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ABSTRACT  

 

Imidazolyl-ethanamine Schiff base ligands of the N^N type were prepared by 

condensation reaction of histamine dihydrochloride with para-substituted aldehyde 

derivatives to yield: (E)-N-benzylidene-2-(1H-imidazol-4-yl)ethanamine 119a, 4-((E)-

(2-(1H-imidazol-4-yl)ethylimino)methyl)phenol 119b, E)-N-(4-fluorobenzylidene)-2-

(1H-imidazol-4-yl)ethanamine 119c and (E)-N-(4-nitrobenzylidene)-2-(1H-imidazol-4-

yl)ethanamine  119d, which were characterised by 1H and 13C-NMR, FTIR 

specroscopy and HRMS. 2D-NMR experiments (1H-1H COSY and 2D-HMBC) for 

representative ligand 119b were performed to qualify success in the condensation 

reaction. An attempted reaction to coordinate Schiff base ligand 119c to zinc chloride 

was carried out in an NMR tube and traces of the product were observed between 12 

and 24 h monitoring using 1H-NMR. Iodine promoted cyclocondensation reaction of 

anthranilamide and para-substituted aldehyde derivatives afforded 2-aryl-quinazolin-

4(3H)-ones 120a-e and subsequent chloro-aromatisation reaction in SOCl2 afforded 

electrophilic C4-(Cl) 2-aryl-4-chloro-quinazolines 121a-e and the compounds were 

characterised by 1H and 13C-NMR and FTIR spectroscopic techniques. The 2-aryl-4-

chloro-quinazolines served as prerequisites for de-chloro amination on the C4-(Cl) 

position by 2-amino-3-nitropyridine to yield 2-aryl-N-(3-nitropyridin-2-yl)quinazolin-4-

amine derivatives 123a-e in good yield and the derivatives were characterised by 1H 

and 13C-NMR, FTIR and HRMS spectroscopic techniques. The C4-(Cl) position further 

allowed for Sonogashira cross-coupling with ethynylpyridine to yield 2-aryl-4-

(ethynylpyridine)quinazoline derivatives 125a-e which were characterised by 1H and 

13C-NMR, FTIR and HRMS spectroscopic techniques. The 2-aryl-4-

(ethynylpyridine)quinazoline served as ligands for coordination to monomeric p-

cymene ruthenium(ll) which yielded (ɳ6-p-cymene)RuCl2-2-aryl-4-

(ethynylpyridine)quinazoline derivatives 126a-e in good yield. Compounds 126a-e 

were characterised by 1H and 13C-NMR, FTIR and HRMS spectroscopic techniques. 

2D-HMBC NMR of representative ligands 126c and 126e showed long range 

couplings from 1JCH to 9JCH and this was confirmed by coordination induced shifts (CIS) 

ranging from 1 ppm to 11 ppm.  

Compounds 119a-d, 123a-e and 125a-e were inductively docked into the active 

receptors of tyrosine kinase (PDB:2SRC), glutamine synthetase (PDB:1HTO) and 
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oxidoreductase (PDB:3F8P). The docking scores obtained gave hits ranging from -5 

to -10 Kcal/mol. 

Compounds 119a-d, 121a-e, 123a-e, 125a-e and 126a-e were assayed employing the 

broth-dilution method which gave promising anti-Mycobaterium tuberculosis activity. 

Compound 125e gave good activity of <0.244 µg/mL over 7 day and 14 day sampling. 

Coordination of ligands 125a-e to Ru(ll) group resulted in loss of activity, notably for 

ligand 125e. 
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CHAPTER 1: INTRODUCTION 

 

Inorganic chemistry is a field that combines with biochemistry to examine the role of 

metals in biological cell lines by studying metalloproteins and artificially induced metals 

[1]. On the other hand, biochemistry is aimed at understanding biological processes in 

the living cell, through the action of prodrugs i.e. inorganic or organic compounds [2]. 

The latter fields have grown significantly over the previous 40 years in an excess of 2 

million scientific literature reports [3]. There are numerous literature articles in which 

reports aimed at combating the development and persistence of infectious and deadly 

diseases such as cholera, human immunodeficiency virus (HIV), influenza, malaria, 

tuberculosis (TB) and cancer through chemotherapeutic techniques [4] have been 

recorded. Some of the successful drug candidates include transition metal containing 

cisplatin currently used to treat cancer [5]. Newly food and drug administration (FDA) 

approved drug candidates include vizimpro, pilifetro, krintafel and terizidone used to 

treat metastatic non-small-cell lung cancer, HIV-1 infection in adult patients, radical 

cure of plasmodium vivax malaria and multi-drug resistant (MDR) tuberculosis 

respectively [6].  

A major challenge of the aforementioned drug regimen lies in the development of 

cellular mutations, wherein the prodrugs employed become inactive over time [7]. This 

has paved the way for drug-drug complementation in the form of molecular hybrids [8]. 

For example, ruthenium containing compounds (NAMI, NAMI-A, KP1019, KP1339 and 

KP418) have since entered phase ll of clinical trials and are reported to show excellent 

abnormal-DNA damage and low toxicity towards normal cells [9]. At the same time, 

drug delivery nanocomposites are being designed to improve targeted therapy [10]. 

Targeted therapy is a newer type of chemotherapeutic treatment approach which 

employs chemical compounds to precisely identify and attack infected cells in 

biological systems. This therapy is complemented by in silico studies such as 

molecular modelling which looks at molecular kinetics and dynamics under molecular 

docking conditions [11-12]. 

Molecular docking is a computational process to study protein-ligand interactions and 

has proven to be a game changer in drug design. The process employs approaches 

such as ligand preparations (ligprep), conformational search, protein preparation, 

httphttp://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=211288
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ligand docking, virtual screening work-flow (VSW), high-throughput virtual screening 

(HTVS), induced-fit docking (IFD) of either extracted or synthetic compounds, etc. [12]. 

Method development for synthesis of the desired active bioinorganic compounds may 

include one-pot or multi-step non-sequential [13] or sequential [14] synthesis of carbo-

substituted heterocycles and coordination to transition metal compounds. Reaction 

procedures employed may include condensation, cyclondensation, dehydrogenation, 

oxidation, amination, cross-coupling, mesylation [15], neutral or oxidative coordination 

of polar ligands to transition metals [16], etc. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Structure and Chemistry of Schiff base compounds 

 

2.1.1 Schiff base ligands  
 

Schiff bases were discovered as azomethine conformers bearing an imino group of 

the form (-RN=CH-) in 1864 by a German scientist named Hugo Schiff [1]. Schiff base 

compounds are well studied due to their attractive chemical (catalysis, dyes and 

corrosion inhibition), physical (photophysics – emission and absorption) and biological 

(antitubercular, anticancer and antimalarial) properties [2]. The structural conformation 

of Schiff base ligands plays an important role in developing stable Schiff base 

transition metal complexes. The chelating ability of the Schiff base ligands is 

augmented by the presence of pi-electrons in the sp2-hybridised nitrogen of the 

azomethino group. The azomethino group imparts excellent chelating ability when 

combined with one or more electron donor atoms (sulphur, nitrogen, oxygen and 

phosphorous) to yield bi- 1, tri- 3, tetra- 3 and polydentate 4 coordination systems 

(Figure 2.1).  

                           

Figure 2.1: Schiff base ligands with different coordination geometries. 
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Salicylaldimine or salen-type Schiff base ligands as shown in Figure 2.2 are widely 

studied due to their ease of preparation. The condensed ligands produce a di-

nitrogeno-dioxo N2O2 or N^N^O^O coordination system. These type of ligands 

accommodate transition metals with high oxidation numbers. The most popular type 

of coordination system is the tetradentate bis-Schiff base ligands [3].   

                      

N N

OH HO

N N

OH HO

N N

OH HO

N N

OH HOt-Bu

Bu-t t-Bu

Bu-t

5

7

6

8  

Figure 2.2: Salen-type Schiff base ligands 

2.1.2 Schiff base complexes  

The aforementioned Schiff base ligands can coordinate a variety of transition metals 

to yield stable Schiff base complexes with various geometries (Figure 2.3) and redox 

properties. The oxidation and reduction states provides knowledge on stability and 

geometry of a metal complex. When the sp2-hybridised nitrogen of the azomethino 

group donates electrons towards the metal centre, pi-back donation from the metal is 

triggered and such electronic transitions can be registered as absorption or emission 

spectra [4-10].  
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Figure 2.3: Schiff base complexes of different geometry. 

2.1.3 Biological application of Schiff base ligands and their complexes 
 

Schiff base complexes possess biological activities including cardiovascular, 

antimycobacterial, anticancer, ant-inflammatory, anti-leukemic and antibacterial 

activities depending on the type of metal present in the complex [11-17]. For example, 

3d-transition metal Schiff base complexes containing metals such as copper, nickel, 

chromium, iron, cobalt and zinc have been reported to chelate DNA of various 

diseased cells [18-25]. 

 

Kumar and co-workers [26] reported N^N-O^O-tretracoordinated acyclic chromium(lll) 

Schiff base complexes with antimicrobial activity. The antimicrobial activity of the 

[Cr(lll)-(N,N’-bis(5-methyl-salicylaldimine)-N,N’-bis-(3-amino-propyl)-ethylene-
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diamine)(H2O)2]+ 13 was demonstrated by in vitro testing against Escherichia coli, 

Staphylococcus aureus and Pseudomonas aeruginosa. The latter demonstrated 

promising activity with inhibition zones ranging from 18 to 36 mg/mL. In addition, 

Pervez and co-workers [27] reported salen-derived copper(ll) complexes as urease 

inhibitors. Urease is a nickel ion (Ni2+) dependent natural enzyme which catalyses the 

rate of urea hydrolysis to ammonia (NH3) and carbon dioxide (CO2) in bacteria, fungi 

and plants [28].  

 

Medically, ureases have become important therapeutic targets for treatment of 

disease caused by urease-dependent pathogenic microorganisms [29]. Likewise, the 

antecedent copper(ll) complexes i.e., the dioxo-di-nitrogeno tetracoordinated 

bipyrimidal Bis-(3Z)-3,3′-[(4-methyl-1,3-phenylene)dinitrilo]bis(1,3-dihydro-2H-indol-2-

one) copper(II) chloride complex 14 was tested against Helicobacter pylori cells and 

the latter demonstrated excellent anti-urease activity with an inhibition concentration 

(IC50) of 0.03 µM [27]. Furthermore, a bidentate, thiocarbohydrazone zinc(ll) Schiff 

base complex, i.e. (1E,5E)-1,5-bis((furan-2-yl)methylene)-thiocarbono-hydrazide-

zinc(ll) chloride 15 was synthesised and tested for antibacterial activity against 

Acinetobacter septicaemia and Staphylococcus aureus. The complex 15 tested 

positive against Acinetobacter septicaemia, with inhibition zones ranging from 8 – 16 

mm [30]. Although the complexes in (Figure 2.4) demonstrate promising 

pharmaceutical importance, key candidates of the transition metal containing bioactive 

compounds have come from the platinum group metals (PGMs) [31]. Metals such as 

platinum (Pt) and ruthenium (Ru) are present in drug candidates applied in cancer 

treatment and some in clinical trials respectively [32].   
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 Figure 2.4: Biologically active 3d-transition metal Schiff base complexes.             
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Bioinorganic Schiff base complexes containing the PGMs (Figure 2.5) are applied 

mostly in cancer therapy [33]. The motivation behind this application arises from the 

success of cisplatin 16, however its use results in side effects such as hair loss, 

constipation, normal cell death and diarrhoea [34]. The coordination chemical 

properties of the Schiff base ligands plays an important role for targeted therapy. For 

example, Peng Wu and co-workers [35] designed and synthesised platinum(ll) 

complexes with the ability to bind and inhibit c-myc by way of stabilising G-quadruplex 

DNA. The c-myc is a gene that encodes DNA-binding to proteins and promotes 

development of cancers when overexpressed in cells [36]. In this project, the authors 

tested the corresponding [N,N’-Bis(salicylidene)-4,5-methoxy-1,2-phenylenediamine] 

platinum(ll) 17 against human hepatocellular carcinoma (HepG2) and the Pt(ll) 

complex proved cytotoxic with an inhibitory concentration of 1.09 ± 0.14 µM. In 

addition, Mun and co-workers [37] reported p53 independent ruthenium(ll) arene Schiff 

base (RAS) complexes with promising anticancer activity. The p53 gene is a tumor 

suppressor involved in the intercession of cellular DNA repair and neurotoxicity of 

anticancer drugs. However, it can be deactivated due to mutations. The antecedent 

RAS complexes are p53 independent, meaning, their mechanism of action is non-

binding to the p53 gene. To qualify their theory, the authors designed and prepared 

“three-legged piano-stool” quinolone derived ruthenium(ll) arene Schiff base 

complexes, i.e. [(η6-1,3,5-Triisopropybenzene)RuCl(N-(2-quinolinylmethylene)-1-

naphthyl-amine)]Cl 18 which was tested against MCF7 human cancer cell lines and 

tested active with IC50 of 2.93 ± 0.21 µM. The promising anticancer activity of these 

PGMs proved insightful and opened doors for research in the coordination chemistry 

and biological evaluation of Lanthanide Schiff base complexes thereof [38]. 
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16                               
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Figure 2.5: Cisplatin and biological active PGM Schiff base complexes. 
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Lanthanides are commonly referred to as rare earth elements and comprise of 15 

elements. Lanthanide(lll) coordinated compounds play an important role as 

antibacterial agents, in cancer diagnosis and for imaging diagnostics therapy [41]. 

Radioactive lanthanides and their complexes are reported to find application in 

neoplastic diseases [42]. For instance, a heptagonal gadolinium(lll) complex bearing 

texaphyrin produces reactive oxygen species (ROS) such as O2
¯, H2O2 or OH when 

reacted with antioxidants. The generated species bind proteins and lead to their 

destruction and cell apoptosis [43]. Likewise, the Gd(lll) Schiff base complex i.e. 

gadolinium(lll) texaphyrin 19  (Figure 2.6) was evaluated for anticancer activity against 

human colon cancer cell lines (HT29) in vitro [44] and the study revealed progressive 

cell killing at a concentration of 2.2 ± 0.03 µM. Similarly, Andiappan and co-workers 

[45] prepared distorted square planar erbium(lll) Schiff base complexes and the 

corresponding [bis-((15E,22E)-N2-((anthracen-10-yl)methylene)-N3-((anthracen-9-

yl)methylene) pyridine-2,3-diamine)erbium(lll)]nitrate 20 (Figure 2.6)was tested 

against MCF7 cancer cell lines. The latter proved cytotoxic by killing 20% of cancerous 

cells at 10 µg/mL. 
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2.1.4 Industrial application of Schiff base complexes 
 

2.1.4.1 Catalysts 

 

Hydroxy benzaldehyde derived Co(lll), Fe(lll) and Ru(lll) Schiff base complexes are 

used in hydrogen peroxide promoted aerobic oxidation of cyclohexane to cyclohexanol 

and cyclohexanone [46-47]. In addition, chromium-salen complexes 21 (Figure 2.7) 

are reported to take part in heterogeneous catalysis, [48] by catalysing epoxidation of 

cis-oflefins. Furthermore, N^N-bischelated nickel(ll) Schiff base complexes 22 (Figure 

2.8) are reported to act as effective catalytic precursors for active olefin oligomerisation 

[49]. 

                        

N
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O O
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Figure 2.7: Schiff base complexes with catalytic activity. 

2.1.4.2 Schiff base compounds as dyes 

 

Azomethine complexes of chromium and cobalt are reported to give fast colours to 

wools, leathers and food packages [50]. Similarly, chromium(lll) azo-Schiff base 

complexes 23 (Figure 2.8) are applied as dyes for cellulose polyester textiles [51]. 

Some cobalt(ll) complexes 24 (Figure 2.8) reported are used in dying mass polyfibres 

[52].  
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Figure 2.8: Dyes of Schiff base complexes. 

 

2.1.4.3 Schiff base compounds as polymeric materials 

 

Ethylenediamine promotes photochemical degration of natural rubber to produce 

amine terminated liquid natural rubber (ATNR) in solution [53]. The reaction between 

ATNR and glyoxial polymeric Schiff bases 25 (Figure 2.9) enhances aging resistance 

[54]. Nickel(lll) Schiff base complexes with a tridentate  coordination system 26 (Figure 

2.9) are reported to initiate emulsion and co-polymerisation of dienyl and vinyl 

monomers [55]. 
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Figure 2.9: Schiff base complexes with polymerisation properties. 

 

2.2 Synthesis of Schiff base ligands 
 

The general method for the synthesis of Schiff base or imine derivatives involves a 

direct condensation reaction between a primary amine and an aldehyde derivative in 

basic or acidic conditions [56]. The original synthesis reported by Hugo Schiff involved 

the condensation of a carbonyl compound with an amine under azeotropic distillation 

[1] conditions. Molecular sieves were then used to completely remove the by-product 

(water) formed during the reaction. In the 1990s, an in situ method for drying water 



 

12 
 

was applied using salts such as sodium hydrogen carbonate (NaHCO3), sodium 

carbonate (Na2CO3) and magnesium sulphate (MgSO4) [5]. In 2004, Chakraborti and 

co-workers [16] revealed that the competence of these methods is dependent on the 

use of highly electrophilic carbonyl compounds and strongly nucleophilic amines. They 

proposed as an alternative, the use of substances that function as Bronsted-Lowry or 

Lewis acids to activate the carbonyl group of aldehydes and catalyse the nucleophilic 

attack by amines, and dehydrate the system, thus eliminating water as the final step.  

 

2.2.1 Methods for the synthesis of n-carbon spacer Schiff base ligands (n = 1, 2 

and 3) 

Multiple synthetic approaches towards Schiff base derivatives have been described in 

literature [57]. Problems such as hydrolysis [61] and moisture susceptibility [62] are 

reported to bring about structural decomposition and encouraging reverse reaction. 

Synthetic approaches such as racemization by aza-Michael/ retro-aza-Michael 

addition [58], aerobic oxidation [59], amine reduction [60] etc, are aimed at solving the 

problems associated with the imine bond of the Schiff base compounds. Safa and co-

workers [63] reported organosilicon type Schiff base derivatives, prepared by a direct 

condensation of 4-(2,2-bis(trimethylsilyl)vinyl)benzaldehyde 27 and 4-aminophenol 28 

refluxed in ethanol for 15 hours to afford the corresponding (E)-4-(4-(2,2-

bis(trimethylsilyl)vinyl)-benzylideneamino)-phenol 29 in low yields ranging from 33 - 

45% (Scheme 2.1.  

       

Me3Si

SiMe3

O

+

NH2

OH

Me3Si

SiMe3

N OH

27 28
29

(i)

 

Reagents and conditions: (i) Ethanol, reflux, 24 h. 

Scheme 2.1: Synthesis of (E)-4-(4-(2,2-bis(trimethylsilyl)vinyl)benzylideneamino)-

phenol 29 via a direct condensation reaction of organosilicon aldehyde derivatives and 

a primary amine. 

A facile and heatless metathesis reaction of aryl isocyanates and aldehydes yielding 

imino derivatives of Schiff bases was described by Kumar and Samuelson [64]. The 

metathesis reaction is catalysed by square planar, group IV metal alkoxides. The 



 

13 
 

reaction time is accelerated by an insertion step leading to the formation of carbamate. 

As a demonstration, the authors reacted 1-isocyanato-4-methoxybenzene 30 and 

para-cyanobenzaldehyde derivatives 31 in the presence of Zr(OMe)4, solvated by a 

combination of THF and water v/v 3:1. The reaction was then stirred at room 

temperature for 60 h to yield 70% of the corresponding (E)-4-(4-methoxy-

benzylideneamino)benzonitrile 32 (Scheme 2.2). 

                   

MeO

N C O

+

NC

O

(i)
NC N

OMe

30 31 32
 

Reagents and conditions: (i) Zr(OMe)4, rt, 60 h, THF-H2O. 

Scheme 2.2: Group IV metal alkoxide catalysed synthesis of corresponding (E)-4-(4-

methoxybenzylideneamino)benzonitrile 32. 

 A combination of polymer-supported cyanoborohydride (PSCBH) and manganese 

dioxide in a one-pot type conversion of alcohols into imines was reported by Blackburn 

and Taylor [65]. The manganese oxide acts as an oxidant in situ and thus adhering to 

the oxidation-imine formation-reduction sequence and converts the alcohols to tertiary 

amines. As an example, the authors reacted 2-phenylethanol 33 and cyclohexanamine 

34 in the presence of MnO/ PSCBH in two portions at reflux temperature in DCM to 

afford 95% of the corresponding (E)-N-(2-phenylethylidene)cyclohexanamine 35 

(Scheme 2.3).  

                                

NH2

NOH
+ (i)

33 34 35  

Reagents and conditions: (i) MnO/PSCBH, 60 oC, 24 h, DCM. 

Scheme 2.3: Manganese oxide catalysed one-pot oxidation-imine formation-reduction 

of alcohols to imines. 
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2.2.2. Indirect methods for the synthesis of Schiff base derivatives 

 

Amines undergo aerobic oxidation to afford imino Schiff base derivatives by way of 

introducing unsaturation between the amino C-sp3-carbon and nitrogen [66]. For 

example, Wang and co-workers [67] presented a palladium catalysed selective 

aerobic oxidation reaction of N-benzylnaphthalen-1-amine 36 to yield 99% of the 

corresponding (Z)-N-benzylidenenaphthalen-1-amine 36 (Scheme 2.4). Synthesis of 

37 involves palladium(ll) chloride (PdCl2) as catalyst, sodium acetate (NaOAc) as a 

base, triphenyphosphine (PPh3) as a ligand, oxygen (O2) and dimethylformamide 

(DMF) as a solvent. The aforementioned reagents were stirred at room temperature 

for 16 hours in the presence of 36.   

                                     

HN

(i)

N

36 37  

Reagents and conditions: (i) PdCl2, NaOAc, PPh3, O2, rt, DMF. 

Scheme 2.4: Palladium catalysed aerobic oxidation of amines to imino Schiff base 

derivatives. 

2.3 Synthesis of Schiff base complexes 
 

The synthesis of Schiff base complexes generally involves treatment of metal salts 

with Schiff base ligands under moisture free conditions [68]. However, for Schiff base 

complexes with catalytic application, a one-pot reaction procedure is followed [69]. For 

example, a purification free, three-component assembly (3CA) of dichloro-(p-cymene)-

ruthenium(ll) dimer 38, picolinaldehyde 39 and 4-aminobenzamidine 41 afforded 74% 

of the corresponding [(ɳ6-p-cymene)RuCl((E)-4-((pyridin-2-yl)methyleneamino) 

benzamidine]Cl 42 (scheme 2.5). The synthesis of 42 is effected by continuous stirring 

at room temperature for 36 h in DMSO-d6/D2O mixture 1:1 v/v [70]. 
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Reagents and conditions: (i) DMSO-d6/D2O (1:1 v/v), 36 h, rt. 

Scheme 2.5: One-pot, three-component assembly (3CA) synthesis of RAS complex. 

A one-pot preparation of ternary pyridyl copper(ll) Schiff base complexes was reported 

by Banerjee and co-workers [71]. The pre-mentioned Cu(ll) complexes were prepared 

in a basic medium by refluxing 1:1 mmol of salicyaldehyde 43 and histamine 

dyhrochloride 44 in methanol for 1 h, after which another 1:1 solution of copper(ll) 

nitrate and 2-(pyridin-2-yl)pyridine 45 was added slowly and the solution was stirred 

for an additional 1 h (scheme 2.6) to yield 78% of 2-(pyridin-2-yl)pyridine-2-((E)-(2-

(1H-imidazol-4-yl)ethylimino)methyl)phenol Cu(ll) chloride 46. 
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N
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N
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OH
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+ N NH

H2N
2HCl.H2O (i)

43 44

46

N

N

+

45

Reagents and conditions: (i) TEA, Cu(OAc)2.H2O, MeOH, heat 1h, rt 1h. 

Scheme 2.6: One-pot synthesis of ternary pyridyl copper(ll) complexes. 

Tajuddin and co-workers [72] described square planar palladium(ll) complexes with 

potential catalytic activity in Suzuki coupling reactions. The tetracoordinated Pd(ll) 

complexes were synthesised by refluxing the corresponding 2-((E)-1-(4-

fluorobenzylimino)ethyl)phenol 47 and palladium(ll) acetate 48 in ethanol for 5 h 
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(Scheme 2.7) to yield 87.8% of bis-2-((E)-1-(4-

fluorobenzylimino)ethyl)phenolpalladium(ll) 49. 

OH N
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O N
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F

Pd
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Pd++

O

O- O
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Reagents and conditions: (i) Ethanol, 5 h, heat.  

Scheme 2.7: Square planar palladium(ll) Schiff base complexes.  
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2.4 Quinazolines 
 

2.4.1 Structure and biological application of quinazoline derivatives 
 

Nitrogen-containing heterocyclic compounds exert a global dominance in organic 

chemistry research because of their important biological and medicinal applications 

[73-74]. Among the pharmaceutically essential organo-nitrogen heterocycles, fused 

pyrimidines formally found in a variety of natural products possess a broad spectrum 

of biological properties. These consist of antibacterial, antifungal, antiviral, 

antimalarial, anticancer, anti-inflammatory and analgesics, antidepressant, 

anticonvulsant, antioxidant, antileshmanial and antiobesity activities [75-76] 

Quinazolines which form part of this investigation, are made up of two fused six-

membered simple aromatic rings, a benzene ring and a pyrimidine ring with one 

carbonyl group, [i.e. 2,3-dihydroquinazoline-4(1H)-one 49, quinazolin-4(3H)-one 50, 

3,4-dihydroquinazoline-2(1H)-one 51] or two carbonyl groups [i.e. quinazoline-2,4(1H, 

3H)-dione 52] on the pyrimidine framework (Figure 2.10).    
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 Figure 2.10: Generalised examples of the quinazoline framework. 

Quinazoline frameworks, the 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-

one are the most experimented due to their biological properties and potential 

application in material sciences [77]. The quinazoline alkaloid termed Febrifugine 53a 

(Figure 2.11), for example, was the first to be discovered as an extract from the 

Chinese plant Dichora Fibrifuga in 1950 and was reported to exhibit antimalarial 

activity [78]. A drawback was revealed in its clinical trials as the latter was found to 

cause gastrointestinal disorders [79]. This drawback made way for the search of 

Febrifugine analogues with escalated effectiveness and reduced side effects [80]. A 

hydrated and aminated Febrifugine derivative, Diproqualone 53b (Figure 2.11), was 

synthesised and is currently used for the treatment of inflammatory pain resulting from 

osteoarthritis and rheumatoid arthritis [81]. Methaqualone 54a, an important derivative 
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in the field of synthetic anticonvulsants was reported was reported by Arora and co-

workers [82]. The modification of 54a was carried out by El-Azab and co-workers [83] 

to obtain quinazolinone scaffold 54b which proved to be 2-fold more active than 54a. 

According to the findings of El-Azab and co-workers, 8-substituted-4(3H)-

quinazolinone 54c was demonstrated to be a better anticonvulsant activity with lower 

toxicity than 54a and 54b. 
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Figure 2.11: Examples of biologically active derivatives of febrifugine. 

The 2,3-dihydroquinazolin-4(1H)-one framework offers the opportunity for introduction 

of a vast degree of unsaturation in the heterocyclic ring through dehydration and 

subsequent aromatisation to afford corresponding quinazolin-4(3H)-ones and 

quinazoline derivatives respectively. Quinazoline-4(3H)-one based compounds are 

reported to possess antitubercular activity [84-85] with some derivatives exhibiting 

sedative properties [86]. For exmpale, 4-(isopropylthio)quinazoline 55 (Figure 2.12) 

previously prepared by acylation of the corresponding quinazoline-4-thiol with 2-

chloropropane was reported to display significant antibacterial activities against 

Mycobaterium tuberculosis strains [88]. In addition, 6,8-dichloro-3-phenylquinazoline-

2,4(1H,3H)-dione 56 prepared by chlorination of the corresponding antharalic acid, 

followed by cyclisation and acylation of the corresponding 6,8-dichloro-3H-

benzo[e][1,3]oxazine-2,4-dione with chlorobenzene was reported to show activity 

against Multi-Drug resistant MDR-TB [87]. 
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Figure 2.12: Examples of biologically active quinazoline derivatives  

The keto-group of the quinazoline-4-ones was reported to be a crucial DNA-chelator 

during in silico studies [89]. As a result, many quinazoline compounds holding the keto-

group, particularly on the 4-position have been reported to demonstrate anticancer, 

anti-proliferative, anti-sedative, anti-inflammatory and antibacterial activities [90]. For 

example two derivatives, 2-(2-methoxystyryl)-6-chloro-3-(pyrimidin-2-yl)quinazolin-

4(3H)-one 57 and 2-(2-methoxystyryl)-6-chloro-3-(5-methylisoxazol-3-yl)quinazolin-

4(3H)-one 58 previously prepared by an acetic acid supported reflux of the 

corresponding 2-methylquinazolines with benzoic aldehyde derivatives were tested for 

anti-leukemic activity and the latter reported good activity [91]. Moreover, Patel and 

co-workers [92] reported 2-(2-(2,6-dichlorophenylamino)benzyl)-3-(4,5-dihydro-5-

phenyl-1H-pyrazol-3-ylamino)-6-iodoquinazolin-4(3H)-one 59 derivatives which 

showed positive in vitro antibacterial activity against both gram negative and gram 

positive. In addition to quinazolinone containing bactericides, Cakici and co-workers 

[93] reported 2-(4-nitrophenoxy)-N-(4-oxo-2-phenylquinazolin-3(4H)-yl)acetamide 60 

which was prepared by reacting the corresponding 2-chloro-N-(4-oxo-2-

phenylquinazolin-3(4H)-yl)acetamide with different substituted benzyl alcohols. The 

latter was tested for antibacterial activity against Salmonella typhimurium by 

employing a cup plate method measuring inhibition zone, the compound casted 

excellent antibacterial activity. 

      

O

N

N

Cl

O

N

N

57
                                                   

O

N

N

Cl

O

N
O

58

 

 



 

20 
 

        

I

N

N

O

HN

NH
N

59

H
N

Cl

Cl

                                                 

N

N

O

NH

O

O

NO2

60  

Figure 2.13: Examples of biologically active quinazoline-4-ones.  

4-methylquinazolines are a rare class of quinazoline analogues which are not as 

documented as the 4-quinazolinone derivatives. The (Z)-N-(2-(3-

hydroxypropylamino)-4-methylquinazolin-6-yl)-3-(4-chlorophenyl)acrylamide 61 and 

(Z)-3-(4-chlorophenyl)-N-(2-(4-cyclopropyl-4-hydroxypiperidin-1-yl)-4-methyl-

quinazolin-6-yl)-acrylamide 62  were reported to act as antagonists for melanin 

concentrating hormone receptor 1 (MCHR1) in vivo and were therefore applied as 

antiobesity agents [94]. 
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Figure 2.14: Examples of biologically active 4-methylquinazolines.  

4-Anilinoquinazolines extensively studies as a results of bioactive quinazoline 

analogues due to their activity against EGFR (Epidermal Growth Factor Receptor), 

reversible and irreversible kinase inhibition capabilities [95]. The 4-anilinoquinazolines 

are reported to exhibit anticancer activity against lung, breast, prostate, brain and liver 

cancer cells [96]. For example, the N6-(4-chlorobenzyl)-N4-(3-

bromophenyl)quinazoline-4,6-diamine 63 was tested for the ability to prompt apoptosis 

in the Hep G2 liver cancer cell lines. Both in silico and in vitro studies qualified the 

latter as having both antiproliferative and EGFR-TK inhibitory activity [97]. In addition, 

N-(4-(3-chloro-4-fluorophenylamino)quinazolin-6-yl)-3-bromopropanamide 64 showed 
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anti-cell proliferation against A431 breast cancer cell lines and is also reported to 

participate in cell proliferation and autophoshorylation inhibition of EGFR in vitro [98]. 
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Figure 2.15: Examples of 4-anilinoquinazolines with EGFR inhibitory properties.                                                           

The study of 4-anilinoquinazoline derivatives as inhibitors of tyrosine kinase activity of 

EGFR resulted in the approval of Gefitinib 65 for the treatment of lung cancer [99]. 

Protein tyrosine kinases are enzymes involved in many cellular processes and are 

known to be activated in cancer cells to drive tumour growth and progression. Blocking 

tyrosine kinase activity therefore represents a coherent approach to cancer therapy. 

Erlotinib or Tarceva 66, a 4-anilinoquinazoline derivative bearing an alkynyl moiety on 

the aniline ring, is also known as a tyrosine kinase inhibitor which acts on the epidermal 

growth factor receptor [100]. A multiple approach by a marketed drug vandetanib 67 

is reported to act against three targets (1) vascular endothelial growth factor receptor 

(VEGFR), (2) EGFR and (3) inhibits RET-tyrosine kinase activity, an important growth 

driver in certain types of thyroid cancer [101]. 
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Figure 2.16: Examples of cancer active marketed 4-anilinoquinazoline derivatives.                                                                                                                                                                                                                                                                   
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2.4.2 Synthesis of quinazolin-4-one derivaties 
 

The primary method for the preparation of quinazoline derived chemical compounds 

involves the cyclocondensation of anthranilamide and aldehyde derivatives in the 

presence of iodine [102], phosgene [103], NaOBr [104] to name a few. 

2.4.2.1 Methods for the synthesis of quinazolin-4(1H)-ones 

 

A variety of methods for the synthesis of quinazolin-4(1H)-ones have been presented 

in literature including cyclisation, amidation and metal promoted reactions. Tajbakhsh 

and co-workers [105] described a straightforward procedure for the synthesis of 2,3-

dihydroquinazolinones. The reaction mixture involves an inexpensive and non-toxic 

catalyst i.e H3PW12O40 (1 mol%)  which aids a cyclisation reaction at reflux temperature 

in water between antharanialmide 68, aldehyde derivative and 4-formylbenzonitrile 69 

to afford the corresponding 4-(3,4-dihydro-4-oxoquinazolin-2-yl)benzonitrile 70  in high 

yields (Scheme 2.8). The catalytic system holds several advantages including short 

reaction time of 2 h, easy work-up and green procedure avoiding toxic solvents. 

                     

O
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+
(i)

68 69 70  

Reagents and conditions: (i) H3PW12O40 (1 mol%), 80 oC, reflux, 2 h. 

Scheme 2.8: H3PW12O40 catalysed synthesis of 4-(3,4-dihydro-4-oxoquinazolin-2-

yl)benzonitrile 70. 

Metal-free cyclisation of anthranilamide 68 and aldehyde derivatives 71 using SO3-H-

functionalised ionic liquid catalysts under solvation-induced proton transfer afforded 

2,3-dihydroquinazolin-4(1H)-one derivatives 72 (Scheme 2.9, on page 23) [106]. 

Methane-sulfonic acid is a Brønsted acid which promotes cyclo-condensation via 

aerobic oxidation. 
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Reagents and conditions: (i) Methane-sulfonic acid, O2, EtOH, reflux, 2 h. 

Scheme 2.9: Brønsted acid-promoted aerobic oxidation via solvation-induced proton 

transfer: Metal-free construction of dihydroquinazolinones 

With the escalating amount of organic pollutants found in drinking water, green 

chemistry has been documented as the future of science in organic synthesis [107]. 

Wang and co-workers [108], reported a novel synthetic procedure for the synthesis of 

2,3-dihydroquinazolin-4(1H)-ones 73, which involves the grinding of anthranilamide 68 

with aldehyde derivatives 71 at ambient temperature in the presence of cerium(IV) 

ammonium nitrate (CAN) and water. The reaction is driven to completion by heating 

at 60 0C (Scheme 2.10). Cerium(IV) ammonium nitrate (CAN) is a flexible single-

electron oxidant which promotes the cyclisation of anthranilamide 68 derivatives with 

carbonyl containing compounds. The grinding step was found to be vital in increasing 

the surface area and resulted in high yields.  
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Reagents and conditions: (i) CAN, Grinding. 

Scheme 2.10: CAN-mediated synthesis of dihydroquinazolin-4(1H)-ones 

2.4.2.2 Methods for the synthesis of quinazolin-4(3H)-ones 

Dihydroquinazolin-4(1H)-ones undergo tautomerism to afford the corresponding 

quinazolin-4(3H)-ones through dehydrogenation aided by oxidising agents introducing 

unsaturation between N-1 and C-2 of the scaffold. Otherwise, quinazolin- 4(3H)-ones 

can prepared directly in a single-pot procedure from anthranilamide derivatives and 

various carbonyl compounds by oxidative cyclocondensation or transition metal-

catalyzed reactions [109]. 
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2.4.2.3 Indirect methods involving dehydrogenation of quinazolin-4(1H)-ones 

The 2-phenylquinazolin-4(3H)-one derivatives serve as an example as they are 

prepared by the oxidation of dihydrogenated derivatives 74 with potassium 

permanganate in acetone under reflux (Scheme 2.11) [110]. Potassium 

permanganate serves as an oxidising reagent to bring about unsaturation between N-

1 and C-2. Hitherto, two forms of quinazolin-4-ones were reported namely: the lactam 

(major) 76 and iminol form (minor) 75. [111]. 
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74 75 (iminol) 76 (lactam)
 

Reagents and conditions: (i) KMnO4, Me2CO, reflux. 

Scheme 2.11: Synthesis of 2-phenylquinazolin-4(3H)-ones with KMnO4  

By the same token, the oxidation of 2,3-dihydroquinazolin-4(1H)-ones 77  with tertiary-

butyloxide (2 equiv.) as an oxidising agent under refluxed furnished 2-substituted 

quinazolin-4(3H)-ones 78 yielding between 75 to 93% (Scheme 2.12) [112]. 
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N R

77 78 (R=-H, Cl, -
OMe)  

 Reagents and conditions: (i) tBuO, reflux. 

Scheme 2.12: Oxidation of 2,3-dihydroquinazolin-4(1H)-ones with tBuO 

Although the synthesis of quinazolin-4(3H)-ones by dehydrogenation of the parallel 

quinazolin-4(1H)-ones has been effective, the majority of these procedures include the 

use of non-environmentally, non-friendly oxidising agents in large excess. As an 

attempt to minimise the risk of pollution, one-pot synthesis methods continue to spark 

interest in literature.  
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2.4.2.4 Direct methods for the synthesis of quinazolin-4(3H)-ones 

A single pot reaction between 2-amino-N-methoxybenzamide 79 and 4-

bromobenzaldehyde 80, in acetone refluxed at 100 oC for 12 h was reported to 

undergo a cascade cyclisation sequence to yield the corresponding 2-(4-

bromophenyl)quinazolin-4(3H)-one 81 by 81% (Scheme 2.13) [113]. 
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Reagents and conditions: (i) 90 oC, acetone, 12 h. 

Scheme 2.13: Single-pot cyclisation of 2-amino-N-methoxybenzamide with 4-

bromobenzaldehyde. 

A mixture of anthranilamide 68, ethynylbenzene 82 and tosylazide 83 in acetonitrile at 

room temperature for 10 h afforded 2-benzylquinazolin-4(3H)-one 84 in 91% yield. The 

latter was produced after 8 h in the presence of copper(i) iodide (10 mol%), 

triethylamine (3 equiv) in acetonitrile (Scheme 2.14) [114]. The reaction was found to 

proceed through two crucial steps involving 1,3-dipolar cycloaddition and 

intramolecular cyclisation. Though complex, this procedure gave high yields at low 

temperature. The use of high temperature was dubbed to produce complex 

decomposed mixtures [115]. 
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Reagents and conditions: (i) CuI, TEA, rt, CH3CN, 10 h  

Scheme 2.14: Copper catalysed one-pot synthesis of 2-substituted quinazoline 4-
(3H)-one. 
 
Romero and co-workers [116] described a simple one-pot synthetic procedure for 

quinazolin-4(3H)-ones by the reaction of 2-nitrobenzamide 85 with 3-

fluorobenzaldehyde 86 in the presence of sodium dithionite (3.5 equiv). Sodium 

dithionite is a reducing agent of the nitro group and it thus decomposes in situ in 
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aqueous DMF-H2O (9:1) at 90 oC (reflux) for 5 h (Scheme 2.15), leading to an 

oxidation step that yields the desired  2-(3-fluorophenyl)quinazolin-4(3H)-one 99% 87. 

The reaction is accelerated by the addition of water. 
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Reagents and conditions: (i) Na2S2O4, DMF-H2O, 90 oC, reflux, 5 h 

Scheme 2.15: One-pot synthesis of quinazolin-4(3H)-ones from 2-nitrobenzamide 

using sodium dithionite 

 
Parua and co-workers [117] reported an environmental friendly and mild approach for 

the synthesis of quinazolin-4(3H)-ones via a square-planar nickel(II) complex-

catalysed acceptor-less dehydrogenative cyclisation of anthranilamide 68 with (4-

methoxyphenyl)methanol 88 (Scheme 2.16). The reaction proceeds in xylene with 

sodium butaoxide (1.5 equiv) as a base, Ni-catalyst (5 mol%) at a reflux temperature 

of 100 oC for 36 h. The approach yielded 74% of 2-(4-methoxyphenyl)quinazolin-

4(3H)-one 89. The by-product of this particular procedure was reported to be a 

hydrogen gas. 
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Reagents and conditions: (i) [Ni(MeTAA)], NatOBu, xylene, 100 oC, 36 h 

Scheme 2.16: One-pot Nickel-catalysed synthesis of quinazolin-4(3H)-ones 
 
As an addition to eco-friendly reaction conditions, Fang [118] described the synthesis 

of quinazolin-4(3H)-ones via a homogeneous transition metal catalysed acceptor- less 

dehydrogenative alcohol oxidation which produces water via nitrile 90 hydrolysis and 

later hydrogen via a dehydrogenative oxidation step. The procedure involves the 

cyclocondensation of anthranilamide 68 derivatives with oxidised alcohols (i.e. 

aldehydes) 71. The reaction takes place in water as a solvent at room temperature 
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while stirring for 3 h (Scheme 2.17), and is therefore catalysed by a water soluble 

Iridium-catalyst [CpIrCl2]2 (5 mol%) to yield 70-81% of 2-substituted quinazolin-4-ones 

91. 
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(R = N(CH3)2, 
H, CH3)
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Reagents and conditions: (i) [CpIrCl2]2, water, rt, 3 h 

Scheme 2.17: One-pot Iridium-catalysed synthesis of 2-substituted quinazolin-4(3H)-
ones 
 

2.4.3 Synthesis of quinazolines 
 

An assortment of synthetic methods leading to the synthesis of quinazoline framework 

have been reported in literature by employing different starting materials, for instance 

N-substituted anthranilamide, isatoic anhydride derivatives and the heavily 

documented quinazolin-4(3H)-ones.  

2.4.3.1 Oxidative-aromatisation of quinazolin-4(3H)-ones derivatives 

 

The 4-halogenoquinazolines have proven to be an important class of intermediates in 

the construction of quinazoline analogues owing to the C-X (X=Cl, Br, I) bond towards 

various nucleophiles. For example, the conjoint method for the synthesis of 4-

chloroquinazoline derivatives involves oxidative aromatisation of the analogous 

quinazolin-4(3H)-ones using reagents such as thionyl chloride (SOCl2) in DMF [119], 

phosphoryl chloride (POCl3) [120] and at times the combination of phosphoryl chloride 

(POCl3) and pentachloride (PCl5) [121]. The synthesis of 6,8-dibromo-4-chloro-2-(4-

methoxyphenyl)quinazoline 92, for example was prepared by aromatisation of the 6,8-

dibromo-2-(4-methoxyphenyl)quinazolin-4(3H)-one 93 (a quinazolin-4(3H)-one 

framework) using SOCl2 and DMF as a solvent [122] (Scheme 2.18).  
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Reagents and conditions: (i) SOCl2, DMF, 80 oC. 

Scheme 2.18: Oxidative aromatisation of 92 with SOCl2 and DMF as a solvent. 

 

The treatment of 2-trichloromethylquinazolin-4(3H)-one 94 in the presence of 

phosphorous pentoxide (P2O5) in toluene with either tetrabutylammonium bromide 

(TBABr) or tetrabutylammonium iodide (TBAI) can result in oxidative aromatisation by 

bromination or iodination to yield quinazoline derivatives 95 and 96 respectively 

(Scheme 2.19) [123]. 
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Scheme 2.19: Oxidative aromatisation by halogenation in the presence of 

phosphorous pentoxide (P2O5).   

 

2.4.3.2 Direct synthesis of quinazolines from substituted anthranilamide 

derivatives 

 

A new, direct and very convenient procedure to synthesise quinazoline derivatives 

from substituted anthranilamide derivatives was discovered by Koutentis and co-

workers [124]. The authors reported synthesis of 3-aryl-4-imino-3,4-

dihydroquinazoline-2-carbonitriles 99a-b from 2-amino-N'-arylbenzamidines 97a-b 

with 4,5-dichloro-1,2,3-dithiazolium chloride 98  (Appel salt) in the presence of Hünig’s 
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base (2 equiv.). Target compounds were obtained in one-step process in moderate to 

good yields of 51 to 86% (Scheme 2.20). The reaction provides an expedient synthetic 

route to C-2 cyano substituted quinazolin-4(3H)-imines  
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Reagents and conditions: (i) i-Pr2Net (2 equiv.), DCM, 20 oC, 2h. 

Scheme 2.20: Hünig’s base promoted synthesis of 3-aryl-4-imino-3,4-

dihydroquinazoline-2-carbonitriles. 

An atom-efficient, atom-economic, eco-friendly, solvent-free, high yielding, 

multicomponent green strategy to synthesise the highly functionalised 2-(4-

chlorophenyl)-6-nitro-4-phenylquinazoline 102 through a magnetic ionic liquid (IL), 

butylmethylimidazolium tetrachloroferrate (bmim [FeCl4]) aided one-pot reaction of 2-

aminobenzophenone 100, aromatic aldehyde 71, and ammonium acetate 101 

(Scheme 2.21) was reported by Saha and Panja [125]. The presence of a nitro group 

at C-5 position of the corresponding (2-amino-5-nitrophenyl)(phenyl)methanone 100 

affects the reaction time significantly.              
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Reagents and conditions: (i) i-Pr2NEt (2 equiv.), DCM, 20 oC, 2h. 

Scheme 2.21: Magnetic IL, butylmethylimidazolium tetrachloroferrate (bmim [FeCl4]) 

aided one-pot preparation of 2-(4-chlorophenyl)-6-nitro-4-phenylquinazoline 102. 
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2.4.3.3 Metal-catalysed cross-coupling reactions aiding the synthesis of carbo-

substituted quinazoline derivatives. 

 

The assortment of transition metal-catalysed cross-coupling reactions can easily be 

regarded as a foundation of construction leading to highly substituted heterocycles in 

organic synthesis [126]. Kumada, Negishi, Suzuki-Miyaura, Stille, and Sonogashira 

cross-coupling reactions represent a direct approach towards the synthesis of new 

carbon-carbon (Csp2-Csp) bonds [127-130]. The mechanism for metal-catalysed 

cross-coupling follows three steps, namely, oxidative addition, transmetallation and 

reductive elimination. In the case of palladium cross-coupling reaction conditions, a 

catalytically active 14-electron Pd(0) species supplied by Pd(PPh3)4, PdCl2(PPh3)2, 

Pd(OAc)2 is generated by ligand dissociation for Pd(0) (Scheme 2.22) or by palladium 

reduction for Pd(II) (Scheme 2.23). Pd(PPh3)4 is most commonly used because of the 

increased reactivity of palladium which is already in a zero oxidation state. 

Concurrently, PdCl2(PPh3)2 and Pd(OAc)2 plus an additional PPh3 or other phosphine 

ligands have also been reported efficient since they are non-hydroscopic and can be 

reduced to the active Pd(0) complexes with stoichiometric additions of phosphines. 
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Scheme 2.22: Ligand dissociation off palladium species 
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Scheme 2.23: Reduction of palladium(ll) to palladium(0) on Pd(ll)(OAc)2 
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The palladium cross-coupling catalytic cycle starts with oxidative addition of the active 

palladium(0) complex Pd(0)L2 A to the aryl halide (Figure 2.17). During this step, the 

Csp2-X bond breaks forming a palladium(II) complex conforming to trans-R1Pd(II)L2X 

B containing aryl and halide ligands. The rate of the oxidative addition is accelerated 

by the reactivity of the aryl halide and the type of ligand present in the palladium(0) 

precursor [131]. The periodic order of electronegativity in aryl halides is in agreement 

with the C-X bond strengths. Likewise, alkylphosphine ligands are reported to increase 

the electron density by σ-complexation-dehydropalladation-reductive elimination of 

palladium and thus, accelerate the oxidative addition step. The palladium(II) complex 

B formed is a 16-electron square-planar complex which undergoes transmetallation 

via a ligand  exchange process with the aid of a base to form an organopalladium(II) 

complex R1Pd(II)L2Nu C (Figure 2.17). The ligands of compound C are trans oriented 

and are converted to cis in a trans-cis isomerization to form isomer D. The final step, 

known as reductive elimination, the organopalladium(II) complex cis-R1Pd(II)L2Nu D 

dissociates the coupled product and regenerates the catalyst Pd(0). The increase of 

the electron density at the metal centre accelerates the reductive elimination. 

Alkylphosphine ligands are known to coordinate with palladium and increase its 

electron density more than arylphosphines. The general catalytic cycle for such 

reactions is represented as follows: 
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Figure 2.17: Generalised mechanism for Csp2-Csp cross-coupling reactions.  
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In addition to the cross-coupling reaction conditions, the Sonogashira cross-coupling 

reaction has since dominated the field of organic synthesis due to the ease of 

synthesis leading to carbon-carbon bonds. The cross-coupling reaction involves a 

copper(l) salt which serves as a co-catalyst. The palladium catalytic cycle in this type 

of reaction is very much similar to the general palladium reaction which involves 3 

catalytic steps (1) oxidative addition (2) transmetallation (3) reductive elimination. The 

copper co-catalysed Sonogashira reaction takes place in two independent catalytic 

cycles, where the tertiary amine (R3N) is represented as base. The palladium catalytic 

cycle follows the one described in Figure 2.18. Akin to the palladium cycle, the copper 

cycle follows three steps, a copper acetylide (Nu-Cu+ X-)  E, is formed in the presence 

of copper(l) salt in solution. The base then abstracts the proton of the alkyne derivative 

leading to the π-alkyne-Cu complex F. The third step is transmetallation between the 

trans palladium complex B after which the copper(l) salt D is regenerated and the cycle 

continues. 
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Figure 2.18: Generalised Sonogashira copper co-catalysed reaction mechanism for 

Csp2-Csp cross-coupling. 
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2.4.3.4. Sonogashira cross-coupling reaction 

 

The trend in reactivity of the Csp2–halogen bonds in Sonogashira cross-coupling 

reaction of halogenated quinazoline compounds follows, Csp2-I > C(4)-Cl > Csp2-Br > 

C(2)-Cl > C-sp2-Cl > Csp2–F in relation to the different bond dissociation energies 

which favours substitution of iodine in the presence of Br, Cl and the C(4)-Cl [132]. 

The Sonogashira cross-coupling reaction between 6-bromo-2,4-dichloroquinazoline 

103 and terminal alkynes 104 catalysed by PdCl2(PPh3)2 as Pd(0) source and CuI co-

catalysed in triethylamine (Et3N), favoured cross-coupling at the more electrophilic 

C(4)-Cl position rather than the less activated Csp2(6)‒Br bond yielding 78-86% of the 

corresponding 6-bromo-2-chloro-4-(hex-1-ynyl)quinazoline 105 (Scheme 2.24) [133]. 

                                   

N

N

Cl

Cl

Br
+ Bu

N

N Cl

Br

Bu

103 104 105

(i)

 

Reagents and conditions: (i) PdCl2(PPh3)2, CuI, Et3N, rt. 

Scheme 2.24: Sonogashira coupling reaction of 103 and 104. 

Attempted Sonogashira cross-coupling reaction between 4-chloro-2-trichloromethyl-

quinazoline 106 and phenylacetylene 107 using triethylamine as a base, 

tetrakis(triphenyl-phosphine)palladium(0) [Pd(PPh3)4] as a source of a reactive Pd(0) 

species and copper(I) iodide (CuI) in THF under nitrogen atmosphere did not afford 

the expected cross-coupled product [134]. The presence of the trichloromethyl group 

at the 2-position was found to interfere with the outcome of this reaction. The use of 

cesium carbonate (Cs2CO3) as a base and palladium(II) acetate [Pd(OAc)2] as a 

source of Pd(0) in dimethylformamide (DMF), on the other hand, afforded the cross-

coupled product 108 in low yield (15%) along with other undesirable products 

(Scheme 2.25). 
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Reagents and conditions: (i) Cs2CO3, Pd(OAc)2, CuI, DMF, N2, rt, 3 h. 

Scheme 2.25: Sonogashira cross-coupling reaction of 4-chloro-2-

trichloromethylquinazoline. 

A good demonstration of the reactivity trend in Sonogashira coupling reaction leading 

to the Csp2-Csp bond was shown during a reaction between 4-chloro-6-iodo-2-(4-

methoxyphenyl)quinazoline 109 and phenylacetylene 110. The reaction was catalysed 

by Pd(ll)Cl2(PPh3)2 and CuI in the presence of Cs2CO3 under nitrogen atmosphere at 

room temperature. The reaction conditions favoured cross-coupling at the C(6)sp2-I 

position rather than the C(4)-Cl position to yield 75% of the corresponding 4-chloro-2-

(4-methoxyphenyl)-6-(2-phenylethynyl)quinazoline 111 (Scheme 2.26) [135]. 

Cl

N

N

OMe

I
(i)

Cl

N

N

OMe

+

109 110 111

 

Reagents and conditions: (i) Cs2CO3, Pd(ll)Cl2(PPh3)2 , CuI, THF, N2, rt, 18 h. 

Scheme 2.26: Sonogashira cross-coupling reaction of 4-chloro-6-iodo-2-(4-

methoxyphenyl)quinazoline 111 on the C(6)sp2-I position. 

2.4 Quinazoline derivatives as intermediates in coordination chemistry 

including their synthesis and biological application. 

The field of bioinorganic chemistry has been at the highest receiving end of chemistry 

research attention over the past 3 decades [136-137]. The research interest in this 

field is amplified by the unending increase in activity of heterocyclic compounds with 

anticancer, anti-inflammatory, antimalarial, antibacterial and anti-proliferative 
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properties [138]. Of these highly biologically active heterocycles, pyrimidine 

derivatives, particularly quinazoline bearing derivatives have been under massive 

exploration both in silico and in vitro studies [139].  

The literature on transition metal containing quinazoline complexes is limited, hence 

indicative of perhaps, difficulty in synthesising the complexes or area unexplored. The 

synthesis or coordination of quinazoline derivatives requires knowledge in ligand 

behaviour, coordination modes, general understanding of coordination chemistry, etc. 

The type of geometrical arrangement around the metal centre is key in avoiding steric 

hindrance, hence contributing to the stability of the complex. For example, poly-

nuclear silver(l) quinazoline containing derivatives 114 were reported by Glišić and co-

workers [140] to possess activity against the pathogenic Pseudomonas aeruginosa 

strains in silico and in vitro. The Ag(l) complexes were synthesised by refluxing 2 mmol 

of quinazoline 112 and 1 mmol of AgCF3SO3 113 in ethanol  for 8 h to yield 42% of the 

corresponding tetrahedral Silver(l) quinazoline complex (Scheme 2.27) 114. 
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Reagents and conditions: (i) AgBF4, ethanol, heat, 8 h. 

Scheme 2.27: Synthesis of silver(l) quinazoline complexes with antimicrobial activity. 

A three-legged piano stool ruthenium(ll) quinazoline complex possessing 

oncotherapeutic antiplatelet activity was reported by Kharamang and co-workers 

[141]. The ruthenium arene quinazoline (RAQ) complex is reported to hinder ATP 

release and [Ca2+], and therefore decrease Akt/JNK signals. Akt/JNK pathways are 

involved in autophagy [142] process. Autophagy is a homeostatic, catabolic 

degradation process whereby cellular proteins and organelles are engulfed into 

autophagosomes, digested in lysosomes and recycled to sustain cellular metabolism 

[143]. Targeting these pathways represents an ideal strategy towards cancer cell lysis. 

Experimental synthesis of the RAQ complex was achieved by stirring dichloro-(p-
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cymene)-ruthenium(ll) dimer 38 and corresponding 4-phenyl-2-(pyridin-2-

yl)quinazoline 115 ligand in methanol at room temperature for 24 h to yield 87% of 

[(ɳ6-p-cymene)RuCl4-phenyl-2-(pyridin-2-yl)quinazoline]tetrafluoroborate 116 

(Scheme 2.28). Likewise, the RAQ complex inhibited platelet aggregation in washed 

human platelets while stimulated by collagen in a concentratrion-dependent manner 

(1 – 5 uM).  

+
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Cl Cl

Cl

Cl
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-

Cl

 

Reagents and conditions: (i) NaBF4, methanol, rt, 24 h. 

Scheme 2.28: Synthesis of ruthenium(ll) arene quinazoline complexes with 

antiplatelet activity. 

A new, dual-targeting, piano stool ruthenium(ll) complex possessing anticancer 

properties was developed by Zhang and co-workers [144]. The corresponding RAQ 

complex was synthesised by stirring 6-(2-(2-aminoethylamino)ethoxy)-4-(3'-chloro-4'-

fluoroanilino)-7-methoxy-quinazoline 117 and dichloro-(p-cymene)-ruthenium(ll) dimer 

38 in methanol for 24 h to yield 31.2 % of [(ɳ6-p-cymene)RuCl6-(2-(2-

aminoethylamino)ethoxy)-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-quinazoline]hexa-

fluorophosphate 118 (Scheme 2.29). The antecedent RAQ complex is reported to 

exhibit 29-fold IC50 against HeLa cell lines i.e. 1.36 uM compared to the ligand 

precursor 117 i.e. 29.5 uM.  
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Scheme 2.29: Synthesis of ruthenium(ll) erlotinib complex with improved anticancer 

activity.  

The synthesis of biologically active compounds is a challenging and costly process, in 

the 1960’s researchers would blindly screen hundred thousands of natural and 

synthetic compounds for possible biological activity. Upon viewing activity, medicinal 

chemists would synthesise a library of compounds for further biological exploration 

[145]. This method, termed “traditional drug design” is costly as out of 100 thousand 

compounds only 25 would register the desired property investigated [146]. Previous 

sources estimated the cost to be ranging from $200-$500 million each year worldwide 

[147]. To ameliorate this injustice, scientists have since developed a computer 

programme called molecular docking.  

2.5 Molecular docking 
 

Molecular docking is a modern medicinal chemistry tool which investigates 

pharmacodynamical data and pharmacokinetic properties through structure activity 

relationship (SAR) of prodrugs [148]. The pharmacodynamical data includes potency, 

selectivity, affinity and efficacy of prodrugs [149], on the other hand pharmacokinetic 

properties investigated include ADME-Tox (absorption, distribution, metabolism, 

excretion and toxicity) of the prepared prodrugs [150]. The progression of this field is 

complemented by advances in biomolecular spectroscopic methods such as X-ray 

crystallography and nuclear magnetic resonance techniques (NMR) [151]. These 

techniques have produced over 100 000 three-dimensional (3D) protein structures, 

brewing influential information on macromolecular drug targets [152]. The 
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incorporation of computational (in silico) and experimental (in vitro) methods have 

provided a broad understanding of the complex aspects of intermolecular recognition 

[153].  

Within the pre-described concept, structure-based design (SBDD) methods such as 

molecular kinetics, molecular dynamics and structure-based virtual screening (SBVS) 

are employed to aid molecular recognition events such as binding energy, molecular 

interactions and induced conformational changes [154]. A defined approach in drug 

design encompasses biologically active small molecule libraries [155]. The unique 

diversity available in these libraries (co-crystallised ligands within proteins) represents 

the active site to which ligands target [156]. This application is limited to ligand-based 

drug design (LBDD) methods. Similarly, ligand-based virtual screening (LBVS), 

conformational searching and quantitative structure activity relationship (QSAR) 

modelling are the most used LBDD methods [157]. The SBDD and LBDD methods are 

the most encountered in computer aided drug-design and have proved valuable to 

both academia and industry [158].  

2.6 Purpose of the study 
 

Infectious airborne and neoplastic diseases are the two causes of illness and mortality 

in developing and developed countries, respectively [159]. This section covers the 

challenges faced by chemotherapeutic techniques applied to treat specifically 

Tuberculosis (TB) and cancer. 

2.6.1. Tuberculosis (TB) 
 

Tuberculosis (TB) is an airborne disease caused by Myobacterium tuberculosis (Mtb) 

[1]. The world health organisation (WHO) has reported that TB remains one of the 

modern day killer bacteria in the world, where treatment and management of the 

infection remains a big challenge [160]. In 2017 (latest statistics), TB was reported to 

be the biggest killer disease in the country (South Africa) and unfortunately more and 

more people are infected daily at an alarming rate [160]. Several TB drugs, such as 

Isoniazid, Rifampicin, Pyrazinamide, Ethambutol and Streptomycin, are administered 

to treat the TB disease at different stages (i.e. for latent TB, MDR-TB and XDR-TB). 

Even though the antecedent drugs have several advantages such as low cost, 

effectiveness and limited host toxicity, the country is still burdened with increased new 
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infections. This is because of the prolonged treatment period of six (6) months, during 

which mutations of the Mtb resistant strains occurs if care is not taken during the six 

(6) months period [161]. Recently, drugs by names Delamanid and Bedaquiline have 

been unveiled as the most progressive treatment for the resistant TB, the major 

limitation being the QT-prolongation side effect [162]. The QT-prolongation is a serious 

disturbance of the heart’s electrical rhythm. Other side effects include the liver toxicity, 

deafness, accumulation of phospholipids in cells and even death [162].   

2.6.2 Cancer 
 

Cancer is defined as a group of unrelated diseases that affect any part of the human 

body. According to the world health organisation (WHO), cancer is one of the leading 

causes of death worldwide and it has been responsible for 9.6 million deaths in 2018 

[163]. The development of cancer strategies over the years have employed 

chemotherapy combined with radiotherapy, surgery and targeted therapy [164]. 

Chemotherapeutic drugs currently employed to treat this burden include Cisplatin, 

cobimetinib and elronitib [165].  These drugs, though effective to some extent, pose 

severe side effects such as hair loss, stroke and vomiting due to their non-selectivity 

towards normal cells [166]. Apart from the pre-mentioned drawbacks and lack of 

alternatives, they still find application. 

Herein we hypothesise a possible strategy on eliminating the problems described in 

subsections 2.6.1 and 2.6.2. Schiff base and quinazoline structure activity relationship 

(SAR) of ruthenium(ll) p-cymene bioinorganic molecular hybrids with plausible mimic 

of synergy in cancerous and Mycobacterium tuberculosis cell lines. In this project, we 

employ Sonogashira cross-coupling at the C(4)-Cl to introduce electron-donating 

ethynylpyridine bridge, which is used as a link between the quinazoline and the 

ruthenium(ll) p-cymene moieties. For the Schiff base groups, a similar idea is hoped 

to stabilise the ligands in biological solutions such as DMSO and water, and thus 

improving binding in the active site. Molecular docking is used to better understand 

the possible interactions in the binding site of cancer and Mtb proteins 3F8P and 2SRC 

belonging to the Tyrosine kinase and oxidoreductase family and the 1HTO of 

glutamine synthetase respectively. In this way, we hope to gain control of the 

hydrophilicity and size of the complexes in the delivery system, where the two parts of 
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the compound complement each other to exhibit different interactions in the binding 

site. Thus, the aim and the objectives of the study are therefore defined as follows: 

2.7 Aim 
 

The aim of this study was to synthesise, characterise, and perform biological 

evaluation of p-cymene ruthenium(ll) complexes of imidazolyl-ethanamine-Schiff 

bases and 4-ethynylpyridine cross-coupled quinazolines. 

2.8 The objectives were to: 
 

i. Synthesise imidazolyl-ethanamine-Schiff bases and their M(ll) complexes 

ii. Synthesise ethynylpyridine bridged quinazolines and their p-cymene 

ruthenium(ll) complexes 

iii. Evaluate the anticancer properties of the synthesised compounds in vitro 

iv. Evaluate the anti-Mycobacterium tuberculosis properties of the synthesised 

compounds in vitro 

v. Perform molecular docking of the synthesised compounds in 1HTO, 2RSC and 

3F8P 
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CHAPTER 3: EXPERIMENTAL 

 

3.1 General 
 

Chemical reagents were purchased from Sigma-Aldrich or Merck (Johannesburg, 

South Africa) and used without further purification. Tetrahydrofuran (THF) was distilled 

over sodium metal lumps and benzophenone [1] and stored over activated molecular 

sieves before use. Melting points were obtained using Lasec/SA-melting point 

apparatus from Lasec company, SA (Johannesburg, South Africa). IR spectra for 

comppunds 120a-e, 121a-e, 123a-e, 125a-e and 126a-e were recorded using Anglient 

technologies Carry 600 series, FTIR spectrometer. For compounds 119a-d, the FTIR 

spectra were recorded on Bruker, FTIR spectrometer with a platinum ATR. NMR 

spectra were obtained as CDCl3, DMSO-d6 and Methanol-d4 solutions using Bruker 

400 MHz NMR spectrometer (Bruker Biospin GmhH, Karlsrushe, Germany) operating 

at 400 MHz (1H) and 100 MHz (13C), and 1H-13C-HMBC NMR  chemical shifts were 

quoted relative to the TMS peak. High-resolution mass spectra were recorded at an 

ionisation potential of 70 eV using Waters Synapt G2 Quadrupole Time-of-flight mass 

spectrometer (Waters Corp., Milford, MA, USA) at the University of Stellenbosch 

Central Analytical Facility. The synthesis of ligands 125a-e, 119a-d and attempted 

synthesis of 119c** was performed under nitrogen atmosphere purchased from Afrox 

(Polokwane gas and gear) and used without further purification.  

3.2 Typical procedure for the synthesis of Schiff base ligands 119a-d  
 

N NH

H2N

2HCl

ON NH

HN

R

N

NHN

R

43

73a - d

43*
119a - d

(i)

(ii)

 

                         R = -H (119a), -OH (119b), -F (119c) and –NO2 (119d)  

To a 50 mL Schlenk flask equipped with a stirrer bar, was added 2.5 mmol histamine 

dihydrochloride and 5 mmol sodium hydroxide. The mixture was stirred for 1.5 h at 
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room temperature in 15 mL methanol to obtain a sodium chloride precipitate which 

was filtered through a syringe plugged with cotton wool. The filtrate was taken into a 

250 mL Schlenk flask charged with 15 mL methanol and 2.5 mmol aldehyde. The 

mixture was stirred for 5 minutes before the addition of 2.5 mmol sodium hydrogen 

carbonate, the flask was then purged with nitrogen gas for 2 minutes before stirring at 

room temperature for 24 h after which stirring was stopped and allowed to cool to room 

temperature. The solvent was removed under reduced pressure to obtain a paste of 

colours white, brown and yellow. The paste was washed thoroughly with hexane and 

diethyl ether to acquire the corresponding Schiff bases 119a-d. 

N

NHN

119a  

3.2.1 (E)-N-benzylidene-2-(1H-imidazol-4-yl)ethanamine (119a). A mixture of 

histamine dihydrochloride 43 (460.1675 mg, 2.5 mmol), benzaldehyde 73a (265.30 

mg, 2.50 mmol), sodium hydroxide (199.99 mg, 5.00 mmol) and sodium hydrogen 

carbonate (210.02 mg, 2.50 mmol) in methanol 30 mL afforded 119a as white solid 

(275.21 mg, 92%); m.p. 247.4 – 248.6 oC; FTIR(vmax) 598, 763, 824, 1089, 1162, 1251, 

1354, 1537, 1627, 2450, 3394 cm-1; 1H-NMR (400 MHz, MeOD-d4, ppm) 2.99 (t, J = 

14.23 Hz, 2H), 3.87 – 3.90 (td, 3J H-H = 12 Hz  and 4J H-H = 1.12 Hz, 2H), 6.82 (s, 1H), 

7.44 – 7.48 (m, 3H), 7.60 (s, 1H), 7.71 – 7.73 (dd, J = 1.69 Hz and J = 1.71 Hz, 2H), 

8.24 (s, 1H); 13C-NMR (100 MHz, MeOD-d4, ppm) 29.3, 61.8, 118.5, 129.9, 130.9, 

132.3, 136.1, 137.1, 161.6, 165.0; HRMS (ESI): calculated 119.1109, [MH]+, 

C12H13N3
+, found 200.1180. 

N

NHN

119b

HO

 

3.2.2 4-((E)-(2-(1H-imidazol-4-yl)ethylimino)methyl)phenol (119b). A mixture of 

histamine dihydrochloride 43 (460.17 mg, 2.50 mmol), 4-hydroxybenzaldehyde (73b) 



 

61 
 

(305.30 mg, 2.50 mmol), sodium hydroxide (199.99 mg, 5.00 mmol) and sodium 

hydrogen carbonate (210.02 mg, 2.50 mmol) in methanol 30 mL afforded 119b as 

brown solid (481.87 mg, 90%); m.p. 262.5 – 263.1 oC; FTIR(vmax) 599, 720, 834, 1126, 

1221, 1257, 1358, 1537, 1668, 2948, 3327, 3928 cm-1;  1H-NMR (400 MHz, MeOD-

d4, ppm) 2.95 (t, J = 14.4 Hz, 2H), 3.80 (t, J = 14 Hz, 2H), 6.75 (d, J = 8.66 Hz, 2H), 

6.81 (s, 1H), 7.52 (d, J = 8.63 Hz, 2H), 7.60 (s, 1H), 8.05 (s, 1H); 13C-NMR (100 MHz, 

MeOD-d4, ppm) 29.7, 61.5, 118.8, 120.3, 122.7, 131.6, 136, 161.6, 165.9, 173.0; 

HRMS (ESI): calculated 215.1059, [MH]+, C12H13N3O+, found 216.1126. 

N

NHN

119c

F

 

3.2.3 (E)-N-(4-fluorobenzylidene)-2-(1H-imidazol-4-yl)ethanamine (119c). A mixture 

of histamine dihydrochloride 43 (460.1675 mg, 2.5 mmol), 4-fluorobenzaldehyde (73c) 

(310.29 mg, 2.5 mmol), sodium hydroxide (199.99 mg, 5.00 mmol) and sodium 

hydrogen carbonate (210.02 mg, 2.50 mmol) in methanol 30 mL afforded 119c as 

white solid (488.56, 90%); m.p. 284.9 – 286.1 oC; FTIR(vmax) 598, 822, 895, 1088, 

1126, 1254, 1362, 1624, 2951, 3340 cm-1; 1H-NMR (400 MHz, MeOD-d4, ppm) 2.98 

(t, J = 14.30 Hz, 2H), 3.86 – 3.89 (td, 3JH-H = 12 Hz and 4JH-H = 0.88 Hz), 6.82 (s, 1H), 

7.16 – 7.20 (m, 2H), 7.59 (s, 1H), 7.60-7.89 (dd, 3JHF = 5.60 Hz and 3JHF = 5.54 Hz, 

2H), 8.23 (s, 1H); 13C-NMR (100 MHz, MeOD-d4, ppm) 29.3, 61.8, 115.4 (2JCF = 22.2 

Hz), 118.5, 131.6 (3JCF = 8.6 Hz), 130.1 (3JCF = 9 Hz), 133.7 (4JCF = 2.9 Hz), 136.1, 

161.6, 163.5, 166.0 (d, 1JCF = 250 Hz); HRMS (ESI): calculated 217.1015, [MH]+, 

C12H12FN3
+, found 218.1078. 

N

NHN

119d

O2N

 

3.2.4 (E)-N-(4-nitrobenzylidene)-2-(1H-imidazol-4-yl)ethanamine (119d). A mixture of 

histamine dihydrochloride 43 (460.17 mg, 2.50 mmol), 4-nitrobenzaldehyde (73d) 



 

62 
 

(377.80 mg, 2.50 mmol), sodium hydroxide (199.99 mg, 5.00 mmol) and sodium 

hydrogen carbonate (210.02 mg, 2.50 mmol) in methanol 30 mL afforded 119d as 

yellow solid (594.17, 90%); m.p. 266.2 – 267.4 oC; FTIR(vmax) 599, 761, 824, 1090, 

1121, 1207, 1365, 1537, 1628. 2949, 3348 (-NH) cm-1; 1H-NMR (400 MHz, MeOD-d4, 

ppm) 3.016 (t, 14.13 Hz, 2H), 3.94-3.98 (td, 3JH-H = 16 and 4JH-H = 1.25 Hz, 2H), 6.84 

(s, 1H), 7.60 (d, 4J = 1.12 Hz, 1H), 7.96-7.98 (dd, J =  2 Hz and J = 2 Hz, 2H), 8.30-

8.33 (dd, J = 2 Hz and J = 1.6 Hz, 2H), 8.38 (s, 1H); 13C-NMR (100 MHz, MeOD-d4, 

ppm) 29.3, 62.2, 118.4, 125.0, 130.3, 131.1, 143.0, 150.7, 161.6, 162.3; HRMS (ESI): 

calculated 244.096, [MH]+, C12H12N4O2
+, found 245.1031. 

3.3 Attempted synthesis of Zn(ll) ethanamineimidazolyl-Schiff base complexes 
 

N

NHN

F

N

NHN

F

Zn

ClCl

119c
119c**

 

Into an NMR tube was added, (1.00 mg, 0.0001 mmol) of 119c and (0.63 mg, 0.0001 

mmol) of ZnCl2. The mixture was left to stand at room temperature for 24 h in 0.6 mL 

of MeOD-d4. The 1H-NMR was recorded at (400 MHz, ppm) 2.90 (br-s, 2H), 4.04 (br-

s, 2H), 6.85 (br-s, 1H), 2.25 (m, 2H), 7.55(br-s, 1H), 8.12 (d, J = 3.72 Hz, 2H), 8.70 

(br-s, 1H). 

N.B Compounds 120a-e are reported inliterature and referenced thereof. 

3.4 General synthesis of 2-arylquinazoline-4-one derivatives 120a – e 
 

O

NH2

NH2

+

O

R

N

NH

O

R

68

(73c - d,
 73a', 73b' 
and 73c')

120a - e

 

R = -Cl (120a), -Br (120b), -F (120c), -NO2 (120d), -OMe (120e) 
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Quinazoline derivatives were prepared following a literature method reported by 

Mphahlele and co-workers [2]. To a 100 mL round bottom flask, anthranilamide 68 (1 

mmol), benzaldehyde derivatives (73c – d, 73a', 73b' and 73c') (1 mmol) and iodine 

(2 equiv.) in ethanol (30 mL per mmol of 68) was refluxed at 80 oC for 6 h. The mixture 

was left to cool to room temperature and quenched with cold saturated sodium 

metabisulfate solution. The resulting precipitate was filtered and washed thoroughly 

with water. The solid product was recrystalised from acetonitrile and oven dried to yield 

the corresponding quinazoline-4(3H)-ones 120a - e. The following products were 

prepared accordingly:  

N

NH

O

Cl
120a

 

3.4.1 2-(4-Chlorophenyl)quinazolin-4(3H)-one (120a): A mixture of 68 (1500.00 mg, 

11.02 mmol), benzaldehyde (73a') (1550.00 mg, 11.02 mmol) and iodine (2.80 g, 

22.04 mmol) in ethanol (100 mL) yielded 120a as a white solid (2450.00 mg, 87%); 

m.p. 295.2 – 297.1 oC, lit (298 – 299 oC) [3]; FTIR(vmax) 764, 840, 1168, 1232, 1259, 

1531, 1606, 1666, 3052, 3174 cm-1; 1H-NMR (400 MHz, DMSO-d6, ppm) 7.53 (t, J = 

14.4 Hz, 1H), 7.73 – 7.77 (m, 3H), 7.84 (t, J = 14.4 Hz, 1H), 8.12-8.19 (m, 3H), 12.63 

(s, 1H); 13C-NMR (100 MHz, DMSO-d6, ppm) 121.0, 125.2, 125.9, 126.8, 127.4, 129.8, 

131.6, 131.9, 134.6, 148.5, 151.5, 162.2. 

N

NH

O

Br120b  

3.4.2 2-(4-Bromophenyl)quinazolin-4(3H)-one (120b): A mixture of 68 (1500.00 mg, 

11.02 mmol), benzaldehyde (73b') (2000.00 mg, 11.02 mmol) and iodine (2800.00 

mg, 22.04 mmol) in ethanol (100 mL) yielded 120b as a white solid (3001.00 mg, 91%); 

m.p. >350 oC, lit (>350 oC) [3]; FTIR(vmax) 766, 840, 1232, 1369, 1486, 1610, 1544, 

1656, 3064, 3186 cm-1; 1H-NMR (400 MHz, DMSO-d6, ppm) 7.53 (t, J = 14.8 Hz, 1H), 

7.63 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8 Hz, 1H), 7.84 (t, J = 14.8 Hz, 1H) 8.15 (d, J = 8 
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Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H) 12.63 (s, 1H); 13C-NMR (100 MHz, DMSO-d6, ppm) 

121.0, 125.9, 126.8, 127.5, 128.7, 129.6, 131.6, 134.7, 136.3, 148.5 151.4, 162.2. 

 

N

NH

O

F
120c

 

3.4.3 2-(4-Fluorophenyl)quinazolin-4(3H)-one (120c): A mixture of 68 (1500.00 mg, 

11.02 mmol), benzaldehyde (73c) (1370.00 mg, 11.02 mmol) and iodine (2800.00 mg, 

22.04 mmol) in ethanol (100 mL) yielded 120c as a white solid (2.46 g, 93%); m.p. 

261.3 – 263.2 oC, lit (257 – 259 oC) [3]; FTIR(vmax) 764, 840, 1166, 1305, 1484, 1555, 

1605, 1668, 3098, 3204 cm-1; 1H-NMR (400 MHz, DMSO-d6, ppm) 7.24-7.35 (m, 3H), 

7.71-7.77 (m, 2H), 8.09-8.15 (m, 3H), 12.58 (s, 1H) ; 13C-NMR (100 MHz, DMSO-d6, 

ppm) 115.4 (d, 2JCF = 22.2 Hz), 120.9, 125.9, 126.5, 128.9 (d, 4JCF = 2.9 Hz), 129.5, 

130.1 (d, 3JCF = 9 Hz), 134.6, 148.7, 151.7, 163.8 (d, 1JCF = 249.2 Hz). 

N

NH

O

NO2

120d
 

3.4.4 2-(4-Nitrophenyl)quinazolin-4(3H)-one (120d): A mixture of 68 (1500.00 mg, 

11.02 mmol), benzaldehyde (73d) (1670.00 mg, 11.02 mmol) and iodine (2800.00 mg, 

22.04 mmol) in ethanol (100 mL) yielded 120d as a white solid (2.65 g, 90%); m.p. > 

300 oC, lit (>300 oC) [3]; FTIR(vmax)  741, 833, 1018, 1261, 1399, 1583, 1601, 1684, 

3057, 3200; 1H-NMR (400 MHz, DMSO-d6, ppm) 7.38-7.68 (m, 1H), 7.72-7.51 (m, 2H), 

8.21-8.42 (m, 5H), 12.882 (s, 1H); 13C-NMR (100 MHz, DMSO-d6, ppm) 121.4, 123.3, 

123.6, 126.0, 126.8, 127.6, 129.0, 134.3, 134.5, 139.9, 148.8, 152.1. 
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N

NH

O

OMe
120e

 

3.4.5 2-(4-Methoxyphenyl)quinazolin-4(3H)-one (120e): A mixture of 68 (1500.00 mg, 

11.02 mmol), benzaldehyde (73c') (1500.00 mg, 11.02 mmol) and iodine (2800.00 mg, 

22.04 mmol) in ethanol (100 mL) yielded 120e as a white solid (2.58 g, 93%); 242.7 – 

243.4 oC, lit (240 – 241 oC) [3]; FTIR(vmax) 703, 888, 1086, 1380, 1477, 1566, 1691, 

1699, 3011, 3247; 1H-NMR (400 MHz, DMSO-d6, ppm) 3.84 (s, 3H), 7.08 (d, J = 14.8 

Hz, 2H), 7.48 (t, J = 16.0 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 16.0 Hz, 1H), 

8.19 (d, J = 14.8 Hz, 2H), 12.43 (s, 1H); 13C-NMR (100 MHz, DMSO-d6, ppm) 55.46, 

114.0, 120.7, 124.9, 125.8, 126.1, 127.1, 129.5, 134.5, 148.9, 152.0, 161.9, 162.4. 

3.5 Oxidative aromatisation of 121a - e in SOCl2-DMF mixture 
 

N

NH

O

R

N

N

Cl

R

120a - e 121a - e
 

R = -Cl (121a), -Br (121b), -F (121c), -NO2 (121d), -OMe (121e) 

N.B Compounds 121a-e are reported in literature and referenced thereof. 

3.5a Typical procedure for the synthesis of 4-chloro-2-arylquinozaline 

derivatives (121a- e) 

N

N

Cl

Cl

121a  

Quinazoline derivatives were prepared following a literature method reported by 

Mphahlele and co-workers [1]. To a stirring suspension of 120a (1000.00 mg, 3.90 
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mmol) in thionyl chloride (30 mL) at room temperature, DMF (1 mL) was added 

dropwise. The mixture was refluxed for 4 h and allowed to cool to room temperature 

before quenching with cold water and was extracted with dichloromethane. The 

dichloromethane was dried over anhydrous sodium sulphate, filtered and evaporated 

under reduced pressure to yield (The same procedure was applied to afford 120b – 

e):  

3.5.1 4-Chloro-2-(4-chlorophenyl)quinazoline (121a) [4] as a white solid (940.00 mg, 

88%); m.p. 143.2 – 145.4 oC; FTIR(vmax) 758, 842, 954, 1152, 1234, 1336, 1519, 1537; 

1H-NMR(400 MHz, CDCl3, ppm) 7.47 (d, J = 8.8 Hz, 2H), 7.66 (t, J = 16. Hz, 1H), 7.92 

(t, J = 16.4 Hz, 1H), 8.05 (d, J = 8 Hz, 1H), 8.23 (d, J = 8 Hz, 1H), 8.56 (d, J = 8.8 Hz, 

2H); 13C-NMR (100 MHz, CDCl3, ppm) 122.4, 125.8, 128.4, 128.9, 130.1, 135.0, 137.4, 

143.7, 151.7, 159.0, 162.6. 

N

N

Cl

Br

121b  

3.5.2 2-(4-Bromophenyl)-4-chloroquinazoline (121b) [5]. A stirred mixture of 120b 

(1000.00 mg, 3.30 mmol) and DMF (1 mL) in thionyl chloride (30 mL) yielded 121b as 

a white solid (1130.00 mg, 93%); m.p. 151.7 – 153.4 oC; FTIR(vmax)  647, 699, 742, 

785, 844, 902, 1152, 1264, 1339, 1600; 1H-NMR (400 MHz, CDCl3, ppm)  7.48-7.54 

(m, 3H) 7.92 (t, J = 16.4 Hz, 1H) 8.05 (d, J = 8.4 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 8.43 

(d, J = 8.8 Hz, 2H); 13C-NMR(100 MHz, CDCl3, ppm) 122.4, 125.8, 128.8, 130.0, 131.8, 

135.0, 135.5, 137.3, 151.6, 159.0, 162.6. 

N

N

Cl

F

121c  
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 3.5.3 4-Chloro-2-(4-fluorophenyl)quinazoline (121c) [6]. A stirred mixture of 120c 

(1.00 g, 4.18 mmol) and DMF (1 mL) in thionyl chloride (30 mL) yielded 121c as a 

white solid (0.97 g, 90%); m.p. 137.2 – 139.3 oC, lit [139 – 141 oC]; FTIR(vmax)  655, 

688, 726, 760, 844, 933, 1153, 1264, 1510, 1563; 1H-NMR (400 MHz, CDCl3, ppm) 

7.11-7.28 (m, 2H), 7.64 (t, J = 16.8 Hz, 1H), 7.92 (t, J = 16.8 Hz, 1H), 8.05 (d, J = 8 

Hz, 1H), 8.23 (d, J = 8 Hz, 1H), 8.41-8.46 (m, 2H); 13C-NMR (100 MHz, CDCl3, ppm) 

115.7 (d, 2JCF = 84 Hz), 122.3, 128.2, 128.8, 130.9 (d, 3JCF = 8.8 Hz), 132.9 (d, 2JCF = 

3 Hz), 151.8, 159.0, 162.5, 165.1 (d, 1JCF = 248.5 Hz). 

 

N

N

Cl

NO2

121d  

3.5.4 4-Chloro-2-(4-nitrophenyl)quinazoline (121d) [4]. A stirred mixture of 120d 

(1000.00 mg, 3.74 mmol), vmax (ATR) and DMF (1 mL) in thionyl chloride (30 mL) 

yielded 121d as a white solid (900 mg, 84%); m.p. 148.1 – 150.2 oC; FTIR(vmax) 709, 

843, 891, 1026, 1248, 1322, 1373, 1509, 1587;  1H-NMR (100 MHz, CDCl3, ppm) 7.74 

(t, J = 16.8 Hz, 1H), 7.79 (t, J = 16.8 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 8.29 (d, J = 8.4 

Hz, 1H), 8.34 (d, J = 10.4 Hz, 2H), 8.74 (d, J = 10.4 Hz, 2H); 13C-NMR (400 MHz, 

CDCl3, ppm) 122.7, 123.7, 125.9, 129.5, 129.6, 135.3, 142.3, 144.2, 149.4, 151.6, 

157.7, 162.9.  

N

N

Cl

OMe

121e  

3.5.5 4-Chloro-2-(4-methoxyphenyl)quinazoline (121e) [7]. A stirred mixture of 120e 

(1000 mg, 3.98 mmol) and DMF (1 mL) in thionyl chloride (30 mL) yielded 121e as a 

white solid (960 mg, 89%); m.p. 144.3 – 146.6  oC; FTIR(vmax) 763, 837, 934, 1152, 
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1290, 1336, 1579, 1603; 1H-NMR (400 MHz, CDCl3, ppm) 3.87 (3H, br-s), 7.08 (d, J = 

8.8 Hz, 2H), 7.58 (t, J = 16.4 Hz, 1H), 7.87 (t, J = 16.4 Hz, 1H), 8.01 (d, J = 8 Hz, 1H), 

8.17 (d, J = 8 Hz, 1H), 8.52 (d, J = 8.8 Hz, 2H); 13C-NMR (100 MHz, CDCl3, ppm)  55.4, 

113.9, 122, 125.8, 127.7, 128.5, 129.2, 130.4, 134.7, 151.8, 159.8, 162.1, 162.2. 

3.6 Typical procedure for Dechloro-Amination of 123a - e  
 

N

N

Cl

R

121a - e

+

N

O2N

H2N

N

N

R

HN N

O2N

122 123a - e
 

R = -Cl (123a), -Br (123b), -F (123c), -NO2 (123d), -OMe (123e) 

A stirred mixture of 121a (1 equiv.), 2-amino-3-nitropyridine 1.1 equiv.) 122 and 

concentrated sulfuric acid (20 drops) in (3:1) THF-DMF 30 ml was heated at 65 oC for 

5 h after which the solution was allowed to cool to RT. The reaction mixture was then 

added to crushed ice 30 mL, stirred and the product extracted with ethyl acetate. The 

organic layer washed with aqueous solution of sodium hydrogen carbonate, dried over 

anhydrous Na2SO4, filtered and evaporated under reduced pressure to afford 123a as 

yellow solid product 123b-e were all prepared in a similar fashion. 

N

N

Cl

HN N

O2N

123a  

3.6.1 2-(4-Chlorophenyl)-N-(3-nitropyridin-2-yl)quinazolin-4-amine (123a). A mixture 

of 4-chloro-2-(4-chlorophenyl)quinazoline 121a (300.00 mg, 1.09 mmol), sulphuric 

acid 20-drops and 2-amino-3-nitropyridine 122 (166.87 mg, 1.20 mmol) afforded 123a 

as yellow solid (280.00 mg, 95%) m.p. 281.2 – 282.1 oC; FT-IR (vmax) 458, 478, 538, 
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683, 728, 761, 840, 1012, 1074, 1149, 1241, 1280, 1344, 1344, 1443, 1556, 1599, 

1669, 3132, 3461; 1H-NMR (400 MHz, DMSO-d6, ppm) 6.73-6.76 (dd, J = 4.8 Hz and 

4.4 Hz, 1H), 7.54 (t, J = 14.8 Hz, 1H), 7.63 (d, J = 8.8 Hz, 2H), 7.75 (d, 8.0 Hz, 1H), 

7.85 (t, J = 14.8 Hz, 1H), 7.90 (s, 1H), 8.16 (d, J = 8.0 Hz, 1H), 8.20 (d, J = 8.8 Hz, 

2H), 8.38 (t, J = 10.8 Hz, 1H), 12.63 (s, 1H); 13C-NMR (100 MHz, DMSO-d6, ppm) 

113.0, 121.5, 126.4, 127.3, 128.0, 129.2, 130.1, 132.0, 135.2, 135.4, 136.8, 149, 

151.8, 154.2, 156.8, 162.6; HRMS(ESI): calculated 377.0680, [M-HCl]+, C19H12N5O2
+, 

found 341.2670. 

N

N

Br

HN N

O2N

123b  

3.6.2 2-(4-Bromophenyl)-N-(3-nitropyridin-2-yl)quinazolin-4-amine (123b). A mixture 

of 2-(4-bromophenyl)-4-chloroquinazoline 121b (300.00 mg, 0.94 mmol), sulphuric 

acid 20-drops and 2-amino-3-nitropyridine 122 (143.29 mg, 1.03 mmol) afforded 123b 

as yellow solid (210.00 mg, 78%), m.p. 292.1 – 284.1 oC; FTIR(vmax) 389, 505, 545, 

771, 799, 1008, 1064, 1150, 1182, 1336, 1480, 1558, 1600, 1670, 2884, 2919, 2960, 

3027, 3268, 3462; 1H-NMR (400 MHz, DMSO-d6, ppm); 6.73-6.76 (dd, J = 4.63 Hz 

and J = 4.44 Hz, 1H), 7.54 (t, J = 15.03 Hz, 1H), 7.73-7.78 (m, 3H), 7.85 (t, J = 15.51 

Hz, 1H), 7.72 (s, 1H), 8.10-8.16 (m, 3H), 8.19-8.40 (m, 1H), 12.64 (s, 1H); 13C-NMR 

(100 MHz, DMSO-d6, ppm) 112.5, 121.0, 125.3, 125.7, 126.8, 126.8, 127.5, 129.9, 

131.7, 132.0, 135.0, 148.6, 151.5, 153.8, 156.3, 162.3; HRMS (ESI): calculated 

421.0174. [M+Na]+, C19H12
79BrN5O2Na+, found 444.9536. 
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N

N

F

HN N

O2N

123c  

3.6.3 2-(4-Fluorophenyl)-N-(3-nitropyridin-2-yl)quinazolin-4-amine (123c). A mixture 

of 4-chloro-2-(4-fluorophenyl)quinazoline 121c (300.00 mg, 1.16 mmol), sulphuric acid 

20-drops and 2-amino-3-nitropyridine 122 (177.48 mg, 1.28 mmol) afforded 123c as 

yellow solid (260.00 mg, 92%),m.p. 273.8 – 274.8 oC; FTIR(vmax) 426, 496, 540, 685, 

735, 763,802, 840, 940, 1019, 1110, 1149, 1233, 1321, 1446, 1518, 1580, 1667, 3090, 

3463;  1H-NMR (400 MHz, DMSO-d6, ppm) 6.73-6.76 (dd, J = 4.4 Hz and 4.4 Hz, 1H), 

7.39 (t, J = 17.6 Hz, 2H), 7.52 (t, J = 15.2 Hz, 1H), 7.74 (d, J = 8 Hz, 1H), 7.84 (t, J = 

15.6 Hz, 1H), 7.89 (1H, s), 8.15 (d, J = 7.6 Hz, 1H), 8.14-8.23 (m, 2H), 8.38 (t, J = 11.6 

Hz, 1H), 12.58 (s, 1H); 13C-NMR (100 MHz, DMSO-d6, ppm) 113.0, 115.7 (d, 2JCF = 

21.8 Hz), 121.3, 126.3, 127.1, 127.2, 127.9, 129.3 (d, 4JCF = 2.9 Hz), 130.4 (d, 3JCF = 

9.2 Hz), 135.1, 135.4, 149.1, 151.9, 154.2, 156.7, 164.2 (d, 1JCF = 249.4 Hz); HRMS 

(ESI): calculated 361.0975, [M]+, C19H12FN5O2
+, found 361.0641. 

N

N

NO2

HN N

O2N

123d  

3.6.4 2-(4-Nitrophenyl)-N-(3-nitropyridin-2-yl)quinazolin-4-amine (123d). A mixture of 

4-chloro-2-(4-nitrophenyl)quinazoline 121d (300.00 mg, 1.05 mmol), sulphuric acid 

20-drops and 2-amino-3-nitropyridine 122 (160.70 mg, 1.16 mmol) afforded 123d as 

yellow solid (180.00 mg , 66%), m.p. 269.2 – 271.2 oC; FTIR(vmax)  501, 539, 762, 802, 

820, 941, 1030, 1070, 1099, 1149, 1175, 1241, 1440, 1410, 1515, 1561, 1598, 1674, 

3133, 3462; 1H-NMR (400 MHz, DMSO-d6, ppm); 6.73-6.76 (dd, J = 4.53 Hz and J = 
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4.59 Hz, 1H), 7.57 (t, J = 15.27 Hz, 1H), 7.79 (d, J = 7.63 Hz, 1H), 7.87 (t, J = 15.27 

Hz, 1H), 7.93 (s, 1H), 8.18 (d, J = 7.63 Hz, 1H), 7.86-8.44 (m, 6H), 12.89 (s, 1H); 13C-

NMR (100 MHz, DMSO-d6, ppm) 112.5, 121.3, 123.7, 126, 127.8, 127.7, 129.3, 135.0, 

139.1, 148.5, 148.9, 151.3, 153.8, 156.3, 162.7; HRMS (ESI): calculated 388.0920, 

[M+Na]+, C19H12N6O4Na+, found 411.0530. 

 

N

N

OMe

HN N

O2N

123e  

3.6.5 2-(4-Methoxyphenyl)-N-(3-nitropyridin-2-yl)quinazolin-4-amine (123e). A mixture 

of 4-chloro-2-(4-methoxyphenyl)quinazoline 121e (300.00 mg, 1.11 mmol), sulphuric 

acid 20-drops and 2-amino-3-nitropyridine 122 (169.59 mg, 1.22 mmol) afforded 123e 

as yellow solid (240.00 g, 84%), m.p. 262.4 – 264.4 oC; FTIR(vmax) 423, 504, 540, 575, 

611, 762, 835, 940, 1119, 1244, 1291, 1415, 1441, 1483, 1517, 1558, 1599, 1668, 

2994, 3464; 1H-NMR(400 MHz, DMSO-d6) 3.85 (s, 3H), 6.73-6.76 (dd, J = 4.67 Hz 

and J = 4.47 Hz, 1H), 7.09 (d, J = 9.14 Hz, 2H), 7.49 (t, J = 17.97 Hz, 1H), 7.70 (d, J 

= 8.36 Hz, 1H), 7.82 (t, J = 15.36 Hz, 1H), 7.91 (s, 1H), 8.13 (d, J = 8.36 Hz, 1H), 8.19 

(d, J = 9.14 Hz, 2H), 8.20-8.40 (m, 1H), 12.43 (s, 1H); 13C-NMR(100 MHz, DMSO-d6) 

55.5, 112.5, 114.0, 120.7, 124.8, 125.9, 126.2, 126.8, 127.3, 129.5, 134.6, 135.0, 

149.0, 151.9, 153.8, 156.3, 161.9, 162.4; HRMS(ESI): calculated 373.1175 [M]+, 

C20H15N5O4
+, found 373.1553. 
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3.7 Typical procedure for Sonogashira Cross-Coupling of 124a - e with 

ethynylpyridine  

N

N

R

N

N

N

Cl

R

+

N

121a - e

125a - e
124

 

R = -Cl (125a), -Br (125b), -F (125c), -NO2 (125d), -OMe (125e) 

A mixture of 121 (1 equiv.), PdCl2(PPh3)2 (10%), CuI (10%) and Cs2CO3 (2 equiv.) in 

3:1 THF-water, in a round-bottom flask equipped with a stirrer bar and a condenser 

equipped with a balloon was flushed for 5 min with nitrogen gas. 1.5 equiv. 

Ethynylpyridine 124 was added to the flask at once and the mixture was flushed for an 

additional 10 min. The mixture was refluxed for 24 h at 65 oC under nitrogen 

atmosphere and then quenched with an ice cold water. The precipitate was filtered on 

a sintered funnel and then taken-up into dichloromethane. The solution was dried with 

anhydrous sodium sulfate, filtered and then evaporated under reduced pressure. The 

residue was recrystallised from diethyl ether to afford 4-(ethynylpyridine)quinazolines 

125a – e. 

N

N

Cl

N

125a  

3.7.1 2-(4-Chlorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline (125a), A mixture of 4-

chloro-2-(4-chlorophenyl)quinazoline 121a (500.00 mg, 1.82 mmol), PdCl2(PPh3)2 

(127.00 mg, 0.18 mmol), CuI (35.00 mg, 0.18 mmol), Cs2CO3 (1185.99 mg, 3.64 
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mmol) and 4-ethynylpyridine 124 (381.05 mg, 2.73 mmol) in THF-water, 30 mL (3:1) 

afforded 125a as white solid (460.00 mg, 98%); m.p. 209.2 – 210.0 oC; FTIR(vmax) 759, 

845. 881, 1024, 1228, 1252, 1433, 1537, 2221;1H-NMR (400 MHz, CDCl3, ppm) 7.50 

(d, J = 8.4 Hz, 2H), 7.61 (d, J = 5.2 Hz, 2H), 7.69 (t, J = 14.8 Hz, 1H), 7.95 (t, J = 14.8 

Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 8.33 (d, J = 8.4 Hz, 1H), 8.59 (d, J = 8.4 Hz, 2H), 

8.74 (d, J = 5.2 Hz, 2H); 13C-NMR (100 MHz, CDCl3, ppm) 88.8, 93.7, 123.8, 125.9, 

126.1, 128.2, 128.9, 129.2, 129.4, 130.0, 134.7, 136.0, 137.1, 150.1, 151.1, 151.9, 

159.9; HRMS(ESI): calculated 341.0720, [MH]+, C21H12
35ClN3

+, found 342.0787. 

 

N

N

Br

N

125b  

3.7.2 2-(4-Bromoyphenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline (125b), A mixture of 

2-(4-bromophenyl)-4-chloroquinazoline 121b (500.00 mg, 1.56 mmol), PdCl2(PPh3)2 

(110.00 mg, 0.16 mmol), CuI (30 mg, 0.16 mmol), Cs2CO3 (1016.56 mg, 3.12 mmol) 

and 4-ethynylpyridine 124 (327.57 mg, 2.35 mmol) in THF-water, 30 mL (3:1) afforded 

125b  white solid (400.00 mg, 90%); m.p. 234.6 – 236.3 oC ; FTIR(vmax) 767, 1005, 

1023, 1264, 1336, 1532, 2225;  1H-NMR (400 MHz, CDCl3, ppm) 7.60 (d, J = 6 Hz, 

2H), 7.64-7.70 (m, 3H), 7.94 (t, J = 16.8 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 8.33 (d, J = 

8.4 Hz, 1H), 8.68 (d, J = 13.2 Hz, 2H), 8.74 (d, J = 6 Hz, 2H); 13C-NMR (100 MHz, 

CDCl3, ppm) 89.0, 93.7, 123.8, 125.7, 125.9, 126.1, 128.2, 129.1, 129.3, 130.2, 131.8, 

134.7, 136.4, 150.1, 151.0, 151.9, 159.9; HRMS(ESI): calculated 386.0215, [MH]+, 

C19H12
81BrN3

+, found 388.0274. 
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N

N

F

N

125c  

3.7.3 2-(4-Fluorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline (125c), A mixture of 4-

chloro-2-(4-fluorophenyl)quinazoline 121c (500.00 mg, 1.93 mmol), PdCl2(PPh3)2 

(136.00 mg, 0.19 mmol), CuI (38.00 mg, 0.19 mmol), Cs2CO3 (1257.67 mg, 3.86 

mmol) and 4-ethynylpyridine 124 (404.08 mg, 2.90 mmol) in THF-water, 30 mL (3:1) 

afforded 125c   white solid (0.39 g, 94%); m.p. 197.6 – 199.2 oC; FTIR(vmax) 758, 819, 

925, 1147, 1270, 1336, 1537, 2220;  1H-NMR (400 MHz, CDCl3, ppm) 7.20 (t, 3JHF = 

27.6 Hz, 2H), 7.60 (d, J = 6 Hz, 2H), 7.67 (t, J = 16.4 Hz, 1H), 7.94 (t, J = 16.4 Hz, 

1H), 8.09 (d, J = 8.4 Hz, 1H), 8.32 (d, J = 8.4 Hz, 1H), 8.41-8.67 (m, 2H), 8.73 (d, J = 

6 Hz, 2H); 13C-NMR (100 MHz, CDCl3, ppm) 88.9, 93.6, 115.6 (d, 2JCF = 21.5 Hz), 

123.7, 126.0, 128.0, 129.1, 129.4, 130.8 (d, 3JCF = 8.7 Hz), 133.7 (d, 4JCF = 2.9 Hz), 

134.7, 150.2, 151.5, 160.0, 164.7 (d, 1JCF = 247.6 Hz); HRMS(ESI): calculated 

325.1015, [MH]+, C21H12FN3
+, found 326.1082. 

N

N

NO2

N

125d  

3.7.4 2-(4-Nitrophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline (125d), A mixture of 4-

chloro-2-(4-nitrophenyl)quinazoline 121d (500.00 mg, 1.75 mmol), PdCl2(PPh3)2 

(123.00 mg, 0.18 mmol), CuI (33.00 mg, 0.18 mmol), Cs2CO3 (1140.37 mg, 3.50 

mmol) and 4-ethynylpyridine 124 (367.10 mg, 2.63 mmol) in THF-water, 30 mL (3:1) 

afforded 125d   white solid (390.00 mg, 94%); m.p. 272.7 – 274.8 oC; FTIR(vmax) 714, 
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819, 930, 1215, 1250, 13338, 1592, 2207; 1H-NMR (400 MHz, CDCl3, ppm) 7.61 (d, J 

= 5.60 Hz, 2H), 7.76 (t, J = 14.62 Hz, 1H), 8.01 (t, J = 15.87 Hz, 1H), 8.16 (d, J = 8.77 

Hz, 1H), 8.16-8.35 (m, 3H), 8.75 (d, J = 5.01 Hz, 2H), 8.83 (d, J = 9.19 Hz, 2H); 13C-

NMR (100 MHz, CDCl3, ppm) 88.4, 94.1, 123.6, 123.9, 125.8, 126, 128.3, 128.4, 

128.4, 129.0, 129.2, 129.3, 134.9, 143.1, 149.1, 149.8, 150.0, 150.8, 151.9, 158.4; 

HRMS(ESI): calculated 352.1015, [MH]+, C21H12N4O4
+, found 353.1027. 

 

N

N

OMe

N

125e  

3.7.5 2-(4-Methoxyphenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline (125e) A mixture of 

4-chloro-2-(4-nitrophenyl)quinazoline 121d (500.00 mg, 1.85 mmol), PdCl2(PPh3)2 

(130 mg, 0.19 mmol), CuI (35.00 mg, 0.19 mmol), Cs2CO3 (1205.53 mg, 3.70 mmol) 

and 4-ethynylpyridine124 (388.03 mg, 2.78 mmol) in THF-water, 30 mL (3:1) afforded 

125d   yellow solid (495.00 mg, 79 %) ; m.p. 202.6 – 204.6 oC; FTIR(vmax) 761, 818, 

924, 1161, 1252, 1360, 1468, 1535, 2219; 1H-NMR (400 MHz, CDCl3, ppm); 3.88 (s, 

3H), 7.03 (d, J = 8.87 Hz, 2H), 7.58-7.62 (m, 15.97 Hz, 3H), 7.88 (t, J = 15.08 Hz, 1H), 

8.05 (d, J = 8.87 Hz, 1H), 8.27 (d, J = 8.87 Hz, 1H), 8.57 (d, J = 8.87 Hz, 2H), 8.72 (d, 

J = 3.52 Hz, 2H); 13C-NMR (100 MHz, CDCl3, ppm)  55.4, 89, 93.2, 113.9, 123.4, 

125.9, 126, 127.4, 129.5, 130.1, 130.3, 134.4, 150.1, 151.1, 151.6, 160.6, 161.9; 

HRMS(ESI): calculated 337.0215, [MH]+, C22H15N3O+, found 338.1286. 
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3.8 Synthesis of [(ɳ6-p-cymene)RuCl2-4-(ethynylpyridine)quinazolines] 126a – e 
 

N

N

N

R

+

38

N

N

N

R
125a - e

126a - e

(i)

Ru

Cl

Cl

Ru

Ru

Cl

Cl

Cl Cl

 R = -Cl (126a), -Br (126b), -F (126c), -NO2 (126d), -OMe (126e) 

To a 250 mL Schlenk flask, a mixture of 125 (2.25 equiv.) and dichloro-(p-cymene)-

ruthenium (ll) dimer 38 (1 equiv.) was heated to reflux in hexane for 5 h, after which 

stirring was continued for 12 h at room temperature, the precipitate was collected on 

a filter-paper and washed thoroughly with methanol and diethyl ether to afford 126a – 

e. 

N

N

N

Cl 126a

Ru

Cl

Cl

 

3.8.1 [(ɳ6-p-cymene)RuCl2-2-(4-chlorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline] 

(126a), A mixture of 2-(4-chlorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline 125a 

(125.40 mg, 0.37 mmol) and dichloro-(p-cymene)-ruthenium(ll) dimer 38 (100.00 mg, 

0.16 mmol) in hexane 30 mL afforded 126a as orange solid (94.31 mg, 90%); m.p 

402.2 – 404.1 oC; FTIR(vmax) 768, 834, 937, 1149, 1270, 1339, 1601, 1805, 2218, 

2962; 1H-NMR (400 MHz, CDCl3, ppm) 1.33 (d, J = 6.8 Hz, 6H), 2.13 (s, 3H), 3.01 

(sep, J = 28.8 Hz, 1H), 5.27 (d, J = 5.6 Hz, 2H), 5.45 (d, J = 6 Hz, 2H), 7.60 (d, J = 

6Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.71 (t, J = Hz, 1H), 7.97 (t, J = Hz, 1H), 8.11 (d, J 

= 8 Hz, 1H), 8.27 (d, J = 8 Hz, 1H), 8.50 (d, J = 8.8 Hz, 2H), 9.16 (d, J = 6.4 Hz, 2H); 

13C-NMR (100 MHz, CDCl3, ppm) 18.4, 22.3, 30.9, 58.4, 82.3, 83.1, 91.7, 97.3, 103.7, 
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123.7, 125.8, 125.9, 126.6, 128.5, 129.2, 130.2, 131.2, 131.8, 134.9, 136.3, 151.1, 

155.0, 159.9; HRMS(ESI): calculated 647.02 [M-Cl]+, C31H26
35Cl2N3Ru+, found 

611.1852. 

N

N

N

Br 126b

Ru

Cl

Cl

 

3.8.2 [(ɳ6-p-cymene)RuCl2-2-(4-bromoyphenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline] 

(126b), A mixture of 2-(4-bromoyphenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline 125b 

(151.75, 0.37 mmol) and dichloro-(p-cymene)-ruthenium(ll) dimer 38 (100.00 mg, 0.16 

mmol) in hexane 30 mL afforded 126b as orange solid (76.01 mg, 67%); m.p >450 oC; 

FTIR(vmax) 733, 869, 1007, 1171, 1338, 1449, 1536, 1562, 1604, 2219, 2966; 1H-NMR 

(400 MHz, CDCl3, ppm) 1.33 (br-s, 6H), 2.14 (br-s, 3H), 3.01 (br-s, 1H), 5.27 (br-s, 

2H), 5.49 (br-s, 2H), 7.60 (br-s, 1H), 7.66 (d, J = 7.2 Hz, 4H), 7.96 (br-s, 1H), 8.11 (d, 

J = 4.4 Hz, 1H), 8.27 (br-s, 1H), 8.50 (d, J = 6.4 Hz, 2H), 9.17 (br-s, 2H); 13C-NMR 

(100 MHz, CDCl3, ppm) 18.4, 22.3, 30.7, 82.4, 83.1, 91.7, 91.8, 97.4, 103.8, 123.8, 

125.8, 126.0, 126.6, 128.5, 129.2, 130.2, 131.2, 131.9, 134.9, 136.3, 151.1, 151.2, 

155.1, 159.9; HRMS(ESI): calculated 692.44, [M-Cl]+, C31H26
79Br35ClN3Ru+, found 

656.0060. 

N

N

N

F 126c

Ru

Cl

Cl

 

3.8.3 [(ɳ6-p-cymene)RuCl2-2-(4-fluorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline] 

(126c), A mixture of 2-(4-fluorophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline 125c 

(119.40 mg, 0.37 mmol) and dichloro-(p-cymene)-ruthenium(ll) dimer 38 (100.00 mg, 

0.16 mmol) in hexane 30 mL afforded 126c as orange solid (82.46 mg, 80%); m.p > 
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410 oC; FTIR(vmax)  770, 841, 936, 1151, 1264, 1338, 1537, 1813, 2021,  2359, 2963; 

1H-NMR (400 MHz, CDCl3, ppm) 1.31 (d, J = 7.2 Hz, 6H), 2.11 (s, 3H), 2.98 (sep, J = 

26.5 Hz, 1H), 5.27 (d, J = 6 Hz, 2H), 5.48 (d, J = 6 Hz, 2H), 7.16-7.21 (m, 2H), 7.57 

(d, J = 6.4 Hz, 2H), 7.67 (t, J = 14.4 Hz, 1H), 7.93 (t, J = 16.4 Hz, 1H), 8.06 (d, J = 4 

Hz, 1H), 8.24 (d, J = 8 Hz, 1H), 8.25-8.62 (m, 2H), 9.14 (d, J = 6.6 Hz, 2H) 13C-NMR 

(100 MHz, CDCl3, ppm) 18.3, 22.3, 30.7, 82.2, 83, 91.7, 91.6, 97.4, 103.6, 115.6 (d, 

2JCF = 21.7 Hz), 123.5, 125.9, 126.6, 130.0, 130.7 (d, 3JCF = 8.6 Hz), 133.5 (d, 4JCF = 

2.8 Hz), 134.8, 150.1, 155.0, 159.9, 164.7 (d, 1JCF = 250 Hz); HRMS(ESI): calculated 

631.05, [M-p-cymene]+, C21H12
35Cl2FN3Ru+, found 497.0965. 

N

N

N

O2N 126d

Ru

Cl

Cl

 

3.8.4 [(ɳ6-p-cymene)RuCl2-2-(4-nitrophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline] 

(126d) A mixture of 2-(4-nitrophenyl)-4-(2-(pyridin-4-yl)ethynyl)quinazoline 125d 

(129.31 mg, 0.37 mmol) and dichloro-(p-cymene)-ruthenium(ll) dimer 38 (100.00 mg, 

0.16 mmol) in hexane 30 mL afforded 126d as orange solid (86.60 mg, 81%); m.p > 

410 oC; FTIR(vmax)  714, 833, 937, 1192, 1338, 1520, 1578, 1778, 2210, 2962; 1H-

NMR (400 MHz, CDCl3, ppm) 1.32 (d, J = 7.2 Hz, 6H), 2.13 (s, 3H), 3.01 (sep, J = 28.8 

Hz, 1H), 5.27 (d, J = 6 Hz, 2H), 5.49 (d, J = 6 Hz, 2H), 7.35 (m, J = 18.4 Hz, 3H), 7.60 

(t, J = 14.8 Hz, 1H), 8.01 (t, J = 14.8 Hz, 1H), 8.16 (d, J = 8.4 Hz, 1H), 8.35 (d, J = 8.4 

Hz, 2H), 9.17 (d, J = 6.6 Hz, 2H); 13C-NMR (100 MHz, CDCl3, ppm) 18.4, 22.3, 30.7, 

82.3, 83.1, 91.3, 97.4, 103.7, 123.8, 126.0, 126.2, 126.6, 129.3, 129.5, 131.0, 135.1, 

135.3, 143.1, 149.3, 150.2, 151.0, 155.1, 158.6; HRMS(ESI): calculated 658.05, [M-

Cl]+, C31H26
35ClN4O2Ru+, found 622.0796. 
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N

N

N

MeO 126e

Ru

Cl

Cl

 

3.8.5 [(ɳ6-p-cymene)RuCl2-2-(4-methoxy-phenyl)-4-(2-(pyridin-4-yl)-ethynyl)-

quinazoline] (126e), A mixture of 2-(4-methoxyphenyl)-4-(2-(pyridin-4-

yl)ethynyl)quinazoline 125e (123.82 mg, 0.37 mmol) and dichloro-(p-cymene)-

ruthenium(ll) dimer 38 (100.00 mg, 0.16 mmol) in hexane 30 mL afforded 126e as 

orange solid (74.41 mg, 71%); m.p 410 oC; FTIR(vmax)  714, 829, 930, 1169, 1250, 

1354, 1574, 1605, 1774, 2210, 2962; 1H-NMR (400 MHz, CDCl3, ppm) 1.32 (d, J = 6.8 

Hz, 6H), 2.13 (s, 3H), 3.01 (sep, J = 27.6 Hz, 1H), 3.89 (s, 3H), 5.27 (d, J = 6 Hz, 2H), 

5.48 (d, J = 6 Hz, 2H), 7.03 (d, J = 8.8 Hz, 2H), 7.59 (d, J = 6.4 Hz, 2H), 7.63 (t, J = 

15.2 Hz, 1H), 7.91 (t, J = 14.8 Hz, 1H), 8.06 (d, J = 8.8 Hz, 1H), 8.22 (d, J = 8.8 Hz, 

1H), 8.56 (d, J = 8.8 Hz, 2H), 9.15 (d, J = 6.8 Hz, 2H); 13C-NMR (100 MHz, CDCl3, 

ppm) 18.3, 22.3, 30.7, 55.4, 82.3, 83.0, 91.3, 91.9, 97.3, 103.7, 114.0, 123.4, 125.8, 

126.6, 127.7, 129.0, 130.0, 130.3, 131.3, 151.0, 151.2, 155, 160.7, 162; HRMS(ESI), 

calculated 643.07, [M-Cl]+, C32H29
35ClN3ORu+, found 607.1059. 

3.9 Molecular docking of compounds 119a – d, 123a – e, 125a – e 
 

The molecular docking calculations were achieved using the Schrodinger-2018-1 LLC 

interface, employing Maestro 11.5 database. All ligands and proteins in the induced-

fit docking job were prepared at physiological pH 7.4 using Epik. The conformational 

search for all ligands was done using optimised potentials for liquid simulations 

(OPLS_2005) employing water as a solvent. The induced-fit docking (IFD) experiment 

was run on extra-precision (XP), wherein residues within ligand poses were refined at 

5 Å and all ligands were re-docked into structures within 30 Kcal/mol of the best 

structure, and within the top 20 structures overall. 
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3.10 In vitro anti-Mycobacterium tuberculosis activity of compounds 119a – d, 

121a – e, 123a – e, 125a – e and 126a – e.  

 

3.10.1 Broth micro-dilution method  

 
 
The inhibitory activity against Mycobacterium tuberculosis was achieved at the 

University of Cape Town, drug discovery and development centre (H3-D), following 

broth micro-dilution method. The broth micro-dilution method allows a range of 

antibiotic concentrations to be tested on a single 96-well microtitre plate in order to 

determine the minimum inhibitory concentration (MIC). Briefly, a 10 mL culture of a 

mutant Mtb (H37Rv) strain constitutively expressing recombinant alamar blue assay 

of a plasmid integrated at the attB locus is grown to an OD600 of 0.6–0.7. The Mtb. 

H37Rv strain culture is then diluted 1:100 in 7H9 GLU CAS TX. In a 96-well microtitre 

plate, 50 μL of 7H9 GLU CAS TX medium is added to all wells from Rows 2-12. The 

compounds to be tested are added to Row 2-12 in duplicate, at a final concentration 

of 640 μM (stocks are made up to a concentration of 12.8 mM in DMSO, and diluted 

to 640 μM in 7H9 GLU CAS TX medium). A two-fold serial dilution is prepared, by 

transferring 50 μL of the liquid in Row 1 and 2 to mix. 50 μL of the liquid in Row 2 is 

then transferred to Row 3 and aspirated. The procedure is repeated until Row 12 is 

reached, from which 50 μL of the liquid is discarded to bring the final volume in all 

wells to 50 μL. Finally, 50 μL of the 1:100 diluted Mtb cultures are added to all wells in 

Rows 2-12. Row 1 serves as a contamination control which includes media, 5% DMSO 

and rifampicin. The microtitre plate is stored in a secondary container and incubated 

at 37 °C with humidifier to prevent evaporation of the liquid. The lowest concentration 

of compounds which inhibit growth of more than 90% of the bacterial population is 

considered to be the MIC90 and MIC99. The pellet data is reported as visual score and 

calculated MIC during 7 and 14 day post inoculation [8]. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

Bidentate Schiff base ligands of the N^N type were synthesised in good yields and 

their respective metal coordinated complexes where M is Zn(II) were also attempted. 

This was later followed by the synthesis of ethynylpyridine bridged quinozaline organic 

moiety derivatives which were coordinated to monomeric p-cymene ruthenium(ll) 

centre.  

4.1 Synthesis of ethanamineimidazolyl-Schiff base ligands and their reaction 

with M(II) metals 
 

The retrosynthetic analysis strategy for the synthesis of the target ligands 119a-d to 

be coordinated to metal centres Ru/Zn is shown below in Scheme 4.1. 

R

N
NH

NRu
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-

N

NHN

R

+
Ru

H3CCN
NCCH3

Cl

PF6
-

R

N
NH

NZn
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H2N

NHN
+

O

+ 2NCCH3Cl

38

Ru

Ru Cl

Cl

Cl Cl

73a-d 43

119a-d

     R = -H, -OH, -F, -NO2 

Scheme 4.1: Retrosynthetic strategy for the synthesis of the proposed 

ethanamineimidazolyl Schiff base complex. 

Schiff base ligands are generally accessible by following a direct acid or base 

catalysed condensation reaction between aldehyde derivatives and primary amine in 

the presence of a drying agent (MgSO4, Na2SO4 and NaHCO3) [1]. The drying agent 

in this case helps in absorbing the water molecules from the reaction and in-turn form 

an alkaline solution which does not temper with the progression of the reaction [2]. On 

the other hand, metal complexes of Schiff bases are formed by treating metal salts 

with stoichiometric amount of the ligand under moisture free conditions depending on 

the nature of the ligand and the metal salt employed in the reaction [3].  
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The synthesis of Schiff base derivatives 119a-d was initiated by a trial series of acid 

catalysed reactions. A reaction of para-substituted aldehyde derivaties 73a-d, 

histamine dihydrochloride 43, formic acid 5 - 10% (7 - 12 drops) and sodium hydrogen 

carbonate (NaHCO3) in dry methanol while stirring at room temperature for 24 h was 

unsuccessful. Only starting materials, i.e. aldehyde 73a-d and the histamine 

dihydrochloride 43, were isolated. Further attempts using different acids such as 

hydrochloric acid (HCl, 5 - 10%) [5], sulphuric acid (H2SO4, 5 - 10%) [6] and acetic acid 

(CH3COOH, 5 - 10%) [7] yielded trace amount of the desired product. Reaction of the 

aldehydes (73a-d) and histamine in basic conditions i.e. triethylamine solution (TEA) 

showed the formation of the expected product. However, purification was a challenge 

as chromatographic purification techniques (prep-TLC and column chromatography) 

proved detrimental to the ligands. The Schiff base ligands cannot be purified using 

column/ preparative thin layer chromatographic (TLC) techniques, as they are 

moisture sensitive and undergo hydrolysis. The imidazolyl-ethanamine Schiff base 

ligands 119a-d were successfully synthesised by condensation of the para-substituted 

(-F, -NO2, -H and –OH) aldehyde derivatives 73a-d and histamine dihydrochloride 43 

in the presence of sodium hydroxide (NaOH) [4]. Histamine dihydrochloride 43 was 

neutralised with NaOH in methanol for 2 hrs to give a colourless methanolic reaction 

mixture i.e 43*. The reaction mixture was then added dropwise to a methanolic 

aldehyde solution equipped with a stirrer bar and stirred for 15 minutes before adding 

NaHCO3. The reaction mixture was stired for 24 h at room temperature, after which 

Schiff base derivatives 119a-d were isolated in high yields ranging from 94 – 98%, 

Scheme 4.2.  

N NH

H2N

2HCl

ON NH

HN

R

N

NHN

R

43

73a - d

43*
119a - d

(i)

(ii)

R = -H, -OH, -F, -NO2. 

Reagents and solutions: (i) NaOH, MeOH, rt, 2h, (ii) MeOH, rt, 24h. 

Scheme 4.2: Reaction scheme for the synthesis of Schiff base ligands 119a-d.  
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A representative ligand, 4-((E)-(2-(1H-imidazol-4-yl)ethylimino)methyl)phenol 119b is 

here described.  The 1H-NMR spectrum (Figure 4.1) reveals the presence of an 

expected set of two singlets and doublets corresponding to the imidazolyl protons and 

the symmetrical aromatic protons respectively in the region (δH 6.74 – 7.60 ppm). 

Another expected set of two triplets relatively upfield both integrating for 2H each while 

the slightly de-shielded –CH2
b of the ethanamine group reasonating at δ 3.80 ppm (J 

= 14.00 Hz) is also observed. An intense singlet of the imine proton at δ 8.05 ppm 

confirms the condensation between 4-hydroxybenzaldehyde derivative 73b and 

histamine 43. The presence of the azomethine group (-CH*=N-) was further confirmed 

using the 1H-1H COSY experiment. The spectrum revealed a correlation between the 

imine proton and the de-shielded triplet –CH2
b (correlation peak circled red, (Figure 

4.2)). The 1H-HMBC spectrum (Figure 4.3) revealed a correlation between the imine 

hydrogen (red circles) and the carbon of the –CH2
b group resonating at 63 ppm via 4J-

spin coupling. The FTIR spectrum (Figure 4.4) of the 4-((E)-(2-(1H-imidazol-4-

yl)ethylimino)methyl)phenol 119b revealed the azomethine group (-CH=N-) at 1668 

cm-1 further confirming the presence of the (-CH=N-) link. Similar findings of other 

derivatives summarised in Table 4.1. 

Table 4.1: Summarised characterisation of compounds 119a-d. 

119 R Imine proton 

(ppm) 

vmax (-CH*=N-) link (cm-1) %yield mp. (oC) 

a -H 8.243 1696 94 247.4 – 248.6 

b -OH 8.048 1668 97 262.5 – 263.1 

c -F 8.229 1666 95 284.9 – 286.1 

d -NO2 8.375 1628 98 266.2 – 267.4 
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Figure 4.1: 1H-NMR spectrum of 119b in MeOD-d3 at 400 MHz. 

–CH2
b (-CH*=N-) 

 

N

NHN

HO

119b

CH2
b-CH*=N-
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Figure 4.2: 1H-1H-COSY spectrum of 119b in MeOD-d3 at 400 MHz. 
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Figure 4.3: Expanded 2D-HMBC spectrum of 119b in MeOD-d3 at 400 MHz. 
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Figure 4.4: FTIR spectrum of 119b.  
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4.2. Attempted synthesis of novel Zn(ll)-N^N-Schiff base complexes. 
 

Coordination of Schiff base ligand (119c) to ZnCl2 salt was attempted following 

literature method [8] in 100 % HPLC grade methanol by adding 1:1 mmol of (E)-N-(4-

fluorobenzylidene)-2-(1H-imidazol-4-yl)ethanamine 119c and ZnCl2. The progress of 

reaction was monitored at room temperature in an NMR-tube for between 12 h and 24 

h by 1H-NMR. The 1H-NMR spectra below indicate a loss in multiplicity from Figure 

4.5a-c because the zinc has a spin 5/2 (l = 5/2) with a natural abundance of 4.102 %. 

From the 1H-NMR, we observed signs of product formation as the –CH2
b and the imine 

proton both shifting downfield from the original chemical shift position of the ligand, i.e. 

from 3.87 ppm to 4.0 ppm and 8.23 ppm to 8.65 ppm. This effect is due to the electron 

donation imine nitrogen towards the metal centre. We also observe that, as the 

coordination to the metal centre proceeds, the ligand suffers decomposition as the 

aldehydic proton at 10.01 ppm and the two triplets peaks from the phenyl of the 

aldehyde in the aromatic region 7.01 ppm and 7.81 ppm reappear, which corresponds 

to the commercial starting material. Before the aforedescribed observation, a trial 

series of coordination reactions to the ZnCl2 metal centre were investigated for ligands 

119a-d. In the first attempt, ligands 119a-d were separately reacted with ZnCl2 (1:1 

mmol) in methanol at room temperature for 12 h. To our dismay, all variations gave a 

mixture of the aldehyde derivatives with histamine. We then investigated the effect of 

temperature, wherein we heated the reaction mixture to reflux (70-75 ºC) under 

nitrogen atmosphere for 24 h.To our disappointment the 1H-NMR spectrum obtained 

was difficult to interpret as the data observed yielded unresolved broad peaks. We 

then reasoned that perhaps the poor results are due to the ZnCl2 being subjected to 

moisture and would then prove detrimental to the ligands while stirriling in methanol. 

To avert this misfortune, the ZnCl2 was oven-dried at 120 ºC and used immediately 

thereof. Even with this measure, the reaction presented yielded undesirable spectral 

data. We then changed the zinc salt to zinc(ll) acetate and repeated the above 

mentioned trials. However, to our dismay, a similar trend was observed across all 

ligands i.e. decomposition of the Schiff base ligand to give and aldehyde derivative 

and histamine. 
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Figure 4.5: Overlaid 1H-NMR spectra of ligand (119c) and the attempted reaction time 

for complexation by ZnCl2 after 12 h (green) and 24 h (red).  
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4.3. Synthesis of quinazoline derivatives 
 

The retrosynthetic analysis strategy for the synthesis of the target ligands 125a – e 

for coordination to the monomeric p-cymene Ru(ll) piano stool centre is shown below 

in Scheme 4.3 (except ligands 123a – e). 

R = -Cl, -Br, -F, -NO2, -OMe. 

Scheme 4.3: Retrosynthetic strategy for the synthesis of the proposed 4-pyridyl-

quinazoline ligands. 

4.3.1 Synthesis of 2-aryl-quinazolin-4(3H)-ones 
 

Compounds 120a – e, were synthesised following a literature procedure [9]. The first 

requirement under this investigation was to synthesise the 2-aryl-quinazolin-4(3H)-

ones 120a – e to be used as substrates for the requisites 2-aryl-4-chloroquinazolines 

121a – e. To acquire the desired 2-aryl-quinazolin-4(3H)-ones 120a – e, we performed 

a one-pot procedure through oxidative cyclocondensation of anthranilamide 68 with 

para-substituted benzaldehyde derivatives (73c – d, 73a', 73b' and 73c') in the 

presence of molecular iodine (2 equiv.) in ethanol at 80 oC (Scheme 4.4). 
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(i)

68

(73c - d,
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N

N
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R

minor major  

Reagents and conditions: (i) I2 (2 equiv.), EtOH, 80 oC, 6 h.  

Scheme 4.4: Iodine-promoted oxidative cyclocondensation of anthranilamide with 

aldehyde derivatives.  

The molecular iodine serves as a promoter to effect cyclocondensation and oxidation 

reactions by introducing dehydrogenation on the N-3 position [10]. The quinazolin-

4(3H)-one framework is generally accessible through a dehydrogenation reaction of 

2,3-dihyquinazolin-4(1H)-one precursors by treating the latter with oxidants in large 

excess of DDQ [10] and KMnO4 [11]. Other synthetic methods include a one-pot 

procedure wherein a direct cyclocondensation between anthranilamide 68 and 

aldehyde derivatives 73 is catalysed by DDQ [12] or NaHSO2 [13]. The literature 

procedure followed, induces keto-enol tautomerism, wherein the enol (quinazolinol-

minor) is favoured at high temperatures (70-100 oC) and the keto (quinazolinone-

major) oppositely, is favoured at low temperatures (≤ 20 oC) [9]. The tautomerism in 

this case was avoided by cooling the reaction vessel to room temperature and later 

bleaching with an ice-cold saturated sodium metabisulphate (Na2S2O5). The 

synthesised compounds 120a – e, were characterised using 1H-NMR, 13C-NMR, FTIR 

and melting point techniques. The 1H-NMR spectra of compounds 120a – e revealed 

the presence of a broad singlet at 12.75 ppm corresponding to the N-H proton of the 

alpha-nitrogen. Further expected protons in the aromatic region ranging from 7.53 – 

8.20 ppm are assigned to the 2-phenyl substituent and the quinazoline backbone 

(Figure 4.6). The amide nature of the compounds are confirmed by FTIR due to the 

presence of C-N and C=O in the reagions vmax 1531 – 1583 cm-1 and vmax 1656 – 1691 

cm-1, respectively. The melting points recorded are consistent with those reported in 

literature [14].  
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Table 4.2: Summarised characterisation of compounds 120a – e. 

 

 

 

Figure 4.6: 1H-NMR spectrum for compound 120b. 

4.3.2 Synthesis of 2-aryl-4-chloro-quinazolines 
 

The next step was to generate an electrophilic centre at the 4-position of the scaffolds 

2-aryl-quinazolin-4(3H)-ones 120a – e through oxidative aromatisation to afford the 2-

aryl-4-chloro-quinazolines 121a - e. The compounds 121a – e were successfully 

120 R vmax C=O (cm-1) vmax C-N (cm-1) % Yield m.p. (oC) 

a 4-Cl 1606 1531 87 295.2 – 297., lit (298 – 

299) [14] 

b 4-Br 1656 1544 91 >350, lit (>350) [14] 

c 4-F 1605 1555 93 261.3 – 263.2,  lit (257 – 

259) [14] 

d 4-NO2 1601 1583 90 > 300, lit (>300 ) [14] 

e 4-OMe 1691 1566 93 242.7 – 243.4, lit (240 – 

241) [14] 
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synthesised following literature procedure [9], wherein the scaffolds 2-aryl-quinazolin-

4(3H)-ones 120a – e were treated with excess thionyl chloride using DMF as a solvent. 

The reaction was driven to completion by refluxing at 100 oC for 4 h (Scheme 4.5). 

The full conversion of the latter was confirmed by the absence of an N-H signal on the 

1H-NMR spectra of compounds 121a – e. The FTIR spectra of the compounds 121a – 

e revealed the absence of the C=O stretch thus confirming formation of the C(4)-Cl 

bond. Upon obtaining the requisites 121a – e, we decided to explore the 4-position 

through dechloro-amination (section 4.3.3) and Sonogashira-cross coupling (section 

4.3.4). Both functionalities were successfully achieved and the compounds were 

characterised by 1H-NMR, 13C-NMR, FTIR spectroscopy and HRMS.  

N

NH

O

R
120a - e

N

N

Cl

R
121a - e

(i)

 

Reagents and conditions: (i) SOCl2, DMF, 100 oC, 4 h. 

Scheme 4.5: Oxidative aromatisation of 2-aryl-4chloro-quinazolines in SOCl2  

Table 4.3. Summarised characterisation of compounds 121a – e. 

 

121 R % Yield m.p. (oC) 

a 4-Cl 88 143.2 – 145.4 

b 4-Br 93 151.7 – 153.4 

c 4-F 90 137.2 – 139.3, lit (139 – 141) [15] 

d 4-NO2 84 148.1 – 150.2 

e 4-OMe 89 144.3 – 146.6  
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Figure 4.7: 1H-NMR spectrum of compound 121b. 

4.3.3 Dechloro-amination of 2-aryl-4chloro-quinazolines 121a – e 
 

The Synthesis of 2-aryl-N-(3-nitropyridin-2-yl)quinazolin-4-amine 123a – e was 

achieved through a modified procedure of Paumo and co-workers [16]. The orginal 

literature procedure employs a combibnation of THF-i-PrOH and HCl. The HCl 

protonates the N-1 position of the 4-chloroquinazolines and renders the hetercylclic 

ring electron deficient and C-4 more electrophilic. Based on this observation, we 

employed 122 and 121b in the conditions of the literature procedure, unfortunately the 

reaction yielded trace amounts of the desired product. The reason for undesired yield 

was due to the poor solubility of 122 in the solvent mixture i.e. THF-i-PrOH. To improve 

the solubility, a mixture of THF-DMF (3:1) together with 98% Sulfuric acid serving as 

a catalyst was applied to afford 123a - e (Scheme 4.6). The formation of compounds 

123a - e was confirmed by the appearance of an N-H signal at 12.6 ppm as observed 

on the represenative 1H-NMR spectrum (Figure 4.8). The presence of the N-H was 

further confirmed by a signal in the region 3461-3464 cm-1 on IR. Furthermore, the 

FTIR spectra of compounds 123a - e reflected bands for (C-N) at 1666 cm-1. These 

type of compounds are easily distinguished by 1H and 13C-NMR spectroscopic 

techniques from the preceding substrates. Ligand 123b is here described, from the 

1H-NMR spectrum (Figure 4.8), additional signals showing multiplicities of dd, br-s 

and a mulitiplet in the aromatic region from 6.73 ppm to 8.4 ppm are observed. From 
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the 13C-NMR (Figure 4.9), we observe the quaternary carbon (20-C) of the nitro-

deshielded group resonating at 149 ppm. Furthermore, the molecular ion of the mass 

spectra revealed the absence of the M+ and M2+ but instead HMRS (ESI+) revealed 

M+Na (444.9536) for 123b. Similar findings were observed for 123d (411.0530). 

However for 123a HRMS (ESI+) revealed only C19H12N5O2
+ indicating replacement of 

the 4-Cl, due to the absence of chlorine isotopes (m/z 35 and 37). 

N

N

Cl

R N

N

HN

R

(i)

121a - e

123a -e

+

122

N

O2N

H2N

N

O2N

 

Reagents and conditions: (i) 98% sulphuric acid, TH-DMF, 70 oC, 5 h. 

Scheme 4.6: De-chloro amination of 2-aryl-4chloro-quinazolines 121a-e. 

Table 4.4: Summarised characterisation of compounds 123a – e. 

 

123 R N-H vmax cm-1 % Yield m.p. (oC) 

a 4-Cl 3461 95% 281.2 – 282.1 

b 4-Br 3462 78% 292.1 – 284.1 

c 4-F 3463 92% 273.8 – 274.8 

d 4-NO2 3462 66% 269.2 – 271.2 

e 4-OMe 3464 84% 262.4 – 264.4 
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Figure 4.8: 1H-NMR spectrum of compound 123b. 

 

Figure 4.9: 13C-NMR spectrum of compound 123b.  
































Br
















123b
 

6

7

8
9

10

5

N
1

2

N3
4

11

12

13

14

13

12

Br

HN15

21

16

17

18

19

20

O2N

123b
 

20 

18 

15 



 

98 
 

4.3.4. Sonogashira cross-coupling of 2-aryl-4chloro-quinazolines 121a – e. 
 

The final step in the synthesis of ligands for coordination was to perform Sonogashira 

cross-coupling reaction on the C(4)-Cl position of the 2-aryl-4chloro-quinazolines 121a 

– e.The choice of Sonogashira cross-coupling in this case, is to create a two-carbon 

spacer forming a linear bridge to minimise steric hindrance when coordinating to the 

monomeric p-cymene Ru(ll) piano stool centre.  Prior to this step, the substrate 4-

ethynylpyridine 124 was successfully coupled following Sonogashira using palladium-

catalysed coupling reactions (Scheme 4.7). Comparatively, there are few reported 

cases of Sonogashira coupling reactions between 4-chloroquinazolines and terminal 

alkynes to significant cases of Suzuki-Miyaura coupling [17]. Accordingly, 4-chloro-2-

arylquinozaline was varied with groups such as (R = -Br, -Cl, -F, -NO2 and -OMe) on 

the para position of the phenyl ring on the 2-position. 

N

N

Cl

R

N

N

R

N(i)

121a - e 125a - e

N

+

124

HCl

 

Reagents and conditions: (i) PdCl2(PPh3)2, CuI, Cs2CO3, THF-water (3:1), 65 oC, 24 h  

Scheme 4.7: Sonogashira cross-coupling of 2-aryl-4chloro-quinazolines 121a – e with 

4-ethynylpyridine 

Our first attempt in the application of Sonogashira cross-coupling conditions at the 4-

chloroquinazoline, we employed Pd(PPh3)4, CuI, Et3N and 1.5 equiv of 4-

ethynylpyridine in dry THF at mild temperatures (40-60 oC). Unfortunately we isolated 

only the starting material 121a and 124 along with Et3N. The Pd(0) source, 

tetrakis(triphenylphosphine)palladium(0) is air and moisture sentive, therefore proving 

difficult to employ for Sonogashira cross-coupling. We then substituted the palladium 

source with PdCl2(PPh3)2 and kept the other reagents constant, unfortunately this 

attempt led to recovery of starting material. Further attempts in high boiling solvent 

such as DMF and Dioxane were also unsuccessful. These results were attributed to 

Et3N not being basic enough to deprotonate the terminal alkyne that should in turn 
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give an anionic nucleophile to form the copper acetylide [18]. Trace amounts of our 

desired product were obtained when using K2CO3, Na2CO3 and NaOH as our base 

during coupling. Since the Sonogashira reaction mechanism requires a relatively 

strong base to deprotonate the terminal acetylene 124, we then opted for Cs2CO3. In 

a one-pot, 4-Chloro-2-(4-chlorophenyl)quinazoline 121a (1 equiv.) was reacted with 

PdCl2(PPh3)2 (10%), CuI (10%) and Cs2CO3 (2 equiv.) in 3:1 THF-water, the reaction 

was left to stir for 24 h at mild heat (40-60 oC) under N2. To our delight we isolated 

98% of 125a after recrystalisation from diethyl ether. Synthesis of ligands 125b – e 

followed that of 125a while varying the para-position of the 2-aryl group. The formation 

of 125a - e was confirmed using 1H and 13C-NMR. Ligand 125b is here described, on 

the 1H-NMR spectrum (Figure 4.10) we observed additional two additional doublet 

peaks resonating at 7.60 (18-H) and 8.74 ppm (19-H). On the 13C-NMR spectrum 

(figure 4.11) additional carbons of the two-carbon spacer resonate at 88.216 (15-C) 

and 93.712 (16-C) ppm are observed. Further characterisation using FTIR 

spectroscopy showed the presence of Csp-Csp band at vmax 2219.44 cm-1.  

Table 4.5: Summarised characterisation of compounds 125a – e. 

125 R vmax Csp-Csp cm-1 % Yield m.p. (oC) 

a 4-Cl 2219.92 98 209.2 – 210.0 

b 4-Br 2219.44 90 234.6 – 236.3 

c 4-F 2220.15 94 197.6 – 199.2 

d 4-NO2 2219.71 94 272.7 – 274.8 

e 4-OMe 2218.70 79 202.6 – 204.6 
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Figure 4.10: 1H-NMR spectrum of compound 125b. 

 

Figure 4.11: 13C-NMR spectrum of compound 125b.  
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4.3.5. Coordination of ligands 125a – e to monomeric p-cymene Ru(ll) piano 

stool centre to yield 126a – e. 

Three-legged piano-stool Ru(ll)/ Ru(lll) bearing an arene, p-cymene, cyclopentadienyl 

and heterocyclic caps have come under intense exploration due to their interesting 

anticancer, anti-metastatic and anti-proliferative properties [19]. These type of 

complexes are accessible by refluxing a ruthenium dimer and the ligand of interest in 

a polar solvent [20]. Some ligands however, adopt a double replacement of the lateral 

chlorine ligands to form a cationic complex which is balanced by anionic counterion. 

Castonguay and co-workers [21] reported similar complexes wherein, two letrazole 

ligands were coordinated to monomeric piano-stool arene Ru(ll) complex by refluxing 

in dichloromethane (DCM). The authors reasoned that characterisation of the complex 

using NMR techniques, 1H-NMR in particular, was less straightforward as the letrazole 

ligands were found to be labile in CDCl3. This then facilitated replacement of one 

letrazole ligand by a chloride counterion of the requisite Ru(ll) dimer. 

Herein, ethynylpyridine-bridged Ru(ll)-p-cymene bis-chloride complexes were 

successfully synthesised following a modified procedure reported by Saez and co-

workers [22], i.e. instead of refluxing the Ru(ll) dimer and ligand in methanol, the 

antecedent reagents were heated to reflux in hexane for 5 hrs to obtain 126a – e in 

good yields 67 – 90%. The complexes were characterised using NMR (1H, 13C and 

HMBC) and HRMS. 

N

N

N

R

+

Ru

Ru

38

125a - e

126a - e

(i) Ru

Cl

Cl

N

N

R

N
Cl Cl

Cl

Cl

 

Reagents and solutions: Hexane, 60 oC, 5 hrs, rt, 12 hrs. 

Scheme 4.8: One-pot synthesis of quinazoline monomeric p-cymene Ru(ll) piano stool 

centre.  
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Two representative complexes (126c and 126e) are here described in details. 

Complex 126e was characterised using 1H-NMR (Figure 4.12). From the 1H-NMR we 

were able to differentiate the complex (126e) from its preceding substrate 125e due to 

the addition of p-cymene protons within the region 1.320 – 5.483 ppm. The upfield 

peak resonating at 1.320 ppm is assigned to the two methyl groups 26-H which is spin-

couples (1H-1H) with 27-H to give an intense doublet (3JH-H = 6.8 Hz) peak. The 

neighbouring singlet at 2.125 ppm is assigned to 21-H and the peak at 2.996 ppm is 

assigned to 27-H which spin-couples with the two germinal methyl groups to give a 

septet (3JH-H = 27.6 Hz). Furthermore, the two set of doubltes (2JH-H = 6 Hz) around 5.2 

and 5.4 ppm are assigned to symmetrical protons 23-H and 24-H. The carbons on the 

cymene ligand (Figure 4.13) all resonate relatively upfield within the region 18.276 – 

83.022 ppm except the two quartenary carbons 22-C and 25-C. Further interpretations 

on the 1H-NMR and 13C-NMR spectra include the de-shielding effect brought by 

coordination to Ru(ll) centre. In 1988, Orellana and co-workers [23] reported a study 

based on coordination induced shifts (CIS) wherein their study involved ruthenium(II) 

tris chelates containing pyridyl heterocyclic ligands. During their investigation, they 

assigned factors that affect CIS, calculated as CIS = δcomplexed - δfree, to be σ-donation, 

π-back donation, magnetic anisotropy of surrounding ligands, residual paramagnetism 

and solvent variation. All 13C and 1H-NMR assignments for 126e are summarised in 

Table 4.5a. In this investigation, almost all the 1H and 13C nuclei are de-shielded, this 

is due to the σ-donation by the 2-(4-methoxyphenyl) group, which in turn promotes de-

shielding of the protons and carbons on the quinazoline backbone. Noticeable de-

shielded protons and carbons are 20-H and 20-C which are de-shielded by 0.428 and 

4.9 ppm respectively. More de-shielded groups include the quaternary carbons (16 

and 17-C) of the ethynylpyridine bridge, with a CIS of 8.59 and 10.54 ppm respectively.  
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Figure 4.12: 1H-NMR spectrum of compound 126e. 
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Figure 4.13: 13C-NMR spectrum of compound 126e. 
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Table 4.6a. 1H and 13C coordination induced shifts for Ru(ll) complex 126e 

CIS = δcomplexed - δfree for δH CIS = δcomplexed - δfree for δC 

# Complexed Free 

ligand 

1H-CIS 

(ppm) 

Complexed Free 

ligand 

13C-CIS 

(ppm) 

2    162.03 161.94 0.09 

3       

4    151.23 151.60 -0.37 

5 8.062 8.043 0.019 125.83 125.90 -0.07 

6 7.652 7.619 0.033 126.60 126.00 0.6 

7 7.912 7.881 0.031 134.67 134.41 0.26 

8 8.223 8.264 -0.041 128.98 128.88 0.1 

9    150.98 151.11 -0.13 

10    127.73 127.43 0.3 

11    129.95 130.08 -0.13 

12 8.560 8.572 -0.012 131.34 130.37 0.97 

13 7.03 7.024 0.006 113.98 113.91 0.07 

14    160.65 160.60 0.05 

15 3.893 3.880 0.013 55.40 55.35 0.05 

16    97.36 89.04 8.59 

17    103.70 93.16 10.54 

18    123.38 123.42 -0.04 

19 7.587 7.586 0.001 130.29 130.28 0.01 

20 9.147 8.719 0.428 154.95 150.05 4.9 

 

Similar to complex 126e, 126c was analysed for CIS effect. The 1H-NMR spectrum 

(Figure 4.14) of 126c shows expected additions of cymene protons within the region 

1.304 - 5.487 ppm. Within the same line as complex 126e, the intense doublet (JH-H = 

7.2 Hz) is assigned to 25-H germinal methyl groups, the singlet peak at 2.108 ppm is 

assigned to 20-H. The septet peak at 2.975 ppm is assigned to proton 26-H (JH-H = 
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26.5 Hz). The two set of doublets (JH-H = 6 Hz) resonating around 5.4 ppm are 

assigned to the symmetrical protons 22, 23-H. The carbons on the cymene ligand 

(Figure 4.15) resonate relatively upfield within the region 18.254 – 83.020 ppm except 

the two quartenary carbons 21-C and 24-C. The CIS calculations for complex 126c 

gave a great deal of variation (Table 4.5b), as almost all the protons and carbons on 

the quinazoline backbone are shielded upon coordination to the Ru(ll) centre, the 

reason for this unexpected transition could be due to the electron withdrawing effect 

of 2-(4-fluorophenyl). However, the quaternary carbons 15 and 16-C carbons of the 

ethynylbridge, are de-shielded by 8.47 and 9.99 ppm respectively and the same 

applies to the symmetrical protons and carbons (19-H and 19-C) of the pyridyl group, 

which have a CIS of 0.405 and 4.8 ppm respectively. 

 

Figure 4.14: 1H-NMR spectrum of compound 126c.  
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Figure 4.15: 13C-NMR spectrum of compound 126c. 
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Table 4.6b: 1H and 13C coordination induced shifts for Ru(ll) complex 126c 

CIS = δcomplexed - δfree for δH CIS = δcomplexed - δfree for δC 

# Complexed Free 

ligand 

1H-CIS 

(ppm) 

Complexed Free 

ligand 

13C-CIS 

(ppm) 

2    159.83 160.00 -0.17 

3       

4    150.05 151.86 -1.81 

5 7.668 7.667 0.001 125.87 126.11 -0.24 

6 7.928 7.936 -0.008 129.01 128.02 0.99 

7 8.06 8.093 -0.876 134.84 134.67 0.17 

8 8.238 8.322 -0.084 128.39 129.13 -0.74 

9    151.06 151.13 -0.07 

10    131.10 129.41 1.69 

11    133.47 133.73 -0.26 

12 7.187 7.201 -0.014 130.72 130.83 -0.11 

13 8.590 8.641 -0.051 115.58 115.62 -0.04 

14    164.74 164.85 -0.11 

15    97.40 88.93 8.47 

16    103.60 93.61 9.99 

17    123.52 123.72 -0.2 

18 7.572 7.602 -0.03 126.57 125.93 0.64 

19 9.139 8.734 0.405 154.97 150.17 4.8 

 

The pyridyl 19-H (20-H) and 19-C (20-C) hydrogen and carbon atoms show great shifts 

after coordination to Ru(ll) centre. Coordination induced shifts for complexes 126a-e 

are summarised on Table 4.6c.  
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Table 4.6c. Summarised selected 1H and 13C shifts for complexes 126a-e.  

N.B 20-H and 20-C refer only to complex 126e 

In order to establish the connectivities between the proton and carbon nuclei of the 

cymene group and the ethynylpyridine quinazoline ligand, we performed a long range 

2D 1H-13C-HMBC experiment for complex 126e. The 2D-HMBC spectrum below 

(Figure 4.16), revealed interesting 1-9JCH couplings between the cymene group and 

the the ethynylpyridine quinazoline, especially for protons and carbons along the 

ethynyl bridge. An intense correlation between protons 24, 23-H and carbon 26-C 

interact through a 1JCH coupling. A significant correlation between 24-H, 23-H and the 

ethynyl carbon 17-C through 9JCH coupling is observed. Similarly, another significant 

proton 21-H correlation with carbon 21-C through 1JCH coupling, 24-C through 4JCH 

and with 16-C through 8JCH coupling is also observed. Proton 27-H correlates with 

carbon 16-C through 9JCH coupling. Further correlations observed for long range 

couplings are viewed as 23-H shares a strong correlation with ethynyl carbon 16-C 

through 8JCH coupling, but shares a weak interaction with 17-C through 9JCH coupling. 

By the same note, 24-H shares a strong correlation with 17-C through 8JCH coupling 

and a weak correlation with 16-C through 9JCH coupling. The observed 8JCH and 9JCH 

coupling are mainly due to the pi-connection system which reduces the bond lengths 

between the carbons and therefore facilitates longer range coupling. Further 

correlations linking the cymene and the ethynylpyridine brigde are observed as 19-H 

symmetrical hydrogens interact with quaternary carbon 22-C. These correlations are 

confirmed for complex 126c on Figure 4.17.  

126 R %Yield  1H-shift (ppm) 

(19-H (20-H)) 

13C-shift 

(ppm) 

(19-C(20-C)) 

a -Cl 90 9.160 155.03 

b -Br 67 9.170 155.07 

c -F 80 9.139 154.97 

d -NO2 81 9.165 155.06 

e -OMe 71 9.147 154.95 
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Figure 4.16. 2D-1H-13C-HMBC correlations for Ru(ll) complex 126e.  
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Figure 4.17. 2D-1H-13C-HMBC correlations for Ru(ll) complex 126c.  

4.3.6 Conclusion 
 

Ethanamine Schiff base ligands of the N^N type were synthesised in good yield in a 

basic medium, attempted coordination of ligand 119b to zinc chloride showed a hint 

of formation as the reaction was carried out in NMR tube while monitoring during 12 

and 24 h period using 1H-NMR. Unfortunately the reaction proceedings showed 

decomposition of ligand 119b. The requisite 2-aryl-4-chloro-quinazolines served as a 

substrate for dechloro-amination and sonogashira cross-coupling reaction at C(4)-Cl 

position which afforded 4-(pyridylamino) and 4-(ethynylpyridine)quinazolines in good 

yields. Successful coordination to Ru(ll) p-cymene centre was achieved and the 

complexes were isolated in good yield. The newly synthesised Ru(ll) complexes 
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showed new long range couplings of 6,7,8,9JCH. Furthermore coordination induced shifts 

were observed across all ligands with different para-substituent of –Br, -Cl, -OMe, -F 

and –NO2.   
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CHAPTER 5: APPLICATION 

 

5.1 Molecular docking 

 

The molecular docking calculations were done using the Schrodinger-2018-1 LLC 

interface, employing Maestro 11.5 database. All ligands and proteins in the induced-

fit docking (IFD) job were prepared at physiological pH 7.4 using Epik. The 

conformational search for all ligands was done using optimised potentials for liquid 

simulations (OPLS_2005) employing water as a solvent. The IFD experiment was run 

on extra-precision (XP), wherein residues within ligand poses were refined at 5 Å and 

all ligands were re-docked into structures within 30 Kcal/mol of the best structure, and 

within the top 20 structures overall.  

Induced-fit docking (IFD) of compounds 119a-d, 123a-e and 125a-e using GLIDE was 

performed to better understand the anticancer and anti-Mycobacterium tuberculosis 

(Mtb) activity of the ligands. The molecular docking calculations give a docking or glide 

score. The glide score is defined as an empirical scoring function designed to 

maximise separation of compounds with strong binding (more negative) affinity from 

those with little to no binding ability [1]. A ligand is considered to have affinity towards 

a protein when the docking score is higher than -5 Kcal/mol cut-off. To aid this study, 

the compounds were inductively docked into the active pockets of glutamine 

synthetase (PDB:1HTO) for Mtb, tyrosine kinase (PDB:2SRC) and oxidoreductase 

(PDB:3F8P) for cancer. 

5.1.1 Induced fit docking of compounds 119a-d, 123e and 125e into glutamine 

synthetase (1HTO) receptor grid. 
 

Glutamine synthetase (PDB:1HTO) is an enzyme essential for cellular nitrogen 

metabolism and plays a role in both glutamine biosynthesis and ammonia assimilation 

[2]. Glutamine synthetase (GS) has emerged as a potential target for pharmacological 

target for tuberculosis therapy due to the critical role it plays in nitrogen metabolism in 

plays in prokaryotes [3]. Synthetic pyridine derivatives such as isoniazid (first line 

tuberculosis drug) are reported to inhibit Glutamine synthetase [4] which catalyses the 

ATP-dependent condensation of amonium and L-glutamate at the amino acid binding 

site, resulting in the formation of glnA1 essential for the growth of Mtb in both in vitro 
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and in vivo [4]. Any disturbance at the amino acid binding site will in turn breakdown 

cell wall biosynthesis [5] thus leading to cell death. The ligand-protein interacts are 

described below 

The 2-dimensional (2D) and 3-dimensional (3D) docked poses of compounds 119a-d, 

123e and 125e are represented in Figures 5.1a-m below. The ethanamine-Schiff base 

ligands (119a-d) appear to undergo protonation at the imine group at pH 7.4, which 

therefore renders all ligands in the receptor grid as positively charged. The docking 

poses of the ligands in the 1HTO-receptor grid occupy the polar (blue), hydrophobic 

(green) and electronegative (red) pockets in the α- and β-sheets. Figures 5.1a-m 

below indicate increased polar, hydrophobic, electronegative and glycine (H-bond, π-

π-stacking, π-cation and salt bridge) interactions existing across all ligands with the 

1HTO amino-acid sequence TYR125, TRP275, PHE225, LYS208 and HIE271, 

ASP404 and ARG366.  

Ligand 119a exhibits a glide score of -9.972 Kcal/mol wherein the pre-mentioned 

intermolecular π-π interaction from TRP275 is due to the fused-phenyl ring of the 

indole group, the π-cation interaction is due to the fused-pyrrole ring of TRP275, 

PHE225 phenyl ring and the para-methoxy phenyl ring of the TYR125 Fig.5.1a.  

             

Figure 5.1a and 5.1b: Docking screen (left) and 2D ligand interaction diagram (right) 

of 119a in 1HTO.  

Ligand 119b on the other hand exhibits a glide score of -9.634 Kcal/mol wherein the 

π–π interaction from PHE225 is due to the phenyl ring of the latter. The H-bond 

interaction is due to the carbonyl group of HIE271, as the oxygen of the carbonyl group 

acts as a hydrogen bond acceptor. Interactions with the polar nitrogen of the imidazolyl 

group on ligand 119b and LYS208 are of H-bond acceptor due to the π-electrons on 
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the nitrogen and the π-cation interactions are due to the fused-pyrrole ring of TRP275, 

PHE225 phenyl ring and the para-methoxy phenyl ring of the TYR125 Fig.5.1c.  

        

Figure 5.1c and 5.1d: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 119b in 1HTO. 

Ligand 119c exhibits a glide score of -10.040 Kcal/mol. The observed interactions 

stem from π-π interactions of between PHE225 phenyl ring and the para-fluoro phenyl 

ring of the ligand 119c. Further interactions from TYR125 show a H-bond acceptor 

between the para-methoxy group of TYR125 and –NH group of the imidazolyl group 

on ligand 119c. The π-cation interactions are due to the fused-pyrrole ring of TRP275, 

PHE225 phenyl ring and the para-methoxy phenyl ring of the TYR125 Fig.5.1e 

        

Figure 5.1e and 5.1f: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 119c in 1HTO. 

The best pose for ligand 119d revealed the absence of π-π interactions. Instead we 

view a π-cation interaction between with a glide score of -8.679 Kcal/mol the para-

nitro phenyl ring of ligand 119d and the phenyl ring of PHE225. The interaction with 

TYR125 owes to the para-methoxy group of the H-bond acceptor from the –NH group 
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of the imidazolyl ring on ligand 119d. Added π-cation interactions from the cationic 

imine group of ligand 119d are due to indole ring of TRP275 and the para-methoxy 

phenyl ring of the TYR125 Fig.5.1g. Comparative docking score for the imidazolyl-

ethanime Schiff base ligands 119a-d are summarised on Table 5.1 below. 

      

Figure 5.1g and 5.1h: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 119d in 1HTO. 

Table 5.1: Summarised docking scores for ligands 119a-d (1HTO). 

Ligand entry# Docking score (Kcal/mol) 

119a -9.972 

119b -9.634 

119c -10.040 

119d -8.697 

 

The ethynylpyridine cross-coupled ligand 125e was found to give the best pose in the 

glycine, polar and hydrophobic pockets between α- and β-sheets to give a docking 

score of -9.176 Kcal/ mol. The ligand interacts with the protein through π-π stacking 

and H-bond acceptor. The π-π interactions are due to the fused pyrimidine and 

aromatic quinazoline framework and the two rings link phenyl backbone of PHE225. 

Further π-π stacking arise from the interaction between the bridged pyridine and tailing 

pyrrole ring of HIE271. The H-bond acceptor is due to the para-methoxy group of the 

ligand 125e and –NH2 group of LYS208 Fig. 5.1i.  The docking scores of ligands 125a, 

125b, 125c and 125d are here mentioned as -7.566, -6.935, -7.240 and -7.143 

Kcal/mol respectively. Comparative docking score for the ethynylpyridine quinazoline 

ligands 125a-e are summarised on Table 5.2. 
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Figure 5.1i and 5.1k: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 125e in 1HTO. 

Table 5.2: Summarised docking scores for ligands 125a-e (1HTO). 

Ligand entry# Docking score (Kcal/mol) 

125a -7.566 

125b -6.935 

125c -7.240 

125d -7.143 

125e -9.176 

 

Ligand 123e gave the best pose in the electrophilic, hydrophobic and polar pockets of 

α- and β-sheets to give a glide score of -7.650 Kcal/ mol. The terminal carboxyl and 

carboxamide groups of electronegative ASP404 interact with the anionic oxygen of the 

nitro group through a salt bridge, while the –NH group of the ligand interacts with the 

latter through H-bond acceptor. More interactions are observed for the methoxy group 

of the ligand and the interactions observed are of H-bond acceptor, the lone pairs of 

electrons on the oxygen interact with germinal –NH2 hydrogens of ARG366 and the 

free water molecules of the receptor. The water molecules help fix the ligand in the 

binding site within the receptor grid Fig.5.1l. The docking scores for ligands 123a, 

123b, 123c and 123d are here mentioned as -7.413, -6.653, -6.250 and -6.409 Kcal/ 

mol respectively. Comparative docking scores for the pyridylamino quinazoline ligands 

123a-e are summarised on Table 5.3 below. 
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Figure 5.1l and 5.1m: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 123e in 1HTO. 

Table 5.3: Summarised docking scores for ligands 123a-e (1HTO). 

Ligand entry# Docking score (Kcal/mol) 

123a -7.413 

123b -6.653 

123c -6.250 

123d -6.409 

123e -7.650 

 

5.1.2 Induced fit docking of compounds 119a-d, into oxidoreductase (PDB:3F8P) 

receptor grid. 
 

Oxidoreductase (PDB:3F8P) is an enzyme from the protein kinase family and it is 

overexpressed in breast, liver, gastrointestinal tract and kidney cancer [6]. This 

enzyme is responsible for catalysing oxidation and reduction reactions in cells. 

Moreover, the enzyme is responsible for both aerobic and anaerobic metabolisms 

which aid glycolysis, TCA cycle, oxidative phosphorylation and amino acid metabolism 

[7]. In cancer cells, oxidoreductase is expressed as xanthine oxidoreductase (XOR) 

and it links with uric acid to proliferate and transform cells to speed the progression of 

metastasis. Metastasis is described as the development of secondary malignant 

tumours distant from the site of cancer cells. The XOR and uric acid effect is reported 

to promote metabolic syndromes. Metabolic syndromes are defined as neoplastic 

complications that lead to blood pressure, high blood sugar and uncontrollable 

cholesterol levels. These complications are reported to have anti-therapeutic 
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protective outcomes [8]. In this light, targeting the active site of this enzyme (3F8P) 

represent an ideal approach in combating the proliferation of cancer cells. The ligand-

protein interactions are described below. 

The 2-dimensional (2D) and 3-dimensional (3D) docked poses of compounds 119a-d, 

123e and 125e are represented in Figures 5.2a-h below. The docking poses of the 

ligands in the 3F8P-receptor grid occupy the polar (blue), hydrophobic (green), 

electronegative (red) and glycine (grey) pockets in the α- and β-sheets. Figures 5.2a-

h below indicate increased polar, hydrophobic, electronegative and glycine (H-bond, 

π-π stacking, π-cation and salt bridge) interactions existing across all ligands with the 

3F8P amino-acid sequence VAL92, GLN51, PHE225, LYS124 and GLU46. 

In this fit, ligand 119b exhibits a glide score of -9.221 Kcal/mol. The docking screen, 

Fig.5.2a depicts ligand interactions occurring in the hydrophobic and glycine pockets 

within the β-sheets. The ligand interacts with the protein through H-bond acceptor and 

donor. The H-bond is due to double interaction from carboxamide –NH2 groups of 

GLN51. The polar nitrogen of the imidazolyl group of the ligand accesses this 

interaction through the free lone pair of electrons. Similarly, the hydroxyl group of the 

ligand accesses the –NH2 group of VAL92 through the readily accessible lone pair of 

electrons from the oxygen atom Fig.26a. Similar docking scores of ligands 119a, 119c 

and 119d are here mentioned -7.425, -7.033 and -6.035 Kcal/mol respectively. 

Comparative docking scores for the imidazolyl-ethanime Schiff base ligands 119a-d 

are summarised on Table 5.4. 

    

Figure 5.2a and 5.2b: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 119b in 3F8P. 
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Table 5.4: Summarised docking scores for ligands 119a-d (3F8P). 

Ligand entry# Docking score (Kcal/mol) 

119a -7.425 

119b -9.221 

119c -7.033 

119d -6.035 

 

Ligand 123c gave a glide score of -9.441 Kcal/mol. Protein to ligand interactions are 

observed in the electrophilic, hydrophobic and polar pockets of β-sheets. The 

interactions observed include π-cation, π-π, H-bond donor and acceptor and salt 

bridging. The π-cation (red lines) and π-π interactions (green lines) are due to 

interactions between cationic nitro group, pyrimide group of the quinazoline framework 

and the phenyl group of hydrophobic PHE225. Furthermore, π-cation interactions are 

due to the 2-(4-fluorophenyl) group of the ligand and the tailing –NH2 group of polar 

LYS124. The H-bond acceptor is due to the pyridyl nitrogen of the ligand and the –NH 

group of VAL92. The H-bond donor interaction is due to –NH group of ligand and 

carbonyl group of VAL92. The salt-bridges are interactions resulting from cationic 

nitrogen of -NO2 of the ligand interacting with electronegative GLU46 and the anionic 

oxygen of –NO2 of the ligand which interacts with the –NH2 group of polar LYS124 

Fig.5.2c. Comparative docking scores for the pyridylamino quinazoline ligands are 

summarised in Table 5.5. 

     

Figure 5.2c and 5.2d: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 123c in 3F8P. 



 

123 
 

Table 5.5: Summarised docking scores for ligands 123a-e (3F8P). 

Ligand entry# Docking score (Kcal/mol) 

123a -5.709 

123b -5.743 

123c -9.441 

123d -5.738 

123e -6.341 

 

Ligand 125a exhibited a glide score of -9.107 Kcal/mol. The interactions are observed 

in the electronegative and glycine pockets of the α-sheets. However, increased H-

bond acceptor and π-cation interactions are observed in the glycine pocket. The π-

cation interaction results from the double interaction of quinazoline framework with 

tailing –NH2 group of polar LYS124. The H-bond acceptor is due to interaction between 

N-1 and –NH2 group of GLN51 carboxamide group. Further H-bond acceptor 

interaction results from the terminal nitrogen of ethnylpyridine and –NH group of 

hydrophobic VAL92 Fig.5.2e. 

             

Figure 5.2e and 5.2f: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 125a in 3F8P. 

Ligand 125c gave a glide score of -10.043 Kcal/mol. Interactions for this ligand are 

found in the polar, hydrophobic and electronegative pockets of α-sheets. However, 

interactions of H-bond acceptor and π-cation are observed in the polar and 

electronegative pockets. The H-bond acceptor is due to interaction between –NH3 

groups of VAL92 and GLN51 for N-1 and pyridyl nitrogen retrospectively. The π-cation 

is due to interaction between -NH2 group of polar LYS124 and fused phenyl group of 
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the quinazoline framework Fig.5.2g. Comparative docking scores for the 

ethynylpyridine quinazolines ligands 125a-e are summarised in Table 5.6 below. 

     

Figure 5.2g and 5.2h: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 125c in 3F8P. 

Table 5.6: Summarised docking scores for ligands 125a-e (3F8P). 

Ligand entry# Docking score (Kcal/mol) 

125a -9.0107 

125b -8.165 

125c -10.043 

125d -8.522 

125e -8.362 

 

5.1.3 Induced fit docking of compounds 119a-d into Tyrosine kinase (2SRC) 

receptor grid. 

Tyrosine kinases are a subclass of protein kinase family. They are responsible for the 

transfer of phosphate groups from adenosine triphosphate (ATP) to cellular proteins. 

They function as an “on” or “off” switch in modulation of growth factor signalling [9]. 

This signal transduction process helps the rapid widespread of cancer cells [10]. 

Compounds designed to specifically fit in the active site of tyrosine kinase compete 

with the ATP binding site of the catalytic domain. Blocking the ATP phosphate transfer 

results in reduced multiplication of cancer cells and minimises metastasis [11]. The 

ligand-protein interactions are described below. 
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The 2-dimensional (2D) and 3-dimensional (3D) docked poses of compounds 119a-d 

are represented in Figures 5.3a-h below. Ligands 119a and 119c were found to give 

good docking scores when protonated at pH 7.4. The docking poses of the ligands in 

the 2SRC-receptor grid occupy the polar (blue), hydrophobic (green) and 

electronegative (red), glycine (grey) pockets in the α- and β-sheets. Figures 5.3a-h 

below indicate increased polar, hydrophobic, electronegative and glycine (H-bond, π-

π-stacking, π-cation and salt bridge) interactions existing across all ligands with the 

2SRC amino-acid sequence PHE225, ASP404, GLU339, MET341, ALA390, VAL323. 

In this investigation, ligand 119a exhibits a glide score of -8.901 Kcal/mol. The ligand-

protein interaction is found in the electronegative and hydrophobic pockets of the 

receptor within the β-sheets. The ligand interacts with the receptor through π-π 

stacking, H-bond acceptor and salt-bridge linking. The π-π stacking interaction is due 

to the phenyl ring of PHE405 and phenyl ring of ligand, the salt-bridge is due to the 

cationic imino group which interacts with the hydroxyl group of ASP404 carboxyl 

backbone. The H-bond is through interaction between carboxamide backbone of 

electronegative GLU339, as the oxygen of the latter acts as hydrogen acceptor of 

amine hydrogen emanating from imidazolyl group of ligand 119a, Fig.5.3a.  

    

Figure 5.3a and 5.3b: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 119a in 2SRC. 

Ligand 119b gave a glide score of -8.655 Kcal/mol. All interactions are found in the 

hydrophobic pocket of the receptor grid. The ligand interacts with the protein by way 

of H-bond acceptor and donor. The tailing hydroxyl group acts as a hydrogen acceptor 

for amino carboxamide hydrogen of MET341 and the imidazolyl amine hydrogen 

interacts with oxygen atoms on carbonyl group of ALA390 Fig.5.3c.  
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Figure 5.3c and 5.3d: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 119b in 2SRC. 

The best pose for ligand 119c was found in the polar, hydrophobic and electronegative 

pockets in the β-sheets. A glide score of -9.393 Kcal/mol was obtained for ligand 119c 

wherein ligand-protein interactions were found to exhibit salt-bridging and H-bond 

acceptors. The salt-bridge exists between polar and electronegative pockets. This is 

due to the cationic imino group of the ligand, which shows a double interaction with 

the carbonyl oxygen and hydroxyl hydrogen of ASP404. Further interactions observed 

include H-bond acceptor between –NH group of the imidazolyl group of the ligand and 

the carboxamide oxygen of GLU339 Fig.5.3e. 

     

Figure 5.3e and 5.3f: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 119c in 2SRC.  

Ligand 119d gave the best pose in the polar, hydrophobic and electronegative pockets 

of the β-sheets. However, the ligand-protein interactions were found in the 

hydrophobic pocket to give a glide score of -8.662 Kcal/mol. The interaction is through 

both H-bond donor and acceptor. The H-bond acceptor interaction exists between –
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NH2 group of carboxamide backbone of electronegative ASP404 and the sp2-

hybridised nitrogen of the imdazolyl group. The H-bond donor exists between the 

amino group of the imidazolyl group of ligand and the carboxamide oxygen of 

hydrophobic VAL323 Fig.5.3g. Comparative docking scores for the imidazolyl-

ethanamine Schiff base ligands are summarised in Table 5.7 below. 

     

Figure 5.3g and 5.3h: 3D Docking screen (left) and 2D ligand interaction diagram 

(right) of 119d in 2SRC. 

Table 5.7: Summarised docking scores for ligands 119a-d (2SRC). 

Ligand entry# Docking score (Kcal/mol) 

119a -8.901 

119b -8.655 

119c -9.393 

119d -8.662 

 

In this fit (2SRC), unfortunately ligands 123a – e and 125a – e showed limited binding 

towards the protein receptor grid. This resulted in poor docking scores which are 

summarised in Table 5.8. 
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Table 5.8: Summarised docking scores for ligands 123a-e and 125a-e. 

Ligand entry # Docking score  

(Kcal/mol) 

Ligand entry # Docking score  

(Kcal/mol) 

123a -5.958 125a -6.580 

123b -7.163 125e -6.010 

123c -7.408 125c -6.321 

123d -5.118 125d -6.800 

123e -6.949 125e -6.870 

 

Computational chemistry studies are usually backed by experimental biological 

evaluation data [12]. In this study, the IFD study is supported by in vitro Mtb studies of 

ligands 119a-d, 123a-e and 125a-e in subsection 5.2.  

5.2 In vitro anti-Mycobacterium tuberculosis properties of compounds 119a-d, 

121a-e, 123a-e, 125a-e and 126a-e. 
 

The in vitro anti-Mycobacterium tuberculosis activity of compounds 119a-d, 121a-e, 

123a-e, 125a-e and 126a-e was performed at the drug discovery and development 

centre (H3-D), University of Cape Town (UCT). The biological experiments are 

reported as MIC90 and are summarised in tables 5.9 to 5.13 for ligands 119a-d, 121a-

e, 123a-e, 125a-e and 126a-e respectively prepared in DMSO. MIC90 is defined as the 

minimum inhibitory concentration of a compound that is required to inhibit 90% growth 

of the bacterium. The preliminary data for in vitro anti-Mycobacterium tuberculosis was 

achieved using the alamar blue assay, employing GFP reporter assay 10pt. The media 

used includes 7H9 CAS GLU Tx and 7H9 ADC GLU Tw. Compounds were assayed 

within 7 day and 14 day period using the H37Rv strain using Rifampicin as a reference 

drug. A compound was considered inactive when it showed activity at a concentration 

>125 µg/mL. 
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N

NHN

R

119a - d  

Table 5.9: MIC90 data for GFP assay for 7 and day 14 data for compounds 119a-d 

R Entry # After day 7 data After day 14 data 

CAS ADC CAS ADC 

-H 119a >125 >125 >125 >125 

-OH 119b >125 >125 >125 >125 

-F 119c >125 >125 >125 >125 

-NO2 119d >125 >125 >125 >125 

##### Rifampicin 0.009 0.001 0.02 0.02 

 

Schiff base derivatives are multifaceted compounds reported to give numerous 

biological applications [13]. A representative of this class of compounds in TB 

application is the second line drug Terizidone [14]. The ethanamine-Schiff base 

derivatives 119a-d, on Table 5.9 above showed no activity during the 7 and 14 day 

period. This inactivity is attributed to the decomposition of the compounds in DMSO 

as the compounds are moisture sensitive and degrade almost immediately in 

biological solvents, i.e DMSO and water. Due to this, the induced fit docking results 

contradict that of experimental with appreciable higher glide score. In subsection 5.1.1, 

the compounds appeared to undergo protonation at mimicked physiological pH 7.4, 

this perhaps sheds light into the stability of these compounds, where pH is a factor.  
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N

N

Cl

R

121a - e  

Table 5.10: MIC90 data for GFP assay for 7 and day 14 data for compounds 121a-e 

R Entry # After day 7 data After day 14 data 

CAS ADC CAS ADC 

-Cl 121a >125 >125 >125 >125 

-Br 121b >125 >125 >125 >125 

-F 121c >125 >125 >125 >125 

-NO2 121d >125 >125 >125 >125 

-OMe 121e >125 >125 >125 >125 

##### Rifampicin 0.009 0.001 0.002 0.02 

 

Quinazoline derivatives are an important class of compounds in bio-organic chemistry, 

these compounds are largely applied in cancer application, where compounds such 

as gefitinib and erlotinib have been marketed and are currently used to treat small lung 

cancer [15]. In this study we eplore a small structure activity relationship (SAR), the 4-

chloroquinazoline derivatives (121a-e) were tested against the Mtb strain, 

unfortunately due to the poor solubility of these compounds in DMSO, no desirable 

activity was obtained.  
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N

N

R

HN N

O2N

123a - e  

Table 5.11: MIC90 data for GFP assay for 7 day data for compounds 123a-e 

R Entry # After day 7 data 

CAS ADC 

-Cl 123a >125 >125 

-Br 123b 25 17.244 

-F 123c 50 30.969 

-NO2 123d 50 42.362 

-OMe 123e 12.5 10.698 

##### Rifampicin 0.019 0.075 

 

Compounds 123a-e were assayed for 7 days, the compounds gave promising 

preliminary anti-Mtb activity. These compounds however, complement the IFD data as 

compound 123e gave the highest docking score of -7.650 Kca/mol amongst the 

compounds in Table 5.11. The activity was confirmed by experimental data of the 

alamar blue assay as the compound gave promising activity of 12.5 and 10.698 µg/mL. 

The structure activity relationship (SAR) is here observed as the introduction of a 

pyridylamino group on the C4-position proves to have improved solubility of the 

compounds and activity was observed. The variation of the 4-position of the 

pyridylamino series shows that electron donating groups improve the activity of the 

compounds. This is because compounds containing halogens -Cl, -Br and –F on the 

4-position of the 2-aryl substituent gave MIC90 of 17.2 µg/mL to the undesirable >125 

µg/mL. However, an attachement of a 2-aryl substituent bearing a 4-NO2 gave MIC90 

of 42.36 µg/mL. Good MIC90 of 10.698 µg/mL was observed when a 2-aryl substituent 

bearing a 4-OMe was attached. The methoxy group participates in hydrogen bonding 

and this helps in fixing the molecule in the receptor grid and thus improving the binding 

of the molecule in the active binding site. Based on this information, we further expored 
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the C(4)-Cl position of the pre-requisite 4-chloroquinazolines by attaching 

ethynylpyridine through Sonogashira cross-coupling. 

N

N

R

N

125a - e  

Table 5.12: MIC90 data for GFP assay for 7 and day 14 data for compounds 125a-e 

R Entry # After day 7 data After day 14 data 

CAS ADC CAS ADC 

-Cl 125a 3.355 23.836 6.338 58.347 

-Br 125b 3.625 62.5 6.593 >125 

-F 125c 60.25 >125 39.35 >125 

-NO2 125d 8.267 >125 10.806 >125 

-OMe 125e <0.244 12.102 <0.244 8.48 

##### Rifampicin 0.01 0.01 0.001 0.001 

 

Compounds with protruding pyridyl groups are considered suitable for application 

against TB [16]. Examples include first line drug isoniazid and second line drugs 

ethionamide and prothionamide.  The 4-ethynylpyridine cross-coupled quinazoline 

derivatives gave the most promising preliminary in vitro anti-Mtb activity with MIC90 

ranging from 0.723 – (>125) µg/mL. From Table 5.5, compound 125d which bears a 

4-NO2 group on the para-postion of the 2-aryl substituent gave an improved MIC90 

which increased from 42.362 µg/mL to 8.267 µg/mL. Compound 125c registered a 

loss in activity as the MIC90 decreased from 30.969 µg/mL to an undesirable 60.25 

µg/mL concentration. Compound 126e, which bears a methoxy group on the 4-position 

of the 2-aryl substituent gave the highest MIC90 of <0.244 µg/mL. Varying the 4-

position of the 2-aryl substituent appeared to negate the activity of the 4-

ethynylpyridine-quinazoline series. This is because an attachment of 2-aryl 
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substituents with 4-Cl (compound 125a) and 4-Br (compound 125b) resulted in a drop 

in activity with MIC90 values of 3.355 µg/mL and 3.625 µg/mL respectively. 

Coordination of free active ligands to monomeric piano-stool Ru(ll) centre is 

considered to improve the bioactivity [17]. 

N

N

N

R 126a - e

Ru

Cl

Cl

 

Table 5.13: MIC90 data for GFP assay for 7 and day 14 data for compounds 126a-e 

R Entry # After day 7 data After day 14 data 

CAS ADC CAS ADC 

-Cl 126a 30.439 >125 31.864 >125 

-Br 126b 11.279 >125 16.346 >125 

-F 126c 15.8 >125 15.625 >125 

-NO2 126d 7.165 >125 3.867 >125 

-OMe 126e 8.601 21.865 7.813 20.25 

##### Rifampicin 0.005 0.001 0.002 0.001 

 

In our case we coordinated ligands 125a-e to p-cymene Ru(ll) with hope to increase 

the activity of the ligands in Table 5.12. Unfortunately, this theory did not suffice as the 

activity dropped lower than some of the free ligands. We observe a 3-fold drop for 

compounds 126a-b, whose free ligands gave MIC90 of 3.355 µg/mL and 3.625 µg/mL. 

However, an improvement in activity was observed for complex 126c whose activity 

improved 4-fold from 60.25 µg/mL of the free ligand 125c to 15.8 µg/mL of the Ru(ll) 

complex 126c. A minute improvement in activity was observed for complex 126d 

MIC90 7.165 µg/mL. For this slight improvement, the activity of the complex may as 

well be systematic as the introduction of the p-cymene Ru(ll) group did not seem to 

effectively incline the  activity of the free ligand of which MIC90 was 8.267 µg/mL. For 

the free ligand 125e, the activity dropped from <0.244 µg/mL to 8.601 µg/mL for 
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complex 126e which was undesirable. The reason for a drop in activity could be 

reasoned as the complexes being affected by efflux, though it may be premature to 

state, the bulkiness of the complexes may also prevent binding within the receptor grid 

of the target enzymes. Thus resulting in a loss in activity. 

5.3. Conclusion 

 

The imidazolyl-ethanmine Schiff base derivatives 119a-d molecular docking 

investigations into cancer protreins 3F8P and 2SRC  gave docking scores ranging 

from –6 to -9 and -8 to -10 Kcal/mol respectively. Further investigations into TB (1HTO) 

(Mtb) protein gave good docking scores ranging from -8 to -10 Kcal/mol. However, the 

in vitro screening results against Mtb H37Rv strain showed no activity due to instability 

of the compounds in DMSO. The 4-aminopyridyl quinazolines 123a-e gave poor 

docking scores ranging from -5 to -7 Kcal/mol in the cancer protein 2SRC and this is 

due to the limited binding in the 2SRC receptor grid. Relatively good docking scores 

were realised for the 3F8P cancer protein with docking scores ranging from -5 to -9 

Kcal/mol. Sensible docking scores for the 123a-e series were realised for the 1HTO 

TB protein, with a range of -6 to -7 Kcal/mol. Within the 123a-e series, ligand 123e 

gave the highest docking score of -7.650 Kcal/mol. This was complemented by in vitro 

screening results, where the compound gave MIC90 value of 10.698 µg/mL. The 

ethynylpyrdine quinazoline derivatives 125a-e gave poor docking scores within -6 

Kcal/mol range and this is due to limited binding sites within the receptor grid. 

Satisfactory docking scores ranging from -8 to -10 Kcal/mol for the 3F8P cancer 

protein were obtained. The docking calculations into 1HTO TB protein range from -6 

to -9 Kcal/mol and the in silico data complements that of in vitro as compound 125e 

gave the highest dockig score of -9.176 Kcal/mol while the in vitro data gave MIC90 of 

<0.244 µg/mL. Coordination of 125a-e to monomeric piano Ru(ll) p-cymene group 

resulted in a drop in activity towards Mtb. 

The molecular docking calculations prove to be accurate in identifying possible hits in 

biological assays. Our data suggests that a good docking score equals good activity 

to some extent.  
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CHAPTER 6: CONCLUSIONS AND THE FUTURE PROSPECTS   

 

Imidazolyl ethanamine Schiff base ligands of the N^N type were synthesised in good 

yield. Attempted coordination to ZnCl2 yielded poor results due to decomposition of 

Schiff base ligands. The 4-pyridylamino- and 4-(ethynylpyridine)quinazoline ligands 

bearing R = -Cl, Br, -F, -NO2 and -OMe at para position were synthesised in good yield 

through dechlro-amination and sonogashira cross-coupling respectively. 

The 4-(ethynylpyridine)quinazoline ligands were coordinated to Ru(ll)-p-cymene 

centre upon which the spectral characterisation by NMR, IR and Mass spectrometrey 

suggests mono-chelation to the Ru(ll) to adopt a piano-stool type complex.  

Selected compounds 119a-d, 121a-e, 123a-e, 125a-e and 126a-e were tested for anti-

Mycobacterium tuberculosis properties and the 4-chloro-quinazoline series 121a-e 

gave no activity due to their poor solubility in biological solvent DMSO. Similar results 

were obtained for the Schiff base series wherein the stability of these compounds in 

DMSO remains a challenge. However, the 4-(pyridylamino)quinazoline series 123a-e    

gave promising activity ranging from 10 to 43 µg/mL. While the 4-(ethynylpyridine)-

quinazolines gave good activity against Mtb with ligand 125e giving an activity of 

<0.244 µg/mL. Coordination of ligands 125a-e to Ru(ll) p-cymene resulted in a 

decrease in activity. 

Induced-fit molecular docking of ligands 119a-d, 121a-e, 123a-e and 125a-e into 

active sites of 1HTO, 2SRC and 3F8P suggested that these compounds may have 

binding in proteins such as glutamine synthestase against Mtb, tyrosine kinase and 

oxidoreductase for possible anti-cancer activity. 

In future the imidazolyl-ethanamine Schiff base of the N^N will be subjected to imino-

protonation reactions to yield tertiary-amino two carbon spacer ligands. These ligands 

will be coordinated to selected transition metal and their protein binding energies will 

be calculated by way of molecular docking calculations. The molecular docking 

calculations will determine which compounds to proceed with to in vitro biological 

evaluation. The pyridylamino derivatives will be coordinated to selected transition 

metals and their biological activity will be investigated. Phenyl-phosphino ligation is 

reported to improve liphophilicity in biologically active inorganic compounds. The 

ethynyl-pyridine bridged Ru(ll) complexes will therefore be subjected to phosphine-



 

138 
 

group ligation with hope to increase lipophilicity and biological activity of the Ru(ll) 

complexes. The compounds with promising in vitro activity i.e activity below 20 µg/mL 

will be evaluated for safety by way of toxicity assay. 
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APPENDIX 

 1H, 13C-NMR and HRMS spectra of 119a-d on pages 139-144 

 1H, 13C-NMR and HRMS spectra of 123a-e on pages 144-150 

 1H, 13C-NMR and HRMS spectra of 125a-e on pages 151-157 

 1H, 13C-NMR and HRMS spectra of 126a-e on pages 157-162 
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Figure 1: 1H-NMR spectrum of 119a 

 

Figure 2: 13C-NMR spectrum of 119a 
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Figure 3: HRMS spectrum of 119a 

 

Figure 4: 1H-NMR spectrum of 119b 
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Figure 5: HRMS spectrum of 119b 

 

 

Figure 6: 1H-NMR spectrum of 119c 
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Figure 7: 13C-NMR spectrum of 119c 

 

 

Figure 8: HRMS spectrum of 119c 
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Figure 9: 1H-NMR spectrum of 119d 

 

Figure 10: 13C-NMR spectrum of 119d 
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Figure 11: HRMS spectrum of 119d 

 

Figure 12: 1H-NMR spectrum of 123a 
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Figure 13: 13C-NMR spectrum of 123a 

 

 

 

Figure 14: HRMS spectrum of 123a 

BRAMN 4C

m/z
275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385

%

0

100

MS_Direct_171011_29 31 (0.150) Cm (31:45) 1: TOF MS ES+ 
8.56e3279.0294

276.9823

292.9973

281.0260

282.0260
292.9539

308.9746

294.9971

301.1393

305.1571

324.9470

310.9854

324.0124
311.9962

323.0108

326.9458

382.9446

346.0454
328.9423

340.9927

330.9405

365.1077349.1816

362.9244
354.0367 371.2273

386.9931



 

147 
 

 

Figure 15: HRMS spectrum of 123b 

 

Figure 16: 1H-NMR spectrum of 123c 
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Figure 17: 13C-NMR spectrum of 123c 

 

Figure 18: HRMS spectrum of 123c 
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Figure 19: 1H-NMR spectrum of 123d 

 

Figure 20: 13C-NMR spectrum of 123d 
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Figure 21: HRMS spectrum of 123d 

 

 

 

 

 

Figure 22: 1H-NMR spectrum of 123e 
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Figure 23: 13C-NMR spectrum of 123e 

 

Figure 24: HRMS spectrum of 123e 
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Figure 25: 1H-NMR spectrum of 125a 

 

Figure 26: 13C-NMR spectrum of 125a 



 

153 
 

 

 

Figure 27: HRMS spectrum of 125a 

 

Figure 28: HRMS spectrum of 125b 
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Figure 29: 1H-NMR spectrum of 125c 

 

Figure 30: 13C-NMR spectrum of 125c 
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Figure 31: HRMS spectrum of 125c 

 

Figure 32: 1H-NMR spectrum of 125d 
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Figure 33: 13C-NMR spectrum of 125d 

 

Figure 34: HRMS spectrum of 125d 
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Figure 35: 1H-NMR spectrum of 125e 

 

 

Figure 36: 13C-NMR spectrum of 125e 
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Figure 37: HRMS spectrum of 125e 

 

 

Figure 38: 1H-NMR spectrum of 126a 
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Figure 39: 13C-NMR spectrum of 126a 

 

 

Figure 40: HRMS spectrum of 126a 
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Figure 41: 1H-NMR spectrum of 126b 

 

 

Figure 42: 13C-NMR spectrum of 126b 
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Figure 43: HRMS spectrum of 126b 

 

 

 

Figure 44: HRMS spectrum of 126c 
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Figure 45: 1H-NMR spectrum of 126d 

 

 

Figure 46: 13C-NMR spectrum of 126d 
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Figure 47: HRMS spectrum of 126d 

 

Figure 48: HRMS spectrum of 126e 
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