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Abstract

Malaria is a mosquito borne disease, a major cause of human morbidity and

mortality in most of the developing countries in Africa. South Africa is one of

the countries with high risk of malaria transmission, with many cases reported

in Mpumalanga and Limpopo provinces. Bayesian and classical methods of

estimation have been applied and compared on the effect of climatic factors

(rainfall, temperature, normalised difference vegetation index, and elevation)

on malaria incidence. Credible and confidence intervals from a negative bi-

nomial model estimated via Bayesian estimation-Markov chain Monte Carlo

process and maximum likelihood, respectively, were utilised in the comparison

process. Bayesian methods appeared to be better than the classical method

in analysing malaria incidence in the Limpopo province of South Africa. The

classical framework identified rainfall and temperature during the night to be

the significant predictors of malaria incidence in Mopani, Vhembe and Wa-

terberg districts of Limpopo province. However, the Bayesian method iden-

tified rainfall, normalised difference vegetation index, elevation, temperature

during the day and temperature during the night to be the significant pre-

dictors of malaria incidence in Mopani, Sekhukhune, Vhembe and Waterberg

districts of Limpopo province. Both methods also affirmed that Vhembe dis-

trict is more susceptible to malaria incidence, followed by Mopani district. We

recommend that the Department of Health and Malaria Control Programme of

South Africa allocate more resources for malaria control, prevention and elim-

ination to Vhembe and Mopani districts of Limpopo province. Future research

may involve studies on the methods to select the best prior distributions.
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Chapter 1

Introduction

1.1 Background of the study

Malaria is a mosquito borne disease caused by five protozoa, namely: Plasmod-

ium Falciparum, Plasmodium Vivax, Plasmodium Malariae, related species of

Plasmodium Ovale and Plasmodium Knowlesi (Snow, 2015). The protozoa

are transmitted to humans through the bite of an infected female Anophe-

les mosquito (mosquito carrying protozoa) as illustrated in Figure 1.1. The

Plasmodium Falciparum is known to have accounted for many malaria cases

globally, and therefore, regarded as a threat to public health worldwide (Snow,

2015; Cox et al., 2018). Malaria incidence refers to the commonness of malaria.

When the incidence rates are high, transmissions and prevalence of malaria

are also high. This exposes the vulnerability and danger of the disease to the

society. The symptoms of malaria include: fever (> 37.5◦C), headache, rigors

which are the repeated episodes of shivering, muscle pains, diarrhea, nausea,

vomiting, loss of appetite, inability to feed babies, dizziness and sore throat.

An example indicating how malaria is transmitted to humans is presented in
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Fugere 1.1.

Figure 1.1: Malaria carrying mosquito

Based on history, malaria has infected and taken the lives of millions of indi-

viduals. This disease remains a major cause of human morbidity and mortality

in most developing countries in Africa. Young children, pregnant women, and

the elderly are the groups of people that still remain at high risk of malaria

transmission (Schmidt, 2017). Sachs and Malaney (2002) outlined factors that

contribute to increased malaria cases. These encompassed changing of agri-

cultural practices, building of more dams, irrigation systems, deforestation,

poor public health services and long-term climate change such as El Nino and

global warming. Hay et al. (1998) found seasonal climatic change to be an im-

portant determinant of malaria incidence since variations in climate conditions

could improve mosquito vector dynamics and parasite development rates (Na-

jera et al., 1998). Indeed, malaria incidence has been found to be generally

low during dry-hot season when vector populations are reduced and spatially

restricted.

According to Blumberg and Frean (2017), there is a fairly good progress in

malaria control globally. This progress is obtained through increased funding,
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improved use of life-saving interventions and more countries pursuing malaria

elimination. Although this progress was considerably achieved in countries

such as Sri Lanka and some Sub-Saharan African countries, South Africa re-

mains among the countries with high risk of malaria transmission (Raman

et al., 2016), especially in the northern part of the country. Raman et al.

(2016) further outlines that South Africa officially transitioned from control-

ling malaria to the goal of eliminating the disease in 2012. However, malaria

cases have increased from 6811 in 2013 to 11,711 in 2014, with many cases

reported in Mpumalanga and Limpopo provinces of South Africa.

1.2 Problem statement

Malaria remains a major cause of human morbidity and mortality in most de-

veloping countries. However, Africa is mostly affected by this disease. Young

children, pregnant women, low immunity individuals, and the elderly are the

groups of people at high risk of malaria transmission (Schmidt, 2017). Hay

et al. (1998) found seasonal climatic change to be an important determinant of

malaria incidence since variations in climate conditions could improve mosquito

vector dynamics and parasite development rates (Najera et al., 1998). Malaria

incidence is generally low during the dry-hot season when vector populations

are reduced and spatially restricted. As a result, a number of researchers tend

to focus on the peak transmission season. The season is often rainy. Hence the

epidemiological picture during the dry-hot season is often neglected (Spottis-

woode et al., 2014).

From the aforementioned reports, it is evident that malaria still remains a ma-

jor health concern in the Limpopo province. There are consistent efforts meant

to reduce malaria episodes. These include chemical spraying, use of treated

mosquito bed nets, clearing bushes, cleaning drains and subsidised treatments,
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and yet prevalence rates and malaria incidence remain high. It is probable that

the efforts meant to reduce malaria menace do not specifically take into account

the environmental factors likely to aggravate malaria disease. This study in-

tends to fill this gap by incorporating these environmental factors into the gen-

eralised linear model estimated under classical and Bayesian approaches.

Again, most studies that modelled malaria cases, Boateng (2012), Omonijo

et al. (2011), and Kleinschmidt et al. (2001) among others, employed classical

methods such as Poisson, Negative binomial, hurdle, quasi-Poisson, dynamic

computable general equilibrium (DCGE) models, to analyse the data. For these

methods, the data may carry an uncertainty in the form of distribution of the

sample. Moreover, the parameters from classical methods such as Poisson and

negative regression models, have fixed population values such that the proba-

bility that an unknown parameter is any single value whose null hypothesis is

always equal to zero, i.e, β = 0 (Zyphur and Oswald, 2015; Plonsky and Oswald,

2017). Due to the possible uncertainties and the assumptions preserved in the

classical methods of estimation, there is a need to employ other methods that

are different from the classical ones. This may help in assessing the results

obtained through classical models to reveal their accuracy and reliability.

In this study, two statistical approaches are employed and compared: Classi-

cal and Bayesian estimation methods. The relation between the two statistical

estimations results in the fact that the posterior distribution in the Bayesian

approach is proportional to the likelihood function times the prior distribu-

tion. Whereas MLE uses asymptotic distributional assumptions in classical

statistics, the uncertainty about model parameters in the Bayesian approach

is expressed through the prior distributions. Combining the prior distribution

and the likelihood (data), the researcher is able to update the knowledge about

the model parameters. This is done via the posterior distribution from which
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we can infer the estimates of the model parameters and relevant quantities

like credible intervals.

1.3 Rationale

Malaria is one of the most severe public health problems worldwide. Therefore,

it will be profitable to model malaria incidence in Limpopo province because it

is among the provinces that account for most malaria cases in South Africa.

This study is crucial because there are still arguments concerning the associ-

ations between environmental factors and malaria incidences. Yé et al. (2007)

highlighted that the effects of climatic factors on malaria transmission are not

efficiently assessed, specifically at local levels. Yé et al. (2007) also outlines

that data used in many studies are proxy meteorological data obtained through

satellites or interpolated from a different scale. This study will use local scale

data from Malaria Control Institution in Limpopo province.

1.3.1 Aim of the study

The aim of the study is to determine the effect of environmental factors asso-

ciated with malaria incidence by comparing classical and Bayesian estimation

methods.

1.3.2 The objectives of the study

The objectives of the study are to:

i. Model malaria incidence given rainfall, temperature, normalised vegeta-

tion index, elevation and time in quarters from 2014 to 2015 across the

various districts of the Limpopo province.

ii. Identify the effect of environmental factors which require more attention

towards malaria control and prevention in Limpopo province.
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iii. Examine the behavioral changes (trends) in overall malaria incidence in

Limpopo province.

iv. Identify districts that are more susceptible to malaria incidence.

1.4 Methodology

The area of this study is composed of five districts of the Limpopo province:

Mopani, Waterberg, Capricorn, Vhembe, and Sekhukhune. Malaria incidence

data is provided by the Malaria Control Centre, based in Tzaneen, Limpopo

province. Population data is provided by Statistics South Africa, and envi-

ronmental factors (rainfall, temperature, elevation and normalised difference

vegetation index (NDVI)) data were collected from Eco Verb. The data were col-

lected monthly from January 2014 to June 2015. We have organised the data

through tables, graphs, and condensed it into few summary measures. This

has been attained through the use of descriptive analysis methods to reveal

the essential characteristics of the raw data of interest. This has been useful

in the model section for data analysis.

A Poisson model has been developed using the counts of monthly malaria in-

cidences and each of the covariates (elevation, temperature during the night,

temperature during the day, normalised difference vegetation index and rain-

fall). Over dispersion has been discovered in the developed Poisson model,

therefore, the study has further employed a negative binomial model. Other

models that can be employed include extra variation Poisson model, zero-inflated

model or hurdle model. These models account for over dispersion naturally.

An additional model has also been developed and estimated via Bayesian es-

timation using the same data as the GLMs. A Bayesian estimation is based

on Bayes theorem. The theorem helps in finding the shape of the posterior
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distribution of the model. This distribution is crucial in Bayesian estimation.

The results of this method have been compared with the results of the classical

models which employed a maximum likelihood estimation, in order to reveal a

better method of estimation. R software packages have been utilised for data

analysis.

1.5 Ethical considerations

This study makes use of secondary data. Therefore, does not involve interac-

tion with human samples. Hence there are no ethical issues which have been

taken care of before utilising the data.

1.6 Significance of the study

The Limpopo Department of Health malaria control program will use the re-

sults of this study to assess the risk of malaria at the district level. The out-

comes of the study will provide the South African malaria control programs,

health policymakers and the Department of Health with an influential overview

of malaria situation in Limpopo province. This overview will also help the gov-

ernment in planning and strategising for productive interventions for districts

with a high risk of malaria. The results of this study could be used together

with the results of related studies by other researchers to undertake further

studies complementary to this one.

The Department of Health and other malaria control programs will also learn

from this data analysis in order to adjust resource allocations regarding malaria

prevention, control and elimination. Furthermore, the best method of estima-

tion between classical and Bayesian approaches have been determined. This

could help other researchers willing to undertake further similar studies.
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1.7 Scope and limitations of the study

The major advantage of the study is the availability of resources, more specif-

ically secondary data on the subject matter. As this study is novice and much

previous research work have been conducted on this current topic, secondary

data is available. Furthermore, government publications and online reference

material have been relied upon for reviewing former studies that are related to

the present study. The dissertation is only limited to its objectives. That is, the

methodology of the dissertation is applied to model malaria incidence in the

Limpopo province only.

1.8 Study area profile

Limpopo is a province in the northern part of South Africa. The province shares

borders with three countries: Botswana, Mozambique, and Zimbabwe. The

province is named after one of the most important rivers in the region, the

Limpopo river. It is located on the border of Botswana and Zimbabwe. Limpopo

province consists mainly of rural communities, with various ethnic groups and

cultures. It is divided into five districts: Capricorn, Mopani, Sekhukhune,

Vhembe and Waterberg. Limpopo province is located close to Johannesburg

as the Braamfontein Spruit and the Crocodile River, before joining the Pien-

aar’s River just after the Hartbeespoort Dam. Limpopo is surrounded by many

rivers, dams and other kinds of water bodies. The map of the Limpopo river

basin is presented in Figure 1.2.
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Figure 1.2: The Limpopo river basin

1.9 Organisation of the dissertation

The dissertation consists of five chapters. Background of the study, the study

area profile, aim and objectives, problem statement, rationale, methodology,

ethical considerations, significance of the study, scope and limitations of the

study are discussed in Chapter 1. Chapter 2 scrutinises the related previous

researches. This includes the exploration of various methodologies utilised in

various researches to model malaria incidence. The methodology employed

in the dissertation is discussed in Chapter 3. This includes the count data

models in both classical and Bayesian frameworks. Chapter 4 comprises of data

analysis and results explorations. Conclusions, recommendations and further
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studies are examined in Chapter 5.



Chapter 2

Literature review

2.1 Introduction

This chapter surveys articles, dissertations, and other resources which are rel-

evant to the study of modelling malaria incidence. The studies reviewed are

conducted worldwide, including South Africa. Results from various studies are

explored and summarised at the end of the chapter and relationships among

the researcher’s work are determined.

2.2 Related studies worldwide

Kazembe (2007) conducted a study titled “Spatial Modelling and Risk Factors

of malaria incidence in northern Malawi”. The study used regression models

to find the spatial deviation of malaria risk. These regression models were

also used in analysing the relationships between the risk of malaria and en-
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vironmental factors at sub-district level in north Malawi. The environmental

factors included altitude, precipitation and water holding capacity. Their study

used monthly malaria case data collected between January 2002 and Decem-

ber 2003. Bayesian and Poisson regression models were employed with the

assumption that spatial structures are different. The results of the study re-

vealed that the covariates (environmental factors) were all significant. In addi-

tion, the results highlighted a positive relationship between malaria risk and

the two covariates, altitude and precipitation. Areas of increased malaria cases

were also identified for further epidemiological investigations.

The study by Shimaponda-Mataa et al. (2017) modelled the influence of tem-

perature and rainfall on malaria incidence in Zambia, focusing on four malaria

endemic provinces. Monthly data on malaria morbidity were analysed. Their

data was collected for the period 2009 to 2012. The effects of these two covari-

ates were modelled through a semiparametric Poisson regression model. The

results of their study exhibited a strong positive association between malaria

incidence and precipitation as well as minimum temperature.

Zayeri et al. (2011) coordinated a study to provide the geographical map of

malaria and to identify some of the important environmental factors associ-

ated with malaria disease in Sistan and Baluchistan provinces of Iran. The

data used to attain the results in accordance with the aim and objectives of

their study, were a registered nine-year time series recorded from 2001 to

2009. The analysis part of the study was divided into two parts. The first

part was a geographical mapping of malaria incidence rate and the second part

was modelling the environmental factors. The former part employed empirical

Bayesian estimation method and the latter part employed Poisson random ef-

fect for modelling of malaria incidences. The results of their study revealed

that a large number of new malaria cases were observed between 2001 and
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2009. Among those new cases, males accounted for many malaria cases com-

pared to females. It was also discovered, based on their results, that adults

(people older than 15 years) were more susceptible to malaria transmission as

compared to children (aged younger than 5 years). Their results also indicated

that rural areas had high malaria incidences than urban areas. Furthermore,

they provided evidence that increase in humidity, elevation and temperature

resulted in an increase in malaria incidences. However, increase in annual

rainfall resulted in a decrease in malaria incidences. This negative associa-

tion between rainfall and malaria cases is reported to be in contrast with the

results of other related studies(e.g (Gosoniu et al., 2006) and (Kazembe, 2007)).

According to the study by Yé et al. (2007), climatic factors are associated with

malaria transmission. Their study outlined that the effects of these factors

are not efficiently assessed, especially at local levels. However, most of the

studies aimed at assessing this association utilised proxy meteorological data

obtained through satellites or interpolated from a different scale. The study by

Yé et al. (2007) also addressed the relationship between the meteorological fac-

tors measured at the local scale and malaria infection. They selected a random

sample of 676 children at the same time and scale between 1 January 2003

and 30 November 2004. The sample included children between 6-59 months.

Data on some of the factors that can affect the incidence of malaria were also

analysed. The covariates included temperature, humidity and rainfall in each

site. These variables were measured monthly by digital meteorological sta-

tions. Their study employed logistic regression to predict the risks of malaria

based on historical data. The results of their study revealed that the covariates

were all significant. However, temperature was discovered to be the best pre-

dictor of clinical malaria rates. The effect of humidity on malaria risk was also

discovered to be influential than of temperature. The association between rain-

fall and malaria was found to be positive. The study suggested that systematic
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monitoring of temperature and rainfall could produce early warning system of

malaria transmission risks.

Gosoniu et al. (2006) conducted a study that modelled a geostatistical malaria

risk data. The objectives of the study included identification of significant en-

vironmental predictors of malaria transmission to assess the relations of en-

vironmental diseases. The assessment is used for prediction of malaria risks.

The study used data from surveys conducted in Mali between 1977 and 1995.

Climatic and environmental data were also extracted from different sources.

The study focused on children aged less than 10 years. Bayesian stationary and

non-stationary models were used to analyse malaria survey data. This model

fit and its predictions were attained as the basis of Markov Chain Monte Carlo

simulation methods. The climatic and environmental factors treated as covari-

ates are seasonal length, Normalised Difference Vegetation Index (NDVI), tem-

perature, rainfall and water bodies. The results of the study revealed a positive

relationship between NDVI, minimum temperature, distance from permanent

water bodies and malaria risk. A negative relationship between malaria risk

and maximum temperature was discovered. The relationship between rainfall

and malaria risk was found to be linear.

The influence of weather and climate on malaria occurrence based on human-

biometeorological methods in Ondo State, Nigeria was modelled in the study

by (Omonijo et al., 2011). Meteorological and malaria dataset for the period

1998 to 2008 was used. The study utilised Poisson distribution and log link

function to examine the relationship between each of the biometeorological pa-

rameters and clinical reported malaria cases. Poisson multiple regression mod-

els were developed to assess the association between the explanatory variables

and malaria cases. The results of the study revealed a positive relationship be-

tween wind speed, air temperature and sea surface temperature and malaria
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cases.

The occurrence and incidence of malaria cases including severe cases reported

at Obuasi Government Hospital in Ghana, was modelled in a study by (Boateng,

2012). Poisson and Negative Binomial regression models were fitted and com-

pared. The developed models revealed no relationship between malaria inci-

dence and gender. However, severe malaria cases were found to be prevalent

among children aged less than 5 years and older people aged 70 years or more.

The study found the Negative Binomial regression model to provide a better fit

to the data compared to the Poisson regression model.

2.3 Related studies in South Africa

Gerritsen et al. (2008) generated a study that aimed to provide an overview of

mortality rate and malaria incidences in Limpopo province from 1998 to 1999

and also from 2006 to 2007. This overview was used to reveal the trend of

malaria incidences and mortality rate over time. Malaria and mortality data

used were collected from Statistics South Africa. These data included infor-

mation about population gender, age and districts. Chi-square tests were used

to identify the trends of malaria incidence, the mortality rate over time and

case fatality by age group. According to their descriptive statistical analysis

results, a downward trend of malaria incidence was observed over the years

of study. The mean incidence rate was found to be higher in males than in

females. The incidence rate was also found to be lower in children (0-4 years)

and higher in adults (35-39 years). A wide variability between the incidence

rate and districts was outlined. Vhembe district had the highest incident rate

and Sekhukhune had the lowest incidence rate. The study recommended the

need for better data over a range of epidemic prone settings.
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The study by Ramalata (2017) analysed malaria risk factors in the Limpopo

province of South Africa. The study employed Poisson and negative binomial

regression models to fit the data. Through the use of goodness of fit tests, the

study revealed that Negative Binomial regression model outperforms Poisson

regression model. The study found explanatory variables: rainfall, temper-

ature during the night, two districts of Limpopo (Mopani and Vhembe), and

seasonal effects such as Quarter1 (January - March) and Quarter4 (October -

December) to be significantly associated with malaria incidences.

Kleinschmidt et al. (2001) conducted a study that used Generalised Linear

Mixed Models (GLMMs) in the spatial analysis of small-area malaria incidence

rates in KwaZulu-Natal, South Africa. Their study examined the association

between malaria incidence and climatic and environmental factors. This was

attained through the employment of GLMM with a Poisson distribution, a log-

arithmic link function, and a corrected error structure. The results of the study

indicated that higher winter rainfall and higher average maximum tempera-

ture are positively associated with malaria incidence. The results also identi-

fied a negative association between increasing distance from water bodies and

malaria incidence.

2.4 Summary of the chapter

Shimaponda-Mataa et al. (2017); Kazembe (2007) and Gosoniu et al. (2006)

identified a positive relationship between rainfall and malaria risk. However,

the results of the study by Zayeri et al. (2011) contradicted the results of the

studies by (Shimaponda-Mataa et al., 2017), (Kazembe, 2007) and (Gosoniu

et al., 2006). The results of the studies by Shimaponda-Mataa et al. (2017)

and Gosoniu et al. (2006) identified a positive relationship between minimum

temperature and malaria risk. Gerritsen et al. (2008) and Zayeri et al. (2011)
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provided evidence that adults are more susceptible to malaria transmission

than children.

The studies by Shimaponda-Mataa et al. (2017); Omonijo et al. (2011); Zayeri

et al. (2011) and Kleinschmidt et al. (2001) modelled the environmental factors

and assessed their relationships with malaria incidence through the develop-

ment of Poisson regression models. However, Ramalata (2017) highlighted that

the Negative Binomial regression model fits malaria incidence data better than

the Poisson regression model.

The present study is crucial because there are still arguments concerning the

associations between environmental factors and malaria incidences. Yé et al.

(2007) highlighted that the effects of climatic factors on malaria transmission

are not efficiently assessed, specifically at local levels. Based on the studies

reviewed, the effects of climatic change on malaria have controversies. This

could be due to the fact that the data used in many studies are proxy meteoro-

logical data obtained through satellites or interpolated from a different scale.

Our study will use local scale data from Malaria Control Institution in Limpopo

province.



Chapter 3

Research Methodology

3.1 Introduction

This chapter describes the broad profound framework of the methods used in

the study. Section 3.2 defines the area of study and outlines how the data used

in the study were generated. Section 3.3 describes the classical models and

section 3.4 describes Bayesian method of estimation.

3.2 Study area and data collection

3.2.1 Study area

South Africa is one of the most diverse and attractive countries in the world.

It is located on the southern tip of the African continent. It is bordered by

Botswana, Mozambique, Namibia and Zimbabwe. South Africa has enjoyable

climate and temperature, with warm sunny days most of the year. The sum-

mers run from November to February. The country is characterised by hot
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weather with afternoon thunderstorms. Winters are generally mild and dry.

South Africa is divided into nine provinces: Eastern Cape, Free State, Gaut-

eng, KwaZulu-Natal, Limpopo, Mpumalanga, Northern Cape, North West and

Western Cape. The area of this study is Limpopo province, which consists of

five districts: Capricorn, Mopani, Sekhukhune, Vhembe, and Waterberg.

3.2.2 Study frame and data collection

We have modelled malaria incidence in Limpopo province of South Africa.

Malaria incidence data is provided by Malaria control center. This center is

based at Tzaneen town. The population data were provided by StatsSA. Envi-

ronmental factors (rainfall, temperature, elevation, and normalised difference

vegetation index) data were collected from Ecoverb. The data were collected

monthly from January 2014 to June 2015.

3.3 Classical models

3.3.1 Generalised linear models

Generalised Linear Models (GLMs) are generalisation of Classical Linear Mod-

els. GLMs extend the framework of classical linear models to variables that are

not normally distributed. The special cases of GLMs include: linear regression,

logit and probit models, analysis of variance models (ANOVA), multinomial re-

sponse models for count data and some models used for survival data. Lin-

ear models of classical regression analysis exhibit scaling problems, which are

the results of the linear regression model assumptions. The assumptions com-

bined include the constancy of variance, additivity of systematic effects and

the approximations that errors are normally distributed. The scaling problems

exhibited by linear models of classical regression models are reduced by the

introduction of GLMs. As a consequence of introducing the GLMs, the con-
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stancy of variance and the assumption that errors are normally distributed

become less effective in classical regression models. However, the relationship

between variance and mean is important and must be known. GLMs treat the

additivity of the systematic effects as the expected responses. A GLM is given

by:

Yi = β0 + β1xi1 + β2xi2 + ...+ βp−1xi,p−1 + εi, (3.1)

and in similar form is given as:

~Y = ~X>~β + ~ε, (3.2)

where:

Yi is the response variable for observation i = 1, 2, ..., n,

xij is the explanatory variables j = 1, 2, ..., p− 1,

β0 is the regression intercept.

βk is the regression coefficients k = 1, 2, ...,m, and

εi is the standard error.

The class of GLMs is specified using the following three components:

1. The random component.

The random component specifies the conditional distribution of the re-

sponse variable Yi(i = 1, ..., n) given the values of the explanatory vari-

ables in the model. When the dependent response outcomes (y1, ..., yn)

follow a probability distribution belonging to the exponential family of

probability distributions, GLMs become easy to work with.

2. The systematic component.

The systematic component is a linear function of a linear predictor. It is
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based on the predictor variables. The systematic component is denoted

by:

Yi = β0 + β1xi1 + β2xi2 + ...+ βp−1xi,p−1 (3.3)

= ~X>~β.

The regressors are the pre-specified functions of the predictor variables.

Therefore, they can take on different forms of data types such as qual-

itative predictor variables, transformations of quantitative explanatory

variables, polynomials, dummy variables, interactions, etc.

3. The link function.

The link function, say g, relates the systematic component to the mean

response. This is specified by:

g(µi) = ηi = β0 + β1xi1 + ...+ βp−1xi,p−1 (3.4)

= ~X>~β.

The link functions in GLMs are said to be smooth and monotonic. Hence

equation (3.1) can be written as:

µi = g−1(ηi) = β0 + β1xi1 + ...+ βp−1xi,p−1 (3.5)

= g−1( ~x−1~β).

If we choose g = h, where ~θ = h(~µ), then:

θi = h(µi) = h(h−1(ηi))

= ηi = β0 + β1xi1 + ...+ βp−1xi,p−1

= X>~β.

The link function in equation (3.2) is referred to as the canonical link.
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3.3.2 Poisson Regression Model for count data

Count responses are different from other discrete responses. This is due to the

fact that count responses cannot be expressed in the form of several propor-

tions. The range of count data is theoretically unbounded and the upper limit

of its number is infinite. The Poisson distribution plays an important role in

modelling count responses. The importance of the Poisson distribution to count

data is similar to the importance of the Normal distribution to continuous vari-

ables. Suppose that a random variable Y follows the Poisson distribution with

parameter λ, then the Poisson distribution will be given by:

f (Y )


λy exp−λ

y!
, λ > 0, y = 0, 1, 2, ...,

0, otherwise.
(3.6)

Equation (3.6) is determined by one parameter λ, which represents both the

mean and the variance of the distribution. There is no guarantee that all count

variables will always follow a Poisson distribution. Hence it is always impor-

tant to test whether or not a count variable satisfies the conditions of a Pois-

son law. This test is attained by combining the response that is larger than

some threshold into a single category. This results into a multinomial variable.

Therefore, the procedures for testing multinomial distributions are employed.

These tests are used to determine whether the Poisson model is appropriate

for describing the distribution of the original count variable. The procedure is

carried out as follows: Suppose {yi : 1 ≤ i ≤ n} are the count observations from

a sample of size n. Let m be the cut-point for grouping all responses yi > m and

describe the count in cell nj for the multinomial model obtained as follows:

nj =

number of {i : yi = j} if 0 ≤ j ≤ m− 1,

number of {i : yi > j} if j = m.

(3.7)
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We determine the probability for each value of the response yi under the null

hypothesis of a Poisson distribution model as follows:

pj =

f (j | λ) , 0 ≤ j ≤ m− 1,∑
y>m

f(j | λ), j = m,

(3.8)

where f (. | λ) is the Poisson distribution under the null hypothesis. The pa-

rameter λ changes from one observation to another. Therefore, this Poisson

distribution can no longer be used to address the variation in λ. The Poisson

regression model, commonly known as the Poisson log-linear regression model

is the extension of the Poisson distribution to account for such heterogeneity. In

Poisson log-linear model, the logarithm of the parameter λ is modelled, hence

the name Poisson log-linear model. The logarithm of λ is treated as a linear

function of explanatory variables. The Poisson regression model is a special

case of GLMs. We have count responses denoted by ~Y = (yi, ..., yn), the explan-

otory variables denoted by ~Xi = (xi1, xi2, ..., xip)
> from the ith subject (1 ≤ j ≤ n) .

The Poisson regression model is then specified as follows:

1. The random component.

Given the ~Xi, the response variable yi ∼ Poisson (µi) , i = 1, 2, ..., n.

2. Systematic component.

The conditional expectation of the response yi given the explanatory vari-

ables ~Xi is linked to the linear predictor by the function of the logarithm

of µi as follows:

log (µi) = ~Xi

>~β = β1xi1 + β2xi2 + ...+ βpxip, (3.9)

where:
~β = (β1, ..., βp)

> is the vector of parameters of interest.
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3. The link function.

If xi1 ≡ 1, then β1 will be the intercept. This Poisson log-linear model

can model the variation in the mean of a count response that is explained

by a vector of covariates. The Poisson distribution is a member of the

exponential family and the log function in (3.4) is the canonical link for

the Poisson model.

Parameter Interpretation

Let us first consider the case where xi in Poisson regression model in (3.9) is

an explanatory variable and β1 is the coefficient of the covariate. The mean

response for x1 = 1 is given by:

E (yi) = exp
(
β0 + ~̂x

~̂
β + β1

)
, (3.10)

where:
~̂
X
~̂
β is the vector ~X~β with the components of x1β1 removed. The mean response

for x1 = 0 is given by:

E (yi) = exp
(
β0 +

~̂
X>

~̂
β
)
. (3.11)

The ratio of the mean responses for (3.10) and (3.11) is equal to exp (β1) . When

x1 is continuous, the mean response for x1 = a is given by:

E (yi) = exp
(
β0 + ~̂x

~̂
β + β1a

)
. (3.12)

Therefore, for each unit increase in the covariate x1, the mean response is given

by:

E (yi) = exp
(
β0 + ~̂x

~̂
β + β1 (a+ 1)

)
. (3.13)
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Equation (3.13) is valid provided that the remaining components in the model

are fixed. This implies that the mean response per unit increase in x1 will be

given by:

E (yi) =
exp

(
β0 + ~̂x

~̂
β + β1 (a+ 1)

)
exp

(
β0 + ~̂x

~̂
β + β1a

) = exp (β1) .

When β1 is positive, higher values of x1 return higher mean responses, given

that all the other covariates are fixed. When β1 is negative, higher values of x1

return lower mean responses, provided that other covariates are fixed. When

β1 = 0, the response yi is independent of x1. Therefore, to test whether x1 is

significant is equivalent to testing whether its coefficient is 0. The coefficient

β1 will generally change under a different scale of x1. However, inferences such

as those based on p-values about whether a coefficient is 0 remains the same,

regardless of the scale used.

Inference about the model parameters

In this study, the method of maximum likelihood is used to estimate ~β for the

Poisson log-linear model used in this study. The log-likelihood function is de-

noted by:

`
(
~β
)

=
n∑
i=1

{yiµi − exp (µi)− log (yi!)} (3.14)

=
n∑
i=1

{
yi ~Xi

>~β − exp
(
~Xi

>~β − log (yi!)
)}

.

Hence, the score function is given by:

∂

∂~β
`
(
~β
)

=
n∑
i=1

{
yi ~Xi

>
− exp

(
~Xi

>~β
)
~Xi

>}
. (3.15)

Now, noting that the second order derivative is negative, we have:
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∂2

∂~β>
`
(
~β
)

= −
n∑
i=1

exp
(
~x>~β

)
~Xi
~Xi

>
< 0. (3.16)

Equation (3.15) is trivial. Therefore, the MLE of ~β is well defined. We also note

from (3.16) that the MLE of ~β is asymptotically distributed normally with the

mean ~β and variance 1
n
Σ, where Σ =I−1

(
~β
)

and I
(
~β
)

is the Fisher informa-

tion matrix. The asymptotic variance of the MLE of ~̂β is given by V ar
(
~̂
β
)

=

1
n
I−1
(
~β
)

, which is the inverse of expected Fisher information matrix. The Pois-

son model:

E
(

I
(
~β
))

=
(
µi ~Xi

~Xi

>)
,

where the Fisher information is specified by:

I
(
~β
)

=
1

n

n∑
i=1

µi~xi ~Xi

>
.

Expressing E
[
I
(
~β
)]

in a closed form can be difficult since it depends on the

distribution of xi. Hence for inference purposes, the observed version of the

Fisher information I
(
~β
)

is used with ~̂
β considered as an estimate of ~β. We

are interested in finding out if each covariate and the response variable are

related. We can attain this by testing whether or not the coefficients of the

covariates in the model are equal to zero. This method is more accurate when

there is only one term involving the variable in the model and the variable

is either continuous or binary. Another approach to this method is to use the

MLE of ~β and its asymptotic normal distribution. If the variable is categorical

and consists of many levels, dummy variables can be used to represent some of

the variables in the model. Testing the relationship between the covariates and

the response variable can also be attained through Wald, Score and Likelihood

ratio tests.
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Offsets in Poisson regression model

The observation period among the subjects of interest may vary in many stud-

ies. Hence these possible variations must be taken into account when the occur-

rence of count response is modelled. This accountability is important because

the subjects with longer period of observation are more likely to have more

events compared to subjects with shorter period of observation. Suppose we

have a sample of size n and ti is defined as the length of period of observation

for the ith subject. We also assume that the rate of event of the count response

of interest follows the Poisson distribution. Therefore, the rate of this event can

be modelled with Poisson regression model where the rate for the ith subject is

denoted by:

ri = exp
(
~Xi

>~β
)
.

When the period of observation (ti) is different among the subjects, the count

of event yi for each individual subject i also follows a Poisson distribution with

mean:

µi = tiri = exp
(
~Xi

>~β
)
.

Therefore, we can still model the mean response µi using Poisson regression

model as follows:

log µi = log ti + log ri (3.17)

= log ti + log
[
exp

(
~Xi

>~β
)]

= log ti + β0 + β1xi1 + ...+ βpxip− 1.

When the period of observation is the same for all the subjects, that is, ti = t,

the log ti is absorbed into β0. This integrates (3.17) back to the Poisson regres-

sion model. When the period of observation ti is different among the subjects,

log ti is taken as a covariate in the Poisson regression model. However, it is not
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treated the same way as other covariates because its coefficient is always one.

In GLM classification, log ti is called the offset.

Goodness of fit

It is essential to check how good the model is in terms of fitting the data. This

can be achieved by performing the goodness of fit tests. Among others, this

study discusses only two goodness of fit tests that can be used to assess how

good the Poisson regression model is in fitting the data.

1. Pearson’s chi-square statistic

Pearson’s chi-square statistic is the sum of the normalised squared differ-

ences between the expected and the observed counts of the response vari-

able. Under certain conditions, the Pearson chi-square statistic follows

a chi-square distribution. As a result, the Pearson’s chi-square statistic

presents a goodness of fit test that is more reliable. Suppose that yi is the

count response and µi is the fitted value under Poisson regression model,

where:

µi = exp
(
~Xi

> ~̂
β
)
.

Then, this Poisson regression model is obtained by substituting ~β with ~̂
β

in the mean response in (3.7). In Poisson distribution, the mean and the

variance are equal. Therefore, we can estimate the variance by µ̂i. So, the

normalised squared difference for the ith subject can be expressed as:

(yi − µ̂i)2

µ̂i
.

The Pearson’s chi-square statistic is given by:

χ2
p =

n∑
i=1

(yi − µ̂i)2

µ̂i
,

where:
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yi is the number of subjects observed, which fall into the ith pattern

(1 ≤ i ≤ n), and µ̂i is the number of subjects expected, which fall into the

ith pattern (1 ≤ i ≤ n). The Poisson distribution converges to a Normal

distribution when the mean approaches infinity. Therefore, if the sam-

pling variability of the estimate β̂ is excluded, then:

ŷi − µ̂i√
µ̂i
∼ N(0, 1),

provided that µ̂i −→ ∞ ∀ 1 ≤ i ≤ n. Hence for a fixed n, the Pearson

statistic asymptotically follows a chi-square distribution with n − p de-

grees of freedom. That is:

n∑
i=1

(yi − µ̂i)2

µ̂i
∼ χ2

n−p,

when µ̂i −→ ∞ ∀ 1 ≤ i ≤ n and p is the number of parameters to be

estimated from the sample. Hence the following hypothesis can be tested:

H0: the model is good.

H1: the model is not good.

2. Scaled Deviance statistic

The deviance statistic is defined as two times the difference between

the maximum log-likelihood and the value of the log-likelihood obtained

through the MLE method of the model parameter vector. Suppose that
~Y = (y1, y1, ..., yn)> is the response vector from the sample of size n. The

deviance statistic of the model is defined as:

D(~y, ~θ) = 2
[
`(~y, ~y)− `(~y, ~θ)

]
, (3.18)

where:

`(~y, ~y) = the log-likelihood given that the model gave a perfect fit.
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`(~y, ~θ) = the log-likelihood for the model of interest.

Now, for the Poisson log-linear regression model, the deviance statistic is

defined as:

D(~y, ~θ) = 2
n∑
i=1

[
yi log

(
yi
µ̂i

)
− (yi − µ̂i)

]
, (3.19)

where:

µ̂i = exp
(
~Xi

> ~̂
β
)
. When the Poisson log-linear regression model is correct,

its deviance statistic in (3.19) follows a chi-square distribution with n− p

degrees of freedom. That is, D(~y, ~θ) ∼ χ2
n−p. Similar to the method of using

Pearson’s chi-square, the following hypothesis can also be tested:

H0: the model is good.

H1: the model is not good.

The model is said to be good when there is no evidence of lack of fit in the

model. Now, to assess how good the Poisson log-linear model is in terms

of model fit, we divide the deviance statistic in (3.11) by the degrees of

freedom n − p. If the resulting value is significantly larger than 1, then

there is evidence of lack of fit. This approach of testing for goodness of

fit can be used for both Pearson chi-square statistic and scaled deviance

statistic.

Overdispersion in Poisson regression model

If the assumption of equality between the mean and the variance of the Poisson

distribution is violated, the Poisson regression model becomes overdispersed.

Observations that are based on time intervals of varying lengths and data clus-

tering are responsible for overdispersion.
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Detection of overdispersion

The two goodness of fit tests, Pearson’s chi-square and scaled deviance statis-

tics can be used to detect the chances of overdispersion occurrence. This is

attained by dividing the statistic by the degrees of freedom n − p. When the

resulting outcome is significantly greater than 1, then there are more chances

of overdispersion in the model. Hence overdispersion is detected. According to

some simulation studies, Pearson’s chi-square is found to be the better method

in detecting overdispersion (Hilbe, 2011).

Correction of overdispersion

There are two ways in which overdispersion can be corrected.

1. If the detected overdispersion in Poisson regression model is due to the

observations that are based on time intervals of varying lengths, then the

best method for correcting this kind of overdispersion is using the vari-

ance estimate to account for overdispersion. This method is not discussed

in detail in this study.

2. If the source of overdispersion is data clustering, and the nature of this

clustering is well understood, then the best method for correcting this

kind of overdispersion is the development of the refined models specified

in the next subsections.

3.3.3 Negative Binomial model

The Negative Binomial model is appropriate for the correction of overdisper-

sion if the occurrence of overdispersion is due to the fact that observations are

based on the unknown time intervals of different lengths. When developing

this model, the mean (µi) of Poisson distribution is no longer treated as the

parameter. However, the mean (µi) for each subject is treated as a random
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variable. Heterogeneity is then allowed or introduced since a specific distri-

bution has been defined for µi. For instance, let us assume that µi follows a

Gamma distribution with a scale parameter θi and shape parameter αi. This

Gamma distribution is denoted by:

f(µi) =
(µi)

αi−1 exp(−µiθi/(1− θi))
Γ(αi)((1− µi)/µi)αi

. (3.20)

The Gamma distribution in (3.20) is integrated in order to obtain the marginal

distribution for count data. This marginal distribution turns out to be the

Negative Binomial distribution denoted by:

f (yi | θiαi) =
Γ(yi + 1/αi)

yi!Γ(1/αi)

(
1

1 + αiθi

)1/αi ( αiθi
1 + αiθi

)yi
, αi > 0, y = 0, 1, ..., (3.21)

where:

Γ(αi) is the Gamma function,

αi is the number of successes,

θi is the probability of success, and

yi is the response variables.

The mean and variance of the Negative Binomial distribution are respectively

given by

E (yi | µiαi) = θi

and

var (yi | µiαi) = θi(1 + αiθi).

The Negative Binomial model is also a special case of the GLM. This model is

specified by a systematic component given by:

log (µi) = log
[
E
(
yi | ~Xi

)]
= ~X>i

~β, 1 ≤ i ≤ n. (3.22)
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The variance of the Negative Binomial in (3.22) is always larger than the mean,

provided that αi 6= 0. This adds a term αiθ
2
i to the variance of a Poisson distri-

bution. This added quadratic term accounts for overdispersion in an overdis-

persed Poisson regression model, hence αi is known as the dispersion parame-

ter. As αi −→ 0 in (3.21), the NB distribution gets closer to the Poisson distri-

bution. As αi increases, the overdispersion is corrected.

Inference for the NB model:

We can make inference using the Maximum Likelihood (ML) because the NB

log-linear model belongs to the GLMs family. The log-likelihood for this model

is given by:

`
(
~β, αi

)
=

n∑
i=1

log fNB

(
yi | ~Xi, ~β, αi

)
(3.23)

=
n∑
i=1

{
yi!

[
log g−1

1

(
~X>1i
~β
)
− log

(
1

αi
+ g−1

1

(
~X>1i
~β
))]}

+
n∑
i=1

[
αi log

(
1− αig−1

1

(
~X>1i
~β
))

+ log Γ(yi + 1/αi)
]

−
n∑
i=1

(log yi!− log Γ(1/αi)) .

The MLE ~̂
θ of ~θ = ( ~β>, αi)

> and its associated asymptotic distribution is ob-

tained by maximising (3.23). To determine whether there is overdispersion in

the data we can test for the stated hypothesis:

H0 : αi = 0 vs H1 : αi 6= 0 for i 6= j

However, we know that αi > 0 from (3.21). Hence, αi = 0 under H0 is a bound-

ary point. Therefore, the inference based on the asymptotic distribution of the

MLE α̂i of αi cannot be valid since 0 is not an inclusive point of the parame-

ter space. In this case, inference about this boundary point can be based on a
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modified asymptotic distribution. When using this approach to test for the null

hypothesis (H0 : αi = 0), the modified asymptotic distribution is a mixture of a

point mass at 0 and the non-negative half of the asymptotic normal distribu-

tion of α̂i is gathered into a point mass centered at 0 naturally. This is due to

the fact that negative values of αi are not allowed under H0.

3.3.4 Zero-inflated Poisson and Zero-inflated Negative Bi-

nomial models

In cases where overdispersion is caused by the presence of too many zeros in

the data, the NB regression model does not correct overdispersion when it is

employed. However, models that can be used to correct this kind of overdis-

persion are Zero-Inflated Poisson (ZIP) and Zero-Inflated NB (ZINB) models.

These models account for structural zeros, better known as excess zeros, which

are found within the data of interest. ZIP and ZINB models use the mixture

distribution notations. Since ZIP and ZINB are closely related, in this study

we will only discuss the ZIP regression model. This model is based on a mix-

ture of Poisson distribution with parameter µ and a degenerate distribution of

a constant 0. The mixture distribution is given by:

fZIP (Y | ρ, µ) = ρf0(y) + (1− ρ)fp (y | µ) , y = 0, 1, ... (3.24)

where:

f0 (y) is the probability distribution function of a constant 0, and fp (y | µ) is

the Poisson distribution with the parameter µ. Consider the distribution of a

constant 0, that is, f0(0) = 1 and f0(y) = 0, ∀ y 6= 0. Hence we can write (3.24)

as:

fZIP (Y | ρ, µ) = ρf0 (y) + (1− ρ) fp (y | µ) , y = 0, 1, ... (3.25)
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where:

f0 (y) is the probability distribution function of a constant 0, and fo (y | µ) is

the Poisson distribution function of µ. Consider the distribution of a constant

0 with mass point at 0, and f0 (y) = 0, ∀ y 6= 0. Hence we can write (3.25) as:

fZIP (y | ρ, µ) =

ρ+ (1− ρ)fp (0) if y = 0,

(1− ρ) fp (y | µ) if y > 0.

(3.26)

Therefore, at y ≤ 0, the Poisson distribution fp (0 | µ) is inflated by ρ to address

the excess zeros in the model. In this case the mixture distribution is given by:

fZIP (0 | ρ, µ) = ρ+ (1− ρ) fp (0 | µ) . (3.27)

The mixture distribution fZIP (0 | ρ, µ) must be constrained between 0 and 1

because of the probability at y ≤ 0, which is the probability for zero. Hence

−fp (0 | µ)

1− fp (0 | µ)
≤ ρ ≤ 1

=⇒ 1

1− exp(µ)
≤ ρ ≤ 1.

The number of zeros become less than expected in a Poisson distribution when:

−fp (0 | µ)

1− fp (0 | µ)
≤ ρ ≤ 1.

This is known as zero-deflated Poisson distribution. The Poisson distribution

is said to be truncated at zero when there are no excess zeros. The truncated

Poisson distribution is obtained when:

ρ =
−fp (0 | µ)

1− fp (0 | µ)
.
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In this case the mixture distribution is given by:

fZIP (y | ρ, µ) =

0, y = 0,

µy

[1−exp(−µ)]y!
exp (−µ) , y > 0.

(3.28)

The number of zeros become more than expected in a Poisson distribution

fp (y | µ) when 0 < ρ < 1. In this case ρ represents the number of the excessive

zeros. The mixture distribution fZIP (y | ρ, µ), is defined by the parameters ρ

and µ. The mean and the variance of ZIP are given by E(y) = (1 − ρ), and

var(y) = µ(1− ρ)(1 + ρµ), respectively. E(y) < var(y) and E(y) < µ for 0 < ρ < 1.

In ZIP regression model, both ρ and µ must be modelled as the independent

variables ~Xi. This kind of a model uses log link to relate µ to the variables

while the logit link is used to relate ρ to the variables. In ZIP regression model,

the parameters ρ and µ may have covariates. In this case, we can use µi and

vi to represent two subsets of the covariates ~Xi connected to the parameters ρ

and µ, respectively. The ZIP regression model is defined by fZIP (yi | ρi, µi) with

logit(ρi) = ~ui
> ~βu 1 < i < n ∀ρi and log(µi) = ~vi

> ~βv 1 < i < n ∀µi. The mean

response and excess zeros are then modelled simultaneously in ZIP. Therefore,

the model has one more link function for modelling the effect of independent

variables on the excess zeros. Hence the excess zeros lead to biased estimates

in ZIP regression model. The likelihood method is used for inference of ZIP

regression model. Suppose the vector parameter ~θ =
(
~βu
>
, ~βv
>)>

. Then, the

distribution function for this ZIP model is given by:

fZIP

(
yi | ~xi, ~θ

)
= ρif0 (yi | ρi) + (1− ρi) fp (yi | µi) , (3.29)

where:

logit(ρi) = ~̂ui ~βu
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and

log(µi) = ~̂vi ~betau, 1 < i < n.

Hence the log-likelihood function is given by:

`
(
~θ
)

=
n∑
i=1

log [ρif0 (yi | ρi) + (1− ρi) fp (yi | µi)] . (3.30)

3.3.5 Zero-Truncated Poisson and Zero-Truncated Nega-

tive Binomial regression models

Zero-Truncated Poisson (ZTP) and Zero-Truncated Negative Binomial (ZTNB)

regression models are suitable for modelling zero-truncated data. These mod-

els are developed the same way as the Poisson and the Negative Binomial re-

gression models. However, the ZTP and ZTNB models are modified to accom-

modate such zero-truncated count data. For a count variable say y to follow a

truncated Poisson model, the variable should follow a Poisson distribution with

0 exclusive. The ZTP distribution is defined as:

fztp (y | µ) =
λY exp(−λ)

y! [1− exp (−λ)]
, y > 0, y = 1, 2, ... (3.31)

Hence, ZTP regression model is described by:

yi| ~Xi ∼ ZTP (µi), log(µi) = ~X>i β, 1 ≤ i ≤ n. (3.32)

Inference for β under the ZTP model is also based on the MLE method. When

we replace the ZTP distribution in (3.32) with the ZTNB distribution given by:

fZTNB (y | µ, α) =
Γ(y + 1/α)

y!(1/α)

[
1−

(
1

1+αµ

)1/α
] ( αµ

1 + αµ

)y (
1

1 + αµ

)1/α

, y = 1, ...,(3.33)
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we obtain the ZTNB model. This model also employs the MLE method for

inferences about the model parameters.

3.3.6 Hurdle model

The Hurdle model is the model developed by modelling between-group differ-

ence and within-group difference. Within-group refers to the zero’s that are at

risk of being treated as positive count responses while between-group refers to

the zero’s that are not at risk of being treated as positive count responses in

data modelling. The Hurdle model is specified as:

zi | ~Xi ∼ Bernoulli(pi), f(pi) = ~X>i
~β,

yi | zi = 0, ~xi ∼ ZTP (µi), g(µi) = ~X>i
~β, 1 ≤ i ≤ n, (3.34)

where:

zi = between-group difference.

yi = positive count response.

Under the assumptions in (3.34), the likelihood function of this model is the

product of the likelihood function of the binary component with ~α as the only

parameter vector and the likelihood for ZIP with ~β as the only parameter vec-

tor. Unlike the zero-inflated and zero-truncated models, the Hurdle model is

conducted separately for each component. This model addresses a special case

of the two-component mixture excluding sampling zero.

3.3.7 Maximum Likelihood Estimation method

Inference for parametric models is based on Maximum Likelihood estimation

method. Suppose that f
(
~Xi, ~θ

)
is the probability that Xi = x, where ~θ is the

parameter vector. Suppose that xi represents a sample that is independently
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and identically distributed for 1 ≤ i ≤ n. The likelihood function for this sample

is then given by:

L(~θ) =
n∏
i=1

f
(
~Xi, ~θ

)
.

For inference, the logarithm of l(θ), also known as the likelihood function is

always used. This function is given by:

`
(
~θ
)

=
n∑
i=1

log f
(
~Xi, ~θ

)
, ~θ ∈ D, (3.35)

where:

D = the domain of ~θ.

The Maximum Likelihood Estimate (MLE) of ~θ denoted by ~̂
θn is obtained if the

maximum of the likelihood function is obtained at an interior point ~̂
θn of the

domain of ~θ. Hence the derivative of the logarithm of L(~θ) with respect to ~θ

must be 0 at ~̂θn. Then ~̂
θn is achieved by solving the score function denoted by:

W
(
~θ
)

=
∂

∂~θ
`(θ) =

n∑
i=1

1

f( ~Xi, ~θ)

∂

∂~θ
f( ~Xi, ~θ) = 0. (3.36)

The MLE is consistent and asymptotically normal, ~̂θn ∼ N(~θ, 1/n
∑

), where∑
= I−1(~θ) and

I(~θ) = −E
[

∂2

∂~θ∂~θ>
log f(~xi, ~θ)

]
.

I(~θ) is called the Fisher’s Information matrix. The MLE is also considered to

be asymptotically efficient. The hypothesis concerning the parameter vector ~β

can be expressed as: H0 : c~β = a vs H1 : c~β 6= a,

where:

c = some known full rank k × 1 matrix with p(> k) denoting the dimension of
~β.

a = a known k × 1 constant vector.

Both Wald and likelihood tests can be used to examine the general linear hy-



Methodology. 40

pothesis.

3.3.8 Canonical link function

The canonical link function is a natural link function to the family of distri-

butions. For instance, in our Poisson regression model, we said that the link

function is the log function. The general form of a link function g(.), to a linear

predictor ηi is defined as:

g(µi) = ηi = β0 + β1xi1 + ...+ βpxip, (3.37)

where:

g(µi) = the special case of g(.) and

ηi = the linear predictor.

As shown by (3.37), g(.) works as a link between the RHS and LHS of the equa-

tion. Therefore, it is clear that the canonical link functions are derived directly

from the density of a specified GLM. When the link functions are different, the

interpretations of parameters also differ. Hence the selection of the link func-

tions in the model is very critical. For canonical links, the derivative of the link

is the same as the inverse of variance. The link function must be differentiable

and monotonic. Hence (3.37) can also be written as:

µi = g−1(ηi) = g−1 (β0 + β1xi1 + ...+ βpxip) . (3.38)

If we choose g = h, where θ = h(µ), then

θi = h(µi) = h(h−1(ηi)) = ηi = β0 + β1xi1 + ...+ βpxip, (3.39)

is the canonical link function, which ensures that the systematic component

is modelling the parameters of interest. The canonical links also simplify the

derivation of the MLE function, ensure that most of the assumptions of linear
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regression model are not violated and also ensure that µ remains within the

range of the response variable.

3.3.9 Exponential class

A one-parameter family of densities f(.; θ) that can be expressed in the form:

f(x, θ) = a(θ)(x) exp {c(θ)d(x)} for all x, all θ, (3.40)

for a suitable choice of functions, a(.), b(.), b(.) and d(.) is said to belong to expo-

nential family class. Hence a k-parameter family of densities f(.; ~θ) that can be

expressed in the form:

f(x; ~θ) = a(~θ)b(x) exp

{
k∑
i=1

ci(~θ)di(x)

}
for all x, all ~θ, (3.41)

for a suitable choice of functions, a(.), b(.), b(.) and d(.) is said to belong to the

exponential family class.

3.4 Bayesian methods

The cornerstone of Bayesian framework is the theorem developed by Reverend

Thomas Bayes. The framework combines the knowledge about the model pa-

rameters of a distribution of interest and the information about those param-

eters contained in the observed data. This combination is attained through

the utilisation of Baye’s theorem. The theorem results from an interconnec-

tion between the distribution’s unconditional and conditional probability func-

tions. Due to the uncertainties of the true values of parameters in the classical

framework, the Bayesian framework considers the parameters as the random

variables. Suppose that the parameter vector ~θ = (θ1, ..., θI) is a random vari-

able and ~Y = y1, ..., yJ denote the variable depending on ~θ. The parameter ~θ is
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unobservable. However, the inference about this parameter is based on Baye’s

theorem when given the observed data ~Y . Bayesian universe is made up of

all possible ordered pairs of the parameter vector ~θ and all possible values

of the observed random variable ~Y . These pairs can be generally denoted by

(θi, yj) for i = 1, ..., I and j = 1, ..., J. Each event (θ = θ1), ..., (θ = θJ) partitions

the Bayesian universe even though the events that have occurred remain un-

known. Each event (y = y1), ..., (y = yJ) is always observed. Hence the events

that have occurred are always known. Baye’s theorem in this context is given

by:

P (~θ | ~Y ) =
P (~Y | ~θ) ∗ P (θ)

P (~Y )
, (3.42)

where:

P (~θ | ~Y ) = the posterior probability distribution that represents the knowledge

about the parameters after inference.

P (~θ) = the prior probability distribution, which represents the prior knowledge

about the parameter ~θ before inference.

P (~Y | ~θ) = the likelihood function that represents the relationship between the

observed data and the parameter ~θ.

P (~Y ) = the marginal likelihood function which represents a normalisation fac-

tor.

We change the notations in (3.42) for simplicity. Suppose that f(.) is a proba-

bility distribution encompassing the observable random variable ~Y , and g(.) be

the probability distribution containing only the unobservable random variable

parameter ~θ. Hence Baye’s theorem in (3.42) will be given by:

f(~θ | ~Y ) =
f(~Y | ~θ) ∗ g(θ)

f(~Y )
, (3.43)
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where:

f(~Y ) is the marginal distribution of a random variable ~Y , given by:

f(~Y ) =

∫
f(~Y | ~θ) ∗ g(~θ)dθ. (3.44)

Now, f(~Y ) in (3.44) does not depend on the parameter ~θ because it is obtained

by averaging over all the possible values of ~θ. Hence (3.43) can be written as:

f(~θ | ~Y ) ∝ f(~Y | ~θ), (3.45)

which indicates the posterior density of ~θ up to some unknown constant. There-

fore, in the Bayesian universe, each joint probability can be found by using the

multiplication rule denoted by:

f(θi | yj) ∝ g(θi) ∗ f(yi | θi). (3.46)

3.4.1 Prior distributions

Prior distributions represent the prior knowledge about the parameters before

the data are observed. This distribution serves as a key part of Bayesian infer-

ential processes. Therefore, the strength of a posterior distribution depends on

the strength of a prior distribution and the magnitude of the data available.

Informative priors

An informative prior distribution is a distribution for which the prior beliefs

are significant in transforming the information contained in the data observed.

Hence the conclusions about the model parameters based on the observed data

and conclusions based on the prior distribution are different. Usually, the

method used to select an informative prior distribution include the selection

of a distribution for the unknown parameters and specify the parameters in
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the selected distribution which reflect the prior knowledge about the unknown

parameters. This implies that, the selected prior distribution must reflect the

prior knowledge about the parameters. This is more important when selecting

prior distributions for location parameters. Informative priors are usually re-

ferred to as conjugate priors. These priors only exist when the distribution that

represent the prior knowledge belong to an exponential family class discussed

in previous section by (3.40) and (3.41). In the conjugate family, the likelihood

and the prior distribution functions are identical and the prior and the poste-

rior distributions come from the same family of distributions. However, this

is valid when observations are fixed and the parameters over all the possible

values are different. Based on (3.22), we notice that the function b(x) is only

a scale factor. This implies that this function does not have any association

with the spread of data. Therefore, b(x) does not affect the shape of the prior

distribution. For this reason, b(x) can be absorbed into a constant of propor-

tionality. The conjugate prior coming from one-dimensional exponential family

of densities take the identical form as the likelihood function denoted by:

g(θ) ∝ a(θ)mec(θ)∗n, (3.47)

where:

m and n are the constants that actuate the shape of the prior distribution.

Noninformative priors

Noninformative prior distributions are used when the prior knowledge about

the parameters is ambiguous or not clear. Hence it is difficult to translate such

knowledge into an informative prior. This kind of priors supply information

that is clear and allow the information from the likelihood to be interpreted

probabilistically. In most cases, noninformative priors are selected to be uni-

form probability distributions or the Jefrey’s prior. The uniform probability
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distribution selected as a prior probability distribution must be defined on the

support of the parameter of interest. The noninformative priors have less im-

pact on the posterior distribution compared to the observed data. These priors

are also known as vague, diffuse, flat, weak, or reference prior distributions.

3.4.2 Bayesian linear regression models (BLMs)

This study covers univariate linear regression model. This model strives to ex-

plain variability in one dependent variable through the independent variables.

This is achieved by assuming a linear relationship between these variables.

Let us assume that the dependent variable ~Y has n observations. The model

can be written as:

yi = β0 + β1xi1 + ...+ βk−1xi,k−1 + εi i = 0, ..., n, (3.48)

where:

yi is the dependent variable, i = 1, ..., n,

xik is the independent variable, p = 1, ...p− 1,

β0 is the regression intercept,

βk is the regression coefficients, p = 1, ..., p− 1, and

εi is the regression disturbance.

The randomness of the relationship between the independent and dependent

variables originates from the regression disturbance εi. The variability of the

dependent variable explained by xk, k = 1, ..., k−1 is represented by β0 +β1xi1 +

... + βkxi,k−1. The distributional assumption about the source of randomness εi

must be made. This is a way in which we can be able to describe the regression

disturbance (εi). For simplicity, we assume that εi is independent and identi-

cally distributed with N(0, σ2). This implies that:

yi ∼ N(µi, σ
2), (3.49)
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where:

µi = β0 + β1xi1 + ... + βkxi,k−1. The expression in (3.49) can also be written in

matrix form as:

~Y = X~β + ~ε, (3.50)

where: ~Y is an n ∗ 1 vector denoted by:

~Y =


y1

y2

...

yn

 ,

~β is a k ∗ 1 vector denoted by:

~β =


β1

β2

...

βn

 ,

X is an n ∗ k matrix denoted by:

X =


1 x1,1 . . . x1,k−1

1 x1,2 . . . x2,k−1

...

1 x1,n . . . xn,k−1

 ,
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and ~ε is a n ∗ 1 vector denoted by:

~ε =


ε1

ε2
...

εn

 .

The assumed distribution for the regression disturbance can also be written in

a matrix form as:

~ε ∼ N(~0, σ2In),

where: In is an n ∗ n identity matrix. Referring to the model presented in

(3.50) we must estimate the parameters ~̂β and σ2. The likelihood function for

the model is given by:

L(β0, β1, ...βk, σ | ~Y,X) = (2πσ2)
−
n

2 ∗ (3.51)

exp

{
−1

2σ2

k∑
i=1

(yi − β0 − β1xi1 − ...− βk−1xi,k−1)2

}
.

We can also write (3.51) in a matrix form as:

L(~β, σ | ~Y X) = (2πσ2)
−
n

2 exp

{
−1

2σ2

(
~Y − X~β

)> (
~Y − X~β

)}
.

Equation (3.51) represents a multivariate normal distribution.

Estimation of BLMs

The Bayesian method of estimation accounts for the estimation risk of the pa-

rameters and also includes prior information to the model. We consider two

prior scenarios:

• Noninformative prior
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The joint noninformative conjugate prior for ~β and σ2 is given by:

g(~β, σ2) ∝ 1

σ2
, (3.52)

where:

the coefficients of regression can take any real value, −∞ < βp < ∞ for

p = 1, ..., k and the disturbance variable is nonnegative, i.e σ2 > 0. To

obtain the posteriors of the model parameters, the likelihood in (3.51)

and the prior in (3.52) are combined as:

f(~β | X, σ2) ∼ N(
~̂
β, (x>x)−1σ2), (3.53)

where:
~̂
β is identical to the Maximum likelihood estimate of the classical method

and (x>x)−1σ2 is the covariance matrix of ~̂β. We note that the expression

in (3.31), the posterior distribution of ~β conditional on σ2 is recognised

to follow a multivariate normal distribution. The posterior distribution

of the regression disturbance (σ2) follows an inverted chi-square distribu-

tion. This Posterior distribution is given by the inverse of:

p(σ2 | ~Y ,X) = χ2(n− k, σ̂2), (3.54)

where:

σ2 is identical to an estimate obtained through the MLE method. The

marginal distribution of ~β is obtained by integrating (3.53) which results

in:

p(~β, σ2 | ~Y ,X) = P (~β | ~Y ,X, σ2)P (σ2 | ~Y ,X), (3.55)

with respect to σ2 such that the marginal posterior distribution of ~β fol-
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lows a multivariate student’s t-distribution with a kernel given by:

P (~β | ~Y ,X) ∝ (n− k) + (~β − ~̂
β)>

X>X
σ̂2

(~ββ̂)
−n
2 . (3.56)

The marginal distribution of the vector ~β becomes more heavily tailed

when σ2 is integrated. This shows the uncertainty about the true value of

σ2. Its variance increases with the term v
(v−2)

as follows:

∑
~β

σ̂2(X>X)−1 v

v − 2
, (3.57)

where:

v = n − k is the degrees of freedom for the distribution of ~β. This is at-

tained although the mean vector of ~β is not changed. Each standardised

coefficient of the regression model follows a student’s t-distribution with

n − k degrees of freedom as its marginal posterior distribution. This im-

plies that if the parameter of interest is βk only, then:

(
βk − β̂k
(ηk,k)1/2

| ~Y ,X
)
∼ tn−k, (3.58)

where:

ηk,k is the kth diagonal element of σ̂2(X>X)−1 and β̂k is the estimate of βk.

• Informative conjugate prior

The natural conjugate prior reflects the available prior knowledge. They

are more useful when the regression disturbance is assumed to follow

the normal distribution. This helps in finding the convenient analytical

posterior results. Hence we assume that ~β has a normal prior distribution

given σ2, which follows an inverted chi-square prior distribution. That is:

(~a | σ) ∼ N(~β0, σA)
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and

(σ2) ∼ Inv − χ2(v0, c
2
0).

The parameters to be determined include β0, v0 and c2
0. A is the scale ma-

trix which is usually selected to be τ−1(X>X)−1. The purpose for this selec-

tion is to obtain a prior covariate that is identical to the one obtained via

MLE of ~β up to a scaling constant. The degree of confidence that the mean

of ~β is ~β0 can be adjusted through the distinction of the scale parameter

τ. We fix the prior mean ~β0 at some default value to affirm it. However,

that is not important if more specific prior information is available. The

following prior simple data can be used to affirm the parameters of the

inverted chi-square distribution:

v0 = n0 − k

and

c02 =
1

v0

(
~Y0 − X0

~̂
β0

)> (
~Y0 − X0

~̂
β0

)
,

where the subscript 0 represents the prior data sample. In this case, the

posterior distribution of the model parameter, ~β and σ2 and prior distri-

bution have the same form. The posterior distribution for the parameter

vector ~β is given by:

p(~β | ~Y ,X, σ2) = N
(
~β∗,Σ~β

)
, (3.59)

where:
~β∗ =

(
A−1 + X>X

)−1 (
A−1~β0 + X̄X~̂β

)
,

is the posterior mean, and

Σ~β = σ2
(

A−1 + X>X
)−1

,
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is the posterior variance. Although the posterior and the prior have the

same form, their parameters are updated to show the observed data and

prior beliefs. The mean of the posterior distribution is equal to the weighted

mean of the prior distribution. The inverted chi-square distribution of σ2

is given by:

p(σ2 | ~Y ,X) = Inv − χ2(~v∗,c2∗), (3.60)

and the parameters of the posterior distribution of σ2 are given by:

~v∗ = v0 + n

and

~v∗c2∗ = (n− k)~̂σ2 +
(
~β0 − ~̂

β
)>

H
(
~β0 − ~̂

β
)

+ v0c
2
0,

where the parameters of the posterior distribution of ~β is obtained by

integrating (3.59) which results in:

p(~β | ~Y ,X, σ2) ∝ (~v∗ + (~β − ~β∗)>Q(~β − ~β∗))−1/2, (3.61)

where:

Q =

(
A−1 + X>X

)
C2 .

The marginal posterior distribution for each regression coefficient βk is

given by: (
βk − β∗k
(qk,k)1/2

| ~Y ,X
)
∼ tv0+n−k,

where:

qk,k is the kth element of q−1, and

βk is the kth component of ~β∗.
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Prediction

Our interest is to predict the response variable Y. Assume that we want to pre-

dict Y h steps ahead in time. We denote the future observations by h ∗ 1 vector
~̃Y = (yT+1, yT+2, ..., yT+h). Suppose that the future observations of the explana-

tory variables are known and denoted by X̃. Hence the predictive density is

given by:

P (~̃Y | ~Y , X̃,X) =

∫ ∫
P (~̃Y | ~β, σ2X̃)P (~β, σ2 | ~Y X)d~β, σ2, (3.62)

where:

the joint posterior distribution of ~β and σ2 is denoted by p(~β, σ2 | ~Y ,X). When

using a noninformative prior, the predictive distribution is given by:

P (~̃Y | ~Y , X̃,X) = t(n− k, X̃, ~̂β,S), (3.63)

where:

S = σ̂2(Ip + X̃(X>X)−1X̃
>

)

and ~β is the posterior mean.

When using the informative conjugate prior, the predictive distribution is given

by:

P (~β∗ | ~Y , X̃,X) = t(v0 + n, X̃, ~β∗,V), (3.64)

where:

v = c2∗(Ip + X̃(AX>X)−1X̃
>

),

and ~β∗ is the posterior mean. Both the prior and posterior distribution in this

case come from the same family of Normal distribution. We notice that the pre-

dictive distribution under noninformative and informative priors both follow a

multivariate Student’s t-distribution. Therefore, each component of ~̃Y follows
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a univariate Student’s t-distribution. Suppose we are interested in the com-

ponent yk. When using the noninformative prior, the predictive distribution is

given by: (
Ỹk − X̃

K
β̂k

s
1/2
k,k

)
∼ tn−k,

where X̃
K

is the kth row of X̃, and sk,k is the kth diagonal element of S. When

using the informative conjugate prior, the predictive distribution is given by:

(
Ỹk − X̃

K
β∗k

v
1/2
k,k

)
∼ tv0+n−k,

where:

vk,k is the kth diagonal element of the scale matrix V.

3.4.3 Computational approach to the Poisson regression

model

The equations for the likelihood, prior and posterior distributions are not shown

because the Markov Chain Monte Carlo (MCMC) algorithms are independent

of the functional form of the posterior distribution. In the computational frame-

work, the sample is drawn from the actual posterior distribution. However, it

is easy to find the shape of the posterior distribution rather than its actual

distribution. Metropolis-Hastings algorithm is the generalisation of other al-

gorithms including Gabbs sampler algorithm. Hence this study is going to use

Metropolis-Hastings algorithm with an independent candidate density to find

the shape of the posterior distribution. The candidate density to be used must

be very close to the posterior distribution. Therefore, many candidate densities

will be accepted. Heavy tails of the candidate density as compared to the tails

of the posterior distribution enables quicker movements within the parameter

space. This helps in obtaining shorter burn-in and also use less thinning. The
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starting point of the simulation process is the maximum likelihood vector ~β

and the matched curvature matrix v. The likelihood function is approximated

by a multivariate normal distribution with the mean ~β and the covariance ma-

trix v. Informative prior for ~β can be used. This prior follows a multivariate

Normal[~b0,v0] distribution. The approximate posterior distribution is given by:

g(~β | ~Y ) ∝ g(β)f(~Y | ~β). (3.65)

Both the prior and the likelihood functions follow a multivariate normal distri-

bution. This implies that the posterior distribution also follows a multivariate

noramal distribution. Hence the updated constants will be given by:

v−1 = v−1
0 + v−1 −→ v−1

0 = 0,

and
~b1 = v1v−1

0
~b0 + v1v−1.

A certain process is used to produce a candidate density from a multivariate

Student’s t-distribution. This distribution has a low degrees of freedom that

matches the approximate posterior distribution. The process is outlined as:

• We use Cholesky decomposition to determine the lower triangular matrix

L such that:

LL> = V1.

If we produce the matrix Z, a multivariate normal(~0, I) distribution of the

right dimension by piling the independent normal(0, i2) variables, then

the posterior distribution will be given by:

~w = ~b1 + LV. (3.66)

This posterior distribution follows a normal(~b1,v1) distribution.
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• In this case we use the same transformation to get the candidate vec-

tor. However, we pile independent student’s t-distribution random vari-

ables with low degrees of freedom to form a multivariate student’s t-

distribution denoted by t. The candidate vector is given by:

~β = ~b1 + Lt.

The candidate vector ~β follows a multivariate student’s t-distribution t(~b1,v1).

The candidate density ~β matches the posterior close to the mode and also

have heavier tails than the posterior. This process produces a random

sample of candidates. This makes the movements within the parameter

space to be quicker. All the candidates are accepted when the candidate

density is identical to the true posterior distribution. In this case, burn-in

and thinning are not required to obtain the random sample for inferences.

However, the candidate density is usually not identical to the true poste-

rior in practice although they are very similar. The similarity is attained

because the shape of the candidate density matches the shape of the true

posterior at the mode. Therefore, a good quantity of the candidates will be

accepted. These candidates possess heavy tails. Hence movements within

the parameter space will be very fast. Therefore, the burn-in will not be

long and not much thinning will be required to obtain the approximate

random sample from the posterior distribution. This sample is drawn

from a true posterior distribution not the approximate posterior. Hence

the credible intervals from this sample form a good representation of the

claimed coverage probability provided that the sample size is also a good

representative of the population it is drawn from.
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The multivariate normal conjugate prior

The prior for the parameter vector follows a multivariate normal distribution,

N(~b0,v1), where:

~b0 =


b0

b1

...

bp


and

v0 =


s2

0 0 . . . 0

0 s2
1 . . . 0

...
... . . .

...

0 0 . . . s2
p

 .

The predictor variables must be centred at their corresponding means. We

rearrange the explanatory variables as xij = xij − x̄.j, where xij is the jth value

of the predictor for the ith observation and x.j is the sample average of the jth

prediction. Hence it is easy to convert our prior knowledge about the mean of

an average observation to the prior for the intercept ~β0 because the average

observation affirms that all predictor values are equal to 0. This conversion is

achieved by matching the percentiles.

Normal prior for intercept

Let us assume that we have 95% prior probability confidence that the mean of

an average observation lies between l and u. We determine the normal(b0, s
2
0)

prior that matches this prior belief. This results in the following simultaneous

equations:

l = eb0−1.96s0
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and

u = eb0+1.96s0 .

The solution for the simultaneous equations is given by:

b0 =
log(l) + log(u)

2

and

s0 =
log(u)− log(l)

3.92
.

Normal prior for the slope

We now determine normal(bj, s2
j) prior for the slope coefficient βj. This is at-

tained by matching our prior belief about the ratio of the mean of the average

observation for one unit increase in cij compared to the average observation.

We have different procedures for the two cases presented:

• Case1: xij is a (0,1) indicator variable

The average observations are in groups labelled 0 and 1. Two percentiles

of the prior belief distribution of the ratio in group 1 to the mean of the

average distribution in group 2 are matched. Let us assume we have 95%

prior probability confidence that the ratio is between v and w. This results

in the two equations:

v = ebj−1.96sj

and

w = ebj+1.96sJ .

The two equations solved simultaneously result with solutions:

bj =
log(v) + log(w)

2
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and

sj =
log(w)− log(v)

3.92
.

• case2: xj is a continuous variable

The prior belief about the ratio of the mean of the average observations

where xj is increased by one standard deviation sx to the mean of the

average observations is matched. Let us assume that we have 95% prior

probability confidence that the ratio is between v and w. This produces

the two equations:

v = e(bj−1.96sj)sx

and

w = e(bj+1.96sj)sx ,

which gives the simultaneous solutions:

bj =
log(v) + log(w)

2sx
,

and

sj =
log(w)− log(v)

3.92sx
.

3.4.4 Computational Negative Binomial regression

Through the MCMC methods we use the Gibbs sampler for the NB regression

model. This model is derived from the Poisson model to account for overdisper-

sion which usually occurs in count data. Suppose the responses are indepen-

dent. Then:

Yi ∼ NegBin(λi, r)

where:

Yi = the response variables for i = 1, 2, ..., n.

r = the overdispersion parameter.
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The expectation is modelled as:

log(λi) = X>i ~β,

which implies that

λi = exp(X>i ~β),

where:

X = the matrix of regressors.
~β = the parameter vector.

The conditional likelihood of Yi given wi is defined as:

L(Yi | r, ~β, wi) ∝ exp
{
kiX>i ~β − (X>i ~β)2/2

}
(3.67)

∝ exp

{
−wi

2

(
yi − r
2wi

− X>i ~β
)2
}
,

where:

ki = yi−r
2

. Exploiting property 1 of the poly-Gamma distribution, (3.67) can be

written as:

l(Yi | r, ~β, wi) = ekiηi
∫ ∞

0

e−ψiη
2
i /2p(ψi | r, Yi, 0)dψi, (3.68)

where:

ηi = X>i ~β. Suppose ψi is distributed according to PG(Yi + r, ηi), then following

(Scott and Pillow, 2012), the conditional for ~β is given by:

p(~β | ~Y ∗, r, ~w~ψ) ∝ π(~β)exp

[
−1/2

(
zi − X∗~β

)> (
z− X∗~β

)
Ω

]
, (3.69)

where:
~Y ∗ = the n ∗ 1 subvector of ~Y corresponding to wi.
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n∗ =
∑n

i=1 wi is the number of individuals in risk class.
~ψ = is a vector of length n∗ with elements zi = yi−r

2ψi
.

Ωdiag(ψ1, ..., ψn) = the n ∗ n precision matrix.

X∗ = N∗ ∗ P matrix.

From (3.34), it is clear that ~z is normally distributed with mean ~η = X∗~β and

the diagonal covariance Ω−1. Hence it is reasonable to assume a conditional

Gaussian prior for ~β denoted by:

Np

(
~β0,Σ0

)
.

The conjugate prior full conditional distribution for ~β given ~z and Ω follows

Np (~µ,Σ), where:

Σ =
(

Σ−1
0 + X∗>ΩX∗

)−1

and

~µ = Σ
(

Σ−1
0 + X∗>Ω~z

)
.

Therefore, given the current values for ~β, ~w and r, the Gibbs sampler is given

by:

• For wi, draw ψi from its PG(Yi + r + ηi) distribution.

• For wi, define zi = yi−r
2ψi

.

• Update ~β from its N(~µ,Σ) distribution.

• Update r using a random-walk Metropolis-Hastings algorithm.

3.4.5 Goodness of fit

As discussed in the classical section, it is important to check how good the

model is when analysing the data. However, in the Bayesian context, we are

going to use the posterior predictive model checking to determine the goodness

of fit. This method depends more on simulation based procedures. The method
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is known as the posterior predictive distribution checking technique. This is a

process by which the fit of the model to the observed data is assessed by draw-

ing replicated data from the posterior predictive distribution. The distribution

is given by:

p(~yrep | ~y) =

∫
p(~yrep | ~θ)p(~θ | ~y)dθ, (3.70)

where:

~y = the observed data vector.
~θ = the parameter vector.

~yrep = replicate data set vector.

Replicate data set is assumed conditionally independent from the observed

data given the parameter. This data set is also assumed to be selected un-

der the same conditions as the observed data. The posterior predictive distri-

bution is obtained through the Markov Chain Monte Carlo (MCMC) methods.

Potential successes of the model being fitted are observed when the replicated

data drawn from the posterior predictive distribution is similar to the observed

data. In this case, the probability that the replicated data could be more ex-

treme than the observed data is measured by the p-value. Let us assume that

v(.) is a checking function that summarise data characteristics. The p-value of

the posterior predictive distribution is given by:

pB = Pr(v(~yrep)) > (v(~y) | ~y), (3.71)

which can be used to determine the variation between the observed data and

data accumulated through simulations when the checking function is properly

constructed.
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3.4.6 Posterior inference

We recall from previous sections that the posterior distribution of a parameter

vector ~θ given the data observed ~Y is obtained through the application of Baye’s

theorem. We also recall that the posterior is the combination of the observed

data and prior knowledge about the parameter of interest ~θ. Therefore, the

posterior encompasses all the important information about the parameter ~θ. In

Bayesian framework, inference is entirely based on the posterior distribution.

Bayesian point estimation

• Bayesian point estimation for quadratic loss function

Let us consider the quadratic loss function:

L2 = C(θ̂ − θ). (3.72)

Our interest is in finding the value of θ̂ that minimises the posterior mean

square error given by:

Eθ|~y[L2] =

∫
c(θ̂ − θ)2g(θ | ~y)dθ. (3.73)

Under the integral we differentiate and then we have:

d

dθ

{
Eθ|~y[L2]

}
=

∫
2c(θ̂ − θ)g(θ | ~y)dθ,

which when equated to zero to obtain the value of ~θ that minimisesEθ|~y[L2.

Hence we get:

θ̂

∫
g(θ | ~y)dθ =

∫
θ.g(θ | ~y)dθ,

from the properties of a proper density function, we notice that the point

estimate for θ under quadratic loss function is the mean of the posterior
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density, written as:

θ̂ = E(θ | ~y) =

∫
θ.g(θ | ~y)dθ. (3.74)

• Bayesian point estimation for a linear loss function

We consider the linear loss function given by:

l1 =| θ̂ − θ | . (3.75)

The interest is in finding the value of θ̂ that minimises the posterior mean

absolute deviation given by:

Eθ|~y[L1] =

∫
c | θ̂ − θ |2 g(θ | ~y)dθ (3.76)

=

∫ θ

−∞
c(θ̂ − θ)g(θ | ~y)dθ +

∫ ∞
θ

c(θ − θ̂)g(θ | ~y)dθ.

By using differentiation under the integral signs we get:

d

dθ

{
Eθ|~y[L1]

}
=

∫ −∞
θ

cg(θ | ~y)dθ −
∫ θ

∞
cg(θ | ~y)dθ,

which after equating to zero we have:

∫ θ̂

−∞
g(θ | ~y)dθ =

∫ ∞
θ

g(θ | ~y)dθ = 1/2,

which shows that θ̂ is the median of the posterior density function. This

is noticed through the constant 1/2, which arose because the integrals are

equal and sum to one.
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Interval estimation

The point estimates for the central location of the posterior distribution are

not informative enough when the ambiguities of the posterior distribution are

significant. Therefore, the posterior (1 − α)100% credible interval [a, b] is for-

mulated to assess the degree of the ambiguities of the posterior distribution.

The interval includes a specified probability that the random parameter θ is

contained in the posterior. These intervals are called the credible intervals.

The probability that the unknown parameter θ falls within a (1− α)100% cred-

ible interval for the unknown parameter θ from the posterior is equivalent to

finding an interval (θl.θu) such that the probability of the posterior is given by:

(1− α) = p(θL < θu) (3.77)

=

∫ θu

θl

f(θ | ~y)dθ.

The interval with the convergence probability required can be attained with no

difficulties because there are many possible intervals meeting the requirement.

However, the shortest interval (θl, θu) with the coverage probability required

will have equal density values. In this case:

g(l | ~y) = g(u | ~y).

The interval (θl, θu) with equal tail areas is attained easier when we find θl and

θu by: ∫ θl

−∞
f(θ | ~y)dθ = α/2

and ∫ ∞
θu

f(θ | ~y)dθ = α/2.
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One-sided hypothesis testing

A One-sided hypothesis test is conducted when we want to find out whether

or not the treatment effect makes the parameter greater than the prior value

it had for the standard treatment. We call the prior parameter value for the

standard treatment the null value. When we want to find out whether θ is

greater than the null value θ0, we test the one-sided hypothesis by calculating

the posterior probability of the null hypothesis given by:

∫ θ0

−∞
f(θ | ~y)dθ, (3.78)

using the posterior distribution. If the probability is less than the selected level

of significance α, we can reject the null hypothesis in favor of the alternative

hypothesis.

Two-sided hypothesis testing

We note that the continuous prior distribution results in a continuous poste-

rior distribution. For this reason, the posterior probability of the point null

hypothesis will always be equal to zero. Therefore, the two-sided hypothesis

test cannot be attained by calculating the posterior probability of the null hy-

pothesis as we did in one-sided hypothesis testing. Instead of constructing a

two-sided hypothesis test, we calculate (1−α)100% credible interval for the pa-

rameter θ. We then reject the null hypothesis if the null value θ does not lie in

the credible interval. Hence we say the null value θ0 is not a credible value.
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Hypothesis comparison

The probability of a hypothesis can be computed to allow the comparison of

true hypotheses. Suppose we want to compare the hypotheses:

H0 : θ ∈ Θ0

and

H1 : θ ∈ Θ1,

where Θ0 and Θ1 are the sets of all possible values for the unknown parameter

θ. Hypotheses comparisons are based on θ’s posterior distribution entirely as

in point estimation and credible intervals. The posterior probability of the null

hypothesis is determined by:

p(θ ∈ Θ0 | ~y) =

∫
Θ0

f(θ | ~y)dθ, (3.79)

and we compute the alternative hypothesis by:

p(θ ∈ Θ1 | ~y) =

∫
Θ1

f(θ | ~y)dθ. (3.80)

The posterior hypothesis probabilities show the prior knowledge and the ob-

served data evidence about the parameter θ.

The posterior odds ratio

The posterior odds ratio is the odds ratio of the weighted likelihoods for the

model parameters under the null hypothesis and under the alternative hy-

pothesis, multiplied by the prior odds (Turner, 2008). This approach consists

of summarising the two posterior hypotheses into a single value called the pos-

terior odds ratio. The parameter uncertainties in this posterior odd ratio are

taken account of because the weights are the prior parameter distributions. If
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the prior probability of the null hypothesis is denoted by α, then the prior odds

ratio is denoted by (1− α). The posterior odds are the prior odds updated with

the information contained in the data. They are denoted by ρo and they are

given by:

ρo =
α

1− α

∫
L(θ | ~y,H0)g(θ)dθ∫
L(θ | ~y,H1)g(θ)dθ

,

where:

L(θ | ~y,H0) is the likelihood function reflecting the restrictions imposed by the

null hypothesis.

L(θ | ~y,H1) is the likelihood function reflecting the restrictions imposed by the

alternative hypothesis. The prior odds are usually equated to one when no

prior evidence is in favor or against the null hypothesis. We reject the null

hypothesis when the value of the posterior odds in favor of the null hypothesis

is low compared to the value of the posterior odds in favor of the alternative

hypothesis. That is, we reject H0 when

ρo =
α

1− α

∫
L(θ | ~y,H0)g(θ)dθ∫
L(θ | ~y,H1)g(θ)dθ

<
α

1− α

∫
L(θ | ~y,H1)g(θ)dθ∫
L(θ | ~y,H0)g(θ)dθ

.

Then we can conclude that H1 is more likely to be true as compared to H0.

3.4.7 Bayesian numerical computation methods

Numerical computation methods were introduced for estimating complex mod-

els, especially in cases where the frequentist framework would need more ef-

ford and thus making the estimation methods more susceptible to errors. In

the Bayesian framework, numerical computational methods are employed to

generate samples from the posterior parameter distribution and predictive dis-

tributions in cases where analytical results cannot be obtained. Numerical

computation methods are well known for increasing complex models manage-

ability, although at high cost. These methods require that precise design of the

sampling procedures be employed to attain more reliable posterior and predic-
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tive inferences.

Monte Carlo integration

The Monte Carlo integration method can be utilised in cases where the poste-

rior distribution of the parameter and the predictive distributions are verified

as known distributions. This is usually in the case where conjugate prior dis-

tributions are used. For instance, suppose we are interested in estimating the

posterior mean of a function g(~θ). Let us denote the unknown parameter vector

by ~θ and the data observed by ~y. The posterior mean of the function g(~θ) is

defined by:

Eg(~θ | ~y) =

∫
g(~θ)p(~θ | ~y)dθ, (3.81)

where:

p(~θ | ~y) is the posterior distribution of the parameter ~θ. In cases where the

equation above is impossible or difficult to evaluate analytically, we use ap-

proximation, which is obtained through the use of law of large numbers. Let

us assume that we obtained a sample θ1, ..., θm from the posterior distribution

p(~θ | ~y). When the sample size M approaches infinity, the quantity:

ĝm(~θ) =
1

M

M∑
m=1

g(~θm),

converges to E[g(~θ | ~y)]. This implies that, the approximation of the expected

value of the function g(~θ) becomes closer to the true expected value as the sam-

ple size from the posterior distribution is large. The basis for this approxi-

mation method is the Monte Carlo integration. The quantity ĝm(~θ) denotes

the Monte Carlo approximation, commonly known as the sample average. The

quality of this approximation can be evaluated from the asymptotical statistics
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results. The asymptotical variance of the Monte Carlo approximation ĝm(~θ)

is
σ2

M
. The variance of the function g(~θ) is σ2 and can be estimated with the

sample variance given by:

S2
m =

√√√√1/M
M∑
m=1

[g(~θm)− ĝm(~θ)]2.

Monte Carlo Standard Error (MCSE), the measure of numerical accuracy is

given by:

MCSE =

√
S2
m

M
.

Monte Carlo approximation is outlined to be not the best method in practice

because the estimators produced do not have the smallest approximation error

and the posterior distributions that one often comes across in practice are not

always in a known form. Therefore, the direct Monte Carlo approximation

method is not always applicable. In such cases, the posterior and the predictive

inference require the use of simulation algorithms that will be discussed in the

next sections.

Markov chain

A stochastic process is a random process in discrete time. Any state of the pro-

cess depends on the present state only and not on the past state. Markov chain

is a special case of a stochastic process. In a stochastic process, the conditional

probabilities at a time n given the states at all previous times n− i, ..., 0 depend

only on one previous state at time n− 1. Therefore,

p(x(2) = x2 | x(1) = x1, x
(0) = x0) = p(x(2) = x2 | x(1) = x1),

p(x(3) = x3 | x(2) = x2, x
(1) = x1, x

(0) = x0) = p(x(3) = x3 | x(2) = x2),
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and so forth. Markov chain’s future evolution depends on the present state

only. This process is said to possess the Markov property. The joint probability

distribution of all states from time 0, ..., n can be constructed by:

p(x(1) = x1, x
(0) = x0) = p(x(1) = x1 | x(0) = x0)p(x(0) = x0),

p(x(2) = x2, x
(1) = x1, x

(0) = x0) = p(x(2) = x2 | x(1) = x1)p(x(1) = x1 | x(0) = x0)p(x(0) = x0),

and so forth. If we are interested only in a state at time n, then we would

add both sides over all possible values of xn−1, xn−2, ..., x0. This results in the

probability distribution at time n over all the possible states. The distribution

is given by:

p(x(n) = xn) =
∑

p(x(n) = xn | x(n−1) = xn−1) ∗ p(x(n−1) = xn−1).

Then, denoting the random process by {xn}∞n=1, we can express the Markov

chain by:

p(Xn = xn | Xn−1xn−1, Xn−2 = xn−1,X1=x1) = p(Xn = xn | Xn−1 = xn−1).

In the context of posterior distribution, the state space (set of all possible states

of a process) is the parameter space. For a Markov chain to converge to a long-

run distribution, the properties such as irreducibility and ergodicity must be

satisfied. However, the chains generated by MCMC satisfy these properties.

Markov Chain Monte Carlo sampling

As discussed in the previous section, we recall that the direct Monte Carlo in-

tergration sampling from the posterior is ineffective when there is a large num-

ber of parameters or when the prior distribution is noninformative. Markov

Chain Monte Carlo (MCMC) methods are then employed to generate samples
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from the posterior distribution. In the context of MCMC methods, we set up a

Markov chain that has the posterior distribution as its long-run distribution.

This can be attained through the use of Metropolis-Hastings and Gibbs sam-

pler algorithms. The MCMC methods are based on running the Markov chain

long enough until it reaches the limiting (long-run) distribution. Therefore,

any value taken after that initial run-in time approximates a random draw

from the posterior distribution.

Metropolis-Hastings algorithm

Let us assume that we have parameter vector denoted by ~θ = (θ1, θ2, ...θp). Sup-

pose that q(~θ>; ~θ) is the candidate density when the chain is at ~θ and let the

posterior be denoted by f(~θ | ~y). The condition of reversibility can be expressed

as:

f(~θ | ~y)q(~θ, ~θ>) = f(~θ> | ~y)q(~θ>, ~θ), (3.82)

for all the possible states. Unfortunately, most chains cannot satisfy the re-

versibility condition for some ~θ, ~θ>. The probability of moving can be introduced

to attain the balance. This moving probability is given by:

α(~θ, ~θ>) = min

[
1,
f(~θ> | ~y)q(~θ>, ~θ)

f(~θ | ~y)q(~θ, ~θ>)

]
. (3.83)

• Steps of Metropolis-Hasting algorithm:

1. Start at initial value θ(0).

2. Do for n = 1, ..., n:

i. Draw θ> from q(θ(n−1), θ>).

ii. Compute the probability α(θ(n−1), θ>).



Methodology. 72

iii. Draw u from U(0, 1).

iv. If u < α(θ(n−1), θ>), then let θ(n) = θ>, else let θ(n) = θ(n−1).

Metropolis-Hastings with a random-walk candidate density

The candidate density is drawn from a distribution that is symmetric and cen-

tred at the current value. Using the parameter vector ~θ = (θ1, θ2, ..., θp), the

random-walk candidate density is given by:

q(~θ, ~θ>) = q1(θ>1 − θ1, ..., θ
>
p − θp), (3.84)

where:

for each argument the function q(.) is symmetric about 0. Hence the candidate

density can be written as:

q(~θ, ~θ>) = q1(~θ> − ~θ), (3.85)

where:

q(.) is the vector function that is symmetric about the vector ~0. Therefore, the

acceptance probability for a random-walk candidate density is given by:

α(~θ, ~θ>) = min

[
1,
f(~θ> | ~y)q(~θ>, ~θ)

f(~θ | ~y)q(~θ, ~θ>)

]
(3.86)

= min

[
1,
f(~θ> | ~y)

f(~θ | ~y)

]
.

This implies that a candidate ~θ> with a bigger value of the target density than

the target density of the current value ~θ has a 100% chance of being accepted.

In this case the Markov chain will always move uphill. However, when a can-

didate ~θ> has a lower value of the target density than the target density of

the current value ~θ, ~θ> will only be accepted with a probability identical to the
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proportion of the target density value to the current value. Nevertheless, there

is a chance that the chain will move downhill. This makes it possible for a

random-walk candidate density to move around the entire parameter space.

Metropolis-Hastings with an independent candidate density

Since an independent candidate density is used, the density for which the can-

didate is drawn from does not depend on the current value. The independent

candidate distribution is then defined as:

q(~θ, ~θ>) = q2(~θ>). (3.87)

The acceptance probability for the Markov chain using an independent candi-

date density is given by:

α(~θ, ~θ>) = min

[
1,
f(~θ> | ~y)q(~θ>, ~θ)

f(~θ | ~y)q(~θ, ~θ>)

]
(3.88)

= min

[
1,
f(~θ> | ~y)

f(~θ | ~y)
∗ q2(~θ)

q2(~θ>)

]
.

Blockwise Metropolis-Hasting algorithm

The parameter vector is divided into blocks:

~θ = ~θ1, ~θ2, ..., ~θJ ,

where:
~θj is a block of parameters. Suppose ~θ−j represents all the parameters that are

not in block j. It is not easy to find a single overall kernel that converges to the

joint density of the posterior compared to finding the conditional kernel for one

block of parameter at a time that converges to its respective conditional density

of the posterior. Hence Hastings (1970) advised that the Metropolis-Hastings
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algorithm be applied successively to one block of parameters ~θj after the other

conditional to the knowledge of all the parameter values not belonging to the

block.

• Steps of blockwise Metropolis-Hasting algorithm:

1. Start at a point in parameter space ~θ(0)
1 , ~θ

(0)
2 , ..., ~θ

(0)
j .

2. For n = 1, ..., N , for j = 1, ..., J :

i. draw candidate from

q
(
~θ

(n−1)
j , ~θ>j | ~θ

(n)
1 , ..., ~θ

(n)
j−1,

~θ
(n−1)
j+1 , ..., ~θ

(n−1)
J

)
.

ii. Calculate the acceptance probability:

α
(
~θ

(n−1)
j , ~θ

>(n)
j , ~θ

(n)
1 , ..., ~θ

(n)
j−1,

~θ
(n−1)
j+1 , ..., ~θ

(n−1)
J

)
.

iii. Draw u from U(0, 1) if u < ~θ
(n−1)
j , ~θ>j then let ~θ(n)

j = ~θ>j , else let ~θ(n)
j = ~θ

(n−1)
j .

When given all the parameters ~θ−j and the observed data ~y, the candidate

density for the parameter block ~θj must dominate the true conditional density

in the tails. That is:

q(~θj, ~θ
>
j | ~θ−j) > f(~θj | ~θ−j, ~y).

At each step with the block in turn, the candidate ~θj is drawn from the can-

didate density. Then, acceptance probability is calculated. The block of pa-

rameters is either moved to the candidate ~θ>j , or kept at the current value ~θj.

This depends on whether or not a random draw from U(0, 1) random variable

is larger than the acceptance probability.
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3.4.8 Gibbs sampling

Gibbs sampling is based on the blockwise Metropolis-Hastings algorithm dis-

cussed in previous sections. Let us assume that at each step for each block of

parameters given others, we use the true conditional density in place of the

candidate density. This implies that:

q(~θj, ~θ
>
j | ~θ−j) > f(~θj | ~θ−j, ~y).

Therefore, at step n for block ~θj, the acceptance probability is given by:

α
(
~θ

(n−1)
j , ~θ

>(n)
j , ~θ

(n)
1 , ..., ~θ

(n)
j−1,

~θ
(n−1)
j+1 , ..., ~θ

(n−1)
J

)

= min

[
1,

f(~θ>j | ~θ−j, ~y)q(~θ>j | ~θ−j)
f(~θj | ~θ−j, ~y)q(~θj, ~θj | ~θ−j)

]
= 1.

The candidate will always be accepted at each step. Gibbs sampling is a special

case of blockwise Metropolis-Hastings algorithm. This is a case where each

candidate block is drawn from its true conditional density provided that all the

other blocks given are at their recently drawn values.

3.4.9 Convergence diagnostics

The credibility of a posterior inference based simulation algorithms depend

on the convergence of Markov Chain. When the Markov chain has reached

convergence, the simulated sample is indeed drawn from the desired poste-

rior distribution. The important goal of posterior distribution is to generate a

Markov chain which moves around the entire parameter space easily. In some

posterior simulation, Markov chain is unable to move well around the param-

eter space or even get trapped for long periods of time. This kind of Markov

chain is undesirable and can be generated when autocorrelations between suc-

cessive parameter draws are high and their decay is slow. Convergence is not
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prevented by high correlation. However, it leads to delay for convergence to be

reached. The influence of Markov chain starting point reduces as the number

of iterations increase and in the end the starting point cannot be traced. Part

of the chain simulation is discarded to minimise the influence of the chain’s ini-

tial state. The portion discarded is referred to as the burn-in fraction. Hence

the remaining portion of the chain’s simulation are used in posterior inference.

The size of the burn-in fractions is determined by the mixing speed of Markov

chain. Fast mixing Markov chains tend to forget their origin after several it-

erations. Therefore, half of the iterations discarded are needed for chains dis-

playing high serial correlation of the draws. There are methods for assessing

and monitoring convergence. This method depends on examining the behavior

of different quantities characterising the posterior distribution. The Markov

chain has reached the stationary distribution when the quantities characteris-

ing the posterior distribution exhibit very divergent values at various points of

the simulation sequence. We discuss two convergence monitoring methods.

Cumsum convergence monitoring

This is a simple monitoring tool where the trace plot of the standardised pos-

terior means that are taken as the number of iterations are visually inspected.

Convergence is represented by a stable dynamic. The statistic is defined as:

csi,m = 1/m

∑m
j=i(θ

(j)
i − θ̂i)
σ̂i

, (3.89)

where:

m = after-burn-in number of simulations.

θ̂ = the posterior mean.

σ̂ = the posterior standard deviation of θi.

The Markov chain is said to converge when the value of the statistic in (3.89)

approaches zero.
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Parallel chains convergence monitoring

This method is based on running several independent chains in parallel. These

chains must have different starting values. When the chain produces outputs

that are very similar, convergence is reached. The similarity of the outputs is

determined by how close the average variance of the after-burn-in simulations

for a certain chain is to the variance of the posterior means across the chains.

Let us assume we are interested in a parameter θ and R parallel chains are

run. θ(i,r) denote the ith(i = 1, ...,M) simulation of θ from the rth(r = 1, ..., R)

chain. The mean within-sequence variation is estimated by:

W = 1/R
R∑
r=1

σ̂2
r ,

where:

σ̂2
r =

∑m
i=1

(
θ(i,r) − θ̂(r)

)2

M − 1

and

θ̂(r) =

∑m
i=1 θ

(i,r)

M
.

The between-sequence variation is estimated by:

B =
M

R− 1

R∑
r=1

(θ̂(r) − θ̂)2,

where:

θ̂ = 1/R
R∑
r=1

θ̂(r).

The posterior variance θ is estimated as a weighted average of W and B:

var(θ̂) =
M − 1

M
∗W +

1

M
∗B,
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where we suppress the condition on the observed data ~y notationally. The

chain starts from far-apart initial values of the parameter. Hence the within-

sequence variation will be smaller than between-sequence variation before con-

vergence. When convergence has been reached, var(θ̂) is close to W. Hence, the

statistic is given by:

Q =
var(θ̂)

W
.

When the value of Q is close to 1, convergence is reached. When the value

of Q is much greater than 1, the chain must continue to run until it reaches

convergence.

3.4.10 Summary of the chapter

This chapter provides the background for the area of the study, which is the

Limpopo province of South Africa. Malarial count data of interest are described

in detail. Poisson distribution is pointed out to be suitable for modelling count

data. However, the assumptions of Poisson distribution are not always satis-

fied. Therefore, the Poisson models developed under the dissatisfied (mean is

not equal to variance) Poisson assumptions are overdispersed. Several meth-

ods that can account for such overdispersion are discussed. The methods are

based on the development of the refined models such as NB, ZIP, ZINB, ZTP,

ZTNB and Hurdle models. The classical method of estimation, the MLE is

also discussed. The Bayesian framework and its background are outlined.

These included the Bayesian linear regression model. The Bayesian frame-

work is easier to execute through the employment of computational Bayesian

approaches. Therefore, computational approaches to Poisson regression model

are discussed. Furthermore, the model to account for an overdispersion, the

computational NB model is also discussed. The Bayesian method of estima-

tion, MCMC is discussed. To assess how good, the developed model fit the

data, both the classical and the Bayesian paradigms make use of goodness of
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fit tests. The comparisons between the Bayesian and the classical framework

will be based on the errors executed by each method. These errors are known

as the standard errors in the classical framework and as naive standard errors

in the Bayesian framework.



Chapter 4

Results and discussion

4.1 Introduction

This chapter presents the results and discussions of the study. The results

are obtained through the application of the methodology outlined in Chapter 3

and the R codes used to obtain the results are outlined in the appendix. These

results are intended to fulfill the following research objectives, which are to:

i. Model malaria incidence given rainfall, temperature, normalised vegeta-

tion index, elevation and time in quarters from 2014 to 2015 across the

various districts of the Limpopo province.

ii. Identify the effect of environmental factors which require more attention

towards malaria control and prevention in Limpopo province.

iii. Examine the behavioral changes (trends) in overall malaria incidence in

Limpopo province.

iv. Identify districts that are more susceptible to malaria incidence.
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This chapter includes descriptive statistics. This is attained through the con-

struction of bar charts for the categorical variables, histogram and scatter plots

for the continuous variables to complement the distributions of malaria in-

cidence. Various models are developed and compared. The best estimation

method is also identified.

4.2 Exploratory data analysis

As outlined in previous chapters, malaria data used in this study is sourced

from Malaria Institute based in Tzaneen, Limpopo. Population data were at-

tained from StatsSA, while the data for the environmental factors were ob-

tained from Ecoverb. The variables are described in Table 4.1 and the data

summary is presented in Table 4.2.
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Table 4.1: Variable description

Variable Description Data set code
Malaria The number of mal

malaria cases.
Population The population size. pop
Districts The five districts of dist

Limpopo Province: Capricorn,
Mopani, Sekhukhune,

Vhembe, and Waterberg.
Years The years for which the data dyear

were collected: 2014 and 2015.
Elevation The elevation above sea ele

level measured in meters.
Rainfall The rainfall measured rain

in millimeters.
NDVI The difference between ndvi

near-infrared
reflected by the vegetation

and red light which is
absorbed by vegetation,

it ranges from -1 to 1.
Temperature during the day The maximum temperature td

in degrees Celsius.
Temperature during the night The minimum temperature tn

in degrees Celsius.

Table 4.2: Summary descriptive statistics of the variables

Statistics Ele Tn Td NDVI Rain Mal
Min 19.69 4.925 20.99 0.2060 0.00 0.00

1st Quartile 182.43 13.171 28.72 0.3247 0.5165 1.00
Median 242.20 16.7128 32.44 0.4035 23.9065 3.00
Mean 325.27 16.251 31.66 0.4133 32.5911 23.95

3rd Quartile 491.18 19.558 34.64 0.4973 47.0245 12.25
Maximum 822.24 25.601 40.24 0.6670 159.2010 4820

Std deviation 216.09 4.450 4.15 0.1056 38.4265 61.83
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Figure 4.1 presents a histogram used to display the incidence of malaria across

the entire province of Limpopo. This aids in visual determination of the distri-

bution followed by the response variable, malaria counts.

Figure 4.1: Histogram for malaria distribution

The histogram depicted in Figure 4.1 is skewed to the right. It takes a lopsided

mound shape with its tail going off to the right. The shape of this histogram is

similar to the shape of a Poisson distribution (Consul and Jain, 1973).
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The scatter plots are used to depict the relationship between malaria counts

and each predictor variable. These are displayed in Figure 4.2 to Figure 4.8.

Figure 4.2: The distribution of malaria incidence with respect to rainfall

Figure 4.2 shows the relationship between malaria incidence and rainfall. This

relationship appears to be non-linear. Malaria incidence rate is shown to be

high between 0 and 50 millimeters of rainfall. However, the rate of malaria

incidence decreases with an increasing amount of rainfall. Hence Figure 4.2

depicts a negative relationship between malaria and rainfall.
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Figure 4.3: The distribution of malaria incidence in 2014 and 2015

According to Figure 4.3, the transmission rate of malaria was high in 2014

than in 2015. This may be due to various effects of enviromental factors as they

may differ in each year and it may also indicate the success of malaria control,

prevention and elimination methods that are used currently in Limpopo.
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Figure 4.4: The distribution of malaria incidence over temperature during the
night

Malaria cases are increasing gradually with an increasing temperature during

the night (Figure 4.4). This implies that the relationship between malaria

incidence and temperature at night is positive. The transmission of malaria

is displayed to be high between 15◦C and 25◦C, whereas it is low between 5◦C

and 14◦C.
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Figure 4.5: The distribution of malaria incidence over temperature during the
day

The rate of malaria incidence remains constantly low at a temperature below

27◦C during the day (Figure 4.5). However, it increases rapidly when the tem-

perature is between 28◦C and 37◦C. The association between the temperature

during the day and malaria incidence is shown to be non-linear. Malaria trans-

mission peaks between the temperature of 34◦C and 37◦C and slowly goes down

as the temperature increases beyond 37◦C.
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Figure 4.6: The distribution of malaria incidence over NDVI

Figure 4.6 depicts that malaria cases are not increasing at a constant rate.

There are a lot of fluctuations in the distribution. However, as the vegetation

becomes healthier (more green), the risk of malaria transmission also becomes

high. Therefore, the association between malaria incidence and NDVI is shown

to be positive.
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Figure 4.7: The distribution of malaria incidence over elevation

There are many cases of malaria between 100 and 400 meters above the sea

level compared to the number of malaria cases between 400 and 800 meters

above the sea level (Figure 4.7). This implies that the risk of malaria transmis-

sion decreases with an increasing elevation. Hence the relationship between

malaria incidence and elevation is non-positive.
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Figure 4.8: The distribution of malaria incidence across the districts of
Limpopo

As shown in Figure 4.8, Vhembe district is depicted to have the highest rate

of malaria incidence, followed by Mopani district as compared to all the other

districts. Capricorn district has the lowest rate of malaria incidence. The high

rate of malaria incidence in Mopani and Vhembe districts could be attributed

to the high temperatures in the two districts.
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Figure 4.9: Variable importance graph in MSE percentages

Figure 4.9 shows that, the top 3 most imporatant variables are districts, tem-

perature during the night and NDIV. Furthermore, the graph shows that the

bottom 3 of the least important variables include year, rain and elavevation

above sea level.
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4.3 Model fitting

4.3.1 Classical methods

The development of the models is based on the distribution of the response vari-

able, malaria counts. As discussed earlier in Chapter 3, most common models

suitable for count data include: Poisson regression model and Negative Bino-

mial regression model. As shown in Figure 4.1, the shape of malaria counts

distribution is similar to the shape of a Poisson distribution. Therefore, three

Poisson regression models are developed. Tables 4.3-4.6 present the summaries

of the three Poisson models and their parameters. These models are used to

perform the goodness of fit tests.

Table 4.3: Poisson model encompassing all the explanatory variables

Coefficient Estimate Std.Error P-value 95% confidence interval
Intercept -17.850 0.288 <0.001 [-18.415 : -17.288 ]***

Rain -0.007 0.000 <0.001 [-0.009 : -0.007]***
Cap(Ref) - - - - - - - - - - - - - - - -

Mop 2.213 0.089 <0.001 [2.048 : 2.385] ***
Sekh 0.537 0.122 <0.001 [0.297 : 0.777]***
Vhem 2.458 0.084 <0.001 [2.297 : 2.627]***
Watbg 0.489 0.111 <0.001 [0.272 : 0.709]***

2014(Ref) - - - - - - - - - - - - - - - -
2015 -0.170 0.029 <0.001 [-0.227 : -0.114]***

tn 0.276 0.007 <0.001 [0.263 : 0.290]***
td 0.064 0.008 <0.001 [0.049 : 0.080]***
ele -0.001 0.000 <0.001 [-0.001 : -0.001]***

ndvi 0.521 0.228 <0.001 [0.074 : 0.969]***
Key: p <0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ >0.05 ‘ ’

The p-values for all the covariates as displayed in Table 4.3 are less than the

level of significance, 0.05. This suggests evidence against the null hypothesis

of no relationship between the covariates and malaria incidence. Rainfall and

elevation estimate values are negative, suggesting that they have a negative



Results and discussion 93

relationship with malaria incidence. Table 4.3 also depicts a positive relation-

ship between temperature, NDVI and malaria incidence.

Table 4.4: Deviance and AIC for Poisson model in Table 4.3

Deviance Estimate Df
Null deviance 18541.3 287

Residual deviance 3532.6 277
AIC 4421.4

According to Section 3.3.2 of Chapter 3, if the ratio of the deviance statistic and

its degrees of freedom is significantly larger than 1, then there is an evidence

of lack of fit in the model developed. Using Table 4.4, the ratio of the deviance

statistic and its degrees of freedom is given by:

Residual deviance

Df
=

3532.6

277
= 12.753.

The resulting value is significantly larger than 1. Hence there is evidence of

lack of fit for the model presented in Table 4.3.

Table 4.5: Poisson model with exclusion of the district explanatory variable

Coefficient Estimate Std.Error P-value 95% confidence interval
Intercept -80.900 0.273 <0.001 [-18.6309 : -17.5624 ]***

Rain -0.006 0.001 <0.001 [-0.007 : -0.005]***
2014(Ref) - - - - - - - - - - - - - - - -

2015 -0.025 0.027 <0.001 [-0.078 : 0.028]***
tn 0.239 0.007 <0.001 [0.226 : 0.252]***
td 0.125 0.008 <0.001 [0.110 : 0.014]***
ele -0.002 0.000 <0.001 [-0.003 : -0.002]***

ndvi 3.049 0.212 <0.001 [2.635 : 3.465]***
Key: p <0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ >0.05 ‘ ’

The p-values for all the covariates displayed in Table 4.5 are extremely signifi-

cant (the p-values are very close to zero) at 5% level of significance. This implies

that there is a relationship between the covariates and malaria incidence. The
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estimate values for the regression coefficients of the covariates rainfall and el-

evation are negative, revealing that each of these covariates exhibit a negative

relationship with malaria incidence. Table 4.5 also depicts a positive relation-

ship between malaria incidence and each of the covariates temperature and

NDVI.

Table 4.6: Deviance and AIC for Poisson model in Table 4.3

Deviance Estimate Df
Null deviance 18541.3 287

Residual deviance 6387.5 281
AIC 7268.3

Based on Table 4.6, the ratio of the deviance statistic and its degrees of freedom

is given by:
Residual deviance

Df
=

6387.5

281
= 22.7313.

The resulting value is significantly larger than 1. Hence there is evidence of

lack of fit in the model presented by Table 4.5.

Table 4.7: Poisson model with exclusion of the NDVI explanatory variable

Coefficient Estimate Std.Error P-value 95% confidence interval
Intercept -17.410 0.213 <0.001 [-17.829 : -16.994 ]***

Rain -0.008 0.000 <0.001 [-0.009 : -0.007]***
Cap(Ref) - - - - - - - - - - - - - - - -

Mop 2.235 0.085 <0.001 [2.071 : 2.406] ***
Sekh 0.507 0.121 <0.001 [0.268 : 0.745]***
Vhem 2.483 0.083 <0.001 [2.323: 2.651]***
Watbg 0.510 0.111 <0.001 [0.294 : 0.728]***

2014(Ref) - - - - - - - - - - - - - - - -
2015 0.051 0.025 <0.001 [-0.252 :-0.155]***

tn 0.288 0.004 <0.001 [0.280: 0.297]***
td 0.051 0.005 <0.001 [0.041 : 0.061]***
ele -0.001 0.000 <0.001 [-0.001 : -0.001]***

Key: p <0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ >0.05 ‘ ’

The summary of the model presented in Table 4.7 shows that the p-values for
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all the covariates are close to 0. This suggests evidence against the null hypoth-

esis of no association between the covariates and malaria incidence. Rainfall

and elevation estimate values are negative. This suggests that they have a

negative relationship with malaria incidence. Table 4.7 also reveals a positive

relationship between temperature and malaria incidence.

Table 4.8: Deviance and AIC for Poisson model in Table 4.3

Deviance Estimate Df
Null deviance 18541.3 287

Residual deviance 3537.8 278
AIC 4424.6

Based on Table 4.8, the ratio of the deviance statistic and its degrees of freedom

is given by:
Residual deviance

Df
=

3537.8

278
= 12.7259.

The resulting value is significantly larger than 1, which implies lack of fit for

the model in Table 4.7.

Model selection

Tables 4.4, 4.6 and 4.8 include the Akaike Information Criterion (AIC), which

represents the measure of the information loss during the model fitting. Ac-

cording to Mazerolle (2006), the model with the lowest AIC is considered to

be the best model. The AIC shown in Table 4.4 for the model in Table 4.3 is

4421.4, the AIC shown in Table 4.6 for the model in Table 4.5 is 7268.3 and

the AIC shown in Table 4.8 for the model in Table 4.7 is 4424.6. Therefore, the

model with the smallest AIC is the model presented in Table 4.3. Hence the

Poisson model including all the covariates is the best model compared to the

other developed Poisson models which excluded some of the covariates.
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Detection of overdispersion

According to Hilbe (2011), Pearson’s chi-square is considered to be the best

method in detecting an overdispersion in Poisson models. If the ratio of the

residual deviance and the degree of freedom is significantly larger than 1, then

the probability that the developed model is overdispersed is high. Based on the

best selected Poisson model, the ratio of the residual deviance and the degrees

of freedom is 12.753. This implies that the probability that the selected Poisson

model is overdispersed is very high. To validate that the Poisson model selected

may be overdispersed, we check if the response variable satisfies the Poisson

assumption of an equality between the mean and the variance. Table 4.2 shows

that the mean for the response variable is 23.95 and through the use of R

software, the variance is found to be 3822.5. Therefore, the condition of equal

mean and variance for a Poisson distribution is violated. We can then conclude

that the selected Poisson model presented by Table 4.3 is overdispersed.

The correction of overdispersion

Several methods for the correction of overdispersion are discussed in Chapter

3. However, the method suitable for correcting the overdispersed Poisson model

presented in Table 4.3 is the development of a Negative Binomial (NB) model.

It is outlined in Chapter 3 that the variance of the NB distribution is always

larger than its mean and the overdispersion is naturally accounted for in the

NB models. Hence the NB model is a suitable solution for our overdispersed

Poisson model. Table 4.9 presents the NB regression model developed to correct

the overdispersed selected model presented in Table 4.3.
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Table 4.9: NB model encompassing all the explanatory variables

Coefficient Estimate Std.Error P-value 95% confidence interval
Intercept -15.330 1.038 <0.001 [-17.483 : -13.186 ]***

Rain -0.005 0.002 0.012 [-0.0095 : -0.001]*
Cap(Ref) - - - - - - - - - - - - - - - -

Mop 2.215 0.209 <0.001 [1.789 : 2.643] ***
Sekh 0.415 0.258 0.107 [-0.097 : 0.925]
Vhem 2.848 0.211 <0.001 [2.412 : 3.285]***
Watbg 0.871 0.229 <0.001 [0.395 : 1.348]***

2014(Ref) - - - - - - - - - - - - - - - -
2015 0.206 0.125 0.100 [-0.040 : 0.452]

tn 0.254 0.033 <0.001 [0.181 : 0.326]***
td 0.000 0.033 0.999 [-0.071: 0.070]
ele 0.000 0.000 0.336 [-0.001: 0.001]

ndvi -0.477 1.014 0.638 [-2.555 : 1.613]
Key: p <0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ >0.05 ‘ ’

Table 4.9 presents the NB model developed to correct the overdispersed Pois-

son model presented in Table 4.3. According to Table 4.9, the p-value of the

covariate rain is 0.012, which is less than 0.05. This implies that the covariate

rain is significant at 5% level of significance. Hence, there is a relationship be-

tween rainfall and malaria incidence. The coefficient estimate of rain is nega-

tive. This implies that the relationship between rainfall and malaria incidence

is negative. That is, malaria transmission rate increases with a decreasing

amount of rainfall.

The p-values for Mopani, Vhembe and Waterberg are less than 0.001. These p-

values suggest that there is a certain pattern of malaria transmission between

these districts and Capricorn district (the reference category). The coefficient

estimates for Mopani, Vhembe and Waterberg are positive. These estimates

entail that if malaria incidence increases in each of these districts, then it also

increases in Capricorn district (the reference category). We use the odds ratio,

eβ, to find the precise pattern of malaria incidence amongst the districts. The
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odds ratio in this case is the ratio of the odds of the reference category (Capri-

corn) and each of the districts among Mopani, Vhembe and Waterberg. If there

is an increase in malaria incidence, the increase is eβ times more in Mopani,

Vhembe and Waterberg than in Capricorn district. The Greek letter β in the

odds ratio eβ, represents the regression coefficient. Table 4.9 provides evidence

that malaria incidence increases by e2.215 ≈ 9 times in Mopani, e2.848 ≈ 17 times

in Vhembe and e0.871 ≈ 2 times in Waterberg than in Capricorn district.

A unit increase in temperature during the night increases the incidence of

malaria by e0.254 ≈ 2 times. There is no evidence of an existing association

between malaria incidence and the covariates, temperature during the day, el-

evation and NDVI according to Table 4.9.

Table 4.10: Deviance and AIC for NB model in Table 4.9
Deviance Estimate Df

Null deviance 1232.31 287
Residual deviance 317.87 277

AIC 1680.9

Based on Table 4.10, the ratio of the deviance statistic and its degrees of free-

dom is given by:
Residual deviance

Df
=

317.87

277
= 1.148.

The resulting value is significantly close to 1 compared to the ratio of the de-

viance statistic and its degrees of freedom for the Poisson model presented in

Table 4.3. Hence there is an evidence of best fit in the model presented by Table

4.9.

4.3.2 Bayesian methods

Bayesian inference is based on the posterior distribution. This distribution

is obtained through the utilisation of Baye’s theorem. The posterior distribu-
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tion is the combination of the observed data and prior knowledge about the

parameters of interest. Bayesian framework is easy to work with through its

computation methods. Hence this study applies the Bayesian computational

method, the MCMC to generate samples from the posterior distribution. The

sample is truly drawn from the posterior distribution if its Markov chain has

reached convergence. The Bayesian framework is outlined in detail in Chapter

3 of this study. Inferences for the classical framework are based on the NB

model presented in Table 4.9 since the selected Poisson model presented in Ta-

ble 4.3 was proved to be overdispersed. Therefore, we are only focusing on the

MCMC method of estimation using the NB model.

Convergence of the Markov chains

The Figures 4.9-4.12 display the Markov chains trace plots and the kernel

density plots. Each trace plot presents the values of the sampled parame-

ter (y-axis) at each step of the Markov chain (x-axis). These steps are com-

monly known as the iterations. The kernel density plots estimate the posterior

marginal distributions for each parameter with the parameter values on the

x-axis and the density on the y-axis.

Figure 4.10: The trace plots and marginal densities for the intercept and the
coefficients of covariates rain and Mopani district
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Figure 4.11: The trace plots and marginal densities for Sekhukhune, Vhembe
and Waterberg districts

Figure 4.12: The trace plots and marginal densities for the year 2015 and tem-
perature
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Figure 4.13: The trace plots and marginal densities for the covariates elevation
and NDVI

All the trace plots presented in Figures 4.9-4.12 show that the Markov chains

appear to have reached their stationary distributions. The mean for each

Markov chain has stabilised and appear to be constant over the plots. The sta-

tionarity of the Markov chain is also affirmed by the bell-shape of the marginal

distributions, showing that the posterior distribution is normalised. This im-

plies that the sample is truly drawn from the posterior distribution. Hence the

inferences based on this sample are reliable and informed.

The posterior inferences

A 100(1-α) % equal-tail interval corresponds to the 100(α/2) and 100(1-α/2) per-

centiles of the posterior distribution. However, this study will utilise the 95%

highest posterior density (HPD) credible intervals to make the posterior infer-

ences. The HPD credible interval is an interval in which most of the distribu-

tion lies and it is the one with the smallest width among all the credible inter-

vals of the posterior distribution (Institute, 2014). Table 4.11 presents the NB

regression model developed through the employment of the MCMC estimation

method. The table shows the summary statistics of the posterior distribution

and its 95% HPD credible intervals.
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Table 4.11: Posterior summary and credible intervals

Coefficient Mean Naive SE 95% HPD credible interval
Intercept -8.179 0.005 [-8.830 : -7.505]**

Rain -0.001 <0.001 [-0.003: 0.000]***
Cap(Ref) - - - - - - - - - - - -

Mop 2.169 0.001 [1.994: 2.329] ***
Sekh 0.335 0.002 [0.090 : 0.562]**
Vhem 2.817 0.001 [2.664 : 2.992]***
Watbg -0.219 0.002 [-0.454 : -0.006]**

2014(Ref) - - - - - - - - - - - -
2015 0.086 0.001 [0.013 : 0.157]**

tn 0.111 <0.001 [0.093 : 0.129]***
td 0.165 <0.001 [0.145: 0.184]**
ele -0.0004 <0.001 [-0.001: 0.000]*

ndvi 4.911 0.004 [4.343 : 5.457]***
Key: p <0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ >0.05 ‘ ’

All the 95% credible intervals presented in Table 4.11 do not include zero,

which indicates that all the parameters are significant. However, the param-

eter of NDVI is extremely significant, while other parameters are moderately

significant. This implies that malaria incidence is affected more by NDVI than

other environmental factors.

Both 95% HPD credible intervals for the regression coefficients of the covari-

ates rain and elevation are negative. This implies that there is a very high

probability that the estimates of these regression coefficients are negative.

Therefore, we can conclude that the relationship between malaria incidence

and each of the covariates rain and elevation is negative. That is, an increase

in rainfall leads to a decrease in malaria incidence and an increase in elevation

above sea level leads to a decrease in malaria incidence.

All the 95% HPD credible intervals for temperature during the night (tn), tem-

perature during the day (td) and NDVI are positive, which indicate that there
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is a very high probability that the estimates of these regression coefficients

are positive. Therefore, we can conclude that the relationship between each

of these covariates and malaria incidence is positive. That is, an increase in

temperature during the night, temperature during the day and NDVI results

in an increase in malaria incidence.

The 95% HPD credible intervals for Mopani, Sekhukhune and Vhembe dis-

tricts are positive, which indicates that as malaria incidence increases in each

of these districts, it also increases in Capricorn district (Reference variable).

However, both the 95% HPD credible intervals for Waterberg are negative.

This implies that if malaria incidence increases in Capricorn district, then it

decreases in Waterberg district. We can now conclude that according to the

MCMC estimation methods applied to obtain the model in Table 4.11, there is

a relationship between malaria incidence and each of the environmental fac-

tors included in this study.

4.3.3 Comparison of classical (MLE) and Bayesian (MCMC)

methods of estimation

The classical framework in this study employed MLE method to estimate the

NB model parameters, standard errors, p-values and the 95% confidence in-

tervals. The Bayesian framework employed the MCMC estimation method to

estimate the posterior mean, naive standard errors and the 95% HPD credible

intervals. The posterior distribution in this case is obtained by developing the

NB model through the Bayesian context. We compare the classical estimation

method and the Bayesian estimation method using the NB model presented in

Table 4.9 and the posterior summary presented in Table 4.11. The parameter

estimates of the Bayesian framework in Table 4.11 are all significant, while the

parameter estimates of the classical framework in Table 4.9 are significant, ex-

cept for temperature during the day, elevation, NDVI, Sekhukhune district and
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the year 2015. Therefore, to ensure that the comparisons of the MLE method

and the MCMC estimation method are unbiased, we have based our compar-

isons on the parameter estimates that are significant in both the classical and

Bayesian frameworks. These are the parameter estimates for rain, tempera-

ture during the night, Mopani, Vhembe and Waterberg.

The parameter estimate for rain is moderately significant in both Table 4.9 and

Table 4.11. The standard error associated with rain is 0.1012, while its naive

standard error is 0.0227. This implies that, based on the covariate rain, the

MLE method generates more errors compared to MCMC estimation method.

The difference of the upper and the lower limits of the 95% confidence interval

of the parameter estimate of rain is -0.1043, while the difference of the upper

and the lower limits of its 95% HPD credible interval is -0.0312. Therefore, we

can conclude in this case, based on the parameter estimates of rain, that the

95% HPD credible interval is shorter than the 95% confidence interval since its

difference is smaller compared to the difference of the upper and lower limits

of the confidence interval.

The estimates of the parameters for temperature during the night are signifi-

cant according to Table 4.9 and Table 4.11. The standard error for temperature

during the night is 0.4396, while its naive standard error is 0.0236. Therefore,

the standard error is almost 19 times larger than the naive standard error of

the same covariate. Hence in this case, the MLE method generates more errors

than the MCMC estimation method. The difference of the upper and lower lim-

its of the 95% confidence interval for temperature during the night is 1.0194,

while the difference of the upper and lower limits of the 95% HPD credible in-

terval for the same covariate is 0.3820. Therefore, the difference of the limits

of the 95% confidence interval is larger than the difference of the limits of the

95% HPD credible interval. Hence we can conclude, in this case, that the cred-
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ible interval is narrower than the confidence interval.

The parameter estimates for Mopani are positive in both Table 4.9 and Ta-

ble 4.11, implying that Mopani district is more susceptible to malaria inci-

dence than Capricorn district, according to both the Bayesian and the classical

frameworks. However, the standard error for Mopani is 0.7674, while its naive

standard error is 0.0607. This implies that the standard error, in this case,

is almost 13 times larger than the naive standard error. The difference of the

95% confidence interval limits for Mopani is 0.8535, while the difference of its

95% HPD credible interval is 0.3345. Hence we can conclude, in this case, that

the credible interval is shorter than the confidence interval.

The estimates of the parameters for Vhembe district are positive and signifi-

cant according to Table 4.9 and Table 4.11, implying that Vhembe district is

more susceptable to malaria incidence than Capricorn district, according to

both the Bayesian and classical frameworks. The standard error for Vhembe is

0.7773, while its naive standard error is 0.0591. Therefore, the standard error

is almost 13 times larger than the naive standard error of the same covariate.

Hence in this case, the MLE method generated more errors than the MCMC

estimation method. The difference of the upper and lower limits of the 95%

confidence interval for Vhembe in Table 4.9 is 0.8728, while the difference of

the upper and lower limits of the 95% HPD credible interval for the same co-

variate in Table 4.11 is 0.3282. Therefore, the difference of the limits of the

95% confidence interval is larger than the difference of the limits of the 95%

HPD credible interval. Hence we can conclude, in this case, that the credible

interval is narrower than the confidence interval.

According to the classical framework as presented in Table 4.9, the parame-

ter estimate for Waterberg is positive, which indicates that malaria incidence
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is more concentrated in Waterberg than in Capricorn district. However, ac-

cording to the Bayesian framework presented in Table 4.11, the parameter

estimate for Waterberg is negative, which indicates that malaria incidence is

more concentrated in Capricorn than in Waterberg district. The standard er-

ror for Waterberg is 0.8428, while its naive standard error 0.0796. This implies

that the standard error in this case is almost 11 times larger than the naive

standard error. The difference of the 95% confidence interval limits for Water-

berg is 0.9534, while the difference of its 95% HPD credible interval is 0.1557.

Hence we can conclude, in this case, that the credible interval is shorter than

the confidence interval.

Based on the comparisons of the errors generated by the classical method of

estimation presented in Table 4.9 and the errors generated by the Bayesian

method of estimation presented in Table 4.11, the classical method of estima-

tion generates more errors than the Bayesian method of estimation. Again,

these two tables (Table2 4.9 and 4.11) provide the evidence that the Bayesian

estimation method produces credible intervals that are shorter than the con-

fidence intervals produced by the classical method of estimation. Hence, we

can conclude that the MCMC estimation method employed in the Bayesian

framework, produces better estimations than the MLE method employed in

the classical framework.



Chapter 5

Conclusion and

recommendations

5.1 Conclusion

In this study, we have modelled malaria incidence in relation to rainfall, tem-

perature, normalised vegetation index (NDVI), elevation and time in quarters

from 2014 to 2015 across the various districts of the Limpopo province. Since

malaria incidence data are counts, we developed three Poisson models and used

the AIC method to select the best model. However, the selected Poisson model

was found to be overdispersed. Therefore, to correct for the overdispersed Pois-

son model we used the negative binomial (NB) model which naturally account

for overdispersion. The three Poisson models and NB model developed em-

ployed the MLE method for parameter estimation. Hence, these models make

up the classical part of this study. The NB model was also developed through

the use of MCMC parameter estimation method, which is used to obtain the
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posterior distribution. All the inferences for the Bayesian framework are based

on the posterior obtained, which make up the Bayesian part of this study.

Both the Bayesian and classical methods revealed a positive relationship be-

tween malaria incidence and temperature during the night. That is, an in-

crease in temperature during the night results in an increase in malaria in-

cidence. Therefore, we can conclude that the risk of malaria transmission is

high during warm nights, which are usually the nights of summer seasons.

The Bayesian and classical frameworks produced similar results about the

relationship between malaria incidence and rainfall, which was found to be

negative. Therefore, we can conclude that an increase in the amount of rain-

fall results in a decrease of malaria incidence. The classical framework does

not provide any evidence of an existing relationship between malaria inci-

dence and either elevation, temperature during the day nor NDVI. However,

the Bayesian framework revealed that an increase in NDVI or temperature

during the day lead to increased malaria incidence while an increase in ele-

vation above sea level leads to decreased malaria incidence. The two methods

used in this study suggest that if malaria incidence increases in Mopani and/or

Vhembe districts, then it also increases in Capricorn district. The classical

framework revealed no pattern of malaria incidence between Capricorn and

Sekhukhune district while the Bayesian framework suggests that if malaria

incidence increases in Sekhukhune district, then it also increases in Capricorn

district. The Bayesian framework also suggests that if malaria incidence de-

creases in Waterberg district then it increases in Capricorn district while in

contrast, the classical framework suggest that if malaria incidence increases

in Waterberg district then it also increases in Capricorn district. Both methods

affirm that Vhembe district is more susceptible to malaria incidence, followed

by Mopani district. The classical method did not identify any particular trend

of malaria incidence over the period of study. However, the Bayesian method
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identified an upward trend of malaria incidence over the period of the study.

The MLE method generated more errors and wider intervals while the MCMC

estimation method generated fewer errors and narrower intervals. Therefore,

we can conclude that the Bayesian method of estimation outperforms the clas-

sical method of estimation.

The results of this study are similar to the results of Ramalata (2017), which

provided evidence that NB model fit malaria count data better than the Pois-

son model. The results of this study are also in agreement with the findings

of Zayeri et al. (2011) which revealed a negative relationship between rainfall

and malaria incidence. Furthermore, the results of this study are similar to

the results of Gosoniu et al. (2006) and Shimaponda-Mataa et al. (2017), which

revealed a positive relationship between malaria risk and temperature during

the night. Gosoniu et al. (2006) also obtained similar results as this study,

which identified a positive relationship between malaria incidence and NDVI.

In agreement with the results of this study, Gerritsen et al. (2008) identified

Vhembe to be the district that is more susceptible to malaria incidence com-

pared to other districts of Limpopo province.

5.2 Recommendations

We recommend that the Department of Health and Malaria Control Programme

of South Africa allocate more resources for malaria prevention, control and

elimination to Vhembe and Mopani districts of Limpopo province. We also

recommend that the government provide educational seminars to educate the

South African communities on how to prevent malaria transmission, especially

during the warm summer nights.



Conclusion and recommendations 110

5.3 Future research

Prior distribution of a parameter is the probability that represents one’s uncer-

tainty about the parameter before the data are examined (Institute, 2014). The

product of the prior distribution and the maximum likelihood function gives

us the posterior distribution, which is used to carry out all the Bayesian in-

ferences. Therefore, the strength of a posterior distribution depends on the

strength of the prior distribution and the magnitude of the data available. Ac-

cording to Kass and Wasserman (1996), most Bayesian analyses are performed

using the noninformative priors constructed by some formal rule. Franck et al.

(2019) outlined that researchers usually choose prior classes based on the goals

of their study. However, selecting the prior distributions without considering

the prior selection methods may result in the construction of an improper pos-

terior distribution which cannot be used for inferences. This study only dis-

cussed the noniformative and informative priors. However, future research

may involve studies on the methods to select the best prior distributions and

also examine the improper, conjugate and Jeffrey’s priors in detail.
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Appendix

SOME SELECTED R CODES

R codes for descriptive statistics

rm(list = ls())

library(car)

library(multcomp)

library(lmtest)

tt=read.table(file.choose(),header=T)

tt

head(tt,4)

attach(tt)

summary(tt)

datause=data.frame(mal,dist,pop,ele,tn,td,ndvi,rain,dyear)

attach(datause)

box plots

par(mfrow=c(2,2))

plot(as.factor(dist),mal,xlab=”Districts”,ylab=”Malaria counts”, main=”Malaria

counts versus districts”,cex.main=1.2)

plot(as.factor(dyear),mal,xlab=”Years”,ylab=”Malaria counts”,main=”Malaria counts
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versus years”,cex.main=1.2)

plot(rain,mal,xlab=”Rainfall”,ylab=”Malaria counts”,main=”Malaria counts ver-

sus rainfall”,cex.main=1.2)

plot(tn, mal,xlab=”Temperature during the night”,ylab=”Malaria

counts”,main=”Malaria counts versus temperature during the night”,cex.main=1.2)

plot(td, mal,xlab=”Temperature during the day”,ylab=”Malaria counts”,main=”Malaria

counts versus temperature during the day”,cex.main=1.2)

plot(ele,mal)

plot(ndvi,mal,xlab=”Normalised difference vegetation index”,ylab=”Malaria

counts”,main=”Malaria counts versus normalised difference vegetation index”,cex.main=1.2)

R codes for classical models

The Poisson model with all the covariates

pm1=glm(mal rain+as.factor(dist)+as.factor(dyear)+tn+td+ele+ndvi+

offset(log(pop)),family=”poisson”,data=datause)

summary(pm1)

plot(pm1)

coef(pm1)

confint(pm1)

exp(cbind(C0=coef(pm1),confint(pm1)))

anova(pm1)

residuals(pm1)

predict(pm1)

The Poisson model in exclusion of the district explanatory variable

pm2=glm(mal rain+as.factor(dyear)+td+tn+ele+ndvi+offset(log(pop)),

family=”poisson”,data=datause)
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summary(pm2)

plot(pm2)

coef(pm2)

confint(pm2) exp(cbind(C0=coef(pm2),confint(pm2))) anova(pm2)

residuals(pm2)

predict(pm2)

The Poisson model in exclusion of the NDVI explanatory variable

pm3=glm(mal rain+as.factor(dist)+as.factor(dyear)+td+tn+ele

+offset(log(pop)),family=”poisson”,data=datause)

summary(pm3)

plot(pm3)

coef(pm3)

confint(pm3)

exp(cbind(C0=coef(pm3),confint(pm3)))

anova(pm3)

residuals(pm3)

predict(pm3)

Detection of overdispersion

require(stats)

mean(mal)

var(mal)

install.packages(”qcc”)

install.packages(”car”)

install.packages(”lmtest”)
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install.packages(”multcomp”)

install.packages(”AER”)

library(qcc)

qcc.overdispersion.test(tt$mal, type=”poisson”)

qcc.overdispersion.test(mal, type=”poisson”)

NB model

require(MASS)

pm5=glm.nb(mal tn+as.factor(dist)+ele+

offset(log(pop))+rain+as.factor(dyear))

summary(pm5)

par(mfrow=c(2,2))

plot(pm5)

coef(pm5)

confint(pm5)

exp(cbind(C0=coef(pm5),confint(pm5)))

anova(pm5)

residuals(pm5)

predict(pm5)

exp(cbind(C0=coef(pm5),confint(pm5)))

Bayesian methods

Data definition

data1=tt
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head(data1)

attach(data1)

data1=data.frame(mal,dist,pop,ele,tn,td,ndvi,rain,dyear)

The development of NB using MCMC

require(MCMCpack)

posterior< −MCMCnegbin(mal rain+as.factor(dist)+tn+td+as.factor(dyear)+ele+

ndvi+offset(log(pop)), b0=0, B0 = 0.1, sigma.mu = 5, sigma.var = 25, data=data1,

verbose=1000, burnin = 5000, mcmc=10000, thin=2)

Posterior summary and the convergence of the Markov chain

summary(posterior)

par(mar = rep(2, 4))

plot(posterior)


