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Abstract

Recurrent peritonitis is a major problem of peritoneal dialysis (PD) due to its as-

sociation with technique failure in the dialysis process. The literature on peritonitis

focused only on investigating major risk factors associated with the first episode

of peritonitis. However, this dissertation investigates factors associated to multiple

episodes of peritonitis, to a maximum of 6 episodes. The correlation of recurrent

episodes of a patient is considered.

The univariate counting process, stratified, gap-time and marginal hazard regres-

sion models are applied to select the significant covariates to the multivariate re-

gression hazard models. Regression coefficient for covariates are found to be

statistically significant at 5% level. The application of Akaike information criterion

(AIC) and Schwarz bayesian criterion (SBC) assisted to filter out the best method

which is the stratified regression hazard model. The major risk factors associated

with recurrent episodes of peritonitis are examined from the selected good fitting

model.

In conclusion, the selected model identified two independent risk factors to be

significantly associated with recurrent episodes of peritonitis: marital status and

glomerular filtration rate. Two categories of marital status, divorce and widower are

the significant factors compared to married patients (when taking married patients

as the reference category).

Keywords: Peritoneal dialysis, peritonitis, recurrent episodes, survival analysis.
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Chapter 1

INTRODUCTION

1.1 Introduction

Section 1.1 of this chapter gives a brief introduction about peritonitis, survival anal-

ysis and the study background. Section 1.2 focuses on the research problem.

Section 1.3 discusses the purpose of the study through the study motivation, aim

and objectives. Whereas the last three Sections, 1.4, 1.5 and 1.6, outline the

scientific contributions, data structure and structure of the study, respectively.

1.1.1 Peritonitis

Kidneys are body organs which filter unneeded water, waste products and other

body chemicals from the person’s blood. When the kidneys fails to perform its du-

ties, a person develops a condition called kidney failure. Kidney failure also known

as renal failure is defined as a situation where the body organs fails to remove

waste product and extra fluids from the blood. This condition can cause sickness
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since the waste product, chemicals and extra body fluids are going to build up in

the blood. However, there are two ways of treating kidney failure, which are dialysis

and kidney transplant. Kidney transplant is a treatment where by the damaged kid-

neys is removed and replaced by healthy kidneys. Dialysis is a machine treatment

which removes the unneeded fluids in the blood. Moreover, dialysis is divided into

hemodialysis and peritoneal dialysis.

Peritoneal dialysis (PD) is a kidney failure treatment which uses the lining of the ab-

domen called peritoneum, to filter and remove waste products in the blood. How-

ever, before the patient can start with this treatment, a thin tube called catheter

must be inserted inside the patient’s belly as shown in Figure 1.1. Catheter is a

device which works as a transporter. It transport the dialysis solution in and out

side the belly. When it is done performing its duties, that is, when the dialysis so-

lution bag is empty, the patient can remove it and continue doing his or her daily

activities. Dialysis solution also known as the dialysate soaks up unneeded wa-

Figure 1.1: Example of peritoneal dialysis treatment

ter, waste products and other body chemicals from the patient’s body into the PD

bags. The used dialysis solution can be drained into the PD bag and replaced with

a fresh bag of dialysate. The process of draining the used dialysis solution and

replace it with a fresh dialysate is called exchange. PD patients are usually trained

to perform the exchange process on their own. Most of the patients get discharged
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after acquiring the skills of performing the exchange process on their own. Due to

this reason, many PD patients perform the exchange process at home without the

doctor’s supervision.

PD is divided into two parts, namely: continuous ambulatory peritoneal dialysis

(CAPD) and automated peritoneal dialysis (APD). The CAPD is well-known treat-

ment modality in end-stage renal disease (ESRD) patients. It does not require the

machine to filter the waste products and extra body fluids from the patient’s blood.

Whereas, APD is kidney failure treatment which uses the machine called cycler

to drain and fill the patient’s belly. Due to the need for improving the PD patient’s

quality of life, APD has therefore became a daily home treatment with automated

nightly exchanges (Roberto et al., 2007). Nonetheless, this treatment has its own

shortcomings.

The most popular shortcoming of PD is that it can lead to an infection called peri-

tonitis. Peritonitis is a serious abdominal infection which occurs when the exit-site

of the catheter becomes infected. Moreover, peritonitis can also occurs when the

catheter becomes contaminated as the patient connect or disconnect it from the

dialysis solution bag. Peritonitis is one of the infections which can occur several

times on the same PD patient. That is, peritonitis can reoccur after being treated.

When this happens, that particular patient is said to have experienced recurrent

(multiple) episodes of peritonitis. A person with peritonitis mostly experience one

of the following symptoms:

• Abdominal pains,

• fever,

• vomiting,

• pains around the catheter, and

• cloudiness in the used dialysis solution and a catheter cuff that pushes out of

the body.
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Peritonitis is a life threatening infection and therefore it is essential to report these

symptoms to the doctor so that they can start treating it as early as possible. The

instructions given to the PD patients in order to avoid peritonitis includes:

• Cleaning the exit-site of the catheter,

• washing the hands every time you need to perform exchange,

• wearing surgical mask when performing exchange, and

• inspecting each dialysis solution bag for the signs of contamination.

1.1.2 Survival analysis

Survival analysis is a statistical technique appropriate for analysing data in which

the primary interest is time that takes an object to experience the designated event

of interest (Kleinbaum and Klein, 2010). This is unlike in logistic regression where

the primary interest is how the risk factors were associated with whether the object

has experienced the designated event or not (absence or presence of a partic-

ular event). In survival analysis the designated event of interest is called failure

(Stevenson and EpiCentre, 2009). That is, the occurrence of the designated event

is called failure even though the event itself sometimes is a success. For example,

when the patient recovers from heart transplant, it is called failure even though the

patient has succeeded. Furthermore, the time it takes an object to fail is called

failure time, event time or survival time.

The exact failure time is only known for the object that have experienced the event

of interest before the end of the follow-up period (Stevenson and EpiCentre, 2009).

Objects that did not experience the designated event during the follow-up period

are said to be censored. Censoring is the key analytical problem which distin-

guishes survival analysis and the other ordinary statistical techniques. However,

there are different types of censoring, namely, right, left and interval censoring.
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Right censoring is the most commonly encountered form of censoring (Liu, 2012).

It occurs when only the lower bound of the failure time of the object is known.

Survival analysis of recurrent episodes considers a situation where an individual

may experience more than one designated event of interest over the follow-up pe-

riod. There are many statistical techniques that can be utilised to handle analysis

of this nature. However, this study utilises the stratified, gap-time, marginal and

the counting process techniques. Irrespective of which technique is being utilised,

the variance of the estimated partial likelihood regression coefficients should be

adjusted for the possible correlation among recurrent episodes within the same

patient. The sandwich robust variance estimator is the most popular and widely

used estimator for adjusting the variances of the partial likelihood estimated re-

gression coefficients (Childers, 2015). Therefore, this study also utilises it to avoid

possible correction among the multiple episodes within the same patient.

Gap-time scale model is the most often used in studying a multiple events rate as

a function of time since the last event (Duchateau et al., 2003). In gap-time model,

a patient moves to the Kth stratum immediately after the (K − 1) recurrence time

and remains there until the Kth episode occurs or until the patient is censored.

In general, a patient with K episodes contributes K + 1 observations. Counting

process approach uses the standard Cox proportional hazard model. However, the

various time interval on the same patient are used in the formation of the likelihood

function. These time interval are considered as independent intervals from different

patients, even though they are coming from the same patients. Patients remains

at risk set of episodes until the last follow-up visit.

Stratified approach uses the same approach used for the counting process, except

that it uses the stratified Cox model rather than the standard Cox model. In strati-

fied model, the time until the occurrence of the first episode affects the composition

of the risk set for later episodes. The marginal approach uses the Cox proportional

hazard model while leaving the nature of dependence among correlated failure
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times completely unidentified. Patients are considered to be at risk of all episodes,

regardless of how many episodes each patient have actually experienced.

1.1.3 Research background

Despite the fact that PD is a well-established treatment for kidney failure or ESRD,

peritonitis remains the major problem for the wide utilisation of PD. This is due to

its association with high morbidity in patients on long-term CAPD, technique failure

and the need to transfer PD patients to haemodialysis (HD), which is an expensive

treatment of kidney failure (Martin et al. (2011) and Mashiloane et al. (2008)). Peri-

tonitis makes continuing of PD impossible even when the catheter is being used

to protect against the spread of bacteria. In South Africa (SA), Mashiloane et al.

(2008) indicated that peritonitis is the major limiting factor for CAPD and that the

increased frequency of peritonitis was influenced by the poor socio-economic con-

ditions, age and diabetes. Ikabu et al. (2007) stated that ESRD is a serious burden

for both patients and health care professionals of SA, whereas Isla et al. (2014)

indicated that the prevalence of ESRD continues to increase world-wide including

in many developing countries. Most of the renal failure patients treated with PD

have shown to have a lower risk of death early during the course of ESRD and that

there is no significant difference in the risk of death among patients with ESRD

incidents treated with HD or PD (Mehrotra et al., 2011).

The most common problem in PD patients who had peritonitis is that peritonitis can

reoccur for the second or more times after being treated. The condition known as a

recurrent episodes of peritonitis is a major complication of CAPD and it remains the

leading cause of treatment technique failure and catheter loss in the PD patients

(Vonesh (1985) and Nieto-Rı́os et al. (2014)). Nieto-Rı́os et al. (2014) reported that

independently of other factors patients with recurrent episodes of peritonitis have

higher chances of death. Mashiloane et al. (2008) argued that black patients tends

to be the ones experiencing recurrent episodes of peritonitis as compared to white
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patients.

1.2 Research problem

Peritonitis has become a life threat to PD patients and a major complication of

treatment failure. When the ongoing of PD becomes impossible due to peritonitis,

patients need to be transferred to hemodialysis (HM). HM is an expensive kidney

failure treatment as compared to PD. Patients who cannot afford HM end-up losing

their lives. When people die, the country face a serious problems such as losing

qualified and economically active people who are the breadwinners, leaders, and

helpers of the country’s next generation. The number of people dying each and

every year can increase the risk of inflation in the country as it reduces the num-

ber of workers. Peritonitis is reported to be influenced by poor socio-economic

conditions, age, diabetes and the poorer population which the majority of it is the

black race and have historically suffered a low standard of health care. In order to

address the above problem, four types of recurrent regression hazard model are

employed to investigate the risk factors influencing peritonitis. However, factors

from the better fitting model are considered as the major risk factors associated

with peritonitis.

There are studies conducted on peritonitis, however, most of them focused on

investigating factors associated with the first episode of peritonitis, (Martin et al.

(2011) and Fan et al. (2014)). Since peritonitis is one of the infections which can oc-

cur several times in the same patient, conducting a study looking at the first episode

could lead to misleading conclusions. This is due to the reason that some useful

information such as whether the occurrence of the first episode influences the oc-

currence of the other episodes would be ignored. It is essential for researchers to

avoid loosing information during the study process and start addressing this infec-

tion as a recurrent events problem. Using the complete information will improve
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the quality of the results and correct the mistakes committed. This study focuses

on the recurrent episodes of peritonitis rather than looking at the first episodes of

peritonitis as have been done by previous researchers.

Dataset for survival analysis includes the censoring variable. The censoring vari-

able is a variable which records the occurrence of the designated experience of in-

terest (event) and the termination of the survival process. The variable is recorded

as binary, recording those who got the event of interest (peritonitis) and those who

are lost during the follow-up period, withdraws during the study or study end be-

fore getting peritonitis (censored). Due to this censoring variable, survival analysis

tends to be more similar to some conventional statistical perspectives on qualitative

outcome data, such as the logistic regression and the probit model. These statis-

tical techniques can be applied to examine the occurrence of a particular event of

interest by comparing the status of the individual at the beginning and at the end

of the follow-up period (Liu, 2012). However, these techniques does not consider

the time at which the patient experienced peritonitis or the time at which the pa-

tients got censored, and therefore they do not have the characteristics of describing

the time to event process (Liu, 2012). Failing to posses these characteristics can

cause damage to the quality of the analytic results, thereby generating misleading

conclusions.

In many of the previous studies, the logistic regression model has been utilised

to analyse the time-to-event data (Gray et al., 2013). Logistic regression model

does not consider the time at which the event occurs and therefore, disregards

the length of the survival process. Therefore, this study focuses on utilising the

appropriate recurrent survival modelling techniques in order to address peritonitis

as a recurrent infection.
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1.3 Purpose of the study

1.3.1 Motivation

There is insufficient information available on the factors associated with the re-

current episodes of peritonitis, since most of the previous studies on peritonitis

focused much on the first episode of peritonitis. Therefore, this study might add

to the little information available by assessing the factors associated with the re-

current episodes of peritonitis. As per the results obtained by Martin et al. (2011);

age, black race, diabetes and congestive heart failure seems to be the significant

risk factors. However, they suggested that more studies looking at factors influ-

encing the peritonitis incidence should be conducted in order to improve the PD

outcome. Hence, the current study aims at revealing the major risk factors associ-

ated with the recurrent episodes of peritonitis in order to improve the PD outcome.

The study conducted by Fan et al. (2014) revealed that older age, male, lower edu-

cational level and hypoalbuminemia at initiation of PD are associated with the first

episode of peritonitis. They went on to indicate that these results might be useful in

identifying patients starting PD treatment who are at high risk for the first episode

and on how to improve CAPD outcome. Thus, this study seek to disclose more on

peritonitis but focusing on recurrent episode rather than the first episode.

1.3.2 Aim

The aim of the study is to investigate risk factors associated with the recurrent

episodes of peritonitis.

1.3.3 Objectives

The objectives of this study are to:
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1. Evaluate four models: counting process, gap-time, marginal and stratified

hazard model.

2. Apply peritonitis dataset to fit counting process, gap-time, marginal and strat-

ified models.

3. Compare the four models mentioned in point 2 above, to select the best

model to conduct the analysis.

4. Identify possible social and biological risk factors associated with recurrent

episodes of peritonitis.

5. Assess the rate at which kidney patients who are on PD get exposed to re-

current episodes of peritonitis.

1.4 Scientific contribution

The findings of this study could assist the Department of Health in Limpopo province

mainly by providing useful information about various potential risk factors asso-

ciated to the recurrent episode of peritonitis in kidney patients who are on PD.

Moreover, the findings of this study could also be used in educating PD patients

about controllable social and biological risk factors of peritonitis. Furthermore, as

this study apply and compare various recurrent survival analysis techniques, the

outcome will give a direction to statisticians as which appropriate technique(s) to

apply in a situation where there are recurrent episodes.

1.5 Data structure

A sub-sample data of five PD patients in Table 1.1 demonstrate the general data

layout required for modelling the time to recurrent episodes of peritonitis. The

first column contains the patient’s identification (ID) number, the second column
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indicate the order of visits/stratum, the third and forth columns give the time start

and time stop (in days) for each patient per visit/stratum. The time start is the day

the patient entered the study while the time stop is the day the patient experienced

peritonitis or censorship. The fifth column gives the gap time between the time start

and time stop for each patient per visit. The Sixth column contains the censoring

status taking the value one (status=1) if peritonitis and value zero (status=0) if

censored. The seventh, eighth and ninth columns give the gender, age at baseline

and race of the patients, respectively.

The data set consist of the first six visits for each PD patient, however only few

patients experienced the targeted six episodes of peritonitis during these visits. A

patient who did not experience all six episodes will have some missing values. For

instances, it can be seen from Table 1.1 that a patient with ID number 1 began

the follow-up at time 0 and remained at risk until day 1008 yet did not experience

even a single episode. This imply that there are some patients who were free

to peritonitis during all the six visits. Patient with ID number 18 experienced four

episodes from the first four visits and did not get the event at the last two visits.

The patient (ID number 143) was followed for 1190 days yet experienced the six

targeted recurrent episodes of peritonitis. The last patient (ID number 152) was in

the follow-up period for 84 days yet had one episode during the first visit.

Despite the number of visits recorded per patient, some patients got censored

before under going the six targeted visits. This can be seen by checking the gap

time variable which records the gap between the day the patient entered the study

and the day the patient experienced peritonitis or censored. The value of zero in

the gap time variable indicates that the time start and time stop are the same and

therefore the patient was out of the study during the corresponding follow-up visit.

The time to peritonitis is measured in days from the beginning of follow-up until the

occurrence of peritonitis or until the patient is censored.
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Table 1.1: Time to recurrent episodes of peritonitis data layout

ID Visit Tstart Tstop Gap Status Sex Age Race ...

1 1 0 1008 1008 0 Male 39 Black ...
1 2 1008 1008 0 0 Male 39 Black ...
1 3 1008 1008 0 0 Male 39 Black ...
1 4 1008 1008 0 0 Male 39 Black ...
1 5 1008 1008 0 0 Male 39 Black ...
1 6 1008 1008 0 0 Male 39 Black ...
.. .. .. .. .. .. .. .. .. ...
.. .. .. .. .. .. .. .. .. ...
.. .. .. .. .. .. .. .. .. ...

18 1 0 464 464 1 Male 45 Indian ...
18 2 464 956 492 1 Male 45 Indian ...
18 3 956 1130 174 1 Male 45 Indian ...
18 4 1130 1401 271 1 Male 45 Indian ...
18 5 1401 1727 326 0 Male 45 Indian ...
18 6 1727 1727 0 0 Male 45 Indian ...
.. .. .. .. .. .. .. .. .. ...
.. .. .. .. .. .. .. .. .. ...
.. .. .. .. .. .. .. .. .. ...

143 1 0 21 21 1 Female 44 Black ...
143 2 21 61 40 1 Female 44 Black ...
143 3 61 607 546 1 Female 44 Black ...
143 4 607 688 81 1 Female 44 Black ...
143 5 688 965 277 1 Female 44 Black ...
143 6 965 1190 255 1 Female 44 Black ...

.. .. .. .. .. .. .. .. .. ...

.. .. .. .. .. .. .. .. .. ...

.. .. .. .. .. .. .. .. .. ...
151 1 0 10 10 1 Male 51 White ...
151 2 10 64 50 1 Male 51 White ...
151 3 64 64 0 0 Male 51 White ...
151 4 64 64 0 0 Male 51 White ...
151 5 64 64 0 0 Male 51 White ...
151 6 64 64 0 0 Male 51 White ...
152 1 0 23 23 1 Male 17 Black ...
152 2 23 84 61 0 Male 17 Black ...
152 3 84 84 0 0 Male 17 Black ...
152 4 84 84 0 0 Male 17 Black ...
152 5 84 84 0 0 Male 17 Black ...
152 6 84 84 0 0 Male 17 Black ...
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1.6 Structure of the study

The study is divided into five chapters. Following this introductory chapter, chapter

two present literature review on modelling techniques necessary to gain insight of

the data analysis. Chapter three provide the theoretical aspects and application

of the survival analysis methods on time to recurrent episodes of peritonitis. The

fourth chapter present the results and discussion of the time to recurrent episodes

of peritonitis. Finally, the last chapter concludes the study by providing key findings,

recommendations and suggestions for further studies.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter presents the work done on peritonitis by other researchers. It looks at

the modelling techniques and strategies the researchers used to get the results of

their studies. Following this introductory Section 2.1, Section 2.2 looks at the fac-

tors associated with peritonitis. Section 2.3 reviews the modelling techniques used

to produce the analytic results. Finally, Section 2.4 will summarise the chapter.

2.2 Factors associated with peritonitis

Fan et al. (2014) investigated the risk factors associated with the first episode of

peritonitis in the Southern Chinese CAPD patients. Their study revealed that when

looking at gender, men are associated with the high risk of the first episode of

peritonitis when compared to women. These results does not correspond with the
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one found by Fried et al. (1996) in the study of determining whether peritonitis

influences mortality. Fried et al. (1996) indicated that when checking the survival

of gender, men were significantly lower as compared to women. The significance

of the female gender as a risk factor influencing peritonitis was confirmed again by

Kotsanas et al. (2007).

In Brazil, Martin et al. (2011) conducted a study to identify the risk factors that

influence the first episode of peritonitis. Educational level was found to be the

strong risk factor associated with the first peritonitis episode. The association was

independent of socio-economic conditions, PD mortality and commodities. Their

findings are equivalent to the findings established by Fan et al. (2014), even though

they indicated that the significance of educational level in their study was indepen-

dent of hemoglobin and potassium.

The study by Nessim et al. (2009) on the impact of age on peritonitis risk of PD pa-

tients was motivated by the increasing number of elderly patients reaching ESRD.

The variable age was categorised as older if the patient’s age is at leat 70 years.

Their PD initiation was divided into two eras, 1996 to 2000 and 2001 to 2005. The

study revealed that older age patients were independently associated with peritoni-

tis among patients initiated PD between 1996 and 2000. Moreover, it was found to

be not associated with the ones initiated between 2001 and 2005. This association

was confirmed again after 5 years by Fan et al. (2014). In the study of analysing

the clinical and bacteriological factors associated with the shock and mortality in

patients with secondary generalised peritonitis, Riché et al. (2009) indicated that

the age over 65 was found to be the independent risk factor. However, the results

of these studies contradicts the finding of Port et al. (1992) who indicated that sig-

nificantly higher risk of peritonitis and technique failure was observed for younger

patients.

Keleş et al. (2010) addressed the issue of PD through analysing the risk factors

associated with peritonitis in PD patients at Northeast Anatolia. In their study they
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tried to compare PD patients who never experienced peritonitis with PD patients

who experienced at least one episode of peritonitis. The outcomes of their study re-

flected that hypoalbuminemia, constipation, placement of catheter through surgery

and amyloidosis are the factors increasing the risk of peritonitis in PD patients.

Hypoalbuminemia was confirmed again to be a significant risk factor of the first

episode of peritonitis in the study conducted by Fan et al. (2014).

Isla et al. (2016) examined the prevailing causes and predictors of mortality among

predominantly rural dwelling ESRD patients in SA. Their study indicated that there

was no difference in age, gender, race and predominant areas of dwelling. How-

ever, they found statistical significant difference in the types of housing, with more

CAPD patients dwelling in rural formal houses and in the survival times between

HD and CAPD patients. The conclusion drawn in the study is that poor access

to health care facilities plays a vital role in infection-related mortality. Gray et al.

(2013) compared PD patients characteristics and outcomes in the rural and urban

areas of Australia. Their study revealed that PD technique failure rates are low in

rural areas than in the urban areas.

Okayama et al. (2012) conducted a study titled ”aging is an important risk factor

for peritoneal dialysis-associated peritonitis” in order to determine the risk factors

associated with peritonitis. The event of interest was peritonitis, while sex, age,

diabetes mellitus and several laboratory values were some of the studied variables.

The study revealed that rather than diabetes mellitus, aging was the important risk

factor of PD associated with peritonitis.These results contradict the finding of (Han

et al. (2007), Chow et al. (2005), Oo et al. (2005) and Golper et al. (1996)) whom

indicated that diabetic status was the independent risk factor for peritonitis in CAPD

patients.

Nieto-Rı́os et al. (2014) studied the rate of CAPD-related peritonitis in a cohort

study of patients followed for 27 years at a single PD center. The study revealed

that there was no significant changes in the 27 years of follow-up, i.e., the study
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showed that the rate of peritonitis was stable for the whole 27 years follow-up

period. However they also reported that access to health care services and the

distance travelled to the PD center turns to be some of the socio-economic factors

that could influence the rate of peritonitis for PD initiated patients. The issue of

access to healthcare facilities is in agreement with the argument highlighted by

Isla et al. (2016).

The study of comparing peritonitis rate between CAPD and continuous cycling peri-

toneal dialysis (CCPD) was conducted in United States (US) by Oo et al. (2005).

The study revealed that the risk of peritonitis for CAPD patients was lower as com-

pared to the risk of CCPD patients. Black race was found to be the significant risk

factor associated with peritonitis. The significance of black race in their study was

confirming the results found by Port et al. (1992). Even though these findings were

validated by the study conducted in Brazil by Martin et al. (2011), they contradict

the findings from the study of Fried et al. (1996) who indicated that peritonitis was

a risk factor only in white PD patients.

Isla et al. (2014) assessed the outcome of patients treated with CAPD in Limpopo,

South Africa. The rate of peritonitis and the factors influencing peritonitis were also

investigated. Out of 152 patients who entered the study, 71 (46.7 percent) of them

reached the composite outcome of death or technique failure. The overall number

of infections reported during the study period were 210 with the peritonitis rate of

0.82 per year. At the end of the study period only 66 (43.4 percent) of patients

were still active on CAPD. It is therefore correct to conclude that more than half

of the studied patients were censored. This censoring was due to reasons such

as death, technique failure and transferred to other CAPD centers. Hemoglobin,

serum albumin, body mass index (BMI) and experiencing more than one episode

of peritonitis were reported to be the factors identified to predict the composite

outcome.

Zent et al. (1994) evaluated the specified biomedical, socio-economic, and psy-
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chosocial criteria as predictors of therapeutic success to improve patients selection

process for CAPD in developing countries. In their study they also investigated the

presence of the relationship between the episodes of peritonitis and other exit-site

infections. This study revealed that the rates of peritonitis were high, especially in

black race. They went on and point out that age, black race and diabetes were the

factors connected with the increased peritonitis rates. The connections of these

factors are in agreement with the results found in Brazil by Martin et al. (2011).

They concluded that the connections of these factors with the high rates of peri-

tonitis could have serious implications on how to select patients for CAPD.

2.3 Techniques used to model time to peritonitis

Schneider et al. (2009) examined the prognostic factors in the critically ill patients

suffering from secondary peritonitis. The changes of survival time during the win-

dow period, septic patients with or without peritonitis were evaluated using the

kaplan-Meier estimator, log-rank test and the generalised Wilcoxon test. The Cox

proportional regression model was employed to assess the association of the vari-

ables and the survival time. The Schoenfeld residuals method was used to plot

the residuals for assessing the form of the relationship between survival time and

patient variables and also used to check the Cox proportional hazard model as-

sumptions.

Feng et al. (2016) conducted a study to compare the prognosis of early onset peri-

tonitis and non-early onset peritonitis in PD patients. The continuous variables be-

tween groups were compared using student’s t-test while the categorical variables

were compared using the Pearson chi-square test. The presence of normal dis-

tribution in continuous variables were tested using the Kolmogorov-Smirnov test.

Survival curves were plotted using the Kaplan-Meier estimator and tested for sig-

nificance difference using the log-rank test. Variables with p-value less than 10%
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in the univariate Cox regression model were subjected to the multivariate Cox re-

gression model. In the multivariate model variables were considered statistically

significant if p-value is less than 5%.

Isla et al. (2014) assessed the peritonitis rate and the causes of peritonitis for

patients treated with CAPD in Limpopo, SA. The analytic results were generated

from survival analysis techniques. Survival curves of patients were obtained and

tested for statistical significant difference using the Kaplan-Meier estimator and

the log-rank test. The univariate Cox regression model was employed to select

the significant variables that can be included in the multivariate regression. The

adequacy of the multivariate Cox proportional hazard model was assessed using

the Hosmer-Lemeshow test and variables were considered to be significant at the

multivariate method if p-value is less than 5%.

Han et al. (2007) evaluated the effect of residual renal function (RRF) on the devel-

opment of peritonitis in patients treated with CAPD. The patients were grouped as

peritonitis and peritonitis free. These groups were compared if they are the same

or not using the student’s t-test if variable is continuous and chi-square test for cat-

egorical variables. The survival of these patients was examined using the Kaplan-

Meier estimator and the log-rank test. The risk factors associated with peritonitis

were also investigated and this was done using the multivariate Cox proportional

regression hazard model.

Isla et al. (2016) conducted a study to identify the existing causes and predictors of

mortality among ESRD patients who are mainly dwelling in rural areas of Limpopo,

SA. The median time to survival of patients was determined in the study through

the kaplan-Meier (product-limit) method. The survival curves generated from the

product-limit method were assessed for the existing significant difference between

using the log-rank test. Variables were selected to the multivariate analysis if there

were statistical significant at 25% level of significance in the univariate Cox regres-

sion Model. Variables entered to the multivariate Cox proportional hazard model
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were considered to be statistical significant at 5% level of significance.

Okayama et al. (2012) investigated the risk factors influencing peritonitis. The sig-

nificance of the risk factors was evaluated using the Multivariate Cox proportional

hazard model. The groups of patients with peritonitis and those without peritonitis

were compared using the non-paired t-test and the chi-square test depending on

whether the variables are continuous or categorical. The Peto log-rank test was

employed to compare the difference in the occurrence rate of PD related peritonitis

between patients with 65 years of age or more and with less than 65 years of age.

Keleş et al. (2010) conducted a study to identify the risk factors associated with

peritonitis in PD patients. The continuous variables were compared using the stu-

dent’s t-test, while the categorical variables were compared using the chi-square

test. Variables with p-value less than 20% in the univariate Cox regression model

were considered to be statistical significant and were subjected to the multivariate

Cox proportional hazard model. The backward elimination method was utilised in

the Cox proportional model and the level of significance was considered to be 5%.

Barone et al. (2012) examined indices associated with peritonitis between CAPD

and APD patients. The weighted t-test was utilised to compare the cumulative peri-

tonitis rate among patients treated with CAPD and APD. The Kaplan-Meier analy-

sis was employed to determine the probability of remaining free peritonitis from all

peritonitis episodes and also used to calculate time to first peritonitis among the

groups. The significance difference of the survival curves was compared through

the log-rank test. The proportion of patients with peritonitis among these groups

was assessed using the chi-square test and was considered statistical significant

if p-value is less than 5%.

Rudnicki et al. (2010) investigated the risk factors for PD associated with the in-

fection peritonitis. The significance of the continuous variables was tested using

the unpaired two tailed t-test or the two tailed Mann-Whitney U-test, while the cat-

egorical variables were examined through the chi-square test. The survival curves
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of patients using and not using oral vitamin D were generated using the Kaplan-

Meier estimator and tested for significant difference using the log-rank test. The

risk factors associated with peritonitis were investigated using the univariate Cox

proportional hazard regression model.

2.4 Summary

This chapter has evaluated the literature on peritonitis. The evaluation of the mod-

els show that survival analysis techniques, such as, Kaplan-Meier estimator, log-

rank test, and Cox proportional hazard regression model can be utilised to model

the risk factors associated with peritonitis. It is also presented that peritonitis is

associated with social and biological factors. These facts has assisted in selection

of the appropriate methods and the variables to consider in the analysis.

The literature presented on this chapter depicts that most of the conducted studies

about peritonitis utilised most of the techniques of ordinary survival analysis. To

be more specifically, majority of the studies assessed the risk factors associated

with the first episode of peritonitis. Peritonitis is one of the infections which can

reoccur after being treated. Thus, it is very vital to start addressing peritonitis as a

recurrent infection. Techniques of recurrent survival analysis are to be employed in

this study to investigate the major risk factors associated with recurrent episodes

of peritonitis.



Chapter 3

METHODOLOGY

3.1 Introduction

This chapter discusses the statistical data analysis techniques which was used to

carry out the results of time to recurrent episodes of peritonitis in the forthcoming

chapter. Survival analysis of recurrent episodes need the background of the or-

dinary survival analysis techniques. Thus, the usual survival analysis techniques

are presented first as the foundation of building to recurrent survival analysis tech-

niques.

3.2 Research design and data collection

The study presents analysis which is carried out using the prospective dataset

collected on PD patients at Polokwane Kidney and Dialysis Center (PKDC) of the

Pietersburg Provincial Hospital in Limpopo Province, South Africa. The data was
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gathered from January 2008 to December 2012 and all patients were evaluated

on a monthly basis at the PKDC for peritonitis. The interest of the study is on

patients with the recurrent episodes of peritonitis (event of interest) whom were

followed from 2008 to 2012 (follow-up period). For data management and analysis

purposes, Statistical Analysis System (SAS) softwares was employed.

3.3 Survival data

Survival process is described the length of time for which a subject persists be-

fore the occurrence of a particular event. For example, in this study PD patients

were followed for five years on monthly basis until the occurrence of peritonitis.

Therefore it is important to describe the follow-up period and the event of interest

in survival data. The most important feature of survival data is censoring, which

is defined as the incomplete survival time status for some of the followed patients.

For example, not all PD patients experienced recurrent episodes of peritonitis dur-

ing the follow-up period and therefore, their true survival time status would not be

known (the patients would be censored).

3.4 Survival analysis

Survival analysis is a collection of statistical methods for analysing data where the

outcome variable of interest is time until the occurrence of an event of interest. The

event of interest can be any designated experience of interest that may happen

to an individual. For example, the occurrence of more than one episode of the

infection called peritonitis is considered as an event of interest in this study. The

time to an event can be measured in days, weeks, months, or years from the

beginning of follow-up until the occurrence of an event. However, PD patients are

followed in a monthly basis in this study.
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In survival analysis the term failure, usually refers to the occurrence of the event

even though sometimes the event of interest is a success. Example, recovery from

heart transplant can be considered as the event of interest in survival data. The

time variable is defined as the survival time because it gives the length of time

taken for a failure to occur (Stevenson and EpiCentre, 2009). When each patient

can experience more than one episode, the episode of interest occurs repeatedly

in the same subject, the analysis is known as recurrent survival analysis or survival

analysis of multiple events.

3.5 Censoring

In survival analysis there exist a key analytic problem known as censoring. This

happens due to the reason that not all the followed patients will experience the

designated event of interest. Observations are said to be censored when their

true survival time is incomplete. That is, some information about the person’s true

survival time is known, however, the exact survival time is not known. In survival

data, censoring frequently happens for many reasons such as:

• Patient got peritonitis before the study begins

• Patient do not experience peritonitis before the study end

• Patient get lost to follow-up during the study period due to death

• Patient withdraws from the study because of migration (moving from one hos-

pital to the other)

Censoring is an important type of missing data in survival analysis, and it is usually

required in order to avoid bias when it happens randomly and be noninformative

(Liu, 2012). Censoring is divided into several specific types, namely: right, left, and

interval censoring.

Patients are said to be right censored if it is known that the event of interest oc-
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curred some time after the recorded follow-up period. Right censoring is the most

commonly encountered form of censoring and this study will use the data set where

subjects are right censored. For analytic convenience, descriptions of right cen-

soring are often based on the assumption that an individual’s censored time is

independent of the actual survival time, thereby making the right censoring nonin-

formative (Liu, 2012).

3.5.1 Mechanisms of right censoring

There are three types of right censoring, namely: Type I or fixed right censoring,

Type II right censoring and Type III or random right censoring.

In Type I right censoring, each observation has a fixed censoring time, in such a

way that a specific follow-up period is designed with a starting date and an end-

ing date. In most cases, not the whole population would experience the event of

interest during the specified follow-up interval. For those who will survive to the

endpoint, the only available information will be that their exact survival time is lo-

cated to the right of the endpoint of the follow-up period, denoted by T > C, where

T is the failure time and C is the fixed censored time.

Type II right censoring is defined as a situation in which a fixed number of fail-

ures is targeted for a certain study. In Type II right censoring, the study terminate

automatically when the targeted number of failures is observed and all the individ-

uals whose survival time are greater than the time of termination are considered

to be right censored, denoted by Ti > Tr, where Ti is the ordered lifetime for

i = 1, 2, 3, , ..., n and Tr is the lifetime of the targeted r-th failure.

Right censoring that happens randomly at any time during the follow-up period is

referred to as random right censoring. Statistically, time for random censoring can

be described by the random variable Ci (where i indicates variation in C among

randomly censored observations), which is generally assumed to be independent



Methodology 26

of lifetime Ti. For a sample of n observations, case i where i = 1, 2, 3, , ..., n is

considered randomly censored if Ci < Ti and Ci < C, where C is the fixed type I

censored time.

3.5.2 Left censoring, interval censoring and left truncation

A subject is said to be left censored if it is known that the event of interest oc-

curred some time before the recorded follow-up period. For example, if a patient

experience the first episode of peritonitis before the study begins, this patient is left

censored for further analysis. A subject is said to be interval censored if it is known

that the event of interest is located between two known time points, but the exact

of failure is not known.

In a time to event data analysis, there exist a unique type of missing data called left

truncation. A PD patients who enters the observation process after a given starting

date is referred to as a staggered or delay entry and such kind of observations are

said to be left truncated. Left truncation can potentially cause serious selection

bias in survival analysis since it underestimates the risk of failure, however there

are standard statistical techniques for handling such bias (Liu, 2012).

3.6 Continuous lifetime functions

In survival analysis, the random variable of interest is non-negative, usually de-

noted by T , called failure time, survival time, lifetime, time to event, etc. These

terms are used interchangeably in this study. The dependent variable in survival

analysis is divided into two parts, which are the time to event variable and event

status variable, recording whether the patient is censored or not. The survival and

hazard functions are the two quantitative terms in survival analysis for describing

the distribution of time to event.
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3.6.1 Survival function

The survival function is defined as the probability of not experiencing the event

(surviving) beyond certain time period:

S(t) = P (T > t) = 1− P (T ≤ t) = 1−
∫ t

o

f(u)du = 1− F (t) (3.1)

where F (t), is the cumulative distribution function (cdf), defined as the probability

that no event occurs over the time interval (0, t). The survival functions have the

following three properties:

• S(t) is a non-negative function of t, that is, it approaches 0 as the time (t)

increases.

• At time t = 0, the probability of surviving beyond t is 1, that is

S(t = 0) = P (T > 0) = 1 since no event has occurred at the beginning of the

study.

• At time t =∞,the probability of surviving beyond time t is 0, that is

S(t = ∞) = 0, meaning if the follow-up period increases without limit all the

patients will get the peritonitis (event).

3.6.2 Hazard function

The hazard function at time t is defined as the instantaneous potential per unit time

for the event to occur, given that an individual has survived up to some specified

time:

h(t) = lim∆t→0
P (t ≤ T < t+ ∆t|T > t)

∆t
(3.2)

The hazard function is sometimes referred to as the conditional failure rate and it

has the following properties: it is always non-negative and it has no upper bound.
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3.6.3 Relationship between survival function and hazard func-

tion

There exist a straightforward relationship between the survival and the hazard func-

tions:

h(t) = lim∆t→0
P (t ≤ T < t+ ∆t|T > t)

∆t

= lim∆t→0
1

∆t

P (t ≤ T < t+ ∆t)

P (T > t)

= lim∆t→0
1

∆t

S(t)− S(t+ ∆t)

S(t)

=
f(t)

S(t)

Conversely,

h(t) =
f(t)

S(t)
=
−1

S(t)

d

dt
S(t) = − d

dt
logS(t)

which imply that,

log(S(t)) = −
∫ t

0

h(u)du

and from this, we can exponentiate to get,

S(t) = exp(−
∫ t

o

h(u)du) = exp(−H(t))

where, H(t) is the integration of all hazard rates over the time interval (0, t), defined

as the continuous cumulative hazard function at time t (Liu, 2012). Furthermore,

the probability density function (pdf), f(t) can be written in terms of the hazard

function:

f(t) = h(t)S(t) = h(t)exp(−
∫ t

o

h(u)du) = h(t)exp(−H(t)) (3.3)
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3.6.4 Mean survival

The expected time remaining at time t, also referred to as life expectancy at t can

be computed using the basic function defined in section 3.6.3. A it represents the

unit-based probability surviving at time t, S(t) can be considered the intensity of

expected life at time t. Taking a limit as t→∞ then S(t) = 0 then the expected life

remaining at time 0 is given by

E(T0) = E(T |t = 0) =

∫ ∞
o

S(u)du (3.4)

Likewise, the expected life remaining at time t is given by

E(Tt) = E(T |T ≥ t) =

∫∞
t
S(u)du

S(t)
(3.5)

where S(t) represents exposure for the expected life remaining at time t. The

distribution of the residual life time is given by,

F (u) = P (T − t ≤ u|T ≥ t) =
F (t+ u)− F (t)

S(t)
(3.6)

this leads to the mean survival time given by (Childers, 2015),

µ = E(T ) =

∫ ∞
0

tf(t) =

∫ ∞
0

S(t)dt (3.7)

which is referred to as the average survival rate. Since the mean survival time

normally is not estimable in the presence of right censoring, the restricted mean

survival time can be used instead. With the Kaplan-Meier estimator µ an be esti-

mated as

µ̂ = E(T ) =

∫ ∞
0

tf(t) =

∫ ∞
0

Ŝ(t)dt (3.8)
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3.6.5 Median survival

In survival analysis, sometimes the median is more beneficial than the average

(Childers, 2015). The pth quantile of survival time is the smallest tp such that:

S(tp) ≤ 1− p; tp = inf(u : S(u) ≤ 1− p). (3.9)

However, for the continuous random variable T , the pth quantile can be obtained

from S(tp) = 1 − p. It then follows that the 50th percentile, t0.5 of the distribution of

T is given by S(t0.5) = 0.5.

3.7 Non-parametric survival methods

The non-parametric methods are the techniques that does not make any assump-

tions on the form of the probability distribution, but rely completely on the empirical

data. In survival analysis, the Kaplan-Meier and Nelson-Aalen estimators are the

two well-known and related non-parametric techniques for analyzing the survival

probability and the cumulative hazard function (Liu, 2012).

3.7.1 Formulation of the Kaplan-Meier and Nelson-Aalen esti-

mators

Suppose that t1 < t2 < ... < tr are the ordered time to event, ni is the number

of individual at risk at time ti, and di denote the number of events at time ti. The

conditional probability that an individual fail in the time interval ti−∆ to ti, given that

the individual has survived up to time ti −∆, is denoted by di
ni

, and the conditional

probability that an individual survives past time ti −∆, given that has survived up

to time ti − ∆, is estimated by ni−di
ni

, taking the limit as ∆ → 0, ni−di
ni

gives the

conditional probability of surviving past time ti given that has survived up to time
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ti.

The probability of surviving past time t, for tk ≤ t < tk+1, is given by

S(t) = P (T > t)

= P (T > t and T > tk)

= P (T > t|T > tk)P (T > tk)

= P (T > t|T > tk)P (T > tk|T > tk−1)P (T > tk−1)

= P (T > t|T > tk)P (T > tk|T > tk−1)×

P (T > tk−1|T > tk−2)× ...× P (T > t1|T > t0)P (T > t0)

≈
k∏
i=1

P (T > ti|T > ti−1)

where t0 = 0 and tk+1 =∞.

The Kaplan-Meier estimator of the survival function at time t, for tk ≤ t < tk+1, is

given by

Ŝ(t) =
k∏
i=1

ni − di
ni

(3.10)

where, Ŝ(t) is the Kaplan-Meier estimate for the probability of survival at time t.

Censoring is not specified in this equation, in situation where censored time exist,

the Kaplan-Meier estimator would be written as,

Ŝ(t) =
k∏
i=1

(
ni − di
ni

)δi (3.11)

where δi is the time status variable or censorship indicator, taking the value 0,

(δi = 0), when time ti is the censored survival time and the value 1, (δi = 1), when

ti is the actual survival time (Liu, 2012).

The Nelson-Aalen estimator can be derived from the Kaplan-Meier estimator, by

converting the survival function to the cumulative hazard function, that is, from the
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equation, H(t) = −log[S(t)], it follows that,

Ĥ(t) = −log[Ŝ(t)]

= −log[
k∏
i=1

(
ni − di
ni

)δi ]

= −
k∑
i=1

δilog(
ni − di
ni

)

= −
k∑
i=1

δilog(1− di
ni

)

= −
k∑
i=1

δi(−
di
ni

)

by applying log(1 + x) ≈ x, the Nelson-Aalen estimator is given by,

Ĥ(t) =
k∑
i=1

(
δidi
ni

) (3.12)

When the censorship indicator is not considered, the Nelson-Aalen estimator is

written as,

Ĥ(t) ≈
k∑
i=1

(
di
ni

) =
k∏
i=1

[1− Ŝ(ti)] (3.13)

where Ĥ(t) is the estimate of the cumulative hazard function and Ŝ(ti) is the esti-

mate of the probability of survival at time ti

3.7.2 Greenwood’s formula

For the large population sample, the Kaplan-Meier estimator approximates the

mean of the survival probability, asymptotically normally distributed. Considering

this property, the variance of the survival estimate can be derived for assessing

the dispersion of the survival probability (Liu, 2012). In order to derive the variance

of the survival estimate (Greenwood’s formula), there are several transformation

steps to be considered. The first step is take the natural logarithm of the Kaplan-
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Meier survival function, that is,

log[Ŝ(t) =
k∑
i=1

log(
ni − di
ni

)] =
k∑
i=1

log[Ŝ(ti)]

where Ŝ(ti) is the conditional probability of survival in the time interval (ti−1, ti).

The variance of Ŝ(ti), is given by

V̂ [Ŝ(ti)] =
Ŝ(ti)[1− Ŝ(ti)]

ni

since Ŝ(ti) can be expressed as an estimate of the proportion (Liu, 2012). Applying

the delta method, the variance of log[Ŝ(ti)] is approximated by,

V̂ [log(Ŝ(ti))] ≈ [
1

Ŝ(ti)
]2
Ŝ(ti)[1− Ŝ(ti)]

ni

=
1− Ŝ(ti)

niŜ(ti)

=
ni − niŜ(ti)

(ni)2Ŝ(ti)

when both numerator and denominator are multiplied by the common term ni.

From niŜ(ti) = ni − di, the variance of log[Ŝ(ti)] can be written as,

V̂ [log(Ŝ(ti))] ≈
di

ni(ni − di)

now, the variance of log[Ŝ(t)] can be obtained by summing up the variances of all

log[Ŝ(ti)], that is

V̂ [log(Ŝ(t))] ≈
k∑
i=1

di
ni(ni − di)

performing the re-transformation procedure using the delta method, the variance

of the survival probability Ŝ(t), known as the Greenwood’s formula is given by

V̂ [Ŝ(t)] ≈ [Ŝ(t)]2
k∑
i=1

ni
ni(ni − di)

. (3.14)
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In a large sample the Kaplan-Meier estimator at time t, S(t) is approximately nor-

mally distributed (Borgan, 1997). The 100(1 − α)% confidence interval for S(t) is

given by,

Ŝ(t)± Z1−α
2
σ̂(t) (3.15)

where σ̂(t) is the square root of the Greenwood’s formula (Equation 3.12), known

as the Greenwood’s formula standard error. However, there is a serious shortcom-

ing from using this formula for estimating the variance of the survival function. The

probability of survival ranges between 0 and 1 and this formula can yield values

greater than 1 or values less than 0. Given this concern, the confidence interval of

Ŝ(t) needs to be estimated by some transformation approaches. The log-log trans-

formation is the most popular transformation for estimating the confidence interval

of Ŝ(t).

The logic of the log-log transformation is that te asymptotic normal distribution of

Ŝ(t) should be first transformed to a continuous function with unrestricted bounds.

The transformed survival function given by

y(t) = log[−logŜ(t)] (3.16)

Applying the delta method with respect to the Greenwood formula, the variance of

y(t) (equation 3.14) can be derived:

V̂ [y(t)] ≈ [V̂ Ŝ(t)]

[Ŝ(t)logŜ(t)]
(3.17)

Given Equation (3.15), the transformed log-log confidence interval for the survival

function is given by

log[−logŜ(t)]±

√
[V̂ Ŝ(t)]

[Ŝ(t)logŜ(t)]
(3.18)
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Where z1−α
2

is the z-score for the upper α
2

percentile of the standard normal distri-

bution.

3.7.3 Group comparison of survival functions

Kaplan-Meier estimator can be employed for comparing the survival functions by

adding certain stratification factors. In comparing the survival functions between

two or more population groups, an observed difference can either be a reflection

of the sampling error or the outcome of an actual disparity (Liu, 2012). Given

this information, it is important to conduct the significance tests for determining

whether to the observed difference is true or not. When conducting the signifi-

cance tests, the null and alternative hypothesis must be clearly stated, (H0 :No

statistically significant difference between groups vs H1 :Statistically significant dif-

ference groups). The critical value and the p − value can be used the conclude

whether the null hypothesis, (H0) should be rejected or fail to be rejected.

The normal and chi-squared distribution are the most widely used probability func-

tions for the hypothesis testing. In survival analysis, there are many techniques

for testing the significance difference between two or more survival functions or

survival curves. The log-rank, Peto, Tarone and the Wilcoxon test are some of

the methods. The log-rank is the most common used test and will be therefore

discussed in this chapter.

Log-rank test

Instead of looking at the fixed time points, the log-rank test compare the whole

survival function for association in different groups,

H0 : S1(t) = S2(t) = ... = Sk(t)

The true survival functions are not known for each group and therefore the non-
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parametric test must be employed. Before deriving the non-parametric test statistic

for this null hypothesis, the simple setting with K = 2 must be considered because

it is more clear on which idea to be used.

H0 : S1(t) = S2(t)

When this null hypothesis of no association between two groups (G1 and G2) is

true, the marginal totals in Table 3.1 should all be fixed and, consequently d1i can

be viewed as a hypergeometric distribution random variable with parameters ni,

n1i, and di (Liu, 2012). The hypergeometric probability distribution of having d1i in

n1i, given ni, n1i, and di, is defined by

P (Y1i = d1i) =

(
di
d1i

)(
ni−di
n1i−d1i

)(
n1

n1i

) (3.19)

where Y1i is the random variable for d1i, d1i is the number of failures fromG1, and n1i

is the number of individuals at risk in G1 at time i. The hypergeometric distribution

of d1i, is well defined, with the mean

E(d1i) =
din1i

ni
(3.20)

and the variance

V ar(d1i) =
di(ni − di)n1in21

n2
i (ni − 1)

(3.21)

Table 3.1: Number of events and nonevents at ti in two groups

Group Event (Yes) Event (No) Total
G1 d1i n1i - d1i n1i

G2 d2i n2i - d2i n2i

Total di ni - di ni

In 1959, Mantel and Haenszel proposed to sum the difference between the ob-

served d1i and the expected value of the observed E(d1i), over all the observed
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survival times. The sum is given by

D =
n∑
i=1

[d1i − E(d1i)] (3.22)

and the variance of the sum is expressed as

V ar(D) =
n∑
i=1

var(d1i) =
n∑
i=1

[
di(ni − di)n1in21

n2
i (ni − 1)

] (3.23)

If the sample size at each failure time is sufficiently large, the sum, D, is approxi-

mately normally distributed and its standardised form is given by

Z =

∑n
i=1[d1i − E(d1i)]√∑n
i=1[di(ni−di)n1in21

n2
i (ni−1)

]
=

D√
V ar(D)

∼ N(0, 1) (3.24)

which is the standard Z-test statistic.

Statistically, the square of the Z-test statistic gives the chi-square distribution, and

the efficient test statistic based on the chi-square distribution is called the log-rank

test statistic, generally given by

Qlogrank =
D2

V ar(D)
(3.25)

which is, under H0, approximately distributed as chi-square with one degrees of

freedom for two groups (Liu, 2012).

Suppose that K > 2, i.e there are more than two different groups to be compared.

The null hypothesis to be tested is

H0 : S1(t) = S2(t) = ... = Sk(t)

i.e No significant difference between all K survival functions. This hypothesis is

tested by generalising the test of two groups. where d1i is the number of failures

from G1, and n1i is the number of individuals at risk in G1 at time i.

Under H0, the vector Oi = [d1, d2, ..., dk−1] of the observed number of events in
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Table 3.2: Number of events and nonevents at ti in K groups

Group Event (Yes) Event (No) Total
G1 d1i n1i - d1i n1i

G2 d2i n2i - d2i n2i

- - - -
Gk dki nki - dki nki
Total di ni - di ni

group 1 to (K−1) at failure time ti, follows a multivariate hypergeometric distribution

with mean vector Ei and variance-covariance matrix Vi, where

Ei = [
din1i

ni
,
din2i

ni
, ...,

din(k−1)i

ni
]′ (3.26)

The Kth diagonal elements in the variance-covariance matrix (Vi) is given by

Vkki =
nki(ni − nki)di(ni − di)

n2
i (ni − 1)

(3.27)

and the Kth off-diagonal element is given by

Vkli =
nkinlidi(ni − di)
n2
i (ni − 1)

(3.28)

for k 6= l

Generalising the log-rank test statistic for two group, result on

Qlogrank = (O− E)′V−1(O− E) ∼ X2(K − 1) (3.29)

where O =
∑n

i=1 Oi, E =
∑n

i=1 Ei, and V =
∑n

i=1 Vi

3.8 Survival distributions functions

The distribution of event time T usually follows a predictable pattern. In this case

parametric models can be developed for describing the survival processes of the
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time to event. In survival analysis, these distributions are employed to perform

the test survival differences between two or more groups. These distributions

can reliably predict time to event well after the period during which events occurs

(Stevenson and EpiCentre, 2009). Their parameters are often estimated by using

the appropriate modification of the maximum likelihood. The popular distributions

in survival analysis includes the exponential, Weibull, Gamma, Log-normal and

Gompertz distribution.

Exponential distribution

The exponential distribution is the simplest function among the families of the para-

metric time distributions because its specification is based on a single parameter,

λ (Liu, 2012). A characteristic of the exponential distribution is that the instanta-

neous hazard function does not vary over time t, (the hazard function is constant).

The survival function at time t with the exponential distribution is given by,

S(t;λ) = exp(−λt) (3.30)

for t > 0, where λ, is the constant rate of change throughout the time interval

(0,∞).

The hazard function in the exponential distribution can be derived as follows,

h(t) = −log d
dt
S(t;λ) = λ (3.31)

for t > 0. This constant rate, λ determines the scale of the hazard function and

sometimes it is referred to as the scale parameter. Given the hazard and survival

functions, the p.d.f can be obtained as follows:

f(t;λ) = h(t;λ)S(t;λ) = λe−λt (3.32)

for t > 0. The expected life of the exponential time distribution can be derived as
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fallows,

E(T ) =

∫ ∞
0

tλe−λt =
1

λ
(3.33)

The median value of the exponential survival function, denoted by tp, can be ob-

tained from λ, by using the condition that S(tp) = 0.5

S(tp) = 0.5⇒ λe−λt = 0.5⇒ −λtp = −log(2), therefore

tp =
1

λ
log(2) (3.34)

The exponential distribution posses the essential property called lack of memory.

The probability suggest that the probability of surviving another t time units does

not depend on how long one have lived.

P (T > t) = P (T > t+ t0|T > t0) (3.35)

for any t0 > 0.

Weibull distribution

The Weibull distribution is the most widely employed parametric function in sur-

vival analysis because of its flexibility and simplicity. It is described by the two

parameters, scale parameter λ and a shape parameter α. The characteristics of

the Weibull distribution is that the instantaneous hazard function is monotonically

decreasing when α < 1, monotonically increasing when α > 1, and equivalent to

the exponential distribution when α = 1.

The survival function at time t with the Weibull distribution is given by,

S(t;λ, α) = exp[−(λt)α] (3.36)

for t > 0. The condition that, h(t;λ, α) = − d
dt
log[S(t;λ, α)] lead to the following
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equation:

h(t;λ, α) = αλαtα−1 (3.37)

t > 0, is called the hazard function in the Weibull distribution. The specification of

the hazard and survival functions lead to the p.d.f given by,

f(t;λ, α) = h(t;λ, α)S(t;λ, α) = αλαtα−1exp[−(λt)α] (3.38)

for t > 0. The expected survival denoted by, E(T ;λ, α) is given

E(T ;λ, α) =
1

λ
Γ(1 +

1

α
) (3.39)

The median survival time of the Weibull distribution obtained from S(tp) = 0.5 is

given by:

tp = [
log(2)

λ
]
1
α (3.40)

Gamma distribution

The gamma distribution can be described as the two-parameter family of continu-

ous distributions. It has a shape parameter, denoted by β > 0 and a scale param-

eter defined by λ > 0. The gamma distribution arises naturally (there are real-life

for which an associated survival distribution is approximately gamma) as well as

analtically (simple function of random variable have a gamma distribution). The

p.d.f is given by:

f(t;λ, β) =
λβtβ−1e−λt

Γ(β)
(3.41)

for t > 0, λ > 0, and β > 0, where the gamma function Γ(β), is defined by

Γ(β) =
∫∞

0
tβ−1e−tdt. The survival function at time t with the gamma distribution is

defined by:

S(t;λ, β) = 1− 1

Γ(β)

∫ λt

0

uβ−1e−udu (3.42)

for t > 0.
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Log-normal distribution

The log-normal distribution is another widely used parametric function in survival

analysis. The lifetime variable T has a log-normal distribution if log(T ) has a normal

distribution and this serves as its fundamental characteristic. This characteristic

makes the specification of the log-normal distribution uncomplicated as compared

to the Weibull and the gamma distribution (Liu, 2012).

The density function of the log-normal distribution can be expressed as,

f(t;µ, σ) =
1

tσ
√

2π
exp− 1

2σ2
(logt− µ)2 =

1

t
φ(
logt− µ

σ
) (3.43)

for t > 0, where φ(.) is the p.d.f of the normal distribution. The survival function is

given by:

S(t;µ, σ) = 1− ϕ(
logt

σ
) (3.44)

for t > 0, where ϕ(.) represent the cumulative normal distribution, also known as

the probit model. The hazard function is given by:

h(t;µ, σ) =
1

tσ
φ(
logt

σ
)/ϕ(
−logt
σ

) (3.45)

for t > 0.

Gompertz distribution

The lifetime variable T has the Gompertz distribution if the density function is given

by:

f(t;α, β) = βeαtexp[
β

α
(1− eαt)] (3.46)

for t > 0, where β is called the age-independent hazard rate coefficient and α

is referred to as the age-independent mortality rate coefficient (Liu, 2012). The

Gompertz survival function at time t can be derived from integrating the p.d.f, given
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by:

S(t;α, β) = exp[

∫ t

0

h(u;α, β)du] = exp[
β

α
(1− eαt)] (3.47)

Given the survival and the density functions, the hazard function can be derived as

follows:

h(t;α, β) =
f(t;α, β)

S(t;α, β)
= βeαt (3.48)

for t > 0. The log transformation of the Gompertz hazard function is linearly asso-

ciated with time t, ie,

log[h(t;α, β)] = logβ + αt (3.49)

3.9 Parametric regression models

In survival analysis, regression models are used for assessing the association be-

tween the outcome lifetime variable and one or more independent variables, with

one or more variables serving as controls (Liu, 2012). In parametric regression, the

dependent variable is the event time T , which maybe censored and it is assumed

to follow a known probability distribution whose parameter(s) may depend on the

covariates, denoted by X. The effects of this covariates can be modelled by using

either survival time or hazard rate at time t as a function of a parameter vector θ,

(Liu, 2012).

Parametric regression modeling can be viewed in different perspectives, however,

the two most popular perspectives are the parametric hazard rate model and the

log transformation (Liu, 2012). In parametric hazard rate, the proportional hazard

rate is most common and the effects of covariates are assumed to be multiplica-

tive. In the log transformation of event times, the accelerated failure time model

(AFT model) is widely used and it is assumed to be linearly associated with the

covariates.
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3.9.1 Proportional hazard regression model

The proportional hazard regression, models the hazard rate,(the number of new

cases at-risk per unit time). The hazard function at time t for an individual with

covariate X is assumed to be,

h(t|X) = ho(t)exp[β
′X] (3.50)

where h0(t) denotes a known baseline hazard function for a continuous time vari-

able T , that describes the risk for individuals when all covariates X1, X2, X3, ..., Xp

equal to 0., that is, h(t|X = 0) = h0(t)

These models are referred to as the proportional hazard models because the ratio

for the two different individuals is constant, that is,

h0(t|X
′
)

h0(t|X′
)

=
h0(t)eβ

′X
h0(t)eβ

′X
′ = eβ

′(X−X
′
) (3.51)

Using the relationship between the hazard and survival functions, the survival func-

tion for time T given X from baseline hazard function is derived as follows,

S(t|X) = exp[−
∫ t

0

h0h(u)exp(β′X)du]

= exp[−exp(β′X)

∫ t

0

h0h(u)du]

= exp[−exp(β′X)H0(t)]

= exp[−Ho(t)]
β′X

= [S0(t)]exp(β
′X)

(3.52)

where S0(t) is the baseline survival function and H0(t) is defined as the continuous

cumulative baseline hazard function at time t.

Given the survival and hazard functions, the p.d.f of time variable T given X is
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defined as,

f(t|X) = ho(t)exp(β
′X) = exp[−exp(β′X)

∫ t

0

h0h(u)du] (3.53)

Different kinds of the proportional hazard models may be derived by making differ-

ent assumptions on the baseline survival function or the baseline hazard function.

for example if the baseline hazard is constant, (h0(t) = λ) throughout the follow-up

interval, the exponential regression model given by

h(t|X : T ∼ Exp(λ)) = λexp(β′X). (3.54)

is obtained.

Which indicates that the exponential regression model on the hazard rate is just the

product of a constant baseline rate and a multiplicative form exp(β′X), representing

the effect of the covariates vector X, (Liu, 2012).

When the observed hazard function varies monotonically over time, the Weibull

regression model given by

h(t|X : T ∼ Wei(α, λ)) = αλ(λt)α−1exp(β′X) (3.55)

where h0(t) = αλ(λt)α−1 is the Weibull baseline rate.

3.9.2 Accelerated failure time regression model

Parametric regression models in survival analysis can be created on the log time

T over covariates, from which a different set of parameters needs to be specified

(Liu, 2012). This type of regression model is referred to as the AFT regression

model. The general form of the AFT is defined as,

Y = log(T ) = µ+ X
′
β + σε (3.56)
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where β is a vector of regression coefficients on logT , µ is the intercept parameter,

σ is the scale parameter and ε is the error term that follows a particular parametric

distribution of time T with survival function S(t). The AFT model show the log-linear

association between time T and the covariate vector X. With the location term

(X
′
β) and scale parameter σ, the baseline parametric distribution of survival time

can be conveniently modelled by a term of additive random disturbances (logT0)

(Liu, 2012). The survival function for the ith individual, using the equation logT ≥

logt, is given by

Si(t) = P [µ+ X
′

iβ + εi ≥ logt]

= P [εi ≥
logt− µ− X

′

iβ

σ
]

(3.57)

where εi, is the component of the error vector ε, S(t) = P (εi ≥ t), F (t) = P (εi < t)

and f(t) = d
dt
F (t). Because the explanatory variable with coefficients, (X

′
β) is in-

dependent of the distribution parameter εi, the survival function S(t) with respect to

logT can be modelled by specifying a random component and a fixed component,

given by

S(t|X) = S0(
logt− µ− X

′
β

σ
) (3.58)

for −∞ < logt < ∞, where S0 is the survival function of the distribution of ε and

Xiβ defines the location of time T , called an accelerated factor.

The cumulative hazard function can be expressed using H(t) = −logS(t), that is,

H(t) = logS0(
logt− µ− X

′
β

σ
) = H0(

logt− µ− X
′
β

σ
) (3.59)

where H0 is the cumulative hazard of ε.

Using h(t) = d
dt

[−logS(t)], the hazard function as defined as

h(t|x) =
d

dt
H0(

logt− µ− X
′
β

σ
) =

1

σt
h0(

logt− µ− X
′
β

σ
) (3.60)

where h0 is the baseline hazard function for the distribution εi, also independent of
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X.

Because of the simplicity and flexibility of the log-linear model, the survival function

can be applied to formulate a large number of families of parametric distributions in

survival analysis. The effect of covariate vector X on time T changes location, but

not the shape of the distribution of T , thus the parametric regression models that

can be formulated by the survival functions are referred to as the AFT regression

models, (Liu, 2012). The advantage of using the AFT model is that it covers a

wide range of the survival time distribution. The AFT regression model can be

formulated with respect to the random variable T , rather than logT , that is,

T = exp(µ+ X
′
β)exp(σε) = exp(µ+ X

′
β)E (3.61)

where E = exp(σε) > 0 has the hazard function h0(e) and is independent of β.

Because exp(σε is positive valued, T is restricted in the range (0,∞). Using T ≥ t,

the survival function for the ith individual is expressed as,

Si(t) = P (Ti ≥ t) = P [exp(µ+ X
′
β + σεi) ≥ t] (3.62)

Since the term X
′
β is independent of the disturbance parameter, the survival func-

tion S(t) can be written as

Si(t) = S0[t exp(X
′
β)] (3.63)

where S0 is a fully specified survival function, defined as S0(t) = exp(µ+ X
′
β ≥ t)

Using the intimate relationship of the hazard and the survival function, the hazard

function for T can be written as

h(t|x) = h0[texp(−X
′
β)]exp(−X

′
β) (3.64)

Using S(t) = exp(
∫ t

0
h(u)du), we get the survival function in terms of the AFT haz-
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ard function:

S(t|x) = exp−
∫ t

0

h0[uexp(−X
′
β)]exp(−X

′
β)du = expHo[texp(X

′
β)] (3.65)

The density function in the formation of AFT perspective is defined as,

f(t|x) = h0[t exp(X
′
β)]exp(−X

′
β)expHo[texp(X

′
β)] (3.66)

which is obtained using f(t) = h(t)s(t).

In the AFT regression models, the effect of covariates determine the time scale

in such a way that if exp(−X
′
β) > 1, the survival process accelerates and if

exp(−X
′
β) < 1, the survival process decelerates.

3.9.3 Cox proportional hazard regression model

It is difficult in practice to ascertain the correct underlying parametric distribution

for survival times. Reseachers are more interested in how covariates influences

the risk of an event occurrence than in the shape of a specific failure time distri-

bution (Liu, 2012). Because of these concerns, it is useful to create a regression

model that provides a valid estimates of the covariates effects on the hazard func-

tion while avoiding the specification of an underlying distribution function. The Cox

proportional hazard regression model, introduced by Cox (1972), derives the effi-

cient estimates of the covariate effects using the proportional hazard assumption

while leaving the baseline hazard unspecified (Liu, 2012).

Cox semi-parametric hazard model

The Cox model has become the most popular and widely used regression model

in survival analysis (Childers, 2015). The Cox model uses the maximum likelihood

algorithm for the partial likelihood function, with the estimating procedure known
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as a partial likelihood (Liu, 2012). In the Cox model, the conditional hazard of an

individual, given the covariate values X1, X2, X3, ..., Xp is expressed as

h(t|X) = h0(t)exp(β′X) (3.67)

where the multiplicative term exp(β′X) specifies the effect of covariates and the

term h0(t) represent an arbitrary and unspecified baseline hazard function for con-

tinuous time variable T . The coefficient vector β provides a set of covariate effects

on the hazard rate, with the same lengh as X and exponentiating a specific re-

gression coefficient generates the hazard ratio (HR) of covariate. If for example,

the covariate Xm is dichotomous variable with Xm = 1 and Xm = 0, and the other

covariates takes the value 0, the hazard of covariate Xm is given by

HRm =
ho(t)exp(Xm1β̂m)

ho(t)exp(Xm0β̂m)
= exp[(Xm1 −Xm0)β̂m] = exp(β̂m) (3.68)

where β̂m is the estimate of the regression coefficient for covariate Xm. This def-

inition of the hazard ratio(relative risk), independent of h0(t), holds when other

covariates are not zero because additional terms appearing in both the numerator

and denominator would cancel out (Liu, 2012).

For continuous covariate, the hazard ratio displays the extent to which the risk

increases (HR > 1) or decreases (HR < 1) with 1-unit increase in the value of the

covariate. In continuous setup the hazard ratio can also calculated to reflect the

proportional change in the hazard rate with w-unit increase in Xm, given by

HRm =
ho(t)exp[(Xm0 + w)β̂m]

ho(t)exp(Xm0β̂m)

= exp[(Xm0 + w −Xm0)β̂m]

= exp(wβ̂m)

= exp(β̂m)w

(3.69)

The measure exp(wβ̂m) is referred to as the w-unit hazard ratio. This reflects the
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multiplicative change in the hazard rate with a w-unit increase in the covariate Xm.

The Cox model can be expressed i n terms of the log-linear model (AFT), with

covariates assumed to be linearly associated with the logh(t) function. The AFT of

the Cox model is given

log[h(t|X)] = log[h0(t)] + Xβ = α + Xβ (3.70)

where α is the log of the baseline hazard function specified as the intercept factor

in the parametric hazard regression model. This intercept is unspecified in the Cox

model because h0(t) is unspecified.

3.10 Recurrent Survival analysis

Survival analysis of recurrent episodes considers a situation where an individual

may experience more than one episode over the follow-up period. There are many

techniques that can be utilised to handle analysis of this nature. However, this

study will utilise the stratified, gap-time, marginal and the counting process ap-

proach. Irrespective of which approach is being utilised, the variance of the esti-

mated partial likelihood regression coefficients should be adjusted for the possible

correlation among recurrent episodes on the same individual. The sandwich robust

variance estimator is the most popular and widely used estimator for adjusting the

variances of the partial likelihood estimated regression coefficients.

3.10.1 Parametric regression models

The parametric regression models for modelling the time to recurrent episodes

works the same way as the ordinary parametric regression models in the sense

that they also assess the association between the outcome lifetime variable and

one or more covariates.
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Stratified model

In the stratified hazard regression model the proportional hazard regression model

is assumed to be conditional for each individual. This model is assumed to be

conditional simply because it considers that it is not possible for an individual to

experience the kth episode before experiencing the (k − 1)th episode (i.e. an indi-

vidual can not be at the risk set for subsequent episode without having experienced

the preceding episode). Furthermore, each episode is considered as a separate

process irrespective of whether it is coming from the same individual or not. The

stratified hazard regression model for the ith individual in the jth stratum is of the

form

hij(t|Xij) = h0j(t)exp(β
′Xij) (3.71)

where h0j(t) is the arbitrary and unspecified baseline hazard function for the con-

tinuous time variable T from stratum j, t represent the time interval (time-start to

time-stop) for each follow-up period, Xij is the vector of the ith individual’s covariate

in the jth stratum and β donate the set of the partial likelihood estimated regression

coefficients.

This model is very useful when modelling the total time period of the recurrent

episode process. That is, stratified model is more appropriate when modelling

time-start to time-stop interval of the recurrent episode process. The variable stra-

tum is used in this model to ensure that it is not possible for an individual to be

in the risk set for subsequent episodes without having experienced the preceding

episode.

Gap-time model

The gap-time hazard regression model is the most often utilised and more appro-

priate technique to employ when studying recurrent episodes rate as a function

of time since the last episode (Duchateau et al., 2003). The technique operates



Methodology 52

conditionally like the stratified process, however they differ only on how the time

intervals are structured. In gap-time model, an individual moves to the kth stratum

immediately after the (k − 1)th recurrence time and remains there until he or she

experience the kth episode or until the individual is censored. For instance, if an

individual has one episode, then there will be two observations. An individual will

move from the first stratum to the second stratum after experiencing the episode

and remains there until the study period end (that is, until the individual is cen-

sored). In general, an individual with k episodes contributes k + 1 observations.

The gap-time hazard regression model for the ith individual in the jth stratum is

expressed as

hij(t|Xij) = h0j(t)exp(β
′Xij) (3.72)

where h0j(t) represent an arbitrary and unspecified baseline hazard function for

the continuous time variable T from stratum j. In the gap-time model t denote

the gap between the time-start and time-stop for each follow-up period, Xij is the

vector of the ith individual’s vector in the jth stratum and β represents the vector of

the partial likelihood estimated regression coefficients.

The gap-time model is very useful when the researcher is interested in modelling

the gap time between each time interval of the recurring episode rather than mod-

elling the total time follow-up period of the recurrent episode process. Just as in

the stratified model, the variable stratum is used in this model to ensure that it is

not possible for an individual to be in the risk set for subsequent episodes without

having experienced the preceding episode.

These models (gap-time and stratified) were established in 1981 and they are

sometimes referred to as conditional Cox-type models, (Prentice et al., 1981).

These models allow the shape of the hazard function to depend on the number of

previous episodes and perhaps on the characteristics of the number of episodes

an individual experiences and the covariate of an individual .
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Marginal model

In the marginal model a proportional hazard regression model is assumed to be

marginal for each individual, that is, each episode from the same individual is con-

sidered as a separate process. Furthermore, each individual is considered to be

at the risk set for subsequent episodes, irrespective of the number of episodes

each has actually experienced. In this model all individuals in the study contribute

the follow-up times to all possible recurrent episodes. Furthermore, the marginal

model considers each episode from the same individual separately and models all

the obtainable information for the particular episode. The marginal hazard regres-

sion model for the ith individual in the jth stratum is of the form

hij(t|Xij) = h0j(t)exp(β
′Xij) (3.73)

where h0j(t) is the arbitrary and unspecified baseline hazard function for the con-

tinuous time variable T from stratum j, t represent the time at which the episode

occurred or the time at which the individual got censored for each follow-up period.

Xij is the vector of the ith individual’s covariate in the jth stratum and β denote the

set of the partial likelihood estimated regression coefficients.

This model is very useful when modelling the exact time an individual experienced

the episode or the exact time the individual got censored. That is, the marginal

model is more appropriate when modelling the time-stop of the recurrent episode

process. Just as in the stratified and gap-time model, the variable stratum is used

in this model also to ensure that it is not possible for an individual to be in the risk

set for subsequent episodes without having experienced the preceding episode.

Counting process model

In the counting process model each episode is assumed to be independent, re-

gardless of whether it is coming from the same individual or not. Moreover, an
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individual contributes to the risk set for an episode as long as the individual is still

under the follow-up period during the time the episode occurred. The counting

process model only differ from the other recurrent modelling technique because it

does not take into account the order of the episodes. That is, the individual remains

at the risk set for subsequent episode as long as they are still under the follow-up

process at the time the episode occurs. This implies that the occurrence of the

second episode does not depend on the occurrence of the preceding episode and

individuals could be at risk set for subsequent episode without having experienced

the preceding episodes. The counting process model for the ith individual is ex-

pressed as

hi(t|Xi) = h0(t)exp(β′Xi) (3.74)

where h0(t) is the unspecified arbitrary baseline hazard function for the continuous

time variable T , t represent the time-start and time-stop for each time interval of

follow-up period. Xi is the vector of the ith individual’s covariate and β denote the

set of the partial likelihood estimated regression coefficients.

The model that is used in the counting process approach is the same as the stan-

dard Cox proportional hazard model. However, in the counting process approach,

an individual may experience more than one episode and these episodes are as-

sumed to be independent from each other in a way that they are treated as if they

are coming from different individuals.

The difference between the counting process model and the other three recurrent

survival models is that the counting process is not conditional. That is, the counting

process ignores the order at which the episodes occurred (i.e. individuals could be

at the risk set for subsequent episodes without having experienced the preceding

episodes). Furthermore, the counting process and stratified model uses the same

time interval of the subsequent episode.
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3.11 Model selection

In regression, it can be difficult to find a good model, especially in cases where

there are many covariates. The criterion of identifying interesting covariates should

be employed in such cases. The approach that will be utilised in model building for

this study is the Akaike information criterion (AIC) established by Akaike in 1973

(Kleinbaum and Klein, 2006). The AIC investigate the likelihood and the number of

parameters included in the model. It seek to balance the need of the model which

fits the data well to that of having simple model. The AIC statistics is defined by

AIC = −2logL+ αq (3.75)

where q is number of the unknown regression parameters in the model, α is any

predetermined constant and L is the likelihood function. The AIC depends on the

number of variables added in the model, in a way that, it will decrease as variables

are being added in the model and increase when the number of added variables

are unnecessary (Kleinbaum and Klein, 2006). The model with the smallest AIC

value is more preferable.

The other criterion used to detect a good or a better fitting model is the Schwarz

Bayesian Criterion (SBC). The SBC was derived from the Bayesian modification

of the AIC criterion by Schwarz in 1978. This criterion was established for model

selection. It is a function of the number of observations in the study, the sum of

square error (SSE) and the number of independent covariates, α ≤ p + 1, where

α considers the intercept also. The mathematical equation for this criterion is ex-

pressed as

SBC = nln(
SSE

n
) + αlnn (3.76)

The SBC criterion works like the AIC in a way that the model with the smallest

value is considered to be the good or the best model to fit the available data set.
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3.12 Partial likelihood

Suppose that the study is constructed on a sample of size n containing the triplets

(Tj, δj,Xj), j = 1, 2, ..., n, where Xi is a vector representing the set of covariates,

Ti is a vector of the failure time random variable and δi is a set censoring variable.

The partial likelihood is derived under the following assumptions: There are ties

between the failure times in the data and that given Xj, censoring is non-informative

(i.e. the failure time and censoring time for the jth individual are independent).

Let that t1 < t2 < ... < tD denote the D ordered distinct failure times and X(i)k

denote the kth covariate associated with an individual who experienced the event

of interest at time ti (Klein and Moeschberger, 2003). Suppose that <(ti) represent

the set of all individuals who are at risk for failure at the time just before time ti.

The probability that an individual experience an episode at time ti with covariate

Xj, given that one of the individuals in the risk set experiences the episode at the

very same time ti, is represented by

P [individual i with covariate Xj fails at time ti|individual j from <(ti) fails at ti]

(3.77)

The conditional probability transforms a continuous hazard function and Equation

(3.75) becomes

hazard rate at ti for individual i with covariate Xj∑
j∈<(ti)

hazard rate at ti for individual j
=

h[ti|X(i)]∑
j∈<(ti)

h[ti|Xj]

=
h0(ti)exp[βX(i)]∑
j∈<(ti)h0(ti)exp[βXj ]

=
exp[βX(i)]∑
j∈<(ti)exp[βXj ]

(3.78)

The partial likelihood formed by multiplying the conditional probabilities in equation

(3.68) over all failures is based on the hazard function (Klein and Moeschberger,
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2003) and is given by

L(β) =
D∏
i=1

exp[βX(i)]∑
j∈<(ti)exp[βXj ]

=
D∏
i=1

exp[
∑p

k=1 βkX(i)k]∑
j∈<(ti)exp[

∑p
k=1 βkXjk]

(3.79)

when the censoring variable is considered, equation (3.69) can be expressed as

follows

L(β) =
D∏
i=1

{
exp[βX(i)]∑
j∈<(ti)exp[βXj ]

}δi

=
D∏
i=1

{
exp[

∑p
k=1 βkX(i)k]∑

j∈<(ti)exp[
∑p
k=1 βkXjk]

}δi
(3.80)

The partial likelihood is different from the usual likelihood due to the reason that it is

formed by multiplying the conditional probabilities rather than multiplying the inde-

pendent terms. However, it is treated as usual likelihood (Klein and Moeschberger,

2003). The numerator of the partial likelihood considers information from the indi-

vidual who experiences an episode, while the denominator depends on the infor-

mation from all individuals who have not yet experienced the episode or who have

censored.

The partial maximum likelihood regression coefficients estimates are obtained by

maximiisng the likelihood function, or, equivalently by maximising the natural loga-

rithm of the partial likelihood function. The natural logarithm of the partial likelihood

function, known as the log-partial likelihood is given by

LL(β) =
D∑
i=1

p∑
k=1

βkX(i)k −
D∑
i=1

ln[
∑

j∈<(ti)

exp(

p∑
k=1

βkXjk)] (3.81)

where LL(β) denote the natural logarithm of the partial likelihood function, that is,

LL(β) = ln[L(β)].

The partial derivatives of the log-partial likelihood with respect to the regression co-
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efficients (β) yields the efficient score equations (Klein and Moeschberger, 2003).

The efficient score equations are given by

Uh(β) =
D∑
i=1

X(i)h −
D∑
i=1

∑
j∈<(ti)

Xjkexp[
∑p

k=1 βkXjk]∑
j∈<(ti)

exp[
∑p

k=1 βkXjk]
(3.82)

where Uh(β) represent the partial derivative of the log-partial likelihood with respect

to the β′s, that is, Uh(β) = ∂LL(β)
∂βh

.

The Variance estimator of the partial maximum likelihood estimates of β is based

on the information matrix (Liu, 2012). The information matrix is obtained by tak-

ing the negative of the resulted matrix of the second derivatives of the log-partial

likelihood and it is mathematically expressed as

Igh(β) =
D∑
i=1

∑
j∈<(ti)

XjgXjhexp[
∑p

k=1 βkXjk]∑
j∈<(ti)

exp[
∑p

k=1 βkXjk]

−
D∑
i=1

[

∑
j∈<(ti)

Xjgexp(
∑p

k=1 βkXjk)∑
j∈<(ti)

exp(
∑p

k=1 βkXjk)
]

[

∑
j∈<(ti)

Xjhexp(
∑p

k=1 βkXjk)∑
j∈<(ti)

exp(
∑p

k=1 βkXjk)
]

(3.83)

where Igh(β) denote the second partial derivatives of the log-partial likelihood with

respect to the to the β′s, that is, Igh(β) = ∂2LL(β)
∂βgβh

.

Three main tests for the hypothesis about the regression coefficients β can be

derived from these quantities. Suppose that b = (b1, b2, ...., bp)
′ represent the partial

maximum likelihood estimates of β and I(β) = [Igh(β)]p×p denote the information

matrix assessed at β. Under the assumption of a large sample size, b follows a p-

variate normal distribution with mean vector β and the variance-covariance matrix

I−1(b). The first test for the global hypothesis of H0 : β = β0 is the wald’s test and

is mathematically expressed as

X2
WD = (b− β0)′I(b)(b− β0) (3.84)
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which is asymptotically distributed as a chi-square with p degrees of freedom under

the null hypothesis (H0) for large sample size.

The second test for the global hypothesis of H0 : β = β0 is the likelihood ratio test

and is given by

X2
LR = 2[LL(b)− LL(β0)] (3.85)

The likelihood ratio test follows a chi-square distribution with p degrees of freedom

if the null hypothesis is true for large sample size. LL(b) and LL(β0) denote the

log-partial likelihood function containing all covariates and the log-partial likelihhod

function without covariates, respectively.

The last test for the global hypothesis of H0 : β = β0 which is based on the efficient

scores is the score test and mathematically is given by

X2
SC = U(β0)′I−1(β0)U(β0)

= (U1(β0), ...., Up(β0))′I−1(β0)(U1(β0), ...., Up(β0))
(3.86)

which is asymptotically distributed as chi-square with p degrees of freedom under

H0 : β = β0. The efficient scores, U(β), is asymptotically p-variate normal with the

mean of zero and variance-covariance matrix I(β0), if H0 is true for large samples.

3.12.1 Adjusted partial likelihood

In situations where individuals experiences episodes at the same time, that is,

when there are ties between the episode times, the partial likelihood should be

adjusted (Liu, 2012). Therefore, suppose that t1 < t2 < .... < tD denote the

D ordered, distinct, episode time. If di is the number of episodes at time ti and

Di denote the set of all patients who experiences the episode at time ti. Let Yi

represent the sum of all covariates vectors Xj over all patients who experiences

the episode at time ti, that is, Yi =
∑

j∈D Xj. If <(ti) denote the set of all patients at

risk of the event just prior time ti, then several partial likelihood are constructed for
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the data with ties among the episode times. The first partial likelihood suggested

by Breslow in 1974 is called the Brewslow partial likelihood for handling ties. This

likelihood works quite very well under the condition of few ties. The Breslow partial

likelihood is mathematically expressed as

L(β) =
D∏
i=1

exp(β′Yi)

[
∑

j∈<(ti)
exp(β′Xj)]di

(3.87)

In the Breslow partial likelihood, each of the di episodes at a given time are con-

sidered as distinct, creates their contribution to the likelihood function and attain

the contribution of the likelihood function by taking the product over all episodes at

time ti (Klein and Moeschberger, 2003).

The second partial likelihhod due to Efron (1977) is mathematically expressed as

L(β) =
D∏
i=1

exp(β′Yi)∏di
j=1[
∑

j∈<(ti)
exp(β′Xj)− j−1

di

∑
k∈Di exp(β

′Xk)]
(3.88)

The Efron partial likelihood is more close to the exact partial likelihood based on the

discrete hazard model as compared to the Breslow’s partial likelihood. However,

the two likelihood works quite the same when the number of the ties are small

(Klein and Moeschberger, 2003).

3.13 Sandwich variance estimator

In recurrent survival analysis, data lines from the same individuals are treated as

independent observation and therefore the regression coefficients (β) are also es-

timated based on this assumption. That is, to estimate β, the partial likelihood

function L(β) is constructed under the assumption that all observations are com-

ing from different individuals. Using this partial likelihood function, the variance-

covariance matrix of the likelihood regression coefficients estimate of β can be de-

rived. However, there is a need to adjust this variance-covariance matrix as there
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might be a correlation between episodes within the same patients in the study.

To estimate the variance-covariance matrix of b, the estimator of β, the robust

sandwich variance estimator is utilised. The sandwich estimator is the widely

utilised technique for adjusting the variance-covariance for the possible associa-

tion among event times of the same individuals (Kleinbaum and Klein, 2006). It

is important to note that the regression coefficients are not adjusted but their vari-

ances are.

The robust sandwich estimator involves the score residuals and information matrix

obtained from the partial likelihood. This estimator is conveniently expressed using

the matrix approach as

RS(β̂) = V̂ar(β̂)[R̂s

′
R̂s]V̂ar(β̂) (3.89)

where V̂ar(β̂) is the information matrix and R̂s is the matrix of the score residuals.

The tests and confidence interval of global hypothesis about the regression coef-

ficients can be conducted using this sandwich variance estimator (Kleinbaum and

Klein, 2006). This can be done when considering that the estimator b of β follows

a large sample p-variate normal distribution with the mean and variance of β and

V̂ar(β̂), respectively (Klein and Moeschberger, 2003).

3.14 Summary

This chapter presented the existing techniques of analyzing both, time to event and

time to multiple events dataset. However, the time to multiple events (episodes)

data analysis techniques helped to investigate the risk factors associated with re-

current episodes of peritonitis. The next chapter answers the aim and objective

of the study through the results that were carried out using the recurrent survival

analysis techniques presented in this chapter.
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RESULTS AND DISCUSSION

4.1 Introduction

This chapter presents the results of data analysis and discussion of these results.

The chapter is divided into seven sections, that is, following this introductory Sec-

tion 4.1, Section 4.2 looks at the descriptive statistics, Sections 4.3 and 4.4 fo-

cuses on the univariate and multivariate analysis respectively. Model selection,

final multivariate model and discussion of results are presented on the following

sections, 4.5, 4.6 and 4.7 respectively.

4.2 Descriptive statistics

This section gives a summary of the data set used in this study. Table 4.1 present

the summary of continuous variables where the number of patients (N), mean,

standard deviation (STD) and median are provided. Table 4.2 present the cate-
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Table 4.1: Demographic table overall: Continuous variable

Covariate N Mean STD Median
Age 152 37.60 11.49 39
Distance (km) 138 120.33 79.25 118
Trans-Sat (%) 139 34.96 18.55 32
Ferritin (g/L) 145 491.78 335.40 448
Albumin (g/L) 145 31.83 31.15 29
GFR-MDRD (mL/min/1.73m2) 148 6.87 3.69 6
Creatinine (mmol/L) 148 1058.17 411.30 1034.5
DBP (mmhg) 147 85.84 13.50 86
SBP (mmhg) 147 140.45 20.14 139
BMI (kg/m2) 141 24.33 5.20 24
Hb (g/L) 148 13.51 19.11 11.1
Ca (mmol/L) 148 2.37 0.17 2.38
Pi (mmol/L) 148 1.80 2.18 1.56
K (mmol/L) 148 4.15 0.80 4
Number of people 129 4.50 1.90 4
Number of rooms 134 4.75 2.11 5

Note: The meaning of the abbreviated covariates are as follows: Trans-Sat
denotes the transferrin saturation; GFR-MDRD is the glomerular filtration
rate; DBP and SBP are the diastolic and systolic blood pressure, respec-
tively; BMI depicts the body mass index; Hb is the hemoglobin content of
the patient; Ca denotes the calcium, Pi is the phosphorus serum; K abbre-
viates potassium.

gories, frequency and percentage of the categorical variables and Table 4.3 presents

the number of episodes (events) and censored values of patients. The analysis

was performed based on the followed 152 PD patients, however due to censoring

and other reasons, some patients did not provide all the information and therefore,

the number of patients were not constant.

Table 4.1 presents the baseline clinical characteristics and lab biochemistry data

of 152 PD patients. The mean and median age of patients were 38 and 39 years,

respectively. The average travelled distance by patients from their home to PD

centre was 120.33km, with standard deviation 0f 79.25km and median of 118km.

The variables albumin and hemoglobin, had an average of 31.83g/L and 13.51g/L,

standard deviation of 31.15g/L and 19.11g/L and median of 29g/L and 11.1g/L,
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respectively. Mean, standard deviation and median of number of people and rooms

in the homes of PD patients were 4.5, 1.9 and 4 and 4.75, 2.11 and 5, respectively.

Table 4.2: Demographic table overall: Categorical variable

Covariate Category Frequency Percentage
Employment Scholar 8 5.71

Unemployed 109 77.86
Employed 23 16.43

Marital status Divorce 2 1.43
Single 79 56.43

Widower 1 0.71
Married 58 41.43

Race Black 141 92.76
India 4 2.63
White 7 4.61

Water No 75 54.35
Yes 63 45.65

Electricity No 7 5.07
Yes 131 94.93

Smoking No 137 95.14
Yes 7 4.86

Alcohol No 142 98.61
Yes 2 1.39

Sex Female 73 48.03
Male 79 51.97

Education Primary 23 16.67
Secondary 101 73.19

Tertiary 14 10.14

The study population consisted of 152 PD patients who were followed in 2008

until 2012. From the 152 patients, 79 (51.97%) were males, 141 (92.76%) were

blacks and 79 (56.43%) were not married (single). Table 4.2 demonstrate that

many of the patients were non-smokers 139 (95.14%) , had no access to tap

water 75 (54.35%), were unemployed 109 (77.86%), 131 (94.93%) had access

to electricity, 142 (98.61%) did not drink alcohol, while 101 (73.19%) of these

patients attended secondary school.

The study utilised the dataset which was collected at the Pietersburg provincial

hospital in Limpopo province, South Africa. Limpopo is one of the province dom-
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inated by black people. Hence, almost (92.76%) all of the followed patients are

blacks.

Table 4.3: Summary of the number of event and censored values

Stratum Visit Total Event Censored Event percentage Censored percentage
1 1 152 98 54 64.47 35.53
2 2 152 55 97 36.18 63.82
3 3 152 27 125 17.76 82.24
4 4 152 9 143 5.92 94.08
5 5 152 4 148 2.63 97.37
6 6 152 1 151 0.66 99.34
Total 912 194 718 21.27 78.73

Table 4.3 shows the summary of the number of events and censored values hap-

pened during the six visits in the study. The study consisted of six strata and each

stratum contained 152 patients, number of events experienced and the number of

patients censored. From 912 visits there were 194 (21.27%) peritonitis episodes

and 718 (78.73%) right censoring were recorded. Most of the experienced events

occurred in the first stratum 98 (64.47%), followed by the second stratum with

55 (28.35%) episodes, while the last stratum constituted the least number of

events 1 (0.66%). This indicates that out of 152 patients only one patient experi-

enced the maximum of six targeted episodes of peritonitis.

The column of event percentage in Table 4.3 depicts that the number of episodes

of peritonitis experienced by the PD patients decrease as the number of visits

increase. To be more precise, there is an inverse relationship between the number

of events (episodes) and the number of times the patient has been visited. This

can be attributed to be fact that PD patients are usually trained to perform the

exchange process on their own. This can be interpreted as follows, many patients

pay necessary attention after experiencing the first episode.
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Table 4.4: Univariate marginal model with both model-based and sandwich variance estimate for continuous clinical and social variables

Model-Based Variance Estimate Sandwich Variance Estimate
Covariate Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Age -0.0136 0.987 0.0067 0.0417 0.0099 0.1708
Distance (km) 0.0008 1.001 0.0010 0.4156 0.0012 0.5334
Trans-Sat (%) 0.0028 1.003 0.0034 0.4015 0.0067 0.6713
Ferritin (g/L) 0.0002 1.000 0.0002 0.3563 0.0003 0.5416
Albumin (g/L) -0.0041 0.996 0.0026 0.1100 0.0044 0.3503
GFR-MDRD (mL/min/1.73m2) -0.0720 0.931 0.0244 0.0032 0.0307 0.0189
Creatinine (mmol/L) 0.0006 1.001 0.0002 0.0035 0.0003 0.0571
DBP (mmhg) 0.0091 1.009 0.0064 0.1538 0.0094 0.3338
SBP (mmhg) 0.0071 1.007 0.0043 0.0934 0.0066 0.2758
BMI (kg/m2) -0.0117 0.988 0.0142 0.4098 0.0244 0.6319
Hb (g/L) -0.0029 0.997 0.0035 0.4108 0.0011 0.0077
Ca (mmol/L) 0.7311 2.077 0.4334 0.0916 0.5153 0.1560
Pi (mmol/L) -0.0681 0.934 0.0921 0.4599 0.0775 0.3800
K (mmol/L) -0.2014 0.818 0.1085 0.0634 0.1409 0.1528
Number of people 0.0617 1.064 0.0385 0.1095 0.0499 0.2166
Number of rooms -0.0416 0.959 0.0403 0.3022 0.0530 0.4325

Note: The meaning of the abbreviated covariates are as follows: Trans-Sat denotes the transferrin saturation; GFR-MDRD is the glomerular filtration
rate; DBP and SBP are the diastolic and systolic blood pressure, respectively; BMI depicts the body mass index; Hb is the hemoglobin content of the
patient; Ca denotes the calcium, Pi is the phosphorus serum; K abbreviates potassium.

4.3 Univariate analysis

The results of the univariate models with both sandwich and model-based variance

estimate, for the continuous covariates are presented from Table 4.4 until Table

4.11 The term univariate indicates that covariates in the data set were first fitted

one by one separately in both the sandwich and model-based variance models.

The parameter estimates from both sandwich and model-based variance models

are the same. The only difference is in the standard errors of the parameter esti-

mates. The sandwich variance model takes into account the correlation structure

among the recurrent events per person but the model based variance estimate

does not. Certainly, due to the change in the standard error of the parameter esti-

mates coming out of the two modelling approaches, their p-values also will change

accordingly. The lower standard error will result in a lower p-value and vice versa.

Patient age at baseline, GFR-MDRD and Creatinine are significant covariates in

the model-based univariate marginal survival model with the p-values, 0.0147,

0.0032 and 0.0035, respectively. However, when the correlation for the recurrent

events among the same patient is taken into account by the sandwich variance

marginal model, only covariates GFR-MDRD and haemoglobin content (Hb) are

significant with the p-values 0.0189 and 0.0077, respectively. The regression co-
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efficient of GFR-MDRD is -0.0720, with the hazard ratio of 0.931, indicating that

for each unit increase on GFR-MDRD content the hazard of experiencing recur-

rent episodes of peritonitis decreases by 6.9%. A less than one hazard ratio is

obtained for the covariate haemoglobin content (HR=0.997). Each unit increase

in haemoglobin content resulted in reducing the risk of experiencing recurrent

episode of peritonitis by 0.3%. However, the result obtained from both of the uni-

variate modelling approaches revealed that, covariates distance from the dialysis

centre, transferrinsat, ferritin, albumin, DBP, SBP, BMI, Ca, Pi, K, number of peo-

ple and number of rooms are statistically non-significant at 5% level of significance

(Table 4.4).

Table 4.5: Univariate counting process model with both model-based and sandwich variance estimate for continuous clinical and social
variables

Model-Based Variance Estimate Sandwich Variance Estimate
Covariate Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Age -0.0104 0.990 0.0067 0.1207 0.0072 0.1505
Distance (km) 0.0006 1.001 0.0010 0.5172 0.0010 0.5109
Trans-Sat (%) 0.0034 1.003 0.0034 0.3690 0.0059 0.5638
Ferritin (g/L) 0.0002 1.000 0.0002 0.3876 0.0003 0.4480
Albumin (g/L) -0.0033 0.997 0.0027 0.2277 0.0042 0.4374
GFR-MDRD (mL/min/1.73m2) -0.0534 0.948 0.0242 0.0273 0.0219 0.0148
Creatinine (mmol/L) 0.0006 1.000 0.0002 0.0392 0.0002 0.0756
DBP (mmhg) 0.0047 1.005 0.0064 0.4589 0.0074 0.5244
SBP (mmhg) 0.0060 1.006 0.0047 0.1701 0.0053 0.2579
BMI (kg/m2) -0.0043 0.996 0.0140 0.7578 0.0166 0.7951
Hb (g/L) -0.0020 0.998 0.0035 0.5715 0.0009 0.0313
Ca (mmol/L) 0.6846 1.983 0.4652 0.1411 0.4138 0.0980
Pi (mmol/L) -0.0565 0.945 0.0888 0.5248 0.0560 0.3123
K (mmol/L) -0.1395 0.870 0.1125 0.2151 0.1171 0.2338
Number of people 0.0449 1.046 0.0389 0.2483 0.0383 0.2409
Number of rooms -0.0323 0.968 0.0395 0.4130 0.0393 0.4107

Note: The meaning of the abbreviated covariates are as follows: Trans-Sat denotes the transferrin saturation; GFR-MDRD is the glomerular filtration
rate; DBP and SBP are the diastolic and systolic blood pressure, respectively; BMI depicts the body mass index; Hb is the hemoglobin content of the
patient; Ca denotes the calcium, Pi is the phosphorus serum; K abbreviates potassium.

The regression coefficients of GFR-MDRD and Creatinine are statistically signif-

icant at 5% level of significance in the model-based univariate counting process

model with p-values 0.0273 and 0.0392, respectively. However, when the correla-

tion for the recurrent events among same patient is adjusted through the sandwich

variance estimator, only regression coefficient of GFR-MDRD and hemoglobin con-

tent are statistically significant with p-values 0.0148 and 0.0313, respectively. The

regression coefficient of GFR-MDRD is -0.0534 and the hazard ratio obtained by

exponentiating this regression coefficient is 0.948. This hazard ratio suggests

that each unit increase in GFR-MDRD lowers the rate of experiencing recurrent
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episodes of peritonitis by about 5%. The hazard ratio obtained by exponentiating

the regression coefficient (-0.0020) of hemoglobin content is 0.998 and this value

indicates that each unit increase in hemoglobin content result in lowering the rate

of experiencing recurrent episodes of peritonitis by 0.2%. Distance from dialysis

center, transferritinsat, ferritin, albumin, DBP, SBP, BMI, Ca, Pi, K, number of peo-

ple and rooms are statistically non-significant at 5% level of significance in both

model-based and sandwich variance models.

Table 4.6: Univariate gap-time model with both model-based and sandwich variance estimate for continuous clinical and social variables

Model-Based Variance Estimate Sandwich Variance Estimate
Covariate Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Age -0.0110 0.989 0.0067 0.1019 0.0068 0.1055
Distance (km) 0.0008 1.001 0.0010 0.3945 0.0009 0.3445
Trans-Sat (%) 0.0034 1.004 0.0040 0.3657 0.0057 0.5309
Ferritin (g/L) 0.0000 1.000 0.0002 0.8204 0.0002 0.8339
Albumin (g/L) -0.0023 0.998 0.0028 0.4092 0.0043 0.5900
GFR-MDRD (mL/min/1.73m2) -0.0413 0.960 0.0239 0.0836 0.0218 0.0573
Creatinine (mmol/L) 0.0003 1.000 0.0002 0.1193 0.0002 0.1847
DBP (mmhg) 0.0039 1.004 0.0066 0.5551 0.0078 0.6208
SBP (mmhg) 0.0055 1.006 0.0045 0.2139 0.0054 0.3053
BMI (kg/m2) -0.0066 0.993 0.0143 0.6426 0.0144 0.6461
Hb (g/L) -0.0016 0.998 0.0035 0.6414 0.0010 0.0970
Ca (mmol/L) 0.4616 1.587 0.4667 0.3226 0.4498 0.3048
Pi (mmol/L) -0.0612 0.941 0.0923 0.5076 0.0565 0.2786
K (mmol/L) -0.1346 0.874 0.1135 0.2357 0.1131 0.2340
Number of people 0.0280 1.028 0.0402 0.4859 0.0372 0.4513
Number of rooms -0.0364 0.964 0.0395 0.3570 0.0361 0.3136

Note: The meaning of the abbreviated covariates are as follows: Trans-Sat denotes the transferrin saturation; GFR-MDRD is the glomerular filtration
rate; DBP and SBP are the diastolic and systolic blood pressure, respectively; BMI depicts the body mass index; Hb is the hemoglobin content of the
patient; Ca denotes the calcium, Pi is the phosphorus serum; K abbreviates potassium.

Results of the univariate gap-time model both with sandwich and model-based

variance estimate for continuous covariates presented in Table 4.6 revealed that

the regression coefficients of all the fitted covariates are statistically non-significant

at 5% level of significance. That is, the p-values corresponding to all regression

coefficients are greater than 0.05 level of significance.

Covariates GFR-MDRD and creatinine are statistically significant at 5% level of

significance in the model-based univariate stratified model with p-values 0.0340

and 0.0435, respectively. The covariate creatinine is marginally significant and this

results into non-significant when the correlation for recurrent events among the

same patient is taken into account by the sandwich variance stratified model. The

standard error of GFR-MDRD is small in the sandwich than in the model-based

stratified model and this results in small p-value (0.0142), making the covariate



RESULTS AND DISCUSSION 69

Table 4.7: Univariate stratified model with both model-based and sandwich variance estimate for continuous clinical and social variables

Model-Based Variance Estimate Sandwich Variance Estimate
Covariate Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Age -0.0100 0.990 0.0069 0.1447 0.0064 0.1161
Distance (km) 0.0005 1.001 0.0010 0.5907 0.0009 0.5465
Trans-Sat (%) 0.0044 1.004 0.0039 0.2572 0.0058 0.4421
Ferritin (g/L) 0.0002 1.000 0.0002 0.3971 0.0002 0.3847
Albumin (g/L) -0.0027 0.997 0.0029 0.3568 0.0042 0.5205
GFR-MDRD (mL/min/1.73m2) -0.0529 0.948 0.0250 0.0340 0.0216 0.0142
Creatinine (mmol/dL) 0.0004 1.000 0.0002 0.0435 0.0002 0.0582
DBP (mmhg) 0.0048 1.005 0.0066 0.4622 0.0072 0.5011
SBP (mmhg) 0.0055 1.005 0.0044 0.2194 0.0050 0.2784
BMI (kg/m2) -0.0098 0.990 0.0150 0.5130 0.0154 0.5251
Hb (g/L) -0.0020 0.998 0.0035 0.5707 0.0011 0.0603
Ca (mmol/L) 0.5732 1.774 0.4772 0.2297 0.3948 0.1466
Pi (mmol/L) -0.0364 0.964 0.0773 0.6371 0.0449 0.4165
K (mmol/L) -0.0762 0.927 0.1135 0.5021 0.1105 0.4906
Number of people 0.0410 1.042 0.0414 0.3215 0.0369 0.2666
Number of rooms -0.0299 0.971 0.4582 0.4582 0.0352 0.3964

Note: The meaning of the abbreviated covariates are as follows: Trans-Sat denotes the transferrin saturation; GFR-MDRD is the glomerular filtration
rate; DBP and SBP are the diastolic and systolic blood pressure, respectively; BMI depicts the body mass index; Hb is the hemoglobin content of the
patient; Ca denotes the calcium, Pi is the phosphorus serum; K abbreviates potassium.

to remain statistically significant at 5% level of significance in the sandwich vari-

ance stratified model. The regression coefficient of GFR-MDRD is -0.0529, with

the hazard ratio of 0.931, suggesting that each unit increase in GFR-MDRD re-

sults in reducing the rate of experiencing recurrent episodes of peritonitis by about

7%. The regression coefficients of the other fitted covariates are statistically non-

significant at 5% level of significance in both model-based and sandwich variance

stratified models.

Summary

Based on three of the four fitted univariate regression models: marginal, stratified

and counting process, the glomerular filtration rate was consistently significant at

5% level of significance. Hemoglobin content was found to be significant only in the

counting process model. No continuous covariate was found to be significant when

using the univariate gap-time regression model. Moreover, hemoglobin content

and glomerular filtration rate were the only two covariates qualifying to be taken to

the multivariate regression model. This can be supported by fact that, they were

the only significant covariates in one or more fitted univariate models.

In Table 4.8, the regression coefficients of unemployed patients and patients with-
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Table 4.8: Univariate marginal model with both model-based and sandwich vari-
ance estimate for categorical clinical and social variables

Model-based variance estimate Sandwich variance estimate
Covariate Category Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Employment Scholar -0.7503 0.472 0.6143 0.2220 0.5899 0.2034

Unemployed 0.4865 1.627 0.2202 0.0272 0.2744 0.0763
Employed(ref) 0.0000 1.000

Marital status Divorce -14.0213 0.000 468.0413 0.9761 0.8663 <0.0001
Single 0.1153 1.122 0.1534 0.4522 0.2398 0.6305

Widower 0.5195 1.681 0.7207 0.4710 0.2240 0.0204
Married(ref) 0.0000 1.000

Race Black 0.8846 2.422 0.5065 0.0807 0.7246 0.2222
India -0.1076 0.898 0.7087 0.8793 1.1414 0.9249

White(ref) 0.0000 1.000
Water No 0.3670 1.443 0.1610 0.0226 0.2304 0.1113

Yes(ref) 0.0000 1.000
Electricity No 0.3352 1.398 0.3129 0.2841 0.3048 0.2714

Yes(ref) 0.0000 1.000
Smoking No 0.0096 1.010 0.3265 0.9766 0.3129 0.9756

Yes(ref) 0.0000 1.000
Sex Female 0.1473 1.159 0.1452 0.3102 0.2169 0.4970

Male(ref) 0.0000 1.00
Education Primary 0.4247 1.529 0.3168 0.1801 0.4622 0.3582

Secondary 0.0865 1.090 0.2731 0.7514 0.3547 0.8073
Tertiary(ref) 0.0000 1.000

out access to tap water are statistically significant at 5% level of significance in

the model-based marginal model. However, when the correlation among recurrent

events of the same patients is adjusted by the robust sandwich variance estimator,

the covariate marital status is statistically significant at 5% level of significance.

Divorce and widower are the significant categories of marital status with p-values

<0.0001 and 0.0204, respectively. The hazard ratio of 0.000 for divorce suggests

that the risk of recurrent episodes of peritonitis in divorced patients is about 100%

lower than among those who are married. In Table 4.2, it is reported that the

number of divorced patients were only 2 out of the 152 followed patients. Hence,

this hazard ratio is not of great concern. The regression coefficient of widower is

0.5195, with hazard ratio 1.681, indicating that about 68% rate of experiencing re-

current episodes of peritonitis for widower as compared to married patients. Race

of patients, sex, education status, smoking status and access to electricity are con-

sistently non-significant covariates at 5% level of significance in both model-based

and sandwich variance models.

In the univariate counting process model with model-based variance estimate, all

the fitted categorical covariates are statistically non-significant at 5% level of sig-
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Table 4.9: Univariate counting process model with both model-based and sandwich
variance estimate for categorical clinical and social variables

Model-based variance estimate Sandwich variance estimate
Covariate Category Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Employment Scholar -0.5477 0.578 0.6131 0.3717 0.5069 0.2799

Unemployed 0.3358 1.399 0.2201 0.1271 0.2210 0.1286
Employed(ref) 0.0000 1.000

Marital status Divorce -14.0190 0.000 677.8823 0.9835 0.7889 <0.0001
Single 0.1019 1.107 0.1593 0.5222 0.1496 0.4956

Widower 0.4472 1.564 0.7321 0.5413 0.2003 0.0256
Married(ref) 0.0000 1.000

Race Black 0.5350 1.707 0.5101 0.2943 0.6566 0.4152
India 0.0162 1.016 0.7103 0.9818 0.9251 0.9860

White(ref) 0.0000 1.000
Water No 0.1600 1.173 0.1668 0.3376 0.1708 0.3489

Yes(ref) 0.0000 1.000
Electricity No 0.1896 1.209 0.3174 0.5502 0.1927 0.3250

Yes(ref) 0.0000 1.000
Smoking No 0.0026 1.003 0.3310 0.9937 0.1966 0.9894

Yes(ref) 0.0000 1.000
Sex Female 0.0106 1.011 0.1500 0.9436 0.1445 0.9415

Male(ref) 0.0000 1.00
Education Primary 0.2784 1.321 0.3272 0.3950 0.3339 0.4045

Secondary -0.0347 0.966 0.2777 0.9007 0.2883 0.9043
Tertiary(ref) 0.0000 1.000

nificance. Nevertheless, when the correlation among recurrent events of the same

patients is accounted by the sandwich variance estimator, covariate marital status

is statistically significant at 5% level of significance. The regression coefficients of

categories divorce and widower are -14.0190 and 0.4472, respectively. The haz-

ard ratio (HR=1.564) of more than one is obtained by exponentiating the regression

coefficient of widower. The meaning of this coefficient is that the rate of widower

to experience recurrent episodes of peritonitis is two times higher among those

who are married. The other fitted covariates are also statistically non-significant in

5% level of significance even in the robust sandwich univariate counting process

model.

Results of univariate gap-time model with both model-based and sandwich vari-

ance estimate for categorical covariates presented in Table 4.10 reveals that all

the fitted covariates are statistically non-significant at 5% level of significance in

the model-based variance model. The regression coefficient of category divorce

of covariate marital status is negatively and statistically significant at 5% level of

significance (β = −13.0362,p-value<0.0001) when the correlation among recur-

rent episodes of the same patient is adjusted by the sandwich variance estimate.
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Table 4.10: Univariate gap-time model with both model-based and sandwich vari-
ance estimate for categorical clinical and social variables

Model-based variance estimate Sandwich variance estimate
Covariate Category Parameter estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Employment Scholar -0.5077 0.602 0.6181 0.4114 0.5484 0.3546

Unemployed 0.3123 1.367 0.2233 0.1620 0.2251 0.1653
Employed(ref) 0.0000 1.000

Marital status Divorce -13.0362 0.000 408.7351 0.9746 0.7806 <0.0001
Single 0.0712 1.0742 0.1553 0.6467 0.1535 0.6428

Widower 0.2536 1.289 0.7230 0.7257 0.4211 0.5470
Married(ref) 0.0000 1.000

Race Black 0.5431 1.721 0.5097 0.2866 0.5457 0.3196
India -0.2657 0.767 0.7156 0.7104 0.6996 0.7041

White(ref) 0.0000 1.000
Water No 0.1694 1.185 0.1634 0.2997 0.1627 0.2978

Yes(ref) 0.0000 1.000
Electricity No 0.1694 1.206 0.3144 0.5522 0.2732 0.4938

Yes(ref) 0.0000 1.000
Smoking No 0.1537 1.166 0.3325 0.6438 0.2331 0.5096

Yes(ref) 0.0000 1.000
Sex Female 0.0217 1.022 0.1477 0.8831 0.1448 0.8808

Male(ref) 0.0000 1.00
Education Primary 0.2457 1.279 0.3187 0.4407 0.3344 0.4625

Secondary -0.0676 0.935 0.2763 0.8068 0.3001 0.8218
Tertiary(ref) 0.0000 1.000

The risk of experiencing recurrent episodes of peritonitis for divorced patients is

100% lower than among those who are married. Covariates Employment status,

race, smoking status, sex, education, water and electricity are consistently non-

significant at 5% level of significance in the both approaches.

Table 4.11: Univariate stratified model with both model-based and sandwich vari-
ance estimate for categorical clinical and social variables

Model-based variance estimate Sandwich variance estimate
Covariate Category Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Employment Scholar -0.4452 0.642 0.6194 0.4722 0.5486 0.4171

Unemployed 0.3474 1.415 0.2251 0.1227 0.2152 0.1064
Employed(ref) 0.0000 1.000

Marital status Divorce -14.0190 0.000 677.8823 0.9835 0.7891 <0.0001
Single 0.1019 1.107 0.1593 0.5222 0.1557 0.5132

Widower 0.4472 1.564 0.7321 0.5413 0.3954 0.2581
Married(ref) 0.0000 1.000

Race Black 0.5350 1.707 0.5101 0.2943 0.5408 0.3226
India 0.0162 1.016 0.7282 0.9822 1.1414 0.9249

White(ref) 0.0000 1.000
Water No 0.1560 1.173 0.1668 0.3349 0.1659 0.3349

Yes(ref) 0.0000 1.000
Electricity No 0.1896 1.209 0.3174 0.5502 0.2800 0.4983

Yes(ref) 0.0000 1.000
Smoking No 0.0026 1.001 0.3310 0.9937 0.2544 0.9918

Yes(ref) 0.0000 1.000
Sex Female 0.0106 1.011 0.1500 0.9436 0.1462 0.9421

Male(ref) 0.0000 1.00
Education Primary 0.2784 1.321 0.3272 0.3950 0.3439 0.4183

Secondary -0.0347 0.966 0.2777 0.9007 0.3004 0.9081
Tertiary(ref) 0.0000 1.000

Table 4.11 reveals that all the fitted covariates are statistically non-significant at 5%
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level of significant in the stratified univariate model-based variance estimate. Di-

vorce is the significant categories of covariate marital status with p-values<0.0001.

The hazard ratio of 0.000 for divorce suggests that the rate of divorced patients

to experience recurrent episodes of peritonitis is about 100% lower than among

those who are married. The other seven fitted covariates are also statistically non-

significant even in the robust sandwich univariate stratified model.

Summary

Based on the results obtained from the four univariate regression models, it can be

concluded that marital status is the only covariates selected to be included in the

final multivariate regression models. That is, marital status is the only significant

covariate at 5% level. Moreover, the regression coefficient of the divorce category

of the marital status is very high, which makes the hazard ratio to be very small.

This can be attributed to the fact that only 2 (0.01%) PD patients were divorced

and compared to 58 (0.38%) married PD patients.

4.4 Multivariate analysis

The multivariate models for the four recurrent survival analysis techniques (marginal,

counting process, gap-time and stratified model) with both model-based and sand-

wich variance estimates are fitted and presented from Table 4.12 until Tablev4.15.

The covariates that were statistically significant at 5% level of significant in the uni-

variate sandwich variance models are fitted together in the same model, thus the

model is referred to as the multivariate model. The regression coefficients of co-

variates from both sandwich and model-based variance marginal models are the

same. However, these regression coefficients have different standard error and

due to the change in the standard error of the regression coefficients coming out

of the two modelling approaches, their p-values will also change accordingly. That
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is, lower standard error will result in a lower p-value and vice versa.

Table 4.12: Multivariate marginal model with both model-based and sandwich variance estimate for both clinical and social variables

Model-based variance estimate Sandwich variance estimate
Covariate Category Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Marital status Divorce -14.2832 0.000 475.0718 0.9760 0.9151 <0.0001

Single 0.0509 1.052 0.1559 0.7440 0.2499 0.8385
Widower 0.6400 1.896 0.7229 0.3760 0.2220 0.0039

Married(ref) 0.0000 1.000
GFR-MDRD (mL/min/1.73m2) -0.1049 0.900 0.0281 0.0002 0.0369 0.0045
Hb (g/dL) -0.0031 0.997 0.0034 0.3542 0.0010 0.0019

Note: The meaning of the abbreviated covariates are as follows: GFR-MDRD is the glomerular filtration rate; Hb is the hemoglobin content of the patient.

The parameter estimate of GFR-MDRD is the only statistically significant parame-

ter in the model-based multivariate marginal model with p-value 0.0002. However,

when the correlation for the recurrent events among the same patient is adjusted by

the sandwich variance estimator, covariate marital status categories, divorce and

widower, GFR-MDRD and hemoglobin are statistically significant at 5% level of

significance with the p-values <0.0001, 0.0039, 0.0045, and 0.0019, respectively.

The regression coefficient of divorce is -14.2832, with the hazard ratio of 0.000,

indicating 100% lower risk of experiencing recurrent episodes of peritonitis in di-

vorced patients as compared to married patients. The hazard ratio estimate of

1.052 for the parameter estimate of widower indicates that the rate of experienc-

ing recurrent episodes of peritonitis for widower is 5.2% higher than the married

patients. The hazard estimate of 0.990 suggests that each unit increase in GFR-

MDRD lowers the risk of experiencing recurrent episodes of peritonitis by about

10%. Negative regression coefficient (-0.0038) for Hb generates the hazard ra-

tio less than one (HR=0.997, that is, each unit increases in hemoglobin content

reduces the rate of experiencing recurrent episodes of peritonitis by about 0.3%.

Table 4.13: Multivariate counting process model with both model-based and sandwich variance estimate for both clinical and social variables

Model-based variance estimate Sandwich variance estimate
Covariate Category Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Marital status Divorce -14.1444 0.000 570.8863 0.9802 0.8566 <0.0001

Single 0.0356 1.036 0.1550 0.8181 0.1698 0.8338
Widower 0.3161 1.372 0.7179 0.6605 0.1386 0.0226

Married(ref) 0.0000 1.000
GFR-MDRD (mL/min/1.73m2) -0.0712 0.931 0.0268 0.0079 0.0254 0.0050
Hb (g/dL) -0.0020 0.998 0.0033 0.5448 0.0008 0.0147

Note: The meaning of the abbreviated covariates are as follows: GFR-MDRD is the glomerular filtration rate; Hb is the hemoglobin content of the patient.

Results of the multivariate counting process model with model-based variance es-

timate reveals that GFR-MDRD with the regression coefficient of -0.0712 is the
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only significant covariate at 5% level of significance. However, when the variance

structure is adjusted by the robust sandwich variance estimate, marital status cat-

egories, divorce and widower, and GFR-MDRD are the only significant covariates.

The regression coefficient of widower is 0.3161, with the hazard ratio of 1.372,

suggesting that recurrent episodes of peritonitis rate in divorced patients is about

40% times higher than among those who are married. The regression coefficient

of GFR-MDRD is -0.0712 and exponentiating this value generates the hazard ratio

of 0.931 which indicates about 7% lower risk of experiencing recurrent episodes of

peritonitis when GFR-MDRD is increased by one unit. The hazard ratio estimate

of 0.992 for the parameter estimate of Hb indicates that for each unit increase in

Hb the rate of experiencing recurrent episodes of peritonitis decreases by 0.2%.

Table 4.14: Multivariate gap-time model with both model-based and sandwich variance estimate for both clinical and social variables

Model-based variance estimate Sandwich variance estimate
Covariate Category Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Marital status Divorce -13.2059 0.000 415.9706 0.9747 0.8271 <0.0001

Single 0.0354 1.036 0.1594 0.8244 0.1634 0.8336
Widower 0.3646 1.440 0.7253 0.6152 0.1535 0.0176

Married(ref) 0.0000 1.000
GFR-MDRD (mL/min/1.73m2) -0.0614 0.940 0.0271 0.0236 0.0259 0.0178
Hb (g/L) -0.0013 0.999 0.0034 0.6930 0.0010 0.1742

Note: The meaning of the abbreviated covariates are as follows: GFR-MDRD is the glomerular filtration rate; Hb is the hemoglobin content of the patient.

The covariate GFR-MDRD is the only significant covariate in the model-based mul-

tivariate gap-time model with p-value of 0.0236. However, when the correlation for

recurrent events among the same patients is handled by the sandwich variance

model, covariates marital status categories, divorce and widower, and GFR-MDRD

are statistically significant at 5% level of significance with p-values<0.0001, 0.0176

and 0.0178, respectively.

The hazard ratio (HR=0.000) of the regression coefficient (β=-13.3385) for divorced

patients indicates 100% lower rate of experiencing recurrent episodes of peritoni-

tis than among patients who are married; the hazard estimate of marital status

category, single, suggests that the rate of experiencing recurrent episodes is 44%

higher as compared to married patients. The regression coefficient of GFR-MDRD

is -0.0558, with the hazard ratio of 0.940, suggesting that the rate of experiencing

recurrent episodes of peritonitis decreases by 6% when GFR-MDRD increases by
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one unit.

Both modelling approaches revealed that patient’s employment status and hemoglobin

content are statistically non-significant covariates at 5% level of significance.

Table 4.15: Multivariate stratified model with both model-based and sandwich variance estimate for both clinical and social variables

Model-based variance estimate Sandwich variance estimate
Covariate Category Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Marital status Divorce -14.2096 0.000 684.7926 0.9834 0.8298 <0.0001

Single 0.0694 1.072 0.1610 0.6666 0.1530 0.6503
Widower 0.5473 1.729 0.7339 0.4558 0.1959 0.0052

Married(ref) 0.0000 1.000
GFR-MDRD (mL/min/1.73m2) -0.0720 0.931 0.0279 0.0099 0.0258 0.0053
Hb (g/L) -0.0020 0.998 0.0034 0.5652 0.0011 0.0648

Note: The meaning of the abbreviated covariates are as follows: GFR-MDRD is the glomerular filtration rate; Hb is the hemoglobin content of the patient.

The regression coefficient of the covariate GFR-MDRD is negatively and statis-

tically significantly associated with recurrent episodes of peritonitis in the model-

based stratified model (β=-0.0720,P=0.0099). However, when the correlation for

the recurrent events among the same patient is taken into account by the sand-

wich variance stratified model, only covariates marital status ‘divorce and widower’,

GFR-MDRD and hemoglobin content are statistically significant at 5% level of sig-

nificant with p-values <0.0001, 0.0052, and 0.0053, respectively.

The rate of experiencing recurrent episodes of peritonitis for divorced patients is

lower by 100% (HR=0.000) than among those who are married. The hazard ratio

of greater than one is obtained for the covariate marital status category widower

(HR=1.729). That is, the rate of widower to experience recurrent episodes of peri-

tonitis is about twice higher than among in the married patient. The regression

coefficient of GFR-MDRD is -0.0720, with the hazard ratio of 0.932, suggesting

that each unit increase in GFR-MDRD reduces the rate of experiencing recurrent

episodes of peritonitis by about 7%.

Summary

The four multivariate techniques for handling recurrent events dataset discussed

in chapter 3 are fitted in this section. The marginal and counting process models

has demonstrated that all the fitted covariates ( marital status, GFR-MDRD and Hb
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content) are statistically significant at the level of 5%. Moreover, the gap-time and

marginal models could not say the same thing about the Hb content. To be precise,

marital status and GFR-MDRD were also significant in the gap-time and marginal

regression model, while the hemoglobin (Hb) content was not.

4.5 Model selection

Four recurrent survival analysis techniques are fitted to check the significance of

the risk factors associated with peritonitis. Significant factors are identified from the

four techniques, however, the aim of the study is to identify factors and compare the

techniques as for which one fit the dataset better than the other models. Table 4.16

below present the two model comparison techniques used to assess the fitness of

the models.

Table 4.16: Model comparison

Criterion
Model AIC SBC
Marginal 1365.017 1380.892
Counting Process 1491.361 1507.241
Gap-time 1220.946 1236.770
Stratified 1136.254 1152.134

The AIC and SBC comparison methods are utilised in order to select the best

model from the four fitted recurrent survival models. Therefore, the stratified pro-

portional hazard model has the smallest value of AIC and SBC as compared to

the other three methods, 1136.254 and 1152.134, respectively, as reflected in Ta-

ble 4.16. Kleinbaum and Klein (2006) stated that a model with the smallest value

is more preferable and this is enough to conclude that the stratified proportional

hazard regression model is the best technique for fitting the available recurrent

episodes data set.
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4.6 Final multivariate model

This study utilized a small sample size data set to fit the models and due to this the

small number of ties was observed between the episodes times. Kleinbaum and

Klein (2006) indicated that when the number of ties among individual’s episodes

times are small the Breslow and Efron partial likelihoods work quite the same and

this correspond with what was perceived in this study. The following results are

obtained using the Breslow method of handling ties, however, due to the small

number of ties among the episodes time these results are parallel to the ones

obtained when utilizing the Efron method of handling ties.

Table 4.17: Testing global null hypothesis: H0 : β = 0

Test Chi-square DF P-value
Likelihood Ratio 14.3142 5 0.0137
Score(Model-based) 10.6242 5 0.0594
Score(Sandwich) 12.9849 5 0.0235
Wald(Model-based) 7.6191 5 0.1785
wald(Sandwich) 321.4213 5 <0.0001

In this model there are three extra tests for the global null hypothesis. The first test

is the likelihood ratio test and it is statistically significant at 5% level of significance

with the p-value of 0.0137. The score chi-square statistic based on the robust

sandwich variance estimator is not much larger than the chi-square statistic from

the model-based variance estimator. However, the model-based test statistic is

not significant at 5% level of significance. The wald test statistic based on the

robust sandwich variance estimator is much large than the model-based statistics.

Furthermore, it is extremely significant at 5% level of significance, while the model-

based is non-significant on the same level of significance.

The standard errors based on the robust sandwich variance estimate for Hb, GFR-

MDRD and marital status categories, single and widower, are slightly larger than

the model-based variance with the standard error of the parameter estimate of
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Table 4.18: Multivariate stratified model with both sandwich and model-based variance estimate for both clinical and social variables

Model-based variance estimate Sandwich variance estimate
Covariate Category Parameter Estimate Hazard Ratio Standard Error P-Value Standard Error P-Value
Marital status Divorce -14.2096 0.000 684.7926 0.9834 0.8298 <0.0001

Single 0.0694 1.072 0.1610 0.6666 0.1530 0.6503
Widower 0.5473 1.729 0.7339 0.4558 0.1959 0.0052

Married(ref) 0.0000 1.000
GFR-MDRD (mL/min/1.73m2) -0.0720 0.931 0.0279 0.0099 0.0258 0.0053
Hb (g/dL) -0.0020 0.998 0.0034 0.5652 0.0011 0.0648

Note: The meaning of the abbreviated covariates are as follows: GFR-MDRD is the glomerular filtration rate; Hb is the hemoglobin content of the patient.

marital status category, divorce, being extremely larger.

The regression coefficient for GFR-MDRD, marital status categories, divorced and

widower, are statistically significant at 5% level of significance with p-values 0.0053,

<0.0001, and 0.0052, respectively.

The hazard ratio estimate of 0.000 for divorced patients indicates 100% lower

rate of experiencing recurrent episodes of peritonitis when compared to married

patients; the hazard ratio for single and widower indicates 7.2 and 72.9 higher

chances of experiencing recurrent episodes of peritonitis, respectively as com-

pared to married patients. The hazard ratio estimates for GFR-MDRD and Hb

are 0.931 and 0.998, respectively, suggesting that for each unit increase in GFR-

MDRD and Hb the rate of experiencing recurrent episodes of peritonitis decreases

by around 7% and 0.2%, respectively.

Summary

The stratified proportional hazard model is selected to be the better fitting model for

the available dataset of recurrent episodes of peritonitis. The selection was made

by considering the proportional regression model with the smallest AIC and SBC

amongst the four competing models.

The global null hypothesis of whether there exist some risk factors associated with

recurrent episodes of peritonitis was done using likelihood, score and wald test

procedures. The test statistic value for the score and wald test were calculated for

both model based and sandwich variance estimate. Moreover, the results obtained

when the model based variance estimator was considered suggested that there is
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no risk factors associated with recurrent episodes of peritonitis. The results based

on the sandwich variance estimator contradicted the results from the model based

variance structure. That is, all the three testing procedures depicted that there are

some significant risk factors associated with recurrent episodes of peritonitis.

The significant risk factors associated with recurrent episodes of peritonitis were

investigated using the selected better fitting stratified proportional hazard model.

Marital status of the followed PD patients and GFR-MDRD were found to be the

major significant risk factors of recurrent episodes of peritonitis at the level of 5%.

4.7 Discussion

There have been several studies for investigating the potential major risk factors

influencing the occurrence of peritonitis in PD patients. However, majority of them

focused on examining the risk factors associated with time-to-first episode of peri-

tonitis. This study focuses in comparing different recurrent survival analysis tech-

niques and use the better fitting technique to investigate the potential risk factors

associated with recurrent episodes of peritonitis.

Univariate counting process, stratified, gap-time and marginal hazard regression

models are performed to select significant covariates to the multivariate regression

hazard models. Regression coefficient for covariates are considered statistically

significant when their corresponding p-values were less than 5%. Four multivariate

hazard regression models are fitted with the selected covariates and compared us-

ing the AIC and SBC value, as for which one is the better technique to fit recurrent

episodes (events) data set. Model with the smallest AIC and SBC value is consid-

ered to be the good fitting model for the available recurrent episodes data set. The

major risk factors associated with recurrent episodes peritonitis are examined from

the selected good fitting model.

The stratified regression hazard model is the one with the smallest AIC and SBC
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value when compared to the other three recurrent modelling techniques. There-

fore, this is considered as enough evidence to conclude that stratified regression

hazard model is the better technique for fitting the recurrent events (peritonitis

episodes) data set. This findings are inconsistent with what was declared in 2003

by Duchateau and his colleagues. (Duchateau et al., 2003) stated the gap-time

modelling technique is the most suitable approach for studying recurrent or multi-

ple events data set. However, in this study, the gap-time hazard regression model

appears to be the second best approach for fitting recurrent episodes data set.

The study identified two independent risk factors to be significantly associated with

recurrent episodes of peritonitis: marital status and glomerular filtration rate. Two

categories of marital status, that is, divorce and widower, are the significant factors

when compared to married patients (when taking married patients as the refer-

ence category). These findings are consistent with the results produced by the

gap-time modelling approach. Hemoglobin content is found to be one of the risk

factors for peritonitis in the study conducted by Isla et al. (2014). However, in this

study hemoglobin is found to be statistically significant in the counting process and

marginal hazard regression models and not statistically significant in the stratified

and gap-time modelling techniques. Therefore, it is considered to be not a potential

risk factors because is not significant in the best fitting model.

The study also revealed that single and widower patients when compared to mar-

ried patients have high risk rate of experiencing recurrent episodes of peritonitis.

This findings suggest that health practitioners must pay more attention to single

and widower patients when giving instructions of how to operate the peritoneal

dialysis treatment. In addition, the study revealed that a unit increase in glomerular

filtration rate and hemoglobin content reduces the rate of experiencing recurrent

episodes of peritonitis. This findings suggest that the lower the glomerular filtration

rate and hemoglobin content in PD patients, the worse the rate of experiencing re-

current episodes of peritonitis. Therefore, it is important for doctors to monitor the

patients’s glomerular filtration rate and hemoglobin contents, and also to give them
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advices on how to keep their contents high so that they can avoid this infection.

Despite these significant discoveries, this study have some limitations which might

have strongly influenced the results. These limitations highlight the significance

of future research on comparison of recurrent survival analysis techniques and

use them to identify the independent major risk factors associated with recurrent

episodes of peritonitis.



Chapter 5

CONCLUSION AND
RECOMMENDATIONS

5.1 Introduction

This is the last chapter of the study. This chapter focuses on summarizing the

previous four chapters. Conclusion based on the findings allied to the aim and

objectives of the study is also discussed. The study limitations, areas for further

studies and recommendations are outlined in this chapter as well.

5.2 Summary and research findings

The aim of this study was to investigate the major risk factors associated with re-

current episodes of peritonitis among the kidney patients who are in peritoneal

dialysis at the Pietersburg provincial hospital in Limpopo, South Africa. This aim
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was investigated using the selected best fitting recurrent survival analysis tech-

nique. More specifically, four recurrent survival analysis techniques were fitted on

the multiple (recurrent) episodes of peritonitis dataset. The four techniques were

compared as for which one fit the dataset better than the other techniques.

In chapter 1, the definitions and burden of peritonitis and peritoneal dialysis are

explained. This was done as a way of breaking down the title of the study. The

second chapter of the study focused on reviewing the work of other researchers

in the context of peritonitis and survival analysis. In chapter 3, the statistical data

analysis techniques which are applied to carry out the results were discussed.

Finally, chapter 4 presented the results which were generated using the techniques

discussed in chapter 3.

The univariate counting process, stratified, gap-time and marginal hazard regres-

sion models were applied to select the significant covariates to the multivariate

regression hazard models. The multivariate regression model were compared as

for which one fit the data better than the other models. The significant risk factors

were identified from the better fitting model. Regression coefficient for covariates

were considered to be statistically significant at 5% level.

The model results in this study are obtained using the Breslow method of handling

ties, however, due to the small number of ties among the episodes times of the pa-

tients, the results are parallel to the ones obtained when utilising the Efron method

of handling ties. The standard error of the regression coefficients were adjusted

for the possible correlation among episode times coming from the same individu-

als through the sandwich robust variance estimator. The rate at which PD patients

experiences recurrent episodes of peritonitis were measured using the hazard ra-

tio. AIC and SBC were both employed to detect the best fitting recurrent survival

model.

The study revealed that males, blacks and not married (single) individuals are the

mostly followed patients in this study. This implies that kidney failure is a problem to
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black men who are not married. However, they were found to be not the significant

risk factors associated with recurrent episodes of peritonitis. The stratified propor-

tional hazard model was the one having the smallest AIC and SBC values when

compared to the other three modelling techniques. This was evident enough in the

study to conclude that the stratified approach is the good modelling technique to fit

the available recurrent events data set.

The stratified proportional hazard model illustrated that two categories of marital

status, divorced and widower, and GFR-MDRD were the only factors found to be

associated with recurrent episodes of peritonitis at 5% level of significance. How-

ever, the rate of experiencing recurrent episodes of peritonitis was high in widower

and single patients as compared to the married patients. The study disclosed

that an increase in GFR-MDRD and Hb lowers the rate of experiencing recurrent

episodes of peritonitis. That is, PD patients with low GFR-MDRD and Hb are at

high risk for recurrent episodes of peritonitis.

5.3 Limitations and recommendations

The Breslow and Efron partial likelihood techniques for ties handling works quite

the same when the number of ties are small (Klein and Moeschberger, 2003). This

correspond to the findings of this study. Therefore, the limitation of the study was

that 152 PD patients were followed and they were not good enough to allow the

comparison of Breslow and Efron partial likelihood techniques. The number of

studies conducted on recurrent episodes of peritonitis are inadequate and there-

fore, this limit the study to have enough information to discuss in literature review.

The analysis of the study was conducted using secondary data with few missing

values and this was also considered as a study limitation because it is important to

conduct a study with a complete information.



CONCLUSION AND RECOMMENDATIONS 86

Duchateau et al. (2003) recommended the gap-time model as the most suitable

approach for studying the recurrent events rate or multiple episodes data. How-

ever, this study through the AIC and SBC, recommended the stratified proportional

hazard model as the best fitting technique for recurrent episodes data. Therefore,

future researchers can utilise the stratified modelling technique when analysing re-

current events data set. Statisticians, health authorities and medical practitioners

can use this information to educate people about recurrent episodes of peritonitis.

This information can also be used to detect PD patients at high risk of experiencing

recurrent episodes of peritonitis.

5.4 Areas for further study

There are numerous studies conducted for investigating the major risk factors as-

sociated with time-to-first episode of peritonitis. However, there are limited number

of studies conducted on the major risk factors influencing the occurrence of more

than one episode of peritonitis, that is, there are few studies available which fo-

cuses on the factors associated recurrent episodes of peritonitis. Since this study

is one of the few studies on recurrent episodes of peritonitis, more studies should

be conducted in the future in order to improve or add to the little discovered infor-

mation.

This study aimed at utilising and comparing different recurrent survival analysis

techniques to investigate the major risk factors associated with recurrent episodes

of peritonitis. Therefore, it will be of great interest if future researchers can focus on

recurrent episodes of peritonitis and improve the outcome of PD patients. Different

modelling techniques such as, the frailty and AFT models, must be employed on

investigating these risk factors associated with peritonitis.
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5.5 Conclusion

This chapter presented the summary of the methods utilised to answer the aim

and objectives of the study and have also summarised the finding related to the

aim and objectives of the study. The findings of the study are important to the

future researchers, statisticians and medical practitioners who are concerned with

the health of the PD patients.
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KELEŞ, M., CETINKAYA, R., UYANIK, A., ACEMOUGLU, H., SAATÇI, F., AND
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