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Abstract 

LiMn2O4 spinel (LMO) is a promising cathode material for secondary lithium-ion 

batteries which, despite its high average voltage of lithium intercalation, suffers 

crystal symmetry lowering due to the Jahn-Teller active six-fold Mn3+ cations. 

Although Ni has been proposed as a suitable substitutional dopant to improve the 

energy density of LiMn2O4 and enhance the average lithium intercalation voltage, 

the thermodynamics of Ni incorporation and its effect on the electrochemical 

properties of this spinel are not fully understood.  

 

Firstly, structural, electronic and mechanical properties of spinel LiMn2O4 and 

LiNixMn2-xO4 have been calculated out using density functional theory employing the 

pseudo-potential plane-wave approach within the generalised gradient 

approximation, together with Virtual Cluster Approximation. The structural 

properties included equilibrium lattice parameters; electronic properties cover both 

total and partial density of states and mechanical properties investigated elastic 

properties of all systems. Secondly, the pressure variation of several properties was 

investigated, from 0 GPa to 50 GPa. Nickel concentration was changed and the 

systems LiNi0.25Mn1.75O4, LiNi0.5Mn1.5O4 LiNi0.75Mn1.25O4 and LiNi0.875Mn1.125O4 were 

studied. Calculated lattice parameters for LiMn2O4 and LiNi0.5Mn1.5O4 systems are 

consistent with the available experimental and literature results. The average 

Mn(Ni)-O bond length for all systems was found to be 1.9 Å. The bond lengths 

decreased with an increase in nickel content, except for LiNi0.75Mn1.25O4, which gave 

the same results as LiNi0.25Mn1.75O4. Generally, analysis of electronic properties 

predicted the nature of bonding for both pure and doped systems with partial density 

of states showing the contribution of each metal in our systems. All systems are 

shown to be metallic as it has been previously observed for pure spinel LiMn2O4, 

and mechanical properties, as deduced from elastic properties, depicted their 

stabilities.  

 

Furthermore, the cluster expansion formalism was used to investigate the nickel 

doped LiMn2O4 phase stabilities. The method determines stable multi-component 

crystal structures and ranks metastable structures by the enthalpy of formation while 
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maintaining the predictive power and accuracy of first-principles density functional 

methods. The ground-state phase diagram with occupancy of Mn 0.81 and Ni 0.31 

generated various structures with different concentrations and symmetries. The 

findings predict that all nickel doped LMO structures on the ground state line are 

most likely stable. Relevant structures (Li4Ni8O16, Li12MnNi17O48, Li4Mn6Ni2O16, 

Li4Mn7NiO16 and Li4Mn8O16) were selected on the basis of how well they weighed 

the cross-validation (CV) score of 1.1 meV, which is a statistical way of describing 

how good the cluster expansion is at predicting the energy of each stable structure. 

Although the structures have different symmetries and space groups they were 

further investigated by calculating the mechanical and vibrational properties, where 

the elastic constants and phonon vibrations indicated that the structures are stable 

in accordance with stability conditions of mechanical properties and phonon 

dispersions.  

 

Lastly, a computer program that identifies different site occupancy configurations for 

any structure with arbitrary supercell size, space group or composition was 

employed to investigate voltage profiles for LiNixMn2-xO4. The density functional 

theory calculations, with a Hubbard Hamiltonian (DFT+U), was used to study the 

thermodynamics of mixing for Li(Mn1-xNix)2O4 solid solution. The results suggested 

that LiMn1.5Ni0.5O4 is the most stable composition from room temperature up to at 

least 1000K, which is in excellent agreement with experiments. It was also found 

that the configurational entropy is much lower than the maximum entropy at 1000K, 

indicating that higher temperatures are required to reach a fully disordered solid 

solution. The maximum average lithium intercalation voltage of 4.8 eV was 

calculated for the LiMn1.5Ni0.5O4 composition which correlates very well with the 

experimental value. The temperature has a negligible effect on the Li intercalation 

voltage of the most stable composition. The approach presented here shows that 

moderate Ni doping of the LiMn2O4 leads to a substantial change in the average 

voltage of lithium intercalation, suggesting an attractive route for tuning the cathode 

properties of this spinel. 
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Introduction 
 

General Introduction 

Due to a shortage of the fossil-fuels and serious environmental pollution caused by 

motor vehicle emissions, alternative sources of energy have been urgently 

demanded world-wide. Demands on lifetime and energy/power density are 

increasing significantly over the past decade and increasing to extend the duration 

in which the battery can be used [1]. The requirements of appropriate energy 

storage devices differ notably in each area of application. Hence research in the 

field of rechargeable lithium batteries has intensified, attempting to further improve 

lithium-ion batteries. 

 

Renewable energy technologies such as rechargeable batteries are clean sources 

of energy that have a much lower environmental impact than conventional energy 

technologies. Lithium-ion batteries have been successful in portable electronics 

market regarded as the most prospective power source for electric vehicles (EVs) 

and hybrid electric vehicles (HEVs) due to their high energy density [2] [3] [4] [5]. 

However, increasing interest in lithium-ion batteries for electric vehicle (EV), hybrid 

electric vehicle (HEV) and plug-in electric vehicle (PHEV) applications requires 

alternative cathode materials due to the high cost, toxicity, and limited power 

capability of the layered LiCoO2 cathode.  The oldest commercially used electrodes 

are LiCoO2, it exhibits a relatively stable cyclability and an excellent rate 

performance. However, cobalt metal is much less abundant in nature and 

characterized with a medium-cost, and these problems are obstacles to applications 

of LiCoO2 as cathode material for large-scale lithium batteries for load-levelling 

systems and electric vehicles [6]. The other commercially used electrodes are spinel 

LiMn2O4 due to the low-cost, environmentally friendly, highly abundant material that 

is used as a cathode material in Li-ion batteries.  
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Great efforts have been made to improve the electrochemical performance of 

LiMn2O4 spinel [2] [7] Presently, four main methods are adopted to overcome the 

capacity deterioration problem, (i) introducing cation defects or vacancies (Li1-xMn2-

xO4), (ii) doping with excess lithium to form the solid solution, Li1+xMn2-xO4 and (iii) 

doping with different metals (for example, Mg, Ni, Cu, Zn, Cr and Al) on the 

manganese octahedral 16d sites, (iv) among them, surface modification has 

demonstrated excellent performance, (v) thermo-stability of LiMn2O4-based batteries 

at elevated temperatures,  [8] [9]. These efforts are made to increase the amount of 

Mn4+ by slightly increasing the Li/Mn atomic ratio, where the Jahn-Teller distortion 

becomes less severe, therefore, the structural stability increases and the cyclability 

is improved. Some of the measures have improved the cyclability of the Li-ion 

batteries to a great extent and they were accompanied by the significant loss 

capacity. 

 

Lithium-ion Batteries 

A battery is an electrochemical device that stores chemical energy and releases it 

in the form of electrical energy when needed. Batteries can be categorised as 

primary and secondary batteries based on the reversibility of the chemical reactions 

involved. The reaction in a secondary battery is reversible and irreversible in a 

primary battery [10] [11]. The first true battery (primary batteries)  was invented by 

Alessandro Volta in 1800, which is known as a Voltaic Pile [10]. Since then, lithium 

manganese dioxide battery, alkaline battery, lithium primary battery, and zinc-air 

battery have been designed and commercialised [11]. Lead-acid batteries were the 

first rechargeable battery launched by Gaston Planté in 1860, with success in 

automobile and other applications with advantages of high rate and good low-

temperature performances. Therefore the most popular battery technologies are the 

lithium-ion batteries because they have high energy- and power density as well as 

their high lifetime compared to other types [12]. 

 

The lithium-ion battery is composed of four main components: a negative electrode 

(anode), a positive electrode (cathode), an electrolyte and a separator. When the 
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battery is charged, the lithium-ions in the cathode material migrate through the 

separator to the anode with the flow of charging current through the external circuit. 

In the opposite way, the lithium-ions in the anode migrate through the separator to 

the cathode material with the flow of discharging current through the external circuit 

(see Figure 1-1). The main property of the electrolyte is the transportation of ions 

from the anode to the cathode or vice-versa while ensuring as little as possible side 

reactions with the Li-ions. Mostly it consists of water with some dissolved salts, the 

most used lithium hexafluorophosphate, to ensure good ion conductivity. Layered 

LiCoO2 is widely used in most commercial lithium-ion batteries due to its good 

cyclability, reasonable capacity and easy synthesis [13].  

 

However, certain issues associated with safety, cost and the environmental hazard 

of cobalt have stimulated the development and improvement of alternative cathode 

materials. Several cathodes with different compositions, metal ions, or crystal 

structures have been investigated [14]. The electrochemical storage of energy in a 

lithium-ion battery is attained along intercalation in the positive and negative 

electrode, presented by equation (1) [15]:  

 

𝐿𝑖+ + 𝑒− + 𝜃 ←→ 𝐿𝑖 − 𝜃…………………………..................................................... (1) 

 

With:  

𝜃  the insertion material  

𝜃 − 𝐿𝑖 Lithium inserted in the material  

𝜃 𝑒 − an electron Li+ A lithium-ion 

                                                        



  

4 

 

  

 

Figure 1-1: Schematic representation of lithium-ion battery during the charge-

discharge process [16]. 

Spinel LiMn2O4 has been studied extensively in order to replace LiCoO2 as a 

cathode material for secondary lithium-ion batteries due to its low cost, 

environmental friendliness and non-toxicity [17] [18]. The major problem of this 

material is a rapid capacity deterioration, especially at elevated temperatures; due 

to Mn dissolution, the crystal structure changes due to Jahn-Teller distortion in a 

deeply discharged state, and the decomposition of organic electrolytes on its 

surface during charge process [19].  

 

Since lithium metal constituted a safety problem, in1980 a breakthrough in concept 

was generated. Lazzari and Scrosati [20] proposed the “rocking chair battery” based 

two insertion compounds, LixWO2
 
and LiyTiS2. Though this system could solve the 

problem of safety, it was unable to provide the practical energy required to make it 

an attractive rechargeable system. In 1980 when the LiCoO2 was demonstrated 
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firstly as a possible cathode material for rechargeable lithium battery, the transition 

metal intercalation oxides have caught the major research interests as the LIB 

cathodes [21] [22]. They are categorised by structure, the conventional cathode 

materials include layered compounds LiMO2 (M = Co, Ni, Mn etc.), spinel 

compounds LiM2O4 (M=Mn etc.), and olivine compounds LiMPO4 (M = Fe, Mn, Ni, 

Co, etc.). Most of the research is performed on these materials and their derivatives. 

Lithium-ion is now a worldwide project and widely accepted by the battery 

community, although there is no lithium metal in the cell. Both electrodes operate by 

intercalation of lithium ions into the structure of the active materials. AT Battery Co., 

a joint venture of Toshiba Battery Co. and Asahi Chemical Co. was the second to 

commercialise the technology using Asahi patent portfolio [23]. 

 

There are observations that the minor change in impedance of the electrode on 

cycling cannot account for the observed capacity fading and Premanand et al. [24] 

concluded that the main cause is the structural change and associated active 

material dissolution in the electrolyte. The capacity of LiMn2O4 fades during cycling 

for several reasons, such as instability of an organic-base electrolyte in a high 

operation voltage [25], structure-related dissolution of manganese into electrolyte 

[26] [27] [28], change in a crystal lattice arrangement with cycling [29] and so on. In 

general, LiMxMn2-xO4 (M=Co, Ni, Cr, etc.) material was prepared using the 

conventional solid-state method at low (600~700℃) or high temperatures 

(750~850℃) [30] [31]. In the process, the oxides or carbonates containing 

manganese and lithium cations are physically mixed by mechanical methods, and 

all the solid particles may not completely react, which results in undesirable 

impurities in the final product. Therefore, a considerable improvement in the 

preparation of LiMxMn2-xO4 cathode materials has been accomplished using the wet 

methods [32] [33] [34] and all components homogeneously distributed in samples 

using the wet method [35]. To improve the stability of LiMn2O4 spinel structure, Ni-

doped spinel samples synthesised through the improved precipitation method [2], 

and the effects of Ni content of the structure and electrochemical performance of 

LiMn2O4 were investigated in detail Bao et al [36] and  Sun et al [37] have reported 

that the introduction of anion substitution in the form of spinel oxy-fluorides can 

reduce the Mn oxidation state and then increase the specific capacity. Thus, dual 
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cationic and anionic substitutions can be assumed to be an alternate way of 

improving the material’s electrochemical properties [38]. The charge-discharge 

capacity and cycle performance of LiMn2O4 were greatly affected by the synthesis 

methods and conditions. LiMn2O4 can be obtained by a solid-state reaction at a high 

temperature and the soft chemistry method at low temperature [38]. The sol-gel 

method gives the LiMn2O4 in fine particle size a narrow size distribution and uniform 

composition, so it has been widely used to prepare the positive electrode materials 

of lithium-ion batteries [39]. However, the LiMn2O4-based cathode for lithium-ion 

batteries suffers severe capacity deterioration especially at elevated temperature, 

which might be related to Mn dissolution in acidic electrolytes [2] [40] Jahn-Teller 

distortion of Mn3+ at deeply discharge state [9], and oxygen deficiency [41].  

 

In order to address the issues, using the other transitional metal (e.g. Ni, Fe, Co, Al) 

to replace Mn have been explored for the cathodes of lithium-ion batteries [42] [43] 

[44] [45]. Among these materials, LiNixMn2-xO4 shows the best cycling stability, it is 

still crucial and desirable to design and develop new strategies in this field [46]. This 

improvement probably comes from the strong chemical bond of Mn-O-Ni that 

stabilises the octahedral spinel sites, prevents the dissolution of Mn3+ ions into the 

electrolyte, and restrains the Jahn-Teller distortion [47]. Since a large amount of Ni 

doping could render a significant decrease of the capacity at 4 V [48], most studies 

about LiNixMn2-xO4 were confined in the case of x≤0.2 for stable crystal structure 

and good cyclic performance [49] [50] [51] [52]. So far, the performance of LiNixMn2-

xO4 at room temperature has been well documented, but that at elevated 

temperature is studied to a less extent [53] [54], particularly at a high-rate 

charge/discharge.  

 

The electrochemical property of LiMn2O4-based spinel is highly dependent on its 

synthetic routes, such as the Pechini process [55], sol-gel [56], emulsion method 

[57], the citric method [58], etc. However, most of these methods involve 

complicated treatment processes or expensive reagent, which is time-consuming 

and highly costly for commercial applications. The Mn-substitution in LiMn2O4 

indicates improved charge-discharge cycling stability both at ambient temperature 

and at 50℃ up to 80 cycles at a 0.5C rate and was ascribed to structural stabilisation 
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induced by the substitution [59]. To date, spinel LiNi0.5Mn1.5O4 doped with Ru has 

been reported to have the best electrochemical performance. Wang et al. reported 

the high rate capability of nanostructured Ru doped spinel LiNi0.5Mn1.5O4 [60]. 

Doping in LiMn2O4  

The performance of cathode materials can be improved by doping. However, the 

interpretation of doping effects can be complicated due to interrelations between 

doping and microstructural morphology [61]. This two problem engage various 

factors involving the cation ordering related to Mn3+ content, particle morphology, 

surface modification and the surface crystalline planes in contact with the 

electrolyte, whereas, all factors are profoundly influenced by the different synthesis 

procedures and circumstances [46]. Various divalent and trivalent ions, which make 

the structure more stable, have been tried as dopants in several studies, in 

particular, aluminium, chromium, magnesium and other transitional metals [62] [63] 

[64]. Chromium-doped spinels have shown to operate successfully in a higher 

voltage range. Magnesium was found to be successful in suppressing the oxygen 

non-stoichiometry in LiMn2O4, which was a necessary condition for the structural 

transition of LiMn2O4 near room temperature.  

 

Doping is very useful for keeping structure stability and improving the cyclability of 

the LiMn2O4 spinel material since it’s widely explored. Due to the capacity 

deterioration of LiMn2O4 spinel is greatly associated with Mn dissolution caused by 

Mn3+ disproportion reaction and Jahn-Teller distortion, which can be restrained by 

doping appropriate concentration into the bulk or surface spinel for cation or anion 

substitution. The investigated doping ions can be divided into two categories, cations 

and anions and the doped elements were replaced (manganese) and rise to 

manganese ions average valence, confining the Mn3+ solution and declining the 

Jahn-teller deformation. To the best of our knowledge, the cationic doping elements 

mainly include Fe, Co, Ni, Al, Cl, Ti, F, and S as a doped element and studies the 

influence of the charge/discharge properties of the doped LiMn2O4 material [2]. The 

defect aspect of nickel or cobalt doped LMO spinel is more complicated because 

both Ni and Co can exhibit different oxidation states of +2, +3 and +4 in LiMn2O4.  
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Previous studies reported that when doping spinel with nickel or cobalt ions occupy 

octahedral 16d sites as in the form of Ni2+ or Co3+ by the substitution for Mn ions  

[65] [66] [67] [68]. LiNi0.5Mn1.5O4 is the most promising and attractive material 

because of its acceptable stability, a dominant potential plateau at around 4.7 V, 

good cyclic property and relatively high capacity [69]. The high cycling performance 

of LiNi0.5Mn1.5O4 may be due to the shortening of the average chemical bond length 

of Mn(Ni)–O, which increases/decreases the mean chemical bond energy and 

enhances the structural stability [70] [71]. The high operating voltage and chemical 

stability of LiNi0.5Mn1.5O4 make it a strong cathode candidate for next-generation Li-

ion cells with high energy and power densities [34]. Recently, the density functional 

theory methods have been widely employed to investigate spinel LiMn2O4 system, 

which provided information on clarifying and explaining some experimental 

phenomena [72]. The electronic properties of spinel show that the bonding between 

O and metal (i.e. Mn and Ni) is also strengthened due to the Ni doping, which 

improves the structural stability of LiNi0.5Mn1.5O4. Furthermore, Ni-doped spinel has 

a lower formation enthalpy than that of the pristine, indicating that the Ni doping 

improves the structural stability of spinel [47]. 

 

 A study on chromium-doped LiMn2O4 using the local density approximation (LDA) 

has been carried out by Shi et al. [73]. Calculations were performed on un-relaxed 

systems and a very slight increase in the charge density around manganese atoms 

even for the maximum doping content of chromium was observed. A major change 

in the charge density was found for oxygen atoms. It was also observed that the 

shape of the density of states plot for both manganese and oxygen atoms remains 

almost unchanged after doping with chromium. Mishra et al [74] performed spin 

polarization (antiferromagnetic) generalized gradient approximation (GGA) 

calculations LiMn2O4 and LiCrMnO4. Mishra and Ceder in their study on the 

structural stability of lithium manganese oxides have stressed the use of GGA.  A 

phase diagram of the LixMn2O4 has been calculated using local density 

approximation to the density functional theory [75]. The study successfully explains 

the phase transformation when x varies from 1 to 2 (cubic to tetragonal phase 

transformation). However, the phase stability, lattice change and voltage are not 

consistent with the experimental observations when x varies in the range of 0 to1. 
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This can be attributed to the fact that neither the LDA nor the GGA approach can 

give the distinguished electronic structures of Mn3+/Mn4+ ions in LiMn2O4 [75] [76]. 

However, LiMn2O4 suffers from both the inferior theoretical capacity (148 mAh.g-1 

compared with 274 mAh.g-1 of LiCoO2) and an unacceptable performance fade. To 

improve its cycling performance, especially at elevated temperature (≥50℃), several 

approaches such as doping at the Mn site, surface modification, and various 

preparatory conditions have been shown to be successful [12] [56] [77] [78] [79] [80] 

[81] [82] [83] [84] [85] [86] [87] [88] [89]. The increased impedance contribution of 

the LiMn2O4 electrode with cycling was also correlated with the observed capacity 

fading in spinel compounds [90] [91]. 

 

There are two kinds of doping, the substitutional and interstitial doping. As an 

example, Li1.1Mn2O4 is obtained by interstitial doping while Li[Mn1.7Fe0.3]O4 is 

obtained by substitutional doping. Substitutional doping is therefore taken as the 

introduction of foreign elements into the host material to take the place of some 

proportion of the original host chemical or element. Substitutional doping, thus, 

preserves the crystal structure of the compound while interstitial doping may change 

or modify the structure. The important point is that, for substitutionally doped 

compounds, the positions of the atoms are precisely known in the crystal lattice 

whereas, for an interstitially doped compound, the atoms/ions may sit in interstitials 

whereby the position is not precisely known. Thus, it is quite problematic to analyse 

stoichiometry of interstitially doped materials in terms of the position of the foreign 

elements in the crystal structure of the materials. 

When constructing a CE for a specific bulk structure, there are major tasks to 

consider (i) the type of figures (pairs, three-body,…) and how many are needed for 

a utilised  alloy system, and (ii) how to obtain the magnitude of the selected 

interactions {J} from a well-posed microscopic theory of electronic structure [92]. 

Although the first-principles investigations of the thermodynamics of binary alloys 

using a cluster expansion have so far neglected the presence of vacancies. It is also 

clear that the doping of Ni may lead to an improvement in cathode performance, 

both the underlying mechanism and, more fundamentally, the question of nickel 

solubility in bulk LMO remain open [93]. Several computational approaches have 

also been made to investigate the behaviour of the cationic disorder. In this work, 
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we study the conditions under which nickel doping and cluster expansion into LMO 

bulk may be feasible. The temperature dependence of cationic disorder has also 

been studied, although only within a few short-range interactions, using statistical 

mechanics techniques to calculate the finite-temperature properties. Warren et al. 

calculated the degree of inversion using a Monte Carlo simulation with a NN pair 

and NN triangle interactions parameterized using the energies of 10 ordered 

structures obtained within local density approximation LDA [94] [95]. Rocha et al. 

studied the effects of high pressure on the cationic disorder using a mean-field 

approximation, in addition to the behaviour under normal pressure [96]. The free 

energy of disordered spinels was evaluated from a modified effective 

thermodynamic model combining a regular solution with a quadratic form of internal 

energy. Generally speaking, the prediction of order-disorder transition temperature 

and phase diagram characteristics needs multi-electron volt accuracy and many-

body to obtain the magnitude of the chosen interactions {J}.  Effective cluster 

interactions in the cluster expansion are determined by the minimisation of the 

cross-validation score using a genetic algorithm. 

 

Structural Properties of LiMn2O4 

The spinel LiMn2O4 structure has a general chemical formula ([Li]tet[Mn2]OctO4) 

belonging to the space-group Fd-3m, which each lattice is made up of 2 lithium 

atoms, 4 manganese atoms and 8 oxygen atoms. LiMn2O4 adopts the spinel crystal 

structure with lithium ions occupying tetrahedral 8a sites, an equal amount of Mn3+ 

and Mn4+ ions on octahedral 16d sites with an average charge of +3.5 and oxygen 

ions on 32e sites. The 8a and 16d sites form a three-dimensional pathway for lithium 

ions diffusion. Empty tetrahedral (8a) and octahedral (16c) sites that share faces 

create a 3-D tunnel structure that allows lithium ions to move easily through the 

structure. Oxygen atoms located at 32e sites are arranged in a close-packed cubic 

array and construct a face-centred cubic.  When Li-ions diffuse into the structure, 

first moves from 8a site to the neighbouring 16d site, and then to the next 8a site in 

a way that it enables three-dimensional lithium diffusion. The 8a tetrahedral site is 

situated furthest away from the 16d site of all the interstitial tetrahedral (8a, 8b and 

48f) and octahedral (16c). The Mn ions have octahedral coordination to the 
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oxygen’s, and the MnO6 octahedra share edges in a three-dimensional host for the 

Li guest ions [97]. 

 

Figure 1-2: Part of the unit cell of LiMn2O4 showing the local structure around 

octahedral coordinated Mn in an ideal spinel lattice.  Mn-O bonds are represented 

by heavy solid lines; linear chains of manganese ions in neighbouring edge-sharing 

octahedral are indicated by dashed lines [98]. 

Recently, it was found that LiNi0.5Mn1.5O4 has two crystallographic symmetries of 

Fd-3m and P4
3
32 spinel’s as the high voltage cathode materials were investigated 

by the first-principles theory. A common example of a normal stoichiometric 

magnesium aluminate spinel is MgAl2O4, contains equimolar proportions of 

Al2O3 and MgO [99]. Thackeray et al. [100] proposed the spinel cathode LiMn2O4  

and the material have been extensively developed by Bellcore labs [101] [102]. The 

crystal structure of spinel LiMn2O4 is shown in figure 1-2.   
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Figure 1-3: Crystal structures of spinel LiMn2O4, (x=0.25, 0.5, 0.875) where green, 

purple and red atoms represent Lithium, manganese and oxygen atoms 

respectively. 

  

 

 

 

 

 

Figure 1-4: Crystal structure of spinel nickel doped LiNixMn2-xO4; where green, 

purple, silver, and red atoms represent Lithium, manganese, nickel and oxygen 

atoms respectively. 

The rationale of the Study 

Lithium-ion batteries (LIBs) together with the development of science and 

technology are the major power source for portable electronic devices, electric 

automotive applications and grid support. Thus far layered LiCoO2, spinel LiMn2O4 

and olivine-like polyanion LiFePO4 oxides have been mainly used commercially due 

to their exceptional cycling ability and reasonably high energy/power density. 

Among various cathode materials for LIBs the cheap, safe and rich in resources 

LiMn2O4 cathode material has become a research hotspot. However, both existing 

and emerging technology require LIBs with energy and power capabilities that are 

beyond the existing state of-the-art. The more widely studied high-voltage mixed 

Mn, Ni, Co oxides (NMCs) are more increasingly being used in LIBs. Various efforts 
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have been tried to improve the electrochemical performance of spinel LiMn2O4 

cathode materials, including bulk doping, surface coating and morphology control.  

 

On the down side, the scarcity and high cost of cobalt pose impediments in their 

long term usage. With a high intercalation working voltage of ∼ 4.7 V vs. Li, high 

rate capability, high energy density, low environmental impact and reasonable cost, 

the mixed manganese based spinel materials such as LiNi0.5Mn1.5O4 (LNMO), are 

considered the most promising for high-energy-density LIB. However, the cycle life 

of such materials is insufficient for practical applications, and increasing cycling 

performance has been the focus of intense recent research. Hence, further studies 

on the thermodynamics of the Ni incorporation in LiMn2O4 to improve the structural 

stability and resulting electrochemical properties, including enhancement of the 

average lithium intercalation voltage, is necessary. 

 

In the current study different approaches will be used to predict new and improve 

existing structures resulting from nickel as a substitutional dopant for LiMn2O4. 

Consequently, first principles density functional methods embodied in the Castep 

code, in conjunction with Virtual Crystal Approximation (VCA), will be invoked.  The 

latter is well suited offering technically the simplest approach, allowing calculations 

for the generation of disordered systems to be carried out at the same cost as 

calculations for ordered structures. Although the approach neglects effects such as 

local distortions around atoms, it is also not expected to reproduce the finer details 

of the disordered structures very accurately and it is important to be aware of its 

limitations. Furthermore, the Universal Cluster Expansion (UNCLE) package will be 

employed to set up, construct and automatically converge a cluster expansion for 

LiMn2O4 spinel systems in order to generate unique structures within the random 

mixing of LiMn2O4-LiNi2O4 and to carry out related thermodynamic analysis. Lastly, 

the site occupancy disorder (SOD) code, will produce complete configurational 

space for each Ni concentration in the spinel LiMn2O4. This will show how 

substantial changes in the average voltage of lithium intercalation occur with 

moderate Ni incorporation in LiMn2O4. 
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Outline of the Study 

This dissertation is organised into five chapters as follows with regard to the density 

functional approach, focusing on the GGA-PBE approximation: 

Chapter 1 consists of a general introduction to the study, applications, properties, 

structural aspects and background on computational modelling of materials and 

intention of the current study. 

 

Chapter 2 reviews the theoretical methodologies for density functional theory 

together with virtual crystal approximation, cluster expansion and side occupancy 

disorder.  

 

Chapter 3 presents the calculations in details, results, discussions on structural 

properties lattice parameters, pressure, electronic properties and mechanical 

stabilities of spinel LiMn2O4 and nickel doped LiMn2O4 structures, where virtual 

approximation and ab initio methods have been invoked.  

 

Chapter 4 focuses on electronic properties and mechanical properties, where we 

observe any various change in pressure impact on the total density of states, the 

partial density of states and elastic constants.  

 

Chapter 5 focuses on the binary diagram that generates five new stable 

configurations with low heats of formation. Then calculate the mechanical 

properties, electronic properties and their phonon spectrum for stability verification. 

 

Chapter 6 indicates that any small change in the tuning of the Ni concentration, 

achieved via temperature change during the thermodynamics of mixing and 

controlling of the lithium intercalation will be reflected in the properties of the stable 

structure. 

 

Chapter 7 gives a summary of the main results presented in this thesis and several 

recommendations for future research are also listed. 
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Methodology 

Introduction  

In this chapter, a brief overview of the theoretical background of methodologies used 

in this study is presented. First-principles modelling refers to the application of 

quantum mechanics to determine the structure and properties of materials. In this 

work we have based our approach on quantum mechanical calculations, being the 

density functional theory. Quantum mechanical methods are widely used to study 

the structure, chemical, electrical, optical and magnetic properties of a material. The 

description of the use of first-principles methods to obtain information on the pure 

and nickel doped spinel, structural, density of states, mechanical and pressure 

properties in spinel lithium manganese oxide for rechargeable lithium batteries is 

presented. The technique employed is called a CASTEP module which employs a 

plane-wave technique to deal with weak pseudo-potentials. Most importantly, it is 

capable of simulating electronic relaxation to ground states for metals, insulators or 

semiconductors and hence predicts with accuracy the forces acting on atoms and 

the stress on the unit cells. We further deployed two approaches; the Universal 

cluster expansion which determined stable multi-component crystal structures and 

ranks metastable structures by the enthalpy of formation, while maintaining the 

accuracy of first-principles density functional methods. In the second approach, we 

employed density functional theory calculations with a Hubbard Hamiltonian 

(DFT+U) to investigate the thermodynamics of mixing of the LiMn1-xNixO4 solid 

solution with the site occupancy disorder generated configurations. 

 

Density Functional Theory 

The success of the density functional theory (DFT) as a tool for ab initio calculation 

of various properties of solids has inspired scientists to apply it and even to study 

defects (both uncharged and charged) in metals and semiconductors. DFT is a 

quantum mechanical theory applied in physics and chemistry and is used to 
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investigate the electronic structure of many-body systems, in particular atoms, 

molecules and the condensed matter [103]. Within the DFT, the properties of a 

many-electron system can be determined by using a functional, which in this case 

is the spatially dependent electron density. Hence the name Density Functional 

Theory comes from the use of functional of the electron density.  

 

DFT has its conceptual roots in the Thomas-Fermi model from 1920s and it was put 

on a firm theoretical footing by the two Hohenberg-Kohn (H-K) theorems [104]. The 

original H-K theorem held only for non-degenerate ground states in the absence of 

a magnetic field [105], although they have since been generalised. The first H-K 

theorem demonstrates that the ground state properties of a many-electron system 

are uniquely determined by an electron density that depends on only three spatial 

coordinates. It lays the groundwork for reducing the many-body problem of N 

electrons with 3N spatial coordinates to 3 spatial coordinates, through the use of the 

functional of the electron density. This theorem can be extended to the time-

independent domain to develop time-dependent density functional theory, which 

can be used to describe excited states. 

 

The second H-K theorem defines energy functional for the system and proves that 

the correct ground-state electron density minimises this energy functional. Within 

the framework of Kohn-Sham DFT [106], the intractable many-body problem of 

interacting electrons in static potentials is reduced to a tractable problem of non-

interacting electrons moving in an effective potential.  

 

The total energy of the system is expressed as a function of the electron density for 

a given position of atom nuclei. The minimum value of the total energy functional is 

the ground state energy of the system. In DFT, the total energy is given by: 

 

𝐸 = 𝐸[𝜌(𝑟), 𝑅𝛼],                                                                                                      (1) 

 

where the electron density 𝜌 and total energy 𝐸 depend on the type and 

arrangement of the atomic nuclei 𝑅𝛼 denotes the position of the nuclei 𝛼 in the 
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system. Equation (1) is the key to atomic scale understanding of structural, 

electronic, mechanical and magnetic properties of materials. 

 

The original H-K theorem shows that it is possible to use the ground state density 

to calculate properties of the materials, but does not provide wayfinding with the 

ground state. Hence Kohn and Sham [86] introduced a special type of wave-

functions into the formalism, to treat kinetic and interaction energy. They derived an 

effective three terms Schrödinger equation expressing the functional as the sum of 

three terms, written as:  

 

𝐸[𝜌] = 𝑇0[𝜌] + 𝑈[𝜌] + 𝐸𝑋𝐶[𝜌],                                                                                    (2) 

 

where 𝑇0 is the kinetic energy of the electrons, U as classical Coulomb repulsion 

energy of the electrons, 𝐸𝑋𝐶 is the exchange correlation energy. In the DFT, if each 

effective electron is described by a single wave function𝜓𝑖, then the kinetic energy 

of all electrons in the system is given by: 

 

 𝑇𝑜 = ∑𝑛𝑖 ∫𝜓𝑖(𝑟) [
ħ2∇2

2𝑚
]𝜓𝑖𝑑𝑟                                                                                      (3) 

 

where 𝑛𝑖 denotes the number of electrons in state𝑖. The Coulomb energy 𝑈  which 

is purely classical contains the electrostatic energy arising from the columbic 

attraction between the electrons and nuclei, the repulsion between the electronics, 

and the repulsion between the nuclei. It can be written as follows: 

 

𝑈[𝜌] = 𝑈𝑒𝑛[𝜌] + 𝑈𝑒𝑒𝜌 + 𝑈𝑖𝑜𝑛−𝑖𝑜𝑛.                                                                              (4) 

 

The exchange correlation, energy 𝐸𝑥𝑐 accounts for all the remaining electronic 

contributions to the total energy.  

      

In DFT, only the minimum value of the Kohn-Sham energy functional has a physical 

meaning, therefore it is necessary to determine the ground-state total energy of the 

system, by determining the set of wave-functions𝜓𝑖(𝑟). The set of wave functions  
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𝜓𝑖(𝑟) minimises the Kohn-Sham energy functional and is given by the self-

consistent solutions of the equation: 

[
−ħ2

2𝑚
∇2 + ∇𝑖𝑜𝑛(𝑟́) + 𝑉𝐻(𝑟́) + 𝑉𝑥𝑐(𝑟́)]𝜓𝑖(𝑟́) = 𝜀𝑖𝜓𝑖(𝑟́),                                                   (5)   

 

where, 𝜓𝑖 is the wave function of electronic state 𝑖 and 𝜀𝑖 is the Kohn-Sham 

eigenvalue, 𝑉𝑖𝑜𝑛 is the ionic potential describing the attractive interaction between 

electrons and nuclei and 𝑉𝐻 is the Hartree potential of the electron which is given by 

 

𝑉𝐻(𝑟) = 𝑒2 ∫
𝜌(𝑟′)

⃒𝑟−𝑟′⃒
𝑑3𝑟′,                                                                                             (6) 

 

and 𝑉𝑋𝐶 is the exchange-correlation potential given by the functional derivative, 

 

𝑉𝑋𝐶(𝑟) =
𝛿𝐸𝑋𝐶[𝜌(𝑟)]

𝛿𝜌(𝑟)
,                                                                                                   (7)   

 

the electron density,𝜌(𝑟), is given by 

 

𝜌(𝑟) = 2∑ ⃒𝜓𝑖(𝑟)⃒
2

𝑖 .                                                                                              (8) 

  

Hence, the Kohn-Sham total energy functional for a set of doubly occupied 

electronic states 𝛹 can be written as: 

 

 𝐸 = {𝜓𝑖} = 2∑ (
ħ2

2𝑚
) ∇𝑖𝑜𝑛∇2

𝑖 𝜓𝑖𝑑
3𝑟 + ∫𝑣𝑖𝑜𝑛(𝑟)𝜌(𝑟) 𝑑3𝑟 +

𝑒2

2
∫

𝜌(𝑟)(𝜌𝑟́)

|𝑟−𝑟′|
𝑑3 𝑟𝑑3𝑟′ +

𝐸𝑥𝑐[𝜌(𝑟)] + 𝐸𝑖𝑜𝑛({𝑅ɭ})
 ,                (9) 

  

where 𝐸𝑖𝑜𝑛  is the Coulomb energy associated with interactions among the nuclei 

(or ions) at positions{𝑅𝑖}. The exchange-correlation potential cannot be obtained 

explicitly because the exact exchange-correlation energy is unknown. To solve this 

problem, approximation methods are employed and will be discussed in the next 

two sections. 
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Local Density Approximation  

The simplest method of describing the exchange correlation energy of an electronic 

system is to use the local density approximation (LDA). The LDA is a class of 

approximations to the exchange-correlation 𝐸𝑥𝑐 energy the functional in density 

functional theory and a widely used approximation in physics [107]. It locally 

substitutes the exchange-correlation energy density of an inhomogeneous system 

by that of an electron gas evaluated at the local density. The exchange-correlation 

energy gives the smallest contribution to the total energy and the energy depends 

only on the local electron density around each volume element d𝑟. 

 

 The LDA rests on two basic assumptions: 

(i) the exchange and correlation effects come predominantly from the 

immediate vicinity of the point 𝑟 and 

(ii) these exchange and correlation effects do not depend strongly on the 

variations of the electron density near 𝑟.  

If the two basic assumptions are well fulfilled, then the contribution from volume 

element d𝑟 would be the same as if these volume elements were surrounded by a 

constant electron density 𝜌(𝑟) of the same value as within d𝑟. In local density 

approximation, the exchange-correlation energy of an electronic system is 

constructed by assuming that the exchange-correlation energy per electron at a 

point 𝑟 in the electron gas 𝐸𝑋𝐶(𝑟) depends only of the local electron density around 

each volume element d𝑟 and thus 

 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌(𝑟)] ≈ ∫ 𝜀𝑥𝑐(𝑟)𝜌(𝑟)𝑑3 𝑟 ,            (10) 

         

and 

 

𝛿𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌(𝑟)]

𝛿𝜌(𝑟)
=

𝜕[𝜌(𝑟)𝜀𝑥𝑐(𝑟)]

𝜕𝜌(𝑟)
  ,             (11)

      

with 

 

𝜀(𝑟) = 𝜀𝑥𝑐
ℎ𝑜𝑚[𝜌(𝑟)],               (12) 
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where 𝜀𝑥𝑐
ℎ𝑜𝑚 = [𝜌(𝑟)] is the exchange-correlation energy per particle of the 

homogeneous electron gas calculated at the local density [108]. The quantity can 

be split into two parts and gives: 

 

𝜀𝑋𝐶𝜌(𝑟) = 𝜀𝑋[𝜌(𝑟)] + 𝜀𝐶[𝜌(𝑟)],                                                                             (13) 

 

The exchange part 𝜀𝑋[𝜌(𝑟)] can be derived analytically with Hartree-Fork 

expression and be expressed as  

 

 𝜀𝑋[𝜌(𝑟)] =
3

4
√

3𝜌(𝑟)

𝜋

3
,                                                                                            (14) 

 

Generalised Gradient Approximation 

The remarkable success of LDA has led to the various generalised gradient 

approximations (GGA’s) with distinct improvement over LDA. The generalised 

gradient approximations can now provide the accuracy required for density 

functional theory simulations. The LDA is inaccurate in the strongly correlated 

system, where the dependent particle breaks down did not perform well in many 

areas of chemistry [109]. For non-uniform charge densities, the exchange-

correlation energy can deviate significantly from the uniform result. This deviation 

can be expressed in terms of the gradient and higher spatial derivatives of the total 

charge density. The generalized gradient approximation by Perdew [110], Becke 

[111], Perdew and Wang [112] and Perdew et al. [113] uses the gradient of the 

charge density, ⃒∇𝜌(𝑟)⃒, to correct this deviation. Generalised gradient 

approximation denotes a variety of ways proposed by functions that modify the 

behaviour at large gradients, such that the desired properties are preserved. The 

GGA exchange correlation energy is written as 

 

𝐸𝑋
𝐺𝐺𝐴[𝜌] = ∫𝑑𝑟𝜌(𝑟) = 𝐸𝑋𝐶

𝐺𝐺𝐴[𝜌(𝑟), ∇𝜌(𝑟)],                                                                 (15) 

 

where 𝐸𝑥𝑐 is the exchange correlation energy and ∇𝜌(𝑟) is the gradient term. 



  

21 

 

 

 

Figure 2-1: Overview of electronic structure methods for solving the Kohn-Sham 

equation [114]. 

 

Hybrid Functionals 

The hybrid functionals are used to improve the description of the exchange term in 

DFT calculations based on the partial (0 < 𝑎 < 1)incorporation of an exact 

exchange part from HF in hybrid functionals: 

 

𝐸𝑥𝑐 = (1 − 𝑎)𝐸𝑥
𝐷𝐹𝑇 + 𝑎𝐸𝑥

𝐻𝐹 + 𝑎𝐸𝑐
𝐻𝐹                                                                             (17) 

 

The incorporation of the non-local HF exchange part also provides some degree of 

self-interaction cancellation and the classical Coulomb interaction have opposite 

signs. The use of only the exact HF exchange, 𝑎 = 1 in equation (above), produces 

poor hybrid functional results as there is an important error cancellation element 

taking place between the DFT exchange and correlation functionals [115]. 
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DFT + U Method 

The electronic self-interaction is another shortcoming associated with most DFT 

methods. It arises when the correlation term is not treated exactly and produces 

artificially delocalized electron densities. In materials with strongly interacting and 

very localised electrons, such as in many transition metal oxides, the DFT method 

is unable to reproduce a realistic electronic structure, as it fails to open the bandgap 

[116] [117] or underestimates it [118] [119]. This DFT limitation is not only exclusive 

to transition metal oxides, the magnetic moments are too small for the 

semiconducting transition metal oxides [120] but are also found in rare earth 

compounds and some non-metal oxides [121].  

 

The different formulations of the DFT+U approximation have been devised [122] 

[123] [124] to treat the strong on-site Coulomb interaction of localized electrons, 

which is not correctly described by LDA nor GGA, with an additional Hubbard-like 

term. This be an increment in energy associated with the introduction of an electron 

in certain d-orbitals, i.e. 𝑈 = 𝐸(𝑑𝑛+1) + 𝐸(𝑑𝑛−1) − 2𝐸(𝑑), which opens band gaps 

close to the experimental ones or those obtained from more demanding 

computational methods. There are two types of DFT + U methods and in this thesis, 

we implemented the Hamiltonian in the proposed version by Dudarev et al. (1998) 

which takes the form: 

 

𝐸𝐷𝐹𝑇 = 𝐸𝐷𝐹𝑇 +
𝑈𝑒𝑓𝑓

2
∑ [𝜌𝜎 − 𝜌𝜎𝜌𝜎]𝜎                                                                                  (16) 

 

where 𝜌𝜎 is the atomic orbital occupation matrix of the d-electrons with spin 𝜎 and 

𝑈𝑒𝑓𝑓 is equal to the difference between U, the spherically averaged Hubbard 

parameter, and J, the screened exchange energy. The U and J are the effective 

Coulomb and exchange parameters, respectively, where they can in principle, be 

computed from first principles. However, the theoretical values of U and J give poor 

results, and therefore, these parameters are adjusted by fitting to experimental data, 

such as the oxide band gap or the lattice parameters. 
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The DFT + U method only makes physical sense when 𝑈𝑒𝑓𝑓 and [𝜌𝜎 − 𝜌𝜎𝜌𝜎]are 

both greater than 0. The latter can be shown easily in the idempotency limit of𝜌𝜎. 

This means that the eigenvalue of this matrix is either 0 to 1, which are values 

associated with fully unoccupied or occupied d-levels. The net result is a DFT + U 

energy which is always greater than the pure DFT energy.  

 

The DFT + U method can be applied to both local and gradient corrected functional. 

Since better results are typically obtained with GGA while different U values are 

usually required for each type of function to obtain comparable results [125]. 

Therefore, the method also affects geometrical factors indirectly after the variation 

of electronic properties [125] [126]. In this thesis, the 𝑈𝑒𝑓𝑓  values used to describe 

adequately the d bands of each transition metal ion were dependant on the 

functional use.  

 

Planewave Pseudopotential Method  

Pseudo-potential plane-wave methods have become a work-horse for the study of 

structural and electronic properties based on quantum mechanical treatment. The 

method allows the electronic wave functions to be expanded in terms of a smaller 

number of plane-wave basis states. It simplifies the DFT problem by considering 

only the valence electrons. The core electrons are excluded based on the 

assumption that their change density is not affected by the changes in the 

environment.  

Planewave Basis 

An infinite plane-wave basis set is used to expand the electronic wave functions of 

the system. The method is described by using Bloch's theorem, which allows the 

electronic wave function to be expanded in terms of a discrete set of plane waves. 

The electronic wave functions of a periodic solid can be written as: 

 

𝛹𝑖(𝑟) = 𝑒[𝑖𝑘.𝑟]𝑓𝑖(𝑟),                                                                                                   (18) 
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This expression has a wavelike and cell-periodic part. The function 𝑓𝑖(𝑟) defines the 

periodicity of the solid and can be expressed as: 

 

 𝑓𝑖(𝑟) = ∑ 𝐶𝑖,𝐺𝐺 exp [𝑖𝐺. 𝑟],                                                                                        (19) 

 

where 𝐺 are vectors of the reciprocal lattice of the periodic cell and are required for 

the resolution of rapid variations in the wave functions and charge density. Hence, 

each electronic wave function can be written as a sum of plane waves, 

 

𝛹𝑖 = ∑ 𝐶𝑖,𝑘,𝐺𝐺 exp[𝑖(𝑘 + 𝐺). 𝑟],                                                                                (20) 

 

where 𝐶𝑖,𝑘,𝐺 are the coefficients for the plane waves and dependent on the specific 

kinetic energy, [
ħ2

2𝑚
] ⃒𝑘 + 𝐺⃒2. The convergence of this expansion is controlled by 

the choice of the kinetic energy cut-off. The plane wave basis set is limited by 

including all plane waves whose kinetic energies are less than some energy cut-off 

𝐸𝑐𝑢𝑡.  Thus, only the plane waves that obeys 

  

[
ħ2

2𝑚
] ⃒𝑘 + 𝐺⃒2<𝐸𝑐𝑢𝑡,                                                                                                 (21) 

 

are included in the basis set. Introduction of 𝐸𝑐𝑢𝑡 to the discrete plane wave basis 

set produces a finite basis set. The plane wave set at finite cut-off energy will lead 

to an error in the computed total energy. Hence the energy cut-off should be 

increased until the calculated energy has converged. The plane waves are used as 

a basis set for the electronic wave functions and substituting equation 𝛹𝑖 =

∑ 𝐶𝑖,𝑘,𝐺𝐺 exp[𝑖(𝑘 + 𝐺). 𝑟], into Kohn-Sham equation[
−ħ2

2𝑚
∇2 + ∇𝑖𝑜𝑛(𝑟́) + 𝑉𝐻(𝑟́) +

𝑉𝑥𝑐(𝑟́)]𝜓𝑖(𝑟́) = 𝜀𝑖𝜓𝑖(𝑟́), gives the equation:  

 

∑[
ħ2

2𝑚
⃒𝑘 + 𝐺⃒2𝛿𝐺𝐺′ + 𝑉𝑖𝑜𝑛(𝐺 − 𝐺′) + 𝑉𝐻(𝐺 − 𝐺′) + 𝑉𝑋𝐶(𝐺 − 𝐺′)] 𝐶𝑖,𝑘,𝐺′ = 𝜀𝑖𝐶𝑖,𝑘,𝐺,    

(20) 
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The kinetic energy is diagonal and the various potential contributions are given by 

the Fourier transforms. A solution of equation 33 precedes by diagonalisation of a 

Hamiltonian matrix whose matrix elements  𝐻𝑘+𝐺+𝑘+𝐺′ . The matrix’s size is obtained 

by the choice of cut-off energy [
ħ2

2𝑚
] ⃒𝑘 + 𝐺𝐶⃒2, and will be large for the systems that 

contain both valence and core electrons. 

 

Pseudopotentials 

This method is designed for periodic solids but is also used for problems such as 

atoms and surfaces employing the super-cell approach. Physical properties of solids 

are much dependable on the valence electrons than on the tightly bound core 

electrons [127] [128] [129]. In this method, the weaker pseudo potential replaces the 

core electrons and the strong attractive Coulomb potential inside the ionic core. The 

weaker pseudo-potential describes all hence that describes all silent features of a 

valence electron moving through a crystal, including relativistic effects [127] [128] 

[129] [130]. Thus, the original solid is now replaced by pseudo-ion cores pseudo 

valence electron. These pseudo electrons experience the same potential outside 

the core region as the original electrons but have a much weaker potential inside 

the core region.   

The schematic diagram in Figure 2-2 illustrates the following quantities; an ionic 

potential (𝑍 𝑟⁄ ), valence wave-function (𝛹𝑣) and the corresponding pseudo-potential 

(𝑉𝑝𝑠𝑒𝑢𝑑𝑜) and pseudo wave function (𝛹𝑝𝑠𝑒𝑢𝑑𝑜).  
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Figure 2-2: Schematic illustration of all-electron (solid lines) and pseudo-electron 

(dashed lines) potentials and their corresponding wave-functions [130]. 

The advantage of using pseudopotential approximation form factor can be 

determined by direct comparison with the energy gaps (known as empirical 

pseudopotential) from ab-initio calculations. It allows the electronic wave function to 

be expanded using a much smaller number of plane wave basis states and saves 

an enormous amount of computational time. The pseudo-potential has the form: 

 

𝑉𝑁𝐿 = ∑ ⃒𝑙𝑚〉𝑉𝑖〈𝑙𝑚⃒𝑙𝑚 ,                                                                                             (22) 

 

where ⃒𝑙𝑚〉 is the spherical harmonics and 𝑉𝑖 is the pseudo-potential for angular 

momentum 𝑙, acting on the electronic wave-function. Most of the pseudo-potentials 

currently used in the electronic structure are generated from all electron atomic 

calculations. A pseudo-potential that uses the same potentials for all the angular 

momentum components of the wave-function is called a local pseudo-potential. The 

two types of pseudo-potentials are described briefly in the next two subsections. 
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Norm Conserving Pseudopotential 

Norm conserving pseudo-potential is an example of a non-local pseudo-potential. 

Norm-conserving pseudo-potentials enforce the condition that, outside of a cut-off 

radius, the norm of each pseudo-wave-function is identical to its corresponding all-

electron wave-function [131]. If the exchange-correlation energy is to be desired 

accurately, the pseudo wave function and the real wave function outside the core 

region must be identical in both their absolute magnitude. Hence, spatial 

dependence for two wave-functions to generate identical charge densities. The non-

local pseudo-potential describes in detail the scattering from the ion core.  

 

Ultrasoft Pseudopotentials 

One aim of pseudo-potentials is to create pseudo functions that are smooth and yet 

accurate. Ultra-soft pseudo-potentials (USP) relax the norm-conserving constraint 

to reduce the basis-set size and was suggested by Vanderbilt [132]. In the USP 

scheme, the pseudo wave function can be as soft as possible within the core region. 

This is achieved by introducing a generalised orthonormality condition. The electron 

density should be augmented in the core region to recover the full electronic charge. 

The electron density is then subdivided into (i) a smooth part that extends 

throughout the unit cell and (ii) a hard part localised in the core region. Ultra-soft 

pseudo-potentials have another advantage besides being much softer than their 

norm-conserving counterpart. 

 

K-sampling 

Electronic states are allowed only at a set of k-points determined by the boundary 

conditions that apply to the bulk solid. The density of allowed k-points is proportional 

to the volume of the solid. A particle which leaves one surface of the crystal 

simultaneously enters the crystal at the opposite surface. The infinite numbers of 

electrons in the solid are accounted for by an infinite number of k-points and only a 

finite number of electronic states are occupied at each k-point. One of the difficulties 

associated with the use of plane-wave basis sets is that the number of basis states 

changes discontinuously with cut-off energy. 
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 The Bloch theorem changes the problem of calculating an infinite number of wave 

functions into calculating a finite number of electronic states at each k-point. The 

electronic wave-functions at each k-point can be expanded in terms of a discrete 

plane-wave basis set. In principle, an infinite number of plane waves are required 

for such an expansion. The occupied states at each k-point contribute to the 

electronic potential in the bulk solid so that in principle an infinite number of 

calculations are needed to compute this potential. In this case, the electronic states 

at only a finite number of k-points are required to calculate the electronic potential 

and hence determine the total energy of the solid. However, the electronic wave-

functions at k-points that are close to each other are very similar; therefore, the k-

point summation can be efficiently carried out by an appropriate sampling.  

 

To obtain accurate electronic potential, electronic density and total energy, efficient 

methods have been used to choose the finite sets of k-points. The two most common 

methods are those of Chadi and Cohen [133] and Monkhorst and Pack [134]. Using 

these methods, the number of these k-points necessarily depends on the material: 

for insulators, only a few points are needed as all bands are filled, while for metals 

more points are needed for the bands that cross the Fermi-level. 

 

The computational cost of performing a very dense sampling of k space increases 

linearly with the number of k-points in the Brillouin zone (BZ). Density functional 

codes approximate these space integrals with a finite sampling of k-points. Special 

k-points schemes have been developed to use a few possible k-points for a given 

accuracy and reducing computational cost. The most commonly used scheme is by 

Monkhorst and Pack (Monkhorst and Pack, 1976) [134]. 

 

 Universal Cluster Expansion 

The cluster-expansion approach is a technique in quantum mechanics that 

systematically truncates the BBGKY hierarchy problem (the BBGKY hierarchy 

(Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy, sometimes called Bogoliubov 

hierarchy) is a set of equations describing the dynamics of a system of many 

interacting particles) that arises when quantum dynamics of interacting systems is 
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solved. In statistical mechanics, the cluster expansion (also called the high-

temperature expansion or hopping expansion) is a power series expansion of the 

partition function of a statistical field theory around a model that is a union of non-

interacting 0-dimensional field theories. Cluster expansions originated in the work 

[135] unlike the usual perturbation expansion, it converges in some non-trivial 

regions when the interaction is small. The cluster expansion is a power series 

expansion of the partition function of a statistical field theory around a model that is 

a union of non-interacting of 0-dimensional field theories. Modern DFT methods can 

calculate material properties with reasonable to high precision (depending on the 

quality of the approximations to the exchange and correlation effects). Standard 

DFT applications are, however, restricted to unit cells of a few hundreds of atoms. 

If one wants to model an alloy with varying atomic concentrations and crystal 

structures a huge number of very large supercell would be needed if one would try 

to solve the problem using an abrupt force. Therefore, the process would be deemed 

fatal. A successful strategy to overcome this limitation is offered by the cluster 

expansion (CE) [136] when combined with Monte Carlo simulations 

 

One significant class of problems in materials science comprises those that can be 

characterised, at the atomic level, as configurationally. Important configurational 

questions include order-disorder transitions, ground states (stable compounds in the 

solid part of the phase diagrams of crystalline metals and semiconductors), and 

segregation of defects in alloy interfaces and surfaces, or adsorption at surfaces. 

The new code, Universal Cluster Expansion (UNCLE), consolidates recent 

advances in the methodology and leverages one new development in the formalism 

itself. The fundamental goal of the package is to reduce the need for user 

intervention automating the method to reduce human error and judgment. The 

package extends standard cluster expansion formalism to the more complicated 

scenarios of ternary compounds, as well as surfaces, including adsorption and 

inequivalent sites. The sheer size of configurational space makes it impractical to 

explore any of these questions directly from an electronic structure theory (first-

principles methods). But it is possible to map first-principles results onto a faster 

Hamiltonian. One example is the cluster expansion [136], which permits one to 

‘extract’ the physics of atom-atom interactions from a set of first-principles, small-

https://en.wikipedia.org/wiki/Power_series_expansion
https://en.wikipedia.org/wiki/Partition_function_%28statistical_mechanics%29


  

30 

 

unit-cell calculations and then model, in a practical way, unit cells with millions of 

atoms (as in Monte Carlo modelling), or explore tens of millions of different atomic 

configurations in different cell shapes (as indirect enumeration ground-state 

searches. The concept of CE is to describe every configuration dependent property 

of a system by a linear combination of interacting building blocks or figures. By 

configuration, one understands a distribution of atoms over a given lattice. Then the 

energy for a given configuration 𝜎 is written as a sum over pairs, triplets, 

quadruplets, and so on, the so-called figures or clusters. It was shown [136]  that 

such an expansion exists if mathematically the expansion goes over every single 

configuration (i.e. atomic distributions). For practical reasons, the expansion should 

be limited to reasonably small clusters so that the expansion converges numerically. 

If the input of a convergent cluster expansion is provided by DFT calculations, then 

the accuracy of DFT calculations can be carried over to systems consisting of 

104−106 atoms. Currently, UNCLE’s format for structural information has been 

designed to match that of the first-principles code VASP of which communication 

has been established [137] [138] [139] [140] [141] and to adapt to the input of the 

FLAPW code FLAIR [142] [143] [144]. Many studies were made for binary alloy bulk 

systems, however, [145] [146] [147] [148] ternary systems (or binary systems with 

vacancies) [149] [150] are still rather scarce. Because they are complex hence effort 

(to set up the flowchart of the cluster expansion procedure) is needed.  

 

Effective Cluster Interactions  

A set of effective cluster interactions can be extracted and used in a Large-scale 

Monte Carlo simulations from an optimised cluster expansion to explore order-

disorder phenomena and phase segregation processes as a function of 

temperature. 

On a basic lattice various atoms, for example of type 𝐴 and 𝐵, are distributed to 

define structure 𝜎, a periodic configuration of 𝐴 and 𝐵 atoms. This configuration is 

described by the pseudo spin operator  𝜎𝑞 = ±1, which has the value +1 if atom 𝐴 

sits on site 𝑞 or -1 if that atom is 𝐵 (see Figure 2.1). Any physical property of the 

system, which is dependent on the atomic configuration, 𝜎 can now be described by 

a sum of spin products, as written in equation 35. An example for such a property is 
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the energy or enthalpy of formation, but also other observable properties can be 

cluster expanded such as tensorial quantities [151], Curie temperature [152] and 

density of states [153]. For fitting and finding the optimum set of figures, the energy 

or enthalpy of formation is much better suited because they should reach a minimum 

 

 

Figure 2-3: The diagram is decomposed into a set of truncating structures and 

clusters. 

The energy (𝜎) associated with structure 𝜎 can be described by an expansion of 

cluster interactions and their respective interaction energies 𝐽 by means of equation 

𝐸(𝜎⃗) =  𝐽0 + 𝐽1 ∑ 𝜎𝑖𝑖 + ∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗𝑖>𝑗 + ∑ 𝐽𝑖𝑗𝑘𝜎𝑖𝜎𝑗𝜎𝑘𝑖>𝑗>𝑘 + ⋯                                         (35) 

 

The variable 𝜎𝑖 is the spin-like occupational variable to each site 𝑖 of the parent 

lattice, which takes the value -1 or +1 depending on the type of atom occupying the 

site. The parameters𝐽𝑖 in equation 35 are the so-called effective cluster interactions 

(ECI) or interaction energies, which are of the same dimension as the expanded 

property. In equation 35 𝐽0, the first term, serves as a constant value, configuration 

independent contribution. The second term is concentration dependent and is a sum 

over all 𝑁 sites of structure 𝜎 with onsite energy 𝐽1 times the pseudo spin operator 𝜎 

at each site 𝑖. Further terms describe the cluster the distance between pairs and 

three-body interactions, for example two-body interactions𝐽𝑖𝑗 or three-body 

interaction 𝐽𝑖𝑗𝑘. A particular arrangement of spin of the parent lattice is called a 

configuration and can be represented by a vector 𝜎 containing the value of the 

occupation variable for each site in the parent lattice. They contain spin products 

𝜎𝑖𝜎𝑗  … over all 𝑓 vertices of a cluster times is an effective cluster interaction energy 

𝐽𝑖𝑗… summed up over all the possible ways that the cluster can be placed on the 
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lattice of structure 𝜎. Furthermore the interaction energies or effective cluster 

interactions representing the contribution of each group of atom to 𝐸(𝜎). In practise, 

an atom cluster expansion is known to converge rapidly but it is necessary to know 

which effective cluster interactions (ECI) are most important for a given material. To 

conduct the cluster expansion this it is applicable to formulate again equation 35 

into a more compressed form; 

 

𝐸(𝜎⃗) = ∑ 𝐽𝑐𝜋𝑐(𝜎⃗)𝐶𝜖𝐶                                                                                                     (36) 

 

Therefore, the cluster expansion equation sums up the product of cluster 𝐶’s 

interaction energy 𝐽𝑐 with the correlation function, 

 

∏ (𝜎⃗)𝑐 = 𝑁−1 ∑ ∑ ∏ 𝜎𝑣𝑣𝜖𝑓𝑘𝜖𝐶
𝑁
𝑖=1                                                                               (37) 

 

a sum over all the possible ways a cluster 𝐶 with f ⃗ vertices can be placed on the 𝑁 

sites of the structure. In the correlation function, the spin product 𝜎1 …𝜎f goes over 

all 𝑓 vertices of the cluster. Only symmetry inequivalent clusters are now considered 

and clusters included in an expansion can be collected by the vector 𝐶 = {𝐶1… 𝐶n}. 

 

Structures Selection  

The initial step in the UNCLE approach is to define the pool of figures. Although 

symmetrically the amounts of distinct figures are limited by the input structures, even 

the list may contain far more figures than is required to form accurate cluster 

expansion. The approach is to choose a ‘cut-off radius,’ taking all figures smaller 

than the cut-off. Because the importance of figures generally decreases as the 

number of vertices increases, we specify smaller cut-offs for figures with more 

vertices [154]. 

 

A very important task of a convergent CE is to guarantee and to avoid biasing the 

training set and associated effective interaction energies. To prevent a wrong 

interpretation of the whole system by choosing the wrong input, UNCLE uses the 

chosen figure set to fit the energy of other structures. New structures can now be 
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designed and if they lie energetically below the existing ground state line they are 

recalculated by DFT, providing a new set of input structures. Then, a new set of 

figures is fitted and the procedure repeated. Such an iterative approach has the 

advantage that a reliable ground state line can be achieved together with a figure 

set which yields accurate results. The basic idea is to consider structures and 

clusters that will best approximate the finite set of energies at hand. The three-body 

and four-body clusters and other compact many-body clusters are added in the 

expansion. 

 

 Cluster Expansion Flowchart  

In order for the expansion to be useful, it must be truncated to a relatively small 

number of terms without losing the expansion's predictive power. Choosing which 

figures to retain is the most critical step of the cluster expansion method. A 

minimisation using genetic algorithm was first used for the CE by Hart et al. [155]. 

In this approach, the figure list is represented as a binary string. However, the 

evolutionary approach based on a genetic algorithm (GA) has proven to be the most 

effective approach to select the figures [156]. The set of figures selected by the GA 

results in a cluster expansion that has better predictive power than if selected using 

other approaches. The details of the algorithm, which is implemented in UNCLE, 

have been described in [157] [155]. A figure used is marked by the value 1, 

otherwise, the value is 0. Furthermore, the interaction energies are also represented 

as a binary string. The combination of both binary strings, including figures used 

and their interaction energies, is now the genetic ‘DNA’ of a solution, who’s fitness 

is described by the CVS. A higher CVS compared to other solutions means, that this 

solution has a lower fitness. 

Now, a ‘population’ of npop different solutions is created, in which the fitness of every 

individual solution is calculated. Of those npop individuals only the fittest nfit (0 < nfit < 

npop) individuals are selected to survive to the next iteration process. The other 

npop−nfit solutions are replaced by ‘descendants’ of the surviving fittest ‘parent’ 

solutions. Their ‘DNA’ is generated by two different processes as shown in Figure 

2-5: 

• In the crossover, the ‘DNA’ of the ‘offspring’ is created by mixing the ‘DNA’ of two 

randomly selected ‘parent’ solution. Thereby the ‘DNA’ of one ‘parent’ solution is 
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used up to the crossover point. After that point, the ‘DNA’ of the second ‘parent’ is 

used. 

• In mutation, a random binary bit of the ‘DNA’ string is flipped from one state to the 

other, i.e. 1  0 or 0  1. 

Note, that one may replace all surviving ‘parent’ solutions with the ‘children’, as long 

as only the fittest ‘parent’ solutions are used to create them. Therefore the basic 

principle is illustrated in Figure 2-5. 

 

Figure 2-4: Illustration of the Genetic Algorithm.  

The figure above shows mutation, in an illustration of crossover given, two ‘parent’ 

solutions marked red and green are used to manufacture a ‘child’ solution. Which 

helps with the safety identification of the relevant figures that need to be included in 

the Cluster Expansion-sum. The process is stochastic in nature meaning that an 

identical training set yields slightly different results if the genetic algorithm is 

repeated.  A random bit in the binary string is flipped into the opposite state. Thus, 

the fitness of the new ‘population’ created by this process can be re-evaluated and 

the procedure repeated until the results are obtained with a very small CVS. 

However this procedure will always find a minimum and it also remains unclear, if a 

local or global minimum will be found. It is then advisable to perform a number of 

separate CE and use the end product with the lowest CVS as the final solution. 

Therefore universal cluster expansion can be set up to do the procedure 

automatically by performing a number of steps sequentially and only save the best-

yielded solution at the end.  
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  Input Energies (Eισ) for the Cluster Expansion 

When the genetic algorithm has converged a set of figures is selected to describe 

the best system. This set predicted all the DFT derived ground state energies of the 

starting input set and resulted in the lowest SCV. Structures, which were not 

members of the input set of the GA run, should now be predicted sufficiently correct. 

Now, the ECIs –as derived from the fitting are taken to describe all possible 

structures of the system on the given parent lattice. If the enthalpy of formation of 

one of these structures is below the ground state line as defined by the DFT input 

data– this structure is included in an enlarged input set. As a consequence, its 

formation enthalpy is calculated by DFT and added it to the list of input structures. 

With this enlarged input set a new GA is done. This procedure is repeated until no 

new ground states are predicted by the CE. As a result, the stable structures of the 

system are obtained and the final ground state line. 

 

 

 

Figure 2-5: Ground-state line of the binary LiNi2O4-LiMn2O4 systems for an fcc-

parent lattice. 
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At the red line is the defined Dft grounded-state line, where lies the structures with 

the lowest formation energies, the green blocks denote the DFT results taken as an 

input for the CE and the green crosses represent the energies predicted by CE.  

2.7.4.1 Miscible Constituents 

When models with miscible constituents have structures with the more negative∆𝐻𝑓, 

(thermodynamically stable, ordered structures) which are close to the ground states 

or on the Dft grounded state line at a given concentration, are deemed important 

and the cluster expansion should be most accurate for those. In order to accomplish 

this, those structures predicted by the cluster expansion to be more beneficial (with 

a lower ∆𝐻𝑓) and does not form part of the training set are added to the training set.  

Therefore, it is done iteratively until no new structures are predicted by cluster 

expansion to be more favourable than those already included in the training set. It 

is then at this point that the cluster expansion has converged and from all structures 

considered by the cluster expansion the thermodynamically stable ones have been 

identified. 

 

 

Figure 2-6: A Binary ground state diagram illustrating miscible constituent 
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2.7.4.2 Miscibility Gap 

When a model is a phase separating, no stable ordered structures exist apart from 

the two pure phases and all structures are of equal importance to the cluster 

expansion. Therefore, the selection process of structures to be added to the training 

set has to improve the quality of the cluster expansion for all structures considered, 

irrespective of their formation energies ∆𝐻𝑓. 

The stochastic nature of the genetic algorithm is then used to determine how good 

(or bad) the energies of the structures predicted by the cluster expansion. Then the 

multiple cluster expansions are performed using an identical training set. The energy 

of all considered structures are then predicted by these multiple 𝐽’s and a standard 

deviation of the predicted energies is evaluated. Structures with the highest 

standard deviation are those whose description by the cluster expansion is the 

worst. Therefore, these are added iteratively to the training set. 

 

 

Figure 2-7: A Binary ground state diagram illustrating a miscibility gap 
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  Ternary Systems Expansion     

Recently, first-principles electronic structure calculations are used to compute the 

phase stability of ordered binary compounds in which the A and B atoms are defined 

with respect to a given underlying lattice. For the LiNi2O4–LiMn2O4 system, it is well 

known that the ordering of defects plays a fundamental role to understand the 

structure and stability within the LiNi2O4–LiMn2O4 phase. In a binary CE approach, 

the desired property of the system can be determined by using the spin product as 

a basis (see equation 52). In a ternary CE, the spin product is conveniently replaced 

by an orthogonal basis set which is constructed by Chebyshev polynomials Θ𝑛of 

order𝑛, for which their arguments are the spin variables [154], 

Θ0 = 1,    Θ1(𝑆𝑖) =  √3 2⁄ ∗ 𝑆𝑖    Θ2(𝑆𝑖) =  √2 − 3 √2⁄  ∗ 𝑆𝑖
2                                          (38) 

From now on, we will use the term “figure” instead of “cluster”. The spin product of 

a figure f used in equation (52) for the binary case is now replaced by the product 

of polynomials on each lattice site which is occupied by spin𝑆𝑖; 

Π𝑓,𝑠(𝜎) =  Θ𝑆1
(𝑆1)  ∙  Θ𝑆2

(𝑆2)  ∙ … ..  ∙  Θ𝑆𝑛
(𝑆𝑛).                                                               (39) 

The vector s has components𝑆𝑗 𝜀 {1; 2}, which designate the order of the polynomial. 

The number of factors 𝑛 is equal to the number of lattice sites or vertices 

 

Figure 2-8: Schematic picture of mapping a physical configuration [158].  

 

Figure 2-8 shows a schematic picture with relaxed structure (left panel) with a given 

atomic occupation (circles with different colours) onto the virtual lattice (right panel) 

and a decomposed into the clusters. The atom types in the CE fit are defined as the 

spin variable𝑆𝑖 = −1,+1. A basic lattice type (e.g. bcc) should be chosen for both of 
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the systems. Structural relaxations (see left panel) are allowed if they are not too 

large: the CE converges also for the given set of relaxed structures, see discussion 

in the text which belong to a figure𝑓. By making use of Θ𝑆𝑗
 each figure can now be 

described by a different basis. For example, the correlation function of the figure 

with one vertex Π1,𝑠 describes two different characteristics: 

 Π𝑓,(1)  Describes correlations only between atom types with spin -1 and 1, 

since the atoms with 𝑆𝑖 = 0 do not contribute because the Chebyshev 

polynomial of the first order is zero. If atoms are labelled by A, B,C  and their 

occupation variables are -1,0,+1 in respective order, then only correlations 

between A and C atoms are described. 

 𝛱𝑓,(2) describes correlations between all three atoms, because the 

Chebyshev polynomial of second order is different from zero for 𝑆𝑖 = 0 and 

|𝑆𝑖| = 1 

In a ternary system, the maximum number of figures with 𝑘 vertices or lattice sites 

is 

3𝑘  possibilities. This can be reduced if clusters are equivalent because of symmetry. 

Summing over all figures𝑓, the Hamiltonian has now the form; 

 

𝐸(𝜎) =  𝐽0 + ∑ 𝐽𝑓𝑓  ∙  Π𝑓,𝑠(𝜎)                                                                                 (40) 

 

with the configuration dependent spin products Π and the configuration independent 

effective cluster interaction energies 𝐽. The main task of the CE consists in getting 

the effective cluster interactions  𝐽𝑓(𝐸𝐶𝐼) connected to each figure𝑓, as sketched in 

figure 2.3. The correlation functions can now be symmetrized for a set of symmetry 

equivalent figures,Π̅𝐹(𝜎) 

 

𝛱𝐹(𝜎) =  
1

𝑁𝐷𝐹
 ∑ Π𝑓𝑓𝜀𝐹 (𝜎)                                                                                      (41) 
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Figure 2-9: Example of figures in a two-dimensional lattice. Two duplets and triplets 

are shown in two different but symmetry equivalent arrangements [158]. 

 

where 𝐷𝐹 is the number of symmetry operations by which the clusters 𝑓𝜀𝐹 are 

related. Now, the summation runs over all F symmetrized spin products. For the 

sake of normalisation one, divides by the number of lattice sites N as used in the 

actual CE. 

 

 The energy of a certain configuration 𝜎 is now decomposed by the expansion; 

 

𝐸(𝜎) = 𝑁 ∑ 𝐷𝐹𝐹 𝐽𝐹Π̅𝐹(𝜎)                                                                                       (42) 

 

Because of the given lattice the correlations Π̅𝐹 are known and can be constructed. 

What is not known are the ECIs𝐽𝐹.The main task is now to calculate the ECIs. This 

is done by DFT calculations for the configuration dependent property of interest (e.g. 

the formation energy EDFT ) for suitably selected compounds with a given structure 

and fitting these results to the corresponding CE for each configuration 

(=compound). The quality of the CE strongly depends on the quality of the fitting, for 

which sophisticated self-consistent procedures were developed [159]. These fitting 

procedures are based on a least square fit; 

 

       Σ𝑁𝜎|𝐸𝐷𝐹𝑇(𝜎) − 𝑁Σ𝑁𝐹𝐷𝐹𝐽𝐹Π𝐹|2  = 𝑚𝑖𝑛.                                             (43) 
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Monte Carlo Method 

The Monte Carlo method has had a considerable history in physics. As far back as 

1949 a review of the use of Monte Carlo simulations using ‘modern computing 

machines’ was presented by Metropolis and Ulam (1949). In addition to giving 

examples, they also emphasized the advantages of the method. Now, Monte Carlo 

simulations are reaching into areas that are far afield of physics. In a Monte Carlo 

simulation, the aim is to imitate the ‘time dependence’ of a model for which 

modification, or growth, does not proceed in some extreme predefined manner (e.g. 

according to Newton’s equations of motion). But preferably in a stochastic manner 

which was generated during the simulation, which depended on a sequence of 

random values. The simulation will not give corresponding findings with a second 

and different sequence of random numbers, but will produce values in agreement 

with those obtained from the initial sequence to within some ‘statistical error’.  Monte 

Carlo methods consider only positions, as outlined by Ungerer when applied to 

systems at thermodynamic equilibrium [160]. The contribution of velocities to the 

partition function is determined analytically. Compared with Equilibrium Molecular 

dynamics, Monte Carlo methods also allow building statistical ensembles at 

thermodynamic equilibrium, but they do not address the dynamic properties of 

matter such as diffusion, viscosity or thermal conductivity. In requital, they may 

address important changes in the configuration space, such as the withdrawal or 

insertion of molecules in the system, which would be difficult to address with 

Molecular dynamics. Therefore, they are the privileged way to simulate adsorption 

with the Grand Canonical ensemble or fluid phase equilibrium with the Gibbs 

ensemble. 

 

The Uncle code performs simulations either within the canonical or the grand 

canonical ensemble. Like the calculation of the input structures’ correlations for the 

cluster expansion, the determination of the starting energy of the Monte Carlo cell 

is done within the g-representation provided by the SNF. Inside UNCLE there is an 

implementation of a Monte Carlo simulation [161] from the Metropolis algorithm 

[162]. The Monte Carlo cell is thus represented by the tensor G. Changing the 

atomic occupation of a site corresponds to changing the corresponding integer value 

of one element of G. In a Monte Carlo simulation, the calculation of the energy 
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changes due to changes in the occupation (atom swaps) can be computed efficiently 

as only the energy contribution of those interactions ‘touched’ by the swapped sites 

needs to be evaluated. 

 

 The tensor G is the only large entity stored at runtime, requiring only one byte per 

site within the Monte Carlo cell; the correlations do not have to be stored at runtime. 

The minimal memory footprint allows for Monte Carlo cells of billions of sites, CPU 

time, rather than memory, becoming the limiting factor. A parallel implementation is 

underway to take advantage of this approach. Since the accuracy of a Monte Carlo 

estimate depends upon the thoroughness with which. This is computationally very 

demanding for ternary cases. Therefore, ECI would become temperature-

dependent and with that also the whole CE. 

 

Monte Carlo simulation is a numerical method for calculating the partition function 

(Z) of a model (i.e. Ising model) on a large lattice based on simulating the thermal 

fluctuations from one state to the other. In thermal Monte Carlo simulation for phase 

diagram calculations, the usual goal is basically the calculation of the expectation 

value 〈𝑄〉 of observable quantity Q. Therefore, our expectation value being the free 

energy or grand-canonical potential required for calculating the phase diagram. The 

quantity 〈𝑄〉 is calculated by averaging over all states 𝜇 of that system, where we 

weigh each state with its own Boltzmann probability. The expectation value is given 

by: 

 

〈𝑄〉 =  
1

𝑍
∑ 𝑄

𝜇𝑒
−𝛽𝐸𝜇𝜇 =  

∑ 𝑄
𝜇𝑒

−𝛽𝐸𝜇𝜇

∑ 𝑒−𝛽𝐸𝜇
𝜇

                                                                                  (44) 

 

where 𝑄𝜇 are the observable quantities of states 𝜇 and 𝛽 =  1 𝑘𝑇⁄ , where 

𝑘 is the Boltzmann constant. To determine 〈𝑄〉 accurately, we need 

to make an estimate of Q such that for a given number M of states we have: 

 

𝑄𝑀 = 
∑ 𝑄𝜇𝑖𝑃𝜇𝑖

−1𝑒
−𝛽𝐸𝜇𝑖𝑀

𝑖=1

∑ 𝑃𝜇𝑗
−1𝑒

−𝛽𝐸𝜇𝑗𝑀
𝑗=1

                                                                                               (45) 
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where 𝑄𝑀 is the estimator of Q and P is the probability distribution that needs to be 

chosen to generate M states that will give an accurate estimate of 〈𝑄〉. However, the 

number of states required in the simulation should be chosen carefully and it is not 

possible to know which states are important to give the equilibrium solution of 〈𝑄〉 

accurately or give accurate𝑄𝑀, similarly it is, impossible to calculate the partition 

function directly. Therefore, we use the "importance sampling" technique to choose 

the good states or distribution from which it is to simulate one’s random variables 

[163]. The states are thus picked out in such a way that the probability that a state 

𝜇 get chosen is𝑃𝜇 = 𝑍−1𝑒−𝛽𝐸𝜇. Thus, substituting the probability distribution 𝑃𝜇 into 

and then our estimator for〈𝑄〉, (Eq.46), is, 

 

𝑄𝑀 = 
1

𝑀
∑ 𝑄𝜇𝑖.

𝑀
𝑖=1                                                                                                       (46) 

 

This expression works well especially for a certain number of states particularly the 

lowest-lying states at low temperature. However, the exact set of states required for 

the calculation can be obtained through a "Markov process". The process generates 

new states 𝑣 from the initial state 𝜇 of a given system where the accompanying 

probability is the transition probability 𝑃(𝜇 → 𝑣)and should satisfy the following three 

conditions, namely (1) no vary with time (2) only depended on the properties during 

the initial and final states, not on any passed states in the system (3) then over all 

final states the sum of the transition probabilities must be equal to unity [163] [164], 

 

∑ 𝑃(𝜇 → 𝑣) = 1𝑣 .                                                                                                     (47) 

 

A Monte Carlo simulation will repeat the process and generate a "Markov chain" of 

states 𝜇, 𝑣,etc., which appear with probability given by the Boltzmann distribution, 

and the process is termed "coming to equilibrium" or equilibration of the system 

[163]. In order to achieve the accurate representation of the Markov process, two 

other important conditions such as "ergodicity" (i.e. starting from any chosen state 

it should be possible to reach any other state of the system) and "detailed balance" 

(i.e. the transition rate from one state to another must be equal to the rate of the 

reverse process) are applied [163] [164]. As a result, the condition for the ratio of 

the transition probability that gives a Boltzmann equilibrium distribution is written as: 
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𝑃(𝜇→𝑣)

𝑃(𝑣→𝜇)
= 

𝑃𝑣

𝑃𝜇
= 𝑒−𝛽(𝐸𝑣−𝐸𝜇)                                                                                          (48) 

 

where 𝑃𝜇and 𝑃𝜇are the occupation probabilities of states 𝜇 and 𝑣, with energies 𝐸𝜇 

and 𝐸𝑣, respectively. However, to improve the overall efficiency of the Monte Carlo 

algorithm, we still need to ensure that the acceptance ratio is high. The acceptance 

ratio determines the probability of moving from an initial state 𝜇  to a new state𝑣, 

provided that 𝑣 was generated from 𝜇. Therefore, in order to achieve this condition, 

we use the more efficient algorithm, "Metropolis algorithm" [162]. Within the 

Metropolis algorithm, new states 𝑣 are chosen repeatedly, and then accepted or 

rejected randomly according to the acceptance probability𝐴(𝜇 → 𝑣), where the set 

of selection probabilities 𝑔(𝜇 → 𝑣) for each possible transition from one state to 

another,(𝜇 → 𝑣) and acceptance probabilities 𝐴(𝜇 → 𝑣) are chosen such that the 

condition of the ergodicity and detailed balance are satisfied respectively [163]. The 

Metropolis Monte Carlo method is summarized as follows [164]; 

 

1. Start with a system in a randomly chosen state 𝜇 and evaluate the energy𝐸𝜇. 

2. Generate a new state 𝑣 by making a random, ergodic change to𝜇, and 

evaluate𝐸𝑣. 

3. If 𝐸𝑣 − 𝐸𝜇 ≤ 0 then accept the new state𝑣. If 𝐸𝑣 − 𝐸𝜇 > 0 then accept the new 

state with probability𝑒−𝛽(𝐸𝑣−𝐸𝜇). 

4. Return to step 2 and repeat until equilibrium is reached. That is the microstate 

occupancies follow a Boltzmann distribution. 
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Computer Codes 

CASTEP Code 

CASTEP (Cambridge Sequential Total Energy Package) is a software package 

which uses density functional theory to provide a good atomic-level description of 

all manner of materials and molecules [165] [166]. CASTEP can give information 

about total energies, forces and stresses on an atomic system, as well as calculating 

optimum geometries, band structures, optical spectrum, phonon spectra and much 

more. It can also perform molecular dynamics simulations. However, it uses density 

functional theory (specifically, using plane waves and pseudo-potentials) to solve 

approximately the Schrödinger equation for periodic systems of atoms, yielding the 

total energy, atomic forces and internal stresses in the system, as well as interesting 

electronic properties (the electron wave function, charge density distribution density 

of electronic states, etc.). The electronic relaxation is achieved by minimisation of 

the total energy. The minimisation is achieved using the technique called band-by-

band, where each wave function is optimised independently, or by modern all band 

method. 

 

CASTEP uses special k-points sampling for integration over the Brillouin zone and 

Fast Fourier Transformation (FFT) to evaluate matrix elements [133] [134] 

[167] [168]. It also uses wave function symmetrisation for a crystal with point group 

symmetry higher than 𝑃1̅ and for metallic systems, it introduces partial occupancies 

for levels close to the Fermi energy. It uses both the local density approximations 

and the generalised gradient approximation for the exchange correlation energy 

functional and it is also used ultra-soft pseudo-potential as put forward by Vanderbilt 

as well as norm conserving potential [132]. 

 

MedeA-UNCLE 

The MedeA-Universal Cluster Expansion (UNCLE) package allows you to set up, 

construct and automatically converges a cluster expansion for bulk systems with a 

partial disorder on some or all sub-lattices. The UNCLE software was developed by 

Stefan Müller, currently at the Technical University of Hamburg, and Gus Hart at the 



  

46 

 

Brigham-Young University in Salt Lake City, Utah and their co-workers [Uncle]. 

Accurate (ab-initio) calculations of a relatively small number of supercells are the 

basis on which the effective cluster interactions are determined. Maintaining the 

predictive power and accuracy of first-principles DFT methods. MedeA-UNCLE 

allows the determination of the following factors; the stable multi-component crystal 

of structures and the rank metastable of structures by the enthalpy of formation. It 

automatically performs ground-state searches and applies genetic algorithms or 

compressive sensing to explore configuration space. The as such derived effective 

cluster interactions map the ab-initio results onto a much simpler Hamiltonian which 

allows large-scale Monte Carlo simulations on systems with up to millions of atoms. 

The code can perform a complete CE-fit using a genetic algorithm and predict the 

ground states of systems containing up to three and more elements. For deriving 

results for temperatures 𝑇 ≠  0 Monte Carlo simulations are implemented (as 

discussed in section 2.13). By this, configurationally entropies are considered. The 

working scheme for a cluster expansion is sketched in Figure 2-7. 

 

 

Figure 2-10: Self-consistent working plan as used by UNCLE for the cluster 

expansion for finding new input structures [169]. 
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The following key benefit within the software that’s incorporated in the MedeA is as 

follows:  

 

1. Simulate structures containing millions of atoms with DFT accuracy  

2. Accommodating operation in MedeA 

3. Workflow-based on machine control of cluster expansion clarification 

4. The adequate approach of many input systems  

5. In-build graphical assessment and visualization  

6. Break-up and restart complex calculations  

Extend and expand existent Cluster Expansions 

 

Virtual Crystal Approach 

The CASTEP approach for dealing with disorder in first principle calculations is the 

so called virtual crystal approximation (VCA). The “virtual crystal” (VC) approach is 

a tractable way of studying configurationally disordered systems; the potentials 

which represent atoms of two or more elements are averaged into a composite 

atomic potential. This approach has the advantage that a single configuration with 

a smaller unit cell represents the disordered system. However, due to the different 

local environment of the virtual atom, some properties may not be reproduced [170]. 

The material properties of solid-solutions and alloys have been widely studied in 

both experimentally and computationally. Ferroelectric ceramics correspond to a 

typical material class for which most of the realistic applications are implemented by 

solid solutions.  

 

To use such material systems within first principle methods, there exists two ways: 

super-cell and virtual crystal approach (VCA), regarding the advantages and 

shortcomings of both methods. The former can give correct results but requires 

more computational resources compared with the latter. The issue of correctness is 

related to the fact that the SC method can describe the local interaction between 

two atoms which consist of the virtual atom but VCA method cannot do that. It is 

vivid that the effectiveness of the calculation relates to the fact that the supercell 

may contain many unit cells compared with the primitive unit cell of the VCA method. 
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 In the year 2000, several modern VCA approaches were developed with their own 

advantages and shortcomings. Hence, there are mainly two issues considered: the 

capability of treating the heterovalent atoms and accuracy of the calculation. The 

simplest VCA approach will be the simple mixing of the pseudo-potentials [170] 

[171]. In practice, this is performed through the averaging of the matrix elements in 

reciprocal space (Fourier momentum space). The advantage is simple but it is not 

sufficiently precise in some cases. The reason for the incorrectness is mixing of only 

the potentials. Ramer and Rappe developed more accurate VCA approach through 

performing the averaging at the level of atomic calculation, where the averaging of 

eigenvalues of valence orbitals, Coulomb nuclear potentials, core-charge densities 

and wave functions are performed. The CASTEP approach for dealing with disorder 

in first principle calculations is the so called virtual crystal approximation. The basic 

ideas of the workable VCA implementation for DFT methods can be expressed as: 

 

𝑉𝑒𝑥𝑡(𝑟, 𝑟
′) = ∑ ∑ 𝜔′

∞𝑖 𝑣𝑝𝑠
𝛼 (𝑟 − 𝑅𝐼𝛼 .𝑟′

− 𝑅𝐼𝛼),          (49)

     

where the total external potential 𝑉𝑒𝑥𝑡 is the sum of the nonlocal potentials of each 

atomic species, α, taken with the weights, ω, of the component atoms in the mixture 

atom. This approach can be used to study any composition in a solid solution [172] 

[173] [174]. 

 

 Site Occupancy Disorder Program    

SOD is a box of programs and tools for computer modelling site-disordered solids 

by reducing the number of site-occupancy configurations. During the calculation, it 

takes advantage of the crystal symmetry of the lattice. The SOD program works in 

combination with codes like VASP (input files for VASP calculations), GULP and 

other programs for simulations of systems with periodic boundary conditions (etc. 

evaluate the configuration energies). Finally, there is a program that uses the 

Boltzmann's statistics to take the results from those calculations and obtain 

thermodynamic quantities [175]. The SOD is a non-periodic occupation of lattice 

sites in a crystal system and ubiquitous phenomenon in solid-state chemistry. There 

are relevant examples namely which are metallic alloys, mineral solid solutions, and 
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synthetic non-stoichiometric compounds. Although experimental research of these 

specified materials applying diffraction techniques or other methods developed for 

the study of periodic crystals only gives averaged information of their properties, 

thus mapping the complexity of long-range patterns of site-occupancy 

configurations into a small crystal unit cell with ill-defined (fractional) site 

occupancies [175]. By the evaluation of the relative stabilities of configurations using 

simple energetic criteria, computer-modelling techniques are well fitted to make 

important contributions to the investigation of site-occupancy disorder in solids [176] 

[177] [178] [179] [180] [181] [182] [183] [184] [185]. 

 

There have been the employment of various computational strategies to this end 

that has involved the analysis of the energies of different site-occupancy 

configurations in supercells of the structure. One of the obvious and yet important 

restrictions of supercells approach is computational cost. There are still other 

glitches which are namely; (i) the analysis and minimisation of large supercells 

energy which can be very costly, even if with the employment of interatomic potential 

methods rather than quantum-mechanical techniques; and (ii) the number of 

possible configurations increases effectively and reaching very high values rapidly, 

with respect to the size of the supercell. However, the two limitations make it very 

complex to do a direct study of a complete configurational ensemble for any 

supercells apart from a very small one, usually insufficient, simulation cell [175]. 

There are strategies to deal with the above-mentioned problems, one common way 

to deal with the first of the problem is the usage of simple parametric interaction 

models consisting of energy contributions for each pair of atom types in the nearest-

neighbour (NN) or the ext.-nearest-neighbour (NNN) sites. As a result, the 

reproduction of these energies obtained using quantum-mechanical or interatomic 

potential methods in small supercells because of the fitted parameters of these 

interaction models. These simple interaction models perform remarkably to the 

study of covalent solid solutions and of the same-charge cation or anion distributions 

in ionic systems. However, when the site-occupation configurations differ in their 

charge distributions, as is the case in many ionic solid solutions, the effect of the 

long-range electrostatic interactions cannot simply be incorporated into NN and 

NNN potentials and should be evaluated explicitly. 
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The second problem is even more difficult to solve, which is relating to the number 

of configurations. There is one approach used by certain authors (e.g. [183] [184] 

[185]), using the Monte Carlo method, before the samples are being accepted or 

rejected in the ensemble according to the Metropolis algorithm [162]. It is then 

possible to obtain a representative set of configurations, which can be considerably 

reduced as to the complete configurational space. An alternative approach is to take 

advantage of the system symmetry by reducing the number of configurations. Since 

the symmetry are related, identical and possible to limit the configurational space to 

the symmetrical in equivalent configurations only [186] [187] and other some 

alternative methods were discussed by Todorov et al [185]. 

 

 

Figure 2-11 Illustration of identical configurations related by an isometric 

transformation [175]. 

2.9.4.1 Configurational statistics 

We illustrate how to obtain the thermodynamic properties associated with the 

configurational disorder that resulted from the calculations in the reduced 

configurational space. Then summarize the equations for configurational statistics 

in the complete space of all configurations. If all site-occupancy configurations are 
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in thermodynamic equilibrium at temperature T, each configuration n (labelled with 

an index n) in the complete space (n = 1. . . N)  is described in this approximation 

by a Boltzmann-like probability which is calculated from the energy 𝐸𝑛. 

 

𝑃𝑛 =
1

𝑍
exp(−𝐸𝑛 𝑘𝐵𝑇⁄ )                                                                                           (50) 

 

where 𝑘𝐵 = 8.6173 × 10−5 𝑒𝑉𝐾−1 is Boltzmann’s constant (it is formally equivalent 

to use the gas constant R instead, and expressing the molar energies of supercells, 

but we follow here the usual notation in statistical mechanics in terms of 𝑘𝐵), 𝐸𝑛 is 

the energy of that configuration and 

 

𝑍 = ∑ exp(−𝐸𝑛 𝑘𝐵𝑇⁄ )𝑁
𝑛=1                                                                                          (51) 

 

is the partition function, and 𝑘 is the total number of configurations with the given 

composition in the supercell. Now, we can calculate the energy of the system in 

configurational equilibrium as the average: 

 

𝐸 = ∑ 𝑃𝑛𝐸𝑛
𝑁
𝑛=1                                                                                                        (52) 

 

In evaluating the thermodynamic stability of a disordered solid at a given 

temperature, the energy and the configurational multiplicity of the system should be 

considered, while the configurational free energy 𝐸𝑛 can be obtained from the 

partition function as 

 

𝐹 = −𝑘𝐵𝑇lnZ                                                                                                         (53) 

 

The difference per temperature unit between the average energy and the free 

energy defines the configurational entropy which is simply 

𝑆 =
𝐸−𝐹

𝑇
                                                                                                                 (54) 

 

In the case of a perfectly ordered system, in which one non-degenerate 

configuration has much lower energy than the rest, both the energy and the free 

energy of the system are identical to the energy of that configuration, and the 
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configurational entropy is zero. Alternatively, for a totally disordered system of N 

configurations, all with identical energies, the configurational entropy reaches a 

maximum value: 

 

Smax = kBlnN                                                                                                         (54) 

 

the configurational entropy calculated by equation (above) can take any value 

between zero and Smax, depending on the temperature and on the energy 

distribution of the configurations. It is possible to calculate this vibrational entropy 

term,Svib by standard lattice dynamical procedures [188], and thus to replace the 

energy, En of each configuration by its corresponding Helmholtz free energy term: 

Fn
vib = 𝐸𝑛 - TSvib. Now with the translation of the above equations to the reduced 

configurational space. The probability 𝑃̃𝑚 of an independent configuration m (m = 1. 

. . M) with degeneracy _m occurring is: 

 

𝑃̃𝑚 =
1

𝑍
Ω𝑚exp(−Em kBT⁄ ) =

1

𝑍
exp(𝐸̃𝑚 kBT⁄ )                                                         (55) 

 

and the introduction of reduced energy: 

 

𝐸̃𝑚 = 𝐸𝑚 − 𝑇𝑆𝑚                                                                                                     (56) 

 

and seen as temperature-dependent free energy associated with the degeneracy 

entropy [186] [187]: 

 

𝑆𝑚 = kBlnΩ𝑚                                                                                                         (57) 

 

The introduction of this degeneracy entropy allows us to take into consideration the 

effect of the configuration degeneracy and make direct comparisons of independent 

configurations via the reduced energies, which comprise of both the energetic and 

the degeneracy information. It is clear, from the previous equations that if two 

independent configurations have the same energy, the one with higher degeneracy 

will have higher degeneracy entropy, which in turn lowers its reduced energy𝐸̃𝑚, 
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resulting in a higher probability of appearance for that configuration. The energy and 

the partition function can therefore be calculated in the reduced space as 

 

𝐸 = ∑ 𝑃̃𝑚𝐸𝑚
𝑀
𝑚=1                                                                                                        (58) 

 

and 

 

𝑍 = ∑ 𝑒𝑥𝑝𝑀
𝑚=1  exp(− 𝐸̃𝑚 kBT⁄ )                                                                              (59) 

 

which allows the calculation of the configurational entropy via equation (9). Finally, 

in the equations above, T is the temperature at which the configurations are in 

equilibrium. However, cation exchange is often inhibited by high activation barriers, 

and thermodynamically equilibrium, except at high temperatures, should not be 

expected. 

 

2.9.4.2  Average voltage for spinel cathode materials  

The discovery of an open-cell voltage (OCV) was discovered eighteen years ago by 

Ceder and his co-workers for a Li-ion battery [189]. The guest ions can be inserted 

into and be removed from the host network reversibly. The equilibrium voltage 

difference between the two electrodes depends on the difference of the Li chemical 

potential between the anode and cathode. It is also referred to as the open-circuit 

voltage for a Li-intercalation reaction which is given by; 

 

𝑉(𝑥) =
𝜇𝐿𝑖

𝐶𝑎𝑡ℎ𝑜𝑑𝑒−𝜇𝐿𝑖
𝐴𝑛𝑜𝑑𝑒

𝑧𝐹
                                                                                                                       (60) 

 

where F is the Faraday constant, open-circuit voltage of the cell, z is the charge (in 

electrons) transported by lithium in the electrolyte and e is the magnitude of each 

electron charge. For the case of Li+ ions being the charge carrier, z in unity. The 

first term in the numerator (𝜇𝐿𝑖
𝐶𝑎𝑡ℎ𝑜𝑑𝑒) is a function of Li-content. Equation (102) was 

simply integrated between compositions Mn2-2xNi2xO4 and LiMn2-2xNi2xO4, where the 

average OCV was determined over a full charge/discharge cycle. Therefore the 

classical Nernst equation for the average OCV was obtained [189];  
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𝑉̅ =
−∆𝐺𝑟

(𝑥2−𝑥1)𝐹
                                                                                                            (61) 

 

where ∆𝐺𝑟 is the Gibbs free energy. The well-known expression for the Gibbs free 

energy is the following: 

 

∆𝐺𝑟 = ∆𝐸𝑟 + 𝑃∆𝑉𝑟 − 𝑇∆𝑆𝑟                                                                                    (62) 

 

where ∆𝐺𝑟 is the change in the Gibbs free energy, ∆𝐸𝑟 is the change in internal 

energy, P is the pressure, ∆𝑉𝑟 is the volume change, 𝑇 is the temperature, and, 

finally, ∆𝑆𝑟 is the entropy change.  

Here the order of 10−5 electron volts is of term 𝑃∆𝑉 and in contrast ∆𝐸𝑟 is of the 

order of 3-4 eV per molecule. Lastly, the term 𝑇∆𝑆𝑟 is of the order of thermal energy 

which is also much less than∆𝐸𝑟. Hence, we conclude that the changes in the Gibbs 

free energy are approximately equal to the changes in internal energy. 

 

∆𝐺𝑟 ≈ ∆𝐸𝑟                                                                                                               (63) 

 

Consequently, ΔGr is the Gibbs free energy for the following reaction: 

 

Mn2-2xNi2xO4 (cathode) + Li (anode) → LiMn2-2xNi2xO4 (cathode)                           (64)                                                                                

 

However, the average voltage for the complete discharge is obtained from the 

difference in Gibbs free energy between the lithiated (LiMn2-2xNi2xO4) and delithiated 

(Mn2-2xNi2xO4) states (and Gibbs free energy of pure Li) [190] [191]. In that case, the 

average voltage is given by  

 

𝑉̅ = −
1

𝐹
[𝐺LiMn2−2xNi2xO4 − 𝐺Mn2−2xNi2xO4 − 𝐺𝐿𝑖]                                                      (65) 

 

At 0 K, the Gibbs free energies can be approximated by the total energies (E). When 

G (or E) expressed in electron-Volts (e/V) and the voltage in Volts (V), the prefactor 

of 1/e drops out and the average voltage is written as,  
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𝑉̅ = −[𝐸LiMn2−2xNi2xO4 − 𝐸Mn2−2xNi2xO4 − 𝐸𝐿𝑖]                                                        (66) 

 

Where the average voltage of an intercalation compound is directly related to the 

energies of the charged and discharged process, then voltage changes with respect 

to each structure of either state. Then the average voltage is calculated from each 

lowest energy structures at lithiated and delithiated states or between the lowest 

energy state at the lithiated structure and a higher energy structure at the delithiated 

state, e.g., by removing Li from the LiMn2-2xNi2xO4 structure. Since all the lithiated 

oxides have normal structure as the lowest energy structure, we calculate voltages 

considering the normal structures at the lithiated state. On the other hand, at the 

delithiated state, the normal structure is not always the preferred structure and the 

voltage-calculation depends on which structure is used for the delithiated state 

[192]. 

 

 Theoretical Background for Calculated Properties   

Pressure 

The pressure is calculated in a computer simulation via the viral theorem of 

Claussius. The viral theorem is defined as the expectation value of the sum of the 

product of the coordinates of the particles and forces acting on them. It is written as: 

 

𝑊 = ∑𝑥𝑖 𝑝𝑥𝑖,                                                                                                        (67) 

 

where the 𝑥𝑖 is the coordinate and 𝑝𝑥𝑖 is the first derivative of the momentum along 

the coordinate. The viral state that is equal to −3𝑁𝐾𝐵𝑇. In an ideal gas, forces are 

those due to interactions between the gas and the container and are this case the 

viral theorem is equal to -3PV. These results can be obtained from: 

 

𝑃𝑉 = 𝑁𝐾𝐵𝑇,                                                                                                           (68) 
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Forces between the particles in a real gas and liquid affect the viral hence the 

pressure. The total viral for a system equals the sum of an ideal gas part (-3PV) and 

the contribution due to interactions between the particles. The result obtained is: 

 

𝑃 =
1

𝑉
[𝑁𝑘𝐵𝑇 −

1

3𝐾𝐵𝑇
∑ ∑ 𝑟𝑖𝑗𝑓𝑖𝑗

𝑁
𝑗=𝑖+1

𝑁
𝑖=1 ],                                                                    (69) 

 

The forces are calculated as part of molecular dynamics simulation, and so little 

additional effort is required to calculate the viral and thus the pressure. 

 

Electronic Properties  

The number of states at each energy level, which is available to be occupied, is 

called the density of states (DOS). A zero DOS of an energy level means that no 

states can be occupied. It is a useful mathematical concept allowing integration with 

respect to the electron energy to be used instead of the integration over the Brillouin 

zone. In addition, the DOS is often used for quick visual analysis of the electronic 

structure. Characteristics such as the width of the valence band, the energy gap in 

insulators and the number and intensity of the main features are helpful in 

qualitatively interpreting experimental spectroscopic data. The closest band above 

the bandgap is called the conduction band, and the closest band beneath the 

bandgap is called the valence band. In a metal or semimetal, the Fermi level is 

inside of one or more allowed bands. In semimetals, the bands are usually referred 

to as "conduction band" or "valence band" depending on whether the charge 

transport is more electron-like or hole-like, by analogy to semiconductors. In many 

metals, the bands are neither electron-like nor hole-like, and often just called 

"valence band" as they are made of valence orbitals [193]. The band gaps in a 

metal's band structure are not important for low energy physics since they are too 

far from the Fermi level. 

 

DOS analysis can also help to understand the changes in electronic structure 

caused by, for example, external pressure. Therefore, a high DOS for an energy 

level represents that many states are available for occupation. DOS delivers 

invaluable information about the bonding within solid and in the classification of 
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materials as metallic, semiconductor or insulator. Metals and semimetals have non-

localised electrons and no gap (separation between the valance band and 

conduction band). The distinction between semiconductors and insulators is a 

matter of convention. Semiconductors are regarded as a type of insulator with a 

narrow bandgap. Insulators having a larger bandgap, usually greater than 3eV, are 

not considered semiconductors and generally do not exhibit semi-conductive 

behaviour under practical conditions. In a scenario where parabolic relation, such 

as applied to free electrons, or to the electron in solid with an isotropic parabolic 

band structure, the energy is related to the wave vector as 𝜀 =
ħ

2𝑚
𝑘2.  Accordingly, 

the densities of state in the three dimensions are as follows, 

 

𝐷(𝜀) =
1

2𝜋2
(
2𝑚

ħ2
)
3

2𝜀
1

2⁄
⁄

,                                                                                              (70) 

 

Although DFT seems to systematically underestimate the bandgap in insulator and 

Semiconductors by about 30-40%, it is successful in reporting the shape of the DOS. 

 

So, more accurate methods are based on linear or quadratic interpolations of band 

energies between the reference points in the Brillouin zone. The most popular and 

reliable technique, which is based on the tetrahedron interpolation, is unfortunately 

ill suited to the Monkhorst-Pack grid of special points. This method is based on the 

linear interpolation in parallelepipeds formed by the points of the Monkhorst-Pack 

set, followed by the histogram sampling of the resultant set of band energies. 

Therefore, CASTEP programme [130], [194] is a first principle quantum mechanical 

code for performing electronic structure calculations. 

 

Elastic Properties 

It’s a constant or a coefficient that expresses the degree to which material 

possesses elasticity. In an elastic material that has been subjected to a strain below 

its elastic limit, the elastic constant is the ratio of the unit stress to the corresponding 

unit strain. The mechanics of solid bodies, considered as continuous media, form 

the content of the theory of elasticity. The main problem in estimating elastic 

constants from first principles is not only the requirement of accurate methods for 

http://www.dictionaryofconstruction.com/definition/degree.html
http://www.dictionaryofconstruction.com/definition/material.html
http://www.dictionaryofconstruction.com/definition/elasticity.html
http://www.dictionaryofconstruction.com/definition/elastic.html
http://www.dictionaryofconstruction.com/definition/strain.html
http://www.dictionaryofconstruction.com/definition/elastic-limit.html
http://www.dictionaryofconstruction.com/definition/ratio.html
http://www.dictionaryofconstruction.com/definition/stress.html
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calculating the total energy but also the complicated heavy computations involved 

in the calculation of elastic constants [195]. 

 

From the perspective of materials physics, the elastic constants 𝐶𝑖𝑗contain some of 

the more important information that can be obtained from ground state total energy 

calculations. Hence a given structure cannot exist in a stable or metastable phase 

unless its elastic constants obey certain relationships. Elastic properties of a solid 

are important because they relate to various fundamentals of solid-state properties, 

such as the equation of state, phonon spectra, etc. [195]. A given crystal structure 

cannot exist in a stable or metastable phase unless its elastic constants obey certain 

relationships. The 𝐶𝑖𝑗also determines the response of the crystal to external forces, 

as characterised by the bulk modulus, shear modulus, Young’s modulus and 

Poisson’s ratio plays an important role in determining the strength of a material 

[196].  

 

Many first-principles calculations of the electronic structure and the total energy of 

solids have been carried out since the development of high speed computers 

(Pickett, 1985). Hence the use of periodic boundary conditions assume the 

existence of a single crystal, so all elastic constants can be determined by direct 

computation. The calculated Cij can then be used to check the experimental bulk 

and shear moduli, if available and to calibrate model calculations. In addition, the 

elastic constants can be used to check the phase stability of proposed compounds 

[196]. Elastic properties determine the stiffness of a crystal against the external 

strain, so they are important for understanding the structure stability and the strength 

of materials such as bulk modulus, shear model, Young’s modulus and Poisson’s 

ratio [197]. First-principles calculations can then be used to predict the existence 

and properties of new materials. 

 

Elastic constants are physical properties of crystals to relate the mechanical 

response to the material deformation (i.e. stress and strain) within the elastic regime. 

A isotropic material which obeys Hooke's law, where strain is linearly proportional 

to stress, there are only two independent elastic constants, those of stress and 

strain. The elastic properties of such materials are defined by elastic moduli, notably 
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the bulk modulus, shear modulus, Young's modulus, Lamé's constant, and 

Poisson's ratio. Seismic wave velocities are governed by the elastic moduli and the 

densities of the media through which they travel. A system is said to be elastic if any 

deformations caused by external forces will spontaneously and completely 

disappear once the external forces are removed. Hence the unit cell is created by 

changing the Bravais lattice vectors R = (a, b, c) of the undisturbed unit cell to R′ = 

(a’, b’, c’) using a strain matrix e 

 

𝑅′ = 𝑅

[
 
 
 
 1 + 𝑒𝑥𝑥

1

2
𝑒𝑥𝑦

1

2
𝑒𝑥𝑧

1

2
𝑒𝑦𝑥 1 + 𝑒𝑦𝑦

1

2
𝑒𝑦𝑧

1

2
𝑒𝑧𝑥

1

2
𝑒𝑧𝑦 1 + 𝑒𝑧𝑧]

 
 
 
 

,                                                                     (71)

     .                            

hence a change of the total energy of the crystal,      

 

𝑈 =
𝐸𝑡𝑜𝑡−𝐸0

𝑉𝑜
=

1

2
∑ ∑ 𝐶𝑖𝑗

6
𝑗=1

6
𝑖=1 𝑒𝑖𝑒𝑗,                                                                           (72) 

  

with the sum, overall 𝑖 and all 𝑗 so that each cross term appears twice. 𝐸0 is the total 

energy of the unstrained lattice, 𝑉𝑜 is the volume of the undistorted cell and the Cij 

are the elements of the elastic constant matrix with a notation that follows standard 

convention. Both is 𝑖 and 𝑗 run from 1…6 in the sequence {xx, yy, zz, yz, xz, xy}. 

The tensor of elasticity has 36 elements and the elastic behaviour of a completely 

asymmetric material is specified by 21 independent elastic constants, while for an 

isotropic material, the number is 2. 

 

To calculate the elastic constants is one simple way of validating a potential model. 

There are two methods to compute elastic constants: one is to monitor (Virial) stress 

and the other is to monitor strain energy as a function of the applied strain. 

Conceptually, the two approaches are equivalent accept that stress is a linear 

function of strain and the strain energy is a quadratic function of strain. The methods 

will be explained to get three independent elastic constants (C11, C12 and C44) for 

the cubic crystal materials and to estimate the three independent elastic constants, 
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C11, C12, and C44. Each representing three equal elastic constants (C11= C22= C33, 

C12= C23= C31 and C44= C55 =C66). 

 

The application is to illustrate the behaviour in which the stiffness matrix elements 

may be obtained from strain fields of the form (equation 70). If the applied strain is 

exx = e with all other ei = 0, the energy change would be𝑈 =
𝐶11𝑒

2

2
⁄ . This allows a 

unique determination of C11. If 𝑒𝑦𝑧 = 𝑒𝑧𝑦 = 𝑒 2⁄ , with all other strain components 

being zero, then 𝑈 = 𝐶44𝑒
2 2⁄ , then we have an independent determination of C44. 

The bulk modulus, B, is the response to a uniform compression so applying the 

strain field 𝑒𝑥𝑥 = 𝑒𝑦𝑦 = 𝑒𝑧𝑧 = 𝑒 allows the computation of B via the relation𝑈 =

𝐵𝑒2 2⁄ . Similarly, the shear modulus can be calculated by using the strain field  𝑒𝑧𝑧 =

𝑒; 𝑒𝑥𝑥 = 𝑒𝑦𝑦 = −𝑒
2⁄  , where upon𝑈 = 3𝐶′ 𝑒2

2⁄ .  Hence, the elastic constant C12 is 

easily determined by using one or other of the elastic relations. From the first-

principles calculated elastic constants, one may get bulk modulus B, shear modulus 

G and the anisotropic factor A and using schemes such as Reuss (lower bound), 

Voigt (upper bound) or Hill averaging [198]. The B/G ratio was also discovered as 

early as 1954 by Pugh, based on an analysis of the ratio of bulk modulus to shear 

modulus of pure metals [199]. 

 

𝐵 =
1

2
(𝑐11 + 2𝑐12),                                                                                                  (73)   

 

𝐺 =
1

2
[
𝐶11−𝐶12+3𝐶44

5
+

5𝐶44(𝐶11−𝐶12)

4𝐶44+3(𝐶11−𝐶12)
],                                                                        (74)         

 

𝐶′ =
1

2
(𝑐11 − 𝑐12),                                                                                                    (75) 

 

and 

 

𝐴 =
(2𝑐44+𝑐12)

𝑐11
 ,                                                                                                         (76) 

 

where E is the Young modulus, G shear modulus, B bulk modulus, C’ tetragonal 

shear modulus and anisotropy factor A. The Zener anisotropy factor A measures 
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the degree of anisotropy in solid [200] and calculated using equation 32. It takes the 

value of 1 for an isotropic material by making provision a measure of the degree of 

elastic anisotropy when the A values are smaller or greater than unity. Hence 

applying the following relations provides a useful independent check on the 

accuracy of the computation. A symmetry-general formulation of the calculation of 

elastic constants from total energy calculations is given by Le Page and Saxe [201]. 

 

Energy of formation 

For the study of the relative stability and calculation of binary alloy phase diagram, 

it is convenient to consider the cluster expansion of the energy of formation, 

 

𝐸𝑓(𝜎) =  𝐸0(𝜎) − 𝑥𝐸(𝐴) − (1 − 𝑥)𝐸(𝐵),                                                                     (77) 

 

where E(A) and E(B) are the equilibrium total energies of A and B in a given 

underlying lattice (fcc or bcc), and x is the atomic concentration of A in 𝜎. The cluster 

expansion of E(A) and E(B) is given by, 

 

𝐸(𝐴) =  ∑ ∑ 𝑚𝛼𝐾𝛼𝐾 𝐽𝛼𝐾𝐾 ,                                                                                            (78) 

 

and 

𝐸(𝐵) =  ∑ ∑ 𝑚𝛼𝐾𝛼𝐾 𝐽𝛼𝐾(−1)𝐾
𝐾 .                                                                              (79) 

 

where 𝑚𝛼𝐾 is the multiplicity of the geometrically different clusters _K and 

𝐽𝛼𝐾 are the expansion coefficients. 

Now, consider a cluster expansion for a crystal that has only one lattice site in the 

primitive unit cell of the underlying lattice (e.g. fcc and bcc). The expansion 

coefficient 𝐽0 that correspond to the empty cluster 𝛷0 = 1 will remain constant for 

the entire system. However, the expansion coefficient 𝐽1  coupled to the point-cluster 

𝛷 = 
1

𝑁0
∑ 𝜎𝑛

𝑁0
𝑛−1  is the same for all lattice sites. Thus inserting 𝐸(𝜎) =  ∑ 𝑚𝛼𝐽𝛼𝛼 𝛷𝛼(𝜎) 

and 𝛷𝛼(𝜎) =  
1

𝑁𝛼
 ∑ 𝜎1𝜎2𝑐𝑙𝑢𝑠𝑡𝑒𝑟 …𝜎𝑛𝛼  into                                                                  (80) 
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𝜎𝑖 = {
+1 𝑖𝑓 𝑠𝑖𝑡𝑒 𝑖 𝑖𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑏𝑦 𝐴,
−1 𝑖𝑓 𝑠𝑖𝑡𝑒 𝑖𝑠 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑏𝑦 𝐵,

                                                                                   (81) 

 

and assuming that 𝑥 =  𝐶𝐴 = 
1+ 𝛷1

2
, we have 

〈𝐸𝑓(𝜎)〉 =  Σ𝐾 ∑ 𝑚𝛼𝐾𝐽𝛼𝐾𝛼𝐾 [𝛷𝛼𝐾 − 
1+(−1)𝐾

2
𝛷0 − 

1− (−1)𝐾

2
𝛷1].                                       (82) 

 

Therefore, the contribution of the clusters 𝛼0 and 𝛼1 to 𝐸𝑓(𝜎) vanishes identically. 

This suggests that 𝐸𝑓(𝜎) is independent of the empty- and the point-cluster, 

therefore the empty- and the point-cluster cannot appear in the cluster expansion 

of𝐸𝑓(𝜎). 

 

Phonons 

In this section, the first principle calculations based on the DFT were performed 

using the VASP code [141] [138]. The calculated results were obtained using the 

generalised gradient approximation (GGA) exchange correlation functional of 

Perdew, Burke and Ernzerhof (PBE) and projector augmented wave method [202] 

[113]. The Kohn-Sham orbitals were expanded using different plane wave cut-off 

energies for each configuration as shown in Table 5-3. Then followed by the Brillouin 

zone integrations carried out using the Monkhorst-Pack k-point mesh [134] with 

different grid sizes for each configuration as shown in Table 5-3.  

 

In this section, the first principle calculations based on the DFT were performed 

using the VASP code [144] [141]. The calculated results were obtained using the 

generalised gradient approximation (GGA) exchange correlation functional of 

Perdew, Burke and Ernzerhof (PBE) and projector augmented wave method [203] 

[91]. The Kohn-Sham orbitals were expanded using different plane wave cut-off 

energies for each configuration as shown in Table 5-3. Then followed by the Brillouin 

zone integrations carried out using the Monkhorst-Pack k-point mesh [118] with 

different grid sizes for each configuration as shown in Table 5-3. It was Soviet a 

physicist Igor Tamm who introduced the concept of phonons in the year 1932. The 

phonon name originates from the Greek word φωνή (phonē), which construe to 

sound or voice due to the rise of the sound of the long-wavelength phonons. Shorter-
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wavelength higher-frequency phonons give rise to heat. Detailed knowledge of a 

quantum mechanical description of an elementary lattice vibrational motion in which 

a lattice of atoms uniformly oscillate at a single frequency [204]. The fundamental 

thermodynamic functions of internal and free energy, entropy, heat capacity as well 

as non-linear properties such as thermal expansion and heat conduction are to a 

considerable extent obtained by the vibrations of the constituent atoms in the lattice. 

However, the quantum theory of lattice dynamics is well developed and it is proven 

to be one of the most successful theories of solid-state physics [205].  

In regard to the existent of density functional theory and the progress with numerical 

methods for solving quantum physical equations together with the emergence of 

improved software and substantial year-on-year improvement in computing power 

have combined to make accurate materials simulations not only possible but almost 

routine. Therefore, describing the interatomic interactions in crystals and molecules 

based on quantum mechanics. For calculating the phonon dispersion on an ab-

initio level three different techniques for ab initio evaluation of vibrational properties 

have been developed, mainly two approaches are used, namely the linear response 

approach [206] [207] [208] [209] [210] and the direct method [211] [212]. They are 

as follows: (i) direct methods based on total energy changes or forces calculated for 

atoms displaced from their equilibrium position, (ii) analytical calculation of force 

constants based on a perturbative expansion around the equilibrium geometry and 

(iii) Fourier transform of the atomic velocity autocorrelation function obtained from a 

molecular dynamics trajectory [213]. Direct methods (option (i)) require the 

inspection of total energy and forces for the equilibrium geometry as well as some 

distorted geometries from which the force matrix constant can be assembled [214]. 

The method of inter-planar force constants is perpendicular to the directions that 

displaced within elongated supercell [215], hence the determination of the phonon 

dispersion curves along with specific high symmetry directions in reciprocal space. 

The techniques for selecting suitable supercells and atomic displacements, 

assembling force constant matrices from the calculated forces and calculating 

phonon dispersion relations via Fourier transform are well documented [211] [212] 

[216]. The perfect crystal environment should be sufficiently large to ensure that 

interactions of the perturbation with all its translational symmetry equivalent copies 

are small, which usually requires construction of suitable supercells. Therefore, the 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Lattice_model_%28physics%29
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most general direct approach to lattice dynamics based on the ab initio evaluation 

of forces on all atoms that are produced by a set of finite displacements of a few 

atoms within an otherwise perfect crystal [217]. 

 

2.10.5.1 Phonon dispersion and polarization vectors 

The frequencies 𝜔2(𝑘, 𝑗) of phonon modes 𝑗 are calculated by diagonalization of the 

super cell dynamical matrix for each wave vector k along a specified path through 

the Brillouin zone, thus creating phonon dispersion curves. 

 

𝐷(𝑘). 𝑒(𝑘, 𝑗)𝜔2(𝑘, 𝑗)𝑒(𝑘, 𝑗)                                                                                   (83) 

 

The irreducible representations of all phonon modes at the 𝛤(0,0,0) the point can be 

calculated, providing, in addition, Raman and infrared activities of the modes. The 

complex polarization vectors satisfy the orthonormality relations,  

 

∑ 𝑒𝑖
∗

𝑗 (𝑘, 𝑗; 𝜇). 𝑒𝑙(𝑘, 𝑗; 𝑣) = 𝛿𝑖,𝑙𝛿𝜇,𝑣                                                                          (84) 

 

∑ ∑ 𝑒𝑖
∗

𝑗 (𝑘, 𝑗; 𝜇). 𝑒𝑙(𝑘, 𝑗; 𝜇) = 𝛿𝑖,𝑗𝑖                                                                            (85) 

 

The polarization vector 𝑒(𝑘, 𝑗; 𝜇)s defined for the wave vector 𝑘 being at the origin of 

reciprocal space differ from the conventional polarization vector 𝑒(𝑘𝜏; 𝜇) that is 

defined for the wave vector 𝑘𝜏 pointing from the centre of a given Brillouin zone 

labelled by the reciprocal vector𝜏. Because of  𝑘 = 𝜏 + 𝑘𝜏  the relation between the 

differently defined polarization vectors is, 

 

𝑒(𝑘, 𝑗; 𝜇) =  𝑒(𝑘, 𝑗; 𝜇)𝑒𝑥𝑝[−2𝜋𝜏. 𝑟𝜇]                                                                      (86) 

 

Therefore, the usage of the polarization vectors implies that the displacements 

caused by a particular phonon and its intensity can be calculated. Assuming the 

amplitude 𝑄𝑘 and phase 0 ≤ 𝜑𝑘 ≤ 1 of the displacement wave, the displacements 

𝑈(𝑛, 𝜇) of atoms (𝑛, 𝜇) for a given wave vector 𝑘 and the phonon branch 𝑗 are given 

by the following equation: 



  

65 

 

 

𝐹(𝑠)(𝑘, 𝑗) =
1

𝑘2
|∑

𝑒(𝑘,𝑗;𝜇)

√𝑀𝜇
𝜇 |

2

                                                                                 (87) 

 

and can be applied to remove unessential phonon branches originating from back 

folding or to estimate relative intensities of all modes in varying Brillouin zones. 

 

The MedeA-Phonon module [216] is focused on the general direct approach to 

lattice dynamics and is designed to work independently of a specific underlying code 

for deriving forces and total energies. Together with the VASP, a fully automatic and 

highly parallel procedure is embedded in MedeA. 

 

Heats of Formation 

The standard heat of formation of a compound is the change of enthalpy during the 

formation of 1 mole of the compound from its constituent elements, with all 

substances in their standard states at 1 atmosphere (1 atm or 101.3 kPa). The heats 

of formation of compounds and associated entropies provide the basis for 

understanding and constructing phase diagrams. Knowledge of these quantities 

gives the prospect of disentangling which of the observed phases might occur upon 

varying the means of fabrication. Types of models, the heat of formation ∆𝐻𝑖(𝜎⃗)  are 

evaluated for all structures in the training set. It is defined: 

 

∆𝐻𝑖(𝜎⃗) =
𝐸𝐷𝐹𝑇(𝜎⃗⃗⃗)−∑𝑛𝑖(𝜎⃗⃗⃗)𝐸𝐷𝐹𝑇

𝑖

∑𝑛𝑖(𝜎⃗⃗⃗)
                                                                                      (88) 

 

Wherein 𝐸𝐷𝐹𝑇(𝜎⃗) describes the DFT total energy of  the structure𝜎⃗, 𝑛𝑖(𝜎⃗) is the 

number of atoms of atomic species 𝑖 contained in 𝜎⃗, and 𝐸𝐷𝐹𝑇
𝑖  denotes the DFT total 

energy of the pure phase of atomic species 𝑖. The sums go over all type of atoms 

contained in the structure𝜎⃗. 

 

 

  

https://en.wikipedia.org/wiki/Enthalpy
https://en.wikipedia.org/wiki/Mole_%28unit%29
https://en.wikipedia.org/wiki/Standard_state
https://en.wikipedia.org/wiki/Atmosphere_%28unit%29
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Structural Properties and Pressure Dependence 

 

In this chapter, we present and discuss results based on the ab-initio calculations 

performed on spinel LiMn2O4 and doped LiNixMn2-xO4 the (structural parameters, 

bond length and the equation of states).  DFT has provided a convenient first 

principle framework for studying the convergence test (cut-off, k-points and 

convergence parameters), structural parameters (lattice parameters, volume, bond 

length, and total energy) of different concentrations and compared with experimental 

results. A summary of the method used is given and finally, results are presented. 

The structural properties and pressure dependence calculations were performed 

using computer code CASTEP and are discussed in this chapter. The effect of 

pressure on different systems is discussed, with pressure ranging from 10 GPa to 

50 GPa, which is discussed in detail in chapter 2. All of the work done in this study 

will focus on the first-principles energy calculations optimised at a uniform cut-off 

energy to determine the total energy of various structures. The approximation used 

called GGA-PBE which was designed to be more robust and accurate [113] and the 

Brillouin-zone for the surface model were represented by a Monkhorst-Pack scheme 

for the generation at a uniform k-points. 

 

Convergence Test 

Energy Cut-off 

To determine the appropriate cut-toff energy for the spinel LiMn2O4, single-point 

energy calculations were performed for different kinetic energy cut-offs at the default 

number of k-points for each system within GGA-PBE. The ultra-soft pseudo-

potentials, which require significantly less computational resources than the norm-

conserving potentials [218], were used. Energy cut-off is an important parameter in 

PWP calculations since it determines the number of plane waves required in a 

calculation. Different values of energy cut-off were calculated until constant 

minimum energy is obtained, thus the energy becomes stable and the cut-off energy 



  

67 

 

that corresponds to the minimum total energy is recorded. The energy cut-off of 

500eV is found to be appropriate for GGA-PBE. The graphs of total energy versus 

energy cut-off are shown in Figure 3.1. The maximum of iterations used is 300 for 

the spinel LiMn2O4. In all optimisations, the tolerance in total energy and pressure 

change before self-consistency was 2.0 × 10−5eV/atom and 0.1GPa respectively. 

The RMS tolerance for the atom displacement was restricted to 0.002Å. Hence 

Mishra and Ceder in their study on the structural stability of lithium manganese 

oxides have stressed the use of GGA [74]. 
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Figure 3-1: Total energy versus energy cut-off for spinel LiMn2O4 structure. 

 

K-points 

It is important to determine an accurate number of k-points to use in PWP 

calculations for a speedy convergence coupled with an accuracy of the total energy. 

The greatest possible accuracy is achieved from the number of k-points which were 

used by P. Hohenberg and W. Kohn, Kohn and L. J. Sham [219]. The Monkhohorst-

Pack scheme of the k-points sampling was used to select an optimal set of special 

k-points used [220] [106]. The number of k-points was determined by running SCF 

calculations for different k-points. The k-points mesh parameters that gave the 
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minimum total energy of the system was chosen and used in all calculations. The k-

points mesh parameter was chosen to be 5x5x5 and for spinel LiMn2O4.  All the 

calculations presented in this dissertation were obtained using 500 (eV) cut-off 

energy and 5x5x5 k-points. 
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Figure 3-2: Energy cut-off against variation of the number of k-points. 

 

Structural Properties  

The structural properties of pure and nickel doped LiMn2O4 are structures at 0GPa 

are listed in Table 3-1. Shown in the table are lattice parameters, volume, energy 

and bond lengths for LiMn2O4 and doped systems. The spinel structure of the 

conventional cell containing 56 atoms is compared with an experimental lattice 

constant 8.241 (Å) [221] and the structure was optimised using the method 

discussed in chapter 1 allowing the structure to change. Geometry optimisation 

gives the equilibrium lattice parameters and relaxed internal lattice parameters 

which can be compared with experimental results. The deviation between the 

experimental results and our calculated results is 0.8% LiMn2O4 and 1.3% 
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LiNi0.5Mn1.5O4for lattice parameter for Gurpreet Singh et al. [221] and J.H Kim et al 

[133]. Hence the results in Table 3-1 are in good agreement with studies done by 

Gurpreet Singh et al. [221] and J.H Kim et al. [222]. 

Structural Properties of LiMn2O4 and LiNixMn2-xO4  

Table 3-1: Calculated and experimental structural parameters, of LiMn2O4 and 

LiNixMn2-xO4 (0≤x≤2) structures. 

Systems 

 

Lattice Parameters 

(Å) 

Volume 

(Å3) 

 

Energy/atom 

(eV) 

 
Calculated Experimental 

LiMn2O4 8.174 8.241 [221] 546.107 -463.653 

LiNi0.25Mn1.75O4 8.158  542.852 -517.168 

LiNi0.5Mn1.5O4 8.068 8.172 [223] 525.130 -579.073 

LiNi1.75Mn1.25O4 8.158  542.855 -517.168 

LiNi0.875Mn1.125O4 8.043  520.362 -652.217 

 

We compared the calculated lattice parameters obtained from a conventional 

structure and doped structures using a GGA-PBE approximation. We observed a 

decrease with respect to the lattice parameters (calculated), volume and energy 

when the system was doped with different nickel concentrations. In Table 3-1 it is 

apparent that the lowest total energy occurs at a volume of 520.362 (Å3) and at a 

lattice constant 8.043 (Å) of the system with the highest nickel concentration 

LiNi0.875Mn1.125O4. As indicated in Table 3-1 the pure LiMn2O4 and doped 

LiNi0.5Mn1.5O4 with both calculated and experimental lattice a, volume and energy 

show the effect of the nickel content in both systems. The lattice parameters 

decrease with an increasing nickel concentration, excluding the LiNi0.25Mn1.75O4 and 

LiNi1.75Mn1.25O4 systems which have the same lattice parameters, volume and 

energy. The energy and volume of the systems also decrease with the increasing 

nickel concentration. Table 3-2 gives the bond length of the systems and it is 

revealed that the bond length decreases with an increasing nickel concentration. 

The Mn-O bond length in spinel LiMn2O4 (un-optimised) was found to be different 

after optimisation; four different kinds of bond length were obtained in 
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LiMn2O4:𝑑1
𝑀𝑛−𝑂 = 2.173Å, 𝑑1

𝑀𝑛−𝑂 = 3.523Å 𝑑1
𝑀𝑛−𝑂 = 4.483Å 𝑑1

𝑀𝑛−𝑂 = 6.233Å. 𝑑1
𝑀𝑛−𝑂 

is in good agreement experimental and literature results for all the systems. The 

percentage difference between the calculated literature and experimental results is 

1.5%, 1.3%, 1.4%, 0.4%, 1.2% and 6.1% respectively for LiMn2O4 and 

LiNi0.5Mn1.5O4.  

 

 Table 3-2: Calculated and experimental bond length of LiMn2O4 and LiNixMn2-xO4 

structures. 

Bond Length 

 

Systems Mn-O 

(Å) 

Mn(Ni)-O  

(Å) 

Literature Experiments 

LiMn2O4 1.967  1.937 [47] 1.940 [224] 

LiNi0.25Mn1.75O4  1.947   

LiNi0.5Mn1.5O4  1.940 (a)1.969 [225] 
(b)1.947 [225] 

(a)1.917 [224] 
(b)2.062 [225] 

LiNi1.75Mn1.25O4  1.947   

LiNi0.875Mn1.125O4  1.911   

 

Pressure Dependence  

Equation of State 

The most prominent use of an equation of state is to correlate densities of gases 

and liquids to temperatures and pressures. One of the simplest equations of state 

for this purpose is the ideal gas law, which is roughly accurate for weakly polar gases 

at low pressures and moderate temperatures. However, this equation becomes 

increasingly inaccurate at higher pressures and lower temperatures and fails to 

predict condensation from a gas to a liquid. At present, there is no single equation 

of state that accurately predicts the properties of all substances under all conditions. 

In addition, there are also equations of state describing solids, including the 

transition of solids from one crystalline state to another. 
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Calculations were performed for various pressures ranging from 10GPa to 50GPa 

in steps of 10. The equation of state (EOS) of all compositions is given in Figure 3.4 

shows the GGA-PBE simulation results. Compressibility of all compositions is 

illustrated by the change in relative volume with pressure. The calculations were 

considered converged when the residual forces were less than 0.05eV/A, the 

displacement of atoms during the geometry optimisation steps were less than 

0.002A and the residual bulk stress was less than 0.1GPa. The pressure variations 

of the bond length, volume and normalisation lattice parameters V/V0, and a/a0 are 

computed and displayed in Figures 3-5. They are observed to be decreasing with 

increasing pressure. The prediction of the volume of a system indicates how 

accurate the system is being modelled. Presently the are no experimental results to 

compare with. 
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Figure 3-3: The spinel LiMn2O4 and LiNixMn2-xO4 bond length versus pressure graph 

were a different kind of shapes represents a structure and only LiNi0.25Mn1.75O4 and 

LiNi0.75Mn1.25O4 have the same shape. 

The different compositions are represented by different colours (red, green, yellow, 

blue and black). All four graphs follow the same trend and two graphs of 
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LiNi0.25Mn1.75O4 (green) and LiNi0.75Mn1.25O4 (blue) follow the same decrease point 

to point. The graph with the LiNi0.5Mn1.5O4 (yellow) colour nearly has the same 

starting point at 1.94 Å3 and blue and green is 1.942 Å3. Then starts decreasing in 

volume with increasing pressure. The graphs depict a volume decrease with 

increasing pressure. The graph also indicates that the bond length of the structures 

would go through changes due to transformation because of pressure. 
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Figure 3-4: The calculated equation of states for LiMn2O4 (red), LiNi0.25Mn1.75O4 

(green), LiNi0.5Mn1.5O4 (yellow), LiNi1.75Mn1.25O4  (blue)  and LiNi0.875Mn1.125O4 

(black). The circles represent the calculated values and the solid lines represent the 

curve fit. 

The different compositions are represented by different colours (red, green, yellow, 

blue and black). The first four graphs follow the same trend and differ slightly ranging 

between 0.94 and 0.92Å. LiNi0.875Mn1.125O4 shows a slight constant movement 

between 10 and 20 GPa and with a volume of 0.86 Å, then starts decreasing in 

volume with increasing pressure. The graphs depict a volume decrease with 

increasing pressure. The graph also indicates that the shape of the structure would 

go through changes due to transformation because of pressure. 
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Figure 3-5: The calculated equation of states for LiMn2O4 (red), LiNi0.25Mn1.75O4 

(green), LiNi0.5Mn1.5O4 (yellow), LiNi1.75Mn1.25O4 (blue) and LiNi0.875Mn1.125O4 

(black). The circles represent the calculated values and the solid lines represent 

the curve fit. 

The different compositions are represented by different colours (red, green, yellow, 

blue, and black). The five graphs follow the same trend with a slight difference with 

respect to the nickel concentration. The LiNi0.875Mn1.125O4 indicates the start of a 

drastic decrease from 20GPa and a volume of 0.95Å. The lower values of pressure 

correspond to the high values of the lattice parameters and the increase in the nickel 

concentration corresponds to the decrease in the lattice parameters as shown in 

Figure 3-5. 
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Electronic and Mechanical Properties 

 

The density of states describes the number of different states at a particular energy 

level that electrons are allowed to occupy. It allows one to determine the general 

distribution of states as a function of energy, stability of the material and can also 

evaluate the nature of the material. In this chapter, we discuss electronic properties, 

i.e., calculated total density states and partial density states of spinel LiMn2O4 and 

doped LiNixMn2O4 where x= 0.25, 0.5, 0.75 and 0.875. Firstly, in this chapter; the 

spinel LiMn2O4 and doped LiNixMn2O4 DOS/PDOS shows that the states are 

distinguished into two patterns; the valence band and the conduction band. Although 

aspects of pseudo and band gaps are necessary to stability, where the shift of the 

Ef Fermi with respect to the gaps plays an essential role in verifying stability and 

change of coordination within the system. We note that the total and partial DOS in 

this chapter show no opening (pseudogap or band gap) near the Fermi level (Ef).  

 

We also discuss the mechanical properties of spinel LiMn2O4 and doped LiNixMn2O4 

where x= 0.25, 0.5, 0.75 and 0.875. We also determine the effect of pressure (10 

and 50GPa) on mechanical properties of structures under study. Furthermore, the 

bulk modulus B is calculated to measure the resistance of volume change under 

pressure, while shear modulus G describing the resistance to shape change caused 

by shearing force and the elastic anisotropy A. 

 

Electronic Properties  

It has been indicated, that the electronic structure of LiMn2O4 is governed by a 

strong hybridisation between the Mn-d and the O-p states whereas the lithium atoms 

are substantially ionised in the spinel structure. The spinel LiMn2O4 has an equal 

number of Mn3+ and Mn4+ ions which are anti-ferromagnetically aligned. The 

electronic properties help in understanding the classification of the material under 

three main phases, i.e., metals, semiconductors and insulators. The type of 
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materials is determined by the size and existence of the energy gap between the 

highest occupied orbitals (valence band) and the lowest unoccupied orbitals 

(conduction band). A high density of states DOS at a specific energy level means 

that there are many states available for occupation and a zero DOS means that no 

states can be occupied at the energy level. In semiconductors and insulators, the 

gap is present, which happens to be larger for insulators. In metals, the occupied 

and unoccupied orbitals overlap, therefore no gap between the bands is noted.  

 

The relation between structural stability and the behaviour of the electronic density 

of states near the Fermi energy can be formalised by a Jones-type analysis [226] 

Structural instabilities in metals are typically related to details of the Fermi surface. 

A Jones-type analysis then states that the structural energy difference between any 

two lattices at the same atomic volume is given by: 

 

∆𝑈 = ∆𝑈𝑏𝑎𝑛𝑑 = ∆ [∫
𝐸𝑓  𝐸𝑛(𝐸)𝑑𝐸]                                                                                 (89) 

 

where 𝑛(𝐸) is the electronic density of state per atom, 𝐸𝑓 is the Fermi energy and 

when the number of states per unit energy range 𝑛(𝐸) is known, we can obtain the 

Fermi energy immediately as a function of the number of electrons per atom. The 

difference in the band energy∆𝑈𝑏𝑎𝑛𝑑, is calculated under the constraint that the 

potential within the Wigner-Seitz (WS) spheres remain unchanged on going from 

one structure-type to another. The band energy difference equation allows us to 

perform a Jones-type analysis that links the relative stability of the two structures to 

the relative behaviour of the corresponding DOS. This link results from the 

relationship between the Fermi energy, 𝐸𝑓 and the number of valence electrons. 

Band gaps are essentially left over ranges of energy not covered by any band, a 

result of the finite widths of the energy bands. The bands have different widths, with 

the widths depending upon the degree of overlap in the atomic orbitals from which 

they arise. Two adjacent bands may simply not be wide enough to fully cover the 

range of energy. For example, the bands associated with core orbitals (such as 1s 

electrons) are extremely narrow due to the small overlap between adjacent atoms. 

As a result, there tend to be large band gaps between the core bands. Higher bands 

http://en.wikipedia.org/wiki/Band_gap
http://en.wikipedia.org/wiki/Atomic_orbital
http://en.wikipedia.org/wiki/1s_electron
http://en.wikipedia.org/wiki/1s_electron
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involve larger and larger orbitals with more overlap, becoming progressively wider 

and wider at high energy so that there are no band gaps at high energy. 

 

From the DOS, we can deduce the nature of the compositions and predict the 

stability or instability of the systems. In the next sections, we present the results of 

the calculated DOS of nickel doped spinel LiNixMn2-xO4 (x= 0.25, 0.5 and 0.875) 

which will give us more information on the studied compositions. 

 

This section discusses the partial density of states (PDOS) for pure and doped 

spinel structures. PDOS gives the atomic contribution of an element. Considering 

the projections over atomic orbitals, the sequence of the peaks appearing from the 

valence band to the conduction band can be interpreted as discussed below.  

 

The total DOS of pure and doped spinel is the contribution of Li, Mn2-x, Nix and O4; 

hence it is important to understand the way electrons are allocated for individual 

atoms in the systems. The band structure is a good way to visualise the wave vector- 

dependence of the energy states, the band-gap, and the possible electronic 

transitions. The actual transition probability depends on how many states are 

available in both the initial and final energies. For the LiMn2O4 system, the first peak 

in the valence band corresponds to d-orbital and there are no maximum peaks in 

the conduction band. Lithium shows s-orbital it is dominated by d-orbitals in the low 

energy band and a small contribution of the d-orbital in the high energy band for all 

the compositions. For all compositions at approximately -2eV a contribution of d-

orbital is shown. Hence all the compositions appear to be metallic at 0GPa. 

 

In this section, we discuss TDOS and PDOS for an un-doped system LiMn2O4 that 

is shown in Figure 4-1. For the TDOS three peaks are distinguishable in the valence 

band at -6, -4 and a broad peak at -2 eV (labelled I-III) whereas the fourth peak is 

at the Fermi-level (0eV) and labelled IV. The contributions from the Li-2s in the 

valence band corresponds to peaks in the TDOS. The peaks between -6 and -1 eV 

originate from the 3p orbitals of the oxygen PDOS and are dominated by three broad 

peaks, corresponding to peaks I, II and III in the TDOS. There is also a small 3s 

state in the valence band contribution between -7 and -5 eV. The Mn PDOS shows 
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a very small valence band contribution concentrated between -6 and -2 eV which 

consists mainly of 2s and 3p states, followed by a moderate contribution between -

6 and -2 eV which consist of 3d states. The O PDOS displays most of the peaks in 

the TDOS which are a result of the O 2p states. The sharply increasing Peak IV is 

dominated by 3d states of Mn atoms, with some contribution from 3p states of O 

atoms and little contributions from the 2s states of Li atoms. The shallow peaks in 

the conduction band and the sharp peaks in the valence band consist of states 

derived from a mixture of Mn 3d and O 2p. Moreover, the figure shows that the 

system is metallic because there is no pseudo-gap or bandgap at the Fermi-level. 

 

The calculated total and partial electronic density of states (TDOS/PDOS), shown 

in Figure 4-2, indicate that the low nickel concentration in the LiNi0.25Mn1.25O4 does 

not affect significant changes. As a result, the (TDOS and PDOS) has a similar 

outcome as that of undoped LiMn2O4.The calculated TDOS and PDOS of 

LiNi0.25Mn1.75O4 shows four peaks which are distinguishable in the valence band at 

-6, -4, -2 and another apex at the Fermi level 0 eV (labelled I-IV). The Li PDOS is 

dominated by 2s states with peaks at -6, -4 and 0 eV in the valence band, 

corresponding to peaks in the TDOS. The O PDOS is dominated by 3p states with 

three broad peaks between -6 and -2 eV, corresponding to peaks I, II and III in the 

TDOS and a small peak at the Fermi-level. The Ni/Mn PDOS shows little contribution 

in the valence band between -6 and -2 eV which consists mainly of 2s and 3p states, 

then a small contribution between -6 and -2 eV which consist of 3d states. The O 

PDOS displays most of the peaks in the TDOS with considerable contributions from 

the 3d states of the Mn atoms. Peak II is O 2p in nature, with peak II and III also 

mainly O 2p. Peak IV at the Fermi-level is mostly Ni/Mn 3d with some Li 2s and O 

3p states. Hence it is important to note that the contribution of Mn 3d is 

approximately 90% at the Fermi level. In conclusion, the TDOS/PDOS of 

LiNi0.25Mn1.25O4 shows no indication of a pseudo-gap or bandgap at the Fermi-level, 

indicating the structure as metallic.  
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Figure 4-1: Partial density of states (PDOS) at 0GPa, showing Li, Mn and O 

contributions for LiMn2O4 structure. The Fermi energy is set as the energy zero (Ef). 
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Figure 4-2: Partial density of states at 0 GPa, depicting Li, Mn, Ni and O 

contributions for LiNi0.25Mn1.75O4.  The Fermi energy is set as the energy at zero (Ef). 
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Figure 4-3: Partial density of states (PDOS) at 0GPa, showing Li, Mn, Ni and O 

contributions for LiNi0.5Mn1.5O4 structure. The Fermi energy is set as the energy at 

zero (Ef). 
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The calculated total and partial electronic density of states (DOS/PDOS) for 

LiNi0.5Mn1.5O4 are shown in Figure 4-3. Three peaks are distinguishable in the 

valence band at -4, -2 and -1 (labelled I-III). The Li PDOS is dominated by 2s states 

with peaks between -2 and 0 eV in the valence band, corresponding to peak III in 

the TDOS. The O PDOS is dominated by 3p states with three broad peaks between 

-6 and -2 eV, corresponding to peaks I, II and IV in the TDOS and a small peak at 

the Fermi-level. There are also little contributions of Li 2s in the valence band. The 

Ni/Mn PDOS shows little contributions between -6 and -2 eV in the valence band 

which consists mainly of 2s and 3p states, then sharp peaks contribution between -

5 and 0 eV with a contribution of the 3d states. The O PDOS displayed most of the 

peaks in the TDOS by the 3d state. The electronic states of peak IV at the Fermi 

level is a result of the contribution of Mn-3d, Ni-3d and O-2p states. Therefore, the 

Figure 4-3 shows that the system is metallic at 0GPa and the Fermi level has shifted 

closer to the pseudo-gap as compared to that of LiNi0.25Mn1.75O4.  

 

The calculated total and partial density of states (DOS/PDOS) for LiNi0.75Mn1.25O4 

are shown in Figure 4-4. For this system, two peaks are distinguishable in the 

valence band at -4 and -1 eV and the other cutting at 0 eV (labelled I-III). The Li 

PDOS is dominated by 2s states with peaks between -3 and -1 eV and the other 

peak cutting at the Fermi level overlapping to the conduction band from the valence 

band. The O PDOS is dominated by 3p states with two broad peaks between -4 and 

-1 eV, corresponding to peaks I and II in the TDOS and a another at the 0 eV (Fermi-

level) corresponding to peak III in the TDOS. There is also the minimum contribution 

of Li 2s in the valence band. The Mn/Ni PDOS shows very small peaks in the 

valence band contribution concentrated between -4, -2 and 0 eV which consists 

mainly of 2s and 3p states, then a broad peak contribution between -4 and -1 eV 

which consist of 3d states. The O PDOS displays most of the peaks in the valence 

band of the DOS. Peak III at the Fermi-level is mostly Ni/Mn 3d with some Li 2s and 

O 3p states. In comparison to all the other figures, there is a shift of the peaks from 

the valence band to conduction band due to the increase of the nickel concentration. 
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Figure 4-4: Partial density of states (PDOS) at 0GPa, depicting Li, Mn, Ni and O 

contribution for LiNi0.75Mn1.25O4.  The Fermi energy is set as the energy zero (Ef). 

Although LiNi0.75Mn1.25O4 concentrations gave the same results in terms of energy 

and lattice parameters as LiNi0.25Mn1.75O4, their density of states graphs is different. 
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There is a slight difference in terms of the peak positions since the Fermi level 

intersects the TDOS for LiNi0.75Mn1.25O4 on the right, and closer to the top of the 

main peak. This shows that the system is metallic at 0GPa and relatively unstable 

compared to LiNi0.5Mn1.5O4 since the pseudo-gap.  

 

 

Figure 4-5: Partial density of states (PDOS) at 0GPa, showing Li, Mn, Ni and O 

contributions for LiNi0.875Mn1.125O4 structure. The Fermi energy is set as the energy 

zero (Ef). 
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The calculated total and partial density of states (DOS/PDOS) for LiNi0.875Mn1.125O4 

are shown in Figure 4-5. Three peaks are distinguishable in the valence band at -4, 

-2, -1 eV (labelled I-III) and one peak cutting at 0 eV Fermi-level (labelled IV). The 

conduction band displays a peak between 0 and +2 eV labelled IV. The Li PDOS is 

dominated by 2s states with a peak positioned at -1 eV in the valence band, 

corresponding to the peak III in the TDOS. The O PDOS is dominated by 3p states 

with two peaks at -4 and -1 eV, corresponding to peaks in the TDOS and a peak 

overlapping at the Fermi-level. There are also minimum contributions of Li 2s in the 

conduction band. The Ni/Mn PDOS shows a small contribution in the valence band 

concentrated between -4, -3, -2, and -1 eV which consists mainly of 2s and 3p 

states, then two peaks contribution between -4 and -2 eV which consist of 3d states. 

The majority of the peaks of O and Ni/Mn PDOS are shown in the TDOS. Small 

peaks corresponding to IV at the Fermi-level is mostly Ni/Mn 3d with some Li 2s and 

O 3p states concentration. The bottom of the conduction band and the top of the 

valence band both consist of states derived from mixtures of Mn 3d and O 2p. As it 

has been observed in other concentrations, 0GPa shows no availability of a pseudo-

gap or bandgap at, the Fermi-level. 

 

In this section, we discuss DOS and PDOS for the three systems (LiMn2O4, 

LiNi0.5Mn1.5O4 and LiNi0.875Mn1.125O4) at a pressure of 10 GPa and 50GPa. The 

calculated total and partial electronic density of states (DOS/PDOS) for LiMn2O4 at 

10GPa are shown in Figure 4-6. Four peaks are distinguishable in the valence band 

at -6, -5, and 4 and between 1 and 0 eV which is very close to Fermi level (labelled 

I-IV). The Li PDOS is dominated by 2s states with peaks at -3, and 0 eV in the 

valence band, corresponding to peak III in the TDOS. The Mn PDOS shows a very 

broad peak in the valence band contribution concentrated between -6 and -2 eV 

which consists mainly of 2s and 3p states, then followed by a peak contribution at 0 

eV which consist of 3d states corresponding to peak VI in the TDOS. The O PDOS 

is dominated by 3p states with three peaks between -6 and -2 eV, corresponding to 

peaks I, II and III in the TDOS. The O PDOS displays most of the peaks in the TDOS. 

Peak II is O-2p in nature, with peak III and IV also mainly O-2p. The peak at the 

Fermi-level (0eV) in the O-2p has a short peak and that could be an indication of the 

type of impact oxygen is having in the system.  
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Partial Density of States  

 

Figure 4-6: Partial density of states (PDOS) at 10 GPa, showing Li, Mn, Ni and O 

contribution for LiMn2O4 structures and their orbitals (s-cyan, p-red, d-green and 

total-blue). The Fermi energy is set as the energy at zero (Ef-black). 
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Peak IV is mostly Mn 3d with some Li 2s and O 3p states. The bottom of the 

conduction band and the top of the valence band both consist of states derived from 

mixtures of Mn 3d and O 2p. There is an indication of a slight shift of the peak at the 

Fermi level and that could be because of pressure added as compared to the system 

at 0GPa. The total and partial density of states of LiMn2O4 is shown in Figure 4-6 

together with the total density of states (TDOS). The Figure 4-6 shows the total and 

partial density of states of Li-2s and Mn-3d, which are the nearest neighbours in 

LiM2O4. The shapes of the Li-2s and Mn-3d bands do not differ. Three peaks are 

distinguishable in the lower energy at -6,-4 and 0 eV (labelled I-III). The Li PDOS is 

dominated by Li-2s states with peaks at -4, and 0 eV in the lower energy and 0eV 

corresponding to peak III. The Mn PDOS shows a very broad peak in the lower 

energy contribution concentrated from -6 and -2 eV which consists mainly of Li-2s, 

Mn-3d and O-3p states, then followed by a long peak contribution at 0 eV which 

consist of Mn-3d states corresponding to peak III. The O PDOS is dominated by O-

3p states with three peaks between -6 and -2 eV, corresponding to peaks I, II and 

III in the TDOS. The O-3p PDOS displays most of the peaks. The peak at the Fermi-

level (0eV) in the O-2p has a short peak and that could be an indication of the type 

of impact oxygen is having in the system. Peak III is a contribution of Li-2s and Mn-

3d states. The bottom of the higher energy and the top of the lower energy both 

consist of states derived from mixtures of Li-2s, Mn-3d and O 2p. The slight shift of 

the peak at the Fermi level at the TDOS to the lower energy could be a result of 

pressure added as compared to the system at 0GPa.  

  

The total partial density of states of LiNi0.5Mn1.5O4 is shown Figure 4-8 together with 

the total density of states (TDOS). The shapes of the Li-2s and Mn-3d bands do not 

differ drastically. Four peaks are distinguishable in the lower energy at -6, -4 and 1 

eV (labelled I-III) and one peak in the higher energy between 0 and 2eV (IV) of 

TDOS The Li PDOS is dominated by Li-2s states with small broad peaks between -

4 and -1 in the lower energy. The high peak at 0eV in the Li-2s corresponds to peak 

III in the TDOS slightly shifting from the Fermi-level. The Mn PDOS shows peaks in 

the lower energy contribution concentrated between -4 and -2 eV consisting mainly 

of Li-2s, Mn-3d and O-3p states and make up the peaks (I and II).  
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Figure 4-7: Partial density of states (PDOS) at 50 GPa, with Li, Mn, Ni and O 

contribution for LiMn2O4 structures and their orbitals (s-cyan, p-red, d-green and 

total-blue). The Fermi energy is set as the energy at zero (Ef-black). 
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It is then followed by a high peak contribution at 1 eV which consists of Mn-3d states 

corresponding to peak III in the TDOS and shifting away from the Fermi level to the 

lower energy region. One peak of Mn-3d occurs in the higher energy between 0 and 

2eV and could be the combination of the increase of pressure and the nickel 

concentration. The O PDOS is dominated by O-3p states with three peaks between 

-5 and -3 eV, corresponding to peaks I, II and III in the TDOS. The O-3p PDOS 

displays most of the peaks in the TDOS. The peak at the Fermi-level (0eV) in the 

O-2p has an increased peak and shifting slightly from the Fermi level to the lower 

energy. One peak of O-3p occurs in the higher energy between 0 and 2eV. There 

is a slight shift of the peak at the Fermi level at the TDOS to the lower energy could 

be a result of pressure and the nickel concentration added in the system. There is 

a change with the PDOS and TDOS with the increase in pressure compared to the 

system at 0GPa. 

Figure 4-9 shows the total partial density of states of LiNi0.5Mn1.5O4 together with the 

total density of states (TDOS). The total partial density of states of Li-2s and Mn-3d 

is shown in Figure 4-9, which are the nearest neighbours in LiNi0.5Mn1.5O4. The picks 

of the Li-2s and Mn-3d bands do not differ too much. Three peaks are 

distinguishable in the valence band at -4,-2 and -1 eV (labelled I-III) and one peak 

in the conduction band between 0 and 2eV (IV). The Li PDOS is dominated by Li-

2s states with small broad peaks between -4 and -1 in the valence band. The highest 

peak at 0eV in the Li-2s corresponds to peak III which is slightly shifted from the 

Fermi-level. The Mn PDOS shows peaks in the valence band contribution 

concentrated between -4 and -2 eV consisting mainly of Li-2s, Mn-3d and O-3p 

states and make up the peaks (I and II). It is then followed by a high peak 

contribution at -1 eV which cuts at the Fermi-level and corresponds to peak III. The 

peak shifts away from the Fermi level to the valence band. One peak of Mn-3d 

occurs in the conduction band between 0 and 2eV and could be the combination of 

the increase of pressure and the nickel concentration. The O PDOS is dominated 

by O-3p states with three peaks between -5 and -3 eV, corresponding to peaks I, II 

and III in the TDOS. The O-3p PDOS displays most of the peaks in the TDOS. 
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Figure 4-8: Partial density of states (PDOS) at 10 GPa, with Li, Mn, Ni and O 

contribution for LiNi0.5Mn1.5O4 structure and their orbitals (s-cyan, p-red, d-green and 

total-blue). The Fermi energy is set as the energy at zero (Ef-black). 
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Figure 4-9: Partial density of states (PDOS) at 50 GPa, showing Li, Mn, Ni and O 

contribution for LiNi0.5Mn1.5O4 structure and their orbitals (s-cyan, p-red, d-green and 

total-blue). The Fermi energy is set as the energy at zero (Ef-black). 
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The peak at the Fermi-level (0eV) in the O-2p has an increased peak and shifting 

slightly from the Fermi level to the lower energy. One peak of O-3p occurs in the 

higher energy between 0 and 2eV. There is a slight shift of the peak (III) at the Fermi 

level at the TDOS to the lower energy could be a result of pressure and the nickel 

concentration added in the system. There is no change with the PDOS and TDOS 

regardless of the increase in pressure as compared to 40GPa LiNi0.5Mn1.5O4. 

The total density of states (TDOS) and partial density of states of LiNi0.875Mn1.125O4 

are shown in Figure 4-10. Three peaks are distinguishable in the lower energy at -

6, -4, -2 and one between 0 and 2eV (labelled I-IV). The Li PDOS is dominated by 

Li-2s states with small broad peaks between -6 and -4 in the lower energy. The 

highest peak is at -2eV in the Li-2s which has shifted drastically from the Fermi-level 

to the lower energy as the pressure increases and nickel concentration as compared 

to 40GPa LiNi0.875Mn1.125O4. The Mn PDOS shows three (3) peaks in the lower 

energy contribution concentrated from -6, -4 and -2 eV consisting mainly of Li-2s, 

Mn-3d and O-3p states and make up the peaks (I and III). It is then followed by a 

small peak contribution in the high energy which consists of Mn-3d states 

corresponding to peak IV in the TDOS. The O PDOS is dominated by O-3p states 

with three peaks at -6 and -2 eV, corresponding to peaks I, II and IV in the TDOS. 

The peak in the O-2p is dissecting the Fermi level from the high energy. The 

pressure from 50GPa LiNi0.75Mn1.25O4 to 0-10GPa LiNi0.875Mn1.125O4 has not 

produced significant results regardless of the different compositions. 

Figure 4-11 b is the total partial density of states of LiNi0.875Mn1.125O4 and shows the 

contribution of each element. Three peaks are distinguishable in the lower energy 

at -6, -4, -2 and one between 0 and 2eV (labelled I-IV). The Li PDOS is dominated 

by Li-2s states with two small peaks between -6 and -4 in the lower energy. The 

highest peak is at -2eV in the Li-2s which is shifting away from the Fermi-level. The 

Mn PDOS shows three (3) peaks in the lower energy contribution concentrated from 

-5, -4 and -2 eV consisting mainly of Li-2s, Mn-3d and O-3p states and make up the 

peaks (I and IV).  
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Figure 4-10: Partial density of states (PDOS) at 10 GPa, showing Li, Mn, Ni and O 

contribution for LiNi0.875Mn1.125O4 structures and their orbitals (s-cyan, p-red, d-

green and total-blue). The Fermi energy is set as the energy at zero (Ef-black). 
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Figure 4-11: Partial density of states (PDOS) at 50 GPa, with Li, Mn, Ni and O 

contribution for LiNi0.875Mn1.125O4 structures and their orbitals (s-cyan, p-red, d-

green and total-blue). The Fermi energy is set as the energy at zero (Ef-black). 

 

It is then followed by a small peak contribution in the high energy which consists of 

Mn-3d states corresponding to peak IV in the TDOS. The O PDOS is dominated by 

O-3p states with three peaks at -6 and -2 eV, corresponding to peaks I, II and IV in 

the TDOS.  
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The peak in the O-2p is dissecting the Fermi level from the high energy.  

 

Total Density of States 

To better examine the differences in the studied crystal structures, we plot the 

density of states (DOS) for LiMn2O4, LiNi0.25Mn1.75O4, LiNi0.5Mn1.5O4, LiNi0.75Mn1.25O4, 

and LiNi0.875Mn1.125O4 in Figure 4-12. The DOS show the contribution of states from 

the LiMn2O4 and nickel doped LiMn2O4 atoms and these contributions are analysed 

from the partial density of states. Figure 4-12 gives the total density of states for 

LiMn2O4 and nickel doped LiMn2O4 structures.  The DOS is expressed in the number 

of states per atom per energy interval. In this section, the DOS of LiMn2O4 and 

doped LiNixMn2O4 crystal structures were plotted against each other to compare 

their phase stabilities. Figure 4-12 shows overlapping of peaks (with respect to all 

the compositions) from the valence band to the conduction band. As a result, the 

compositions show metallic behaviour since there is no visibility of a bandgap or 

pseudo-gap. In terms of the stability of the composition’s, we focused on the highest 

peak at the Fermi-level.  

 

Figure 4-12: Total densities of states for various concentrations at 0 GPa give the 

total density of states for LiMn2O4 and doped LiNixMn2-xO4 structures. The Fermi 

energy is set as the energy zero (Ef). 
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Total Density of States at Different Pressure 

 

 

Figure 4-13:  Total densities of states of LiMn2O4 for various pressures values. The 

0GPa is represented by dark green, 10GPa light blue, 20GPa dark blue, 30GPa red, 

40GPa light green and 50GPa maroon. The Fermi energy is set as the energy zero 

(Ef). 

Figure 4-13 illustrate the behaviour of LiMn2O4 when subjected to various pressures 

from 0GPa to 50GPa and the Fermi level. The increase in pressure on LiMn2O4 

shows a decrease in the height of the peaks at the Fermi level. The pressure was 

increased from 0GPa until 50GPa to see the effect on the structure and the 

behaviour at the Fermi-level. The 50GPa has the least number of states at the 

Fermi-level making it more stable at that pressure. The more pressure is increased 

the less density of states at the Fermi-level and an indication of the peaks shifted 

away from the Fermi level more to the valence band.  
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Figure 4-14: Total densities of states of LiNi0.5Mn1.5O4 for various pressures values. 

The 0GPa is represented by dark green, 10GPa light blue, 20GPa dark blue, 30GPa 

red, 40GPa light green and 50GPa maroon. The Fermi energy is set as the energy 

zero (Ef). 

The pressure was increased from 0GPa to 50GPa to see the effect on the structure 

and its behaviour at the Fermi-level. Increasing pressure on our systems decreases 

the volume of the systems and thus increases its density although the effect on the 

densities is small. Figure 4-14 shows that apart from the effect of the increase in 

pressure, the nickel concentration also has an impact as compared to the un-doped 

LiMn2O4. Hence the peaks are not at the Fermi level but cut at the Fermi level. The 

increased pressure produced less density of states we have at the Fermi-level. 

There is a decreasing trend with the increase in pressure to the system from 10 until 

50GPa. Due to the pressure applied to the system the peaks (10GPa, 20GPa 

30GPa 40GPa and 50GPa) lie between -2 and 0eV and not at the Fermi-level as 

compared to the peaks in Figure 4-13. 
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Figure 4-15: Total densities of states of LiNi0.875Mn1.125O4 for various pressures 

values. The 0GPa is represented by dark green, 10GPa light blue, 20GPa dark blue, 

30GPa red, 40GPa light green and 50GPa maroon. The Fermi energy is set as the 

energy zero (Ef). 

Figure 4-15 illustrates the behaviour under the increasing pressure and an increase 

in a nickel concentration LiNi0.875Mn1.125O4. The pressure was increased from 0GPa 

until 50GPa to see the effect on our structure and the behaviour at the Fermi-level. 

Increasing the pressure on our systems decreases the volume of the systems and 

thus increases its density hence the effect on the densities is small. The more we 

increase the pressure the less density of states we have at the Fermi-level. There 

is a decreasing trend with the increase in pressure of the system from 0 until 50GPa. 

All the peaks cut at the Fermi-level to the valence band moving away from the Fermi-

level to the conduction band.  All the peaks are present in the conduction band 

between 0 and +2eV due to the increased nickel concentration together with the 

increasing pressure. 
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Elastic Properties  

There are three independent single-crystal elastic constants of a cubic crystal (C11, 

C44 and C12). The elastic moduli are determined using the following expressions: the 

bulk modulus B, shear modulus G, young modulus E, anisotropic factor A, tetragonal 

shear modulus, C’ and the B/G ratio. The bulk modulus B is a measure of resistance 

to volume change under pressure, young modulus E describing the relative stiffness 

of a material, while shear modulus G describes the resistance to shape change 

caused by shearing force; whereas the elastic anisotropy, A has an important 

implication in engineering science. If the material is completely isotropic, the value 

of A will be 1, while values smaller or larger than 1 measure the degree of elastic 

anisotropy.  

 

The calculated elastic properties of the following compositions: LiMn2O4, 

LiNi0.25Mn1.75O4, LiNi0.5Mn1.5O4, LiNi0.875Mn1.125O4 and LiNi1.75Mn0.25O4 are listed in 

Table 4-1. It is well known that B, C′ and C44 must be positive for a structure to 

remain mechanically stable. It’s a general fact that the larger the shear modulus, the 

more pronounced its directional bonding between atoms. Apart from B/G is 

significant, it was recently found that the C’ is also very significant on the mechanical 

properties of materials [139].   

 

Therefore, the results in Table 4-1 indicate that our structures generally satisfy 

stability conditions of a cubic crystal at 0GPa and an increase in the nickel 

concentration does not implicate negative values of the bulk modulus, shear 

modulus and tetragonal shear modulus. The bulk modulus B is in reasonable 

agreement with previously calculated value. The calculated values of A show that 

our structure is approaching unity (A≈1) which indicates that the structure becomes 

isotropic. 

 

The stability against small deformations can be studied by considering the elastic 

properties and the calculated elastic properties of LiMn2O4 at various pressures are 

listed in Table 4-2. It has been recently found that the C′ is also very significant on 

the mechanical properties of materials [227]. 
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Table 4-1: The elastic constants with calculated C11, C44 and C12 (GPa), Bulk 

modulus B, Young modulus E, Shear modulus G, B/G, Anisotropy A and tetragonal 

shear modulus C’ of LiMn2O4 at 0 GPa with a strain of 0.002. 

 LiMn2O4 LiNi0.25Mn1.75O4 LiNi0.5Mn1.5O4 LiNi0.75Mn0.25O4 LiNi0.875Mn1.125O4 

C11(GPa) 155.206 167.989 149.368 167.83 102.919 

C12(GPa)  103.509 91.146 109.593 90.006 83.246 

C44 (GPa) 7.316 41.254 31.191 44.448 38.328 

B (GPa) 

B(Calc)  

120.741 

133 [228] 

116.760 122.851 115.948 89.803 

E (GPa) 42.460 107.993 74.608 112.984 73.453 

E(Calc) 92 [229]  124 [229]   

G (GPa) 14.729 40.121 26.669 42.234 26.932 

G(Calc) 77.0 [228]     

C’ 25.849 38.421 19.888 38.912 9.837 

B/G 8.198 2.910 4.0606 2.745 3.334 

A 0.761 1.034 1.151 1.066 1.554 

 

Therefore, the results in Table 4-1 indicate that our structures satisfy conditions of 

a cubic crystal at 0GPa and an increase in the nickel concentration does not 

implicate negative results of the bulk modulus, shear modulus and tetragonal shear 

modulus. The bulk modulus, B, and shear modulus, G, of LiMn2O4 is in good 

agreement with the calculated value. There has been experimental finding which 

are in range with our finding of (42 GPa) for the fully intercalated LiMn2O4 with E 

ranging from 10-200 GPa due to different experimental techniques used [230] [231] 

[232] [233] [234]. The calculated values of A, from LiMn2O4 to LiNi0.75Mn0.25O4, are 

approaching unity (A≈1) which indicates that they are becoming isotropic, with the 

exception of LiNi0.875Mn1.125O4. 

The stability against small deformations can be studied by considering the elastic 

properties and the calculated elastic properties of LiMn2O4 at various pressures are 
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listed in Table 4-2. It has been recently found that the C′ is also very significant on 

the mechanical properties of materials [227]. 

Table 4-2: Calculated elastic constants B, G, B/G, anisotropy A and tetragonal C’ of 

LiMn2O4 at various pressure. 

LiMn2O4 Elastic Constants (GPa) 

Pressure(GPa)  10 20 30 40 50 

 C11 250.861 216.5954 260.6196 287.372 353.7856 

C44 28.64205 29.91637 30.76665 32.69235 31.99567 

C12 167.3776 198.8269 261.8913 305.5424 330.8306 

B 195.2054 204.7497 261.4674 299.4856 338.4822 

G 33.88191 21.50353 18.20565 15.98133 23.78841 

B/G 5.761345 9.52168 14.36188 18.73972 14.22887 

C' 41.7417 8.88427 -0.63585 -9.0852 11.47751 

A 0.895562 1.194206 1.240983 1.290756 1.115992 

 

The calculated value of C′ is negative for LiMn2O4 at 30 and 40GPa, thus indicating 

that the composition is not stable at 30 and 40GPa. The bulk modulus of the 

composition measured the composition’s resistance to uniform compression, as a 

result, there is an increase in the bulk modulus when pressure is applied to LiMn2O4. 

The shear modulus increases monotonically with the applied pressure. The B/G 

increases with the increasing bulk modulus and increasing pressure then decrease 

at 50GPa. Therefore, the material becomes ductile since the structure at different 

pressure has a greater B/G as compared to the Pugh proposed B/G ratio. The 

composition is isotropic when values are smaller or larger than 1 to measure the 

degree of elastic anisotropy, hence LiMn2O4 structure satisfies the condition for the 

system to be isotropic with increasing pressure. 

 

The calculated elastic properties of LiNi0.25Mn1.75O4 are displayed in Table 4-3 and 

the conditions indicate that LiNi0.25Mn1.75O4 is sensitive to the applied pressure. For 

a cubic material, it is well known that B, G and C44 must be positive for a structure 

to remain mechanically stable. The calculated value of C′ is positive for 

LiNi0.25Mn1.75O4 10, 20, 30 and 50GPa, thus indicating that the composition is stable. 

 



  

101 

 

 

Table 4-3: Calculated elastic constants B, G, B/G, anisotropy A and tetragonal C’ of 

LiNi0.25Mn1.75O4 at various pressure.  

LiNi0.25Mn1.75O4 Elastic Constants (GPa) 

Pressure(GPa)  10 20 30 40 50 

 C11 223.937 197.789 243.858 266.795 357.388 

C44 34.555 28.684 25.141 23.681 17.421 

C12 121.473 153.173 236.158 290.668 338.930 

B 155.628 168.045 238.725 282.710 345.083 

G 41.226 26.133 16.625 9.434 14.145 

B/G 3.775 6.430 14.310 29.968 24.397 

C' 51.232 22.307 3.810 -11.937 9.229 

A 0.851 1.064 1.175 1.267 1.046 

 

Then C′ becomes negative at 40GPa, indicating that the composition is unstable as 

observed from the calculations shown in the Table above. The bulk modulus of the 

composition measured the composition’s resistance to uniform compression, as a 

result, there is an increase in the bulk when pressure is applied to LiNi0.25Mn1.75O4 

at all pressure values. While the shear modulus decreases with the increasing 

pressure from 10 until 30GPa and begins to increase at 50GPa. The critical value, 

which separates ductile and brittle materials, is about 1.75 [227]. Table 4-3 shows 

that the calculated values of B/G increase with increasing pressure until 40GPa then 

begins decreasing at 50GPa, and the ductility and brittleness of LiNi0.25Mn1.75O4 

indicate instability under high pressure. The composition is completely isotropic 

when A=1, hence regarding the values in Table 4-3 the compositions satisfies the 

condition for the system to be isotropic with the increase in pressure. 

In Table 4-4, we listed elastic constant (C11, C44 and C12) and bulk modulus B, shear 

modulus G, B/G ratio, C’ and anisotropy A under a range of pressure values (10-

50GPa). The calculated elastic properties of LiNi0.5Mn1.5O4 listed in Table 4-4 indicate 

that LiNi0.5Mn1.5O4 is extremely sensitive to applied pressure. 
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Table 4-4: Calculated elastic constants B, G, B/G, anisotropy A and tetragonal C’ of 

LiNi0.5Mn1.5O4 at various pressure 

LiNi0.5Mn1.5O4 Elastic Constants (GPa) 

Pressure(GPa)  10 20 30 40 50 

 C11 178.862 217.796 155.244 203.285 263.439 

C44 23.795 21.121 40.679 10.909 10.902 

C12 172.275 227.374 80.354 243.984 334.944 

B 172.275 224.181 105.318 230.419 311.109 

G 16.253 10.757 39.385 -1.595 -7.760 

B/G 10.599 20.840 2.674 -144.492 -40.091 

C' 3.293 -4.789 37.445 -20.351 -35.752 

A 1.229 1.238 1.042 1.308 1.354 

 

It is also seen that the elastic constants C11, C12 and bulk modulus B increase 

monotonically with the applied pressure. However, when pressure increases C44 

fluctuates and attains values of 10.909 and 10.902 GPa at 40 and 50GPa 

respectively. The shear modulus, G, shows fluctuations and becomes negative with 

values of -1.59468 and -7.76006GPa at 40 and 50 GPa pressure respectively. 

Therefore, indicating the mechanical instability of LiNi0.5Mn1.5O4 at the two pressure 

values. The tetragonal shear modulus C’ generally decreases with pressure 

reflecting negative values at 20 40 and 50 GPa, and an anomalous positive value 

at 30 GPa. Table 4-4 shows that the calculated values of B/G fluctuate with 

increasing pressure and LiNi0.5Mn1.5O4 shows brittleness at 40GPa (1.75>-144.492) 

and at 50GPa (1.75>-144.492) and ductility is indicated from 10-30GPa. There is a 

gradual departure from isotropy with pressure, except at 30 GPa which is near 

isotropic as indicated in Table 4-4. On the whole it may be surmised that at 30 GPa 

LiNi0.5Mn1.5O4 show a different mechanical behaviour from other pressures. 

 

The calculated elastic properties of LiNi0.75Mn1.25O4 listed in Table 4-5, obey 

mechanical stability conditions for a cubic system. It is apparent that the elastic 

constants C11 and C44 increase monotonically whereas C12 and the bulk modulus 

increases when pressure is enhanced. The calculated value of C′ is positive for 

LiNi0.75Mn1.25O4 at 10 and 50GPa and appear negative from 20-40GPa. 
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Table 4-5: Calculated elastic constants B, G, B/G, anisotropy A and tetragonal C’ of 

LiNi0.75Mn1. 25O4 at various pressures 

LiNi0.75Mn1. 25O4 Elastic Constants (GPa) 

Pressure (GPa)  10 20 30 40 50 

 C11 254.225 223.916 247.343 249.559 320.576 

C44 35.964 26.971 27.425 24.292 19.985 

C12 123.283 198.107 247.249 301.625 328.297 

B 166.931 206.710 247.271 284.261 325.723 

G 47.767 21.344 16.474 4.162 10.447 

B/G 3.495 9.685 15.011 68.299 31.171 

C' 28.059 -11.666 -27.141 -39.369 160.288 

A 0.768 1.126 1.221 1.403 1.149 

 

For a cubic material, it is well known that B, C′ and C44 must be positive for a 

structure to remain mechanically stable. Hence it may be concluded that an increase 

in pressure renders LiNi0.75Mn1.25O4 owing to the negative tetragonal shear 

modulus. Table 4-5 indicate ductility, as the values obtained, are >1.75. The 

composition is isotropic when pressure is enhanced and the condition is satisfied. 

On the whole it is observed that mechanical properties change significantly at 50 

GPa compared to other pressures. 

 

It is further noted from Table 4-6 that elastic constants C11, C12 and the bulk modulus 

B, for LiNi0.875Mn1.125O4, increase monotonically with pressure, except at 40 GPa for 

C11, whereas C44 reduces with increasing pressure. However, when the pressure 

increases G decreases and behave anomalously at 40 GPa. The calculated value 

of C′ is positive for LiNi0.875Mn1.125O4 from up to 30GPa, thus indicating that the 

composition is stable, and subsequently tends negative above this pressure, hence 

showing mechanical instability. This can be observed from the table below that the 

B/G increase with the increasing bulk modulus and begins to show inconsistency 

from 40-50GPa. The composition is closer to isotropy at lower pressure values and 

deviates at 40GPa (2.283). 
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Table 4-6: Calculated elastic constants B, G, B/G, anisotropy A and tetragonal C’ of 

LiNi0.875Mn1.125O4 at various pressure 

LiNi0.875Mn1.125O4 Elastic Constants (GPa) 

Pressure (GPa)  10 20 30 40 50 

 C11 168.189 207.205 223.585 175.205 232.885 

C44 49.625 46.221 46.097 44.529 33.477 

C12 144.261 182.109 216.631 310.949 310.358 

B 152.243 190.474 218.949 265.701 284.534 

G 34.559 32.752 29.049 -0.431 4.592 

B/G 4.405 5.816 7.537 -616.018 61.964 

C' 11.951 12.548 3.477 -67.872 -38.737 

A 1.448 1.325 1.381 2.283 1.620 

 

On the whole it can be concluded that anomalous behaviours and instabilities of 

various compositions of LiNixMn2-xO4 are observed at different pressures. A 

composition with the best mechanical properties in the range 0-50 GPa, is 

LiNi0.25Mn1.75O4, followed by LiNi0.875Mn1.125O4, particularly as attested by the shear 

modulus C' and the isotropy A.  It can further be deduced that the stability of the 

latter, as shown by electronic properties, does not change much with pressure 

variation. Although the well-studied LiNi0.5Mn1.5O4 indicates both electronic and 

mechanical instabilities at high pressures, it is quite stable at 0 and 10 GPa as 

compared to other compositions. 
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Cluster Expansion Phase Stability Predictions  

In this chapter, we present and discuss results from the universal cluster expansion 

code, implemented in cluster expansion formalism used to investigate nickel doped 

LMO phase stabilities.  

Structural Predictions  

The method determines stable multi-component crystal structures and ranks 

metastable structures by the enthalpy of formation while maintaining the predictive 

power and accuracy of first-principles density functional methods. The ground-state 

phase diagram generated various structures with different concentrations and 

symmetries. This fitting scheme ran for a maximum number of iterations, adding a 

maximum of 5 structures in each iteration, and starting from an initial training set of 

five structures. The iterations continue until the energies of all structures are 

predicted by the cluster expansion which is higher than the energy calculated for the 

structure of the ground state line at each sampled concentration. The iterations 

continued until the standard deviation of 95% of the structures were within 5 meV of 

the cross-validation score (CVS). Therefore, the cross-validation score indicates 

how well the energies of the structures of the stable phases in the training set 

compare with each other. However, systematic errors will not be displayed. Lastly, 

the properties of all structures identified on the binary diagram are characterised by 

calculating heats of formation, elastic properties to determine mechanical 

properties, electronic stability from their density of states and phonons calculations 

to illustrate vibrational properties of the generated structures of stable phases.  

 

Figure 5-1 shows a binary diagram that is an isotropic volume optimisation binary 

ground state-diagram and the structure being non-magnetic. The alternative to f 

ull structural optimisation is to optimise the volume of the structure isotropically 

where both minimisation stages volume are optimised isotropically. Then to counter 

the issue with the anomalous DFT total energy values we increased the accuracy in 

the VASP flowchart, by increasing the plane-wave basis cut off from 300eV to 400eV 
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in the GGA stage and decreased the k-spacing from 0.5 to 0.35 in the second 

minimisation stage. The isotropic volume optimisation calculation yielded miscible 

constituents (see Figure 5-1), implying that the generated phases close to the 

ground states with the lowest Δ𝑯𝒇 at a given concentration should be stable. The 

highlighted red line corresponds to density functional theory ground state systems 

and the structures that are on the DFT ground state line (red) are thermodynamically 

stable. The binary diagram produced 62 new structures of stable phases from which 

only six structures are stable. The stable structures obtained from the binary 

diagram in Figure 5-1 have different space groups, different lattice parameters, the 

same Wyckoff positions and a different energy of formations. Therefore, the 

isotropically optimised structures has a cross validation score of 1.1 meV which is 

an indication of a good cluster expansion because it has CVS lesser than 5 meV 

per active position. 

 

Figure 5-1: An isotropic volume optimised binary ground state-diagram of 

(LiNiMnO4)8 with a cross-validation score of 1.1 meV. The grey line is the CE 

predictions (-), the green line is the (-) DFT input and the red line is the DFT ground-

state line (-). 
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 Figure 5-2 shows a binary diagram that has been fully optimised with the structure 

being non-magnetic. The full optimised binary ground state diagram produced 77 

new structures where only 8 are stable. We utilised the same plane-wave basis cut 

off of 400eV in the GGA stage and the k-spacing of 0.35 in the second minimisation 

stage of the flowchart that yielded Figure 5-1. The structures shown in Figures 5-2 

are miscible constituents, implying that the generated phases close to the ground 

states having the lowest Δ𝑯𝒇 at a given concentration should be stable. The 

highlighted red line corresponds to density functional theory ground state systems 

and the structures that are on the DFT ground state line (red) are thermodynamically 

stable. The stable structures in Figure 5-2 have different space groups, different 

lattice parameters, the same Wyckoff positions and different energies of formation. 

Therefore, the fully optimised calculation produced a cross validation score of 13 

meV which is an indication of a bad cluster expansion because the CVS is greater 

than 5 meV per active position. However, structures produced by binary ground 

state diagram in Figure 5-2 would not be taken into consideration because of the 

high cross validation score. The high error could be due to large Mn concentrations 

as compared to the isotropically optimised binary ground state diagram. 

Consequently, there is a necessity to limit Mn concentration to the occupancy of 0.8. 

 

 

Figure 5-2: Full optimised binary ground state diagram of (LiNiMnO4)8 and cross-

validation score of 13 meV. The grey and green crosses (+ and +) are CE’s predicted 

structures, the green block ( ) is the DFT input and the red line (-) is the DFT 

ground-state line. 
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The undoped systems (LiMn2O4 and LiNi2O4) which are randomly mixed to produce 

structures of stable phases are also predicted as stable structures on the DFT 

ground state line (red). The other structures (LiMnNiO4, LiMn1.2Ni0.8O4, 

LiMn1.3Ni0.7O4, LiMn1.5Ni0.5O4) have different lattice parameters where the values for 

a, b and c are not equal. The table shows that LiMn2O4, LiMn0.5Ni1.5O4 and 

LiMn1.3Ni0.7O4 have the lowest energies as compared to the other structures due to 

the low nickel concentration. The isotropically optimised binary diagram predicted a 

cathode material of composition LiMn1.5Ni0.5O4 shown in Table 5-1 which is 

consistent with theoretical and experimental findings [235]. 

 

Table 5-1: The most stable phases as predicted by the isotropically optimised binary 

diagram. 

Stable 
Structures Lattice Parameters (Å) 

Space 
group Energy(eV/atom) 

LiNi2O4 a=b=c=5.666 Fd-3m -20.169 

LiMn0.5Ni1.5O4 a=b=c=5.661 R-3m -24.103 

LiMnNiO4 
a =5.662, b =8.008, c 

=9.808 C2/m -22.853 

LiMn1.2Ni0.8O4 
a =5.663, b =8.009, c 

=9.809 C2 -23.273 

LiMn1.3Ni0.7O4 
a =5.663, b =8.009, c 

=9.809 Imma -23.691 

LiMn9Ni0.5O4 
a =5.664, b =8.011, c 

=9.811 C2/m -24.109 

LiMn2O4 a=b=c=5.671 Fd-3m -25.319 
 

The energy difference between the two ground-state lines, i.e. for full structural 

optimisation (atomic and cell parameters) and isotropic volume optimisation, is quite 

large as shown in Figure 5-3. The large energy changes in Figure 5-3 seem to be 

due to changes in positions of oxygen atoms. This indicates that another structure 

might be more stable at higher Mn concentrations (x (Mn)>0.5). The cross-validation 

score is lower for the isotropic volume optimisation ground state diagram, of 

magnitude 1.1meV while significantly high for full optimisation ground state diagram, 

equal to 13 meV. When cross-validation score is high, it becomes a poor measure 

of predictive accuracy and it implies that the structural stability is not well predicted 

by the cluster expansion.  
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Figure 5-3: Comparison of a fully optimised binary ground state diagram and 

isotropically optimised binary ground state diagram. 

Figure 5-4 shows the errors of a fully optimised binary ground state diagram of 

(LiNi2Mn2O4)8 between cluster expansion and DFT. It shows the errors of each 

structure's energy of a nickel and manganese concentration. Optimising atomic 

positions and cell parameters resulted in large unforeseeable energy changes that 

the cluster expansion cannot predict. If positive results are achieved, then various 

properties for the most stable structures on the ground state line can be calculated. 

With this approach, cluster expansion allows the identification and a study of the 

stable ground state structures. Curtailing the concentration range did not improve 

the final CVS by much (from 13 meV/atom to 12 meV/atom). Therefore, the best 

next step in this work was to use the isotropic cluster expansion to probe the 

properties of the predicted structures. However, based on high values of CVS after 

relaxations and errors of each structure between cluster expansion and DFT as 

shown in Figure 5-4, it would be trivial to perform Monte Carlo simulation as all 

summarised errors by the CVS will be transferred to the Monte Carlo simulations. 
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Figure 5-4: Errors of a fully optimised binary ground state diagram of (LiNi2Mn2O4)8 

between cluster expansion and DFT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5: Full optimisation binary ground state diagram with the occupancy of 

Mn0.8 and Ni 0.33 Ni-doped (Li(Mn1-xNix)2O4 heats of formation for different unit 

cells and a suitable cross-validation score of 1.4 meV. The grey and green crosses 

(+ and +) are CE’s predicted structures, the green block ( ) is the DFT input and 

the red line (-) is the DFT ground-state line. 
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The full optimised binary ground state diagram produced 48 new structures from 

which only 5 structures on the DFT ground-state line are stable.  The same plane-

wave basis cut off of 400eV in the GGA stage and the k-spacing of 0.35 in the 

second minimisation stage as in Figure 5-1 were used. To be able to obtain results 

in Figure 5-5, we created active sites that must be defined to perform CE simulation 

and created double occupancies on the Ni and Mn consisting of 6 sites. The 

occupancies were limited on both Ni and Mn so that a CE around the stoichiometry 

of (Mn, occupancy=0.81), Ni (Ni, occupancy=0.31) 16d sites. The occupancies were 

set as 0.81 for Mn and 0.31 for Ni and CE was then performed in the set 

concentration range of 0.81 and 0.31. The cluster expansion produced a CVS of 1.4 

meV/atom. As a result, there were no major structural instabilities since both cell 

parameters and atomic positions were fully optimised. Figure 5-5 shows only a small 

portion of the LiNi2O4 on the concentration range that is considered by the CE 

because of the maximum occupancy of Ni being limited to 0.31. The figure also 

shows the CE predictions, DFT input and CE predictions on the side of the LiMn2O4 

where the occupancy is 0.81. The five (5) stable structures produced are presented 

on the DFT ground-state line (red) are LiNi2O4, LiMnNi1.4O4, LiMn1.5Ni0.5O2, 

LiMn1.75Ni0.25O4 and LiMn2O4 with different space groups, different lattice 

parameters, the same Wyckoff positions and different energy of formations.  

 

Table 5-2 shows the structures of stable phases as predicted by the full optimisation 

binary ground state diagram with the occupancy limited to Mn0.8 and Ni0.33 Ni-

doped (Li(Mn1-xNix)2O4. The structures in Table 5-2 have different lattice parameters 

and their energies are close to the ground state line, therefore considered 

thermodynamically stable. Consequently, the structures were used further to 

calculate mechanical properties because of the low cross-validation score of 1.4 

meV. The five systems are triclinic structures and have different lattice parameters. 

The undoped systems (LiMn2O4 and LiNi2O4) are predicted as part of the most 

stable structure candidates. There is a notable energy difference between LiNi2O4 

and LiMn2O4 where the other three structures of energy is marginally different. 

Although Table 5-1 (LiMn1.5Ni0.5O4 =-24.109 eV/atom) and Table 5-2 (LiMn1.5Ni0.5O4 

=-24.334 eV/atom) were optimised differently they have an energy difference of 

0.227 eV/atom. Therefore, the fully optimised binary diagram with double occupancy 
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for Mn (0.81) and Ni (0.31) predict that LiMn1.5Ni0.5O4, in Table 5-2, is a promising 

cathode material in agreement with theoretical and experimental findings [235]. 

 

Table 5-2: The most stable phases as predicted by full optimisation ground state 

diagrams with occupancies of Mn (0.81) and Ni (0.31). 

 Stable 
Structures  Lattice Parameters (Å) 

Space 
group 

Energy 
(eV/atom) 

LiNi2O4 a=5.614, b=5.654, c=9.801 Cm -20.149 

LiMn1.4Ni0.6O4 
a=5.449, b=14.307, 

c=10.110 P1 -24.104 

LiMn1.5Ni0.5O4 
a=5.381, 

b=5.412,=c=10.184 Cm -24.336 

LiMn1.75Ni0.25O4 a=5.438, b=5.456, c=9.875 Cm -24.958 

LiMn2O4 a=5.474, b=5.534, c=9.678 Cm -25.561 

    
 

Elastic Properties 

The structural and elastic property calculations in this section are based on DFT as 

implemented in the Vienna ab initio simulation package (VASP) within a plane wave 

basis set [236] [237] [138] [238]. The accurate calculation of elasticity is important 

to have an insight into the mechanical stability and elastic properties of solids. The 

calculations were performed at 0K temperature, since temperature-related 

differences in the 𝐶𝑖𝑗 are likely to be at a minimum. The following structures: LiNi2O4, 

LiMn1.4Ni0.6O4, LiMn1.5Ni0.5O4, LiMn1.75Ni0.25O4, and LiMn2O4, (shown in Figure 5-5) 

were obtained from the cluster expansion embedded in VASP. The components of 

the elasticity tensor, 𝐶𝑖𝑗, were computed from the first derivatives of the stresses 

computed in VASP, rather than from the second derivatives of the total energy with 

respect to strain, following the least-squares method of Le Page and Saxe et al. 

[239] [240]. Therefore, the method averts the numerical difficulties often 

encountered with evaluations of the second derivatives of the total energy with 

respect to strain and reduces the number of VASP calculations. The values were 

computed simultaneously rather than as independent sums. 𝐶𝑖𝑗 is sensitive to the k-

point mesh, and this required a series of test convergence calculations for each 

structure to obtain k-point and cut-off energy of each unique 𝐶𝑖𝑗 for each material. 
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Due to the sensitivity of the𝐶𝑖𝑗, the stable structures presented in Table 5-3 were 

computed using different k-points and cut-off energies listed in Table 5-3. The cut-

off energy increase with each configuration and some are greater than the other. 

 

The Brillouin zone integrals used followed the Monkhorst Pack scheme for each 

configuration listed in Table 5-3 [134]. Since there are no magnetic moments in the 

respective structures, non-magnetic calculations were considered using 'normal' 

precision and user-defined plane-wave cut-off energies for each structure. The 

electronic iterations convergence is 1.00E−05 eV using the normal (blocked 

Davidson) algorithm and reciprocal space projection operators. LiMn1.5Ni0.5O4 and 

LiMn2O4 structures have the same energy cut-off but different k-points. It could all 

be because the two structures have the same number of 28 atoms and the same 

positioning in the octahedral 16d site. Using first-order Methfessel-Paxton [137] 

smearing with a width of 0.2 eV is small to avoid the result in wrong total energy, as 

a result, the small smearing parameters required a large k-point mesh (as indicated 

in Table 5-3). The accuracy of computed materials properties such as equilibrium 

lattice parameters, binding energies and elastic moduli depend on a variety of 

computational parameters (e.g. k-points and cut-off energies), most importantly the 

quality of plane-wave basis sets and the density of k-meshes for integrations in 

reciprocal space. The convergence module automates the process of determining 

optimal parameter settings in VASP [141] [138] for achieving the desired level of 

accuracy in the calculations of the structures in Table 5-3. 

 

Table 5-3: Convergence parameters via geometry optimisation for each unique 𝐶𝑖𝑗 

in each material. 

Compositions Cut-off energy (eV) k-points 

LiMn0.5Ni1.5O4 (isotropic) 526.481 6x5x5 

LiNi2O4 828.398 8x9x5 

LiMn1.4Ni0.6O4 910.739 6x3x4 

LiMn1.5Ni0.5O4 883.292 5x6x3 

LiMn1.75Ni0.25O4 899.034 7x7x4 

LiMn2O4 883.292 5x5x3 
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Table 5-4 shows the symmetrised elastic constants C11, C12, C13, C33 and C44 and 

anisotropy of tetragonal LiMn0.5Ni1.5O4 structure. Besides the pure phase, there is 

only one structure to consider from the isotropic CE, LiMn0.5Ni1.5O4 R-3m, the one 

structure that was optimised separately.  

 

The Cij were calculated at 0 K and we note that all the independent elastic constants 

for LiMn0.5Ni1.5O4 are positive. Both Laue classes of the hexagonal crystal system, 

as well as the tetragonal (I) class (4/mmm), have the same form for the elastic 

matrix [241]. LiMn0.5Ni1.5O4 is of the tetragonal (I) class which have 6 independent 

elastic constants (C11, C12, C13, C33 and C44). The tetragonal LiMn0.5Ni1.5O4 becomes 

mechanically stable because the structure satisfies the necessary and sufficient 

Born mechanical stability criteria for tetragonal and which are,  

 

i.e.: 
1

3
(𝐶12 + 2𝐶13) < 𝐵0 <

1

3
(2𝐶11 + 𝐶33)                                                                 (90) 

 

and their eigenvalues being positive which further proves the mechanical stability of 

the tetragonal structure. The value of A = 1 for a completely isotropic material, if A 

is smaller as indicated in Table 5-4 or greater than one, it shows that the tetragonal 

structures are anisotropic (A>1). 

 

Table 5-4: The unique 𝐶𝑖𝑗 for the tetragonal structure. 

Tetragonal 

Elastic 

Constants 

(GPa) LiMn0.5Ni1.5O4 

C11 212.4  

C12 99.87 

C13 85.12 

C14 25.02 

C33 263.1 

C44 55.94 

A 0.99 
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Table 5-5 shows the symmetrised elastic constants Cij and anisotropy of triclinic 

LiNi2O4, LiMn1.4Ni0.6O4, LiMn1.5Ni0.5O4, LiMn1.75Ni0.25O4, and LiMn2O4 structures. 

The triclinic structures in Table 5-5 systems have 21 independent elastic constants, 

with low-symmetries and all their respective eigenvalues being positive, that the 

triclinic structures in Table 5-5 are mechanically stable. Although it is sometimes 

possible to obtain negative off-diagonal elastic coefficients in structures that are 

structurally stable. Tourmaline “Schorl” is, for example, a well-known structure 

where the C14 elastic coefficient is negative and Table 5-5 showing C14 being 

negative. Monoclinic and triclinic systems are said to impose no restrictions on the 

individual lattice parameters, have 13 and 21 independent elastic constants 

respectively [241] [242]. The structure satisfies the necessary and sufficient Born 

mechanical stability criteria for triclinic and which are, 

 

i.e.:𝐶11 > 0, 𝐶22 > 0, 𝐶33 > 0, 𝐶44 > 0, 𝐶55 > 0, 𝐶66 > 0                                                       (91) 

 

The value of A = 1 for a completely isotropic material, if A is smaller as indicated in 

Table 5-5 or greater than one, it shows that the triclinic structures are anisotropic 

(A>1). This suggests that the LiNi2O4, LiMn1.4Ni0.6O4, LiMn1.5Ni0.5O4, 

LiMn1.75Ni0.25O4, and LiMn2O4 structures mechanically stable at absolute zero 

temperature. A closer look at the magnitudes of the various elastic constants of the 

triclinic systems in Table 5-5 allude to these being near tetragonal or even cubic.  

 

The elastic properties of the present conditions are studied using stress-strain and 

energy-strain methods within the framework of Density Functional Theory. The 

strong compositional dependence of the elastic properties is predicted as Young’s 

modulus, E, and Shear modulus, G, exhibit fluctuating compositional trends, while 

bulk modulus, B, remains almost constant. The averaged bulk (B), shear (G), and 

Young’s (E) moduli and Longitudinal (L) moduli and Poisson’s ratio (ν) are obtained. 

The elastic properties of the present conditions are studied using stress-strain and 

energy-strain methods within the framework of Density Functional Theory. The 

strong compositional dependence of the elastic properties is predicted as Young’s 

modulus, E, and Shear modulus, G, exhibit fluctuating compositional trends, while 

bulk modulus, B, remains almost constant. The averaged bulk (B), shear (G), and 
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Young’s (E) moduli and Longitudinal (L) moduli and Poisson’s ratio (ν) are obtained 

by inputting the 𝐶𝑖𝑗 into Reuss’s lower bound, Voigt’s upper bound, and Hill’s 

homogenisation schemes [203]. 

 

Table 5-5: The unique 𝐶𝑖𝑗 for the triclinic structures (GPa). 

Triclinic Systems 

Elastic 

Constants 

(GPa) LiNi2O4 LiMn1.5Ni0.5O4 LiMn1.75Ni0.25O4 LiMn2O4 LiMn1.4Ni0.6O4 

C11 212.4 250.5 228.3 234.3 296.4 

C12 95.23 96.7 118.2 124.5 126.3 

C13 83.57 98.1 111.9 115.6 123 

C14 -18.55 -16.61 -23.37 -23.93 -21.66 

C15 -0.03 0.01 -0.02 -0.06 2.28 

C16 -0.14 0.11 -0.06 0.11 -0.46 

C22 213 266.3 251.9 234.2 295.1 

C23 82.85 96.74 97.36 122.6 124.3 

C24 17.14 21.11 28.2 17.71 20.34 

C25 0.01 -0.07 0 -0.09 -0.08 

C26 -0.09 0.14 -0.05 -0.03 -2.84 

C33 223.2 288.6 281.6 248 327.3 

C34 -0.03 0.01 7.35 8.86 0.16 

C35 -0.02 0 -0.01 0.08 1.35 

C36 -0.12 0.27 0.12 0 1.49 

C44 45.8 54.48 0.12 48.31 58.27 

C45 0.02 -0.02 0.12 -0.04 -0.26 

C46 0.02 -0.05 0.12 -0.02 0.91 

C55 46.99 58.1 0.12 39.53 56.46 

C56 -17.23 -18.19 0.12 -16.28 -19.03 

C66 59.4 82.46 0.12 48.99 88.78 

A 0.78 0.71 0 0.88 0.69 
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The related quantities, such as the Bulk modulus and Poisson’s ratio have been 

calculated within the Voight-Reus-Hill approximation [243]. First, the Reuss (lower) 

[244] and Voight (upper) [245] bounds, for the bulk (B) and for the Shear (G) moduli 

have been evaluated, corresponding to crystalline values at uniform stress and 

uniform strain respectively. The Young’s modulus, E, and shear modulus, G, change 

smoothly and increase or decrease relative to the amount of Ni concentration. Both 

show almost a linear dependence on the composition in contrast to an almost 

practically constant value of B. A criterion proposed by Pugh’s suggests that 

material will be brittle if its G/B > 0.5, if not then it is ductile. However, the materials 

shown in Table 5-6 are ductile because of the G/B < 0.5. The Frantsevich’s rule also 

states that the mechanical property of material will be dominated with brittleness 

when Poisson’s ratio v < 0.33; if v > 0.33, the mechanical property of the material 

mainly exhibits ductile nature and it is indicated in Table 5-6.  

 

Table 5-6: The calculated Bulk Modulus B, Shear modulus G. Young’s 

Moduli E, Longitudinal and L B/G of all stable compositions. 

 

Compositions Bulk 

moduli 

(GPa) 

Shear 

moduli 

(GPa) 

Young’s 

moduli 

(GPa) 

Longitudinal 

moduli 

(GPa) 

G/B 

LiMn0.5Ni1.5O8 136.2 55.47 146.4 210.1 0.4 

LiNi2O4 130.2 52.87 139.7 200.7 0.4 

LiMn1.5Ni0.5O4 157.1 64.64 170.4 243.3 0.4 

LiMn1.75Ni0.25O4 185.3 80.21 210.1 292.3 0.4 

LiMn2O4 160.2 47.04 128.5 222.9 0.3 

LiMn1.4Ni0.6O4 184.9 72.57 192.5 281.7 0.4 
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Electronic Properties  

The aim of computational chemistry is to understand the importance of chemical 

bonds. Figures 6-6 to 6-10 show the total density of states and partial density of 

states of isotropic and fully optimised structures. The DOS calculations were 

computed using the non-magnetic GGA-PBE at 0K temperature. The density of 

states facilitates the characterisation of chemical bonds in the context of the solid-

state. As a periodic solid has a large number of atoms, the discrete energy levels 

related to the different atoms are similar, which results in the formation of continuous 

bands. The energy bands can be analysed from the DOS, which is in 

correspondence to the number of states available to electrons per unit cell at a 

specified energy. There are two kinds of bands: the valence band which is on the 

negative side of the Fermi level (𝐸𝑓 ) and corresponds to the occupied states, and 

the conduction band which is on the positive side of the Fermi level and corresponds 

to the unoccupied states. This section discusses the partial density of states for Ni-

doped spinel structures yielded from a binary diagram. The PDOS were calculated 

using cut-off energies and k-points from Table 5-3. The DOS can be projected onto 

atomic orbitals which gives the projected DOS (PDOS). The PDOS are useful to 

investigate the atomic states involved in the formation of the chemical bonds. The 

intensity and position of the PDOS bands provide information on the different 

electronic interactions occurring in the system such as a charge transfer, ionic or 

covalent interactions.  

LiMn0.5Ni1.5O4 Isotropic Volume Optimisation 

Figure 5-6 shows the total (top) and partial density of states (below)  of 

LiMn0.5Ni1.5O4 at ambient pressure (0GPa) and the black dashed line represents the 

Fermi energy which is used as the zero of the energy scale. The Li PDOS shows 

that the valence band region of Li is divided into two parts, the first part (-19 to -7 

eV) and the second part (-7 to 0 eV) gap characterised by the contributions of 2s, 

corresponding to a peak in the TDOS of the same energies. The Mn and Ni PDOS 

shows a very broad peak in the valence band contribution concentrated between -

6 and -2 eV which consists mainly of 3p and 3d states, then followed by a peak 

contribution at 0 eV which consist of 3d states corresponding to a peak in the TDOS. 

The O PDOS is dominated by 3p states with small peaks between -6 and -1 eV. The 
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Fermi energy is located in the band interval of (-22 to 5) spanning the energy interval 

(-0.038:0.032) eV. The mixture of Mn (0.5) and Ni (1.5) is responsible for the 

dispersed peaks at the Fermi level and the gap near the Fermi level. However, there 

is no pseudogap or bandgap at the Fermi suggesting that the LiMn0.5Ni1.5O4 system 

is metallic and electronically stable. 

 

 
Figure 5-6: A partial density of states (PDOS), showing Li, Ni, Mn and O contribution 

for LiMn0.5Ni1.5O4 structures and their orbitals (s-orange, p-red, d-blue) and total 

density of states (brown). The Fermi energy is set as the energy at zero (Fermi-

black). 
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LiNi2O4 Full Optimisation 

Figure 5-7 shows the total (top) and partial density of states (below) of LiNi2O4 at 

ambient pressure (0GPa) and the dashed line represents the Fermi energy which is 

used as the zero of the energy scale. The k-points of 9x9x5 and cut-off energy of 

828.398eV were used to calculate PDOS and DOS. The Li PDOS shows that the 

valence band is divided into two parts, ranging from (-20 to -6 eV) and (-6 to 0 eV) 

respectively. The gap is characterised by the contributions of 2s, corresponding to 

a gap in the TDOS of the same energies. The conduction band shows the sharp 

peak between the 5eV and 10 eV. The Ni PDOS shows a very broad peak in the 

valence band contribution concentrated between -6 and -1 eV which overlaps into 

the conduction band between 0 eV and 1 eV. The peak consists mainly of 3p and 

3d states, then followed by a peak contribution at 0 eV (Fermi) which consist of 3d 

states corresponding to a peak in the TDOS. The O PDOS is dominated by 3p states 

with small peaks between -6 and -2 eV. The Fermi energy is located in the band 

interval of (-22 to 10.1) spanning the energy interval (-0.058:0.184) eV. The partial 

density of states at the Fermi level was mainly due to the contributions of Ni-3d and 

O-2p states. It could also be found that the concentrations of the electronic holes 

increased, the Fermi level shifted and the DOS around the Fermi level was 

increased compared with pure LiMn0.5Ni1.5O4. Therefore LiNi2O4 system shows 

metallic behaviour and is electronically stable because it does not exhibit pseudo-

gap or bandgap at the Fermi. 

LiMn1.5Ni0.5O4 Full Optimisation 

The total density of states (top) and partial density of states (below) of LiMn1.5Ni0.5O4 

at ambient pressure (0GPa) are presented by Figure 5-8. From Figure 5-8, it is 

interesting to note that the Mn-3d and Ni-3d are mainly dispersed in the narrow band 

near the Fermi level (dashed line). So to improve the electrochemical performance 

of LiNi2O4, Mn site was doped with Ni0.5 concentration for the electronic structures 

of Ni is similar to Mn. To analyse the electronic distribution nearby the Fermi level, 

the partial density of states of Ni, Mn, O and Li atoms are represented as shown in 

Figure 5-8. We used the k-points of 5x6x3 and cut-off energy of 883.292 eV to 

calculate PDOS and DOS. The Mn and Ni PDOS show dispersed peaks in the 
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valence band contribution concentrated between -6 and -1 eV which consists mainly 

of 3p and 3d states. 

 

Figure 5-7: The density of states, showing Li, Ni and O contribution for LiNi2O4 

structures and their orbitals (s-orange, p-red, d-blue and total-brown). The Fermi 

energy is set as the energy at zero (Fermi-black). 

Then followed by the peaks contribution at 0 eV (Fermi) which consist of 3d states 

corresponding to a peak in the TDOS. The Li PDOS shows that the valence band 

region of Li has two parts, the (-20 to -6 eV) and the (-6 to 0 eV) gap characterised 
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by the contributions of 2s, corresponding to a gap in the TDOS of the same energies. 

The O PDOS is dominated by 3p states with small dispersed peaks between -6 and 

-2 eV and shows minimum contribution in the TDOS. The conduction band in the 

TDOS is dominated by the Mn and Ni, whereas Li and O have a minimum 

contribution. The Fermi energy is located in the band interval of (-22 to 4.9) spanning 

the energy interval (-0.035:0.014) eV. However, the mixture of the Mn (1.5) and Ni 

(0.5) shows more dispersed peaks (DOS/PDOS) at the Fermi as compared to Figure 

5-7. In summary, the graph shows no pseudogap or bandgap at the Fermi 

suggesting that the LiMn1.5Ni0.5O4 system has metallic attributes and is electronically 

stable.  

LiMn1.75Ni0.25O4 Full Optimisation 

In Figure 5-9, we plotted the density of states (top) and partial density of states 

(below) against the one-electronic energy, relative to the Fermi level. The k-points 

of 7x7x3 and cut-off energy of 899.034 eV to calculate PDOS and DOS was used. 

As was expected the pure LiMn1.75Ni0.25O4 spinel structure feature sharp peaks in 

the partial density of states plot. This is explained by the high symmetry of the lattice. 

The increase of Mn concentration compared with Ni significantly reduce the 

symmetry, and density of states plot has a more continuous form. The Li PDOS 

shows shallow peaks dispersed at the Fermi level. The valence band region of Li is 

divided into two parts, the (-17 to -7 eV) and there is also the (-7 to 0 eV) gap 

characterised by the contributions of 2s which corresponds to a gap in the TDOS of 

the same energies. The Mn and Ni PDOS show a very broad peak in the valence 

band contribution concentrated between -6 and -1 eV which consists mainly of 3p 

and 3d states. Then followed by the peaks contribution at 0 eV (Fermi) which consist 

of 3d states corresponding to a peak in the TDOS. The O PDOS is dominated by 3p 

states with small peaks in the valence band between (-7 to -2 eV) and conduction 

band between (0 to 4 eV). The O PDOS have two segments in the valence band 

between -20 to -18 eV and --7 to 0 eV. The conduction band in the TDOS is 

dominated by the Mn (1.75) and Ni (0.25) with the contribution of Li and O being 

minimum. The mixture of the Mn and Ni shows a decrease in the total density of 

states at the Fermi as compared to Figure 5-8. 
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Figure 5-8: A partial density of states (PDOS), showing Li, Ni, Mn and O contribution 

for LiMn1.5Ni0.5O4 structures and their orbitals (s-orange, p-red, d-blue and total-

brown). The Fermi energy is set as the energy at zero (Fermi-black). 

The conduction band in the TDOS is dominated by the Mn (1.75) and Ni (0.25) with 

the contribution of Li and O being minimum. The mixture of the Mn and Ni shows a 
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decrease in the total density of states at the Fermi as compared to Figure 5-8. The 

Fermi energy is located in the band interval (-20 and 4.8) spanning the energy 

interval (-0.066:0.075) eV. The non-existence of pseudogap or bandgap at the Fermi 

suggests that the LiMn1.75Ni0.25O4 system is metallic and electronically stable.  

LiMn2O4 Full Optimisation 

The electron density of states (DOS) (top) and the projected electron density of 

states (below) (PDOS) of LiMn2O4 is presented in Figure 5-10. From Figure 5-10, it 

is engaging to see that the Mn-3d is mainly dispersed in the valence band at the 

Fermi level. Then Figure 5-10 was obtained using different k-points of 5x5x3 and 

cut-off energy of 883.292 eV as compared to Figure 5-7. Figure 5-10 with Mn-3d 

shows a gap at -1eV and Figure 5-7 with Ni-3d shows a gap closer to the Fermi. 

The Li PDOS shows that the valence band region of Li is divide into two parts, the 

first part (-17 to -7 eV) and the second part (-7 to 0 eV) gap characterised by the 

contributions of 2s, corresponding to a gap in the TDOS of the same energies. The 

Li PDOS shows that the conduction band ranges from 0 to 1 eV. The Mn PDOS 

show dispersed peaks in the valence band and conduction band with the 

contribution concentrated between -6 and 2 eV which consists mainly of 3p and 3d 

states. Figure 5-10 shows more dispersed peaks contribution at 0 eV (Fermi) which 

consist of 3d states corresponding to a peak in the TDOS as compared to Figure 5-

7. The O PDOS is dominated by 3p states with small peaks between -7 and -2 eV. 

The conduction band in the TDOS shows significant contributions the Mn-3d and 

the minimum contributions coming from Li and O. The Fermi energy of the TDOS is 

dispersed and dominated by the Mn-3d located in the band interval (-20 to 4.8) 

spanning the energy interval (-0.031:0.033) eV. Figure 5-10 shows no pseudo gap 

or bandgap at the Fermi which suggests that the LiMn2O4 system is metallic and 

electronically stable.  
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Figure 5-9: A partial density of states (PDOS), showing Li, Ni, Mn and O contribution 

for LiMn1.75Ni0.25O4 structures and their orbitals (s-orange, p-red, d-blue and total-

brown). The Fermi energy is set as the energy at zero (0 eV). 
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Figure 5-10: A partial density of states (PDOS), showing Li, Mn and O contribution 

for LiMn2O4 structures and their orbitals (s-orange, p-red, d-blue and total-brown). 

The Fermi energy is set as the energy at zero (Fermi-black). 
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Phonons 

Phonons are described as lattice vibrations that draw an analogy between quanta 

of lattice vibration energy in a similar manner to photon representing a quantum of 

electromagnetic radiation. The theory behind phonons explains the phenomena of 

most solid-state such as stability, specific heat, melting, thermal and electrical 

conductivity, etc., which cannot be explained with static lattice theory [246].  

 

The dispersion relations of propagation wave exhibit two types of phonons, namely 

an upper branch (optical branch) and a lower branch (acoustical branch). For the 

optical branch (in the long-wavelength limit) the two atoms in the unit cell move 

opposite to each other and the light mass amplitude is greater. For acoustical branch 

(in the long-wavelength limit) the displacement of both atoms has the same 

amplitude, direction and phase. The phonon dispersion and density of states 

(PHDOS) were obtained from the MEDEA-PHONON module, which implements a 

direct approach of harmonic approximation [216]. The VASP software follows a 

numerical method to evaluate the vibrational frequencies of all the systems that are 

discussed in the section, where the atoms are displaced in the direction of each 

Cartesian coordinate. The direct approach to lattice dynamics is based on the ab-

initio evaluation of forces on all atoms produced by a set of finite displacements of 

a few atoms within respective crystal structures. The VASP code was used to make 

the force calculations with the supercell approach and the resulting data imported 

into the PHONON program. The calculation explores the full Brillouin zone and 

accounts for an interaction range of about 10 Angström. The asymmetric atoms are 

displaced by +/-0.02Å. Therefore, the calculated frequencies (THz) provide 

important information about the materials identification and analysis of their 

vibrational modes. As it is already been seen in the elastic properties and the 

phonon dispersion calculations show that the generated structures [Li2MnNi3O8 

(LiMn0.5Ni1.5O4) Li4Ni8O16 (LiNi2O4), Li12Mn17Ni7O48 (LiMn1.42Ni0.58O4), Li4Mn6Ni2O16 

(LiMn1.5Ni0.5O4), Li4Mn7NiO16 (LiMn1.75Ni0.25O4) and Li4Mn8O16 (LiMn2O4)] illustrate 

vibrational stability since there are only imaginary modes visible below the zero 

frequency in the phonon calculations as discussed in the next section.  

 

https://en.wikipedia.org/wiki/Dispersion_relation


  

128 

 

 

Figure 5-11: (a) Phonon dispersion spectrum (left panel) and (b) the corresponding 

phonon density of states (right panel) of configuration LiMn0.5Ni1.5O4 (R-3m).  

 

Figure 5-11 shows the phonon dispersion spectrum along with the high-symmetry 

points in irreducible BZ and the corresponding vibrational total and partial phonon 

density of states (PHDOS) for LiMn0.5Ni1.5O4 (R-3m). The partial phonon density of 

states above contributed from Li, Mn, Ni and O are represented by different colours; 

light peach, violet, turquoise and purple. Phonon dispersion curves and density of 

states in Figure 5-11 are obtained from the structures of stable phases of an 

isotropic volume optimised binary ground state-diagram in Figure 5.1. The 

LiMn0.5Ni1.5O4 (R-3m) supercell contains (56 atoms) and used k-points and cut-off 

energy in Table 5-3 to calculate phonon dispersion curves in Figure 5-11. At the 

Gamma point (Γ), normal modes correspond to a collective vibration of all atoms in 

the acoustic region of the LiMn0.5Ni1.5O4 (R-3m) structure. The frequency of 19THz 

is observed along with the Γ point in the optical branches of the phonon vibrations. 

The acoustic modes are located below about 0–9THz and the optical modes lie 

above that particular range. Therefore Figure 5-11a, shows no soft modes phonons 

vibrations along the Brillouin Zone (BZ) direction, indicating that the structure 

dynamically stable at 0GPa. Figure 5-11b shows the total and partial density of 
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states for LiMn0.5Ni1.5O4 (R-3m) and the contribution of each element into the 

phonon vibrations. The higher frequency region (about >8 THz) in Figure 5-11b is 

dominated by the displacement of O and Li. The lower frequency region about 0-

8THz is dominated by Ni atoms followed by O and Mn atom. The Li atom contribution 

becomes lesser towards 0THz and ends before 4THz. However, PHDOS does not 

show any negative frequency overlapping at the 0 frequency or along any BZ 

direction, hence confirming the stability of this system. At 0GPa Figure 5-11a, the 

phonon dispersion curve displays soft frequency vibrations along the high symmetry 

direction in the Γ (0, 0, 0) which shows the vibrational stability of the structure. 

 

 

Figure 5-12: (a) Phonon dispersion spectrum (left panel) and (b) the corresponding 

phonon density of states (right panel) of configuration LiNi2O4 (Cm).  

 

Figure 5-12 displays the phonon dispersion curves and partial phonon density of 

states (PHDOS) for LiNi2O4 (Cm) calculated along with several symmetry directions 

at zero pressure and zero Kelvin conditions. The partial phonon density of states 

above contributed from Li, Mn, Ni and O are represented by different colours; violet, 
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turquoise and purple Phonon dispersion and density of states in Figure 5-12 are 

obtained from the fully optimised (occupancy of Mn0.8 and Ni 0.31) binary diagram 

shown in Figure 5.5. We observe dispersed phonon modes (acoustic and optics 

branches) in the dispersion relations, this is in accordance with a primitive cell with 

56 atoms. The frequency of 19(THz) is observed along with the Γ point in the optical 

branches of the LiNi2O4 (Cm). The gamma point (Γ) and normal modes correspond 

to a collective vibration of all atoms in the acoustic region of the system. The 

acoustic modes are located below about 0–5THz and the optic modes that lie above 

that particular range.  In Figure 5-12a, no soft modes of the phonon vibrations along 

the Brillouin Zone (BZ) direction are observed, indicating the vibrational stability of 

the structure. Also shown in Figure 5-12b is the total and partial density of states of 

LiNi2O4 (Cm). The higher frequency region (about >8 THz) is dominated by the 

displacement of O and Li. The lower frequency region ranges from 0-5THz and is 

dominated by Ni atoms followed by O atoms, whereas Li atoms contribution 

becomes lesser towards 0THz and ends just after 4THz. However, the 

corresponding phonon density of states (right panel) does not show any negative 

frequency overlapping at the 0 THz point or along any BZ direction. It confirms the 

vibrational stability of LiNi2O4 (Cm) structure in the acoustic region along with the 

gamma point (Γ). LiNi2O4 (Cm) depicts that all the frequencies are positive showing 

the stability of the structure. 

 

Figure 5-13 shows the calculated phonon dispersion relations and the 

corresponding vibrational total and partial phonon density of states (PHDOS) of 

LiMn1.42Ni0.58O4 (Cm). The partial phonon density of states contributed from Li, Mn, 

Ni and O are represented by different colours; light peach, violet, turquoise and 

purple. Phonon dispersion relations and density of states in Figure 5-13 are obtained 

from the structures of stable phases from Figure 5-5. The k-points of 6x3x4 and cut-

off energy of 910.739 eV containing (56 atoms) of supercells were used to calculate 

the phonon dispersion curves in Figure 5-13. The phonon dispersion spectrum of 

the LiMn1.4Ni0.5O4 (Cm) phases were calculated along with the G-F-Q-Z-G directions 

and the phonon partial density of states (PHDOS) of LiMn1.4Ni0.5O4 (Cm) structure. 

At the gamma point (Γ), normal modes correspond to a collective vibration of all 

atoms in the acoustic region of the LiMn1.4Ni0.5O4 (Cm) structure.  
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Figure 5-13: ((a) Phonon dispersion spectrum (left panel) and (b) the corresponding 

phonon density of states (right panel) of configuration LiMn1.4Ni0.5O4 (Cm).  

The highest frequency of 25(THz) is observed along with the Γ point in the optical 

branches of the LiMn1.4Ni0.5O4. The acoustic modes are located below about 0–

5THz and the optic modes lie above that particular range in Figure 5-13a. Therefore, 

Figure 5-13a shows no soft mode phonons vibrations along the Brillouin Zone (BZ) 

direction, indicating the vibrational stability of the system.  Figure 5-13b shows the 

total and partial density of states of LiMn1.4Ni0.5O4 (Cm) structure. Hence, in 

combination with the part phonon state density diagram presented in Figure 5-13b, 

the total DOS can be classified into two regions. The higher frequency region (about 

>10 THz) has a major contribution to the displacement of O. There are higher peaks 

that indicate that the lattice vibrations are very strong. The lower frequency region 

ranges from 0-5THz is dominated by Ni/Mn atoms and the dominance of the O 

frequency fades towards 0THz. The Li atom contribution becomes lesser towards 

0THz and ends at 5THz. However, PHDOS does not show any negative frequency 

at 0THz or along any BZ direction. The curves of the strong peaks in the state 

density diagram correspond to the smoothing curves of the phonon dispersion 

spectra in the corresponding frequency range. In summary, the phonon spectrum in 

Figure 5-13 has no soft modes along with the symmetry directions indicating the 

dynamical stability. The curves of the strong peaks in the state density diagram 
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correspond to the smoothing curves of the phonon dispersion spectra in the 

corresponding frequency range. 

 

 

 

Figure 5-14: (a) Phonon dispersion spectrum (left panel) and (b) the corresponding 

phonon density of states (right panel) of configuration LiMn1.5Ni0.5O4 (Cm).  

The phonon band structure and phonon partial density of states (PDOS) of the Cm 

phase are shown in Figure 5-14. The partial phonon density of states above 

contributed from Li, Mn, Ni and O are represented by different colours; light peach, 

violet, turquoise and purple. Phonon calculations established the dynamical stability 

of the Cm phase of LiMn1.5Ni0.5O4 in the view of the absence of imaginary 

frequencies. The low-frequency modes below this gap are mostly associated with 

the Mn, Ni and O atoms. A dispersed phonon spectrum exists between 9THz and 

19THz, which divides the phonon spectrum structure into two major regions. The 

low-frequency region of the Cm phases from 0-9THz and the high-frequency region 

reaches approximately 25 THz. The O atom vibrations above the dispersed phonon 
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spectrum dominate the high-frequency region. The Li, Mn and Ni atoms slightly 

contribute to this region (19 to 25 THz). At the gamma point (Γ), normal modes 

correspond to a collective vibration of all atoms in the acoustic region of the following 

LiMn1.5Ni0.5O4 (Cm) structure. The acoustic modes are located below about 0–5THz 

and the optic modes lie above that particular range. Figure 5-14b shows the total 

and partial density of states of LiMn1.5Ni0.5O4 (Cm) structure and reveals that the 

lower frequency region about 0-9THz is dominated by Mn and O atoms, followed by 

the Ni atom, where Li atoms contribution becomes less towards 0 THz. However, 

PHDOS does not show any negative frequency overlapping at the 0 THz point or 

along any BZ direction, hence confirming the vibrational stability of LiMn1.5Ni0.5O4 

(Cm) structure in the acoustic region along with gamma point. 

 

 

Figure 5-15: (a) Phonon dispersion spectrum (left panel) and (b) the corresponding 

phonon density of states (right panel) of configuration LiMn1.75Ni0.25O4 (Cm).  

 

Phonon spectrum and partial density of states are shown in Figure 5-15. The partial 

phonon density of states above contributed from Li, Mn, Ni and O are represented 
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by different colours; light peach, violet, turquoise and purple. No imaginary 

frequencies are found at a wave vector in the whole BZ for all studied phase at 

equilibrium volume. The crystal structure of the phases contains 56 atoms, showing 

no gap in the phonon branches. Phonon dispersion curves and density of states in 

Figure 5-15 are obtained from the structures of stable phases from a full optimised 

binary diagram in Figure 5.5. In the optic region (19-25THz), the main contribution 

to the phonon spectrum comes from the dynamics of O atoms due to its smallest 

mass. The strong overlap exists between acoustic and some low-frequency optical 

phonon branches. At the gamma point (Γ), normal modes correspond to a collective 

vibration of all atoms in the acoustic region of the LiMn1.75Ni0.25O4 (Cm) structure. 

However, most phonon bands in Z, M and A directions are rather flat. Therefore 

Figure 5-15a shows no soft mode phonons vibrations along the Brillouin Zone (BZ) 

direction indicating the vibrational stability of the structure stable at 0GPa. Figure 5-

15b shows the total and partial density of states of LiMn1.75Ni0.25O4 (Cm) structure. 

The lower frequency region about 0-10THz is dominated by Mn and O atoms and a 

minimum contribution of Ni being lesser towards 0 THz. The phonon partial density 

of states does not show any negative frequency overlapping at the 0 THz point or 

along any BZ direction, confirming the vibrational stability of the phonon spectrum 

along with gamma point (Γ). 

 

Phonon dispersion curves and the density of states in Figure 5-16 are obtained from 

the Binary diagram shown in Figure 5.5. The partial phonon density of states above 

contributed from Li, Mn, Ni and O are represented by different colours; violet, 

turquoise and purple. The phonon dispersions in the supercell are shown in Figure 

5-16. We used 7x7x4 plane-wave basis set and the 899.034 eV cut-off energy-

containing (56 atoms) to calculate the phonon dispersion in Figure 5-16.  The figure 

above of the phonon dispersion curves contains the highest number of high-

symmetry points of the Brillouin zone: Γ-Z, Z-M, M-A, A- Γ and Γ-V and the 

corresponding vibrational total and partial phonon density of states (PHDOS) for 

LiMn2O4 (Cm). The gamma point (Γ), corresponds to collective phonon vibrations of 

all atoms in the acoustic region of the LiMn2O4 (Cm) structure. Then the acoustic 

modes ranging from 0–4THz and the optic modes range being above that particular 

range. 
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Figure 5-16: (a) Phonon dispersion spectrum (left panel) and (b) the corresponding 

phonon density of states (right panel) of configuration LiMn2O4 (Cm).  

 

The frequency of 25(THz) is observed along with the Γ point of the optical branches 

of the system. Figure 5-16a shows no soft mode phonons vibrations along the 

Brillouin Zone (BZ) direction indicating the vibrational stability of the system. Figure 

5-16b shows the total, partial density of states and each element contribution in 

confirming the findings of Figure 5-16a. The lower frequency region from 0-10THz 

is dominated by Mn and O atoms and the minimum Li atoms contribution fading 

towards 0 THz. Therefore, PHDOS does not show any negative frequency along 

any BZ direction and is in agreement with Figure 5-16a, confirming that the LiMn2O4 

(Cm) structure is dynamically stable. 
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Site-occupancy disorder 

 In this chapter, we present and discuss the computational study of the Li(Mn1-

xNix)2O4 solid solution using the site-occupancy disorder program. We used the 

program to generate a complete configurational space and the inequivalent 

configurational subspace for each spinel Li(Mn1-xNix)2O4  composition. The chapter 

also reports on the mixing thermodynamics and average voltage of lithium 

intercalation for all the Ni concentrations and their dependence on the temperature 

for the most energetically stable composition.  

 

Structure Description and Calculation  

The cation ordering was determined based on the configurational entropy. The 

approach presented also shows that moderate Ni doping of the LiMn2O4 leads to a 

substantial change in the average voltage of lithium intercalation, suggesting an 

attractive route for tuning the cathode properties of this spinel. Then, the calculations 

were carried out using the spin-polarised density functional theory (DFT) and using 

the Vienna Ab-initio Simulation Package (VASP) [138] [236] [137]. The following 

functionals were employed the  Perdew, Burke, and Ernzerhof corrected for solids 

(PBEsol) functional [113], included the long-range dispersion corrections via the 

semi-empirical method of Grimme with the Becke and Johnson damping [D3-(BJ)) 

[247] [248]. The cut-off for the kinetic energy of the plane wave basis 730 eV was 

set and the effective Hubbard parameters of Ueff = 4.0 eV for Mn and 5.5 eV [249]) 

for Ni [124]. A Γ-centred k-point mesh with a uniform spacing of. 0.16 Å−1 was 

adopted for the Brillouin-zone integrations [134]. 

 

The site occupancy disorder (SOD) code was used to generate the symmetry-

adapted ensemble of configurations within the disordered Li(Mn1-xNix)2O4 solid 

solution and carry out the thermodynamic analysis [248]. Within this approach, SOD 

produced complete configurational space for each Ni concentration in a 1x1x1 

supercell of the spinel conventional cubic unit cell, followed by the reduction to the 
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subspace of the symmetrically inequivalent configurations. The configurations were 

constructed via atomic substitutions in LiMn2O4, using the group of symmetry 

operators of the space group 𝐹𝑑3̅𝑚 (No. 227) of the parent structure. There are two 

configurations that were considered equivalent if they can be interconverted 

following an isometric transformation. Table 7-1 displays the prohibitively large total 

number of configurations (N) for each Ni concentration in the complete configuration 

space, which can be reduced by more than two orders of magnitude to the 

symmetrically inequivalent configurations (M) in the reduced configurational space. 

It is worth noting that only those cell with compositions containing an even number 

of Ni atoms were chosen in order to further reduce the number of simulations. 

 
Table 6-1: Total number of configurations (M) and the number of symmetrically 

inequivalent configurations (N) for each nickel concentration in LiMn2-2xNi2xO4. 

Cell composition x N M 

Li8Mn16O32 0.0000 1 1 

Li8Mn14Ni2O32 0.1250 120 3 

Li8Mn12Ni4O32 0.2500 1820 22 

Li8Mn10Ni6O32 0.3750 8008 65 

Li8Mn6Ni10O32 0.6250 8008 65 

Li8Mn4Ni12O32 0.7500 1820 22 

Li8Mn2Ni14O32 0.8750 120 3 

Li8Ni16O32 1.0000 1 1 

 

From the subspace of the symmetrically inequivalent configurations, we have used 

statistical mechanics to estimate the thermodynamic properties. We have assumed 

a Boltzmann-like distribution for the estimation of the occurrence probability 𝑃̃𝑚 at a 

temperature 𝑇 of each inequivalent configuration 𝑚 of energy 𝐸𝑚 according to the 

equation: 

 

𝑃̃𝑚 =
Ω𝑚

𝑍
exp(−𝐸𝑚 𝑘B𝑇⁄ ),                                                                                         (92) 
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where Ω𝑚 represents the degeneracy or number of times that a given configuration 

is repeated in the complete space of all configurations, 𝑚 can take integer values 

from 1 to𝑀, 𝑘𝐵 is the Boltzmann constant and the configurational partition function  

 

𝑍 = ∑ Ω𝑚exp(−𝐸𝑚 𝑘B𝑇⁄ )𝑀
𝑚=1                                                                                   (93) 

 

ensures that the sum of the probabilities of the complete configurational space is 

equal to 1.The Helmholtz free energy of mixing ∆𝐹mix of the solid solution was 

obtained as  

 

∆𝐹mix = 𝐹[Li(Mn1−𝑥Ni𝑥)2O4] − (1 − 𝑥)𝐹[LiMn2O4] − 𝑥𝐹[LiNi2O4]                                             (94) 

 

where the configurational free energies 𝐹 = −𝑘𝐵𝑇 ln 𝑍                                               (95) 

 

were calculated directly from the partition function. The equilibrium geometries and 

energies of all configurations in the reduced configurational space of the Li(Mn1-

xNix)2O4 solid solution was obtained from the DFT calculations. The results indicate 

that usually, only one configuration is more stable than the rest for the entire Ni 

concentration range, suggesting a large degree of order within the LiMn2O4-LiNi2O4 

system. 

  Mixing of thermodynamics  

In this section, the mixing of enthalpies of nickel-doped spinel (Li(Mn1-xNix)2O4; 

where 0≤x≤1 were considered. The E[(Li(Mn1-xNix)2O4] is the average lattice energy 

Li(Mn1-xNix)2O4 calculated during the thermodynamics of mixing and E[LiMn2O4] and 

E[LiNi2O4] are lattice energies for the manganese and nickel respectively. Figure 6-

1 shows the mixing of enthalpies of the Li(Mn1-xNix)2O4 system. Both curves have 

negative values of ∆𝐹𝑚𝑖𝑥  , which indicates the formation of stable solid solutions. 

The most energetically stable structure has the lowest energy of ∆𝐹𝑚𝑖𝑥  at both 300 

and 1000K at the intermediate cell composition of Li8Mn12Ni4O32 which agrees with 

experimental findings that LiNi0.5Mn1.5O4 is the most promising and attractive 

material because of its acceptable stability, good cyclic property and relatively high 

capacity [69]. 
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Figure 6-1: Calculated mixing of enthalpies for Ni-doped (Li(Mn1-xNix)2O4 solid 

solution for different unit cells. The solid lines are the free energy of mixing (∆Fmix). 

The calculations on the ordered cell composition of Li8Mn12Ni4O32 ha a lower energy 

and its weight as compared to the other 21 configurations with the probability above 

99% at 300 K and 85% at 1000 K. It could be all due to the magnetic interactions 

which play a crucial role in the thermodynamics of mixing of these solid solutions, 

especially at different temperatures. Therefore, there have been various studies 

reported on Li(Mn1-xNix)2O4; such as synthetic method, thermal stability, effects of 

ordered and disordered local structure, cation ordering, particle size, and 

composition change [250] [251] [252] [253] [254]. Figure 6-1 also shows a minimum 

difference of ∆𝐹𝑚𝑖𝑥   where all configurations enter with the same weight in energy, 

and with the introduction of temperature. Also, it shows the presences of low-energy 

cation arrangements. In conclusion Figure 6-1 is a miscible constituent because of 

the negative ∆𝐹𝑚𝑖𝑥  structures, hence the existence of thermodynamically stable 

structures Li8Mn12Ni4O32 (LiMn1.5Ni0.5O4) with the lowest energy. The graph also 

shows that x = 0.25, equivalent to 0.5 Ni atoms per formula unit has the lowest 

energy at any temperature. 
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Configurational Entropies  

In Figure 6-2 we have plotted the variation of the configurational entropy of the solid 

solution for LiMn0.25Ni0.75O4 with 0≤x≤1 as calculated in the supercell at different 

temperatures. The composition x=0 and x=1 correspond to the Ni4+ substitution of 

any of the 16 equivalent Mn4+ in the supercell, therefore all the 16 configurations 

are equivalent as shown in Figure 6-2 and the configurational entropy shows an 

increasing progression with respect to temperature. However, for the paring of the 

x values (shown in Figure 6-2) of the nickel concentration, there are similarities in 

an increasing progression and the shape with the increasing temperature except 

when x=0.25 and x=0.75 where their shapes differ and there exist bigger entropy 

difference as compared to other nickel concentration paring. There are several 

experimental works done on the investigation of Ni and Mn ordering in LiMn1.5Ni0.5O4 

samples by annealing at 973.15 K [251]. The variation of the configurational entropy 

of the LiMn2x-2Ni2xO4 system in Figure 6-2 with increasing temperature indicates 

ordering from 300K and a possible disordering at a higher temperature (at above 

1000 K) due the existent of a full configurational equilibrium. 

 
Figure 6-2: An illustration of configurational entropy for different temperatures 

calculated in a supercell. 
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Average voltage Intercalation 

The fully lithiated and de-lithiated forms of the nickel-manganese oxide spinel were 

modelled starting from the conventional cubic unit cell, while the body-centred cubic 

(bcc) lithium was simulated using the asymmetric unit cell. For simplicity, the normal 

cation arrangement for the spinel phases was used, where Li is confined to the 

tetrahedral positions and Mn as well as Ni is limited to occupy the octahedral holes, 

ignoring the partial inversion degree x = 0.30 reported experimentally [175]. It has 

been indicated that although all lithiated transition metal oxides are stable in the 

normal spinel structure, the stability preference changes with the discharging 

process. Thermodynamically, during the discharging process transition metal oxides 

should transform to the lowest energy structures of the corresponding binary oxides. 

Since the thermodynamic ground state is often prohibited by kinetic limitations [192]. 

For spinel crystal structure, along with the tetrahedral 8a sites and the octahedral 

16d sites, there are octahedral 16c sites which are vacant for an ideal spinel. 

However, the delithiated transition metal oxides often have transition metal atoms 

in these non-spinel sites (16c), as it was seen in case of Ni, Ti, Cr, Mn and Fe [192]. 

Instead of attaining the thermodynamic ground state, kinetically, it is more realistic 

than a spinel-related lowest energy state is accessed by the delithiated oxide. We 

considered the lowest energy one among these structures to be the possible ground 

state accessible to the delithiated oxide Figure 6-3. 

 

The equation (96) is used to obtain Figure 6-3 and it indicates that the total energy 

of three compounds is required to predict the average intercalation voltage. Then 

the insert is the average voltage as a function of the configurational equilibrium 

temperature at T= 0K and the intercalation voltage for lithium [255] relates to the 

aspects of the electronic structure. 

 

𝑉 = [𝐸(𝐿𝑖(𝑀𝑛1−𝑥𝑁𝑖𝑥)2𝑂4) − 𝐸(𝑀𝑛2−2𝑥𝑁𝑖2𝑥𝑂4) − 𝐸(𝐿𝑖)]                              (96) 

  

The figure below shows the average intercalation voltage of ordered low energy 

structures of the inequivalent configurations (N). The Li+ intercalated into tetrahedral 

sites are energetically more stable for Li-rich compositions, as they share a face 

with Li+ on the Mn/Ni site in the cubic transition metal. Figure 6-3 shows how the 
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average voltage of intercalation of Li(Mn1-xNix)2O4 is directly related to the energies 

of the end state (charging and discharging), where the highest average voltage is 

4.866 V at x =0.25 of the nickel concentration. There have been several 

investigations on the spinel-structured LiMn1.5Ni0.5O4 (LMNO) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3: Calculated average voltage as a function of inversion degree. In the 

insert, the average voltage of the stable composition (LiMn1.5Ni0.5O4). 

which has attracted great attention, due to its higher working voltage (4.7 V) in 

comparison with the commercialised cathodes such as LiFePO4 (3.4 V), LiCoO2 (3.9 

V) and LiMn2O4 (4.1 V) [256] [257] and which are lower than the calculated 

LiMn1.5Ni0.5O4 voltage of (4.866 V) shown in Figure 6-3. The energetically stable 

spinel structure LiMn1.5Ni0.5O4 has an average voltage of 4.866 V which agrees well 

with the 5 V spinel cathode LiMn1.5Ni0.5O4 that has high operating voltage (∼4.8 V) 

[258] [259]. However, from the stable composition of LiMn1.5Ni0.5O4, the structure 

has a probability that is greater than zero. The inserted diagram in Figure 6-3 shows 

that there is no change in the average voltage when the temperature increases.  
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Conclusions and Recommendations  

Conclusions 

 
LiMn2O4 is ideal as a high-capacity Li-ion battery cathode material by its low toxicity, 

low cost, and the high natural abundance of Mn. Among several cathode materials, 

the spinel structure has attracted considerable attention for secondary lithium-ion 

batteries due to its high intrinsic safety, low cost and high voltage (4.7 V vs. Li/Li+) 

[260] [261] [262]. There has been numerous investigations that proposed Ni as a 

suitable dopant to improve the structural stability, electrochemical performance of 

the LiMn2O4 materials, the average lithium intercalation voltage and the 

thermodynamics of the Ni incorporation, where LiMn2-xNixO4 spinel has a 

concentration range 0≤x≤2. Therefore, making lithium nickel manganese oxide 

(LNMO, LixNi0.5Mn1.5O4) an attractive high-potential cathode material for high 

energy lithium-ion batteries due to its high operating potential around 4.7 V vs. Li/Li+ 

[61] [263], its high rate capability, structural stability and the absence of cobalt [264]. 

To meet the ongoing pressing demands of electric vehicles (EVs), the LMNO offers 

a stable spinel crystalline structure and good cycling durability during charge or 

discharge of the battery [265]. In contrast to conventional cathode materials (e.g., 

LiCoO2 and LiMn2O4), LNMO and its derivatives have good rate capability, low cost, 

and high safety characteristics; moreover, providing 20% more energy density due 

to their high voltage [266].  

However, the implementation of LNMO electrodes still faces several deterrent 

issues. Firstly, the flat potential where the voltage is invariant with state of charge 

(SOC) during charge or discharge processes and LMNO materials exhibiting 

relatively low discharge capacities of ~110–130 mAhg_1 [267] [268] [269] [270] 

[271] [272]; Secondly, the LMNO materials are still unsatisfactory for the commercial 

application due to the intrinsic slow ionic diffusivity and low electronic conductivity 

[269] [270] [271]. Thirdly, the crystal structure of LMO is severely degraded after a 

few operational cycles of lithiation and de-lithiation due to the strong Jahn-Teller 
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(JT) distortions of the octahedrally coordinated high-spin Mn3+ cation, especially 

below the Verwey-like temperature of TV = 283.5 K [273]. In order to address some 

of these impediments, the current study has addressed the thermodynamics of the 

Ni incorporation in LiMn2O4. In this thesis, three computational modelling 

approaches on the study of LiMn2-xNixO4 spinel via tuning of the Ni concentration 

from 0≤x≤2.have been employed, i.e. the VCA approach, cluster expansion and site 

occupancy disorder methods. 

 

Firstly we used the density functional theory methods to investigate structural and 

electronic properties, pressure dependence and mechanical stability. The 

calculations were performed using the well-established total energy CASTEP code 

in conjunction with the Virtual Crystal Approximation, which is an approach for 

dealing with disordered systems in first-principles calculations. Solid solution VCA 

was applied to generate various concentrations of Ni doped LiMn2O4 in the range 

0≤x≤2. The GGA-PBE approach implemented in DFT was successfully used to 

investigate the above-mentioned properties.  

 

The calculated lattice parameters for spinel’s LiMn2O4 and LiNi0.5Mn1.5O4 are in good 

agreement with experimental and literature results [221] [223]. In addition, structural 

parameters for LiNi0.25Mn1.75O4, LiNi0.75Mn1.25O4 and LiNi0.875Mn1.125O4 were 

predicted. The Mn-O bond lengths were measured from the ground state structures 

with an average value of 1.9 Å, which is in good agreement with previous studies 

[224] [225]. Such studies showed that the shortening of the average chemical bond 

length of Mn(Ni)–O in LiNi0.5Mn1.5O4 increases the mean chemical bond energy and 

enhances structural stability. Hence, the LiNi0.5Mn1.5O4 system has a high cycling 

performance as compared to LiMn2O4. In the current study nickel doped systems 

are predicted to be stable with a smaller Mn(Ni)-O bond length. It was further 

observed that the bond length reduces with an increase in pressure. Also, the 

variation in bond lengths with applied pressure was computed. This gives an 

account of the behaviour of relative lattice constant (a) and (a/a0) which increases 

as the pressure decreases. The two systems with different nickel/manganese ratio, 

i.e., LiNi0.25Mn1.75O4 and LiNi0.75Mn1.25O4 predicted the same results in terms of both 
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structural properties and energetics. This suggests further investigations on different 

compositions with related atomic weight percentages.  

 

Furthermore, the total density of states was calculated to study the stability of pure 

and nickel doped spinel LiMn2O4. The total density of states at the Fermi-level 

indicated that the peaks of all the compositions are overlapping from the valence to 

the conduction band. Thus, all compositions are metallic in their ground state, since 

there is no band gap from the valence band to the conduction band. Similarly, partial 

densities of states have been calculated and predicted all the compositions to be 

metallic. The introduction of the dopant Ni/Mn-3d in the 4 systems has an influence 

on the Li-2s and O-3p, hence their contribution becomes significant. As observed 

with structural properties, these two systems LiNi0.25Mn1.75O4 and LiNi0.75Mn1.25O4, 

showed similar electronic properties. Pressure dependences of the density of states 

revealed that the highest peaks for LiNi0.5Mn1.5O4 and LiNi0.875Mn1.125O4 are 

intercepted by the Fermi level and move away from it. It is worth noting that when 

pressure is applied to the LiNi0.5Mn1.5O4 system, the behaviour of the electrons is 

not influenced.  This affirms that this composition is the most stable as reported in 

the literature.  

 

The mechanical properties of spinel and nickel doped LiMn2O4 were successfully 

calculated. The calculated bulk, Young and shear moduli for pure spinel LiMn2O4 

and LiNi0.5Mn1.5O4 are, at 0 GPa, are in agreement with the literature results [228] 

[229]. In addition for a cubic system to be mechanically stable, such moduli should 

be positive. The results showed that the predicted elastic properties at 0GPa are 

mechanically stable. However, when pressure is applied to the system, there is 

inconsistency in terms of stability. At 40 and 50GPa LiNi0.5Mn1.5O4 and 

LiNi0.875Mn1.125O4 appear to be mechanically unstable. Consequently, the B/G ratio 

showed brittleness at 40 and 50GPa for both LiNi0.5Mn1.5O4 and LiNi0.875Mn1.125O4 

systems. While the tetragonal shear modulus C’ is consistently negative for all the 

compositions.  

 

Secondly, cluster expansion formalism was used to investigate nickel doped LMO 

phase stabilities, as implemented in the UNCLE code. The method determines 
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stable multi-component crystal structures and ranks metastable structures by the 

enthalpy of the formation while maintaining the predictive power and accuracy of 

first-principles density functional methods. The ground-state phase diagram 

generated various structures with different concentrations and symmetries. The 

isotropically volume optimised and fully optimised structures produced the cross-

validation score of 1.1 meV and 1.4 meV, which is an indication of a good cluster 

expansion since it is less than 5 meV per active position. The mechanical, electronic 

and vibrational properties of all identified structures on the isotropically optimised 

volume and fully optimised binary diagram were calculated to depict their stability.  

Mechanical properties of the mixture, LiNi2O4-LiMn2O4, were successfully calculated 

for isotropic optimised volume. The LiMn0.5Ni1.5O4 (isotropic) is found to be 

tetragonal (I) with 6 independent elastic constants (C11, C12, C13, C33 and C44). The 

tetragonal LiMn1.5Ni0.5O4 becomes mechanically stable because the structure 

satisfies the necessary and sufficient Born mechanical stability criteria for tetragonal 

and the structure is anisotropic (A>1). Mechanical properties of the mixture, LiNi2O4-

LiMn2O4, were also successfully calculated for full optimisation. The triclinic 

structures LiNi2O4, LiMn1.4Ni0.6O4, LiMn1.5Ni0.5O4, LiMn1.75Ni0.25O4 and LiMn2O4 in 

Table 5-5 are mechanically stable and anisotropic (A>1). However, the structures 

shown in Table 5-6 are ductile owing to the G/B < 0.5. The non-existence of band 

gaps at the Fermi level for all structures showed that the LiMn0.5Ni1.5O4 (isotropic), 

LiNi2O4, LiMn1.4Ni0.6O4, LiMn1.5Ni0.5O4, LiMn1.75Ni0.25O4 and LiMn2O4 systems are 

metallic. As already illustrated by the elastic properties, the phonon dispersion 

calculations show that the generated structures (LiMn1.4Ni0.6O4, LiNi2O4, 

LiMn1.4Ni0.6O4, LiMn1.5Ni0.5O4, LiMn1.75Ni0.25O4, and LiMn2O4) have no negative 

values along the gamma direction and the phonon density of states also depict no 

soft modes below the 0 THz. Consequently all structures can be regarded as being 

vibrationally stable. 

 

Lastly, we employed density functional theory calculations with a Hubbard 

Hamiltonian (DFT+U) to investigate the thermodynamics of mixing of the Li(Mn1-

xNix)2O4 solid solution with the range of 0≤x≤1. The site occupancy disorder (SOD) 

code was used to generate the symmetry-adapted ensemble of configurations within 

the disordered Li(Mn1-xNix)2O4 solid solution and to carry out the thermodynamic 
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analysis. All configurations were constructed via atomic substitutions in LiMn2O4, by 

using the group of symmetry operators of the space group Fd3 ̅m (No. 227) of the 

parent structure. Site-occupancy disorder was employed successfully to find stable 

structures and LiMn1.5Ni0.5O4 was depicted as most stable.  The results indicate that 

any small change in the tuning of the Ni concentration, achieved via temperature 

change during the thermodynamics of mixing and controlling of the lithium 

intercalation is reflected in the properties of the stable structure. The most 

energetically stable structure showed the lowest energy of ∆𝐹𝑚𝑖𝑥 at both 300 and 

1000K at an intermediate Ni composition of LiMn1.5Ni0.5O4 which agrees with 

experimental findings that LiNi0.5Mn1.5O4 is the most promising and attractive 

material because of its acceptable stability, good cyclic property and relatively high 

capacity. The configurational entropy showed an increasing progression with 

respect to temperature. However, for the pairing of the x values of the nickel 

concentration, there are similarities in an increasing progression and the shape with 

the increasing temperature except when x=0.25 and x=0.75, where their shapes 

differ and there exists larger entropy difference as compared to other nickel 

concentration pairing. The variation of the configurational entropy of the LiMn2x-

2Ni2xO4 system showed an increasing temperature which indicated ordering from 

300K and a possible disordering at a higher temperature (above 1000 K) due the 

existent of a full configurational equilibrium. The connection between Li+ average 

intercalation voltage and the equilibration temperature for the cation distribution 

illustrated different voltage values and the most stable system LiMn1.5Ni0.5O4 with 

an average voltage of 4.866 V. The results further attest to a stable system, showing 

that there is no much change in the average voltage when the temperature 

increases. The findings indicate a possible route for controlling the charging and 

discharging process for the stable nickel doped spinel. 

Recommendations 

Density functional theory was used to investigate various properties of spinel 

LiMn2O4 and most importantly various concentrations of nickel doped LiNixMn2-xO4. 

Virtual crystal approach proved to be a successful tool in metal doping, in this case 

by generating systems with various concentrations of nickel into spinel LiMn2O4. The 

universal cluster expansion code proved to be a success in generating new stable 



  

148 

 

phases. The study and different approaches give a vivid understanding of structural, 

electronic and mechanical properties of the spinel systems. Lastly, the site-

occupancy disorder program indicated that any small change in the tuning of the Ni 

concentration, achieved via temperature change during the thermodynamics of 

mixing and controlling of the lithium intercalation will be reflected in the properties 

of the stable structure. Previous studies showed that the performance of battery 

materials can be improved by doping those materials with different divalent and 

trivalent elements. Particularly, doping spinel LiMn2O4 with various elements tends 

to stabilise the structure and improve its cyclability. Replacing manganese with other 

elements controls manganese dissolution and reduces Jahn-Teller deformation. 

Experimental studies on multivalent spinel doping are complicated since the 

transition metal elements can exhibit different oxidation states between 2+ and 4+. 

Moreover, the Mn ions are embedded in the 16d octahedral positions and hold an 

effective 3.5+ oxidation state, with the 3d itinerant electrons moving from the Mn3+ 

to the Mn4+ cations, which renders them equivalent. Furthermore, most experimental 

studies on LiNixMn2-xO4 were confined to the case of x≤0.2. This work laid a 

foundation from which a better understanding of the spinel LiMn2O4 doping can be 

built. Most importantly, the study opens a window on spinel co-doping. Thus, 

different elements, such as nickel and cobalt can be introduced simultaneously to 

the spinel system with various atomic weights. This will include investigating 

systems such as LiCo0.01Al0.05Mn1.94O4, LiCo0.01Ni0.05Mn1.94O4 etc. Listed below are 

some of the possible future investigations on this subject: 

 

 Use VCA to dope spinel with other elements such as Co, Cr, Fe, Co, Ni, Al, Mg, 

etc. and investigate their properties. The effects of doping can be complicated 

because of the interrelations between doping elements and structural 

morphology. The investigations will include predicting properties (such as 

electronic and mechanical properties) that are not possible or difficult to obtain 

experimentally. These investigations could be extended to co-doping, whereby 

two different elements are introduced to the system simultaneously. 

 

 Use the site-occupancy disorder to investigate surface properties of a yielded 

stable structure.  
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 Use UNCLE Code to further determine the stability of spinel LiMn2O4 and nickel 

doped LiMn2O4. Uncle is a code for constructing cluster expansions for arbitrary 

lattices with minimal user input. Doping plays a vital role in structural stability and 

improves cyclability. Furthermore, Monte Carlo simulations could be investigated 

for stable compositions.  

 

 Derive Buckingham potential model of the Ni-doped system using the Forcefields 

Optimiser which allows to create, optimize, and validate Forcefields based on 

first-principles derived training information.  

 

 Studies of discharge for certain identified stable structures of LiNixMn2-xO4 will be 

of great interest. 
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