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     ABSTRACT 

The flow of electrically conducting fluids in the presence of a magnetic field has wide 

applications in science, engineering and technology. Examples of the applications 

include industrial processes such as the cooling of reactors, extrusion of plastics, 

purification of crude oil, medical applications, aerodynamics and many more. The 

induced magnetic field usually act as a flow control mechanism, especially under 

intense heat. In this study a couple stress fluid in a channel will be used as the working 

fluid. Channel flow and heat transfer characteristics of couple stress fluids find 

applications in processes such as the extrusion of polymer fluids, solidification of liquid 

crystals, cooling of metallic plates in a bath, tribology of thrust bearings and lubrication 

of engine rod bearings. One major characteristic that distinguishes the couple stress 

fluid from other non-Newtonian fluids is the inclusion of size-dependent microstructure 

that is of mechanical significance. As such, the couple stress constitutive model is 

capable of describing the couple stresses, the effect of body couples and the non-

symmetric tensors manifested in several real fluids of technological importance.  

A fully developed laminar magnetohydrodynamic (MHD) flow of an incompressible 

couple stress fluid through a vertical channel due to a steady-periodic temperature on 

the channel plates is investigated. Specifically, the effects of couple stresses and 

internal heat generation on MHD natural convection flow with steady-periodic heat 

input, the impact of magnetic field induction on the buoyancy-induced oscillatory flow 

of couple stress fluid with varying heating and a mixed convective two dimensional 

flow of unsteady MHD couple stress fluid through a channel field with porous medium 

are studied. Analytical methods and the semi-analytic Adomian decomposition method 

will be used to solve the resulting non-linear differential equations governing the flow 

systems. Useful results for velocity, temperature, skin friction and Nusselt number are 

obtained and discussed quantitatively. The effects of the various flow governing 

parameters on the flow field are investigated. 
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                                NOMENCLATURE  

T  - Temperature of the fluid, 

 pc  - Specific heat at constant pressure, 

 g  - Gravitational acceleration,  

h  - Half the channel width,  

y  -  Horizontal coordinate,  

t  - Time,  

210 ,, TTT - Fixed wall temperatures,  

'u  - Dimensional velocity, 

𝑢         -         Velocity, 

   - Thermal expansion coefficient,  

  - Dynamic viscosity, 

𝛾        -          The couple stress parameter 

   - Fluid kinematic viscosity,  

  - Heating frequency,  

  - Electrical conductivity,  

0B  - Constant magnetic field strength, 

k  - Thermal conductivity, 

 0Q  - Internal heat loss,  

  - Fluid density, 

)(),(  BA  - dimensionless steady and oscillatory velocity respectively,  
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)(),(  GF  - dimensionless steady and periodic temperature respectively,  

  - viscous heating parameter,  

Pr  - Prandtl number,  

St  - Strouhal number,  

𝐻𝑎ଶ - Hartmann number,  

  - Couple stress coefficient, 

  -  heat loss parameter/internal heat generation parameter 

 2  - couple stress parameter. 

  𝑎ଶ     -         the inverse of couple stress parameter 
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                                          CHAPTER ONE 

                                     INTRODUCTION 

Chapter Abstract 

In this chapter, essential terms used in the thesis are defined and discussed. Literature 

review, problem statement, aims and objectives of the study and the research 

methodology are outlined. Some important dimensionless parameters are also 

defined.  

 

1.1. Definition of terms 

1.1.1. Heat transfer 

It has always been understood that there is something that flows from hot objects to 

cold objects, and it is called heat. For instance, heat flows constantly from the 

bloodstream to the ambient air. The warmed air lifts off the body to warm the room 

and whenever the body leaves the room, some tiny buoyancy driven motion of the air 

will continue because walls will not be perfectly isothermal. The driving force for the 

heat flow process is the cooling of the thermal gradients within our universe [75]. 

Heat transfer is described as the flow of heat due to temperature differences. It is 

further described as the process of the transfer of heat from high temperature reservoir 

to low temperature reservoir, and in terms of the thermodynamic system, it is the 

movement of heat across the boundary of the system because of temperature 

difference between the system and the surroundings. Heat transfer processes are 

classified into three types, namely, conduction, convection and radiation. In this study 

the focus is more on convection. 
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Figure 1.1: Heat transfer (Image source: hyperphysics.phy-astr.gsu.edu) 

 

 

Figure 1.2: Modes of heat transfer (Image source: learnmechanical.com). 
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Convection is defined as the transfer of heat by circulation of movement of the heated 

parts of a liquid or a gas. It is also described as the heat transfer by mass motion of a 

fluid such as air or water when the heated fluid is caused to move away from the 

source of heat, carrying energy with it. Convection occurs when particles with a lot of 

heat energy in a liquid or gas move and take the place of particles with less heat 

energy. Heat energy is transferred from hot places to cooler places by convection. 

Liquids and gases expand when they are heated. 

The transfer of heat occurs between the surface and a fluid in motion when their 

temperature is different. The rate of transfer is given by 

 

   𝑞 ൌ ℎ൫𝑇௕௢ௗ௬ െ 𝑇ஶ൯. 

 

This is the steady-state form of Newton’s law of cooling and ℎ is the heat transfer 

coefficient [46].  

 

Figure 1.3: Convective heating (Image source: hyperphysics.phy-astr.gsu.edu) 
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         Figure 1.4: Convective heat transfer (Image source: hyperphysics.phy-astr.gsu.edu) 

 

Convection is categorized into three types, namely, natural convection, forced 

convection and mixed convection. Natural convection is a type of mass and heat 

transport in which the fluid motion is generated only by density differences in the fluid 

occurring due to temperature gradients, not by external sources like a pump, fan, 

suction device, etc. Since the fluid velocity associated with natural convection is 

relatively low, the heat transfer coefficient encountered in natural convection is also 

low. The driving force for natural convection is gravity. The inception of natural 

convection is determined by the Rayleigh number (Ra), a dimensionless quantity given 

by 

   𝑅𝑎 ൌ ∆ఘ௚௅య

஽ఓ
, 

where ∆𝜌 is the change in density, 𝑔 is the local gravitational acceleration, 𝐿 is the 

characteristic length-scale of convection, 𝐷 is the coefficient of diffusion, and 𝜇 is the 

dynamic viscosity. 

 

 

 

 

 

 

 

 

 Figure 1.5: Natural convection heat transfer from a hot body (image source: studylib.net) 

Warm air 

Hot object 

Cool air 
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Forced convection is a mechanism that occurs when fluid flow is induced by an 

external force such as a pump, fan or a mixer in order to increase the heat transfer. 

Most engineers come across the forced convection when designing or analyzing heat 

exchangers. This mechanism is found mostly in everyday life including central heating, 

air conditioning, steam turbines and other numerous machines [58]. 

 

Figure 1.6: Forced convection heat transfer (image source: pinterest.com) 

 

Mixed convection occurs when natural convection and forced convection mechanisms 

act together to transfer heat. In other words, this is a phenomenon where both 

pressure forces and buoyant forces interact. 

 

1.1.2. Magnetohydrodynamics (MHD) 

Magnetic fields inspire a lot of natural and induced flows. These flows are regularly 

used in industry to heat, pump, stir and soar liquid metals. The study of these flows is 

called the magnetohydrodynamics (MHD). MHD is the study of the flow of electrically 

conducting fluids in the presence of magnetic fields, either externally applied or 

generated within the fluid by inductive action. Examples of electrically conducting fluids 

include plasmas, liquid metals, salt water and electrolytes. The essential thought 

around MHD is that magnetic fields can induce currents in a flowing conductive fluid, 

which in turn polarizes the fluid and equally changes the magnetic field by itself.  

 

The applications of MHD include boundary layer control in the field of aerodynamics, 

the cooling of nuclear reactors, the cooling of a metallic plate in a cooling bath, 

geothermal energy extraction, operation of MHD generators, plasma studies, etc.  
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Figure 1.7: Magnetohydrodynamic electricity generation (Image source: 
gsupsc.blogspot.com) 
 
 
1.1.2.1. MHD Equations 
 
In the standard non-relativistic form the MHD equations consist of the basic 

conservation laws of mass, momentum and energy, together with the induction 

equation for the magnetic field. The equations written in international system of units 

(SI) according to [37] are: 

 

   
డఘ೘

డ௧
൅ ∇. 𝜌௠𝑣⃗ ൌ 0,      (1.1) 

 

where 𝜌௠ is the mass density and 𝑣⃗ is the fluid bulk velocity. The equation of motion 

is given as  

   
డሺఘ೘௩ሬ⃗ ሻ

డ௧
൅ ∇. ቀ𝜌௠𝑣ଶሬሬሬሬ⃗ ቁ ൌ െ∇𝑝 ൅ 𝐽 ൈ 𝐵ሬ⃗ ൅ ∇. 𝜎,   (1.2) 

 

where 𝑝 is the gas pressure, 𝐵ሬ⃗  the magnetic flux density, 𝐽 ൌ ∇ ൈ ஻ሬ⃗

ఓబ
 is the current 

density, 𝜇଴ is the vacuum permeability, and 𝜎 is the viscous stress tensor. 
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The equation for internal energy, which is usually written as an equation for the 

pressure 𝑝, is given by 

   
డ௣

డ௧
൅ 𝑣⃗. ∇𝑝 ൅ 𝛾𝑝∇. 𝑣⃗ ൌ 𝑄,     (1.3) 

 

where 𝑄 comprises the effects of heating and cooling as well as thermal conduction 

and 𝛾 is the adiabatic coefficient. Eqn. (3) implies the equation of state of the ideal 

ionized gas 

   𝑝 ൌ 2 ቀ
ఘ೘

௠೔
ቁ 𝑘஻𝑇,  

 

which is well satisfied for most dilute plasmas.  𝑇 is the temperature, 𝑚௜ the iron mass, 

𝑘஻ the Boltzmann constant and the factor 2 arises because irons and electrons 

contribute equally. 

The induction equation or Faraday’s law is given by 

 

   
డ஻ሬ⃗

డ௧
ൌ െ∇ ൈ 𝐸ሬ⃗ ൌ ∇ ൈ ൫𝑢ሬ⃗ ൈ 𝐵ሬ⃗ ൯ ൅ 𝜂∇ଶ𝐵ሬ⃗ ,   (1.4) 

 

where 𝜂 is the magnetic diffusivity and 

    

   𝐸ሬ⃗ ൌ െ𝑢ሬ⃗ ൈ 𝐵ሬ⃗ ൅ 𝜂 𝐽 

 

is Ohm’s law. The magnetic field is coupled to the fluid by the Lorentz force 𝐽 ൈ 𝐵ሬ⃗  in 

the equation of motion Eqn. (1.2). 

 

In total the MHD equations thus consist of two vector and two scalar partial differential 

equations that are to be solved simultaneously, either analytically or numerically. 

 
1.1.3. Non-Newtonian fluids 

There are two ways of describing the behavior of fluids, namely, Newtonian and non-

Newtonian fluids, depending on how they act when responding to shear stress. Most 

fluids are non-Newtonian in nature. A Newtonian fluid is a fluid in which the viscous 

stresses arising from its flow at every point are linearly correlated to the local strain 

(the rate of change of its deformation over time). Examples of Newtonian fluids are 
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gasoline, mineral oil, alcohol and glycerin. A non-Newtonian fluid is defined as a fluid 

whose viscosity changes due to stress or force applied on it. For a non-Newtonian 

fluid, shear stress is not directly proportional to the rate of strain. There are several 

types of non-Newtonian fluids, namely, shear thickening, bingham plastic, rheopectic 

or anti-thixotropic, couple stress, Casson and many more. A fluid is shear thickening 

if the viscosity of the fluid increases as the shear rate increases. A close example of 

shear thickening is mixing cornstarch with water.  Examples of non-Newtonian fluids 

are blood, honey, grease, gels, oobleck and many more. Non-Newtonian fluids occur 

naturally and a few examples of their applications include reduction of fluid friction, 

surfactant applications to large scale heating and cooling systems, flow tracers and 

many more. 

 

 

Figure 1.8: An example of a non-Newtonian fluid (image source: biocircuits.ucsd.edu) 

 

1.1.4. Couple stress fluids 

Couple stress fluid theory is a simple generalization of the classical theory of viscous 

Newtonian fluids that allow the sustenance of couple stresses and body couples in the 

fluid medium [34]. The concept of couple stresses arises due to the way in which the 

mechanical interactions in the fluid medium are modelled. When additives in the fluid 

are mixed, forces in the fluid oppose the forces generated by additives. This opposite 

force forms a couple force and a couple stress is induced in a fluid. Couple stresses 
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are an outcome of the supposition that the interaction of one part of a body on another 

across a surface is equivalent to a force and moment distribution. They consist of rigid, 

randomly oriented particles suspended in a viscous medium such as blood fluids, 

electro-rheological fluids and synthetic fluids. The main feature of a couple stress fluid 

is that the stress tensor is anti-symmetric [101]. The couple stress fluid theory is 

proficient for describing different types of lubricants, suspension fluids, blood, etc. 

These fluids have applications in various processes that take place in the industry, 

such as solidification of liquid crystals, extrusion of polymer fluids, colloidal solutions 

and cooling of metallic plate in a bath and so on [43]. 

 

1.1.5. Buoyancy 

Buoyancy is defined as an upward force applied by a fluid on an immersed object in a 

gravity field and opposes the weight of an object [144]. In fluids, pressure increases 

with depth, hence when an object is dipped in a fluid, the pressure applied on the 

bottom surface is higher than the one applied on the top surface. Any object fully or 

partly immersed in a fluid is buoyed up by a force equal to the weight of the fluid 

displaced by an object. Buoyancy is caused by differences in pressure acting on 

opposite sides of an object dipped in a motionless fluid. Pressure differences in a fluid 

are caused by gravity. Generally, buoyant forces act opposite the direction of the frame 

of reference acceleration. Three types of buoyancy are positive, negative and neutral 

buoyancy. 

Positive buoyancy takes place when an object is lighter than the fluid it displaces. In 

this case the object will float because the buoyant force is greater than the object’s 

weight. Negative buoyancy happens when an object is denser than the fluid it 

displaces. In this case the object will sink because its weight is greater that the buoyant 

force. Neutral buoyancy occurs when an object’s weight is equal to the fluid it 

displaces.  Applications of buoyancy include staying afloat, ships at the sea, 

submarines, floating of balloons, airships and many more.  
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Figure 1.9: Buoyancy (Image source: mixandflowofmatter.weebly.com)   

 

1.1.6. Oscillatory flow 

The repetitive variation normally in time of some measure about a value or between 

two or more distinct states is called an oscillation. Oscillations do not only take place 

in mechanical systems, they also occur in all areas of science. For example the beating 

of human heart, business cycles in economics, geothermal geysers in geology, 

periodic firing of nerve cells in the brain, etc.  Oscillations lead to momentous 

development of heat and mass transfer. Oscillatory flow is a physical occurrence 

encountered in internal combustion engines, stirling engines, cryogenic coolers and 

chemical processes. The fact that oscillating flow has two thermal entrance regions is 

one of the reasons why it enhances heat transfer.  

Oscillatory flows have the potential of being used for heat spreading applications for 

cooling of high power electronics and electrical equipment.  

 

1.1.7. Prandtl number ሺ𝑃௥ሻ 

The Prandtl number is a non-dimensional quantity that is responsible for setting 

viscosity of the fluid in association with the thermal conductivity. It consequently 
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measures the connection between momentum transport and thermal transport 

capacity of a fluid and it is mathematically defined as 

 𝑃௥ ൌ ௩

ఈ
ൌ ௠௢௠௘௡௧௨௠ ௧௥௔௡௦௣௢௥௧

௛௘௔௧ ௧௥௔௡௦௣௢௥௧
ൌ

ఓ
ఘൗ

௞ ௖೛ఘൗ
ൌ

௖೛ఓ

௞
, 

where 𝑣 is the momentum diffusivity, 𝛼 is the thermal diffusivity, 𝜇 is the dynamic 

viscosity, 𝑘 is the thermal conductivity, 𝑐௣ is the specific heat and 𝜌 is the density of 

the fluid. Prandtl number is important in displaying the relative thickness of the velocity 

boundary layer to the thermal boundary layer. In heat transfer problems, the Prandtl 

number controls the relative thickness of the momentum and thermal boundary layers, 

i.e. when 𝑃௥ is small, the heat circulation becomes quicker as compared to the velocity, 

meaning that, for liquid metals the thickness of the thermal boundary layer is bigger 

than the velocity boundary layer. 

 

1.1.8. Strouhal number ሺ𝑆௧ሻ 

The Strouhal number (𝑆௧) is a dimensionless number describing the oscillating flow 

mechanism. The parameter is named after Vincene Strouhal, a Czech physicist who 

experimented in 1878 with wires experiencing vortex shedding and singing in the wind. 

The Strouhal number is defined as 

  𝑆௧ ൌ ி௅

௎
, 

where 𝐹 is the frequency of vortex shedding, 𝐿 is the characteristic length and 𝑈 is the 

flow velocity. In flows characterized by a periodic motion, a Strouhal number is 

associated with the oscillations of the flow due to the inertial forces relative to the 

changes in velocity due to the convective acceleration of the flow field. At high 𝑆௧ 

oscillations dominate the flow, whereas at low 𝑆௧ oscillations are swept by the fast 

moving fluid. The Strouhal number can be important when analyzing unsteady 

oscillating flow problems. It represents a measure of the ratio of inertial forces due to 

changes in velocity from one point to the other in the flow field. 

 

1.1.9. Hartmann number ሺ𝐻𝑎ሻ 

The Hartmann number (𝐻𝑎) is the ratio of the electromagnetic force to the viscous 

force. It was first introduced by Hartmann. It is frequently encountered in fluid flows 

through magnetic fields and it is defined as 
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 𝐻௔ ൌ 𝐵𝐿ට
ఙ

ఓ
. 

where 𝐵 is the magnetic field intensity, 𝐿 is the characteristic length scale, 𝜎 is the 

electrical conductivity and 𝜇 is the dynamic viscosity. From the practical point of view, 

the important range of Hartmann number is 102 ൏ 𝐻𝑎 ൏ 106.  High values of the 

Hartmann number means that the magnetic field intensity is stronger. 

 

1.1.10   Reynolds number ሺ𝑅𝑒ሻ 

The Reynolds number (𝑅𝑒) is the ratio between the inertial and viscous forces in a 

fluid. A fluid in motion tends to behave as sheets or layers of infinitely small 

thicknesses sliding relative to each other. The Reynolds number is an important 

dimensionless quantity in fluid mechanics used to help predict flow patterns in different 

fluid flow situations. At low Reynolds number, flow tends to be dominated by laminar 

flow, while at high Reynolds number turbulence results from differences in the fluid’s 

speed and direction, which may sometimes intersect or even move counter to the 

overall direction of the flow. The Reynolds number is expressed by 

  𝑅𝑒 ൌ
ఘ௏௅

ఓ
, 

where 𝜌 is the density, 𝑉 is the velocity, 𝜇 is the viscosity and 𝐿 is the characteristic 

linear dimension. 

 

1.1.11 Grashof number (Gr) 

The Grashof number (Gr) is a non-dimensional parameter in fluid dynamics and heat 

transfer responsible for estimating the relation of the buoyancy to viscous forces acting 

on a fluid. It normally happens in studies of conditions relating natural convection and 

it is equivalent to the Reynolds number. The Grashof number is represented 

mathematically as follows 

 𝐺𝑟 ൌ ୠ୳୭୷ୟ୬ୡ୷ ୤୭୰ୡୣୱ

୴୧ୱୡ୭୳ୱ ୤୭୰ୡୣୱ
ൌ ௚ఉ௅యሺ்ೢೌ೗೗ି ಮ்ሻ

௩మ , 

where 𝑔 is the acceleration due to gravity, 𝛽 is the thermal expansion coefficient, 𝑇௪௔௟௟ 

is the wall temperature, 𝑇ஶ is the bulk temperature, 𝐿 is the vertical length and 𝑣 is the 

kinematic viscosity. The importance of the Grashof number is that it represents the 

ratio between the buoyancy forces due to spatial variation in fluid density to the 

restraining force due to the viscosity of the fluid. Since Reynolds number, Re, 

represents the ratio of momentum to viscous forces, the relative magnitudes of Gr and 



13 
 

Re are an indication of the relative importance of natural and forced convection in 

determining heat transfer.  

 

1.2. Literature review 

Motivated by a plethora of wide applications in industry and contemporary technology, 

as well as the need for technological advancement in the improvement of life in 

general, an upsurge of research interest in studies of phenomena connected with 

hydromagnetic fluid flow has been witnessed. Recent findings on MHD have shown 

that the magnetic field produced by a simple magnet placed in a transverse direction 

to the channel interacts with the fluid flow [4]. This phenomenon plays an important 

role in the control of hot moving fluid in many metallurgical engineering applications, 

crystal growth, electrochemistry and other thermal processes occurring at high 

temperature [5]. Depending on the geometry of the medium, the mechanics of the fluid 

and other physical conditions, challenging fluid flow models arise [129]. 

Theoretical studies of Hartmann [50] on laminar flow of an electrically conducting liquid 

in a homogeneous magnetic field motivated scientists to engage in active research in 

hydromagnetic fluid flow and heat transfer. If the electrically conducting fluid involved 

is a non-Newtonian fluid the studies of the flow dynamics have an additional challenge 

in that the classical linear Navier-Stokes model breaks down. A diversity of models 

have been postulated depending on the nature of the departure from Newtonian 

behaviour. Amongst these models is the couple stress fluid theory [141]. 

The couple stress fluid may be considered as a special case of a non-Newtonian fluid 

which takes into account the particle size effects [82]. Recently, Kareem et al. [69] 

reported on the second law analysis for hydromagnetic couple stress fluid flow through 

a porous channel. In second law analysis or entropy generation studies the main focus 

is on how to minimise or control energy wastages in the form of heat dissipation. 

Kareem et al. [69] concluded that the magnetic field reduces the randomness in the 

fluid’s particles, resulting in the lowering of the fluid’s velocity and entropy generation. 

Makinde and Eegunjobi [78] studied the entropy generation in a couple stress fluid 

flow through a vertical channel filled with saturated porous media. In their study, 

entropy generation was observed to increase with the buoyancy force and pressure 

gradient, while the porous medium decreased it. Falade et al. [41] studied the entropy 

generation analysis for variable viscous couple stress fluid flow through a channel with 
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non-uniform wall temperature. An increase in the couple stress inverse (which 

represents a decrease in the dynamic fluid viscosity) was observed to enhance the 

dominance of fluid friction irreversibility over heat transfer.   

Abbas et al. [1] presented the hydromagnetic mixed convective two-phase flow of 

couple stress and viscous fluids in an inclined channel. Nayak and Dash [89] 

investigated the MHD couple stress fluid flow through a porous medium in a rotating 

channel.  They analysed the effect of couple stress as well as the case of steady and 

pulsatile pressure gradient on a flow through a porous saturated rotating channel. 

Adesanya et al. [12] presented the hydromagnetic natural convection flow between 

vertical parallel plates with time-periodic boundary conditions, and concluded that an 

increase in the magnetic field intensity decreases the flow velocity while it enhances 

fluid temperature owing to joule dissipation. Other related studies are found in [7,22,32 

and 108]. 

MHD studies in various flow geometries are pertinent in that they lead to improvement 

of design of machinery and industrial processes as well as enhancement of energy 

efficiency of thermal systems.  Efficient industrial flow processes contribute immensely 

to economic growth and improvement of life of citizens. Although several MHD studies 

have been undertaken to date, literature survey revealed that the present study has 

not been investigated in the previous models presented in the literature. 

1.3. Problem statement 

Fluid mechanics is concerned with the flow of fluids. It is one of the most important of 

all the areas of physics [32]. A fluid is a substance that deforms continuously under 

the application of a shear stress no matter how small the shear stress may be [46]. In 

the natural world, we frequently encounter transport processes in fluids, where the 

motion is driven by the interface of a difference in density in a gravitational field. 

Therefore the buoyancy force is the stimulus to the fluid flow [148]. Buoyancy forces 

arise as a result of variations of density in a fluid subject to gravity, and produce a wide 

range of phenomena of importance in many aspects of everyday life [144].   

The study of flows in which the fluid is electrically conducting and moves in a magnetic 

field is known as magnetohydrodynamics (MHD) [27]. Hartmann [50] pioneered the 

study of such flows and following his ground breaking work, the rheological community 
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has undertaken to investigate hydromagnetic fluid flow and heat transfer in different 

geometries under varied physical effects. The fluid may be Newtonian or non-

Newtonian. For the latter, complexities arising from the breakdown of the classical 

linear Navier-Stokes model has led to fascinating field of non-Newtonian rheology. 

Couple stress fluid theory was introduced by Stokes and is among the non-Newtonian 

fluid theory which considers couple stresses in addition to the classical Cauchy 

stresses in viscous fluid dynamics [16].   

In recent times, studies have shown that magnetic nanoparticles suspended in base 

fluid have significant influence on many fluids of technological importance [61] and 

[151]. For instance, in hydraulic systems used in automobiles shock absorbers, the 

interactions between the electromagnetic fields produced by the dipolar Lorentz forces 

clamped transversely to the flow channel always interact with the ferrofluid particles to 

dampen the shock. The introduction of magnetic nanoparticles is also a useful means 

of controlling hot moving molten steel of commercial quantity in several metallurgical 

engineering applications. Moreover, the magnetic nanoparticles are used widely in 

electro-chemistry to agglomerate fluid particles due to interactions with the dipolar 

forces and lots more applications that are too numerous to be mentioned here.  

Motivated by the few above-mentioned application areas, the study shall address 

several flow problems in magnetic nanoparticles flow and heat transfer characteristics 

by using the couple stress fluid model. A survey of the literature suggests that the 

study described here has not been investigated in the steady-periodic regimes despite 

its wide applications in a wide range of fluids flowing through parallel plates subjected 

to periodic heat input. We consider a fully developed laminar flow of an electrically 

conducting incompressible couple stress fluid through a vertical channel due to a 

steady-periodic temperature on the plates. The fluid is assumed to be under the 

influence of an externally applied homogeneous magnetic field. All fluid properties are 

assumed to be constant except for fluid density that varies with temperature. The fluid 

is assumed to have small electrical conductivity, and the electromagnetic force 

produced is very small. 
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1.4.  Rationale 

Studies related to channel flow and heat transfer characteristics of couple stress fluids 

do not only present theoretically challenging problems, but also find several 

applications in many industrial and chemical engineering processes such as the 

extrusion of polymer fluids, solidification of liquid crystals, cooling of metallic plates in 

a bath, colloidal solutions, etc. Couple stress fluids are also important in physiological 

fluid mechanics, tribology of thrust bearings and lubrication of engine rod bearings 

[16]. Couple stress fluid models are also capable of describing the characteristics and 

behaviour of blood and suspension fluids [78]. Many nanofluids of mechanical 

significance contain tiny magnetic colloidal additives that are suspended in the base 

fluid to form ferrofluid. The presence of these nano-materials suggest that the couple 

stress constitutive model can be used to describe the rheological properties of 

nanofluids. Meanwhile convective flows in the steady-periodic regimes have attracted 

considerable attention owing to their applicability in electrical and electronic devices 

and in the flow of fluids in human and animal bodies [65,149].  

1.5. Aim of the study 

The aim of this research work is to study the hydromagnetic couple stress fluid flow 

through vertical channel subjected to steady-periodic heating under various flow 

conditions. 

1.6. Research objectives 

The objectives of the study are: 

(i) To formulate Mathematical models describing hydromagnetic couple stress 

fluid flow through vertical channel subjected to steady-periodic heating 

under various conditions. 

(ii) To identify and/or develop analytical and numerical methods to solve the 

model problems. 

(iii) To examine the effect of couple stresses on the buoyancy-induced flow. 

(iv) To investigate the influence of viscous and Joule dissipation on the thermal 

structure. 

(v) To analyse the effects of the various thermophysical parameters on the 

velocity and temperature fields, the skin friction and the rate of heat transfer.  
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1.7.  Research methodology  

Both analytical techniques and numerical methods will be used to solve the modelling 

equations. For most engineering and scientific applications numerical solutions are of 

particular interest due to the fact that exact solutions may not exist in closed form. In 

our study the partial differential equations that will be derived are coupled and 

nonlinear, and exact solutions may be impossible. For this reason numerical methods 

will need to be employed. The semi-analytical Adomian decomposition method (ADM) 

is envisaged to be utilised in solving the three variants of the problems to be 

formulated. 

Three variations of the problem will be analysed, and these are:  

i. In the first case, the hydromagnetic couple stress fluid flow through vertical 

channel subject to steady-periodic heating would be investigated.  

ii. The second case will address the impact of magnetic field induction on the 

buoyancy-induced oscillatory flow of couple stress fluid with varying heating.  

iii. Finally, the third case will investigate mixed convective three dimensional 

flow of unsteady hydromagnetic couple stress fluid through a vertical 

channel filled with porous medium. 

The modelling equations will be formulated, non-dimensionalised and solved using 

analytical methods and/or the ADM.  

1.7.1. The Adomian decomposition method (ADM) 

ADM is a semi-analytical approach for obtaining solutions to functional problems. The 

method requires no linearisation, discretisation, use of initial guess or transformation 

to obtain the solution of any linear or nonlinear integral equations. One main 

advantage of ADM is that it can be coded on symbolic software packages like 

Mathematica, Maple or Matlab for high accuracy of the solution, and this ensures that 

human error will be completely eliminated. The method has been used by several 

researchers including [8]. One gets a convergent series solution with just a few 

iterations. The method of decomposition crumbles the linear term 𝑢ሺ𝑥, 𝑡ሻ into a non-

ending sum of components 𝑢௡ሺ𝑥, 𝑡ሻ expressed as 
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𝑢ሺ𝑥, 𝑡ሻ ൌ ෍ 𝑢௡ሺ𝑥, 𝑡ሻ.

ஶ

௡ୀ଴

 

In addition, the method of decomposition do the identification of the nonlinear term 

𝐹൫𝑢ሺ𝑥, 𝑡ሻ൯ applying the series of decomposition 

    𝐹൫𝑢ሺ𝑥, 𝑡ሻ൯ ൌ ∑ 𝐴௡
ஶ
௡ୀ଴ , 

where 𝐴௡ are the Adomian polynomials obtained from the formula 

𝐴௡ ൌ
1
𝑛!

𝑑௡

𝑑𝜆௡ ൥𝐹 ൭෍ 𝜆௜𝑢௜

௡

௜ୀ଴

൱൩
ఒୀ଴    

, 𝑛 ൌ 0,1,2, … 

The first few Adomian polynomials are obtained as: 

  𝐴଴ ൌ 𝐹ሺ𝑢଴ሻ, 

 𝐴ଵ ൌ 𝑢ଵ𝐹ᇱሺ𝑢଴ሻ, 

 𝐴ଶ ൌ 𝑢ଶ𝐹ᇱሺ𝑢଴ሻ ൅ ଵ

ଶ!
𝑢ଵ

ଶ𝐹ᇱᇱሺ𝑢଴ሻ, 

 𝐴ଷ ൌ 𝑢ଷ𝐹ᇱሺ𝑢଴ሻ ൅ 𝑢ଵ𝑢ଶ𝐹ᇱᇱሺ𝑢଴ሻ ൅ ଵ

ଷ!
𝑢ଵ

ଷ𝐹ᇱᇱᇱሺ𝑢଴ሻ, 

 𝐴ଷ ൌ 𝑢ଷ𝐹ᇱሺ𝑢଴ሻ ൅ 𝑢ଵ𝑢ଶ𝐹ᇱᇱሺ𝑢଴ሻ ൅ ଵ

ଷ!
𝑢ଵ

ଷ𝐹ᇱᇱᇱሺ𝑢଴ሻ 

𝐴ସ ൌ 𝑢ସ𝐹ᇱሺ𝑢଴ሻ ൅ ቀ
ଵ

ଶ!
𝑢ଶ

ଶ ൅ 𝑢ଵ𝑢ଷቁ 𝐹ᇱᇱሺ𝑢଴ሻ ൅ ଵ

ଶ!
𝑢ଵ

ଶ𝑢ଶ𝐹ᇱᇱᇱሺ𝑢଴ሻ ൅ ଵ

ସ!
𝑢ଵ

ସ𝐹௜௩ሺ𝑢଴ሻ.   

The similar method can be applied to produce other polynomials. 

 

1.8. Thesis outline 

The thesis is organized as follows: 

 

Chapter One 

In Chapter one, the important terminology and expressions used in the study are 

defined and elaborated, literature review is presented together with the problem 

statement, aim of the study, research objectives, rationale and research methodology.  

 

Chapter Two 

Chapter two focuses on the derivation of basic equations of fluid dynamics, namely, 

the continuity, momentum and the energy equations. 
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Chapter Three 

In Chapter three, the natural convection flow of heat generating hydromagnetic couple 

stress fluid with time periodic boundary conditions is investigated. Specific research 

objectives (i) – (v) are achieved in this chapter. 

Chapter Four 

In Chapter four, the convective flow of hydromagnetic couple stress fluid with varying 

heating through vertical channel is analysed and investigated. Specific research 

objectives (i) – (v) are achieved in this chapter. 

Chapter Five 

In Chapter five, the focus is on the investigation of the mixed convective flow of 

unsteady hydromagnetic couple stress fluid through a vertical channel filled with 

porous medium. Specific research objectives (i) – (v) are achieved in this chapter. 

Chapter Six 

This chapter concludes the thesis with a general discussion, conclusion, 

recommendations and future research work. 
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CHAPTER TWO 

DERIVATION OF BASIC FLUID FLOW EQUATIONS  

Chapter Abstract 

In this chapter, the governing equations of computational fluid dynamics are derived 

and discussed.  

2.1. Introduction  

The basis of computational fluid dynamics is the essential governing equations of the 

fluid in motion, namely, the continuity, momentum and energy equations. The 

momentum equations are referred to as Navier-Stokes equations. Applying the laws 

of conservation of mass, momentum and energy balance to an infinitesimal volume 

element yields the equations in differential form, which assumes that the fluid particles 

are continuous and that derivatives exist [104]. 

 

Figure 2.1. Fluid element moving in a flow field (image source: www.cfd-online.com) 

2.2. The continuity equation 

The continuity equation is developed simply by applying the law of conservation of 

mass to a small volume element within a flowing fluid [46]. 

The continuity equation is conveyed in a differential form for one dimensional setup as   

  
డఘ

డ௧
൅ ∇. ሺ𝜌𝑢ሻ ൌ 0,     (2.1) 
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where 𝜌 is the density of the fluid, 𝑡 is time, and 𝑢 is the fluid velocity. It can also be 

obtained in Cartesian tensor scheme as 

  
డఘ

డ௧
൅ డሺఘ௨ೖሻ

డ௫ೖ
ൌ 0.     (2.2) 

 

In operator form it can be shown as 

  ∇. 𝑢 ൌ 0.      (2.3) 

In a two dimensional setup, a small control volume of lengths ∆𝑥 and ∆𝑦 and depth of 

unity perpendicular to 𝑥𝑦-plane is considered. Figure 2.2 shows the differential control 

volume ሺ𝑑𝑥. 𝑑𝑦. 1ሻ for mass conservation in two dimensional flow. 

 

                                                    𝜌𝑣 ൅
డሺఘ௩ሻ

డ௫
∆𝑦                                    

 

 

  

 

     

  

 

  

 

Figure 2.2. Control volume for mass conservation in two dimensional flow 

The rate of mass entering a face is the product of the density, fluid velocity and the 

face area. For example, on the left face with area 𝐴 ൌ ∆𝑦∆𝑧, the density 𝜌 is multiplied 

by the velocity 𝑢 in the 𝑥 direction, so that the rate at which the mass enters the control 

volume is 

                    𝜌𝑢∆𝑦∆𝑧.     (2.4) 

 

𝜌𝑢 ൅
𝜕ሺ𝜌𝑢ሻ

𝜕𝑥
∆𝑥 

𝜌𝑣

                                     𝜌𝑢 

                     ሺ𝑥, 𝑦ሻ 

∆𝑦
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The mass leaving the volume is expressed in the same manner, but in this case the 

velocity and density may have changed as the fluid passes through the control volume. 

The small changes in velocity and density are respectively expressed as 𝑢 ൅ ∆𝑢 and 

𝜌 ൅ ∆𝜌. Therefore the mass leaving the control volume, denoted by a negative sign, is 

expressed as 

െሺ𝜌 ൅ ∆𝜌ሻሺ𝑢 ൅ ∆𝑢ሻ∆𝑦∆𝑧.                     (2.5) 

 

Consideration of the other faces in the 𝑦 and 𝑧 directions, in the case of a three 

dimensional flow, gives expressions for the mass entering the control volume as 

 

   𝜌𝑣∆𝑥∆𝑧 and 𝜌𝑤∆𝑥∆𝑧,                               (2.6) 

  

where 𝑣 and 𝑤 are velocities in the 𝑦 and 𝑧 directions respectively. 

The masses leaving the respective sides are 

                 

                െሺ𝜌 ൅ ∆𝜌ሻሺ𝑣 ൅ ∆𝑣ሻ∆𝑥∆𝑧 and  െሺ𝜌 ൅ ∆𝜌ሻሺ𝑤 ൅ ∆𝑤ሻ∆𝑥∆𝑦.       (2.7) 

 

The total rate of mass entering and leaving the volume ∆𝑥∆𝑦∆𝑧 is thus expressed as 

 

ቀ
∆ఘ

∆௧
ቁ ∆𝑥∆𝑦∆𝑧 ൌ 𝜌𝑢∆𝑦∆𝑧 ൅ 𝜌𝑣∆𝑥∆𝑧 ൅ 𝜌𝑤∆𝑥∆𝑦 െ ሺ𝜌 ൅ ∆𝜌ሻሺ𝑢 ൅ ∆𝑢ሻ∆𝑦∆𝑧 െ ሺ𝜌 ൅

∆𝜌ሻሺ𝑣 ൅ ∆𝑣ሻ∆𝑥∆𝑧 െ ሺ𝜌 ൅ ∆𝜌ሻሺ𝑤 ൅ ∆𝑤ሻ∆𝑥∆𝑦.                                           (2.8) 

 

Equation (2.8) simplifies to  

 

ቀ
∆ఘ

∆௧
ቁ ∆𝑥∆𝑦∆𝑧 ൌ െ∆ሺ𝜌𝑢ሻ∆𝑦∆𝑧 െ ∆ሺ𝜌𝑣ሻ∆𝑥∆𝑧 െ ∆ሺ𝜌𝑤ሻ∆𝑥∆𝑦.                        (2.9) 
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Dividing both sides of Equation (2.9) by ∆𝑥∆𝑦∆𝑧 and rearranging the terms, we have 

 

  
∆ఘ

∆௧
൅

∆ሺఘ௨ሻ

∆௫
൅

∆ሺఘ௩ሻ

∆௬
൅

∆ሺఘ௪ሻ

∆௭
ൌ 0.    (2.10) 

Taking the limits as ∆𝑡 → 0, we have the following equation 

 
డሺఘ௨ሻ

డ௫
൅ డሺఘ௩ሻ

డ௬
൅ డሺఘ௪ሻ

డ௭
ൌ 0.       (2.11) 

For incompressible fluid where density is constant, the simplified form of the continuity 

equation becomes 

 
డ௨

డ௫
൅ డ௩

డ௬
൅ డ௪

డ௭
ൌ 0.         (2.12) 

In two dimensions, the equation reduces to 

         
డ௨

డ௫
൅ డ௩

డ௬
ൌ 0.          (2.13) 

 

2.3. The momentum equation 

The physical principle applied in deriving the momentum equation is Newton’s second 

law of motion which states that 

    𝑭 ൌ 𝑚𝒂,                (2.14) 

where 𝑭 is the force, 𝑚 the mass and 𝒂 the acceleration. 

The derivation follows a three dimensional scheme, and Fig 2.3 illustrates the two 

dimensional setup. 
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Figure 2.3. Control volume for momentum fluxes 

The rate of change of momentum with respect to time,
డሺ௠௢௠௘௡௧௨௠ሻ

డ௧̅
, inside the control 

volume is given as  

 

   
డ

డ௧
ሺ𝜌𝑢ሻ∆𝑥∆𝑦∆𝑧.      (2.15) 

Therefore the momentum flux in the 𝑥 direction is 

   ሺ𝜌𝑢ሻ𝑢∆𝑦∆𝑧,      (2.16) 

and the momentum flux out at the opposite side is given by 

                   െ ቂሺ𝜌𝑢ሻ𝑢 ൅ డ

డ௬
ሺ𝜌𝑢ሻ𝑢∆𝑥ቃ ∆𝑦∆𝑧.    (2.17) 

The momentum flux in the 𝑦 direction is given as 

                    ሺ𝜌𝑣ሻ𝑢∆𝑥∆𝑧 ,       (2.18) 

and momentum flux out at the opposite side is expressed by 

  െ ቂሺ𝜌𝑣ሻ𝑢 ൅ డ

డ௫
ሺ𝜌𝑣ሻ𝑢∆𝑦ቃ ∆𝑥∆𝑧.    (2.19) 

Similarly, in the 𝑧 direction we have 

   ሺ𝜌𝑤ሻ𝑢∆∆𝑥∆𝑦      (2.20) 

and 

ሺ𝜌𝑣ሻ𝑢 ൅
డ

డ௬
ሾሺ𝜌𝑣ሻ𝑢ሿ∆𝑦  

ሺ𝜌𝑢ሻ𝑢 ൅
డ

డ௫
ሾሺ𝜌𝑢ሻ𝑢ሿ∆𝑥  

ሺ𝜌𝑣ሻ𝑢

ሺ𝜌𝑢ሻ𝑢 

ሺ𝑥, 𝑦ሻ  ∆𝑥

∆𝑦
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  െ ቂሺ𝜌𝑤ሻ𝑢 ൅ డ

డ௭
ሺ𝜌𝑤ሻ𝑢∆𝑥ቃ ∆𝑥∆𝑦.    (2.21) 

Addition of the equations above from all directions, provides the equation for the 

change of momentum with respect to time as 

డ

డ௧
ሺ𝜌𝑢ሻ∆𝑥∆𝑦∆𝑧 ൌ െ ቂሺ𝜌𝑢ሻ𝑢 ൅ డ

డ௬
ሺ𝜌𝑢ሻ𝑢∆𝑥ቃ ∆𝑦∆𝑧 െ ቂሺ𝜌𝑣ሻ𝑢 ൅ డ

డ௫
ሺ𝜌𝑣ሻ𝑢∆𝑦ቃ ∆𝑥∆𝑧 െ

ቂሺ𝜌𝑤ሻ𝑢 ൅ డ

డ௭
ሺ𝜌𝑤ሻ𝑢∆𝑥ቃ ∆𝑥∆𝑦 ൅ ∑ 𝐹௫,     (2.22) 

where ∑ 𝐹௫ is the sum of all external forces in the 𝑥 direction on the indicated control 

volume. After simplification, Equation (2.22) reduces to 

 

డ

డ௧
ሺ𝜌𝑢ሻ∆𝑥∆𝑦∆𝑧 ൌ െ డ

డ௫
ሺ𝜌𝑢ሻ𝑢∆𝑥∆𝑦∆𝑧 െ డ

డ௬
ሺ𝜌𝑣ሻ𝑢∆𝑦∆𝑥∆𝑧 െ డ

డ௭
ሺ𝜌𝑤ሻ𝑢∆𝑥∆𝑦∆𝑧 ൅ ∑ 𝐹௫,      

          (2.23) 

Rearranging the terms in Equation (2.23), we have  

∑ 𝐹௫ ൌ ቂ
డ

డ௧
ሺ𝜌𝑢ሻ ൅ డ

డ௫
ሺ𝜌𝑢ሻ𝑢 ൅ డ

డ௬
ሺ𝜌𝑣ሻ𝑢 ൅ డ

డ௭
ሺ𝜌𝑤ሻ𝑢ቃ ∆𝑧∆𝑥∆𝑦.   (2.24) 

Applying the product rule for the terms in square brackets, we obtain the following 

expression: 

 ∑ 𝐹௫ ൌ ቂ𝑢 డሺఘሻ

డ௧̅ ൅ 𝜌 డሺ௨ሻ

డ௧
൅ 𝑢 డሺఘ௨ሻ

డ௫
൅ 𝜌𝑢 డሺ௨ሻ

డ௫
൅ 𝑢 డሺఘ௩ሻ

డ௬
൅ 𝜌𝑣 డሺ௨ሻ

డ௬
൅ 𝑢 డሺఘ௪ሻ

డ௭
൅ 𝜌𝑤 డሺ௨ሻ

డ௭
ቃ ∆𝑧∆𝑥∆𝑦 

          (2.25) 

The odd terms on the right hand side of the equation inside the square bracket are the 

continuity equation terms multiplied by 𝑢, where 𝜌 is the density. The sum of the terms 

of the continuity equation must equal to zero, and Equation (2.25) then becomes 

 

∑ 𝐹௫ ൌ ቂ𝜌 డሺ௨ሻ

డ௧
൅ 𝜌𝑢 డሺ௨ሻ

డ௫
൅ 𝜌𝑣 డሺ௨ሻ

డ௬
൅ 𝜌𝑤 డሺ௨ሻ

డ௭
ቃ ∆𝑧∆𝑥∆𝑦.    (2.26) 

 

The external forces in the y and z directions are expressed similarly as  
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∑ 𝐹௬ ൌ ቂ𝜌 డሺ௩ሻ

డ௧
൅ 𝜌𝑢 డሺ௩ሻ

డ௫
൅ 𝜌𝑣 డሺ௩ሻ

డ௬
൅ 𝜌𝑤 డሺ௩ሻ

డ௭
ቃ ∆𝑧∆𝑥∆𝑦     (2.27) 

and 

∑ 𝐹௭ ൌ ቂ𝜌
డሺ௪ሻ

డ௧
൅ 𝜌𝑢

డሺ௪ሻ

డ௫
൅ 𝜌𝑣

డሺ௪ሻ

డ௬
൅ 𝜌𝑤

డሺ௪ሻ

డ௭
ቃ ∆𝑧∆𝑥∆𝑦.     (2.28) 

For a two dimensional scheme, equations in the 𝑥 and 𝑦 directions are given as  

∑ 𝐹௫ ൌ ቂ𝜌
డሺ௨ሻ

డ௧
൅ 𝜌𝑢

డሺ௨ሻ

డ௫
൅ 𝜌𝑣

డሺ௨ሻ

డ௬
ቃ ∆𝑥∆𝑦  

and 

∑ 𝐹௬ ൌ ቂ𝜌 డሺ௩ሻ

డ௧
൅ 𝜌𝑢 డሺ௩ሻ

డ௫
൅ 𝜌𝑣 డሺ௩ሻ

డ௬
ቃ ∆𝑥∆𝑦.   

2.4. External forces 

We now need to come up with formulae for external forces  𝐹௫, 𝐹௬ and 𝐹௭. Forces acting 

on a fluid element maybe classified as body forces and surface forces [126].  

The body forces act on the entire control volume. Examples are, the gravitational, 

centrifugal and magnetic or electric field forces. The body force due to gravity can be 

thought of acceleration due to gravity. In the directions of 𝑥, 𝑦 and 𝑧 the body force is 

expressed respectively as 𝑔௫𝜌∆𝑥∆𝑦∆𝑧, 𝑔௬𝜌∆𝑥∆𝑦∆𝑧 and 𝑔௭𝜌∆𝑥∆𝑦∆𝑧. 

The surface forces arise due to pressure and viscous stresses on the surfaces of the 

control volume. The viscous stress may be resolved into two perpendicular 

components given by normal stress 𝜎௜௝ and shear or tangential stress 𝜏௜௝. Figure 2.4 

indicates the nine stress components working on the surfaces of the control volume in 

the 𝑥, 𝑦 and 𝑧 directions. 
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Figure 2.4. Nine stress components  

The normal stresses 𝜎௫௫, 𝜎௬௬ and 𝜎௭௭ correspond to the force components that are 

normal to the 𝑥, 𝑦 and 𝑧 surfaces respectively. The shear stress 𝜏௫௬ corresponds to the 

force in the 𝑦 direction along the 𝑥 surface, 𝜏௬௫ to the force in the 𝑥 direction along the 

𝑦 surface and 𝜏௭௫ to the force in the 𝑥 direction along the 𝑧 surface. The symbols 𝐹௦ሺ௫ሻ, 

𝐹௦ሺ௬ሻ and 𝐹௦ሺ௭ሻ will be used for the derivation of the formulae for the net surface force 

for each of the three 𝑥, 𝑦, 𝑧 directions. The external force can thus be expressed as 

∑ 𝐹௫ ൌ 𝐹௕ሺ௫ሻ ൅ 𝐹௦ሺ௫ሻ, where 𝐹௕ሺ௫ሻ and 𝐹௦ሺ௫ሻ are body and surface forces in the 𝑥 direction. 

The approach is first to concentrate on the 𝑥 surface. The force due to stress is 

expressed in terms of the product of the stress and the surface area over which it acts 

[28]. Therefore, for the face with normal in the 𝑥 direction where the surface area is 

∆𝑦∆𝑧, the stress in the 𝑥 direction due to direct stresses are given by 

    െ𝐹௦,ሺ௫௫ሻ∆𝑦∆𝑧     (2.29) 

and 

   ቀ𝐹௦,ሺ௫௫ሻ ൅
డிೞ,ሺೣೣሻ

డ௫
∆𝑥ቁ ∆𝑦∆𝑧.    (2.30) 

Adding the forces, we have  

 െ𝐹௦,ሺ௫௫ሻ∆𝑦∆𝑧 ൅ 𝐹௦,ሺ௫௫ሻ∆𝑦∆𝑧 ൅
డிೞ,ሺೣೣሻ

డ௫
∆𝑥∆𝑦∆𝑧 ൌ

డிೞ,ሺೣೣሻ

డ௫
∆𝑥∆𝑦∆𝑧     (2.31) 

Following the same procedure for the face with normal in the 𝑦 and 𝑧 direction where 

the surface area is ∆𝑥∆𝑧 and ∆𝑥∆𝑦 respectively, the forces acting in the 𝑥 direction 

due to direct stresses will be given by 

𝑦, 𝑣 

𝑧, 𝑤 

𝑥, 𝑢 
𝜎௬௬ 

 

𝜏௬௫ 
𝜏௬௭

𝜏௭௬ 
𝜎௭௭ 

𝜏௭௫  𝜏௫௬ 

𝜎௫௫ 

𝜏௫௫  𝜎௫௫ 

𝜏௫௬ 
𝜏௫௫ 

𝜏௬௫  

𝜏௭௫  

𝜎௭௭  𝜏௭௬ 

𝜏௬௭ 
𝜎௬௬ 
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డிೞ,ሺ೤ೣሻ

డ௬
∆𝑥∆𝑦∆𝑧     (2.32) 

and 

   
డிೞ,ሺ೥ೣሻ

డ௭
∆𝑥∆𝑦∆𝑧.     (2.33) 

Adding all the surface forces in the 𝑥 direction, we have 

                      ቀ
డிೞ,ሺೣೣሻ

డ௫
൅

డிೞ,ሺ೤ೣሻ

డ௬
൅

డிೞ,ሺ೥ೣሻ

డ௭
ቁ ∆𝑥∆𝑦∆𝑧.   (2.34) 

Following the same procedure, the sum of all surface forces in the 𝑦 direction, normal 

to the face  ∆𝑥∆𝑧  is  

                    ቀ
డிೞ,ሺೣ೤ሻ

డ௫
൅

డிೞ,ሺ೤೤ሻ

డ௬
൅

డிೞ,ሺ೥೤ሻ

డ௭
ቁ ∆𝑥∆𝑦∆𝑧,    (2.35) 

and the sum of all forces in the 𝑧 direction, normal to the face  ∆𝑦∆𝑧  is 

                   ቀ
డிೞ,ሺೣ೥ሻ

డ௫
൅

డிೞ,ሺ೤೥ሻ

డ௬
൅

డிೞ,ሺ೥೥ሻ

డ௭
ቁ ∆𝑥∆𝑦∆𝑧.     (2.36) 

The stress 𝐹௦,ሺ௫௫ሻ includes the negative static pressure and the normal stress 𝜎௫௫, and 

also that 𝐹௦,ሺ௬௫ሻ and 𝐹௦,ሺ௭௫ሻ include shearing stresses 𝜏௬௫ and 𝜏௭௫, respectively. 

Therefore the forces normal to face ∆𝑦∆𝑧 in the 𝑥 direction are expressed as  

 ቀെ డఘ

డ௫
൅ డఙೣೣ

డ௫
൅

డఛ೤ೣ

డ௬
൅ డఛ೥ೣ

డ௭
ቁ ∆𝑥∆𝑦∆𝑧                 (2.37) 

Similarly, the forces normal to the faces ∆𝑥∆𝑧 and ∆𝑥∆𝑦 in the 𝑦 and 𝑧 directions are 

expressed respectively as  

          ቀ
డఛೣ೤

డ௫
െ డఘ

డ௬
൅

డఙ೤೤

డ௬
൅

డఛ೥೤

డ௭
ቁ ∆𝑥∆𝑦∆𝑧                  (2.38) 

and  

 ቀ
డఛೣ೥

డ௫
൅

డఛ೤೥

డ௬
െ డఘ

డ௭
൅ డఙ೥೥

డ௭
ቁ ∆𝑥∆𝑦∆𝑧.                 (2.39) 

The viscous stresses are associated with the deformation of the fluid and are also a 

function of fluid viscosity and velocity gradient [74]. It is expected that the normal stress 

should deform the fluid linearly, while the shear stress should result with angular 
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deformation. Figures 2.5 and 2.6 illustrate the effects of the normal and shear stress 

of the fluid deformation. 

 

 

 

 

Figure 2.5: Linear deformation of a fluid element due to normal stress 

 

 

 

 

 

 

Figure 2.6: Angular deformation of a fluid element due to shear stress 

A Newtonian fluid is one in which the viscous stress is linearly proportional to the rate 

of deformation, which is 𝜏 ൌ 𝜇 డ௨

డ௫
  in one dimension, where 𝜇 is the proportionality 

constant and also the fluid viscosity. Stokes extended the result into multidimensional 

flows. Stokes’ extension describes the fact that the fluid element may undergo a strain 

due to gradients such as 
డ௨

డ௫
, డ௩

డ௬
 and 

డ௪

డ௭
. The formulae developed by Stokes are called 

Stokes relations, and they are expressed as follows: 

𝜎௫௫ ൌ 2𝜇 డ௨

డ௫
െ ଶ

ଷ
𝜇 ቀ

డ௨

డ௫
൅ డ௩

డ௬
൅ డ௪

డ௭
ቁ ൌ 2𝜇 డ௨

డ௫
     (2.40) 

    

𝜎௬௬ ൌ 2𝜇 డ௩

డ௬
െ ଶ

ଷ
𝜇 ቀ

డ௨

డ௫
൅ డ௩

డ௬
൅ డ௪

డ௭
ቁ ൌ 2𝜇 డ௩

డ௬
     (2.41)   

𝜎௭௭ ൌ 2𝜇 డ௪

డ௭
െ ଶ

ଷ
𝜇 ቀ

డ௨

డ௫
൅ డ௩

డ௬
൅ డ௪

డ௭
ቁ ൌ 2𝜇 డ௪

డ௭
     (2.42) 

𝜎௫௫𝜎௫௫ 

𝜏௫௬
𝜏௫௬  

𝜏௬௫

 

𝜏௬௫  
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 𝜏௫௬ ൌ 𝜏௬௫ ൌ 𝜇 ቀ
డ௨

డ௫
൅ డ௩

డ௬
ቁ        (2.43) 

𝜏௫௭ ൌ 𝜏௭௫ ൌ 𝜇 ቀ
డ௨

డ௫
൅ డ௪

డ௭
ቁ       (2.44) 

𝜏௬௭ ൌ 𝜏௭௬ ൌ 𝜇 ቀ
డ௩

డ௬
൅ డ௪

డ௭
ቁ       (2.45) 

The second terms or normal expressions on the right become zero, due to using the 

continuity equations. Substituting Equations (2.40)-(2.45) into (2.37)-(2.39) and with 

the addition of the body forces equations, we obtain the following results in the 𝑥, 𝑦 and 

𝑧 directions, respectively: 

∑ 𝐹௫ ൌ ቂ𝜌𝑔௫ െ డఘ

డ௫
൅ 𝜇 ቀ

డమ௨

డ௫మ ൅ డమ௩

డ௬మ ൅ డమ௪

డ௭మ ቁቃ ∆𝑥∆𝑦∆𝑧     (2.46) 

∑ 𝐹௬ ൌ ቂ𝜌𝑔௬ െ డఘ

డ௬
൅ 𝜇 ቀ

డమ௨

డ௫మ ൅ డమ௩

డ௬మ ൅ డమ௪

డ௭మ ቁቃ ∆𝑥∆𝑦∆𝑧     (2.47) 

∑ 𝐹௭ ൌ ቂ𝜌𝑔௭ െ డఘ

డ௭
൅ 𝜇 ቀ

డమ௨

డ௫మ ൅ డమ௩

డ௬మ ൅ డమ௪

డ௭మ ቁቃ ∆𝑥∆𝑦∆𝑧     (2.48) 

Substituting Equations (2.46) – (2.48) into equations (2.26) – (2.28) we have the 

following equations in the 𝑥, 𝑦 and 𝑧 directions, respectively: 

𝜌𝑔௫ െ డఘ

డ௫
൅ 𝜇 ቀ

డమ௨

డ௫మ ൅ డమ௩

డ௬మ ൅ డమ௪

డ௭మ ቁ ൌ 𝜌 ቀ
డ௨

డ௧
൅ 𝑢 డ௨

డ௫
൅ 𝑣 డ௨

డ௬
൅ 𝑤 డ௨

డ௭
ቁ   (2.49) 

𝜌𝑔௬ െ డఘ

డ௬
൅ 𝜇 ቀ

డమ௨

డ௫మ ൅ డమ௩

డ௬మ ൅ డమ௪

డ௭మ ቁ ൌ 𝜌 ቀ
డ௨

డ௧
൅ 𝑢 డ௩

డ௫
൅ 𝑣 డ௩

డ௬
൅ 𝑤 డ௩

డ௭
ቁ   (2.50) 

and 

𝜌𝑔௭ െ డఘ

డ௭
൅ 𝜇 ቀ

డమ௨

డ௫మ ൅ డమ௩

డ௬మ ൅ డమ௪

డ௭మ ቁ ൌ 𝜌 ቀ
డ௪

డ௧
൅ 𝑢 డ௪

డ௫
൅ 𝑣 డ௪

డ௬
൅ 𝑤 డ௪

డ௭
ቁ   (2.51) 

Equations (2.49) – (2.51) are called the 𝑥-momentum, 𝑦-momentum and the 𝑧-

momentum equations. 

2.5. The energy equation 

One of the most fundamental laws in nature is the first law of thermodynamics, also 

known as the conservation of energy principle. It states that the rate of change of 

energy of a fluid particle is equal to the rate of heat addition plus the rate of work done. 
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This implies that energy can neither be created nor destroyed during a process, it can 

only change form [23]. 

Therefore, 

ቐ
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓
𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒

𝑓𝑙𝑢𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
ቑ ൌ ൝

𝑁𝑒𝑡 𝑓𝑙𝑢𝑥 𝑜𝑓 𝑡ℎ𝑒
ℎ𝑒𝑎𝑡 𝑖𝑛𝑡𝑜 𝑡ℎ𝑒 
𝑓𝑙𝑢𝑖𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

ൡ ൅ ቐ
𝑅𝑎𝑡𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 𝑜𝑛

𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑏𝑜𝑑𝑦
𝑎𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠 

ቑ 

         

The conservation of energy principle for any system can be expressed simply as  

𝐸௜௡ െ 𝐸௢௨௧ ൌ ∆𝐸. 

The Energy equation will be derived by setting the total derivative to be equal to the 

change in energy as a result of the work done by viscous stresses and the net heat 

conduction in the control volume. 

The energy per unit mass of the fluids includes internal energy 𝑒 and kinetic energy 

௏మ

ଶ
, where 𝑉, the magnitude of the velocity vector in the 𝑥, 𝑦 and 𝑧 directions, is given 

by 𝑉ଶ ൌ 𝑢ଶ ൅ 𝑣ଶ ൅ 𝑤ଶ [62]. Thus 

 

𝐸 ൌ 𝑒 ൅ ଵ

ଶ
ሺ𝑢ଶ ൅ 𝑣ଶ ൅ 𝑤ଶሻ.      (2.52) 

The following expression describes the rate of change of total energy in the control 

volume: 

  
డሺఘாሻ

డ௧̅
∆𝑥∆𝑦∆𝑧.       (2.53) 

 

The first law of thermodynamics can also be written in the form 

 

𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑒 ൌ ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑟𝑎𝑡𝑒 െ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑓𝑜𝑟𝑐𝑒𝑠 𝑤𝑜𝑟𝑘 𝑟𝑎𝑡𝑒.   

          (2.54) 
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The rate of net transfer of energy through the control volume is parallel to the 

momentum flux transfer into and out of the control volume. As a result, the use of the 

momentum conservation expression  

 

డ

డ௧̅
ሺ𝜌𝑢ሻ ൅ డ

డ௫
ሺ𝜌𝑢ሻ𝑢 ൅ డ

డ௬
ሺ𝜌𝑣ሻ𝑢 ൅ డ

డ௭
ሺ𝜌𝑤ሻ𝑢     (2.55) 

is applied. 

Note that ሺ𝜌𝑢ሻ𝑢, ሺ𝜌𝑣ሻ𝑢 and ሺ𝜌𝑤ሻ𝑢 represent the momentum flux through the ∆𝑦∆𝑧 

face, ∆𝑥∆𝑧 face and ∆𝑥∆𝑦 face in the 𝑥 direction. Applying the expression in (2.55), 

the total transfer of energy per unit volume through the control volume in the 𝑥 direction 

is 

డ

డ௧̅
𝜌 ቀ𝑒 ൅ ଵ

ଶ
𝑉ଶቁ ൅ డ

డ௫
𝜌𝑢 ቀ𝑒 ൅ ଵ

ଶ
𝑉ଶቁ ൅ డ

డ௬
𝜌𝑣 ቀ𝑒 ൅ ଵ

ଶ
𝑉ଶቁ ൅ డ

డ௭
𝜌𝑤 ቀ𝑒 ൅ ଵ

ଶ
𝑉ଶቁ,      (2.56) 

 

where (2.55) is obtained by replacing 𝑢 in Equation (2.54) by the sum of internal and 

kinetic energies. Then (2.55) can be shortened as 

  

  
డሺఘாሻ

డ௧̅
∆𝑦∆𝑧.       (2.57) 

The second task is to look at the work done per unit volume by the surface forces in 

the control volume. Figure 2.7 illustrates the external forces working on the volume 

surfaces in the 𝑥 direction: 
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Figure 2.7: Work done by surface stresses (external forces) 

It should be noted that in this case external forces are the same as in the case of 

momentum. The forces are multiplied by the velocity 𝑢, in the 𝑥 direction. Summing all 

the external forces as shown in Fig. 2.7, and dividing by 2∆𝑥∆𝑦∆𝑧, we obtain the 

expression 
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Considering the surface stresses acting on other faces, that is, the ∆𝑥∆𝑧 and ∆𝑥∆𝑦, in 

the 𝑦 and 𝑧 directions respectively, the  expressions  
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and 
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are obtained. Adding the three expressions (2.58)-(2.60), the net expression for the 

work done by surface stresses becomes 
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(2.61) can be expressed as 
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where 
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The final task in Equations (2.54) is to come up with the expression for the total heat 

per unit volume transferred into the control volume. This is determined by the heat flux 

𝑞௜. The heat flux will be regarded as positive for heat going out of the control volume 

to the surrounding 𝑥, 𝑦 and 𝑧 directions. Figure 2.8 illustrates the heat flux as a result 

of the heat energy transfer through the control volume. 

                               

 

 

 

 

 

 

Figure 2.8: Heat flux due to heat energy transfer 
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Adding the heat flux components in Fig. 2.8 and dividing by 2∆𝑥∆𝑦∆𝑧, we obtain the 

result 
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Figure 2.8 shows that the heat conduction effects are associated with the motion of 

gas molecules which randomly move in and out of the control volume. The gas motion 

gradually brings the energy in and out of the control volume, and there is also a heat 

exchange of the heat energy at the surface boundaries without any exchange in mass 

[36]. Fourier’s law is applied to relate the heat flow in the 𝑥, 𝑦 and 𝑧 directions to the 

rate of change of temperature in the 𝑥, 𝑦 and 𝑧 directions. 

Fourier’s law states that the rate at which heat flows across the surface of unit area is 

proportional to the negative of the temperature gradient normal to the surface [42]. 

This law is expressed as follows in the 𝑥 direction normal to the ∆𝑦∆𝑧 face: 
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It follows that 
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and 
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డ்

డ௭
.      (2.67) 

 𝑘 is the proportionality constant and 𝑇 is the temperature of the fluid element. The 

negative sign indicates that heat flows from hot to cold region. Therefore, (2.64) can 

be expressed as 
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which can be simplified to 
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The sum of (2.56), (2.62) and (2.69) gives the following expression 
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𝑅ா represents the energy term that may include the potential energy or heat production 

from nuclear or chemical reactions. The work done due to gravity is included as in the 

case of momentum equations. Using body forces in the 𝑥, 𝑦 and 𝑧 directions 

respectively represented by 𝑔௫𝜌∆𝑥∆𝑦∆𝑧, 𝑔௬𝜌∆𝑥∆𝑦∆𝑧 and 𝑔௭𝜌∆𝑥∆𝑦∆𝑧, the work done 

by gravity forces in the respective directions are 𝜌𝑢𝑔௫, 𝜌𝑣𝑔௬ and 𝜌𝑤𝑔௭. Equation (2.70) 

can be expressed as 
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Equation (2.71) is the energy conservation equation and it is a mathematical 

expression for (2.54). 
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CHAPTER THREE 

NATURAL CONVECTION FLOW OF HEAT GENERATING HYDROMAGNETIC 

COUPLE STRESS FLUID WITH TIME PERIODIC BOUNDARY CONDITIONS 

Chapter Abstract 

In this chapter, analysis has been conducted to investigate the effects of couple 

stresses and internal heat generation on the magnetohydrodynamic (MHD) natural 

convection channel flow with steady-periodic heat input. By applying the steady-

periodic heating assumptions, the flow governing equations driving the fluid system 

are reduced to boundary-value problems and solved by a convergent successive 

approximation. The result of the computation shows that the skin friction at the lower 

wall decreases with increasing values of the couple stress parameter while it enhances 

the heat transfer rate. 

3.1. Introduction 

Free convention flow through a vertical channel has been an active research area in 

heat transfer processes because of its usefulness in several thermal, industrial and 

mechanical engineering applications. Few practical applications of convective flows 

are seen in the cooling of electronic and electrical devices, cooling and heating of 

nuclear reactors for power generation, automated cooling in heat exchangers and lots 

more. To address this in oscillatory flows, Wang [149] implemented a technique to 

separate the energy and momentum equations into steady and oscillatory flows. Jha 

and Ajibade [65] examined the free convective oscillatory flow through a vertical wall, 

noting the influence of viscous dissipation on the fluid.  Moreover, Jha and Ajibade 

[63] investigated the combination of temperature dependent internal heat generation 

and leaky walls on buoyancy-induced flow subjected to oscillatory heat condition. 

Adesanya [3] reported the transient natural convection heat generating buoyancy-

induced flow in a porous micro-channel with slippage and temperature jump. 

Adesanya et al. [12] examined the hydromagnetic natural convective flow with heat 

source through an impervious parallel plate with periodic heating. Other relevant 

results on free convection flow in the steady-periodic regime include the following [2, 

55, 56, 64, 80, 150] and references therein. 
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All the above studies are only applicable to purely Newtonian fluids, however, in many 

practical applications, many real fluids of industrial and medical importance contain 

tiny microstructures of mechanical significance which could enhance heat transfer, 

drug delivery processes and conserve energy. Some of these fluids are used as 

surfactants, coolants used in radiators, lubricating fluids or synthetic oil containing 

size-dependent polymer additives, blood containing red blood cells and other nano 

components, tooth paste and gels which are mixtures of nanoparticles, pharmaceutical 

mixtures, paints, ferrofluid used in car shock absorber and many more. In view of the 

wide range of application, it is very clear that the  Newtonian constitutive model cannot 

capture the rheological properties of these fluids, in particular, when handling size-

dependent microstructures. To account for these, Stokes [141] noted this all-

important-effect and formulated a Couple stress model which could account for the 

presence of non-symmetric stress tensor, couple stresses and body couples. In view 

of his formulations, Srinivasacharya and Rao [137], proposed a couple stress model 

to examine the MHD pulsatile blood flow in a bifurcated stenosed artery. Akhtar and 

Shah [19] presented an analytical solution for unsteady couple stress fluid flow. Aksoy 

[21], studied the irreversibility analysis for couple stress fluid with constant heat flux. 

Ahmed et al [16] focused on the analytical approach for the oscillatory MHD couple 

stress fluid flow in rotating channel. Beg et al [26], analysed the oscillatory flow of 

hydromagnetic non-Newtonian bio-couple stress fluid.  Other interesting works on the 

flows with microstructure can be found in [5, 8, 10, 11, 16, 19, 33, 34, 39, 53, 57, 78, 

84, 127, 135, 138, 139,140,152]. 

In the handling viscous fluids, one of the easiest ways to enhance flow is by in situ 

combustion when fluids are made to undergo chemical reactions. By doing this, 

internal heat generation will grossly affect the volumetric temperature in the flow 

domain by either conduction or convection. Recently, Ali et al. [22] investigated the 

oscillatory hydromagnetic couple stress heat generating fluid flow through a porous 

medium with heat source by using Foraboschi and Federico [44] model. Similarly, 

Makinde [77] reported the effect of buoyancy-induced flow. Saravanan and Brindha 

[110] examined the stability of convective flow of problem in the presence of heat 

generation and other related literature can be found in [4, 17, 105, 143] and references 

therein. 
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Studies related to hydromagnetic flow problems have quite a number of applications 

in engineering, for instance, flow control, agglomeration of fluid particles and damping 

of shocks in car absorbers to mention just a few. In view of these Sheikholeslami and 

Rokni [123] reported a developing nanofluid flow with induced magnetic field. 

Sheikholeslami [112] reported the MHD effect on the radiative variable viscous flow of 

FeଷOସ െwater nanofluid. Sheikholeslami and Shehzad [124] analysed the influence of 

magnetic field on the flow of CuO-water nanofluid through a leaky semi-annulus. 

Sheikholeslami et al. [122] examined the effect of the dependence of viscosity on 

magnetic field in a nanofluid flow. Sheikholeslami and Ganji [114] investigated MHD 

nanofluid channel flow using Buongiorno model. Sheikholeslami and Chamkha [113] 

examined the MHD Marangoni convective flow of a two-phase nanofluid. Other recent 

work on the convective flow of electrically conducting fluid in several geometries can 

be found in [115, 116, 117,120,121]. 

Motivated by the studies described above, the present work addresses the combined 

effect of couple stresses and internal heat generation on free convective flow of 

electrically conducting fluid with periodic heat input which have not been considered 

in previous models to the best of our knowledge. In the following sections: the problem 

is formulated and resolved by semi-analytical means [13, 14, 38, 95, 96, 97, 118,119]. 

Variations of pertinent fluid parameters are presented graphically and discussed 

extensively. Concluding remarks will be given in the last section. 

3.2. Mathematical formulation 

Consider the fully developed flow of an incompressible couple stress fluid via a 

channel positioned vertically and subjected to steady-periodic heating at the walls as 

shown in Figure 3.1. The couple stress fluid is subjected to magnetic field of constant 

intensity of small electrical conductivity and negligible induced magnetic field.  
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   Figure 3.1 Physical model of the problem  

 

We further assumed that all fluid properties are constant except the fluid density and 

internal heat generation that are temperature-dependent. As shown in the problem 

geometry, we take a Cartesian coordinate system  yx,  and the channel walls are 

taken at hy  . Under Boussinesq approximations, the flow-governing-equations can 

be written as [12]: 
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Other terms in equations (3.1) and (3.2) are due to the effect of couple stresses, 

dissipation due to couple stresses [5, 8, 10, 11, 16, 19, 33, 34, 39, 53, 57, 78, 84, 127, 

135, 138, 139,140,152] and linear internal heat generation [17, 44, 77, 88, 105, 110, 

143]. Together with the following initial and boundary conditions: 
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Following [3, 12, 64, 65, 149], we introduce the following, 
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Equations (3.1) and (3.2) become 
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Introducing the dimensionless quantities 
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gives rise to the coupled system: 
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If we equate the orders of tie  , we get the following steady state system of coupled 

ordinary differential equations along with the appropriate boundary conditions 
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It is important to note that, in the asymptotic case as 𝑎 → ∞, 𝛿 → 0 the solutions of 

Equations (3.12) – (3.15) reduce to that reported in Adesanya et al. [5]. 

3.3. Method of Solution 

In order to tackle the nonlinearity associated with the coupled model by Adomian 

decomposition method, the boundary value problem (3.12) - (3.15) would be converted 

into its equivalent integral equations. Integrating (3.12) - (3.15) together with the 

boundary conditions gives the following: 



43 
 

     

     

  

   

  










 





y y y y

dYdYdYdYYFYAHYAa

dYdYdY
dY

Ad
dY

dY

dA
A

1 1 1 1

22

1 1 1
3

3

1

)()()(''

11   


          (3.16) 

     

      

  

   

  










 





   

  



1 1 1 1

22

1 1 1
3

3

1

)()()(''

11

dYdYdYdYYGYBHiStYBa

dYdYdY
dY

Bd
dY

dY

dB
B

                   (3.17) 

         


















 


  

 

 


1 1

2

2

222

0

)()(''
1

)()('
1

1 dYdYYFYA
a

YAHaYAdY
dY

dF
F

y

 

                  (3.18)      

           


















 


  

 

 


1 1

2

2

222

0

)(Pr)(''
1

)()('
1

1 dYdYYGiStYB
a

YBHYBdY
dY

dG
G

y

     

                                                                                                                             (3.19)                       

Let us now define Adomian series of the form: 
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Substituting (3.20) in (3.16)-(3.19), we obtain 
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With  
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In view of the afore-going, we get the following zeroth order  
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and the recursive schemes 
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The nonlinear terms represented by  
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are Taylor’s series expanded and decomposed into Adomian polynomials using (3.20) 

where 
ௗ஺ሺିଵሻ

ௗ௒
 , ௗయ஺ሺିଵሻ
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ௗ௒య  , ௗிሺିଵሻ
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 , ௗீሺିଵሻ

ௗ௒
  are determined using 𝐴ሺ1ሻ ൌ 0 ൌ

𝐴ᇱᇱሺ1ሻ ൌ 𝐵ሺ1ሻ ൌ 𝐵ᇱᇱሺ1ሻ, 𝐹ሺ1ሻ ൌ 1 ൌ 𝐺ᇱᇱሺ1ሻ. 

Equations (3.25) - (3.27) are carefully coded in a computer symbolic package for 

successive iteration of the tedious computation giving out a huge symbolic solution in 

the form of a truncated series 
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The wall shear stress for the unsteady flow becomes 

          𝑆௙ ൌ
ௗ௨

ௗ௬
െ

ଵ

௔మ

ௗయ௨

ௗ௬య         (3.29) 

While the rate of heat transfer becomes 

  𝑁𝑢 ൌ െ
ௗீ

ௗ௬
         (3.30) 

Table 3.1 Convergence of steady state solution (3.28) at 𝜆 ൌ 0.1 ൌ 𝐻 ൌ 𝑎 ൌ 𝑆𝑡 ൌ 𝛿, 𝑃𝑟 ൌ 0.71  
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Table 3.2 Comparison of the present result obtained in [12] when  

𝑎 → ∞, 𝛿 → 0, 𝜆 ൌ 0.1 ൌ 𝐻 

 

 

3.4. Results and Discussion 

In this section, the effect of the various thermo-physical parameters on the steady and 

unsteady flow regimes are investigated. Table 3.1 shows the rapid convergence of the 

Adomian series solution. It is interesting to note that the convergence is reached when 

𝑛 ൌ 5. In Table 3.2, the result of the asymptotic case is presented and validated by 

using Pertubation method of solution. As observed from the table the uniqueness of 

the solution is achieved. Figure 3.2 to Fig.3.11 are graphs of velocity and temperature 

distribution plotted against position   for 0t . The effects of the Hartmann’s number 

and the viscous heating parameter on the steady velocity field are illustrated in Fig.3.2 

(a) and (b) respectively. Increasing the Hartmann’s number means boosting the 

strength of the externally applied magnetic field. Figure 3.2(a) shows that the flow 

velocity is retarded by the increasing strength of the magnetic field dipolar forces. This 

phenomenon can be explained by the agglomeration property the Lorentz forces have 

on the ferrofluid. In Fig. 3.2(b), the steady state velocity field is seen to increase with 

increasing viscous heating parameter. Increasing the viscous heating parameter 

means that the dynamic viscosity of the fluid is decreasing and this renders reduced 

resistance to flow, resulting in increased flow velocity. Figure 3.3 (a) and (b) display 

the effects of the internal heat generation parameter and the couple stress inverse 

parameter on the steady fluid velocity regime. Both parameters increase the flow 

velocity. The physical explanation of this flow behaviour is that when the heat of the 

chemical reaction increases, the fluid particles are excited and their kinetic energy 

increase. On the other hand, the increase of fluid velocity due to an increase in the 
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couple stress inverse parameter means that the couple stresses will decrease the flow 

velocity. Figure 3.4 (a) and (b) and Fig. 3.5 (a) and (b) represent the effects of the 

Hartmann’s number, the viscous heating parameter, the internal heat generation 

parameter and the couple stress inverse parameter on the unsteady velocity field. The 

effects are seen to be a mirror image of those for the steady velocity field except that 

the magnitude of the unsteady flow is much higher than the steady flow. This is true 

due to increased heating frequency. Similarly, effects of these parameters on the 

steady temperature distribution are shown in Figs. 3.6 (a), 3.6 (b), 3.7 (a) and 3.7 (b). 

Interestingly, in Fig. 3.6 (a) and (b) the Hartmann’s number is observed to decrease 

the steady state temperature within the channel while the viscous heating parameter 

increases it. This diminishing effect of the Hartmann’s number on fluid temperature 

can be explained by the augmentation effect. When the Lorentz forces damp the flow 

velocity, the strength of the heating source terms is reduced and thus a cooling effect 

is witnessed. On the other hand, the enhancement of the fluid temperature by an 

increase in the viscous heating parameter can be due to the convection rolls 

emanating from the buoyancy effects. The internal heat generation parameter 

inevitably increases the fluid temperature (Fig. 3.7 (a)). In Fig. 3.7 (b), the couple stress 

inverse parameter is seen to enhance the fluid temperature. The fluid temperature will 

therefore be lowered by the couple stresses as the magnitude of the ferrofluid 

increases. Similar effects are seen as the viscous heating parameter, the internal heat 

generation parameter and the inverse of the couple stress parameter increases, as 

shown in (Figs. 3.8 (b), 3.9 (a), 3.9 (b)). However, in Fig 3.8 (a), the Hartmann’s 

number drastically enhances the fluid temperature distribution in the core area of the 

channel due to Ohmic heating. 

Figure 3.10 (a) and (b) represent the effects of the Prandtl number on unsteady 

velocity field and unsteady temperature field respectively. The Prandtl number ( Pr ) is 

the ratio of momentum diffusivity to thermal diffusivity. Thus if 1Pr  , thermal 

diffusivity dominates and if 1Pr  , momentum diffusivity will be dominant. We observe 

from both figures that an increase in the Prandtl number leads to a decrease in both 

the unsteady velocity and temperature fields. The diminishing temperature suggests 

a decrease in the fluid thermal conductivity. The corresponding lowering of the velocity 

can be explained by the thickening of the fluid due to increasing fluid dynamic viscosity. 

The effect of the Strouhal number ( St ) on unsteady velocity and temperature fields is 
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described in Fig. 3.11 (a) and (b) respectively. The Strouhal number is a parameter 

that describes oscillating flow dynamics. If Strouhal numbers are large, viscous forces 

dominate the fluid flow resulting in collective oscillating movement of the fluid, a 

phenomenon known as the “plug”. Otherwise low Strouhal numbers are associated 

with high velocity steady state part motion dominance. As Fig. 3.11 (a) and (b) depicts, 

increasing Strouhal number diminishes the magnitude of unsteady flow fields 

suggesting in this case that the steady state portion of the flow may be dominant. 

(a) (b)      

Figure 3.2.  Effects of  (a) Hartmann number and (b) viscous heating parameter on 

steady velocity fields. 

(a)    (b)      

Figure 3.3.  Effects of  (a) internal heat generation parameter and (b) inverse of couple 

stress parameter on steady velocity fields. 
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(a)   (b)   

Figure 3.4.  Effects of  (a) Hartmann number and (b) viscous heating parameter on 

unsteady velocity fields. 

(a)  (b)  

Figure 3.5.  Effects of  (a) internal heat generation parameter and (b) inverse of couple 

stress parameter on unsteady velocity fields 

(a)  (b)  

Figure 3.6.  Effects of  (a) Hartmann number and (b) viscous parameter on steady 

temperature fields. 
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(a) (b)  

Figure 3.7.  Effects of  (a) internal heat generation parameter and (b) inverse of couple 

stress parameter on steady temperature fields. 

(a) (b)  

Figure 3.8.  Effects of  (a) Hartmann number and (b) viscous heating parameter on 

unsteady temperature fields. 
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Figure 3.9.  Effects of  (a) internal heat generation parameter and (b) inverse of couple 

stress parameter on unsteady temperature fields. 

  (a) (b)  

Figure 3.10.  Effects of  Prandtl number on unsteady (a) velocity fields and (b) 

temperature fields. 

(a) (b)   

Figure 3.11.  Effects of  Strouhal number on unsteady (a) velocity fields and (b) 

temperature fields. 
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periodic velocity. Figures 3.13 (a) – (e) captures the behaviour of the periodic fluid 

temperature in response to variation in the Hartmann’s number, viscous heating 

parameter, internal heat generation parameter, the couple stress inverse parameter, 

the Prandtl number and the Strouhal number respectively. The Hartmann’s number, 

the viscous heating parameter, the internal heat generation parameter and the inverse 

of the couple stress parameter increase the periodic temperature, while the Prandtl 

number and the Strouhal number are seen to diminish it. The physical explanation of 

these attributes have been pointed out already in the earlier discussion in this article. 

We display the observed effects of the couple stresses on the wall shear stress and 

the rate of heat transfer in the periodic regime in Figs. 3.14 and 3.15. The inverse of 

the couple stress parameter is observed to decrease the skin friction and enhance the 

wall heat transfer rate. This means that the couple stresses enhance the skin friction 

and decrease the wall heat transfer rate. 

(a)  (b)  

 (c) 

Figure 3.12. Unsteady velocity fields plotted against time varying (a) Hartmann number 

(b) viscous heating parameter (c) inverse of couple stress parameter. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 3.13. Unsteady temperature fields plotted against time varying (a) Hartmann 

number (b) viscous heating parameter (c) internal heat generating parameter (d) 

inverse of couple stress parameter (e) Prandtl number and (f) Strouhal number. 
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Figure 3.14. (a) Nusselt number plotted against inverse of couple stress parameter. 

(b) Skin friction plotted against inverse of couple stress parameter. 

 

3.5. Conclusion 

MHD natural convection flow of a heat generating couple stress fluid with time-periodic 

boundary conditions has been investigated. The response of the steady and periodic 

velocity and temperature fields as well as the skin friction and local Nusselt number to 

the embedded parameters in the flow system have been outlined with the aid of vivid 

simulations of the solution. The magnetic field and the couple stresses were observed 

to have a retarding effect on both the velocity and temperature fields. The viscous 

heating parameter and the internal heat generation parameter were found to have the 

opposite influence. A diminishing effect of the Strouhal number on the magnitude of 

the unsteady velocity and temperature fields suggest a strong dominance of the steady 

state part of the flow due to strong viscous forces.  
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 CHAPTER FOUR 

CONVECTIVE FLOW OF HYDROMAGNETIC COUPLE STRESS FLUID WITH   

VARYING HEATING THROUGH VERTICAL CHANNEL 

 

Chapter Abstract 

This chapter addresses the impact of magnetic field induction on the buoyancy-

induced oscillatory flow of couple stress fluid with varying heating. Modelled equations 

for the incompressible fluid are coupled and nonlinear due to the inclusion of viscous 

heating and thermal effect on the fluid density.  Approximate solutions are constructed 

and coded on a symbolic package to ease the computational complexity. Graphical 

representations of the symbolic solutions are presented with detailed explanations. 

Results of the present computation shows that the effect of induced magnetic field on 

the oscillatory flow and heat transfer is significant and cannot be neglected.  

4.1. Introduction 

The convective flow of viscous fluid subjected to periodic heating and cooling plays a 

vital role in a huge number of home appliances, industry, geology and geophysics, 

medicine, aerodynamics and much more. In a study by Wang [148], the equations for 

the buoyancy-induced flow were modeled and separated into steady-periodic regimes. 

Jha and Ajibade [63-65] popularized the approach by conducting studies under 

different flow conditions. Following the analysis is a study by Adesanya [3] on micro-

channel flow with partial slip and thermal conditions. More recently, Adesanya et al. 

[12] presented results for magnetohydrodynamics convective flows in steady-periodic 

regimes with constant magnetic fields. Several other related studies on convective 

flow problems with or without magnetic field can be seen in references [2, 12, 55, 56, 

80, 150] and lots more in the literature.  

In many cases of engineering interest, induced magnetic field usually act as a flow 

control mechanism, especially under intense heat. The following studies were 

conducted by taking induced magnetic field into consideration, Ahmed [15] studied the 

double diffusivity in a developing flow. Raju et al. [99], focused on the convective flow 

over a stretching surface. Iqbal et al. [60] presented a numerical study on a developing 

nanofluid stagnation point flow. In a similar work, Animasaun and his cohorts [24], 
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examined the radiative viscoelastic stagnation point flow. Sheikholeslami et al. [125] 

presented an analysis of convective nanofluid problem using Koo-Kleinstrever-Li 

correlation method. Noreen et al. [90] investigated pseudo-plastic peristaltic fluid flow. 

Kumar and Singh [73] addressed the radial flow through a vertical cylinder with 

constant heat source. Ghosh et al. [48] constructed solution for a convective fluid flow. 

Raju et al. [99] analysed the stagnation point flow. A numerical study of natural 

convection was discussed extensively by Kumar and Singh [73]. In fact, there are 

several investigations in various fluid flow problems relating to electrically conducting 

fluid with induced magnetic fields, some of these can be found in references [18, 20, 

25, 49, 59, 70, 81, 87, 91, 93, 107, 128] and references therein. 

One major characteristic that distinguishes the couple stress fluid among other non-

Newtonian fluids is the inclusion size-dependent microstructure that is of mechanical 

significance. As explained by Stokes [141] in the couple stress theory, the couple 

stress constitutive model can easily give explanation for couple stresses, effect of body 

couples and the non-symmetric stress tensor manifested in several real fluids of 

technological importance. This important class of fluid has been used extensively in 

the literature to explain the non-Newtonian behaviour of some real fluid. In view of the 

huge available references, few of these studies on couple stresses will be described 

here. Srinivasacharya and Kaladhar [136] applied the model to study the convective 

flow behaviour in reacting fluids. Srinivas et al. [131] applied the model for flow with 

varying properties. In work by Srinivas et al. [130], reported the micropolar fluid flow in 

a non-Darcian medium. Similar work by Mahabaleshwar et al. [76] addressed the 

hydromagnetic case over a leaky stretching sheet. Kaladhar et al. [67] examined the 

diffusivity problem in a vertical configuration. Ali et al. [22] analyzed the MHD 

oscillatory flow over a stretching surface. Khan et al. [86] derived an exact solution of 

hydromagnetic couple stress fluid using wave transformation approach. Hayat et al. 

[142] examined the developing case in a moving surface subjected to internal heat 

generation and Newtonian heating. Srinivas and Murthy [133] studied the entropy 

build-up in immiscible in a channel flow. Adesanya et al. [4] reported the effect of 

couple stresses on hydromagnetic viscoelastic fluid flow. Eldabe and his collaborators 

[85] discussed the pulsatile flow between solid boundaries. Other interesting results 

on the application of couple stress theory is not limited to [19, 54, 66, 132, 134] and 

the cited references. 
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The above studies on induced magnetic field motivates the present study on the 

convective couple stress fluid undergoing steady-periodic heating, which has not been 

done despite the huge number of studies reported on the size-dependent effect. In the 

following section, the Mathematical analysis for the problem will be presented and the 

dimensionless coupled boundary-valued-problem would be solved by Adomian 

decomposition method. Interested readers can see the detailed review, theory and 

huge applications of the method in [13, 14, 97, 118,119]. Section 4.3 of the paper deals 

with presentation and discussion of results while the paper is concluded in section 4.4. 

4.2. MATHEMATICAL ANALYSIS 

Consider the 2-dimensional unsteady couple stress fluid flow with a velocity vector 

 , , 0q u v  together with the magnetic induction vector  , , 0x yH b b . The channel 

half-width is taken to be h and normal to the channel length while the x-axis is normal 

to the channel length as shown in Figure 4.1 below.  

 

 Figure 4.1. Physical model of a problem 
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The channel length is assumed to be long enough for the flow to be fully developed. 

In formulating the model, only variations with fluid density and heat source/sink with 

temperature are considered. The present formulation also catered for dissipations due 

to fluid friction, couple stresses, and electric charges. With large magnetic suction, the 

induced magnetic field are also considered, thus, in vector form we have the following, 

according to [12] and [125]: 

Conservation of electric charge: 0



J
t


    (4.1) 

Conservation of mass:    0

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q
t


    (4.2) 

Gauss’ law of magnetism: 0 H       (4.3) 

Momentum equation: 
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Energy equation: 
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Neglecting the variation of fluid density with time and from Equation (4.2), the fully 

developed case implies that   0vyv   i.e. a constant. In the first approximation, by 

assuming a small velocity gradient in the momentum equation and eliminating the 

pressure gradient, we get  
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along with the dimensionless quantities 
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giving rise to the following orders of perturbations:  
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4.2.1. Adomian Method of Solution 

As shown in [119], Adomian decomposition method (ADM) is a well-established 

method for solving all manners of differential equations. In what follows, the coupled 

differential equations in (4.13)-(4.14) with the boundary conditions gives the equivalent 

integral equations that is given by: 
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The standard assumed series is of the form: 
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Substituting (4.21) in (4.15)-(4.20), we get 
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with the recurrence relations: 
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Similarly, in the periodic flow regime leads to 
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while the rest of the terms are given by 
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where   
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the appropriate Adomian Polynomials are: 
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The iterative process (4.22)-(4.27) are then coded into MATHEMATICA version 10.0 

for easy iteration. Expressions for the unknown constants are also obtained with the 

aid of the remaining boundary conditions, at the end we obtain the following qth partial 

sum as the approximate solutions of the coupled differential equations. 
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Finally, the current density induced are given by 

  ,
dL dM

J K
dy dy

            (4.29) 

in the steady and periodic flow regimes respectively. 
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4.3. Results and Discussion 

Equations (4.22)–(4.28) are carefully coded in MATHEMATICA version 10.0 for easy 

iteration of the Adomian decomposition procedure, the following symbolic solutions 

are obtained graphically due to large output of the computation. Figure 4.2 represents 

the variation of some important fluid parameters on the steady flow. As shown in Fig. 

4.2a, an increase in the magnetic field parameter is seen to decrease the flow velocity 

because ferrofluid particles agglomerate with increasing induced magnetic field, also 

the retarding effect of Lorentz forces. The variation of couple stress inverse parameter 

on the steady flow velocity is also shown in Fig. 4.2b. From the graphical result, an 

increase in the couple stress inverse parameter is seen to enhance the flow velocity. 

In other words, an increase in couple stress inverse parameter means a decrease in 

the non-Newtonian behaviour of the fluid. Hence, an increase in the couple stress 

parameter is seen to decrease the flow velocity. In Fig. 4.2c, an increase in the viscous 

heating parameter is observed to enhance the fluid velocity due to increased heat 

generated in the fluid. Moreover, as presented in Fig. 4.2d, an increase in the magnetic 

Prandtl number is observed to decrease the steady flow significantly due to increased 

induced magnetic field. Similarly, Fig. 4.2e shows that an increase in suction 

Reynolds’s number is seen to decrease the flow velocity as much fluid is sucked away 

from the flow domain. A closer view of Fig. 4.2g revealed the effect of Prandtl number 

on the fluid flow; it is also observed that the flow velocity decreases with increased 

Prandtl number since the fluid dynamic viscosity increases. Finally, Fig. 4.2f shows 

that as the heat sink parameter increases, the fluid temperature distribution within the 

flow declines accordingly due to heat loss to the ambient. 
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Figure 4.2: Steady velocity profile 
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Figure 4.3: Steady temperature profile  
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Figure 4.4: Steady induced magnetic field profile  

  

  

 

Figure 4.5: Steady induced current density profile 
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Figure 4.6: Oscillatory velocity profile 
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Figure 4.7: Unsteady temperature profile 
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Figure 4.8: Unsteady induced magnetic field 
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Figure 4.9: Unsteady induced current density profile 
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of the couple stress parameter is seen to increase the fluid temperature due to thinning 

of the fluid. Also, note that the couple stress inverse parameter enhances the fluid 

temperature. Similar conduct to that is seen as the suction parameter increases. In 

Figs. 4.3e and 4.3f, variation in internal heat loss parameter and Prandtl number are 

presented, as the heat loss parameter increases, the fluid temperature falls since the 

heat is dissipated. Lastly, the Prandtl number is seen to decrease the temperature 

distribution within the domain of flow; this is because as the increased Prandtl number 

associated with decreased thermal conductivity of the fluid. 

Figure 4.4 addresses the response of the induced magnetic field to the variation of 

fluid parameters. It is important to see that Figs. 4.4(a-f) are all negative due to the 

flow reversal of the magnetic flux in the channel. On the other hand, the induced 

current density shown in Figs. 4.5 represents the induced current density which is a 

direct opposite presentation to the induced magnetic field. Discussion of results in 

Figs. 4.6-4.9 for the unsteady flow behaviour are seen to conform with the steady case 

except for reduction in the flow and heat maximum that is associated with increased 

frequency of heating as highlighted in Figs. 4.5f, 4.6f and 4.7a. As a result, the 

discussion will not be repeated. 

4.4. Conclusion 

The convective flow of hydromagnetic couple stress fluid with induced magnetic field 

has been addressed here in the steady-periodic regimes. The momentum, energy and 

magnetic induction equations are formulated, made dimensionless and solved by 

Adomian decomposition method. The main contribution to knowledge from the present 

study are as follows: 

- Increasing values of Hartman number, Strouhal number, couple stress 

parameter and heat loss parameter decreases the flow velocity while viscous 

heating of the fluid encourages both steady and oscillatory flow profiles. 

- Fluid temperature distribution is seen to improve with increasing values of the 

viscous heating parameter, Hartman number, couple stress parameter while it 

decreases with increasing values of the Prandtl number, heat loss parameter, 

suction parameter and Strouhal number. 
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- Increasing values of Hartman number, viscous heating, suction and magnetic 

Prandtl number are seen to enhance the induced current density while an 

increase in Strouhal number decreases it. 
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CHAPTER FIVE 

MIXED CONVECTIVE FLOW OF UNSTEADY HYDROMAGNETIC COUPLE 

STRESS FLUID THROUGH A VERTICAL CHANNEL FILLED WITH POROUS 

MEDIUM 

Chapter Abstract 

In this chapter, the mixed convective flow of an electrically conducting, viscous 

incompressible couple stress fluid through a vertical channel filled with a saturated 

porous medium has been investigated. The fluid is assumed to be driven by both 

buoyancy force and oscillatory pressure gradient parallel to the channel plates.  A 

uniform magnetic field of strength 𝐵଴ is imposed transverse to the channel boundaries. 

The temperature of the right channel plate is assumed to vary periodically, and the 

temperature difference between the plates is high enough to induce radiative heat 

transfer. Under these assumptions, the equations governing the two-dimensional 

couple stress fluid flow are formulated and exact solutions of the velocity and the 

temperature fields are obtained. The effects of radiation, Hall current, porous medium 

permeability and other various flow parameters on the flow and heat transfer are 

presented graphically and discussed extensively.  

5.1. Introduction 

Fluid flow and heat transfer in varied mechanical configurations filled with porous 

media continues to be an area of research interest for both Newtonian and non-

Newtonian fluids. Engineers, scientists and technocrats have over time exploited the 

ubiquitous nature of porous media to develop machinery, equipment and industrial 

processes that has seen transformation of the world through stages from the first to 

the fourth industrial revolution. It cannot be an exaggeration to postulate that modernity 

has to a larger extent depended on exploitation and manipulation of fluid flow systems 

through porous materials. Khaled and Vafai [71] pointed out that transport theories in 

porous media have played a defining role in the advancement of a plethora of 

applications, examples of which are geology, chemical reactors, drying and liquid 

composite moulding, combustion and biological applications. The Handbook of Porous 

Media, Vafai [145], provides a succinct overview of the latest theories on flow, 



74 
 

transport, and heat exchange processes in porous media. [94] and [106] are some 

examples of recent studies on flow and heat transfer in porous media. 

Liquid foams, geological materials, emulsions, hydrocarbon oils, polymeric fluids, etc, 

are examples of fluids belonging to a class broadly described by the generic term non-

Newtonian. Industrial applications are dominated by fluids falling into this class and 

their complex hydrodynamic characteristics necessitated the emergence of a robust 

and complex non-Newtonian rheology. Models encountered in literature include the 

Power law model, fluids of the differential type, visco-elastic fluid models like the 

Johnson-Seagalman model, the Oldroyd model, the Casson fluid model, the couple 

stress model and many others, see for instance [30,45,141] . The couple stress fluid 

model is a generalisation of the classical Newtonian constitutive model for viscous 

fluids that account for the inclusion of couple stresses, body couples and non-

symmetric tensors in the fluid medium [34]. Fluids such as lubricants, synthetic oils, 

paints, and blood, which contain tiny microstructures can be modelled efficiently by 

the couple stress fluid model. Couple stress fluids find applications as surfactants, 

coolants, lubricating fluids, toothpaste and gels, pharmaceutical mixtures, ferrofluids 

used in shock absorbers and many more [6].  

Complexities arising from solving various couple stress fluid models and the wide 

application horizon has motivated many scholars to continue with active research in 

the couple stress fluid model. Hassan [51] used modified Adomian decomposition 

method to analyse a reactive hydromagnetic couple stress fluid flow through a channel 

filled with saturated porous media. Makinde and Eegunjobi [78] investigated the 

inherent irreversibility in a steady flow of a couple stress fluid through a vertical channel 

packed with saturated porous substances. Murthy et al. [101] studied the entropy 

generation in a steady flow of two immiscible couple stress fluids in a horizontal 

channel bounded by two porous beds at the bottom and top. Hassan and Fenuga [52] 

investigated the effects of thermal radiation on the flow of a reactive hydromagnetic 

heat generating couple stress fluid through a porous channel. When an external 

magnetic field is imposed onto a moving electrically conducting fluid, current is induced 

into the fluid which in turn polarises the fluid and a drag-like force (Lorentz force) is 

formed. This magnetohydrodynamic (MHD) phenomenon has pertinent applications in 

thermo-electrical systems like heat exchangers, cooling of electronic devices, 
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electromagnetic processing of materials, metal purification and astrophysical 

applications [29]. 

Meanwhile studies of oscillatory MHD convection fluid flow in porous media have 

gained increased attention due to wide applications in physiology, physics and 

engineering. Examples in engineering include MHD generators, food processing 

industry, chemical process industry, centrifugation and filtration processes and 

rotating machinery, see [47] and [68]. In physiology, peristaltic motion is the major 

mechanism through which heat and fluid get transported through biological systems 

like the human body, and MHD principles are applied to accelerate the flow of blood 

which is useful in the treatment of some disorders [103]. Nayak and Dash [89] studied 

transient hydromagnetic flow of an electrically conducting couple stress fluid in a 

rotating frame of reference through a saturated porous channel under the influence of 

pulsatile pressure gradient. Sankad and Nagathan [109] examined the effects of MHD 

couple stress fluid in peristaltic flow with porous medium under the impact of slip, heat 

transfer and wall properties. MHD effects on peristaltic flow of a couple stress fluid in 

a channel with permeable walls was studied by Ramachandraiah et al. [100]. The 

novelty of the work of these researchers is that their work provides a guideline for 

some biomedical instruments like blood pumps in dialysis and heart lung machine. 

The problem of oscillatory MHD flow of blood in a porous arteriole in the presence of 

chemical reaction was investigated by Misra and Adhikary [83]. The work provides 

useful insights to biophysicists, physiologists and clinicians. Adesanya and Makinde 

[9] investigated the effect of slip on the hydromagnetic pulsatile flow through a channel 

filled with saturated porous medium with time dependent boundary condition on the 

heated wall. Other related recent studies are found in [35, 40, 92]. 

Most of the studies cited above concentrated on one dimensional flow, overlooking the 

fact that the applied magnetic field induces a secondary flow in the direction parallel 

to it. Veera Krishna and Chand Basha [146] investigated the effects of radiation and 

Hall current on MHD oscillatory convection two dimensional flow of a viscous fluid in 

a vertical channel filled with a porous medium, and Veera Krishna et al. [147] 

investigated the same type of flow but of a second grade fluid. Motivated by these 

papers and the need to contribute to the ongoing studies, this article studies mixed 

convective two dimensional flow of unsteady MHD couple stress fluid through a 

vertical channel filled with a porous medium. All the previous studies on oscillatory 
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fluid flow neglect the effect of couple stresses and this explains why the current study 

is worthwhile. 

   

Figure 5.1. Physical model and coordinate system of the problem. 

5.2. Mathematical Formulation and Solution of the Problem 

The schematic diagram of an unsteady mixed convection flow of electrically 

conducting, viscous, incompressible couple stress fluid between two infinite vertical 

plates in the presence of Hall current and thermal radiation is illustrated in Fig. 5.1. 

The fluid is driven by both buoyancy force and an oscillating pressure gradient parallel 

to the channel plates. The channel plates are at a distance 2𝑑 apart and the channel 

is filled with a homogeneous and isotropic porous medium. A Cartesian coordinate 

system 0ሺ𝑥, 𝑦, 𝑧ሻ is chosen such that the 𝑥-axis lies along the centre of the channel in 

a vertical upward direction and the 𝑧-axis is oriented perpendicular to the planes of the 

plates. In this way, the boundary plates at 𝑧 ൌ െ𝑑 and 𝑧 ൌ 𝑑 are parallel to the 𝑥𝑦-

plane and the magnetic field of strength 𝐵଴ is applied in the transverse 𝑥𝑧-plane as 

shown in the figure. The magnetic field induces a secondary flow in the 𝑧-direction. 

Following Veera Krishna et al. [147] and Veera Krishna and Chand Basha [146], the 

equations governing the flow under the influence of the imposed magnetic field are  
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డ௫
൅ 𝜈 డమ௨
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డర௨

డ௭ర ,                             (5.1) 
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௞
𝑤 െ ఎ

ఘ

డర௪
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𝜌𝐶௣
డ்

డ௧
ൌ Κ డమ்

డ௭మ െ డ௤ೝ

డ௭
.          (5.3) 

The boundary conditions for the problem are given as 

𝑢ᇱᇱ ൌ 𝑢 ൌ 𝑤 ൌ 𝑇 ൌ 0,    𝑧 ൌ െ𝑑,   

  𝑢ᇱᇱ ൌ 𝑢 ൌ 𝑤 ൌ 0, 𝑇 ൌ 𝑇௪ cos 𝜔𝑡 ,   𝑧 ൌ 𝑑,                           (5.4)   

where 𝑇௪ is the mean temperature of the plate 𝑧 ൌ 𝑑 and 𝜔 is the frequency of the 

oscillations. 

Assuming that the fluid is optically thin with a relatively low density [31], the radiative 

heat flux 
డ௤ೝ

డ௭
 in Eq. (5.3) is given by 

డ௤ೝ

డ௭
ൌ 4𝛼ଶ

ଶሺ𝑇 െ 𝑇଴ሻ,                  (5.5) 

where 𝛼ଶ is the mean radiation absorption coefficient. Taking the reference 

temperature at the left channel plate 𝑇଴ to be equal to 0 reduces Eq. (5.5) to 

 
డ௤ೝ
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ଶ𝑇.                                                                                        (5.6) 

 Introducing the dimensionless variables 
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ௗ
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ௗ
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௎
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௎
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்ೢ
 ,                     (5.7)     

transforms the governing Eqs. (5.1) – (5.3) to, after dropping the asterisks, the non-

dimensional form           
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where 𝑅 ൌ ௎ௗ

௩
 is the Reynolds number, 𝐷 ൌ ௞

ௗమ is the Darcy parameter, 𝐺𝑟 ൌ ௚ఉௗమ்ೢ

௩௎
 is 

the thermal Grashof number, 𝑃𝑒 ൌ
ఘ஼೛ௗ௎

ஂ
 is the Peclet number, 𝛿 ൌ ଶఈమௗ

√ஂ
 is the thermal 

radiation parameter, 𝐻𝑎ଶ ൌ ఙ஻బ
మௗమ

ఘఔ
 is the Hartmann number and 𝜅ଶ ൌ ௗమఔ

ఎ
 is the couple 

stress parameter. 

The transformed boundary conditions are 

𝑢ᇱᇱ ൌ 𝑢 ൌ 𝑤 ൌ 𝑇 ൌ 0,    𝑧 ൌ െ1, 

𝑢ᇱᇱ ൌ 𝑢 ൌ 𝑤 ൌ 0, 𝑇 ൌ cos 𝜔𝑡 ,   𝑧 ൌ 1.         (5.11) 

Assuming a complex solution of the form 

𝑞 ൌ 𝑢 ൅ 𝑖𝑤,                                                                                      (5.12) 

reduces Eqs. (5.8) and (5.9) to a single equation of the form 
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ோ
𝑇.         (5.13) 

The system of equations to be solved now reduces to a system of two equations, 

namely eq. (5.10) and eq. (5.13). 

The boundary conditions in complex form are: 

𝑞 ൌ 𝑇 ൌ 0,      𝑧 ൌ െ1, 

𝑞 ൌ 0, 𝑇 ൌ 𝑒௜ఠ௧,     𝑧 ൌ 1.           (5.14) 

 For a purely oscillatory flow, we assume that  

െ డ௣

డ௫
ൌ 𝜆𝑒௜ఠ௧, 𝑞ሺ𝑡, 𝑧ሻ ൌ 𝜙ሺ𝑧ሻ𝑒௜ఠ௧ 𝑎𝑛𝑑 𝑇ሺ𝑡, 𝑧ሻ ൌ 𝜃ሺ𝑧ሻ𝑒௜ఠ௧        (5.15) 

where 𝜆 is any positive constant and 𝜔 is the frequency of oscillation. Substituting Eq. 

(5.15) into Eq. (5.13) gives 
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1
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1
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where 𝑆ଶ ൌ ଵ

஽
 is the porous medium parameter. Equivalently, since 𝑒௜ఠ௧ is common, 

we get 
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which simplifies to; 
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ௗ௭మ െ ሺ𝐻𝑎ଶ ൅ 𝑆ଶ ൅ 𝑅𝑖𝜔ሻ𝜙 ൅ 𝐺𝑟𝜃ቃ       (5.18) 

along with boundary conditions 

𝜙ሺേ1ሻ ൌ 0 ൌ 𝜙ᇱᇱሺേ1ሻ.           (5.19) 

For the temperature field, after substituting Eq. (5.15) into Eq. (5.10), we get 

𝜃𝑃𝑒𝑖𝑤𝑒௜௪௧ ൌ 
ௗమఏ

ௗ௭మ 𝑒௜௪௧ െ 𝛿ଶ𝜃𝑒௜௪௧,          (5.20) 

which becomes  

ௗమథ

ௗ௭మ െ 𝛾ଶ𝜃 ൌ 0,              𝛾ଶ ൌ 𝛿ଶ ൅ 𝑃𝑒𝑖𝜔,                  (5.21) 

 with the boundary conditions: 

𝜃ሺ1ሻ ൌ 1,   𝜃ሺെ1ሻ ൌ 0.                   (5.22) 

Solving the ordinary differential equation Eq. (5.21) under boundary conditions given 

by Eq. (5.22) gives 

𝜃ሺ𝑧ሻ ൌ ୱ୧୬୦ ఊሺ௭ାଵሻ

ୱ୧୬୦ ଶఊ
.                     (5.23) 

In exponential form, 𝜃ሺ𝑧ሻ is equivalently written as 

𝜃ሺ𝑧ሻ ൌ ௘
ඥഃమశು೐೔ഘష೥ඥഃమశು೐೔ഘቆభశ೐మ೥ඥഃమశು೐೔ഘቇ

ଵା௘మඥഃమశು೐೔ഘ
 .              (5.24) 

In this way, the exact solution for the temperature field is obtained as 



80 
 

𝑇ሺ𝑧, 𝑡ሻ ൌ ௘
ඥഃమశು೐೔ഘష೥ඥഃమశು೐೔ഘቆభశ೐మ೥ඥഃమశು೐೔ഘቇ

ଵା௘మඥഃమశು೐೔ഘ
𝑒௜ఠ௧.                       (5.25) 

Eq. (5.18) becomes, after substituting Eq. (5.24), 

ௗరథ

ௗ௭ర ൌ 𝜅ଶ ቎𝑅𝜆 ൅ ௗమథ

ௗ௭మ െ ሺ𝐻𝑎ଶ ൅ 𝑆ଶ ൅ 𝑅𝑖𝜔ሻ𝜙 ൅ 𝐺𝑟 ௘
ඥഃమశು೐೔ഘష೥ඥഃమశು೐೔ഘቆభశ೐మ೥ඥഃమశು೐೔ഘቇ

ଵା௘మඥഃమశು೐೔ഘ
቏,  

                    (5.26) 

along with boundary conditions in Eq. (5.19).  Due to the massive output of the 

symbolic solution for 𝜙ሺ𝑧ሻ only the graphical solution will be presented in the following 

section 3. 

For the type of flow investigated herein, the two quantities of engineering importance 

are the rate of heat transfer 𝑁𝑢 (Nusselt number) at the channel walls and the wall 

shear stress 𝐶௙ (skin friction). From the temperature field, Eq. (5.24), we can obtain 

the rate of heat transfer at the left channel wall 𝑧 ൌ െ1 and is given by  

𝑁𝑢 ൌ െ ቀ
డఏ

డ௭
ቁ

௭ୀିଵ
ൌ െ

√ఋమା௉௘௜ఠ൬ଵି௘మඥഃమశು೐೔ഘ൰

ଵା௘మඥഃమశು೐೔ഘ
   .               (5.27) 

Similarly, from the velocity field we obtain the skin friction at the left channel wall as  

𝐶௙ ൌ ቀ
డథ

డ௭
െ ଵ

఑మ

డయథ

డ௭య ቁ
௭ୀିଵ

             (5.28) 
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Table 5.1. Skin friction (𝐶௙) at the left wall plate 𝑧 ൌ െ1 

𝜿 𝜹 𝑯𝒂 𝑺 𝑹 𝑷𝒆 𝝎 𝑮𝒓 𝝀 𝑪𝒇 

1 1 1 1 1 1 1 1 1 1.44055 

        2 2.28076 

        3 3.12096 

       1 1 1.44055 

       2  2.04090 

       3  2.64125 

      1 1  1.44055 

      2   1.30865 

      3   1.16637 

     0.71 1   1.46063 

     1    1.44055 

     2    1.35264 

    1 1    1.44055 

    2     2.22470 

    3     2.94170 

   1 1     1.44055 

   2      1.20823 

   3      0.98416 

  1 1      1.44055 

  2       1.20823 

  3       0.98416 

 1 1       1.44055 

 2        1.25160 

 3        1.13504 

0.1 1        1.71249 

0.2         1.69894 

0.3         1.67749 
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Table 5.2. Rate of heat transfer (𝑁𝑢) 

𝑷𝒆 𝜹 𝝎 𝑵𝒖 

0.71 0.1 1 0.163580 

1   0.293853 

2   0.815061 

1 0.1  0.293853 

 0.2  0.314346 

 0.3  0.348063 

 1 1 0.875163 

  2 1.133940 

  3 1.408950 

 

5.3. Results and Discussion 

Equations (5.24) and (5.26) are coded into a computer symbolic package, 

MATHEMATICA, for successful computation of the graphical solutions. A qualitative 

as well as quantitative analysis of the effects of the underlying parameters on the 

velocity and fluid temperature profiles is carried out with the aid of simulated graphs. 

The computational results for the velocity profiles are presented in Figs. 5.2 – 5.9 while 

results for the fluid temperature profiles are displayed in Figs. 5.10 – 5.12. 

In Fig. 5.2, an increase in the couple stress parameter 𝜅 is seen to increase the fluid 

velocity profiles, signifying the thinning of the fluid. A reverse trend is seen with 

decreasing values of 𝜅 that shows the thickening of the fluid together with the 

decreasing flow velocity. The influence of the magnetic field on the flow field is 

modelled by the Hartmann number 𝐻𝑎. Increasing the Hartmann number means an 

increase in the intensity of the magnetic field. In Fig. 5.3, consistent with expectation, 

the magnitudes of the velocity components are retarded by increasing magnetic field 

intensity. The transversely applied magnetic field 𝐵଴ gives rise to a drag-like force, 

called the Lorentz force, whose effect on the electrically conducting fluid is to damp 

the motion. Figure 4 illustrates the variation of the fluid velocity components with the 

porous medium shape parameter 𝑆. The effect of the porous medium shape parameter 

mirrors that of the Hartmann number. As the parameter 𝑆 increases, the tortuosity of 

the porous matrix increases resulting in damping of the flow. The effect of the Reynolds 

number 𝑅 on the velocity components is depicted in Fig. 5.5, and the magnitude of 
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either velocity component is enhanced with increasing Reynolds number. This is 

consistent with expectation. The influence of the Peclet number 𝑃𝑒 on the velocity 

profiles is shown in Fig. 5.6. The Peclet number is seen to retard the magnitude of the 

component 𝑢 and enhance the component 𝑤. Similar trends are observed in Fig.5.7 

where the effects of the frequency of oscillations on the velocity components are 

displayed. Figure 5.8 shows the magnitude of both velocity components increasing 

with increasing Grashof number. Radiative heat transferred from the hot plate at 𝑧 ൌ 1 

into the fluid inevitably raises the temperature of the fluid and in the process the 

viscosity of the fluid is reduced, resulting in increased flow rate. This phenomenon is 

explained by the fact that when heat is transferred from the heated right plate into the 

fluid, the increased buoyancy forces enhance the velocity of the bulk of the fluid. The 

influence of the pressure gradient on the fluid flow is represented by the pressure 

gradient parameter 𝜆. Figure 5.9 shows both velocity components increasing with an 

increase in this parameter. This is to be expected since the pressure gradient is one 

of the driving forces of motion in this study. 

 

 

Figure 5.2 Effects of the couple stress parameter 𝜅 on fluid velocity profiles 𝑢 and 𝑤. 
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Figure 5.3 Effects of the Hartmann number 𝐻𝑎 on fluid velocity profiles 𝑢 and 𝑤. 

 

Figure 5.4 Effects of the porous medium parameter 𝑆 on fluid velocity profiles 𝑢 and 

𝑤. 

 

Figure 5.5 Effects of the Reynolds number 𝑅 on fluid velocity profiles 𝑢 and 𝑤. 
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Figure 5.6 Effects of Peclet number 𝑃𝑒 on fluid velocity profiles 𝑢 and 𝑤. 

 

Figure 5.7 Effects of frequency of oscillations 𝜔 on fluid velocity profiles 𝑢 and 𝑤. 

 

Figure 5.8 Effects of the Grashof number 𝐺𝑟 on fluid velocity profiles 𝑢 and 𝑤. 
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Figure 5.9 Effects of the pressure gradient parameter 𝜆 on fluid velocity profiles 𝑢 and 

𝑤. 

 

Figure 5.10 Effects of the Peclet number 𝑃𝑒 on fluid temperature 

 

Figure 5.11 Effects of the thermal radiation parameter 𝛿 on fluid temperature 
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Figure 5.12 Effects of frequency of oscillations 𝜔 on fluid temperature 

 

Figure 5.10 shows the fluid temperature diminishing with increasing Peclet number. 

This phenomenon shows that within the flow, there is dominance of thermal diffusivity 

over momentum diffusivity. More heat is transferred from the fluid to the cooler channel 

plate at 𝑧 ൌ െ1 resulting in the lowering of the fluid temperature. In Fig.5.11, an 

increase in the thermal radiation parameter leads to a decrease of the fluid 

temperature. The same explanation for the phenomenon in Fig. 5.10 also applies in 

this case. Increasing the radiation parameter results in more radiative heat being 

transferred from the fluid to the cooler channel plate at 𝑧 ൌ 1 and this, of course, lowers 

the temperature in the bulk of the fluid. Figure 5.12 shows that an increase in the 

frequency of oscillations reduces the fluid temperature as well. The increased rate of 

oscillations inevitably dissipates the heat out of the fluid into the ambient. 

Table 5.1 and Table 5.2 show the influence of the thermophysical parameters on the 

wall shear stress (skin friction) and the heat transfer rate (Nusselt number), 

respectively. Two interesting trends clearly stand out. Firstly, except for the couple 

stress parameter, parameters that increase the rate of flow also increase the skin 

friction and those that decrease the flow rate also decrease the skin friction. The 

couple stresses increase the flow rate while they marginally decrease the skin friction. 

Secondly, parameters that decrease the fluid temperature also decrease the heat 

transfer rate. 
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5.4. Conclusion 

In this chapter, mixed convective flow of an electrically conducting, viscous 

incompressible couple stress fluid through a vertical channel filled with a saturated 

porous medium under the influence of an externally applied magnetic field has been 

investigated. It is observed that the velocity component for the primary flow is 

enhanced with an increase in the couple stress parameter, the Reynolds number, the 

Grashof number and the pressure gradient parameter while it is retarded with an 

increase in the magnetic field, the porous medium parameter, the Peclet number and 

the frequency of oscillations. The velocity component for the secondary flow is 

increased with an increase in all the parameters except the magnetic field and the 

porous medium parameter which retard it. It is further observed that the thermal 

radiation parameter, the Peclet number and the frequency of oscillations have a 

retardation effect on the fluid temperature. The investigation also concludes that, 

except for the couple stresses, parameters that increase (decrease) the fluid velocity 

also increase (decrease) the wall shear stress and parameters that decrease the fluid 

temperature also decrease the heat transfer rate. The couple stresses are observed 

to marginally decrease the skin friction. 
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CHAPTER SIX 

GENERAL DISCUSSION, CONCLUSION AND RECOMMENDATIONS 

6.1. General discussion 

In this thesis, the modelling of buoyancy-induced hydromagnetic couple stress fluid 

flow with periodic heat input has been investigated. The governing basic fluid 

dynamics equations for mass, momentum and energy were derived. The resulting 

non-linear dimensionless differential equations were solved analytically and 

numerically using the Adomian decomposition method. A computer symbolic package 

MATHEMATICA was employed for successful computation of the numerical and 

graphical solutions. A detailed analysis of the combined effects of the various 

thermophysical parameters embedded in the flow system on the velocity, temperature, 

skin friction and Nusselt number profiles was carried out. In flow and heat transfer 

studies in a channel, the skin friction and the Nusselt number are mostly the two 

quantities of engineering significance. 

6.2. Conclusions 

In chapter 3, the MHD natural convection flow of a heat generating couple stress fluid 

with time-periodic boundary conditions was investigated. The response of steady and 

periodic velocity and temperature fields as well as the skin friction and local Nusselt 

number to the embedded parameters in the flow system was outlined with the help of 

clear simulations of the solution. Some of the important results can be summarised as 

follows: 

 The magnetic field and the couple stresses were observed to have a retarding 

effect on both the velocity and temperature fields.  

 The viscous heating parameter and the internal heat generation parameter were 

found to have opposing influences.  

 A diminishing effect of the Strouhal number on the magnitude of the unsteady 

velocity and temperature fields suggest a strong dominance of the steady state 

part of the flow due to strong viscous forces.  

 The couple stresses enhanced the skin friction and decreased the wall heat 

transfer rate 



90 
 

In Chapter 4, the convective flow of hydromagnetic couple stress fluid with induced 

magnetic field was considered in the steady-periodic regimes with varying heating.  

Some of the pertinent results can be summarised as follows: 

 Increasing values of Hartman number, Strouhal number, couple stress parameter 

and heat loss parameter decreased the flow velocity while viscous heating of the 

fluid enhanced both steady and oscillatory flow profiles.  

 Fluid temperature distribution was seen to increase with increasing values of the 

viscous heating parameter, Hartman number and couple stress parameter while 

it decreased with increasing values of the Prandtl number, heat loss parameter, 

suction parameter and Strouhal number.  

 Increasing values of the Hartman number, viscous heating, suction and magnetic 

Prandtl number were seen to enhance the induced current density while an 

increase in the Strouhal number decreased it. 

In Chapter 5, mixed convective flow of an electrically conducting, viscous 

incompressible couple stress fluid through a vertical channel filled with a saturated 

porous medium was investigated. The following conclusions were drawn: 

 The velocity component for the primary flow was enhanced with an increase in 

the thermal radiation parameter and the Reynolds number and retarded with an 

increase in the Grashof number, the frequency of oscillations, The Peclet number, 

the magnetic field intensity and the couple stress parameter.  

 The velocity component for the secondary flow was increased with an increase in 

the thermal radiation parameter, the Grashof number and the Reynolds number 

and was retarded by increasing the frequency of oscillations, the Peclet number, 

the magnetic field intensity and the couple stresses.  

 The thermal radiation parameter increases the fluid temperature while the Peclet 

number and the frequency of oscillations reduces it. 

 Except for the couple stresses, parameters that increase (decrease) the fluid 

velocity also increase (decrease) the wall shear stress and parameters that 

decrease the fluid temperature also decrease the heat transfer rate.  

 The couple stresses are observed to marginally decrease the skin friction. 
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6.3. Recommendations 

It has been stated that the distinguishing characteristic features of the couple stress 

non-Newtonian fluid is the inclusion of the size-dependent microstructure that renders 

it to be of desirable mechanical significance. Understanding the combined effects of 

the couple stresses and the other parameters on the flow field variables will inform 

optimal designs of devices and processes in technological areas where channel flows 

are applied. In this study, apart from the effect of the other pertinent parameters, the 

couple stresses were found to have significant effect on the flow velocity, temperature, 

skin friction and Nusselt number. For instance, the effect of increasing the skin friction 

informs the strength of the material to be used to avoid bursting of pipes in machinery. 

Where Nusselt number is increased, it means that heat loss can be avoided by 

enhanced insulation. Similarly, other recommendations can be made. 

6.4. Future research work 

Future work maybe: 

 To consider the same type of flows studied in this thesis but with a different type 

of fluid like a Casson fluid, third grade fluid or other non-Newtonian fluids.  

 To use other numerical methods like the homotopy analysis method, the spectral 

methods, etc., to solve exactly the same problems studied and compare the 

results. 
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APPENDIX 1 

Solution of 𝝋ሺ𝒛ሻ in equation (5.26) of chapter 5 

𝜑ሺ𝑧ሻ =(-((1.` 

 κ2 (-2.` 

Gr β κ2+Gr γ2 κ2+Gr γ2 -2.` R γ4 λ-2.` R β κ2 λ+2.` R γ2 

κ2 λ))/((1.` + )  (γ4+β 

κ2-1.` γ2 κ2) (κ2+ )))-(0.5` 

 (-2.` 

Gr β γ2 κ2+Gr β κ4+Gr β κ2 +R γ4 κ2 λ+R β κ4 λ-1.` R γ2 κ4 

λ+R γ4  λ+R β κ2  λ-1.` R γ2 κ2  

λ))/((1.` + ) β  (γ4+β 

κ2-1.` γ2 κ2))-(0.5` 

 (-2.` 

Gr β γ2 κ2+Gr β κ4+Gr β κ2 +R γ4 κ2 λ+R β κ4 λ-1.` R γ2 κ4 

λ+R γ4  λ+R β κ2  λ-1.` R γ2 κ2  

λ))/((1.` + ) β  (γ4+β 

κ2-1.` γ2 κ2))-(0.5` 

 (2.` Gr β 

γ2 κ2-1.` Gr β κ4+Gr β κ2 -1.` R γ4 κ2 λ-1.` R β κ4 λ+R γ2 

κ4 λ+R γ4  λ+R β κ2  λ-1.` R γ2 κ2  

λ))/((1.` + ) β  (γ4+β 

κ2-1.` γ2 κ2))+(2.` 1.4142135623730951` 

 (-4.` 

1.4142135623730951` 

2.718281828459045`
0.7071067811865475` 2 2 4.` 2 0.7071067811865475` y 2 2 4.` 2

2 4.` 2

2.718281828459045`
1.4142135623730951` 2 2 4.` 2 2 4.` 2

2 4.` 2

2.718281828459045`
0.7071067811865475` 2 1.` 2 4.` 2 0.7071067811865475` y 2 1.` 2 4.` 2

2 4.` 2

2 4.` 2 2 4.` 2 2 4.` 2

2.718281828459045`
1.4142135623730951` 2 1.` 2 4.` 2 2 4.` 2

2.718281828459045`
0.7071067811865475` 2 1.` 2 4.` 2 0.7071067811865475` y 2 1.` 2 4.` 2

2 4.` 2

2 4.` 2 2 4.` 2 2 4.` 2

2.718281828459045`
1.4142135623730951` 2 1.` 2 4.` 2 2 4.` 2

2.718281828459045`
0.7071067811865475` 2 2 4.` 2 0.7071067811865475` y 2 2 4.` 2

2 4.` 2

2 4.` 2 2 4.` 2 2 4.` 2

2.718281828459045`
1.4142135623730951` 2 2 4.` 2 2 4.` 2

2.718281828459045`
0.7071067811865475` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2

2.718281828459045

`
1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2
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Gr β2 κ2-4.` 1.4142135623730951` 

Gr β2 κ2-4.` 1.4142135623730951` 

 Gr β2 κ2-4.` 

1.4142135623730951` 

 Gr β2 

κ2-4.` 1.4142135623730951` 

 

Gr β2 κ2-4.` 1.4142135623730951` 

Gr β2 κ2-4.` 1.4142135623730951` 

 Gr β2 κ2-4.` 

1.4142135623730951` 

 Gr β2 

κ2+1.4142135623730951` 

Gr β κ4+1.4142135623730951` 

Gr β κ4+1.4142135623730951` 

 Gr β 

κ4+1.4142135623730951` 

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2.718281828459045

`
0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2.718281828459045

`
0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2
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 Gr β 

κ4+1.4142135623730951` 

 

Gr β κ4+1.4142135623730951` 

Gr β κ4+1.4142135623730951` 

 Gr β 

κ4+1.4142135623730951` 

 Gr β κ4-

2.` 1.4142135623730951` 

Gr β γ2 -2.` 1.4142135623730951` 

Gr β γ2 -2.` 1.4142135623730951` 

 Gr β γ2 

-2.` 1.4142135623730951` 

 Gr β γ2 

+2.` 1.4142135623730951` 

 

Gr β γ2 +2.` 1.4142135623730951` 

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
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Gr β γ2 +2.` 1.4142135623730951` 

 Gr β γ2 

+2.` 1.4142135623730951` 

 Gr β γ2 

+1.4142135623730951` 

Gr β κ2 +1.4142135623730951` 

Gr β κ2 +1.4142135623730951` 

 Gr β κ2 

+1.4142135623730951` 

 Gr β κ2 

-1.` 1.4142135623730951` 

 

Gr β κ2 -1.` 1.4142135623730951` 

Gr β κ2 -1.` 1.4142135623730951` 

 Gr β κ2 

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2

2.718281828459045

`
1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2



96 
 

-1.` 1.4142135623730951` 

 Gr β κ2 

-4.` 

Gr β γ3 +4.` 

Gr β γ3 +4.` 

 Gr β γ3 

-4.` 

 Gr β γ3 

+4.` 

Gr β γ κ2 -4.` 

Gr β γ κ2 -4.` 

 Gr β γ κ2 

+4.` 

2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2

2.718281828459045

`
1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 1.` 2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2 1.` 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 1.` 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 1.` 2 4.` 2

2.718281828459045

`
1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 1.` 2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2 1.` 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 1.` 2 4.` 2



97 
 

 Gr β γ κ2 

+

Gr γ3 κ2 -1.` 

Gr γ3 κ2 -1.` 

 Gr γ3 κ2 

+

 Gr γ3 κ2 

-1.` 

Gr γ κ4 +

Gr γ κ4 +

 Gr γ κ4 

-1.` 

 Gr γ κ4 

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 1.` 2 4.` 2

2.718281828459045

`
1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 1.` 2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2 1.` 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 1.` 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 1.` 2 4.` 2

2.718281828459045

`
1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 1.` 2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2 1.` 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 1.` 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2
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+2.` 

Gr β γ  -2.` 

Gr β γ  -2.` 

 Gr β γ 

 +2.` 

 Gr β γ 

 +

Gr γ3  -1.` 

Gr γ3  -1.` 

 Gr γ3 

 +

 Gr γ3 

 -1.` 

2 1.` 2 4.` 2

2.718281828459045

`
1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2
2 1.` 2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2 4.` 2
2 1.` 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2
2 1.` 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2
2 1.` 2 4.` 2

2.718281828459045

`
1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2
2 1.` 2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2 4.` 2
2 1.` 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2
2 1.` 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2
2 1.` 2 4.` 2
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Gr γ κ2  +

Gr γ κ2  +

 Gr γ κ2 

 -1.` 

 Gr γ κ2 

 -4.` 

 

Gr β γ3 +4.` 

Gr β γ3 +4.` 

 Gr β γ3 

-4.` 

 Gr β γ3 

+4.` 

 

2.718281828459045

`
1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2
2 1.` 2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2 4.` 2
2 1.` 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2
2 1.` 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2 4.` 2
2 1.` 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2
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Gr β γ κ2 -4.` 

Gr β γ κ2 -4.` 

 Gr β γ κ2 

+4.` 

 Gr β γ κ2 

+

 

Gr γ3 κ2 -1.` 

Gr γ3 κ2 -1.` 

 Gr γ3 κ2 

+

 Gr γ3 κ2 

-1.` 

 

Gr γ κ4 +

2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2
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Gr γ κ4 +

 Gr γ κ4 

-1.` 

 Gr γ κ4 

-2.` 

 

Gr β γ  +2.` 

Gr β γ  +2.` 

 Gr β γ 

 -2.` 

 Gr β γ 

 -1.` 

 

Gr γ3  +

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2
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Gr γ3  +

 Gr γ3 

 -1.` 

 Gr γ3 

 +

 

Gr γ κ2  -1.` 

Gr γ κ2  -1.` 

 Gr γ κ2 

 +

 Gr γ κ2 

 -4.` 1.4142135623730951` 

R β γ4 λ-4.` 1.4142135623730951` 

R β γ4 λ-4.` 1.4142135623730951` 

2 4.` 2
2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
2 2 4.` 2

2.718281828459045

`
0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2 4.` 2
2 2 4.` 2

2.718281828459045

`
y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`
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 R β γ4 λ-

4.` 1.4142135623730951` 

 R β γ4 λ-

4.` 1.4142135623730951` 

R β γ4 λ-4.` 1.4142135623730951` 

R β γ4 λ-4.` 1.4142135623730951` 

 R β γ4 λ-

4.` 1.4142135623730951` 

 R β γ4 λ-

4.` 1.4142135623730951` 

R β2 κ2 λ-4.` 1.4142135623730951` 

R β2 κ2 λ-4.` 1.4142135623730951` 

 R β2 κ2 λ-

4.` 1.4142135623730951` 

 R β2 κ2 

λ-4.` 1.4142135623730951` 

2.718281828459045

`
y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2.718281828459045

`
y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 1.` 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2

2.718281828459045

`
y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2.718281828459045

`
2.` y 1.4142135623730951` y 2 1.` 2 4.` 2 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.`

2.718281828459045

`
y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2.718281828459045

`
2.` y 0.7071067811865475` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 1.` 2 4.` 2

2.718281828459045

`
y 0.7071067811865475` y 2 1.` 2 4.` 2 1.4142135623730951` y 2 2 4.` 2 y 1.` 0.7071067811865475` 2 2 4.` 2
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R β2 κ2 λ-4.` 1.4142135623730951` 

R β2 κ2 λ-4.` 1.4142135623730951` 

 R β2 κ2 λ-

4.` 1.4142135623730951` 

 R β2 κ2 

λ+4.` 1.4142135623730951` 

R β γ2 κ2 λ+4.` 1.4142135623730951` 

R β γ2 κ2 λ+4.` 1.4142135623730951` 

 R β γ2 κ2 
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(2.` γ+1.4142135623730951` )))/.β-

>(Ha2+S2+I*ω*R)/.γ2->(δ2+I*ω*Pe)/.y->z 
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