee, 1997). Lignocellulose comprises of cellulose, 

hemicellulose and lignin. The production of bioethanol using diverse conversion 

technologies and various renewable non-food biomass marks the commencement of 

sustainable energy (Devarapalli & Atiyeh, 2015). The use of non-food biomass for 

bioethanol production will require efficient utilization of the sugars present in 

lignocellulose, mainly glucose and xylose. Cellulose polymer, just like starch, 

consists of long chains of glucose molecules (6-carbon sugar) but with different 

structural configuration. On the other hand, hemicellulose is also comprised of long 

chains of sugar molecules (5-carbon sugars mainly xylose) and some glucose 

molecules (Demirbaş, 2005).  Lignocellulosic hydrolysate contains a mixture of 

sugars with a high concentration of glucose (~ 70 – 100 g/L) and xylose (40 – 60 

g/L). Different processes or strategies to obtain hydrolysate (fermentable sugars) 

and ultimately bioethanol are (1) Separate enzymatic hydrolysis and fermentation, 

SHF. (2) Simultaneous saccharification and fermentation, SSF. (3) Separate 

hydrolysis and co-fermentation, SHCF. (4) Simultaneous saccharification and co-

fermentation, SSCF. (5) and consolidated bioprocessing, CBP.   

i. Separate Hydrolysis and Fermentation 

In SHF, the key advantage is that both hydrolysis and fermentation occur under the 

optimum conditions of each stage, while the drawback is the inhibition of cellulase 

activity by cellobiose and to a lesser extent by glucose. Various attempts to reduce 

inhibition of cellulase include the use of high concentration of enzyme, the 

supplementation of β-glucosidase during hydrolysis and removal of accumulated 

sugars by simultaneous saccharification and fermentation (Sun & Cheng, 2002).  

ii. Simultaneous Saccharification and Fermentation 

Simultaneous saccharification and fermentation is a batch system; it requires 

compatible fermentation and saccharification with a similar pH, temperature and 

optimum substrate concentration. This necessitates the use of thermo-tolerant 

yeasts capable of fermenting glucose to ethanol at a temperature above 40 °C, 
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which is closer to optima for the activity of the cellulase (Ballesteros et al., 2004). 

The optimum temperature for cellulase is often between 45 and 50 °C, whereas S. 

cerevisiae is becoming inactive at more than 40 °C (Taherzadeh & Karimi, 2007).  

A commercial Saccharomyces cerevisiae had been reported to have produced an 

ethanol yield of 72.4% in SSF, which corresponded to 20.5 g/L ethanol (Ӧhgren et 

al., 2007). A similar ethanol yield of 71.2% by thermotolerant yeast, Kluyveromyces 

marxianas CECT10875 from 10% substrate concentration and an enzyme loading of 

15 FPU/g substrate (Ballesteros et al., 2004). Zhang et al. (2013) reported ethanol 

yield of 69.49% under optimised condition, 37.5 °C, enzyme loading 30 FPU/g 

substrate, yeast concentration of 10 g/L and pH 4.6. In SSF the risk of contamination 

is minimised by the presence of accumulating ethanol during the process. SSF 

process has lower capital costs compared to SHF, since it requires a single vessel 

(Taharzadeh & Karimi, 2007). SSF showed distinct advantage over SHF with respect 

to reduction of total time required for the yeast to produce ethanol from wheat straw 

by 57% and 53% in non-detoxified and biodetoxified wheat straw hydrolysate, 

respectively (Saha et al., 2013) 

Through evolutionary adaptation of an S. cerevisiae strain a significant improvement 

in fermentation performance was attained with ethanol titer of 71.4 g/L and ethanol 

yield of 80.34% at 37 °C and 30% solids content (Qureshi et al., 2015). 

Thermotolerant yeast Klyveromyces marxianus DBTIOC-35 is a promising strain for 

SSF because of its capability to produce high titer of ethanol at temperatures above 

40 °C with maximum fermentation occurring at 45 °C (Saini et al., 2015b). S. 

cerevisiae lacks the ability to utilize xylose and arabinose during fermentation 

(Margeot et al., 2009). This high xylose and high cost of hydrolytic enzymes have 

hampered cellulosic ethanol production at a commercial scale (Yang et al., 2011; Ha 

et al., 2011). The high residual xylose is due to “glucose repression effect” that 

occurs during sequential assimilation of glucose then xylose and also as a result of 

the intolerance of fermenting microorganism to the already accumulated bioethanol. 

These effects are significant barriers to complete utilisation of mixed sugars in 

cellulosic hydrolysates (Ha et al., 2011).  

Yeasts such as Candida shehatae, Pachysolen tamophilus and Pichia stipitis can 

ferment xylose. However, the ethanol yields and productivity by the natural pentose 
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fermenting yeasts are often significantly lower than the glucose fermenting S. 

cerevisiae, implying the need for improvement in xylose fermentation. Xylose 

transport and xylose reductase (XR) are key targets for improvement (Chu & Lee, 

2007). Improvement through adaptation strategy by S. cerevisiae in xylose to 

enhance metabolism have been reported by Sonderegger & Sauer, (2003). The 

ethanol yields obtained through adaptation strategy are still low, 0.14 g/g (Pitkanen 

et al., 2005). 

Since the pentose sugar (xylose) constitutes the second highest percentage of 

sugars available in the hydrolysate, its fermentation to bioethanol becomes important 

for the efficiency and the economics of cellulosic bioethanol. To realise the economic 

benefits of xylose fermentation, several microorganisms have been genetically 

engineered to improve the fermentability of the sugar (Demirbaş, 2005). While many 

microorganisms can convert glucose efficiently into ethanol, the conversion of 

pentose remains relatively inefficient. Therefore, it is imperative that the potential 

microorganisms involved in the bioconversion efficiently convert both hexoses and 

pentoses present in lignocellulosic hydrolysate into desired end products, e.g. 

bioethanol (Chu & Lee, 2007). Co-fermentation of both hexose and pentose through 

SHCF, SSCF and CBP could address the inefficient utilisation of pentose sugar. 

iii. Separate hydrolysis and co-fermentation 

Separate hydrolysis and co-fermentation are similar to SHF in that the conditions for 

hydrolysis are and co-fermentation are performed under independently different 

optimised state. The drawback of this process is initial high sugar concentration 

which when fermented might lead to high ethanol being produced. The high ethanol 

inhibits yeast performance thereby indirectly suppressing the utilisation of xylose by 

the fermenting yeast. Nielsen et al. (2016) had a strategy to improve the utilization of 

xylose by two stage fermentation. The first stage was to preferment the xylose rich 

hydrolysate of steam pretreated wheat straw separately followed by fed-batch 

fermentation with feed hydrolysate containing glucose. This had resulted in an 

ethanol yield of 0.423 g/g and xylitol yield of 0.036 g/g.  
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iv. Simultaneous Saccharification and Co-fermentation 

An improvement to the SSF process is simultaneous saccharification and co-

fermentation (SSCF), in which co-fermentation refers to the fermentation of both 6-

carbon and 5-carbon sugars to ethanol (Teixeira et al., 2000). During lignocellulosic 

hydrolysate fermentation, the yeast S. cerevisiae preferentially uses glucose in 

preference to xylose and consequently more xylose remains unutilised. Katahira et 

al. (2006) constructed a recombinant yeast strain that can ferment xylose and 

cellooligosaccharides by integrating genes for intracellular expression of xylose 

reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis and 

xylulokinase (XK) from S. cerevisiae and a gene for β-glucosidase (BGL I) obtained 

from Aspergillus acleatus expressing β-glucosidase on the cell surface. The 

recombinant strain was able to ferment both xylose and cellooligosaccharides 

making up total sugar of 73 g/L after 36 hours and produced 30 g/L ethanol.  

Another challenge is that during simultaneous saccharification and fermentation the 

effective enzymatic hydrolysis is inhibited/or hampered by the accumulation of 

cellobiose and the compromised chosen temperature for the process (Hu et al., 

2016). Traditionally, accumulation of cellobiose during saccharification is minimised 

by the addition of β-glucosidase to convert cellobiose to glucose, then ethanol is 

produced by the fermenting microorganism. Several strategies to overcome the bulk 

of residual xylose and accumulated cellobiose have been developed by several 

researchers. For instance, Ha et al. (2011) had developed a strategy to promote co-

fermentation of hexose and pentose sugars by S. cerevisiae. This was achieved by 

combining an efficient xylose utilisation pathway with cellobiose transport system in 

order to by-pass problems associated with glucose repression, Fig. 2.20. The 

engineered yeast was able to co-ferment the two non-fermentable sugars present in 

lignocellulose hydrolysate synergistically into ethanol. The improved ethanol 

productivity had advanced the fermentation economics of lignocellulosic hydrolysate 

and may reduce the enzyme usage (including addition of β-glucosidase) and overall 

costs associated with cellulosic saccharification process (Ha et al., 2011). A thermo-

tolerant industrial S. cerevisiae SyBE001603 capable of assimilating cellobiose at 42 

°C was constructed. The strategy helped in expressing the genes encoding 

cellobiose transporter (CDT), which was discovered in Neurospora crassa and BGL 
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into the yeast. Overexpression of such genes accelerated cellobiose utilisation and 

the overall improvement also depended on the strain background (Hu et al., 2016).  

Recently, Ko et al. (2016) reported that S. cerevisiae SXA-RZP-E strain expressing 

xylose isomerase had shown efficient co-fermentation of lignocellulosic hydrolysate 

with ethanol yield improvement ranging from 0.43 to 0.46 g/g sugar. Successful 

conversion of xylose concomitantly with glucose could possibly reduce the cost of 

bioethanol production.  

v. Consolidated bioprocessing 

The cost of cellulases associated with capital investment in the process can be 

reduced by another strategy called consolidated bioprocessing (CBP) process, which 

increases volumetric productivity by integrating cellulase production, cellulose 

hydrolysis and ethanol production in a single step process (Zhang & Zhang, 2013; 

Lynd et al., 2008). Consolidated bioprocessing requires a microorganism that 

combines properties that relate to both substrate utilisation and product formation. 

The desired substrate utilisation properties include the production of a hydrolytic 

enzyme system to facilitate high rates of hydrolysis and utilisation of the resulting 

hydrolysis products under anaerobic conditions. The desired product formation 

properties would include high product selectivity and concentrations (Lynd et al., 

2002).  

An engineered wine yeast strain K1-V1116 with genes encoding cellulase, β-

glucosidase I (BGL I) from A. aculeatus, endoglucanase II (EG II) and 

cellobiohydrolase II (CBH II) both from T. reesei were able to ferment 63% of 

cellulose in 96 hours and produced 2.6% (v/v) of bioethanol titer (Khramtsov et al., 

2011). Engineering cellulolytic enzymes with improved catalytic efficiency and 

enhanced thermo-stability will be economical key to commercialisation of 

lignocellulosic bioethanol (Zhang & Zhang, 2013). du Plessis, (2008) constructed S. 

cerevisiae strain co-expressing cellulase genes, endoglucanase I and II (egI or 

Cel5A and edII or Cel7B) of Trichoderma ressei QM6a for efficient hydrolysis of 

amorphous cellulose. The strain expressed a satisfactory level of cellulase activity. 

However, when additional synthetic codon optimised cellobiohydrolase gene (sCBHI) 

from T. reesei and β-glucosidase (bglI) from Saccharomycopsis fibuligera were 
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introduced in S. cerevisiae, the overall cellulase activity was affected and the 

recombinant strain failed to produce sufficient glucose when grown on cellulose, 

therefore no ethanol produced (du Plessis, 2008). T. reesei has been considered to 

be an agent of CBP due to its ability to produce sufficient cellulases and it is already 

commercially established. However, the challenge with T. reesei is its low ethanol 

yield, production rate and ethanol tolerance (van Zyl et al., 2011; Xu et al., 2009).  

The inefficient production of ethanol by T. reesei is not as a result of the absence of 

the relevant genes and pathways for efficient conversion process but notably due to 

the low expression of the genes or the activity of the enzymes encoded by the genes 

in the bioethanol pathway (Xu et al., 2009). Due to the need for microorganisms 

possessing high tolerance towards high ethanol and sugar and perhaps inhibitors 

that may be produced in the process, a filamentous fungi such as Fusarium 

oxysporum was proposed as a commercial competitive CBP agent or components of 

its enzymatic arsenal contributing to the development of robust CBP agent (Ali et al., 

2016). Success in CBP development has the potential to lower the cost of biomass 

processing by eliminating operational and capital costs associated with specific 

enzyme production and more effective biomass solubilisation (Olson et al., 2011). 

Currently, the CBP systems have improved hydrolysis and fermentation efficiencies, 

eliminated addition of hydrolytic enzymes and inhibition effects while requiring low 

energy for biological conversion of lignocellulosic biomass to biofuels (Mbaneme-

Smith & Chinn, 2015). Recently, Yang et al. (2016) constructed a recombinant sestc 

S. cerevisiae, a strain which harboured a single-enzyme system three cellulase gene 

(sestc) by protoplast method to improve cellulase expression. The total activity (i.e. 

cellulase activity, endoglucanase, exoglucanase and xylanase) of the recombinant 

strain was 1.1 (27.5-fold), 378 (63-fold), 1.44 (24-fold) and 164 U/mL (19-fold), which 

was higher than the activity of the wild type. The engineered S. cerevisiae strain 

produced 8.1 g/L of ethanol, a 57.86-fold higher than 0.14 g/L of ethanol produced 

by wild type strain. Liu et al. (2016) also constructed S. cerevisiae that displayed 

BGL I, EG, CBH I and CBH II on the cell surface through a series of rational design. 

The cellulose-adherent strain displayed cellulose degradation mechanisms which 

differed from the free form cellulase mechanism. The strain directly produced ethanol 

of about 1.3 g/L while the wild type produced no ethanol in high-density cellulose 
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(100 g/L of MC6 substrate). A 7-fold increase in ethanol production was achieved 

with addition of 1.0 FPU/g biomass C-Tec2 leading to 18 g/L ethanol yield (Liu et al., 

2016).  

Overall, the bioethanol production from lignocellulosic biomass includes the 

following: biomass pretreatment, cellulose hydrolysis, fermentation of sugar 

(hexoses and/or including pentoses), separation and effluent treatment. All the 

fermentation strategies/techniques applicable to lignocellulosic hydrolysate are 

illustrated in Fig. 2.20 (Cardona & Sánchez, 2007).  This includes SHF whereby co-

fermentation of hexose and pentose occurs, SSF, SSCF and CBP. It is also 

important to note that commercialisation of bioethanol produced from lignocellulosic 

biomass is held back by the cost of the enzyme as well as their hydrolytic efficiency 

(Sindhu et al., 2015).  

 

 

Figure 2.12. Generic block diagram of bioethanol production from lignocellulosic 

biomass. Possibilities for reaction-reaction integration are shown inside the shaded 

boxes: CF, co-fermentation; SSF, simultaneous saccharification and fermentation; 

SSCF, simultaneous saccharification and co-fermentation; CBP, consolidated 

bioprocessing. Main stream components: C, cellulose; H, hemicellulose; L, lignin; 

Cel, cellulase; G, glucose; P, pentose; I, inhibitors; EtOH, ethanol (Cardona & 

Sánchez, 2007). 
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2.7.3. Factors affecting bioethanol production from lignocellulosic biomass 

During ethanol fermentation various stress factors such as nutrients deficiency, high 

temperature, pH<3.5, osmotic pressure (>25% sugar w/v), contamination and other 

yeast metabolic products such as ethanol accumulation, and organic acids affect the 

yeast fermentative strength. During the late phases of ethanol fermentation, these 

factors act synergistically and severely affect yeast cells leading to reduced yeast 

viability and vigor, as well as ethanol yield (Zabed et al., 2014; Ingledew, 1999). 

The process of lignocellulosic bioethanol production generates inhibitory products 

during biomass pretreatment. The inhibitory compounds include phenolics, furans 

(furfurals and 5-Hydroxymethylfurfural, HMF), aliphatic acids and inorganic 

compounds. 5-Hydroxymethylfurfural is formed from the degradation of hexoses and 

furfural is formed from the degradation of pentoses (Kupiainen et al., 2014; Lenihan 

et al., 2010). Other compounds such as acetic acid and uronic acids are released 

from acetyl groups of hemicellulose and other acids such as formic (FA) and levulinic 

acids (LA) resulting from sugar degradation acidify hydrolysate as shown in Fig. 2.21 

and eventually inhibit downstream biochemical processes (Jӧnsson & Martín, 2016; 

Kupiainen et al., 2014).  

 

 

Figure 2.13. Illustrate the formations of inhibitory compounds during acid hydrolysis 

(Kupiainen et al., 2014). 

Aromatic carboxylic acids are found within the group of the phenyl compounds which 

include both phenolic aromatic carboxylic acids such as ferulic acid and 4-

hydroxybenzoic acid, and non-phenolic aromatic carboxylic acids like cinnamic acid. 

However, the aromatic carboxylic acids are present in the lignocellulosic hydrolysate 

in relatively low concentrations, but these compounds do have stronger inhibitory 
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effects on microbial growth than the aliphatic carboxylic acids (Jӧnsson & Martín, 

2016). These inhibitory compounds slow down the yeast and other fermenting 

microorganism’s metabolism and reduce the organism’s glycolytic enzymatic activity 

leading to a premature stop of the fermentation process. It has been postulated that 

the compounds enter the cell’s nucleus and bind to the replicating deoxyribonucleic 

acid (DNA) and arrest cell growth and reproduction (Lenihan et al., 2010). 

Other compounds such as lignin derived aromatic aldehydes have relatively high 

toxicity at low concentration and the effects of these compounds as well as other 

aromatic compounds on fermenting microorganism vary and can also be predicted 

based on the functional groups (Jӧnsson & Martín, 2016). The levels of all these 

inhibitory compounds depend on the feedstock type and severity of the pretreatment.  

In order to overcome these limiting factors for lignocellulosic bioethanol, such 

inhibitory compounds can be removed by microbial detoxification process (Parawira 

& Tekere, 2011) and through membrane filtration system or develop a robust 

fermenting microorganism(s) through adaptation strategies in the presence of 

inhibitory compounds. Ethanol accumulation during fermentation has an inhibitory 

effect on the fermenting microorganism. 

2.7.4. Effects of ethanol on Saccharomyces cerevisiae 

The advent of a robust CBP strain with a super hydrolysis machinery and high 

fermentation performance in high-density substrate will mean high ethanol level can 

be attained. Ethanol tolerance by fermenting microorganisms is an important trait in 

the economy of the bioethanol industry. High ethanol tolerance by yeast strain is 

prerequisite for high fermentation efficiency and consequently high ethanol yield (Hu 

et al., 2007). During ethanol fermentation various stress factors such as nutrient 

deficiency, high temperature, pH<3.5, osmotic pressure (>25% sugar w/v), 

contamination and other yeast metabolic products such as ethanol accumulation, 

and organic acids affect the yeast fermentative strength. During the late phases of 

bioethanol fermentation, these factors act synergistically and severely affect yeast 

cells leading to reduced yeast viability and vigor, as well as ethanol yield (Ingledew, 

1999).   
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Understanding the mechanisms through which ethanol inhibits yeast cells is 

fundamental to exploiting the full potential of the yeast strains and the optimisation of 

fermentation process (Bai et al., 2008). The effects of ethanol on the fermenting 

microorganisms are multifaceted as illustrated in Fig. 2.22 and the response by S. 

cerevisiae are equally complex with alterations in gene expression enhancing the 

frequency of peptide mutations, altering metabolism, and denaturing intracellular 

proteins. The glycolytic enzymes and plasma membrane composition also change   

and lowering the rate of protein accumulation (Tran et al., 2011; Hu et al., 2007; 

D’Amore & Stewart, 1987). 

  

Figure 2.14. The complex phenomenon about ethanol inhibition with some possible 

sites in yeast cells at which ethanol could exert a significant influence on the yeast’s 

vigor (D’Amore & Stewart, 1987). 

A generally accepted view amongst many studies is that the mechanism of ethanol 

inhibition targets the membranes of some organelles and cells (D’Amore & Stewart, 

1987). The membrane fluidity, which is related to its lipid composition, is altered in 

the presence of ethanol and consequently, membrane permeability to some ions 

(especially H+) is significantly affected. As ions enter the cell, there is dissipation of 

the electro-chemical gradient across the membrane which in turn affects the 
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formation and maintenance of the proton driving force with a subsequent decrease in 

intracellular pH (Basso et al., 2011). Other effects of ethanol on yeast physiology 

during fermentation include growth inhibition and enzymatic inactivation which leads 

to a decreased cell viability (Basso et al., 2011 

Traditionally, the improvements of ethanol production relied on mutagenized pool of 

a single strain (Thammasittirong et al., 2013), which potentially limit the effectiveness 

of the method (Snoek et al., 2015). Thammasittirong et al. (2013) improved ethanol 

tolerance of S. cerevisiae NRI by random UV-C mutagenesis. The mutant S. 

cerevisiae URNR56 produces a maximum ethanol concentration of 10.3% (v/v), 

ethanol productivity 1.7 g/L.h and theoretical yield of 98.7% from molasses medium 

at 37 °C, while for the S. cerevisiae NRI’s (wild type) produced less ethanol with the 

corresponding values of 8.6% (v/v), 1.4 g/L.h and 83.3%, respectively. 

Due to continued growing interests in research towards understanding the metabolic 

processes and the pathways associated with ethanol tolerance in S. cerevisiae, a 

system based network approach to ethanol tolerance was developed (Kasavi et al., 

2014). With system based network approach 17 candidate genes with unknown 

biological functions were identified. Four genes (YDR307W, YHL042W, YPL264L 

and YMR215W) were randomly selected for functional test and deletion of 

YDR307W and YHL042W showed improved ethanol tolerance in the strains, 

whereas deletion of the other two genes YPL264L and YMR215W resulted in 

decreased cell viability when exposed to ethanol treatment for an extended period 

(Kasavi et al., 2014).  

Recently, Snoek et al. (2015) explored a novel robot-assisted strategy that allows 

genome shuffling of multiple heterothallic parental yeast strains on a large scale. The 

strategy allowed selection of eight hybrids exhibiting superior fermentation 

performance over the commercial biofuel strain Ethanol Red. The best hybrid strain 

H1 fermented 32% (w/v) of glucose completely, yielding 18.7% (v/v) ethanol with 

ethanol productivity of 0.9 g/L.h and ethanol yield of 0.45 g/g glucose (Snoek et al., 

2015). Therefore, the availability of yeast strains with increased fermentation 

performance could help to increase the productivity and economic viability of 

bioethanol production (Snoek et al., 2015). 
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CHAPTER 3 

Screening and selection of fungi that produce cellulase and to 
optimise the production conditions in submerged fermentation 

3.1. INTRODUCTION 

Cellulase enzymes system are produced by a wide spectrum of microorganisms 

found in nature. Soil is inhabited by a large variety of microorganisms including 

bacteria, actinomycetes, algae and fungi. Microorganisms form a major component 

of soil (Sharada et al., 2013) and are associated with compost materials. Plant 

compost, for example, it is inhabited by microorganisms capable of degrading 

lignocellulosic polymers. The complete depolymerisation of cellulose requires 

synergistic activity between cellulolytic and non-cellulolytic microorganisms (Beguin 

& Aubert, 1994). The term “Cellulase enzymes system” refers to multiple enzymes 

involved in the hydrolysis of cellulose namely; exoglucanase (exo-1,4-β-glucanases, 

EC 3.2.1.91) endoglucanase (endo-1,4-β-glucanases, EC 3.2.1.4) and β-

glucosidases (β-D-glucoside glucohydrolase, EC 3.2.1.21). Screening and isolation 

of microorganisms that are producing cellulases are one of the pivotal ways of 

discovering novel cellulase enzymes with diverse properties (Juturu & Wu, 2014). 

Current commercial cellulases are mainly produced by Trichoderma and Aspergillus 

species. Trichoderma produces large quantities of endoglucanase, exoglucanase 

and relatively low levels of β-glucosidase (Schuster & Schmoll 2010), whereas 

Aspergillus produces large quantities of endoglucanase, β-glucosidase and low 

levels of exoglucanase (Ward et al., 2006). 

Cellulose is a simple linear organic polymer of β-1-4 linked glucopyranose units. 

Cellulose chains have varying degrees of polymerization (DPs). In primary cell walls, 

the DP range is 5000 – 7500 glucopyranose units, whereas the DP in secondary cell 

walls is approximately 10000 and 15000 (O’Sullivan, 1997). Cellulose is abundantly 

available in materials, such as agro-wastes, municipal wastes, forest residues, etc. 

Enzymatic hydrolysis of cellulosic biomass to soluble fermentable sugars could 

potentially be a sustainable approach to develop an alternative fuel source and 

reduce global dependence on non-renewable fossil energy (Kuhad et al., 2011). 
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Enzymatic hydrolysis of cellulosic biomass is preferred over acid hydrolysis due to 

the absence of sugar degradation in the enzymatic process. The complete enzymatic 

hydrolysis of cellulosic biomass requires synergy between endoglucanases, 

exoglucanases and β-glucosidases. This action is often referred to as total cellulase, 

of which the activity is measured using insoluble substrates such as the Whatman 

No. 1 filter paper, cotton linter, microcrystalline cellulose (Avicel) or bacterial 

cellulose (Zhang et al., 2006). Endo-β-1-4 glucanase cleaves cellulose internally at 

the β-1-4 glycosidic linkage releasing oligosaccharide chains of different lengths, 

whereas exo- β-1-4 glucanase cleaves the oligosaccharide chains from either the 

reducing or non-reducing ends to release di-saccharides, trio-and tetra-saccharides. 

β-glucosidase cleaves the β-1-4 linkage in the di-saccharide (cellobiose) to release 

glucose molecules.  It can also hydrolyse very short chains of β-1,4 oligoglucosides 

up to cellohexaose, but the reaction rate decrease with chain length (Saini et al., 

2015a; Bhat & Bhat, 1997; Beguin & Aubert, 1994). 

Technology for the utilization of cellulosic biomass for the production of bioethanol is 

progressing slowly due to high production cost of cellulases, the recalcitrant nature 

of cellulosic biomass and inefficient cellulases for the release of high levels of 

fermentable sugars (Zhuang et al., 2007). Research efforts have been undertaken to 

improve the efficiency of the known enzymes, identify new enzymes, and optimise 

enzyme mix preparations for cellulosic biomass hydrolysis (Merino & Cherry, 2007). 

Improving fungal hydrolytic activity and finding stable enzymes that are tolerant to 

extreme conditions have become a priority (Dashtban et al., 2009). 

Agricultural composts are also the habitat of a variety of cellulose degrading 

microorganisms. Banana by-products, such as leaves, rachis and pseudostem 

contain high levels of cellulose (Li et al., 2010; Abdul Khalil et al., 2006). These 

cellulose rich materials are discarded after the harvest of the banana fruit and left to 

decay either in the plantation site or at the dumping site (Meena et al., 2015; Li et al., 

2010). The decaying of plant material is facilitated by microorganisms, hence this 

study aimed to isolate fungi that secrete significant levels of cellulase system 

(endoglucanase, exoglucanase and β-glucosidase) with ability to hydrolyse cellulose 

obtainable from banana waste to fermentable sugars for the bioethanol industry. In 
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this study, a stringent isolation method has been applied to selectively isolate fungal 

species that produce cellulase enzyme system for the bioethanol industry. 

3.2. MATERIALS AND METHODS 

3.2.1. Sample collection and screening of fungi that produce cellulase 

Upper soil samples were collected in clean plastic bags from decomposed banana 

agro-waste (dumpsite and plantations) at the Tzaneen Allesbeste farm, Limpopo, 

South Africa and from a decomposed Strelitzia alba plant at the University of 

Limpopo campus, South Africa. Fungal isolation was done by the serial dilution 

method. Three grams of soil from each site were suspended in 50 mL sterile distilled 

water. A 100 µL aliquot of soil suspension, after been diluted ten times, was spread 

plated onto a selective Avicel agar medium (2% Avicel, 1.5% agar, 5 mL 

chloramphenicol (50 mg/mL) and 0.67% Yeast Nitrogen Base (YNB) without amino 

acids). The Avicel agar plates were incubated at 30 °C until fungal growth was 

evident. The fungi were purified by the hyphal tip method. The tip (or edge) of 

mycelia growth was cut using a sterile scalpel and sub-cultured onto agar plates 

containing chloramphenicol to inhibit bacterial growth for three passages (Núňez -  

Trujillo et al., 2013; Ibatsam et al., 2012). The fungal isolates were maintained at 4 

°C on malt extract agar (30 g/L malt extract, 20 g/L dextrose, 3 g/L peptone and 15 

g/L agar). 

The enzymatic screening for cellulase was based on Congo Red (CR) dye 

supplemented agar plate assay (Yoon et al., 2007). The composition of the medium 

was 1% carboxymethyl cellulose (CMC), 1.5% agar, 0.67% YNB without amino acids 

and 0.01% Congo Red. The ten fungal isolates obtained were cultured on CMC – 

CR agar and incubated at 30 °C for 72 – 96 hours. This method does not require any 

washing of the plates with sodium chloride solution. As growth develops the 

degradation (hydrolysis) of CMC results in the release of the bound CR dye. This is 

revealed by the appearance of a pale yellow halo zone surrounding the fungal 

colony. Intact CMC- bound CR dye has a red or dark red background depending on 

the percentage of dye used. The degree of degradation varies amongst fungal 

species or even at the strain level. 
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The second screening was based on cellulolytic hydrolysis of filter paper (total 

cellulase activity). Six fungal isolates were induced to produce cellulase using a 

synthetic medium described by Peixoto (2006) and Avicel as the sole source of 

carbon. The synthetic media consisted of 2 g/L K2HPO4, 0.5 g/L KCl, 0.01 g/L 

FeSO4.7H2O, 20 g/L Avicel, 0.15 g/L MgSO4.7H2O, 7 g/L KH2PO4, 1 g/L (NH4)SO4, 

and 1 g/L yeast extract. The pH of the medium was adjusted to 5.5 prior to 

sterilization. Inoculation was done by cutting approximately 0.5 x 0.5 cm of fungal 

growth on agar medium and adding it into 100 mL medium in 250 mL Erlenmeyer 

flasks.  All the flasks were incubated at 30 °C for 7 days, while shaking at 150 rpm. A 

5 mL sample was removed after every 24 hours of incubation and used for filter 

paper assays i.e. total cellulase activity. 

3.2.2. Molecular identification of fungal isolates 

The identification of the unknown fungi relied on the conserved nucleotide sequence 

of the gene (DNA) coding for the 18S, 5.8S and 28S rRNA by the amplification of the 

ribosomal internal transcribed spacer (ITS) region of the genomic DNA by 

Polymerase Chain Reaction (PCR) (White et al., 1990). 

3.2.2.1. Genomic DNA isolation and purification 

Fungal genomic DNA isolation and purification was done by following the procedure 

outlined in the ZR Fungal/Bacterial DNA Kit™ (Zymo Research, Catalogue No. 

D6005), according to the manufacturer’s instruction.  

3.2.2.2. Amplification of the gene for identification of the fungus 

The ITS target region (i.e. ITS-5.8S-ITS fragment) was amplified using PCR primers, 

ITS-1 (5'-TCCGTAGGTGAACCTGAGG-3') and ITS-4 (5'-

TCCTCCGCTTATTGATATGC-3)' (White et al., 1990; Wang et al., 2012; Benoliel et 

al., 2013). Amplification was carried out in 25 μL reactions using EconoTaq® PLUS 

GREEN 2X Master Mix (Lucigen).The following PCR conditions were used: 35 

cycles including an initial denaturation step at 95 °C for 2 minutes. Subsequent 

denaturation was at 95 °C, 30 seconds, annealing at 50 °C for 30 seconds and 

extension at 72 °C for 1 minute. A final extension at 72 °C for 10 minutes was 

followed by holding at 4 °C. The PCR products were analysed on a 1% agarose gel. 
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3.2.2.3. Sequencing analysis 

The amplicons (fragments) were extracted from the 1% agarose gel using 

Zymoclean™ Gel DNA Recovery Kit™ (Zymo Research, Catalogue No. D4001). The 

extracted fragments were sequenced in the forward and reverse directions by using 

Applied Biosystems, ThermoFisher Scientific, Big Dye terminator kit v3.1 and purified 

using ZR-96 DNA Sequencing Clean-up Kit™ (Zymo Research, Catalogue No. 

D4050). The purified fragments were sequenced on the ABI 3500xl Genetic Analyzer 

(Applied Biosystems, ThermoFisher Scientific). Species were identified by searching 

databases using BLAST (http://www.ncbi.nlm.nih.gov/BLAST/). 

3.2.3. Effect of initial pH medium and incubation temperature on cellulase 
production 

The effect of initial pH on the production of cellulase was studied by adjusting the pH 

of the media in the range of 4.5 to 7.0. The pH adjustment was done using either 1M 

NaOH or 1M HCl solution. The effect of temperature on the production of cellulase 

was investigated at 30, 35 and 40 °C with the pH adjusted to 6.5 or 7.0 (based on 

cellulase activity determined during pH studies). Inoculation and incubation 

conditions were maintained as described above, in secondary screening. Five 

millilitre samples were harvested every 24 hours of incubation and used for enzyme 

assays. The crude enzyme was prepared by centrifugation of harvested sample 

using a micro-centrifuge at 12470 x g for 10 minutes at room temperature. 

3.2.4. Cellulolytic activity assay 

3.2.4.1. Cellulase (FPase) 

The total cellulase activity was determined by filter paper assay using Whatman No.1 

filter paper strip with a dimension of 1 x 6.0 cm equivalent to 50 mg of substrate 

according to Ghose (1987). At least two dilutions were made, one dilution that 

releases slightly less than 2.0 mg and the other dilution releasing more than 2.0 mg. 

The reaction mixture contained 1.0 mL of 0.05 M Na-citrate, pH 5.0, filter paper strip 

and 0.5 mL of crude enzyme diluted accordingly. The mixture was incubated at 50 

°C for 1 hour. The released reducing sugar was estimated by addition of 3,5-

dinitrosalicylic acid (DNS) with glucose as standard. The absorbance was read at 
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540 nm by using a Beckman Coulter, DU® 720 UV/Vis spectrophotometer. The 

assay was performed in triplicate including controls. Filter paper activity (FPU) is 

defined as 0.37 divided by the amount of enzyme required to liberate 2.0 mg of 

glucose from filter paper strip (≈ 50 mg) in 1 hour.  

3.2.4.2. Endoglucanase assay 

Endoglucanase activity in the culture supernatant was determined according to the 

method described by Ghose (1987). The reaction mixture contained 0.5 ml of 1% 

CMC in 0.05 M Na-acetate buffer, pH 5.0 and 0.5 mL of appropriately diluted crude 

enzyme. The mixture was incubated at 50 °C for 30 minutes and the released 

reducing sugar was estimated as indicated in the assay for total activity above. One 

unit of endoglucanase activity was defined as the amount of enzyme liberating one 

µmole of reducing sugar from CMC under the assay conditions.  

3.2.4.3. β-glucosidase assay 

β-glucosidase activity was determined according to the method described by Herr 

(1979). The reaction mixture contained 0.2 mL of 0.01 M ρ-nitrophenyl β-D-

glucopyranoside (pNPG) in 0.05 M citrate buffer pH 4.8 and 0.2 mL of appropriately 

diluted enzyme solution.  The substrate control contained 0.4 mL of 0.01 M pNPG in 

0.05 M citrate buffer at pH 4.8. The mixtures were incubated at 50 °C for 30 minutes. 

The activity of the enzyme indicated by the released ρ-nitrophenol was estimated by 

addition of 0.05 M NaOH-Glycine buffer with ρ-nitrophenol used as standard and 

absorbance of the developed colour was read at 420 nm by using spectrophotometer 

(Beckman Coulter, DU® 720 UV/Vis). One unit of β-glucosidase activity was defined 

as the amount of enzyme liberating one µmole of ρ-nitrophenol under the assay 

conditions. 

3.2.5. Calculations of enzyme activities 

3.2.5.1. Cellulase (Filter paper activity, FPase) 

Cellulase activity was determined by filter paper assay using Whatman No.1 

according to Ghose (1987) 
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FPA �
FPU
mL

� =
0.37
[Enz]                                                                                                           (1)       

 

,where [Enz] is the concentration of enzyme that release 2.0 mg of glucose from filter 

paper in 60 minutes. 

3.2.5.2. Endoglucanase (CMCase) and β-glucosidase. 

To estimate the activities of either endoglucanase and/or β-glucosidase based on the 

released reducing sugars or ρ-nitrophenol, the equation (2) was used (Rubeena et 

al., 2013). 

β − glucosidase or CMCase �
U

mL
� =

∆E × Vf × Df
ε × ∆t × Venz

                                                   (2) 

 

,whereby ΔE is absorbance value at 540 nm, Vf is final volume, ε is extinction 

coefficient of glucose (slope), Δt is incubation time, Venz is the volume of crude 

enzyme and DF is dilution factor (if applicable).  

3.2.6. Statistical analysis 

All the experiments were done in triplicates. The data generated was statistically 

analysed by Two-way analysis of variance (ANOVA) test using MS Excel 2010. 

Differences were considered significant when probability value (p) was <0.05. The 

error bars in the graphs represent standard error, SE. 
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3.3. RESULTS 

3.3.1. Screening and identification of fungi that produce cellulase 

According to Yoon et al. (2007), the plate screening methods with dye coupled 

substrates provided a relatively straight forward and easy tool for specific detection 

of endoglucanase producing fungi. The results revealed that Ten of the isolated fungi 

were able to grow and secrete endoglucanase which hydrolysed CMC bound to CR 

dye. This was revealed by the appearance of pale-yellow “halo zone” around the 

fungal growth or colony and it was an indication of endoglucanase activity or CMC 

hydrolysis. However, only six fungal isolates indicated larger halo zones around 

growth. These six fungal isolates were subsequently identified using ITS sequencing. 

The identification of the selected six isolates revealed two different genera, namely 

Trichoderma and Aspergillus, Table 3.1. The Trichoderma species were 

T. longibrachiatum and T. harzianum and the Aspergillus species were A. fumigatus. 

The six fungal species were further evaluated for cellulase production in submerging 

fermentation. 

A quantitative evaluation of cellulase production by the selected fungi, Table 3.1 was 

carried out in submerged fermentation using Avicel as a substrate at an initial pH of 

5.5 at 30 °C. Maximum cellulase activity was observed after 96 hours for all the 

fungal strains, Fig 3.1. T. longibrachiatum LMLSAUL 14-1 produced 4.14 FPU/mL 

followed by T. harzianum LMLBP07 13-5 with an activity of 3.05 FPU/mL, A. 

fumigatus LMLPS 13-4 with an activity of 2.14 FPU/mL, A. fumigatus LMLPS 13-1 

with an activity of 1.85 FPU/mL, A. fumigatus LMLBS02 13-2 an activity of 1.69 

FPU/mL and A. fumigatus LMLBP06 13-3 an activity of 3 1.55 FPU/mL.  
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Table 3. 1. Fungal isolation and screening on Avicel and CMC-Congo Red agar. 

Sampling site Isolate code no. Identification 

Banana plantation site, Allesbeste farm, Tzaneen aLMLBP07 13-5 

aLMLBP06 13-3 

Trichoderma harzianum 

Aspergillus fumigatus 

Decomposing banana pseudostem, Allesbeste farm, Tzaneen bLMLPS 13-1 

bLMLPS 13-4 

Aspergillus fumigatus 

Aspergillus fumigatus 

Banana dumpsite, Allesbeste farm, Tzaneen cLMLBS02 13-2 Aspergillus fumigatus 

Decomposing Strelizia alba, University of Limpopo dLMLSAUL 14-1 Trichoderma longibrachiatum 

aBP refers to banana plantation site; bPS refers to Pseudostem; cBS refers to banana dumpsite outside plantation; dSAUL refers to Strelitzia alba at University of Limpopo 
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Figure 3.1. Cellulases production by isolated fungal strains at 30 °C and initial pH 

5.5. 

3.3.2. Effect of initial pH medium on cellulase production 

The influence of pH on the production of cellulase was assessed for the six fungal 

strains at 30 °C, Fig. 3.2. Maximum cellulase activity was detected for all fungal 

isolates when the initial pH of the medium was 6.5, Fig. 3.2. The Trichoderma 

longibrachiatum LMLSAUL 14-1 strain produced the highest cellulase activity of 8.08 

FPU/mL. This was followed by T. harzianum LMLBP07 13-5 with activity of 5.77 

FPU/mL. A. fumigatus LMLBP06 13-3 and A. fumigatus LMLPS 13-1 produced 

maximum cellulase activity of 3.05 FPU/mL with the lowest cellulase activity of 2.04 

FPU/mL by A. fumigatus LMLPS 13-4. 
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Figure 3.2. The effect of initial medium pH on the production of cellulases by 

isolated fungi at 30°C. 

The production of endoglucanse activity was the highest at pH 6.5 for all the fungal 

strains (Fig. 3.3).  

 

Figure 3.3. The effect of initial medium pH on the production of endoglucanase by 

the isolated fungal strains at 30 °C. 
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Trichoderma longibrachiatum LMLSAUL 14-1 and T. harzianum LMLBP07 13-5 had 

produced activities of 22.74 U/mL and 16.44 U/mL respectively, whereas A. 

fumigatus LMLPS 13-1; LMBS02 13-2 and LMBP06 13-3 produced equal amounts of 

13.66 U/mL. The lowest activity 12.11 U/mL was noted for A. fumigatus LMLPS 13-4. 

The levels of β-glucosidase produced with respect to initial medium pH differed 

between the fungal strains. A. fumigatus LMLPS 13-4 and A. fumigatus LMLBS02 

13-2 produced higher activities of 37.73 U/mL and 34.07 U/mL at pH 7.0, 

respectively compared to the other isolates tested, Fig. 3.4. Some fungi were able to 

secrete maximum β-glucosidase at various pH values. T. harzianum LMLBP07 13-5 

produced β-glucosidase activity of 25.69 U/mL over a pH range of 6.0 - 7.0 and A. 

fumigatus LMLPS 13-1 produced β-glucosidase activity of 23.52 U/mL over a pH 

range of 6.5 - 7.0, Fig. 3.4). The lowest β-glucosidase activity produced was 20.58 

U/mL by T. longibrachiatum LMLSAUL 14-1.     

 

Figure 3.4. The effect of initial medium pH on the production of β-glucosidases by 

the isolated fungi at 30 °C. 

3.3.3. Effect of incubation temperature on cellulase production 

The production of cellulase with respect to changes in incubation temperature was 

also investigated at an initial medium pH of 6.5 and 7.0, Fig. 3.5 and 3.6. These pH 

values have shown to favour production of β-glucosidases by species of Aspergillus 
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and Trichoderma.  At the initial medium pH of 6.5, an increase in incubation 

temperature led to a decrease in the level of total cellulase activity for T. 

longibrachiatum LMLUL 14-1 at 35 °C, Fig. 3.5. The A. fumigatus strains were able 

to produce cellulases at both 30 and 35 °C, with the exception of T. harzianum 

LMLUL 13-5. Cellulase activity in A. fumigatus LMLUL 13-1 increased by 1.8 fold at 

35 °C, Fig. 3.5. Increasing the incubation temperature to 40 °C drastically reduced 

the cellulase production for T. longibrachiatum LMLUL 14-1, A. fumigatus LMLUL 13-

1 and A. fumigatus LMLUL 13-3, Fig. 3.5.  Generally, most fungal species cellulase 

activity levels decreased as the temperature increased to 40 °C. 

 

Figure 3.5. Effect of incubation temperature on the production of cellulase (total 

cellulase activity) by fungal strains at initial pH 6.5. 

At initial medium pH of 7.0, a minimum temperature of 30 °C favoured high 

production of cellulase by T. harzianum LMLBP07 14-5, T. longibrachiatum LMLUL 

14-1 and A. fumigatus LMLBS02 13-2, Fig. 3.6. The cellulase production by A. 

fumigatus LMLPS 13-1, A. fumigatus LMLBP06 13-3 and A. fumigatus LMLPS 13-4 

improved at 35 °C, irrespective of initial pH tested, Fig. 3.5 and 3.6. The production 

of cellulase was reduced for all strains evaluated at 40 °C. 
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Figure 3.6. Effect of incubation temperature on the production of cellulases by fungal 

strains at initial pH 7.0. 

All the Trichoderma and Aspergillus strains produced more endoglucanase at 30 °C 

with both at an initial medium pH of 6.5 and 7.0, Fig. 3.7 and 3.8), but initial medium 

pH of 6.5 favoured more enzyme production. An increase in temperature to 35 °C 

and 40 °C resulted in a 2-fold decrease of the endoglucanase activity in all fungal 

species, Fig. 3.7.  

 
Figure 3.7. Effect of incubation temperature on the production of endoglucanase by 

fungal strains at initial pH 6.5. 
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As the initial medium changes to pH 7.0 a greater improvement in the production of 

endoglucanase was seen at 35 °C, Fig. 3.8.  

 

Figure 3. 8. Effect of incubation temperature on the production of endoglucanase by 

fungal strains at initial pH 7.0. 

Trichoderma harzianum LMLBP07 13-5 had produced 2-fold higher endoglucanase 

activity at initial medium pH of 7.0 while other fungal species attained a slight 

increase, Fig. 3.8. At both pH of 6.5 and 7.0, higher temperatures caused a reduction 

in endoglucanase activity and severe reduction occurred at 40 °C, Fig. 3.7 and 3.8).   

The production of β-glucosidase at an initial pH of 6.5 and 7.0 was dependent on the 

fungal species and production temperature. In a medium with an initial pH of 6.5, 

only A. fumigatus LMLPS 13-1 and T. harzianum LMLBP07 13-5 produced high 

levels of β-glucosidase activity of 23.52 U/mL and 24.90 U/mL, respectively at 30 °C. 

An increase in temperature from 30 – 40 °C led to improved production of β-

glucosidase by some fungal species. For instance, A. fumigatus LMLBP06 13 - 3 

showed 5-fold increase, i.e. from 5.38 to 25.35 U/mL of β-glucosidase activity at 40 

°C and 5.2-fold increase of β-glucosidase at 35 °C, Fig. 3.9.  
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Figure 3.9. Effect of incubation temperature on the production of β-glucosidase by 

fungal strains at initial pH 6.5.  

The production of β-glucosidase by T. harzianum LMLBP07 13-5 was optimal 

between 35 – 40 °C, whilst T. longibrachiatum LMLSAUL 14-1 produced 

β-glucosidase optimally at 40 °C. A. fumigatus LMLPS 13-4 attained maximum β-

glucosidase activity at 30 °C, Fig. 3.9. Generally, at 40 °C the production of β-

glucosidase by all fungal species was much higher than at 30 °C with the exception 

of A. fumigatus LMLPS 13-4.  In a medium with an initial pH 7.0, an increase in 

temperature led to an improvement in the production of β-glucosidase, Fig.3.10.  

 

 

Figure 3.10. Effect of incubation temperature on the production of β-glucosidase by 

fungal strains at initial pH 7.0. 
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A maximum level of β-glucosidase was attained at 35 °C with T. longibrachiatum 

LMLSAUL 14-1 and T. harzianum LMLBP07 13-5 showing 1.55-fold increase and 

1.13-fold increase, respectively. A. fumigatus LMLPS 13-4 and A. fumigatus  LMLPS 

13-1 also showed an increase of β-glucosidase activity at 35 °C (1.76-fold and 1.6-

fold, respectively). A. fumigatus LMLBP06 13-3 showed a proportional increase of 

1.27-fold with maximum β-glucosidase produced at 40 °C. Conversely, 40 °C led to a 

1.26-fold decrease of β-glucosidase produced by A. fumigatus LMLBS02 13-2, Fig. 

3.10. Generally, β-glucosidase activity was the highest at 35 °C and pH 7.0 for all 

strains tested. 

3.4. DISCUSSION 

3.4.1. Screening and identification of fungi that produce cellulase 

Fungi and bacteria are associated with soil and decaying plant materials. In nature, 

fungi colonise the plant debris and in a symbiotic relationship with other 

microorganisms, they secrete an assortment of proteins and a complex of hydrolytic 

enzymes to hydrolyse plant polysaccharides for their survival. Filamentous fungi are 

sources of various commercial enzymes such as cellulases, pectinases and possess 

efficient enzymatic machinery for the degradation of lignocellulosic biomass (Álvarez 

et al., 2016). Cellulases have significant importance in the production of cellulosic 

ethanol (a second generation ethanol based on non-edible feedstocks). This non-

food based fuel strategy could be realised by continuous search for microorganisms 

which are either hyper-producers or producers of novel enzymes which possesses 

unique traits such as the ability to withstand high pH, high temperature and the 

inhibitory compounds (Howard et al., 2003). 

However, not all microorganisms are able to secrete a significant amount of 

hydrolytic enzymes for biotechnological applications. Hence, there is a need to 

screen and select hyper-secreting hydrolytic enzymes. In this study, three different 

methods for screening for cellulolytic activity were used including (1) microbial 

growth on cellulose agar, (2) clearing of cellulose in agar, and (3) reducing sugar 

production (or glucose), were performed. Growth on cellulose containing agar was 

useful for isolation of cellulolytic fungal strains. Ten fungal strains were selected 

based on fast and abundant growth on Avicel agar plates. Several authors have also 
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reported the use of microcrystalline cellulose to screen for cellulase producing 

microorganisms (Delabona et al., 2012; Andrade et al., 2011; Grigorevski-Lima et al., 

2009). CMC–CR (0.01%) agar plate has been used to detect endoglucanase activity 

as indicated by the presence of a pale yellow zone around the colony. Larger halos 

are the result of higher enzyme activity (Zhang et al., 2006). However, at high CR 

dye concentrations, fungal growth is suppressed. 

The application of rDNA genes for identification of fungal species is based on the 

detection of conserved sequences in 5.8S rDNA and 28S rDNA that enables the 

amplification of the ITS2 region between them (Turenne et al., 1999). The 

identification of the fungal species based on the amplification of the ribosomal 

internal transcribed spacer (ITS) region of the ribosomal DNA revealed that the 

organisms are A. fumigatus strains, T. harzanium and T. longibrachiatum. Other 

authors also used ITS region to identify T. harzianum strain (Benoliel et al., 2013) 

and A. fumigatus ECU0811 (Wang et al., 2012). This is because ITS regions are 

regarded as primary DNA barcode for the fungal kingdom and exhibit high reliability 

(Schoch et al., 2012). The Aspergillus and Trichoderma species are associated with 

agricultural compost (Sreenivase, 2012; Singh et al., 2012), and fruit spoilage (Al-

Hindi et al., 2011; Llyas et al., 2007). 

3.4.2. Effect of initial pH medium on cellulases production 

Screening is often followed by process optimisation with various factors such as 

nutrient requirements, temperature, pH, agitation speed, etc. (Gautam et al., 2010; 

Shahriarinour et al., 2011) being investigated. In this study, the effect of initial pH 

and temperatures on the production levels of cellulase were investigated. Fungal 

strains belonging to Trichoderma and Aspergillus has shown the potential to produce 

cellulase over a pH range of 4.5 – 7 and temperature range of 30 – 40 °C, although 

the cellulase production levels varied from one fungal strain to another under the 

conditions used in this study. It has been reported that the expression of fungal 

genes are regulated by extracellular pH and many fungi exhibit growth and enzyme 

secretion over a wide pH range (Archer & Peberdy, 1997). 

The results showed that initial pH of 4.5 – 5.5 drastically reduced the levels of 

cellulase and endoglucanase produced by all strains. This lower initial pH effect on 
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the production level of cellulases by Trichoderma and Aspergillus was also reported 

by Gautam et al. (2011) and Delabona et al. (2012). The pH conducive to support 

the production of cellulase enzymes system is also depended on the media 

composition. For instance, other authors reported maximum cellulase production at 

pH 3.0 (Andrade et al., 2011), pH 4.0 (Shafigue et al., 2009; Sohail et al., 2009; 

Sarkar & Aikat 2014), pH 5.0 (Das et al., 2013) and pH 5.5 (Ahmed et al., 2009) 

when different media were used. Our results showed that a pH above 5.5 favoured 

cellulase production by all Trichoderma and Aspergillus strains with an optimum at a 

pH of 6.5. Beyond pH 6.5 a drastic decrease in cellulase levels were observed. Gilna 

and Khaleel (2011) and Gautam et al. (2011; 2010) also reported maximum cellulase 

activity at pH 6.5. The maximum production of cellulase by Aspergillus niger was 

achieved at an initial pH of 6 when cultured on 10% rice straw (Aboul-Fotouh et al., 

2016). Other findings (Ncube et al., 2012) showed no significant differences in the 

production of endoglucanase by A. niger FGSCA 733 over a pH range of 3 – 7. 

These findings illustrate that an optimum pH for maximum production of cellulase is 

dependent on fungal species and to some extent on the particular species 

investigated. 

3.4.3. Effect of incubation temperature on cellulase production 

Temperature has been reported to also influences microbial growth and enzyme 

production (Soni et al., 2010; Rubeena et al., 2013) and an optimal environment 

conducive to the production of cellulase will also be influenced by media nutritional 

composition (Shahriarinour et al., 2011). By increasing the temperature to 40 °C a 

significant reduction in endoglucanase activity was observed in all strains tested, Fig. 

3.8 and 3.9. The optimum temperature for the production of cellulase enzymes 

system is also influenced by culturing conditions and fungal strains. Ncube et al. 

(2012) reported maximum production of endoglucanase at 40 °C by A. niger FGSCA 

733. Leghlimi et al., (2013) reported optimum temperature for production of cellulase 

(FPA), endoglucanase and β-glucosidase by T. longibrachiatum (GHL) at 35 °C. 

Aspergillus niger MS82 was reported to produce sufficient endoglucanase at 30 °C 

and 35 °C with initial pH kept at pH 4.0 (Sohail et al., 2009). Other studies reported 

optimal cellulase and endoglucanase production at 45 °C (Gautam et al., 2011) and 

60 °C (Andrade et al., 2011; Stewart & Parry, 1981). 
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A temperature of 40 °C did not severely affect the production of β-glucosidase, Fig. 

3.9 and 3.10. Other authors reported maximum levels of β-glucosidase produced by 

T. longibrachiatum at 35 °C (Leghlimi et al., 2013) and A. niger MS82 at 25 

°C.(Sohail et al., 2009). These discrepancies with regards to the optimum initial pH 

and production temperature on the levels of cellulases as measured by filter paper 

activity (FPU/mL) can be attributed to the genetic make-up of the fungal strains as a 

result of adaptations to different habitats. Furthermore, our reported high levels of 

total cellulase, endoglucanase activities and low level of β-glucosidase activity by 

Trichoderma and vice versa for β-glucosidase by A. fumigatus are in agreement with 

the reported levels of these fungal species by Stewart & Parry (1981). 

3.5. CONCLUSION 

All the Trichoderma and Aspergillus species produced substantial levels of the 

cellulase enzymes system (i.e. exoglucanase, endoglucanase and β-glucosidase) 

required in subsequent stages to complete hydrolysis of banana pseudostem. 

Trichoderma strains produced higher cellulase and endoglucanase levels while A. 

fumigatus strains produced higher β-glucosidase levels. The production of cellulase 

enzymes system seemed to be strongly influenced by the interactive effect of initial 

pH and incubation temperature on the microorganisms. Hence, the observed 

maximum production of cellulase by the fungi depended on the chosen initial pH of 

the medium and incubation temperature. These fungal species will be assessed for 

their ability to produce cellulase enzymes system when cultivated on banana 

pseudostem in solid state fermentation, SSF (Chapter 4). 
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CHAPTER 4 

Production of cellulase enzymes system by Trichoderma and 
Aspergillus species cultivated on banana pseudostem in solid state 
fermentation after pretreatment 

4.1. INTRODUCTION 

Generally, fungi produce cellulase enzymes system which includes endoglucanase 

(EC 3.2.1.4 endo-1,4-β-glucanase), exoglucanase (EC 3.2.1.91 1,4-β-

cellobiohydrolase) and β-glucosidase (EC 3.2.1.21), (Zhang et al., 2006; Bisaria & 

Ghose, 1981). The demand for cellulase enzymes is mostly fulfilled through 

submerged fermentation (SmF) processes with genetically modified strains of 

Trichoderma.  However, the production costs of enzyme in SmF are high (Menon & 

Rao, 2012; Pandey et al., 1999). The cost of cellulase enzymes is the limiting factor 

for the feasible production of ethanol from fibrous biomass. (Zhuang et al., 2007). In 

efforts to reduce the cost of producing cellulase, solid state fermentation (SSF) can 

serve as an alternative to SmF. Numerical simulation for cost-effective production of 

cellulases indicated that unit costs for SSF were lower than SmF (Zhuang et al., 

2007). Enzyme producers such as Dyadic, Novozymes and DuPont have reduced 

the production cost of cellulases from $2 in 2010 to $0.30 (Brooks & Tchelet, 2014). 

This reduction in enzyme cost is a breakthrough toward the commercialization of 

large scale-biomass-to-ethanol production (Liu et al., 2016; NREL, 2010). 

Remarkable progress has been made to reduce the cost of cellulases, however 

cellulase still presents a significant operational cost in cellulosic bioethanol 

production chain (Ellilä et al., 2017). 

Solid state fermentation mimics the natural microbiological processes such as 

composting and ensiling (Singhania et al., 2009).  This fermentation offers a high 

volumetric productivity and highly concentrated product (Pandey et al., 1999). 

Various microorganisms such as bacteria, fungus and actinomycetes, which possess 

different enzyme induction systems, have been used in the production of various 

hydrolytic enzymes (Moretti et al., 2012). The most commonly isolated species of 

cellulolytic fungi in composting materials are Aspergillus, Penicillium, Rhizopus, 
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Trichoderma, Fusarium, Chaetomonium and Cladosporium (Singh et al., 2012). In 

SSF, growth of microorganism(s) in the absence of free liquid can occur on the 

surface of a solid substrate (or nutrient impregnated solid material) or within the 

whole substrate depending on the porosity of the substrate (Gervais & Molin, 2003; 

Cannel & Moo-Young, 1980;). The production of enzymes system is influenced by 

the nature of the solid substrate, microorganism used and environmental conditions 

such as pH, temperature and moisture. (Moretti et al., 2012; Singhania et al., 2009; 

Pandey et al., 1999). 

Industrial SSF processes have been developed for traditional food industries such as 

cheese, fermented vegetables, meat and other biotechnology products such as 

antibiotics and enzymes (Gervais & Molin, 2003). Solid state fermentation has 

advantages over SmF by utilizing less water and energy, produces minimum or less 

waste and can also produce a more concentrated product. However, when 

compared to SmF, SSF presents difficulty in heat and mass transfer due to limited 

diffusion through solid material (Mitchell et al., 2003). An uncontrolled SSF will lead 

to accumulation of heat and a decline in oxygen availability. This effect can 

negatively impact mesophilic aerobic microbe’s activity and completely stop enzyme 

production (Zhuang et al., 2007). 

The pretreatment (e.g. chemical or mechanical) of lignocellulosic biomass enable the 

biomass to be porous and easily accessible for both microbial growth in SSF and 

susceptible to enzymatic hydrolysis. The hydrolysis reaction increases the 

production of fermentable sugars than can be converted through biochemical 

activities of fermenting microorganisms to ethanol (Pandey et al., 2000). The high 

costs of cellulase hamper the commercialization of biomass bio-refineries. As it 

stands, large amount of cellulase is still required for biomass saccharification (Liu et 

al., 2016). For instance, approximately 100 g enzymes are needed per gallon of 

cellulosic ethanol production (Zhang et al., 2006). The amount of cellulase required 

for lignocellulosic biomass saccharification is one-fold higher than the process of 

starch saccharification (Balan, 2014). To overcome high cost cellulase, the 

production strategies of cellulase should increase enzyme volumetric activity, 

produce enzymes using cheaper substrate, produce enzymes preparations with 

greater stability for specific processes and producing cellulase with higher specific 

activity on a solid substrate (Zhang et al., 2006). Further more, On-site enzyme 
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production can also reduce the cost by approximately 30-70% of the total enzyme 

production costs (Brooks & Tchelet, 2014; Takimura et al., 2013).  

The use of agricultural biomass such as banana waste as feedstock for ethanol 

production can potentially reduce the number of food crops such as corn and wheat 

used for the production of ethanol (Padam et al., 2014). Banana waste including 

leaves, rachis and pseudostem and contain considerable amounts of cellulose (Li et 

al., 2010; Abdul Khalil et al., 2006). These cellulose rich materials are discarded after 

the harvest of banana fruit and left to decay either at the plantation site or at a 

dumping site (Li et al., 2010). The utilisation of low cost agricultural residues such as 

banana waste in SSF to produce enzymes could mitigate waste disposal which 

contributes to environmental pollution (Singhania et al., 2009). Hence this study was 

aimed at using banana pseudostem as an inducing substrate for cellulase production 

by Trichoderma and Aspergillus species in the SSF process. 

4.2.  MATERIALS AND METHODS 

4.2.1. Microorganisms and inoculum preparation 

Three fungal species, namely Trichoderma harzianum LMLBP07 13-5, Trichoderma 

longibrachiatum LMLSAUL 14-1 and Aspergillus fumigatus LMLPS 13-4 previously 

isolated (details in section 3.2.1) and stored at 4 – 8 °C with periodic sub-culturing 

onto malt extract agar (MEA) were used in the study. 

For inoculum preparation, the fungal species were grown on malt extract agar until 

spore formation at 30 °C. Spores from each fungus were harvested by adding 10 mL 

of 0.05% sterile Tween 80 solution (Merck) onto the culture plates and sterile swabs 

were then used to dislodge the spores from the agar surface. A standard spore count 

procedure was done using the Neubauer bright line (1/10 mm) counting chamber. 

Spore suspensions were adjusted to contain 1 x 108 spore/mL. 

4.2.2. Collection and preparation of banana pseudostem 

Fresh banana pseudostems (BPS) that remained after banana fruit harvest were 

collected from Allesbeste farm, Tzaneen, Limpopo province, South Africa. The BPS 

was washed of soil and other debris using tap water. The washed BPS was cut into 

small pieces (approximately 20 – 25 cm diameter and 10 cm height) and the outer, 
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and core bark (pith) separated into several blocks, Fig. 4.1. The blocks and piths 

were dried at 65 – 70 °C until constant mass and subjected to grinding using 

agricultural machine (Zhuans milling and crushing; Electric model). The ground 

material was sieved through a Universal Test Sieve with aperture 500 µm (Abdullah 

et al., 2014). The sieved ground particles (< 500 µm) were stored at room 

temperature (20 – 25 °C) in a sealed container until needed. 

 

Figure 4.1. Shows banana plant (a), banana pseudostem (b), cut banana 

pseudostem (pith and outer portion of pseudostem). 

4.2.3. Pretreatment of banana pseudostem 

Three different pretreatment procedures were evaluated. One hundred and fifty 

grams of ground BPS was suspended in each pretreatment solutions, i.e. 3% NaOH 

(Filho et al., 2013); 5% H2SO4 (El-Zawawy et al., 2011; Gabhane et al., 2014; Lin et 

al., 2015) and H2O, at a ratio of 1:10 (solid: liquid). The slurries were autoclaved at 

121 °C, 15 PSI for 1 hour and cooled prior to washing with tap water until pH 7.0. 

The solid material was dried at 65 – 70 °C until constant mass and ground using 

Waring commercial blender (Model 32BL8) and stored at room temperature in 

sealed container until needed. 

4.2.4. Solid state fermentation (untreated BPS) 

Three milligrams of untreated BPS was moistened to 75% with synthetic medium as 

described by Peixoto (2006) in 250 ml Erlenmeyer flasks. The medium composition  

was as follows: 2 g/L K2HPO4, 0.5 g/L KCl, 0.01 g/L FeSO4.7H2O, 0.15 g/L 

MgSO4.7H2O, 7 g/L g KH2PO4, 1 g/L (NH4)SO4 and 1.2 g/L Yeast Extract. The pH of 

the medium was adjusted to 6.5 using1 M NaOH or 1 M HCl prior to sterilization at 
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121 °C, and 15 PSI for 1 hour.  A 1 mL spore suspension (1 x 108 spores/ml) of T. 

longibrachiatum LMLSAUL 14-1, A. fumigatus LMLPS 13-4 and T. harzianum 

LMLBP07 13-5 were inoculated into separate 250 ml Erlenmeyer flasks that 

contained 3 g of untreated BPS. The flasks were incubated at 30 °C for 9 days 

without shaking. The whole content of each flask was sampled from day 3 up to day 

9 

4.2.5. Enzyme extraction 

Enzyme extraction was carried out by modifying the method described by El-

Shishtawy et al., (2015). The crude enzyme was extracted by adding 50 mL of 0.05 

M sodium citrate buffer pH 4.8 to the fermented contents in flasks with intermittent 

shaking for 1 hour at room temperature (20 – 25 °C). The mixture was filtered and 

centrifuged at 3834 x g for 10 min and the supernatant was used for enzyme assays. 

4.2.6. Determination of the effect of moisture level on the production of 
cellulase enzymes system 

The effect of initial substrate moisture content was investigated in the range of 65 – 

80% (v/w) at 30 °C under static conditions. Three grams (3 g) of untreated BPS was 

inoculated as indicated in section 4.2.4 for all fungal species. The fermentation 

progressed for a period of 9 days under static conditions. The whole flask content 

was used for enzyme extraction (see section 4.2.5). 

4.2.7. Determination of the effect of temperature on the production of cellulase 
enzymes system 

The effect of temperature on cellulose production was investigated in the range of 30 

– 40 °C under static conditions and 75% initial moisture content of the substrate. A 3 

g of untreated BPS was moistened with synthetic medium described above and 

inoculated as stated in section 4.2.4. The incubation temperature was as indicated 

herein. The fermentation continued for 9 days under static conditions. Enzyme 

extraction was done according to section 4.2.5. 
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4.2.8. Determination of the effect of different pretreatment methods on the 
production of cellulase enzymes system 

Three grams of each pretreated BPS was moistened to 75% initial moisture content 

with synthetic medium and the culturing conditions were maintained as described 

under section 4.2.4.  

4.2.9. Cellulolytic activity assays 

4.2.9.1. Cellulase (FPase) 

The cellulase activity was determined using the filter paper assay (FPase) with 

Whatman No.1 filter paper strip of 1 x 6.0 cm equivalent to 50 mg of substrate 

according to Ghose (1987). Details of the method are described in section 3.2.4.1. 

4.2.9.2. Endoglucanase assay 

Endoglucanase activity in the culture supernatant was determined according to the 

method described by Ghose (1987). Details of the method are described in section 

3.2.4.2. 

4.2.9.3. β-glucosidase assay 

β-glucosidase was assayed according to the method described by Herr (1979). 

Details of the method are described in section 3.2.4.3. 

4.2.10. Calculations of enzyme activities 

4.2.10.1. Cellulase (Filter paper activity) 

Filter paper activity was used to determine total cellulase activity of the crude 

enzyme using the equation (1); 

FPA �
FPU
mL

� =
0.37
[Enz]                                                                                                          (1)        
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,where [Enz] is the concentration of enzyme that releases 2.0 mg of glucose from the 

50 mg Filter paper in 60 minutes under the conditions of the assay (Ghose 1987). 

For cellulase activity in SSF, FPU/mL was converted to FPU/g d.s (d.s refer to dry 

substrate) using the equation 2 (Adney & Baker, 1996). 

FPA �
FPU
g d. s

� =
FPU
mL × total volume of fungal extract (mL)

Dry weight of the substrate used in SSF (g)                                     (2) 

 

4.2.10.2. Endoglucanase (CMCase) and β-glucosidase activities 

To estimate the activities of either endoglucanase or β-glucosidase the equation (3) 

was used (Rubeena et al., 2013) 

β − glucosidase or CMCase �
U

mL
� =

∆E × Vf × Df
ε × ∆t × Venz

                                                 (3) 

 

To convert the U/mL to u/g d.s, the above equation becomes; 

CMCase or βglucosidase �
U

mL
� =

U
mL × total volume of fungal extract (mL)

Dry weight of the substrate used in SSF (g)  (3) 

 

4.2.11. Determination of the effect of temperature and pH on the activities 
of the cellulase enzymes system 

The effect of temperature on the activities of cellulase enzymes system was 

investigated by assaying reaction mixture (i.e. enzyme plus relevant substrate) at 

various temperatures ranging from 40 – 80 °C and pH 5 in respective buffers for 

each enzyme. Relative activity (%) was determined by considering maximum activity 

as the standard reference. The effect of pH on the activities of cellulase enzymes 

system was determined at different pH values using respective substrates prepared 

in the following buffer solutions (0.1 M): sodium citrate buffer (pH 4.5 – 6); sodium 

acetate buffer (pH 6.5 – 8) and Tris-glycine buffer (pH 8.5 – 9.0). The reaction 
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temperature used was 60 °C. Relative activity (%) was determined by considering 

maximum activity as the standard reference (Moretti et al., 2012). The enzymes were 

assayed as outlined in section 3.2.4.1 to 3.2.4.3. 

4.2.12. Determination of thermal and pH stability of cellulase enzymes 
system 

Both thermal and pH stability followed a modified method by Santos et al. (2016). 

Thermal stability was investigated by pre-incubating the crude enzyme without 

substrate at various temperatures (40 – 80 °C) for 24 hours. Residual activity was 

determined at 60 °C and pH 6.5. Residual activity was expressed as a percentage of 

the crude enzyme activity without pre-incubation, which was considered 100%. 

The pH stability of crude enzymes was evaluated by mixing the crude enzyme with 

buffer solutions as described in section 4.2.10 in equal proportions (i.e. 1:1 v/v). The 

solutions were incubated at room temperature (20 – 25 °C) for 24 hours without 

substrates. An aliquot was taken to determine the residual activities of the cellulase 

at 60°C. The enzymes assays were carried out as outlined in section 3.2.4.1 to 

3.2.4.3. Residual activity was expressed as a percentage of the crude enzyme 

activity at the optimum temperature, which was considered 100% (Santos et al., 

2016). 

4.2.13. Statistical analysis 

All the experiments were done in triplicates. The data generated was statistically 

analysed by Two-way analysis of variance (ANOVA) test using MS Excel 2010. 

Differences were considered significant when probability value (p) was <0.05. The 

error bars in the graphs represent standard error, SE. 
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4.3. RESULTS 

4.3.1. The production of cellulase enzymes system 

Solid state fermentation was used to produce cellulase enzymes system. Three 

filamentous fungi, T. harzianum LMLBP07 13-5, T. longibrachiatum LMLSAUL 14-1 

and A. fumigatus LMLPS 13-4 were investigated for their ability to produce cellulase 

enzymes system in solid state fermentation of untreated BPS as inducing substrate. 

The amount of the cellulase enzymes system, namely cellulase (FPase), 

endoglucanse (CMCase) and β-glucosidase are shown in Table. 4.1. 

The levels of the cellulase enzymes system produced varied amongst the fungal 

species. T. longibrachiatum LMLSAUL 14-1 produced the highest activities of 

cellulase enzymes system followed by A. fumigatus LMLPS 13-4. Trichoderma 

harzianum LMLBP07 13-5 produced the least amount of cellulase enzymes system, 

specifically cellulase and β-glucosidase exhibited the lowest activities when 

compared to the other two fungi. 
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Table 4.1. Production of cellulolytic enzymes by fungal species cultivated on solid state fermentation of untreated banana 

pseudostem as a substrate. 

Fungi Total cellulase activity 

 (FPU/g d.s) 

Endoglucanase activity  

(U/g d.s) 

β-glucosidase activity  

(U/g d.s) 

T. longibrachiatum LMLSAUL 14-1 75.04 ± 3.2648 (168 h) 

 

111.35 ± 2.2290 (192 h) 

 

235.83 ± 12.3296 (192 h) 

 

T. harzianum LMLBP07 13-5 21.75 ± 3.9724 (120 h) 

 

9.46 ± 0.5261 (144 h) 

 

30.87 ± 8.1248 (144 h) 

 

A. Fumigatus LMLPS 13-4 41.33 ± 5.0714 (216 h) 

 

4.39 ± 4.1339 (120 h) 

 

116.68 ± 17.8776 (72 h) 

 

NB: Standard deviation ± values of independent triplicates 
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4.3.2. Effect of temperature on the production of cellulase enzymes system 

The effect of temperature on cellulase enzymes system production was investigated 

over the range 30 – 40 °C, Fig. 4.2. In general, the temperature has a direct 

influence on the production of cellulase enzymes system by all fungal strains. 

Cellulase production by T. longibrachiatum LMLSAUL 14-1 showed a 0.47-fold 

decrease in activity at 40 °C (i.e. from 75 - 35.3 U/g d.s) while the optimum 

temperature for its production was attained at 30 °C. Conversely, endoglucanase 

level increased by 3.25-fold at 40 °C to a maximum of 363 U/g d.s, whereas a 0.93-

fold decrease in the production of β-glucosidase was observed from 236 U/g d.s at 

30 °C to 220 U/g d.s. at 40 °C, Fig. 4.2.   

 

Figure 4.2. Effect of temperature on the production of cellulase enzymes system by 

T. longibrachiatum LMLSAUL 14-1 in solid state fermentation of untreated banana 

pseudostem. 

The cellulase enzymes system produced by T. harzianum LMLBP07 13-5 is shown 

to increase proportionally by 1.8-fold with temperature from 22 FPU/g d.s at 30°C to 

39.9 FPU/g ds. at 40 °C. The production of endoglucanase and β-glucosidase is also 

shown to increase by 4.2-fold to 40 U/g d.s and 4.8-fold to 164 U/g d.s, respectively 

as the temperature increase to 40°C, Fig. 4.3. 
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Figure 4.3. Effect of temperature on the production of cellulase enzyme system by 

T. harzianum LMLBP07 13-5 in solid state fermentation of untreated banana 

pseudostem 

The cellulase enzymes system of A. fumigatus LMLPS 13-4 exhibited a different 

trend. The production of cellulase decreased by 0.8-fold from 41 FPU/g d.s at 30 °C 

to 33 FPU/g d.s at 40°C.  On the contrary to the decreasing cellulase, the 

endoglucanase and β-glucosidase increased by 15.6-fold to 69 U/g d.s and by 2.4-

fold to 276 U/g d.s, respectively Fig. 4.4.  

 

Figure 4.4. Effect of temperature on the production of cellulase enzymes system by 

A. fumigatus LMLPS 13-4 in solid state fermentation of untreated banana 

pseudostem. 
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4.3.3. Effect of initial moisture content of the banana pseudostem on the 
production of cellulase enzymes system 

The moisture content of the substrate has been noted as a critical factor for growth 

support and enzyme production under SSF. The effect of initial substrate moisture 

content on the production of cellulase enzymes system was assessed in the range of 

65 to 80%. The production of cellulase enzymes system by T. longibrachiatum 

LMLSAUL 14-1 in SSF is strongly dependent on the initial moisture level of the 

substrate Fig 4.5. The production of cellulase enzymes system was optimal at 75% 

moisture content. 

 

Figure 4.5. Effect of initial moisture content of banana pseudostem on the 

production of cellulase enzymes system by T. longibrachiatum LMLSAUL 14-1 in 

solid state fermentation of untreated banana pseudostem. 

T. harzianum LMLBP07 13-5 has exhibited different moisture optima conducive for 

the production of cellulase enzymes system, Fig 4.6. Each enzyme showed specific 

moisture optimal for maximum production, unlike the trend exhibited by T. 

longibrachiatum LMLSAUL 14-1. The maximum production of cellulase (30 FPU/g 

d.s) occurred over 65 – 75% of initial moisture of the substrate. At 80% of initial 

moisture of the substrate, the cellulase was lower by 0.6-fold. The endoglucanase 

production remained low; irrespective of the initial moisture contents when compared 

with the endoglucanase levels attained by T. longibrachiatum LMLSAUL 14-1 and A. 

fumigatus LMLPS 13-4. Maximum β-glucosidase was produced at an initial substrate 
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moisture content of 70% (294.3 U/g d.s) and reduced to 0.7-fold at 80% moisture 

content.   

  

Figure 4.6. Effect of initial moisture content of banana pseudostem on the 

production of cellulase enzymes system by T. harzianum LMLBP07 13-5 in solid 

state fermentation of untreated banana pseudostem. 

The production of cellulase enzymes system by A. fumigatus LMLPS 13-4 was also 

attained at different moisture contents as illustrated in Fig. 4.7. The maximum 

cellulase of 41.3 FPU/d.s was produced at 75% of the initial moisture content of the 

substrate. At 65% of initial moisture content of the substrate the production of 

endoglucanases reached 193 U/g d.s but decreased to 8.5 U/g d.s at 80% initial 

moisture content of the substrate.  Aspergillus fumigatus LMLPS 13-4 showed a two-

phase production trend with high  levels of β-glucosidase (160 U/g d.s) occurring at 

70% initial moisture content of substrate and 186.3 U/g d.s at 80% of initial moisture 

content of the substrate.  
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Figure 4.7. Effect of initial moisture content of banana pseudostem on the 

production of cellulase enzymes system by A. fumigatus LMLPS 13-4 in solid state 

fermentation of untreated banana pseudostem. 

4.3.4. Effect of pretreated banana pseudostem on the production of cellulase 
enzymes system 

Three pretreatment methods, namely thermo-dilute acid, thermo-alkaline, and 

hydrothermal (or hot water), were applied to BPS. The productions of cellulase 

enzymes system were influenced by the nature of the BPS substrate, Fig. 4.8. The 

pretreated BPS poorly induced the synthesis and secretion cellulase and 

endoglucanase of T. longibrachiatum LMLSAUL 14-1 when compared to untreated 

BPS substrate.  The cellulase decreased by 0.3-fold to 21 FPU/g d.s in 3% NaOH 

pretreated BPS and 0.24-fold reduction to 16.6 FPU/g ds.s in both 5% H2SO4 and 

hot water pretreated BPS. The endoglucanase production decreased by 0.29-fold in 

SSF of 3% NaOH pretreated BPS. There is no significant change in β-glucosidase 

production between hot water and untreated BPS, Fig. 4.8.  
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Figure 4.8. Effect of pretreatment methods on the production of cellulase enzymes 

system by T. longibrachiatum LMLSAUL 14-1 in solid state fermentation of the 

pretreated banana pseudostem. 

The production of cellulase enzymes system by T. harzianum LMLBP07 showed that 

untreated BPS was more suitable for cellulase production as indicated by its high 

activity of 28.8 FPU/g d.s, Fig. 4.9. Hot water pretreated BPS led to a significant 

decrease in cellulase production with activity of 6.2 FPU/g d.s. The productions of 

endoglucanase levels were similar to untreated BSP. β-glucosidase level was 

produced in high quantities in SSF of pretreated BSP where 3% NaOH yielded the 

highest activity. 
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Figure 4.9. Effect of pretreatment methods on the production of cellulase enzymes 

system by T. harzianum LMLBP07 13-5 in solid state fermentation of pretreated 

banana pseudostem. 

The highest cellulase produced for A. fumigatus LMLPS 13-4 was detected in 

untreated BPS (41 FPU/g d.s) followed by hot water pretreated BPS (24 FPU/g d.s). 

On the other hand, SSF of 5% H2SO4 pretreated BPS favoured the production of 

endoglucanase (45 U/g d.s) and β-glucosidase (260 U/g d.s), Fig. 4.10.  

 

Figure 4.10. Effect of pretreatment methods on the production of cellulase enzymes 

system by A. fumigatus LMLPS 13-4 in solid state fermentation of pretreated banana 

pseudostem. 
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4.3.5. Effect of co-cultivation of Trichoderma and Aspergillus species on the 
production of cellulase enzymes system 

Co-cultivation of Trichoderma and Aspergillus was assessed in SSF using untreated 

BPS as substrate in an attempt to increase hydrolytic activity of the cellulase 

enzymes activity. Co-culturing of T. longibrachiatum LMLSAUL 14-1 and A. 

fumigatus LMLPS 13-4 produced 61 FPU/g d.s, which is a 0.8-fold decrease in 

cellulase activity when compared to 75 FPU/g d.s obtained in monoculture of T. 

longibrachiatum LMLSAUL 14-1, Fig. 4.11. There was also a reduction of 0.47-fold in 

the β-glucosidase activity. In general, the co-cultivation of the above fungi did not 

yield improvement in production of cellulase enzymes system production. 

On the contrary, co-cultivation of T. harzianum LMLBP07 13-5 and A. fumigatus 

LMLPS 13-4 yielded an improvement with 2.23-fold increase in cellulase  and a 10-

fold increase in endoglucanase production compared to a monoculture of T. 

harzianum LMLBP07 13-5. However, the production of β-glucosidase was affected 

with 0.48-fold decrease compared to monocultures, Fig. 4.11. 

 

 

Figure 4.11. Effect of co-culturing the Trichoderma and Aspergillus strains on the 

production of cellulase enzymes system in solid state fermentation of untreated 

banana pseudostem. 
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4.3.6. Effect of temperature on the activities of cellulase enzymes complex 

The fungi investigated produced the cellulase enzymes system, which is highly 

sensitive towards temperature. T. longibrachiatum LMLSAUL 14-1 exhibited 

maximum cellulase and β-glucosidase activity at 60 °C. The endoglucanase activity 

was optimal at 50 °C and gradually decreased as the temperature increased, Fig. 

4.12. 

  

Figure 4.12. Effect of temperature on the catalytic activities of cellulase enzymes 

complex produced by T. longibrachiatum LMLSAUL 14-1 in solid state fermentation 

of untreated banana pseudostem. 

With regard to cellulase enzymes system produced by T. harzianum LMLBP07 13-5, 

the cellulase exhibited dual peaks of activities, with maximum cellulase activity 

occurred at 40 °C followed by 88% activity at 70 – 80 °C. The cellulase activity was 

above 65% level across the temperature investigated. Endoglucanase activity was 

optimal at 70 °C. β-glucosidase activity was optimal at 60 °C and also achieved over 

90% of β-glucosidase activity at 70 °C, Fig. 4.13. The β-glucosidase activity was 

drastically affected (15% activity) at 80 °C. 
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Figure 4.13. Effect of temperature on the catalytic activities of cellulase enzymes 

system produced by T. harzianum LMLBP07 13-5 in solid state fermentation of 

untreated banana pseudostem. 

With A. fumigatus LMLPS 13-4, maximum the cellulase activity was measured at 60 

°C, whereas endoglucanase activity was maximum at 50 - 60 °C. Higher 

temperatures negatively affected both cellulase and endoglucanase activities. The β-

glucosidase activity was the maximum at 60 °C and 70 °C respectively, Fig. 4.14.  

 

Figure 4.14. Effect of temperature on the catalytic activities of cellulase enzymes 

system produced by A. fumigatus LMLPS 13-4 in solid state fermentation of 

untreated banana pseudostem. 

0

20

40

60

80

100

120

30 40 50 60 70 80

Re
la

tiv
e 

ac
tiv

ity
 (%

)

Temperature (°C)

Cellulase Endoglucanase β-glucosidase

0

20

40

60

80

100

120

30 40 50 60 70 80

Re
la

tiv
e 

ac
tiv

ity
 (%

)

Temperature (°C)
Cellulase Endoglucanase β-glucosidase



102 
 

4.3.7. Effect of pH on the activities of the cellulase enzymes system 

The cellulase produced by T. longibrachiatum LMLSAUL 14-1 exhibited over 55% of 

its activity between pH 5.5 – 7.5, with high activity (84%) at pH 6.5.  Acidic pH (4.5 – 

6.5) positively influenced endoglucanase activity with maximum activity at pH 5.5.  

Endoglucanase activity was sensitive to pH higher than 6.5. The β-glucosidase 

activity was not sensitive to pH and was active over a wide range, but peaked at pH 

5.5, Fig. 4.15. 

 

Figure 4.15. Effect of pH on the catalytic activities of cellulase enzymes system 

produced by T. longibrachiatum LMLSAUL 14-1 in solid state fermentation of 

untreated banana pseudostem. 

The cellulase produced by T. harzianum LMLBP07 13-5 exhibited 100% activity at 

pH 4.5 and the activity slightly decreased to 90% at pH 5.5 – 6.5. At a pH level 

higher than 6.5, the cellulase activity gradually decreased to 54%. High 

endoglucanase activity was observed at pH 4.5 – 6.5, with maximum activity at pH 

4.5. A pH higher than 6.5 also reduced the endoglucanase activity.  The β-

glucosidase activity remained above 85% from pH 5.5 – 8.5, Fig. 4.16.  
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Figure 4.16. Effect of pH on the catalytic activities of cellulase enzymes system 

produced by T. harzianum LMLBP07 13-5 in solid state fermentation of untreated 

banana pseudostem. 

Cellulase produced by A. fumigatus LMLPS 13-4 was high at pH 5.0 – 8.0, with 

100% activity observed at pH 5.0. The activity was negatively affected at pH lower 

than 5.0 and higher than 8.0. Maximum endoglucanase activity was observed at pH 

4.5 and over 70% activity was attained at pH 5.0 – 6.5. β-glucosidase activity (90 – 

100%) was high at pH 5.5 – 8.5, Fig. 4.17. 

 

Figure 4.17. Effect of pH on the catalytic activities of cellulase enzymes system 

produced by A.fumigatus LMLPS 13-4 in solid state fermentation of untreated 

banana pseudostem. 
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4.3.8. Effect of temperature on the stability of the cellulase enzymes system 

The thermal stability of cellulase enzymes system was investigated at optimum pH 

for each enzyme as indicated in section 4.2.11 and optimum temperature of 60 °C 

for the enzymatic assays. After 24 hours of incubation at respective temperatures 

(40 – 80 °C with 10 °C intervals), the residual activity of cellulase produced by T. 

longibrachiatum LMLSAUL 14-1 retained 54% of its activity at 40 °C and gradually 

decreased to less than 25% as temperature increased to 80 °C. As for 

endoglucanase, the enzyme retained 70% of its activity at 40 - 50 °C. A sharp 

decline in activity was observed at a temperature above 50 °C resulting in a 98% 

loss of activity, complete irreversible enzyme inactivation, Fig. 4.18. β-glucosidase 

was also inactivated at high temperature, retaining 80% of its activity at 40 °C, and 

drastically decreased to approximately 6% at 80 °C.  

 

Figure 4.18. Thermal stability of cellulase enzymes system produced by T. 

longibrachiatum LMLSAUL 14-1 in solid state fermentation of untreated banana 

pseudostem.  

The cellulase enzymes system of T. harzianum LMLBP07 13-5, particularly cellulase 

and endoglucanase enzymes showed enhancement of activities at 40 °C and 50 °C, 

Fig. 4.19. The  cellulase lost 65% of its original activity at 60 °C with a decrease to 

below 20% at 80 °C. However, endoglucanase remained stable and retained over 

80% of its activity up to 70 °C. β-glucosidase was stable up to 50 °C (>60%), but was 

rapidly inactivated to below 2% of original activity between 60 and 80 °C. 
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Figure 4.19. Thermal stability of cellulase enzymes system produced by T. 

harzianum LMLBP07 13-5 in solid state fermentation of untreated banana 

pseudostem. 

Regarding A. fumigatus LMLPS 13-4, cellulase retained approximately 70% of its 

activity at 40°C and activity remained above 50% at 50 – 60 °C. Endoglucanase 

retained more than 50% activity throughout the temperature range tested, Fig. 4.20. 

The thermal stability of β-glucosidase activity was poor with only 42% of its activity 

retained at 40 °C. At higher temperatures, the β-glucosidase rapidly lost activity to 

below 1%.   

 

Figure 4.20. Thermal stability of cellulase enzymes system produced by A. 

fumigatus LMLPS 13-4 in solid state fermentation of untreated banana pseudostem.  
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4.3.9. Effect of pH on the stability of the cellulase enzymes system 

For pH stability, crude preparations of the cellulase enzymes system were pre-

incubated   in the appropriate buffers at room temperature for 24 hours. After 24 

hours, T. longibrachiatum LMLSAUL 14-1 cellulase retained over 80% of its activity 

at pH 5.0 – 5.5 but the activity decreased at a higher pH values. The stability of 

endoglucanase was poor, with 40% activity retained between pH 4.5 – 5.0 followed 

by further loss up to 21% of activity at pH 8.5. β-glucosidase remained stable, with 

over 80% of its activity retained at pH 4.5 – 5.5, Fig. 4.21. 

  

Figure 4.21. Effect of pH on the stability of the cellulase enzymes system produced 

by T. longibrachiatum LMLSAUL 14-1 in solid state fermentation of untreated banana 

pseudostem. 

The cellulase produced by T. harzianum LMLBP07 13-5 was most stable in alkaline 

conditions, pH 7.5 – 8.5, retaining 90 – 110% of its activity. The endoglucanase 

retained 53% of its original activity at pH 4.5, with a gradual loss in activity as the pH 

increased to 8.5. The β-glucosidase of T. harzianum LMLBP07 13-5 was stable and 

retained over 70% of its activity at pH 4.5 – 6.5, with the highest activity (81%) 

retained at pH 5.0, Fig. 4.22. 
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Figure 4.22. Effect of pH on the stability of the cellulase enzymes system produced 

by T. harzianum LMLBP07 13-5 in solid state fermentation of untreated banana 

pseudostem. 

Aspergillus fumigatus LMLPS 13-4 produced cellulase with poor pH stability. The 

cellulase retained approximately 40% of its original activity across pH 4.5 – 6.5. The 

endoglucanase showed stability across the pH 4.5 – 8.5, with most activity (100 – 

80%) retained in acidic conditions (pH 4.5 – 5.5).  On the other hand, β-glucosidase 

showed stability at pH range 4.5 – 8.5 maintaining over 70% of its activity, Fig. 4.23.  

 

Figure 4.23. Effect of pH on the stability of the cellulase enzymes system produced 

by A. fumigatus LMLPS 13-4 in solid state fermentation of untreated banana 

pseudostem. 
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4.4. DISCUSSION 

The production of enzymes involved in the degradation of lignocellulosic biomass is 

regulated at the transcriptional level (Stricker et al., 2008) and is also subject to the 

substrate used (Olsson et al., 2003). Several carbon sources including lactose, 

sophorose, L-sorbose etc. have shown to induce the formation and secretion of 

cellulase enzymes system, namely cellobiohydrolases, endoglucanases and β-

glucosidases (Olsson et al., 2003; Sternberg & Mandels, 1979). However, industrial 

fermentation using the above carbon sources to produce cellulose degrading 

enzymes remains expensive. This study utilised banana pseudostem (BPS), an 

inexpensive agricultural waste product to produce cellulase enzymes system in solid 

state fermentation (SSF). The findings show that BPS has the ability to induce the 

production of these enzymes in all Trichoderma and Aspergillus species studied, 

Table 4.1. 

4.4.1. Effect of temperature on the production of cellulase enzymes system by 
selected fungal species. 

Temperature affects the growth and metabolic activities of microorganisms (Mrudula 

and Murugamnal, 2011). The production of cellulase enzymes system appears to be 

dependent on a particular temperature for specific enzymes that were evaluated. For 

instance, the maximum cellulase (FPase), endoglucanase and β-glucosidase of T. 

longibrachiatum LMLSAUL 14-1 were produced at different temperatures, Fig. 4.2. 

This trend suggests varying degrees for which temperature activate the different 

regulatory enzyme systems. The optimum temperature for the production of 

cellulases and β-glucosidases by T. longibrachiatum LMLSAUL 14-1 was 30 °C. At 

higher temperature, there was a decrease in synthesis and secretion of these 

enzymes. According to Jecu (2000), the decrease in enzyme production at such high 

temperatures could be due to the deactivation of a particular regulatory enzyme 

system. Conversely, the optimum temperature for the production of endoglucanases 

by T. longibrachiatum LMLSAUL 14-1 was found to be 40 °C. On the contrary 

Leghlimi et al. (2013) reported maximum cellulases (FPase) and endoglucanases  

produced by both T. longibrachiatum (GHL) and T. reesei Rut C-30 to be at 35 °C. 

Such differences are exacerbated by the chemical composition of the medium and 

other factors such as pH.  
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Trichoderma harzianum LMLBP07 13-5 was able to produce maximum cellulase 

enzymes system at one specific temperature. The optimum temperature for the 

production of cellulases, endoglucanases and β-glucosidases by the fungus was 40 

°C, Fig. 4.3. Another fungus, A. fumigatus LMLPS 13-4 also produced higher 

endoglucanase and β-glucosidase activity at 40 °C, while its cellulase was higher at 

30 °C, Fig. 4.4. Similarly, another study reported an optimum temperature for the 

production of cellulase enzyme system by A. fumigatus to be 40 °C (Sherief et al., 

2010).  

The differences in optimal temperatures for the production of cellulases, 

endoglucanases and β-glucosidases as observed in Fig. 4.2 and 4.4 were also 

reported in other studies. Pirota et al. (2016) also noted significant influence of 

temperature on the production of both endoglucanases and β-glucosidases. These 

authors reported a 2.3-fold increase in endoglucanase activity at 28 °C and higher β-

glucosidase activity between 35 and 37 °C under static aeration and optimum 

moisture content of 70%.  Liu et al. (2011) reported maximum production of cellulase 

and endoglucanase at 50 °C by A. fumigatus Z5 in SSF using corn stover. Another 

fungus, A. fumigatus fresenius (AMA), when cultivated on rice straw produced 

maximum cellulase at 45 °C (Soni et al., 2010).  

Generally, Trichoderma and Aspergillus species are mesophilic and these organisms 

exhibited different optimum temperatures for the production of cellulase enzymes 

system. The differences in optimum temperature observed in this study when 

compared to other findings (Liu et al., 2011; Soni et al., 2010) might be influenced by 

natural habitat from which these fungal species were isolated and the type of 

substrate used for cultivation. It is also known that when an organism is subjected to 

certain environmental conditions it respond differently by activating regulatory 

mechanisms that trigger growth, conidiation and biosynthesis of secondary 

metabolites (Schmoll et al., 2010). This study revealed that temperature influences 

growth as well as spore formation (i.e. green spores at 30 °C to white spores at 40 

°C) and synthesis of enzymes. 
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4.4.2. Effect of initial moisture content of the banana pseudostem on the 
production of cellulase enzymes system by the selected fungal species 

Another important factor that affects the metabolic activities of fungi for efficient 

enzyme synthesis and secretion in SSF is the moisture content of the solid 

substrate.  The results obtained showed that the production of cellulase enzymes 

system in SSF of untreated BPS was strongly influenced by the moisture content of 

the substrate. The optimum initial moisture content of BPS that supported maximum 

production of cellulase enzymes system by T. longibrachiatum LMLSAUL 14-1 was 

75%, Fig. 4.5. Similarly, findings by Sherief et al. (2010) reported that A. fumigatus 

growing on a mixture of rice straw and wheat bran (1:1) produced the highest 

cellulase activity at an initial moisture content of 75%. 

According to Lee (1997), too little moisture prevents fungal growth and too much of 

moisture clogs inter-particle spaces thereby inhibiting oxygen circulation resulting in 

compaction of the substrate or possibly contamination by bacteria. Depending on the 

type of substrate, some microorganisms respond positively to high/or low initial 

moisture of the substrate during synthesis of enzymes. For instance, a thermophilic 

fungi, M. thermophile M77 produced cellulase activity of 10.6 FPU/g d.s when 

cultivated on mixed substrate of soybean and sugarcane (10:90) with moisture 

adjusted to 80% and a temperature of 45 °C (Kilikian et al., 2014). A different 

production trend was observed for T. harzianum LMLBP07 13-5 whereby each 

enzyme of the cellulase enzymes system was produced at different initial moisture 

contents, Fig. 4.6.  As a result of such differences, the optimum initial moisture 

content of BPS for cellulase production was between 65 and 75% and as well as 

70% for β-glucosidase.  

The endoglucanase production increased proportionally with an initial moisture 

content of BPS and remained high between 75% and 80%. The initial moisture 

content of BPS higher than 75% has reduced cellulases and β-glucosidases 

production by 0.53 and 0.67, respectively. A. fumigatus LMLPS 13-4 also responded 

differently under varying moisture contents of BPS for the production of cellulase 

enzymes system. The optimum initial moisture content conducive for maximum 

cellulases and endoglucanases production was 75% and 65%, respectively. The 

optimum initial moisture content of BPS for the production of β-glucosidase by A. 
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fumigatus LMLPS 13-4 was 80%, Fig. 4.7. Similarly, higher initial moisture content of 

substrates has been found to produce maximum cellulases. For instance, Delabona 

et al. (2013) also observed that an initial moisture content of 80% in untreated 

sugarcane bagasse enhanced the production of endoglucanase by both A. niger 

P47C3 and A. fumigatus P40M2. Ang et al. (2013) also reported cellulase activity of 

3.36 FPU/g d.s, endoglucanase of 54.27 U/g d.s, and β-glucosidase of 4.54 U/g d.s 

produced by A. fumigatus SK1 grown on untreated palm oil trunk with an optimum 

initial moisture content of 80% at room temperature. Furthermore, A. fumigatus Z5 

has been reported to produce cellulases activity of 139.9 FPU/g d.s and 325 U/g d.s 

endoglucanase when cultivated on corn stover as substrate with initial moisture 

content of 75 and 80% (Liu et al., 2011).  

Pirota et al. (2016) reported optimum initial moisture of 80% in wheat bran that 

supported higher cellulases production by A. oryzae P27C3. In this case, the 

maximum cellulases activities produced were 0.48 FPU/g d.s and 0.14 FPU/g d.s 

under forced aeration and static aeration, respectively. Despite this improvement of 

the production of cellulases at 80% initial moisture content, Yoon et al. (2014) found 

that moisture content lower than 60% and higher than 80% was unfavourable for 

both fungal growth and cellulase production in SSF.  

The results show that each fungus has a specific requirement for optimum moisture 

of the substrate to fully activate regulatory enzymes system involved in the synthesis 

and secretion of cellulase enzymes system. The initial moisture content of BPS is 

critical as it facilitates nutrients and oxygen uptake by the cultivated microorganism 

in SSF. These differences in the initial moisture content of the BPS on cellulase 

enzymes system secretion suggest that optimum moisture conducive for high 

cellulase induction depends on the adaptive mechanism of each fungus and 

substrate properties. 

4.4.3. Effect of the pretreatment of the banana pseudostem on the production 
of the cellulase enzyme system 

The pretreatment of BPS prior to SSF did not improve the production of the cellulase 

enzymes system instead it enhanced specific type of enzyme(s) by particular fungal 

strain(s). Different pretreated BPS showed an improvement of β-glucosidase by all 
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fungal species. There was an equal amount of β-glucosidase in SSF of hot water 

pretreated BPS and untreated BPS by T. longibrachiatum LMLSAUL 14-1. On the 

other hand, T. harzianum LMLBP07 produced a 9.4-fold increase of β-glucosidase in 

SSF of BPS pretreated with 3% NaOH, while SSF of BPS pretreated with 5% H2SO4 

by A. fumigatus LMLPS 13-4 resulted in a 1.85-fold increase of β-glucosidase. These 

results confirm that each fungus responds differently to carbon source and regulatory 

systems that trigger biosynthesis of enzymes are activated differently as well in 

different organisms. Generally, SSF of untreated BPS increased the production of 

cellulase by all the fungal strains. This was due to high nutrients found in untreated 

BPS such as proteins, potassium, phosphorus and other micronutrients (Pereira et 

al., 2014).  

Brijwani & Vadlani (2011) specifically reported that only alkali pretreated soybean 

hulls had a significant reduction in enzyme production by both monoculture and 

mixed cultures of T. reesei and A. oryzae compared to untreated, acid and steam 

pretreated soybean hulls. The possible explanation for the alkaline effect was that 

the inhibitory compounds that are generated during substrate pretreatment have a 

deleterious effect on microbial growth and enzyme production (Brijwani & Vadlani 

2011). However, Sarkar & Aikat, (2012) reported that pretreatment of rice straw with 

2% NaOH resulted in enhanced production of cellulase and endoglucanase. 

However, concentrations above 2% NaOH did not show an increase in the enzyme 

production in that study. 

Pretreatment of other different agricultural waste substrates that includes sugarcane 

bagasse, cassava bagasse, and wheat bran and rice straw improved enzyme 

production more than the untreated substrates. Singhania et al. (2006) found that 

dilute alkaline pretreatment of  substrates mentioned above induced higher cellulase 

production and pretreated sugarcane bagasse induced the most cellulase of 154.58 

FPU/g d.s from T. reesei NRRL 11640. Thus,   an in-depth understanding of the role 

of physicochemical characteristics of substrate on cellulase production in SSF would 

provide a comprehensive framework to facilitate cellulase production with enhanced 

hydrolytic activities. 
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4.4.4. Effect of co-cultivation of Trichoderma and Aspergillus species on the 
production of cellulase enzymes system 

Another strategy to enhance the production of cellulase enzymes system with 

efficient hydrolytic properties was to use a combination of Trichoderma and 

Aspergillus species. The Trichoderma species are known as good cellulase 

producers but lack sufficient β-glucosidase activity. On the contrary, Aspergillus 

species produce high levels of β-glucosidase. The co-culturing of T. longibrachiatum 

LMLSAUL 14-1 and A. fumigatus LMLPS 13-4 negatively affected the levels of 

cellulase enzyme system produced when compared monocultures. However, co-

culturing of A. fumigatus LMLPS 13-4 and T. harzianum LMLBP07 13-5 enhanced 

the production of cellulases and endoglucanases, with the exception of β-

glucosidase, which decreased compared to a monoculture of the two fungi. The 

improved levels of cellulase and endoglucanse in co-culture could be attributed to 

dominance by Trichoderma. An increased level of β-glucosidases in co-culture of A. 

oryzae and A. niger was observed (Hu et al., 2011). Results from the current study 

suggest that co-culturing does not stimulate an increase in overall cellulase enzymes 

system secretion, but it may activate (or induce) specific enzymes. Fungal strain 

compatibility is also believed to promote better colonization and substrate 

penetration and possibly the synthesis of some metabolites by one organism may 

have a positive effect on the other organisms in terms of increased production of 

cellulolytic enzymes (Biswas et al., 2014; Tengerdy & Szakacs, 2003). 

Other co-culturing studies have also shown an improvement in enzyme production. It 

was shown that co-culturing of the T. reesei QM 9414 mutant (T. reesei M) and A. 

niger, improved levels of β-glucosidase by 4-fold and 2-fold  compared to  

monoculture on water hyacinth (Deshpande et al., 2008). Ingale et al. (2014) also 

reported enhanced cellulase enzymes system production with cellulase activity of 

4.05 FPU/g d.s and endoglucanase of 13.15 U/g d.s by A. ellipticus and A. fumigatus 

cultivated on pretreated BPS. 

Dueñas et al. (1995) reported cellulase activity of 18.7 FPU/g d.s and β-glucosidase 

activity of 38.6 U/g d.s by co-culturing of T. reesei LM-UC4 and Aspergillus phoenicis 

QM 329, which was higher than the monocultures in SSF using sugarcane bagasse. 

There was also improved production of cellulase enzymes system in SSF of 
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sugarcane bagasse supplemented with soymeal by co-culturing of T. reesei LM-

UC4E1 and A. niger (Gutierrez-Correa et al., 1999).  

In summary, the production of plant cell wall degrading enzymes by fungi is a 

complex process that is dependent on getting the correct signal that triggers a 

cascade of transcriptional factors. The regulation of transcriptional factors is also 

affected by physiological parameters such as starvation, pH, temperature etc. 

(Walsh et al., 2012). 

4.4.5. Effect of temperature and pH on the activity of the cellulase enzymes 
system 

Temperature and pH are important factors affecting enzyme activity during the 

hydrolysis of cellulosic biomass. Therefore, it is imperative to determine the optimum 

conditions under which enzymes will function effectively. The optimum temperature 

and pH of the cellulase enzymes system activities were investigated in the ranges of 

40 – 80 °C and pH 4.5 – 8.5.  The extent to which the enzyme activity diminished at 

higher temperatures varied between the enzyme(s) produced by different 

microorganisms.  

Trichoderma and Aspergillus species are mesophilic fungi and often their enzymes 

are optimally active at 25 to 50 °C (Vieille & Zeikus, 2001). T. longibrachiatum 

LMLSAUL 14-1 produced thermo-tolerant cellulases and β-glucosidases with 

optimum activity at 60 °C and endoglucanase activity at 50 °C, respectively. Thermo-

tolerant is defined as the ability of an enzyme to maintain catalytic activity at high 

temperature for a short-period, whereas thermo-stability as the enzyme’s ability to 

resist irreversible inactivation at high temperatures and maintain its activity over an 

extended period (Vieille & Zeikus, 2001). Both thermo-tolerant and thermo-stability of 

an enzyme are the result of co-existence and action of more than one factor such as 

protein ionic (slat-bridges) and hydrogen bonding, metals and cofactors (Hildén et 

al., 2009; Vieille & Zeikus, 2001). Similarly, Leghlimi et al. (2013) reported maximum 

activities of cellulases and endoglucanases produced by T. longibrachiatum (GHL) 

occurring at 60 °C and 55 °C, respectively.  

T. harzianum LMLBP07 13-5 also produced more thermo-tolerant enzymes than 

other fungi with a maximum activity of endoglucanase and β-glucosidase at 70 °C. 
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Cellulases of T. harzianum was active at 40 °C and between 70 and 80 °C. A. 

fumigatus LMLPS 13-4 produced a thermo-tolerant cellulase and endoglucanase 

with maximum activity at 60 °C and β-glucosidase activity at 70 °C. The above 

results are comparable to a thermophilic β-glucosidase from a themophilic fungus 

Myceliopthora heterothalica F.2.1.4 which showed maximum activities at 65 °C in 

SSF and 70 °C in SmF (Silva et al., 2016). Another thermophilic fungus is M. 

thermophile which exhibited maximum cellulase activity at 65 °C (Matsakas et al., 

2015). Moreover, another study reported that the β-glucosidase of A. fumigatus Z5 

and the same β-glucosidase expressed in Pichia pastoris X33 showed optimum 

activity at 60 °C (Liu et al., 2012).  

Grigorevski-Lima et al. (2009) reported thermophilic endoglucanases produced by A. 

fumigatus FBSPE05 with optimum activity at 65 °C. However, another study reported 

the optimum endoglucanases activity at moderate temperatures. Examples are 

Nurudeen et al. (2015) who reported the optimum temperature and pH for 

endoglucanase produced by A. terreus and T. longibrachiatum to be 50 °C. The 

Trichoderma and Aspergillus species used in the current study produced cellulase 

enzymes system which shared thermo-kinetic properties with the thermophilic 

(including hyperthermophilic) enzymes. The thermophilic enzymes are optimally 

active at a temperature between 60 and 125 °C (Vieille & Zeikus, 1996; Vieille et al., 

1996). 

The maximum activity of crude enzymes at high temperature is important for the 

biofuel industry as it may assist in disrupting the bonds between cellulosic biomass 

thereby making the sites available and accessible to other enzymes for hydrolysis to 

occur. Performing enzymatic hydrolysis at high temperatures allows higher substrate 

concentrations, short hydrolysis period, minimise contamination, lower viscosity of 

the slurry and improved mass transfer (Matsakas et al., 2015; Vieille & Zeikus, 

2001).  

The dependence of enzyme activity on the pH of the assay mixture is also influenced 

by the reaction temperature. At some reaction temperatures, the enzyme activity 

follows a bell-shaped trend. The increase in enzyme activity from low to high is due 

to protonation of functional groups of amino acids and co-factors involved in the 

catalytic reaction and the native three-dimensional protein structure of the enzyme 
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(Bisswanger, 2014). That means when the three-dimensional protein structure of the 

enzyme undergoes conformational changes in either extremely acidic or basic 

environment it leads to loss of the enzyme activity (Zeng et al., 2016). 

The cellulase enzymes system produced by both Trichoderma and Aspergillus 

species showed increased activities as pH increased up to certain pH value. The 

increase of enzyme activities, particularly for cellulases and endoglucanases from 

Trichoderma species and Aspergillus fumigatus LMLPS 13-4 continued up to pH 6.5.  

At pH values higher than 6.5 activities of these enzymes decreased. β-glucosidase 

was the only enzyme which showed higher activity at pH 5.5 and the activity 

remained steady until pH 8.5. This suggests that the structural and functional 

conformation of β-glucosidase remained unchanged throughout pH 5.5 – 8.5.  

There are studies reported on enzymes with higher activities at pH values below 4.5. 

For instance, Grigorevski-Lima et al. (2009) reported an endoglucanase from A. 

fumigatus FBSPE05 with maximum activity at pH 2.0, whereas, Leghlimi et al. (2013) 

reported highest endoglucanase activity at pH 4.0. In instances where more than one 

enzyme activity peak were observed such as in Fig. 4.13, 4.15 and 4.17 it could be 

an indication of the presence of more than one enzyme (i.e. isozymes/or isoforms) in 

the crude enzymes with different pH/or temperature optima values. In comparison to 

cellulases and endoglucanases, all the fungi produced β-glucosidase that showed 

90% activity across a wide pH range, i.e. from 5.5 to 8.5. A thermostable β-

glucosidase gene bgl3 from A. fumigatus Z5 expressed in P. pastoris X33 and the 

native β-glucosidase of A. fumigatus Z5 was optimally active at pH 6.0 (Liu et al., 

2012). 

Myceliophthora heterothallica F.2.1.4 have been reported to produce β-glucosidase 

with maximum activity at pH 5 (Silva et al., 2016).  The carbon source (substrate) 

also has an effect on the pH at which maximum activity can be attained. Okoye et al. 

(2013) reported maximum enzyme activity at pH 6 and pH 7 of cellulases produced 

by A. fumigatus when cultured on the inner part of corn cob and outer part of corn 

cob, respectively. In another study, Liu et al. (2011) also reported a maximum 

endoglucanase activity produced by A. fumigatus Z5 at pH 7.0. A. fumigatus M.7.1 

has also been shown to exhibit maximum endoglucanase activity at pH 5.5 (Moretti 

et al., 2012). 
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4.4.6. The thermostability of cellulase enzymes system at selected 
temperatures 

The stability of an enzyme is fundamental for any experimental design or production 

in biotechnological processes. Thermal stability of an enzyme refers to the degree to 

which the enzyme’s secondary, tertiary and quaternary structures are affected by 

temperature changes in their surroundings. This effect is monitored by enzyme 

activity after exposure to various temperatures in the absence of substrate 

(Matsakas et al., 2015; Okoye et al., 2013). High enzyme activity and a three-

dimensional structural stability are important in the hydrolysis of cellulosic biomass. 

Cellulase possessing the above properties will be effective in the hydrolysis of 

cellulose and the process utilising such cellulase would require the addition of a 

smaller amount of the enzymes.  

All the cellulase enzymes system produced by Trichoderma and Aspergillus species 

were incubated at selected temperatures for 24 hours prior to the determination of 

the enzyme’s kinetic stability.  The enzyme’s kinetics stability as stated by Vieille and 

Zeikus, (2001) is often expressed as its half-life (t1/2) at a defined temperature. The 

half-life of an enzyme is the time after which the activity of the enzyme is reduced to 

50% of the original activity at a defined temperature (Saqib et al., 2010). 

The cellulases of T. longibrachiatum LMLSAUL 14-1 reached half-life after 24 hours 

at 40 °C and at higher temperature the enzyme became deactivated. Endoglucanase 

exhibited good thermostability between 40 and 50, retaining 70% of its original 

activity. However, beyond 50 °C the enzyme seemed to have entered into an 

irreversible inactive form with over 95% loss in activity. The decrease in activity was 

due to thermal inactivation/denaturation of enzymes caused by the breakdown of 

weak interactions holding the globular protein structure together. When the three-

dimensional structure of enzymes is thermo-sensitive and it becomes destabilised at 

high temperature causing denaturation (irreversible state). The progression of 

denaturation depends both on the temperature and on time of exposure 

(Bisswanger, 2014). β-glucosidase from T. longibrachiatum LMLSAUL 14-1 was also 

stable at 40 °C and at temperature higher than 40 °C, the enzyme followed similar 

trend exhibited by endoglucanses. The thermal stability of the above enzymes was 

within the optimum temperature of the microorganism’s growth limits. Leghlimi et al. 
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(2013) reported a T. longibrachiatum (GHL) thermostable endoglucanase at 70 °C, 

capable of retaining 80% of its original activity after 5 hours of pre-incubation. 

Similarly, a T. harzianum LMLBP07 13-5 produced a thermostable endoglucanase 

with a longer half-life as elaborated below. 

Regarding the cellulase enzymes system of T. harzianum LMLBP07 13-5, thermal 

activation of cellulase and endoglucanase activity was observed at 40 and 50 °C. 

This activation effect (i.e. enhanced activity) could tentatively be due to; (a) mild heat 

activating the enzyme by destroying other proteins which are partially inhibitory to 

the enzyme. (b) and or because the stability tests for the enzymes was carried out 

under newly optimised assay conditions (60 °C and pH 6.5) versus the 50 °C and pH 

5.0, generally accepted for mesophilic enzymes. Cellulases were unstable at a 

temperature higher than 50 °C. This observation confirms that most enzymes are 

stable at the optimum temperatures of the microorganism’s growth range. An 

exception was the endoglucanases which remained stable from 40 to 70 °C, 

retaining activity beyond the enzymes’ half-life. The enzymes were very sensitive to 

80 °C. β-glucosidases were stable at 40 and 50 °C and higher temperatures led to 

irreversible inactivation of the enzyme. However, the β-glucosidase of T. harzianum 

LMLBP07 13-5 seemed to be more stable when compared to both T. 

longibrachiatum LMLSAUL 14-1 and A. fumigatus LMLPS 13-4. The β-glucosidases 

from T. harzianum LMLBP07 13-5 was stable more than another mesophilic β-

glucosidase from T. harzianum IOC-3844, which exhibited high sensitivity to 50 ° and 

60 °C, presenting half-life time of 4 hours and less than 1 hour, respectively (Castro 

et al., 2010). 

Aspergillus fumigatus LMLPS13-4 cellulases were stable between 40 and 60 °C. The 

enzymes reached its half-life after 24 hours at 60 °C and the activity further 

diminished at higher temperatures. The cellulases of A. fumigatus LMLPS 13-4 

shared some thermal properties with enzymes from the thermophile fungus M. 

thermophila which showed higher thermal stability at 60 °C (Matsakas et al., 2015). 

Regarding endoglucanases, there were also enhanced activity at 50 °C and the 

enzyme remained fairly stable at high temperatures having a half-life at 80 °C. 

Santos et al. (2016) explained such an increase in enzyme activity as a result of 

temperature-induced activation in which atoms acquired more energy and thus 

greater tendency to move. Similarly, Liu et al. (2011) reported thermal stability of A. 
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fumigatus Z5’s crude enzyme (endoglucanase), which maintained more than 80% of 

its original activity after 20 hours of pre-incubation at temperature ranged from 40 – 

60 °C. However, there was a gradual loss of enzyme activity, with less than 10% of 

activity retained at 80 °C and 90 °C as compared to endoglucanase of A. fumigatus 

LMLPS 13-4 at 80 °C.  

Some studies use shorter time to determine the enzyme’s thermostability. For 

instance, Adav et al. (2013) investigated the thermostability of endoglucanase from 

A. fumigatus LF9 at temperature ranging from 40 – 70 °C. After 30 minutes of pre-

incubation, the enzyme was stable, retaining 100% activity between 40 – 50 °C. 

However, the enzyme gradually lost activity, retaining 60% at 70 °C. Such very short 

enzyme half-life could me misleading since complete and efficient hydrolysis 

(saccharification) process of lignocellulose biomass requires time in hours or days. 

Surprisingly, since Aspergillus is regarded as a β-glucosidase producer, β-

glucosidase of A. fumigatus LMLPS 13-4 exhibited very poor thermostability; the 

enzyme could not retain 50% of its original activity for any of the temperature points 

used. 

According to Li et al. (2011), thermophilic fungal cellulases are active in the pH range 

4.0 – 7.0 and have high activity at 50 – 80 °C. In addition, thermophilic cellulases 

exhibit a remarkable thermal stability and are more stable at 60 °C than those from 

other fungi. The study by Castro et al. (2010) also reported the sensitivity of β-

glucosidase to higher temperatures of 50°C and 60 °C. In that study, after 23 hours 

of pre-incubation of crude enzyme at 60 °C, cellulase lost over 80% of its activity. 

Furthermore, both β-glucosidase and endoglucanase completely lost their activities 

(Castro et al., 2010). 

Other studies on thermostability have relied on shorter incubation period which 

complicates direct comparison of stability results. For instance, Santos et al. (2016) 

reported 100% of activity retained by cellulase produced by A. niger after 90 minutes 

of incubation at 60 °C while Rhizopus sp. at the same temperature retained 100% 

after approximately 4 hours of incubation. It is important to note that thermostability 

of enzyme is necessary for the process but it is not sufficient for thermo-activity. The 

findings of this study revealed that often there is a “trade-off” between activity and 

thermostability. Some of the enzymes which showed high thermo-activity at a 
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particular temperature could be less stable at the same temperature (Daniel & 

Danson, 2010). For a longer saccharification process, maximum activity of enzyme 

at high temperature alone is undesirable since the enzyme must maintain its activity 

for the duration of the process; hence enzyme stability is so crucial (Saqib et al., 

2012).  

4.4.7. The stability of cellulase enzymes complex at selected pH values 

The pH stability of cellulase enzymes system produced by the fungi used in this 

study was also investigated. Both cellulases and β-glucosidases by T. 

longibrachiatum LMLSAUL 14-1 exhibited good stability in acidic conditions (pH 4.5 

– 6.5). Most of the cellulase activity was lost at pH values above 6.5, while β-

glucosidases remained fairly stability up to a pH 8.5, retaining 59% of its original 

activity. The endoglucanases of T. longibrachiatum LMLSAUL 14-1 was unstable 

throughout the pH ranges (4.5 – 8.5). On the contrary to this, cellulase of T. 

harzianum LMLBP07 was most stable in alkaline conditions (pH 7.5 – 8.5), whereas 

β-glucosidase was stable throughout the pH range with its 50% activity reached at 

pH 7.5. T. harzianum LMLBP07 produced a pH sensitive endoglucanase having 54% 

residual activity at pH 4.5 and pH above 4.5 led to gradual loss of enzyme activity.  

In a study by Zeng et al. (2016) the authors reported a stable endoglucanase 

produced by T. virens that retained 85% of its original activity at pH 5.0 after 24 

hours of pre-incubation. Cellulase produced by A. fumigatus LMLPS 13-4 has 

retained 53% activity at pH 5.5 after 24 hours of pre-incubation. This fungus 

produced stable endoglucanase and β-glucosidase at pH 4.5 – 8.5. However, 

endoglucanse was most stable at pH 4.5 – 5.5. Both endoglucanase genes (egl2 

and egl3) and β-glucosidase gene (bgl3) of A. fumigatus Z5 expressed in P. pastoris 

X33 (including native β-glucosidase) showed stability in the range 4 – 7 (Liu et al., 

2012). According to Li et al. (2011), a systematic characterization of cellulase 

enzyme system is necessary to better understand the thermostability and 

evolutionary relationship between thermophilic and mesophilic cellulase enzymes 

system. Generally, the thermostability and optimal activity at high temperatures are 

inherent properties of thermophilic or hyperthermophilic enzymes (Vieille & Zeikus, 

2001). 
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4.5. CONCLUSION 

The production of cellulase enzymes system is influenced by various factors that 

include temperature, nature of the growth substrate (i.e. moisture, modification and 

source) and culturing technique/strategy (i.e. monoculture versus co-culture). Both 

Trichoderma and Aspergillus species are mesophilic fungi and have shown different 

temperature optima for the productions of cellulase enzymes system. The moisture 

content of the BPS also influenced the production of cellulase enzymes. For 

instance, each of the enzymes is produced at different optimal moisture of the 

substrate. The pretreatment of the BPS did not improve the overall production of 

cellulase enzymes, in the case of T. longibrachiatum LMLSAUL 14-1. However, mild 

alkaline and acidic pretreated BPS improved the production of β-glucosidase by T. 

harzianum LMLBP07 13-5 and A. fumigatus LMLPS 13-4, respectively. There is an 

improvement in cellulase enzyme system production by co-cultivation of A. fumigatus 

LMLPS 13-4 and T. harzianum LMLBP07 13-5. 

An active and stable enzyme(s) at high temperature offers biotechnological benefits 

to the biofuel industry. All the fungi investigated, produced thermo-tolerant and 

acidophilic cellulases and endoglucanases, whilst β-glucosidases are both 

acidophilic and alkaliphilic. The cellulase enzymes system secreted by T. harzianum 

LMLBP07 13-5 is most stable, followed by A. fumigatus LMLPS 13-4 while the least 

stable cellulase enzymes were secreted by T. longibrachiatum LMLULSA 14-1. This 

study demonstrates banana pseudostem to be a useful agricultural waste for the 

production of cellulase enzyme system (cellulase, endoglucanase and β-

glucosidase). These enzymes show desirable properties such as high thermo-activity 

and stability and will be assessed for effective saccharification in Chapter 5 
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CHAPTER 5 

Hydrolysis and fermentation of banana pseudostem to produce 
ethanol 

5.1. INTRODUCTION  

The productions of first generation bioethanol using grains and vegetable oil for 

biodiesel are faced with challenges due to the competition with the food supply, 

particularly in developing countries (Demirbas, 2011). Due to sugar-rich feedstock’s 

direct influences on food prices, it has become imperative for future biofuel 

expansion to be based on the use of lignocellulosic biomass, a second generation 

bioethanol (Cheng & Zhu, 2012). Because of the nature of cellulosic biomass 

structure in plants including herbaceous plants, the release of fermentable sugars 

poses a challenge. The process requires pretreatment; a pre-hydrolysis step that 

exposes cellulose fibers making it susceptible to enzymatic hydrolysis (breaking 

down of cellulose to fermentable sugars) before fermentation of the sugars yielded. 

The efficiency of pretreatment is influenced by the methods used and the nature and 

composition of lignocellulose biomass (Gabhane et al., 2014). Currently, the amount 

of cellulases required for saccharification and the low ethanol yield are key factors 

affecting the overall cost to produce bioethanol (Liu et al., 2016). 

Lignocellulosic biomass is comprised of forestry, agro-industrial and food wastes and 

is renewable, available in excess and inexpensive (Maitan-Alfenas et al., 2015). The 

agro-industrial residues are obtained after the harvest and the processing of the 

product. The examples of the post-harvest residues are wood bark and banana 

pseudostem, whereas the processing residues include corncob, rice husk, saw dust 

etc. (Duque et al., 2015). Lignocellulosic mainly consist of sugar polymers (i.e. 

cellulose and hemicellulose) and lignin. The use of these polymers for the production 

of value added products such as biofuel, food additives, organic acids, enzymes, etc. 

can remediate environmental problems attributed to waste accumulation (Maitan-

Alfenas et al., 2015). 
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The banana pseudostem, an example of agricultural waste, is an attractive non-

edible cellulosic biomass for bioethanol production because of its high cellulose and 

moderate hemicellulose and low lignin content. Unlike wood based lignocellulosic 

biomass, the banana plant has a short life cycle, it requires 10 – 14 months to bear 

fruit depending on the geographic location and soil type (Chaurasia et al., 2017). The 

banana plant bears fruit once in its life cycle and for every cycle of banana 

production, wastes which are four times the harvested fruit are generated. Banana 

wastes range from rotten fruit, peels, fruit-bunch stem, leaves, pseudostem and 

rhizome (Abdullah et al., 2014). After the harvesting of the banana fruit, banana 

pseudostem become available in abundance as waste (60 – 80 t/ha), which is either 

left to rot at the local dumpsite or left to decompose at the plantation to serve as 

organic soil fertiliser (Meena et al., 2015; Li et al., 2010). 

The conversion of banana pseudostem to reducing sugar has not been effective due 

to the high crystallinity of the banana fibres (Gabhane et al., 2014). The current study 

investigates the utilisation the banana pseudostem as a source of sugars that can be 

used in the production of bioethanol. 

5.2. MATERIALS AND METHODS 

5.2.1. Collection and preparation of banana pseudostem 

Fresh banana pseudostem (BPS) were cut and collected from Alleesbeste farm 

located in Tzaneen, Limpopo province of South Africa. Details of the preparations 

are described in section 4.2.2. 

5.2.2. Pretreatment of banana pseudostem 

One hundred and fifty grams of ground BPS was suspended in each pretreatment 

solution; i.e. 3% NaOH (Filho et al., 2013); 5% H2SO4 (El-Zawawy et al., 2011; 

Gabhane et al., 2014; Lin et al., 2015) and H2O, at a ratio of 1:10 solid: liquid. 

Further details on the pretreatment are described in section 4.2.3. Figure 5.1 below 

depicts BPS before (native biomass) and after the pretreatment.  
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Figure 5.1. Banana pseudostem before and after different pretreatments. A 5% 

H2SO4, B 3% NaOH, C Hot water and D Native (Untreated). 

5.2.3. Analysis of the chemical composition of banana pseudostem 

The chemical composition of the untreated, thermo-alkali, thermo-acid and liquid hot 

water (or hydrothermal) pretreated BPS samples were determined. The cellulose 

and lignin content was analysed by a reaction with sulphuric acid according to a 

standard method by TAPPI-T222 om-88 and the hemicellulose content was obtained 

as described in TAPPI1T19m-54 standards (Motaung & Anandjiwala, 2015). 

5.2.4. Fourier transform infrared spectroscopy (FTIR) of banana pseudostem 
fibers 

Fourier transform infrared spectroscopy of untreated, thermo-alkali, thermo-acid and 

hydrothermally pretreated BPS samples were acquired using Spectrum 100 FTIR 

(PerkinElmer, Waltham, MA, USA) equipped with an attenuated total reflection (ATR) 

accessory with a diamond/ZnSe crystal (64 scans. 4 cm-1 resolution, with 

wavenumber range 500-4000 cm-1) according to Motaung & Anandjiwala, (2015). 

5.2.5. Cellulase enzymes production and extraction 

Three fungal species, namely Trichoderma harzianum LMLUL 13-5, Trichoderma 

longibrachiatum LMLUL 14-1 and Aspergillus fumigatus LMLUL 13-4 were used for 

production of cellulases in solid state fermentation (details refer to sections 4.2.4 and 

4.2.5).  

  A 

B A C D 
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5.2.6. Enzymatic hydrolysis of pretreated banana pseudostem 

Crude cellulase enzymes system from T. longibrachiatum LMLSAUL 14-1 and T. 

harzianum LMLBP07 13-5 cultures was used. The saccharification of alkaline (3% 

NaOH) and acid (5% H2SO4) pretreated BPS at 10 g, 12.5 g, and 15 g substrate 

loadings in 100 mL were carried out in triplicate at 50 °C, 150 rpm for 76 hours. The 

saccharification mixture contained crude enzyme (10 FPU/g of substrate loading, 

Gregg & Saddler, 1996), 0.005% sodium azide and buffered with 0.05 M Na-citrate 

at pH 5.0. Sampling was carried out according to Low et al. (2015). Two millimetres 

of the sample was placed in boiling water for 15 minutes and later centrifuged at 

12470 x g for 10 minutes. The supernatant was stored at -20 °C until required for 

analysis. The released glucose was analysed using High Performance Liquid 

Chromatography (HPLC).  

5.2.7. Bioethanol production using banana pseudostem hydrolysate 

5.2.7.1. Inoculum preparation 

Saccharomyces cerevisiae UL01 was inoculated into 50 ml of YPD (1% yeast 

extract; 2% peptone and 2% dextrose) medium and incubated at 30 °C with shaking 

at 150 rpm for 14 hours. 

5.2.7.2. Hydrolysis of banana pseudostem 

The hydrolysis of BPS was achieved using mild acid (5% H2SO4) and crude 

cellulases (final concentration of 10FPU/g) from T. longibrachiatum LMLSAUL 14-1.  

The acid pretreated  BPS (pretreatment outlined in section 5.2.2) liquid fraction was 

separated from solid biomass and divided into two parts, namely centrifuged 

(clarified) at 3834 x g at 4 °C for 30 minutes and non-centrifuged (non-clarified) 

fraction.  

After enzymatic hydrolysis of alkaline pretreated BPS (pretreatment conditions 

outlined in section 5.2.2), the slurry was centrifuged at 3834 x g at 4 °C for 30 

minutes. The glucose content of the liquid fractions was determined using HPLC and 

later used in fermentation. 
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5.2.7.3. Fermentation of banana pseudostem hydrolysate 

A 100 mL fraction of the fermentable sugars obtained through acid and enzymatic 

hydrolysis was supplemented with 0.2 g K2HPO4; 0.7 g KH2PO4; 0.1 g NH4SO4; and 

0.15 g yeast extract following a modification of the procedure by Thakur et al. (2013). 

The pH of the BPS hydrolysate media was adjusted to 5.0 and autoclaved at 121 °C, 

15 psi for 1 hour prior to inoculation. The BPS hydrolysate media was allowed to cool 

and thereafter inoculated to an initial OD600nm of 0.4 at zero hour, t0. The progression 

of fermentation was monitored by periodic sampling and the samples were filtered 

through non-sterile 0.22 μm filter membrane prior to glucose and ethanol analysis. 

5.2.7.4. Co-fermentation by Trichoderma longibrachiatum LMLSAUL 14-1 and 
Saccharomyces cerevisiae UL01 

Three grams of each of the pretreated BPS was suspended in 100 mL modified 

synthetic medium by Peixoto (2006) containing 0.2 g K2HPO4, 0.05 g KCl, 1 mg 

FeSO4.7H2O, 15 mg MgSO4.7H2O, 0.7 g KH2PO4, 0.1 g NH4SO4 and 0.15 g Yeast 

extract. The medium was inoculated with T. longibrachiatum LMLSAUL 14-1 and S. 

cerevisiae UL01 at a ratio of 1:3 (i.e. 1 ml of 1 x 106 cells/g substrate for T. 

longibrachiatum LMLSAUL 14-1 and 3 ml for S. cerevisiae UL01 of 1.8 OD600) and 

incubated at 30 °C, with 150 rpm shaking for 91 hours. The experiment was carried 

out in triplicate and the progression of fermentation was monitored by sampling at 0, 

20, 27, 44, 51, and 68 hours to quantify ethanol, residual sugar and cellulase activity. 

5.2.7.5. Sugars content of banana pseudostem hydrolysate and fermented 
hydrolysate 

The sugars in the banana pseudostem hydrolysate samples were analysed using 

HPLC on a Shimadzu Prominence 20 HPLC system equipped with Rezex RHM-

monosaccharide H+ column (300 x 7.8 mm) fitted with 5 micron Rexez organic guard 

column (Phenomenex, USA). The detection of eluents was done by using a 

refractive index detector, RID 10A (Shimadzu, Kyoto, Japan). The column 

temperature was maintained at 85 °C and analytes were eluted using deionised 

water at a flow rate of 0.6 ml/minute. Peak detection and integration were done using 

LC Solutions software from Shimadzu (Kyoto, Japan) and peak heights were used 
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for calculations of sugar concentrations. Known concentrations of glucose, xylose 

and cellobiose were used as standards to determine the concentration of individual 

sugars in BPS hydrolysates. 

The calculation of glucose yield as a percentage of cellulose conversion to glucose 

(% digestibility) by both acid and enzymatic hydrolysis was done according to the 

method by Dowe & McMillan, (2008).  

Glucose yield (%) =  
[glucose] + 1.053 [cellobiose]

1.111 𝑓𝑓 [biomass]  × 100                             (1)  

 

Where [glucose] is the glucose concentration minus any glucose present at the 

beginning of hydrolysis (g/L); [cellobiose] is the cellobiose concentration (g/L); 

[biomass] is dry biomass concentration at the beginning of the hydrolysis (g/L); f is 

cellulose fraction in dry biomass (g/L); 1.111 is cellulose conversion factor to glucose 

equivalent and 1.053 is cellobiose conversion factor to glucose equivalent. 

5.2.7.6. Ethanol from fermented banana hydrolysate 

Ethanol was analysed by capillary gas chromatography using a Shimadzu 

GC2010Plus equipped with auto injector AOC 20i (Shimadzu) and an AOC 20S 

(Shimadzu) auto sampler with a flame ionization detector (FID) and Zebron ZB wax 

Plus 30 M (Phenomenex, USA) column (30 m, 0.25 mm ID and film thickness of 0.25 

μm). Nitrogen was used as the carrier gas at a flow rate of 17.6 mL/minute. The oven 

temperature was initially maintained at 40 °C for 1 minute then increased to 140 °C 

at a rate of 20 °C/min and further increased to 200 °C at a rate of 50 °C/min and 

maintained at this temperature for 3 minutes. The injection temperature was 200°C 

and the injection volume was 1 μL. A split injection mode with split ratio of 10 was 

applied. Ethanol was detected using a FID at 250 °C. Absolute ethanol was used for 

preparation of standard concentrations (v/v).  Peaks detection and integration were 

done using GC Solutions software from Shimadzu (Kyoto, Japan). Peak heights 

were used to determine the unknown concentrations of ethanol in fermented BPS 

hydrolysate. 
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The conversion of cellulose to ethanol (%) was calculated based on the mass of the 

biomass using the formula below according to (Lu et al., 2012); 

 

Conversion of cellulose to ethanol (%) =
[EtOH]

(𝑓𝑓 ∗ biomass ∗ 1.111 ∗ 0.51)𝑋𝑋 100  (2) 

 
Where [EtOH] is ethanol at the end of the fermentation minus any ethanol available 

in a medium (g/L) at time 0; f is cellulose fraction of dry biomass (g/g); Biomass is 

the dry biomass concentration at the beginning of the fermentation (g/L); 0.51 is the 

conversion factor for glucose to ethanol based on stoichiometric biochemistry of 

yeast; 1.111 is the conversion factor of cellulose to equivalent glucose. 

5.2.8. Statistical analysis 

All the experiments were done in triplicates. The data generated was statistically 

analysed by Two-way analysis of variance (ANOVA) test for saccharification 

experiments using MS Excel 2010. Differences were considered significant when 

probability value (p) was <0.05. The error bars in the graphs represent standard 

error, SE. 

5.3. RESULTS 

5.3.1. Chemical composition of untreated and pretreated banana pseudostem 

Banana pseudostem is a clustered cylindrical aggregation of leaf stalk bases 

(Mukhopadhyay et al., 2008). BPS contains polymers such as, cellulose, 

hemicellulose, and lignin. Pretreatment introduce changes in the BPS, opening the 

structure to expose the carbohydrate polymers allowing improved enzyme access for 

improved enzymatic hydrolysis (saccharification). The amounts of the three polymers 

found in untreated and pretreated BPS are shown in Table 5.1. The pretreatment 

results showed an increase of cellulose, and a loss of hemicellulose as well as lignin. 

The loss of lignin is desirable in the production process of second generation 

bioethanol, since it has been suggested that lignin binds and limits the accessibility 

of cellulases to cellulose. 
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Table 5.1. Chemical composition of untreated and pretreated banana pseudostem. 

BPS and pretreatment Cellulose (%) Hemicellulose (%) Lignin (%) 

Untreated 24.47 ± 0.839 22.56 ± 1.658 14.14 ± 1.585 

3% NaOH 52.32 ± 2.878 10.84 ± 1.591 8.68   ± 0.464 

5% H2SO4 48.17 ± 0.351 9.88   ± 1.641 8.31   ± 1.688 

Hot water 25.44 ± 0.314 15.02 ± 1.189 9.25   ± 0.072 
NB: Standard deviation (SD) ± values of independent triplicates 

Both thermo-alkaline and thermo-acid pretreatment solubilised over 50% of 

hemicellulose, also removing approximate 40% of the lignin and improved cellulose 

availability by 114% and 97% for alkaline and acid pretreatment, respectively. Hot 

water pretreatment of BPS resulted in 33% hemicellulose solubilised, 34% lignin 

removed and very little change in cellulose content. The percentages of these 

polymers can also vary from one cultivar to another, and the differences may also 

occur within the same cultivar due to geographic location. 

5.3.2. Characterization of untreated and pretreated banana pseudostem 

FTIR spectroscopy was used to study the chemical structural and conformational 

variations introduced by pretreatment of BPS. Lignocellulosic biomass contains 

many O-H bonds due to the presence of cellulose, hemicellulose and lignin. During 

FTIR analysis, the covalent bonds of the functional groups absorb a certain amount 

of energy from infrared radiation, causing the bonds to be stretched. After the 

absorption of energy, the O-H bonds are stretched resulting in the increase of the 

peak intensity indicated by either sharpness or broadness (Azizan et al., 2016). 

The FTIR spectra of native (untreated) and pretreated BPS are shown in Fig. 5.2. 

The spectrum of the native BPS shows distinct peaks/bands at various 

wavenumbers with strong broad band occurring at 3363 cm-1, 2931 cm-1, 2794 cm-1, 

1619 cm-1, 1263 cm-1, 1010 cm-1 and multiple small peaks at 863 cm-1, and 759 cm-1, 

725 cm-1 and 718 cm-1. The spectra of all pretreated BPS fibers are similar to those 

of the native BPS and exhibit common peaks and values, which indicate the 

similarity in the materials, BPS. However, chemical modification through 

pretreatments had decreased the peaks intensities and some other peaks 

completely diminished. For instance, peak at wavenumber 2794 cm-1 diminished in 
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all the pretreated BPS samples, suggesting solubilisation of hemicellulose as evident 

in Table 5.1 above. There was a decrease of peak intensities in the pretreated BPS 

samples at wavenumber 3363 cm-1, 2931cm-1, 1619 cm-1 1235 cm-1 and 1010 cm-1 

indicating fewer functional groups such as O-H, C-H and C=C that are associated 

with stretching vibrations mainly in cellulose and hemicellulose or lignin. 
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Figure 5.2. Figure 5.2: FTIR spectra of banana pseudostem. – Native (untreated); – 

LHW (Liquid hot water); – Base (3% NaOH) and – Acid (5% H2SO4). 

5.3.3. Saccharification of banana pseudostem with  Trichoderma species 
cellulase enzymes system 

Based on the holocellulose amount as shown in Table 5.1, chemically pretreated (i.e. 

acid and alkaline) BPS were chosen for enzyme digestibility assessment 

(saccharification) using crude cellulase enzymes produced by T. longibrachiatum 

LMLSAUL 14-1 and T. harzianum LMLBP07 13-5 at a concentration of 10 FPU/g d.s. 

The hydrolysis of acid pretreated BPS by cellulase enzymes system produced by T. 

harzianum LMLBP07 13-5 released about 5.4 g/L of glucose at high substrate 

loading. The concentration of glucose increased proportionally with increasing of 

substrate loading during hydrolysis, Fig. 5.3. The time required to release maximum 

glucose from acid pretreated BPS varied between the solid substrate loadings. 



131 
 

 

Figure 5.3. The time course of glucose production during hydrolysis of 5% H2SO4 

pretreated banana pseudostem at different solid loadings by T. harzianum LMLBP07 

13-5 cellulase enzymes system.  

The hydrolysis of acid pretreated BPS by cellulase enzymes system produced by T. 

longibrachiatum LMLSAUL 14-1 is shown in Fig. 5.4. Most of the sugar was released 

within the first 5 to 10 hours of incubation and a further increase of hydrolysis time 

did not improve the glucose yield. 

 

 

Figure 5.4. The time course of glucose production during hydrolysis of 5% H2SO4 

pretreated banana pseudostem at different solid loadings by T. longibrachiatum 

LMLSAUL 14-1 cellulase enzymes system.  
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Generally, acid pretreated BPS exhibited recalcitrance towards cellulase enzymes 

system hydrolysis with the overall glucose released not reaching 10 g/L. There was a 

proportional increase in glucose with the biomass loading, Fig 5.3 and 5.4, however, 

glucose yield as a percentage of cellulose conversion to glucose decreased. The 

glucose yield ranged from 7.1 to 6.7 when using cellulase enzymes system obtained 

from T. harzianum LMLBP07 13-5 and 10.0 to 8.9 when using cellulase enzymes 

system obtained from T. longibrachiatum LMLSAUL 14-1, Table 5.2.   

As opposed to acid pretreated BPS biomass, the alkaline pretreated BPS was more 

digestible by both T. harzianum LMLBP07 13-5 and T. longibrachiatum LMLSAUL 

14-1 cellulase enzyme systems. The hydrolysis with Trichoderma species cellulases 

released high concentrations of glucose from alkaline pretreated BPS, significantly 

more than from the acid pretreated BPS. The cellulase enzymes system produced 

by T. harzianum LMLBP07 13-5 hydrolysed alkaline pretreated BPS and released 

glucose in the range of 13.9 to 20.1 g/L, Fig. 5.5. The higher glucose level was 

attained at the highest solid loading.  

 

Figure 5.5. The time course of glucose production during hydrolysis of 3% NaOH 

pretreated banana pseudostem at different solid loadings by T. harzianum LMLBP07 

13-5 cellulase enzymes system. 
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Table 5.2. Summary of enzymatic saccharification of acid pretreated banana pseudostem at varying solid loadings by crude 

enzyme produced by Trichoderma harzianun LMLBP07 13-5 and Trichoderma longibrachiatum LMLSAUL 14-1. 

Organism BPS biomass loading 
(% w/v) 

Crude cellulases 
loading (FPU/g d.s) 

Glucose produced 
(g/L) 

Time (h) Cellulose conversion 
to glucose (% w/w) 

T. harzianum 
LMLBP07 13-5 

     

 10 10 3.8  (± 0.0565) 30 7.1  (± 0.1056) 

12.5 10 4.6  (± 0.0200) 40 6.9  (± 0.0299 

15 10 5.4  (± 0.4024) 40 6.7  (± 0.5013) 

T. 
longibrachiatum 
LMLSAUL 14-1 

     

 10 10 5.4  (± 1.0413) 40 10   (± 1.9454) 

12.5 10 7.4  (± 0.3843) 10 11   (± 0.5745) 

15 10 7.1  (± 0.4510) 5 8.9  (± 0.5618) 
NB: Standard deviation  ± values of independent triplicates 
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The cellulase enzymes system produced by T. longibrachiatum LMLSAUL 14-1 was 

more effective in hydrolysing alkaline pretreated BPS than the T. harzianum 

LMLBP07 13-5, Fig. 5.6. The enzymatic hydrolysis released glucose in the range of 

29.7 to 43.5 g/L. The maximum concentration of glucose released during the 

hydrolysis was at the highest solid loading.  

 

Figure 5.6. The time course of glucose production during hydrolysis of 3% NaOH 

pretreated banana pseudostem at different solid loadings by T. longibrachiatum 

LMLSAUL 14-1 cellulase enzymes system. 

A significant improvement in the enzymatic conversion of alkaline pretreated BPS to 

glucose as evident when compared with acid pretreated BPS. The highest glucose 

yield of 26.3 and 53.2 was obtained at 12.5% BPS biomass loading by crude 

cellulase enzymes from T. harzianum LMLBP07 13-5 and T. longibrachiatum 

LMLSAUL 14-1, respectively. Table 5.4 shows that the digestibility of pretreated BPS 
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Table 5.3. Summary of enzymatic saccharification of alkaline pretreated banana pseudostem at varying solid loadings by crude 

enzyme produced by Trichoderma harzianun LMLBP07 13-5 and Trichoderma longibrachiatum LMLSAUL 14-1. 

Organism BPS biomass loading 
(% w/v) 

Crude cellulases 
loading (FPU/g d.s) 

Glucose produced 
(g/L) 

Time 
(h) 

Cellulose conversion to 
glucose (% w/w) 

T. harzianum 
LMLBP07 13-5 

     

 10.0 10 13.9  (± 0.3131) 76 23.9  (± 0.5387) 

12.5 10 19.1  (± 0.2149) 76 26.3  (± 0.2957) 

15.0 10 20.1  (± 0.1628) 76 23.1  (± 0.1867) 

T. 
longibrachiatum 
LMLSAUL 14-1 

     

 10.0 10 29.7  (± 1.3132) 76 51.4  (± 2.2592) 

12.5 10 38.6  (± 0.8465) 76 53.2  (± 1.1650) 

15.0 10 43.5  (± 0.7044) 76 49.9  (± 0.8079) 
NB: Standard deviation  ± values of independent triplicates



136 
 

Based on the results of cellulosic BPS conversion to glucose as summarised in 

Table 5.2 and 5.3 above, the alkaline pretreatment of BPS and T. longibrachiatum 

LMLSAUL 14-1 cellulase enzymes system were chosen for further use in 

fermentation studies. 

5.3.4. Separate hydrolysis and fermentation of banana pseudostem 
hydrolysate 

After the hydrolysis of BPS by acid and cellulase enzymes system from T. 

longibrachiatum LMLSAUL 14-1, both acid pre-hydrolysates and enzymatic 

hydrolysate contained initial glucose amounts of 21 g/L and 74 g/L, respectively. The 

inoculum size was 5% of the fermentation medium resulting in OD600nm of about 0.4 

at the beginning of fermentation. The non-clarified acid pre-hydrolysate was not 

neutralised and the fermentation progressed for 48 hours period. At the end of 

fermentation, the residual glucose was 8.2 g/L (i.e. 61% of glucose been consumed) 

and the concentration of ethanol reached 8.9 g/L, Fig. 5.7 and cellulosic BPS 

conversion yield (ethanol yield) to ethanol was 64% of the theoretical maximum 

yield. 

 

Figure 5.7. Time course of ethanol production and sugar consumption in non-

clarified acid pre-hydrolysate through separate hydrolysis and fermentation (SHF). 

For the centrifuged acid pre-hydrolysate, the S. cerevisiae consumed all the sugar 

within 16 hours with the ethanol concentration reaching 11.9 g/L and yeast growth of 
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0.9 OD600nm. The fermentation was complete after 15 h as shown in Fig. 5.8 and the 

ethanol yield was 86% of the theoretical yield.  

 

Figure 5.8. Time course of ethanol production and sugar consumption in clarified 

acid pre-hydrolysate through separate hydrolysis and fermentation (SHF). 

While hydrolysate from partial acid hydrolysis of BPS showed high fermentability, 

enzymatic hydrolysis is preferred for its compatibility with the environmental laws and 

regulation regarding pollution and the absence of toxic substances produced 

(Keshwani & Cheng, 2009). For the enzymatic hydrolysate of BPS, the concentration 

of ethanol obtained at the end of fermentation was 17.6 g /L, which can be translated 

to 51% of glucose been consumed (residual glucose of 36.3 g/L), Fig. 5.9. The 

fermentation was sluggish and incomplete. The ethanol yield was 60% of the 

theoretical yield. 
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Figure 5.9. Time course of ethanol production and sugar consumption in T. 

longibrachiatum LMLSAUL 14-1 cellulase enzyme system hydrolysate through 

separate hydrolysis and fermentation (SHF). 

5.3.1. The production of ethanol through co-culturing of Saccharomyces 
cerevisiae and Trichoderma longibrachiatum LMLSAUL 14-1 

Another fermentation strategy often used in industry for the production of ethanol is 

co-culturing. In this study co-culturing of S. cerevisiae and T. longibrachiatum 

LMLSAUL 14-1 was investigated. Generally, Trichoderma and S. cerevisiae are the 

“workhorses” of the cellulase and ethanol industries. Co-culturing of the cellulolytic 

and fermentative microorganisms allows the secretion of cellulase, hydrolysis of 

cellulose biomass and fermentation of the resulting sugars to take place in a single 

vessel. Co-culturing fermentation used different compositional and structural forms of 

BPS biomass, such as untreated and alkaline pretreated biomass.  

Both untreated and alkaline pretreated BPS biomass has shown to induce high 

levels of cellulase (FPU/g d.s) secretion in the current study (refer from section 4.3.1. 

to 4.3.4.). After 20 hours of cultivation, the cellulase activity in alkaline pretreated 

BPS medium was 0.77 FPU/mL. This cellulase activity increased to 1.77 FPU/mL at 

68 hours of cultivation. Both glucose and cellobiose reached the highest level of 2.6 

and 2.5 g/L, respectively from 3 g of BPS after 20 hours. The production of ethanol 

reached a maximum of 0.79 g/L at 27 hours and the amount of ethanol remained 
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steady until the end of fermentation at 68 hours, Fig. 5.10. The amount of glucose 

consumed was 30% (residual glucose of 1.8 g/L) and additional glucose resulted 

from hydrolysis of cellobiose (i.e. about 8% cellobiose been hydrolysed). The 

cellulose conversion using co-culturing was low, with a conversion to ethanol of only 

8.9%, Table 5.4. 

 

Figure 5.10. Time course of ethanol production, sugar production and consumption 

through co-culture of T. longibrachiatum LMLSAUL 14-1 and S. cerevisiae on 

alkaline pretreated banana pseudostem. 

The fermentation of untreated BPS medium produced the highest cellulase activity of 

3.1 FPU/g d.s at 44 hours and the activity decreased with fermentation time. The 

maximum glucose and cellobiose produced was 3.2 g/L and 4.4 g/L at 20 hours of 

cultivation. At the end of fermentation, the residual glucose and cellobiose was 1.5 

g/L and 1.3 g/L, respectively. This means that at the end of fermentation about 70% 

of cellobiose was hydrolysed to glucose, an additional source of glucose for 

fermentation to ethanol, Fig. 5.11.  The concentration of ethanol in the fermented 

hydrolysate (i.e. untreated BPS broth) was 1.7 g/L, 2-fold higher than fermented 

hydrolysate of alkaline BPS. 
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Figure 5.11. Time course of ethanol production, sugar production and consumption 

through co-culture of T. longibrachiatum LMLSAUL 14-1 and S. cerevisiae on native 

banana pseudostem. 

0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

0 10 20 30 40 50 60 70 80

Et
ha

no
l (

g/
L)

Ce
llo

bi
os

e/
G

lu
co

se
 (g

/L
)

Time (h)

Glucose Cellobiose Ethanol



141 
 

Table 5.4. Comparison of different fermentation techniques used for ethanol production from banana pseudostem. 

Fermentation 
type 

Substrate Hydrolysis 
reaction 

Fermentation 
medium 

Total initial  
glucose 
(g/L) 

Glucose 
consumed (%) 

Ethanol 
concentration 
(g/L) 

Cellulosic 
conversation 
to ethanol (%)  
eq. 2 

SHF Native 

BPS 

Mild – acid   Non-centrifuged 

pre-hydrolysate 

20.1 61 8.9 64 

SHF Native 

BPS 

Mild – acid   Centrifuged pre-

hydrolysate 

20.5 100 11.9 86 

SHF Alkaline 

BPS 

Enzymatic Hydrolysate 73.8 51 17.6 60 

Co-

fermentation 

Alkaline 

BPS 

Enzymatic Peixoto (2006) N.D 40 0.79 8.9 

Co-

fermentation 

Native 

BPS 

Enzymatic Peixoto (2006) N.D Over 60 of 

available glucose 

1.7 40.9 

NB: N.D refers to non-detected glucose. Standard deviation  ± values of independent triplicates
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5.4. DISCUSSION 

5.4.1. Chemical composition of untreated and pretreated banana pseudostem 

The banana pseudostem (BPS) consisted of the following; outer sheath, a middle 

portion and core portion (i.e. pith).  All the BPS portions were mixed and analysed for 

polymer content. The cellulose content of untreated BPS at 24.5%,  Table 5.1 was 

comparable to 20.1% cellulose reported by Guerrero et al. (2018). However, this is 

lower compared with those reported by other studies. For instance, several authors 

reported between 30 – 44% cellulose, 15 - 30% hemicellulose and 6 – 12% lignin in 

untreated BPS (Souza et al., 2017; Li et al., 2016; Gabhane et al., 2014; Thakur et 

al., 2013; Li et al., 2010; Cordero et al., 2004). The discrepancies in chemical 

composition may be attributed to the cultivar of the banana plant and climatic 

(geographic) conditions. However, the pretreatment of BPS changed the chemical, 

physical and morphological structures of the biomass. This observation was evident 

as shown in Table 5.1 and FTIR results, Fig. 5.2. The results showed an increase in 

cellulose and partial loss of hemicellulose and lignin, particularly in chemically 

pretreated BPS more than hydrothermally (liquid hot water) pretreated BPS. The 

effect of acid and alkaline pretreatment on the reduction of hemicellulose and lignin 

in BPS are consistent with the findings of Souza et al. (2017). 

The effect of alkaline pretreatment (3% NaOH) on BPS polymers as shown in Table 

5.1 was in agreement with Low et al. (2015) reporting  cellulose of up to 73.74 % and  

hemicellulose of 8.35% and lignin, 10.10% in alkaline (4% NaOH) pretreated BPS. 

These authors also observed that prolonged soaking time of BPS in alkaline solution 

and increased concentration of NaOH did not completely remove lignin. The loss of 

hemicellulose in NaOH pretreated biomass is thought to be the result of a peeling 

mechanism, which removes the terminal sugar molecules one at a time at the 

reducing end (Gupta, 2008). 

The modification of the biomass by pretreatment removes the hydrogen bonding in 

the biomass network structure. The effects of pretreatment on BPS chemical 

composition contents were also compared with other agricultural residues. For 

example, the pretreatment of wheat straw by hydrothermal and steam-explosion also 

increased cellulose content and reduced hemicellulose content (Kristensen et al., 
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2008; 2007). Zhang et al. (2013) reported about 58% cellulose, 28.85% 

hemicellulose and 17.75% lignin, which amounted to 19.53% increase of cellulose 

and 13.98% decrease of lignin content with a small increase of hemicellulose after 

alkaline pretreatment (1% NaOH) of wheat straw. The higher cellulose content and 

reduced hemicellulose and lignin content enhanced enzymatic saccharification. 

Motaung and Anandjiwala (2015) also observed an increase of cellulose while 

hemicellulose and lignin content decreased in chemically pretreated sugarcane 

bagasse. In addition, the authors also mentioned higher cellulose and hemicellulose 

content in acid pretreated sugarcane bagasse (SB) than in alkaline pretreated SB. 

5.4.2. Characterization of untreated and pretreated banana pseudostem 

FTIR spectroscopy was used to analyse the chemical structural and conformational 

variations introduced by pretreatment processes in banana pseudostem (BPS). The 

primary constituents of pseudostem are cellulose, hemicellulose and lignin. 

Generally, cellulose, hemicellulose and lignin consist of molecules containing 

functional groups such as O-H, C-O-C and O-CH3 (El-Fels et al., 2015; Pereira et al., 

2014). During FTIR analysis, the covalent bonds of the functional groups absorb a 

certain amount of energy from infrared radiation (IR) thereby causing the bonds to be 

stretched. After the absorption of energy, the O-H bonds are stretched resulting in 

the increase of the peak intensity. The peak intensity is indicated by either peak 

sharpness or broadness (Azizan et al., 2016). Analysis of FTIR spectra reveals the 

appearance or disappearance of characteristic bands at some functional groups or 

by showing the band(s) shifts in the case of reactions that involve structural changes 

(El-Fels et al., 2015). 

The broad band (peak) occurring at wavenumber 3363 cm-1 in Fig. 5.2 has been 

associated with the intermolecular O-H stretching vibrations of cellulose, 2931 cm-1 

with C-H stretching absorption/vibration from –CH2 group of cellulose and 

hemicellulose (Gopinathan et al., 2017; Becker et al., 2013; Shah et al., 2013), 1619 

cm-1 with C=C stretching of benzene ring and 1010 cm-1 with C-O-C stretching 

absorption in raw banana fibres (Becker et al., 2013). According to Faix et al. (1994), 

lignin compounds are characterized by the frequencies of the quaiacyl units, 

corresponding to wavenumber 1269 cm-1, G-ring and C=O stretch at 1140 cm-1. Both 

untreated and LHW pretreated BPS material showed smaller peaks at 863 cm-1 and 
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759 cm-1. Peak between 800 cm-1 and 880 cm-1 are associated to CH in plane 

deformation (Cochet et al., 2001). Another peak at wavenumber 750 cm-1 signifies 

ArC-H out of plane deformation of lignin. The peaks at wavenumber 687 – 625 cm-1 

are associated with the out of plane bending vibrations of intermolecular H-bonded 

O-H group and out of plane O-H bending (Waleed & El-zawawy, 2006). 

In another study, FTIR analysis also revealed that dilute acid pretreatment of wheat 

straw alone was not sufficient for complete lignin removal, although complete 

removal of soluble lignin was attained as shown by slight appearance or 

disappearance of a peak associated with both lignin types (Dhabhai et al., 2013). 

Barreto et al. (2010) found that the vibration modes of functional groups of pretreated 

banana fibre did not show differences compared with the main bands of untreated 

banana fibre after alkaline solution in the concentration ranging from 0.25 – 1% 

(NaOH) at 60 – 70 °C for 6 hours.  However, there were clear differences between 

the pretreated and untreated BPS biomass. The discrepancy between the 

observation reported by Barreto et al. (2010) and the finding in this study could be 

attributed to pretreatment conditions, as the current study used a higher percentage 

of NaOH (3% w/v) and temperature (121 °C) on BPS. 

5.4.3. Saccharification of banana pseudostem with crude cellulase enzymes 
system produced by Trichoderma species 

The sole purpose of saccharification (hydrolysis) stage was to release the sugars, 

mainly glucose (and xylose depending on the enzyme composition) which would be 

fermented in the subsequent stage. Enzymatic saccharification of lignocellulosic 

biomass is dependent on both the availability of cellulose or hemicellulose and the 

hydrolytic activity of the enzymes. In this study, the conditions for saccharification of 

BPS were 50 °C, with shaking speed of 150 rpm, final enzyme dosage of 10 FPU/g 

substrate and substrate loading ranged from 10 – 15%. Based on reported findings 

by Sun & Cheng, (2002) and Gregg & Saddler (1996),) found that cellulase dosage 

for effective hydrolysis could vary between 7 – 33 FPU/g substrate, depending on 

the type of substrate. Guerrero et al., 2018 achieved hydrolysis of banana waste with 

15 FPU/g cellulase dosage at high solid loading (> 15% solid loading).  



145 
 

During the hydrolysis of BPS, there was a directly proportional increase of glucose 

released by crude cellulase enzyme complex from T. harzianum LMLBP07 13-5 and 

T. longibrachiatum LMLSAUL 14-1 with increasing of acid or alkaline pretreated BPS 

biomass loading. Concurrent to that effect, there was a decrease of cellulosic BPS 

conversion efficiency at high biomass loading. This observation was in agreement 

with the findings made by Guerrero et al. (2018) who observed that higher solids 

loadings led to higher glucose content and low cellulosic conversion efficiency. The 

decrease in cellulosic conversion efficiency to glucose is highly undesirable as it off-

sets the significant advantages of working at high solid biomass concentration 

(Kristensen et al., 2009). The enzyme-substrate interaction becomes ineffective due 

to the higher viscosity of the slurry. Ghose (1992) found that high viscous slurry 

restricts the enzyme movement and also make the hydrolysis sites inaccessible.  

It is imperative to select a suitable pretreatment method that increases the 

concentrations of fermentable sugar after enzymatic saccharification in order to 

improve the efficiency of cellulosic bioethanol production (Maurya et al., 2015). The 

saccharification of acid (5% H2SO4) pretreated BPS by crude cellulase enzyme 

system from both Trichoderma species was ineffective with total glucose of less than 

8 g/L been produced. Based on the results indicated in Table 5.1, acid pretreated 

BPS contained about 58.0% of holocellulose (.i.e. cellulose + hemicellulose). The 

enzymatic release of the sugars from acid pretreated BPS was poor, perhaps as a 

result of indigestibility of cellulose fibres which presumably may be containing many 

crystalline regions on the cellulose surface. The above observation was in 

agreement with findings by Abraham et al. (2010), who found that Oxalic acid 

hydrolysis solubilised the amorphous regions of the cellulose leaving more crystalline 

regions in the cellulose fibres. An increase of acid (Oxalic acid) concentration up to 

10% increased the crystalinity of the BPS, Jute stem and pineapple leaf fibre and 

concentration higher than 20% degraded the cellulose fibres (Abraham et al., 2010). 

On the contrary to saccharification of acid pretreated BPS, enzymatic 

saccharification of alkaline pretreated BPS, which contained 63.0% of holocellulose, 

by crude cellulase enzyme system from T. harzianum LMLSABP07 13-5 and T. 

longibrachiatum LMLSAUL 14-1 accumulated 20 g/L and 44 g/L of glucose in the 

hydrolysate (slurry), respectively. On the contrary, to these findings enzymatic 
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hydrolysis subsequent to alkaline pretreatment of BPS yielded high glucose. Souza 

et al. (2017) reported high crystalinity of the alkaline pretreated BPS when compared 

to acid pretreated BPS, which led to poor enzymatic conversion of alkaline BPS 

cellulose fibres to reducing sugar (glucose). As a result, high reducing sugar (33.74 

g/L) was obtained from acid pre-treated BPS compared to 19.4 g/L obtained from 

alkaline pretreated BPS (Souza et al., 2017). The high digestibility of acid pretreated 

BPS reported in the study by Souza et al. (2017; 2014) could be due to the low acid 

solution (i.e. 2% H2SO4) used when compared to the 5% H2SO4 used in this study.  

According to El-Zawawy et al. (2011), the concentration of glucose in the hydrolysate 

was influenced by the type of pretreatment applied to the biomass and the type of 

hydrolysis. The authors utilised steam explosion pretreatment of banana plant waste 

followed by enzymatic hydrolysis of the plant waste by cellulases from T. reesei 

ATCC 26921, which released a higher concentration of glucose. Filho et al. (2013) 

reported an increase of fermentable sugars from 3% NaOH pretreated BPS by 8-fold 

and 23-fold after the hydrolysis of the biomass by acid and enzyme, respectively. 

Similarly, Thakur et al. (2013) also reported that alkaline (1 N NaOH) pretreated BPS 

and wheat straw (WS) produced reducing sugar, 15 g/L more than acid pretreated (1 

N H2SO4), 10.5 g/L and 6.8 g/L for biological (Fungal) pretreated biomass. Chidi et 

al. (2015) also found that alkaline (2% NaOH) pretreatment of BPS combined with 

microwave irradiation (170 W, 10 minutes) yielded the highest concentration of 

reducing sugar for the production of bioethanol.  

Alrumman (2016) reported that 4% substrate loading of alkaline pretreated date palm 

leaves had increased the production of sugar and saccharification percentage. 

Saccharification of pretreated (2N NaOH in autoclave) BPS by 2% dosage of 

commercial cellulase SQzyme CS (20, 000 U/g) yielded 29.8 g/L. These reported 

findings on enzymatic digestibility of alkaline pretreated lignocellulosic biomass are 

similar to the observations in the current study. Consenquently, Xu et al. (2016) 

inferred that alkaline pretreatment technology is a promising pretreatment method of 

lignocellulosic biomass with relatively low lignin because of improved enzymatic 

digestibility of the pretreated cellulosic biomass yielding high sugar concentrations. 

Recently, techno-economic and environmental studies conducted by Duque et al. 

(2015), listed banana pseudostem amongst other agricultural residues such as 
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sugarcane bagasse, corn cob and rice husk as potential feedstock for the production 

of bioethanol. Future work should focus on developing an efficient enzyme cocktail 

formulations that hydrolyse different lignocellulosic biomass to make cellulosic 

ethanol cost effective process (Guerrero et al., 2018).  

5.4.4. Production of ethanol through separate hydrolysis and fermentation 

In separate hydrolysis and fermentation (SHF) the glucose produced was 21 g/L and 

74 g/L for acid pre-hydrolysate and enzymatic hydrolysate, respectively. The glucose 

levels reported in this study are higher than the levels obtained from 5 g pretreated 

banana pseudostem (15.3 g/L sugar) by Thakur et al. (2013). 

The production of ethanol is strongly dependent on the growth of the fermenting 

organism.  Saccharomyces cerevisiae is known to consume glucose rapidly during 

growth and tolerate high levels of ethanol produced. However, the poor growth of S. 

cerevisiae in the early stages of the fermentation of both non-clarified acid pre-

hydrolysate and enzymatic hydrolysate led to the high level of glucose remaining at 

the end of fermentation. In non-clarified hydrolysate, the medium still contains 

particulate matter (PM) resulting from pretreatment, which might have been inhibitory 

to yeast thereby causing the fermentation to be sluggish and incomplete with ethanol 

of 9 g/L in 36 hours. In contrast, the fermentation of clarified acid pre-hydrolysate 

progressed fast and complete thereby producing 12 g/L of ethanol after 20 hours. A 

fast fermentation process for ethanol production is desirable since it results in 

improved ethanol productivity, which has a direct impact on the economics of the 

fermentation process and its commercial feasibility (Oberoi et al., 2011). 

The sluggish and incomplete fermentation of BPS enzymatic hydrolysate yielded 18 

g/L ethanol with 60% conversion of cellulosic components to ethanol and 0.01 g/L/h 

of ethanol productivity. Thakur et al. (2013) also produced ethanol from enzymatic 

hydrolysates of different pretreated banana pseudostem by S. cerevisiae NCIM 

3570. The authors found that ethanol produced in the enzymatic hydrolysate of 

alkaline pretreated BPS reached a maximum of 3.8 g/L with an ethanol yield of 0.35 

g/g, which were higher than the levels obtained from acid pretreated BPS (1.9 g/L 

and 0.20 g/g). Although enzymatic hydrolysate of fungal pretreated BPS also yielded 

low ethanol (2.0 g/L), the ethanol yield was higher (0.40 g/g) than fermented 
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hydrolysate from chemically pretreated BPS (Thakur et al., 2013). Kusmiyati and 

Sukmaningtyas (2018) reported ethanol of 4.32 g/L produced from alkaline (2 N 

NaOH) pretreated BPS at 10% solid loading in simultaneous saccharification and 

fermentation (SSF).  A low level of < 3.5 g/L ethanol was produced from banana 

plant waste (El-Zawawy et al., 2011). 

5.4.5. The production of ethanol through co-culturing of Saccharomyces 
cerevisiae UL01 and Trichoderma longibrachiatum LMLSAUL 14-1 

The production of ethanol was carried out in cellulase – producing media (Peixoto, 

2006) by co-culturing of T. longibrachiatum LMLSAUL 14-1 and S. cerevisiae on 

BPS as a substrate. The co-culturing approach enables direct conversion of plant 

biomass, e.g. BPS to ethanol in a single step process. This strategy is similar to 

simultaneous saccharification and fermentation (SSF) and also consolidated 

bioprocessing (CBP) in that enzyme production, saccharification and fermentation 

occur in a single vessel or tank. Banana pseudostem has been shown to induce 

cellulase production in the current study and the ability of BPS to induce and 

promote the production cellulase is well known (Bhavsar & Bhalerao, 2012; Shah et 

al., 2005).  

In co-culture fermentation, the low production of bioethanol seemed to be the 

consequences of poor induction of cellulase production by the BPS biomass. This 

low production of bioethanol might have been exacerbated by the insufficient 

nutrients (nutrient competition amongst the co-cultured microorganisms), which 

affected the growth of S. cerevisiae leading to the accumulation of glucose. High 

glucose inhibits particularly β-glucosidase from efficient hydrolysis of cellobiose to 

glucose. The accumulation of cellobiose also inhibited exoglucanase and could be 

the result of insufficient of β-glucosidase in the fermentation medium. According to 

Chawla et al. (2009), the optimal design of the medium is imperative for the growth 

of microorganisms in co-culture and to also stimulate product formation. Essential 

nutrients that are required for the growth of microorganisms include carbon, nitrogen, 

phosphorus, sulphur, potassium and magnesium salts. 

The biological conversion of cellulosic biomass in hydrolysis reaction requires 

enzymes that interact synergistically to liberate oligomers and monomers (such as 
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glucose, xylose etc.) which are required for the production of bioethanol and other 

chemical products (Moreira et al., 2012). During the production of cellulase by T. 

longibrachiatum LMLSAUL 14-1 in co-culturing, the consortium of enzymes presents 

facilitated in-situ hydrolysis (saccharification) of BPS biomass to release glucose 

which is converted to ethanol by S. cerevisiae. The co-culture technique becomes a 

potential bioprocess if there are microbial compatibility and limited substrate 

competition. Ping et al. (2011) has demonstrated the feasibility of ethanol production 

from cassava pulp without any pretreatment and any addition of enzyme by applying 

sequential co-culturing. At the end of co-culturing fermentation, the authors reported 

a concentration of 8.67 g/L ethanol.   

Park et al. (2012) also co-cultured Acremonium cellulolyticus C1 and S. cerevisiae to 

produce ethanol with Solka-Floc (SF) as substrate. An ethanol concentration of 25.6 

g/L was obtained from 150 g SF with the ethanol yield of 0.17 g/g substrate and 

ethanol productivity of 0.36 g/L/h. Duque et al. (2015) conducted techno-economic 

and environmental analysis of ethanol from ten agro-industrial residues. The results 

of the study showed the potential of sugarcane bagasse, banana pseudostem, corn 

cob and rice husk in the production of bioethanol. For industrial applications, yeast 

should exhibit the following fermentative properties such as ethanol yield (> 90.0% 

theoretical yield), ethanol tolerance (> 40.0 g/L), ethanol productivity (> 1.0 g/L.h) 

and resistance to hydrolysate inhibitors (Dien et al., 2003). The high cellulase 

loading (dosage) required for saccharification and the low ethanol yield are the main 

factors affecting the bioethanol production from lignocellulosic biomass (Liu et al., 

2016). 

5.5. CONCLUSION 

Alkaline pretreated BPS resulted in higher holocellulose content and yielded high 

concentrations of glucose after enzymatic saccharification irrespective of the crude 

cellulase enzyme system evaluated. High glucose yield was achieved with crude 

cellulase enzyme system from Trichoderma longibrachiatum LMLSAUL 14-1 

compared to hydrolysed BPS by T. harzianum LMLBP07 13-5. Also, an ethanol 

concentration of 12 g/L and 18 g/L was produced from clarified acid pre-hydrolysate 

of BPS and crude enzyme hydrolysate, respectively. Fermentation by means of co-

culture also showed the potential to produce ethanol in a single step and the 
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possibility that under optimised conditions more ethanol can be produced. The 

overall production of cellulosic bioethanol was a relatively cheaper process because 

the cellulase enzyme system and ethanol were produced from the same cellulosic 

biomass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



151 
 

CHAPTER 6 

6.1. GENERAL DISCUSSION AND CONCLUSIONS 

In order to produce ethanol from BPS, it is imperative to search for organisms 

capable of breaking down Musa acuminata and Strelizia alba. Avicel 

(microcrystalline cellulose) agar media is often used to screen for potential cellulase 

secreting fungi. In this study, the screening procedure yielded six potential fungal 

strains. Of these fungal strains, four are identified as Aspergillus fumigatus, Table 

3.1 and remaining  two were Trichoderma longibrachiatum and Trichoderma 

harzianum. 

The microbial production of endoglucanse (endo 1,4-β-glucanase; EC 3.2.1.4), 

exoglucanase (exo 1,4-β-glucanase; EC 3.2.1.91) and β-glucosidase (EC 3.2.1.21) is 

a highly regulated, energy consuming process and these enzymes are induced in the 

presence of specific substrates and are inhibited in the presence of glucose (Amore 

et al., 2013). In particular, detailed information on the regulation of cellulase gene 

expression in Trichoderma and Aspergillus species is reviewed by (Amore et al., 

2013). The production of cellulase enzyme system is achieved in submerged 

fermentation (SmF) with Avicel as an enzyme inducing substrate and also in solid 

state fermentation (SSF) with banana pseudostem (BPS) as a substrate.  

Submerged fermentation with Avicel as substrate induced all the enzymes of the 

cellulase complex in all the fungi investigated. However, due to the cost of this 

substrate, an alternative, cheap and abundant BPS substrate is used in the 

production of cellulase enzyme system using SSF. In SSF, native (untreated) 

banana pseudostem supported the growth of Trichoderma and Aspergillus species 

and the substrate is able to induce the secretion of cellulase enzyme system that 

differed in proportions from one fungus to the other. Thus the amount of secreted 

cellulase is enzyme specific and also fungus specific. The influences of temperature, 

pH, moisture and nature of the substrate on each fungus possibly activate the 

regulatory gene systems involved in the biosynthesis of specific individual enzymes 

of cellulase system different from one fungus to another. The results also reveal that 

effective co-culturing requires the compatibility of the microorganisms involved in the 

production of these enzymes. 
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Trichoderma longibrachiatum LMLSAUL 14-1 produced acid-thermo tolerant 

cellulase enzymes system with good stability of both endoglucanase and β-

glucosidase at 40 °C and in acidic conditions. However, β-glucosidase showed good 

activity at both acid and basic pH conditions. Cellulase enzyme system from T. 

harzianum LMLPB07 13-5 is also acid-thermo tolerant showing remarkable stabilities 

at 50 °C and basic pH conditions, retaining over 70% of original activities. Only 

endoglucanase from T. harzianum LMLBP07 13-5 is stable in acidic conditions. 

Another fungus, A. fumigatus LMLPS13-4 also produced acid-thermo tolerant 

cellulase enzymes system with stability at 40 °C and acidic conditions. Interestingly, 

all the fungi produced β-glucosidase with catalytic activity and stability in both acid 

and basic condition. 

Cellulase enzymes system from T. longibrachiatum LMLSAUL 14-1 and T. 

harzianum LMLBP07 13-5 were further evaluated for their ability to hydrolyse 

pretreated BPS. The hydrolysis results show that the cellulase system from T. 

longibrachiatum LMLSAUL 14-1 is more effective in hydrolysing BPS yielding more 

glucose than cellulase system from T. harzianum LMLBP07 13-5. The hydrolysis of 

BPS biomass through enzymatic hydrolysis to produce fermentable sugars shows 

that pretreatment was essential to alter the chemical, physical and morphological 

characteristics of the biomass to enhance biomass digestibility. Generally, there is a 

poor BPS conversion efficiency to glucose as substrate loading increases. Hence, 

there is a need for highly active cellulase enzyme system for effective hydrolysis 

The production of bioethanol from cellulosic biomass typically requires several steps: 

BPS biomass pretreatment, hydrolysis/or saccharification and fermentation (and 

including distillation). In this study, the production of bioethanol through separate 

hydrolysis and fermentation (SHF) of acid pre-hydrolysate, as well as enzymatic 

hydrolysate and co-culturing fermentation techniques, has been investigated. The 

production of bioethanol in separate hydrolysis and fermentation of non-clarified acid 

pre-hydrolysate is prolonged and incomplete. This undesirable effect on the 

fermentation could be attributed to the presence of inhibitory compounds and other 

debris in the pre-hydrolysate, which hindered yeast growth and consequently lead to 

low ethanol yields. However, when the acid pre-hydrolysate is clarified by 

centrifugation the fermentation is fast and completes in a short time. High yeast 
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growth and ethanol are attained in clarified BPS hydrolysate, suggesting that 

clarification is essential to remove plant debris and inhibitory compounds. 

Enzymatic hydrolysate contained 3.3-fold more glucose than acid pre-hydrolysate. 

The fermentation of enzymatic hydrolysate (74 g/L glucose) is protracted and 

incomplete with about 50% of original glucose being consumed at the end of 

fermentation. The incomplete fermentation could be due to inadequate nutrients, and 

low inoculum size. Therefore, essential nutrients are required for fermenting yeast to 

convert all sugars to ethanol and other by-products.  

In co-culture with T. longibrachiatum LMLSAUL 14-1 and S. cerevisiae, the alkaline 

pretreated BPS could not support good production of cellulase and ethanol.  This 

was probably as a result of the accumulation of cellobiose and glucose in large 

quantities, which inhibited cellulase production and activity. Poor or low β-

glucosidase would lead to high cellobiose and low glucose in the fermentation 

medium which would inhibit exo-glucanase activity and limit the amount the glucose 

available to support the growth of S. cerevisiae and ethanol production. On the other 

hand, the native BPS contains nutrients such as proteins and minerals (Ma, 2015;  

Ho et al., 2012), which supported the growth of both organisms allowing cellulase 

production and fermentation of glucose to ethanol at levels higher than in pretreated 

materials. 

Therefore, in order to reduce the cost of cellulase, it is imperative to use cheap 

abundant material and the enzyme be able to hydrolse the cellulosic material at a 

low dosage (low enzyme units). The current study integrated the production of 

cellulase enzymes and ethanol by utilising the same cellulosic banana pseudostem 

in both processes, thereby reducing overall cellulosic ethanol production costs. 

Efficient cellulase enzyme system could make cellulosic bioethanol competitive with 

the current gasoline prices. Banana pseudostem is shown to be a potential 

lignocellulosic biomass for both cellulase enzyme system and bioethanol production. 

Further optimisation, particularly of the fermentation medium formulation and 

inoculum size could improve the yield of ethanol. 
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6.2. FUTURE WORK 

Banana pseudostem is a good source of bioethanol production. It would be 

worthwhile to further investigate the characterization of the cellulases studied and 

further optimise the saccharification processes involved. Further investigation in the 

use of thermotholerant yeasts in the fermentation process would reduce costs and 

possibly improve the yileds.  
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