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Abstract

The main purpose of modelling rare events such as heavy rainfall, heat waves,

wind speed, interest rate and many other rare events is to try and mitigate

the risk that might arise from these events. Heavy rainfall and floods are still

troubling many countries. Almost every incident of heavy rainfall or floods

might result in loss of lives, damages to infrastructure and roads, and also

financial losses. In this dissertation, the interest was in modelling average

monthly rainfall for South Africa using extreme value theory (EVT). EVT is

made up mainly of two approaches: the block maxima and peaks-over thresh-

old (POT). This leads to the generalised extreme value and the generalised

Pareto distributions, respectively. The unknown parameters of these distri-

butions were estimated using the method of maximum likelihood estimators

in this dissertation. According to goodness-of-fit test, the distribution in the

Weibull domain of attraction, Gumbel domain and generalised Pareto distri-

butions were appropriate distributions to model the average monthly rainfall

for South Africa. When modelling using the POT approach, the point process

model suggested that some areas within South Africa might experience high

rainfall in the coming years, whereas the GPD model suggested otherwise.

The block maxima approach using the GEVD and GEVD for r-largest order

statistics also revealed similar findings to that of the GPD. The study recom-

mend that for future research on average monthly rainfall for South Africa the

findings might be improved if we can invite the Bayesian approach and multi-

variate extremes. Furthermore, on the POT approach, time-varying covariates

and thresholds are also recommended.
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Chapter 1

Introduction and background

1.1 Introduction

Civil engineering was the early discipline to apply extreme value models to

design structures that can withstand forces exerted upon them (Coles, 2001).

There are several studies of extreme events that have produced accurate and

useful results around the world (Coles, 2001). For example: extreme value

theory is used as a risk management tool in finance (Embrecht et al., 1999);

drought in the Western Cape province, South Africa (Khuluse, 2010); heavy

rainfall of Tanzania (Ngailo et al., 2016); maximum temperature in South

Africa (Nemukula and Sigauke, 2018); and many more.

Extreme value theory (EVT) is defined as one of the superior approaches to

measure the stochastic behaviour of a process at unusually high or low lev-

els (Chikobvu and Chifurira, 2015). In particular, EVT provides the statistical

framework to make inferences about the probability of very rare and extreme

events. Fernandez (2003) indicated how, over the past 50 years, EVT has been
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considered as one of the most important statistical disciplines in the applied

sciences. EVT has also been applied extensively in many areas spanning: en-

vironmental phenomena such as floods and droughts (Masereka et al., 2018;

Chikobvu and Chifurira, 2005); finance and insurance (Kratz, 2017; Adesina

et al., 2016; Henry III and Hsieh, 2014); survival analysis (Alvarez-Igiesias,

2015); food and telecommunications (Ngailo et al., 2016; Bali, 2003).

In environmental phenomena, EVT can reveal useful information about river-

level, wind speed, etc. The information can be essential in the design of struc-

tures such as bridges, buildings and roads (Smith, 2005). In finance, EVT can

be useful in assessing the risk of large insurance claims and in measuring risks

that arise from certain financial institutions. For rainfall, the information

can be helpful in predicting the rare events like tornadoes, floods and thun-

derstorms. The application of EVT in rainfall data is becoming more visible

around the globe (De Waal et al., 2017; Chu et al., 2008; Smith, 2005). Accord-

ing to Smith (2005), this area of statistics is not restricted to rainfall data only

but also other disciplines. In medicine, EVT is used to build a device that can

determine which patients need more care (Hugueny et al., 2010).

1.2 Background

Worldwide, climate change has become a disturbing issue for the past few

years. South Africa has approximately 55 million people, with 20% depend-

ing on rain-fed agriculture (Khuluse, 2010). As a result, many South Africans

face challenges regarding the availability of staple food such as maize and rice.

Martin et al. (2011) investigated how to tackle climate change in South Africa

and concluded that agriculture, bio-diversity, water and health, are the most

affected sectors.
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In agriculture, the livelihoods of many individuals are in danger. Their jobs are

at stake because crops are failing and livestock are dying. Heavy rainfall, hot

spell and drought can contribute negatively towards health. In addition, it is

believed that these factors might cause or transport diseases like malaria from

one community to another and might also cause food insecurity, hunger and

malnutrition. Water is essential to humans and other creatures alike. Cur-

rently some areas within South Africa are expirencing severe drought because

the demand for water is greater than supply. Kulshreshtha (1998) projected

that by the year 2025, in some regions of the world, especially in the develop-

ing countries, the demand for water will surpass the supply.

In the recent past decades, climate-related disasters have been the main con-

cern worldwide (Meehl et al., 2006). According to Shongwe et al. (2009) tem-

perature and precipitation extremes have showed significant increase in the

Southern African region. It was reported that, in the affected regions floods and

drought-related incidents have increased recently, leaving the livelihoods of ap-

proximately six million people in danger (Reason et al., 2005). Shongwe et al.

(2009) investigated the extreme precipitation in Africa under global warming.

Their study recommended that countries in the Southern African Development

Community (SADC) region must give more attention to extreme precipitation

due to its great impact on human activities. Our study aims at filling this gap

by modelling the tail behaviour of the underlying distribution of the average

monthly rainfall for South Africa using extreme value theory.

Taiwan received massive rainfall during the rainy seasons of 2009, reaching

2235 milimeters (mm) in a period of two days (fen Chu et al., 2012). Tanzania

depends on rain-fed agriculture. In almost every rainy season, the country ex-

periences floods, leaving their agricultural vegetation at risk. Another extreme

event in SADC, is drought, which caused many Zimbabwean farmers to lose
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their crops and livestock during 1991-1992 (Chikobvu and Chifurira, 2015).

Limpopo province in South Africa, consists of relatively large and poverty-

striken households and also has a wide range of national parks. The region

experiences severe drought and heavy rainfall in almost every rainy season

(October to January). Reason et al. (2005) revealed how the region was af-

fected by drought and severe flooding during the years 2001-2004. Moreover,

these aforementioned incidents pose a threat to biodersity, residents and in-

frastructure.

The Western Cape province has its unique climate in South Africa. The weather

variables in the province can be categorised as follows: rainfall, temperature

and wind (Bhagwandin, 2017). During the years 2001-2008, the province was

hit by severe floods which resulted in a loss of 2.5 billion rand in damages to

property (de Waal, 2012). This observation was also supported by de Waal et al.

(2017), who investigated extreme 1-day rainfall distributions during the 2001-

2014 period. In South Africa, there are numerous extreme events related to

heavy rainfall and drought. However, it was cautioned that the country must

expect a decrease in precipitation level, especially in the Western Cape and

Northern Cape provinces (Khuluse, 2010).

Although the classical statistical techniques have been applied widely to other

studies, the use of EVT in modelling environmental phenomena is gaining

more attention worldwide due to its capacity to handle rare events. Accord-

ing to Nemukula and Sigauke (2018) modelling with classical statistical tech-

niques might lead to inaccurate estimations because their results are based on

the mean and not on the tails of the distribution. It was also revealed that

EVT is the most appropriate method that can deal with such situations. In

the present study, EVT is the preferred methodology since the study deals with
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extreme rainfall events.

1.3 Problem statement

Globally, there are several upheavals caused by extreme rainfall events that

resulted in major damages to public infrastructure and agriculture, and loss of

lives. For example, Chu et al. (2008) investigated extreme rainfall in Hawaiian

Islands. The scholars stated that the Islands received massive rainfall of 940

mm within 24 hours, which destroyed many households and roads in the year

2004. In the same study, it was further revealed that the Islands lost about 88

million US dollars in damages.

There are several extreme rainfall events around South Africa that left many

people homeless and caused huge damages in a number of areas in the provinces

of Limpopo, Gauteng, Kwa-Zulu Natal, Eastern Cape and Western Cape (Kruger

and Nxumalo, 2017; Phakula, 2016; Diriba et al., 2014; de Waal, 2012; Khu-

luse, 2010; luc Melice and Reason, 2007). For example, a study by Khuluse

(2010) highlighted that the Western Cape province was hit by extreme rainfall

between the years 2003 and 2008 that caused damages on property and in-

frastructure worth R5 billion. The same study also revealed that South Africa

should expect a decline in average precipitation by the end of the 21st cen-

tury, which may result in less than 1 000 mm per year by 2025. Other extreme

events occuring in South Africa includes the KwaZulu-Natal heavy rainfall and

floods in which about 51 people were confirmed dead and some were forced to

relocate to neighbouring places (EWN, 2019).

However, the problems that extreme rainfall events present to the government

of South Africa, the private sector and other communities, such as loss of live-

stock, damages to property and infrastructure, cannot be over emphasised.
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Most studies on extreme rainfall events in South Africa have been mainly at

a local site level or regional level, but not the entire country. Of paramount

importance is the prediction of the return periods in reducing the predictive

uncertainty of these extreme rainfall events at the national level, and hence

reducing their disastrous effects on human life and property. It is, therefore,

our intention in this study to model average monthly extreme rainfall for South

Africa using the two realisations of EVT, i.e. block maxima and peaks-over

threshold (POT).

1.4 Rationale

A study by luc Melice and Reason (2007) showed how the business of Garden

Route in South Africa was affected by the 2006 extreme rainfall for about two

days. On average, every strike of flood results in either financial loss or loss

of lives in the country. Another evidence by Dyson and van Heerden (2001)

revealed how the February 2000 extreme rainfall affected the Northern Cape

and Mpumalanga provinces, which both recorded an annual average rainfall of

1 000 mm. In their study, nearly 600 people lost their lives and many others

were relocated to neighbouring villages for safety.

Reason et al. (2005) also revealed how the extreme conditions during the year

2000 affected the Kruger National Park and other forms of life in the Limpopo

province. In a separate study in Cape Town, Diriba et al. (2017) presented

some evidence on how extreme wind speed influenced the wildfire that destroy

4000 hectares of land vegetation and some homes. Their study also established

how the extreme rainfall affected the traffic in the Gauteng province in 2017.

Therefore, it is important to study the patterns of these extreme events in order

to develop methods that will produce accurate predictions. This will, in turn

help to initiate measures, forestall the negative effects of these occurrences
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caused by the extreme rainfalls.

1.5 Aim and objectives of the study

1.5.1 Aim

The aim of the study is to model the average monthly rainfall for South Africa

using extreme value theory.

1.5.2 Objectives

The objectives of the study are to:

(i) Test for randomness and stationarity using average monthly rainfall data

for South Africa.

(ii) Find a suitable candidate parent distribution(s) for average monthly rain-

fall for South Africa.

(iii) Predict the return levels and their corresponding return periods using the

fitted parent distribution(s).

(iv) Use the block maxima approach to model extreme average monthly rain-

fall for South Africa.

(v) Use the peaks-over threshold approach to model extreme average monthly

rainfall for South Africa.

1.6 Structure of the dissertation

This section describes the structure of the dissertation. The research study

consists of six chapters, including references.
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Chapter 1 gives the introduction on impacts of extreme rainfall to society. It

also provides information about the climate variability in South Africa. Lit-

erature review in Chapter 2 presents diverse studies of extreme rainfall in

South Africa and other countries around the world. Chapter 3 presents the

methodology adopted in the dissertation. It also describes, in detail, what ex-

treme value theory entails. In addition, the approaches of extreme value theory

are explained. Discussion and results are presented in Chapter 4, including

a detailed extreme value analysis of average monthly rainfall data for South

Africa. In addressing the objectives set in Chapter 1, Chapter 5 presents the

concluding remarks and recommendations based on the results of the analysis

in Chapter 4.



Chapter 2

Literature review

2.1 Introduction

This chapter addresses the theory of extreme events and modelling. Also, an

overview of the probability and statistical tools underlying the extreme value

theory (EVT), is provided. In addition, the chapter presents the history behind

the rainfall patterns in South Africa and some other parts of the world.

Several studies on the applications of EVT in various disciplines have been

conducted. In modelling financial risk measurement using the generalised ex-

treme value distribution (GEVD), Bali (2007) concluded that the loss of finan-

cial institutions can be accurately estimated using generalised extreme value

distribution. In a separate study on patients in intensive care unit (ICU) in

the United Kingdom, Hugueny et al. (2010) used EVT to build a probabilistic

detector to identify patients who are in a deterioration state. Their study re-

vealed that about 20 000 unforeseen patients admitted to ICU could have been

avoided if they had this detector. Another study by Bali (2003) used EVT in
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finance to prove that the structure of interest rate volatility does not follow a

normal distribution, and concluded that the interest rate swift occurs more fre-

quently than predicted by the normal model. In the study of risk management

concerning enviromental phenomena, Nemukula and Sigauke (2018) used EVT

to model daily maximum temperature and the results of their study predicted

an increase in daily temperature for the forthcoming years. This shows how

useful EVT is and how it has emerged in various disciplines.

2.2 World Rainfall

Some studies have highlighted factors responsible for climate change in Africa.

Deforestation and atmospheric gas are considered to be the contributing fac-

tors towards climate change in Africa (Martin et al., 2011; Smith, 2005).

The climate of South Africa and other sub-Saharan countries consists of the

rainy summer with cold and dry winter. These seasonalities are brought by

anticyclonic high pressure system that happens during winter; and intermit-

tent thermal trough during summer (Tadross and Johnston, 2012). Their study

also established that the summer trough was responsible for producing greater

rain over the eastern side and less rain towards the western part of the conti-

nent. In winter, the anticyclones over the Atlantic and Indian Oceans shift and

unite over land, which creates the dry conditions in Africa (Tyson and Preston-

Whyte, 2011).

According to Tadross and Johnston (2012), South Africa consists of 11 climatic

regions. For these 11 climatic regions, 35 percent have a precipitation margin

of 500 mm; 44 percent have a precipitation of 200-500 mm; and the remaining

21 percent have a precipitation of less than 200 mm. The two phenomena that

pose threat to human life are rainy weather and drought. For a certain country
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to have a rainy weather, it is believed that, that country must first deal with

drought or vice versa. According to Tyson and Preston-Whyte (2011), dry spells

are related to rainy weather in many African countries. This implies that, if a

certain country experiences drought for some years, then that particular coun-

try will have much better rainy weather in the years to follow.

Cumulus convection clouds is the rain generating system responsible for pro-

ducing greater rain (Tyson and Preston-Whyte, 2011). However, most areas

experiencing summer rainfall within South Africa receive much of their rain in

the afternoon and early evening. Regions experiencing winter rainfall, receive

much of their rain at night and in the morning. Drought is brought about

by living habits of the residents within a region or country. Evidence pre-

sented by Tyson and Preston-Whyte (2011) stated that drought is prevalent in

those regions that depend more on natural resources of food, water and energy.

Botswana, Namibia and South Africa are at the brink of becoming potential

desserts (Tyson and Preston-Whyte, 2011).

2.3 Rainfall in the world

The rainy season is an exciting season for farmers and all living creatures and

living things in the world. Farmers are assured that their agricultural vege-

tation will receive sufficient amount of water for generating quality product.

However, in some countries or regions, instead of having normal rainfall, there

is abnormal rainfall, which turns into floods (Goudenhoofdt et al., 2017; Chu

et al., 2008).

Several extreme events around the globe often leave many people homeless and

also cause huge damages to property and agricultural land, including deaths
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(Ngailo et al., 2016; Khuluse, 2010; Chu et al., 2008). The study by Reason

et al. (2005) presented evidence on how heavy rain can be harmful to agricul-

tural vegetation. Their study reported that floods can flush away the seeds

during the early stages of ploughing. Dyson and van Heerden (2001) presented

evidence of heavy rainfall that affected the people of Mozambique, South Africa

and Zimbabwe. Their report showed that the Limpopo province suffered a se-

vere loss of R1.3 billion in infrastructure and roads, and around 200 bridges

were also destroyed in South Africa. In Mozambique and Zimbabwe, nearly

600 people lost their lives and several others were forced to leave their homes.

In a separate study, Chu et al. (2008) showed how the Hawaiian Islands were

affected by heavy rainfall. They reported that this heavy rainfall had devas-

tating effects on infrastructure and caused some disruptions at the University

of Hawai. Another extreme rainfall in China affected thousands of lives, and

some went missing (Ender and Ma, 2014).

Nadarajah (2005) investigated the extremes of daily rainfall in west central

Florida. The data was extracted from 14 rainfall stations. It was concluded

that the Frechet distribution was the best distribution that can represent the

data. The quantile estimates of the return period showed an increase in daily

rainfall in west central Florida. In China, Ender and Ma (2014) presented

some evidence on extreme precipitation for four cities. Their results showed

that GPD was more preferred to GEV when it came to goodness-of-fit. The

quantile estimates suggested that China was expected to have abundant rain-

fall every five years. In another study, Ngailo et al. (2016) modelled extreme

rainfall of Tanzania using GEV and GPD. The return levels of both GEV and

GPD showed an increase in rainfall in Tanzania and also revealed that the

country was expected to experience extreme maximum rainfall every ten years.

Another extreme event that has tormented many people is called the minimum
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rainfall or drought. Many studies have pointed out to the importance of under-

standing the behaviour of minimum rainfall (Chikobvu and Chifurira, 2015;

Chifurira and Chikobvu, 2014; de Waal, 2012; Khuluse, 2010 and more). These

studies have shown that in Southern Africa, drought tends to occur between

the December to March rainy season.

The study by Aguilar et al. (2009) showed that central African countries must

expect an increase in extreme temperature and a decrease in precipitation in

the coming years. This decrease in precipitation was also highlighted by Jury

(2012). Nkrumah (2017) indicated that Ghana is affected by extreme tempera-

ture. According to Nkrumah (2017), some areas within the Ghana would expe-

rience extreme temperature once every five years. In the same study, the index

parameter suggested that the underling distributionof the tail index lies in the

Weibull domain of attraction.

There have been some other developments in modelling of extreme value statis-

tics. Recently, some researchers used point processes and EVT to make infer-

ence about extreme rainfall (Khuluse, 2010). According to Coles (2001), the

use of point processes approach is related to peaks-over threshold approach.

In their study, it was stated that the results obtained from point processes ap-

proach are most likely to be similar to those adopting the peaks-over threshold

approach. However, the Poisson point process model is used to check if our

estimation in POT approach will agree with that of the Poisson point process.

There are several studies which used point process and EVT approaches to

model extreme rainfall data (Cowpertwait et al., 2001 Coles, 2001).

The shift in climate change has affected many countries around the world (Ne-

mukula and Sigauke, 2018; Masereka et al., 2018; Chikobvu and Chifurira,

2015). It is clear that this shift has affected the behaviour of the temperature,
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rainfall, wind, etc. However, further research still needs to be conducted on

climate change in order to prevent loss of lives and unnecessary expenditure.

2.4 Rainfall in South Africa

South Africa has a wide range of varying climatic conditions than any other

country in sub-Saharan Africa. Again, in comparison to other countries within

the same range of latitude, South Africa has the most freezing temperatures.

However, according to Phakula (2016) these variabilities have impacted neg-

atively towards agriculture, economy and water resources. Several studies in

South Africa have shown that most parts of the country experience a massive

decrease in precipitation and an increase in warm temperatures (Nemukula

and Sigauke, 2018; Khuluse, 2010).

De Waal et al. (2017) used the generalised Pareto distribution to model 1-day

rainfall distributions of the Western Cape Province from 76 rainfall stations.

Their results predicted an increase in the 50-year return period of 1-day rain-

fall patterns for 48 stations, while for the remaining stations, the converse was

the case. The findings from the Western Cape is a source of concern to resi-

dents because it may give rise to extreme events like floods and thunderstorm

since the province receives more rainfall during these two extreme events.

Masereka et al. (2018) used empirical continuous probability distribution func-

tions and theoretical continuous probability functions to model annual max-

imum rainfall in Nelspruit, South Africa. Their findings suggested that the

region must wait for about 10 years before it can receive another massive rain-

fall. Du Plessis and Burger (2015) investigated the short-duration rainfall in-

tensities in South Africa using EVT. Their study concluded with no evidence

supporting the increase in rainfall intensities. The information about extreme
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events is important for South Africa. It can unveil the usefulness of informa-

tion to manage floods and droughts. It can also assist in reducing the amount

of money spent by the government and insurance companies on disaster relief

operations, property recovery and loss of lives (Maposa, 2016).

Nemukula and Sigauke (2018) investigated the use of r-largest order statistics

in modelling average daily temperature in South Africa. The results of their

study showed an increase in average daily temperature in the coming years,

and also that the negative Weibull distribution was a good fit for the data.

The study by Debusho and Diriba (2016) presented another version of infor-

mation on extreme temperature in the Eastern Cape province in South Africa.

Their study supported the generalised Pareto distribution as being suitable for

modelling the data; and the quantile estimates suggested that the province

should expect an increase in extreme temperature. This implies that there is a

growing concern on extreme temperature which poses a threat to agricultural

vegetation, health and power outages.

According to the above literature, some studies revealed that South Africa has

experienced a huge shift in climate change. This shift has changed the char-

acteristics of precipitation and temperature. However, one can say that the

above researches pointed out that the country will experience an increase in

precipitation and temperature, especially in magnitude and frequency of the

occurrences.

2.5 Extreme value theory: an overview

Extreme value theory (EVT) is a branch of statistics interested in the tail be-

haviour of a probability distribution. In the early days of development, EVT

was designed to study the flood levels. However, recent studies showed how this
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theory can also be applicable to many disciplines such as insurance, finance,

meteorology phenomena and environmental sciences (Kratz, 2017; Adesina

et al., 2016; Henry and Hsieh, 2014). For example, the following can be clas-

sified as rare events: financial crises arising from counterparties; large claims

in insurance; high wind speed in meteorology; and the high concentration of

ozone in environmental studies. Fundamentally, the main aim of EVT is to

know or predict the occurrence of extreme or rare events using historical data

(Charras-Garrido and Lezaud, 2013). There are two fundamental approaches

in EVT, that is: the peaks-over-threshold and the block maxima. We explain in

detail what is meant by the two approaches.

2.5.1 The block maxima approach

The block maxima is an extreme value approach that uses generalised ex-

treme value distribution (GEVD) and GEVD for r-largest order statistics when

analysing the data. The model development for these two distributions is based

on the statistical behaviour of the maximum, Mn,

Mn = max(X1, · · · , Xn) (2.1)

where X1, · · · , Xn is a sequence of independent and identically distributed (iid)

random variables with distribution function F . Then, theoretically, the distri-

bution of Mn can be derived as (Coles, 2001):

Pr{Mn ≤ z} = Pr{X1 ≤ z, · · · , Xn ≤ z}

= Pr{X1 ≤ z} × · · · × Pr{Xn ≤ z}

= {F (n)}n, for all n. (2.2)

Since the distribution function F is unknown, then (2.2) is not useful in deter-
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mining the distribution of Mn. Another alternative approach is to approximate

families of models for F n using only the extreme data. The fact that the lim-

iting distribution of Mn degenerates, implies that the behaviour of F n as n

approaches infinity is not sufficient (Smith, 2005; Coles, 2001). Then, to avoid

this problem, we consider the linear renormalisation of Mn:

M∗n =
Mn − bn
an

(2.3)

for sequences of constants {an > 0} and {bn}. Then (2.3) gives rise to extremal

types theorem, which deals with the limit distribution of Mn (Coles, 2001).

Theorem 2.1 (Extremal Types Theorem). (Coles, 2001)

If there exist sequences of constants {an > 0} and {bn} such that

Pr{(Mn − bn)/an ≤ z} −→ G(z) as n −→∞

where G is a non-degenerate distribution function, then G belongs to one of the

following families:

I : G(z) = exp{− exp
[
−
(
z−b
a

)]
}, −∞ < z <∞;

II : G(z) =


0, z ≤ b,

exp{−( z−b
a

)−α}, z > b;

III : G(z) =


exp{−[−( z−b

a
)α]}, z < b;

1, z ≥ b;

for parameters a > 0 and b for the case of families II and III such that α > 0.

These three families of distributions are called the Gumbel, Frechet and Weibull

families, respectively; and they are also called the extreme value distributions
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(Coles, 2001). Theorem 3.1, in simple terms, implies that if Mn can be nor-

malised for suitable sequences {an > 0} and {bn}, then M∗n will have a limiting

distribution from the three types of extreme value distribution called the gen-

eralised extreme value distribution (GEVD) (see Chapter 3). In addition, the

above results can be extended to other extreme order statistics, that is:

M(k)
n = kth largest of (X1, · · · , Xn) (2.4)

for fixed values of k. The limiting distribution of (2.4) as n → ∞ is called the

generalised extreme value distribution for r-largest order statistic (see Chapter

3).

According to Ferreira and de Haan (2015) there are three reasons for using the

block maxima approach, namely:

• The block maxima may be preferable when the observations are not iid.

• The only available in one of few blocks information may be block maxima.

• The block maxima may be easier to apply since the block periods appear

naturally in many situations.

The use of block maxima for both GEVD and GEVD for r-largest order statistics

are sometimes criticised for wasting data if more data on extremes are avail-

able (Nemukula and Sigauke, 2018; Smith, 2005). For this reason, we next

introduce the peaks-over threshold approach.

2.5.2 The peaks-over threshold approach

The peaks-over threshold approach is concerned with those observations that

exceed a specified high threshold (Smith, 2005). The model development of this
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approach is based on the following:

Let X1, X2, · · · be a sequence of iid random variables with common distribution

function F . Then for Xi exceeding a high threshold u, Xi can be considered as

an extreme event. Suppose X is an arbitrary term of the sequence, then the

conditional probability is given by:

Pr{X > u+ y | X > u} =
1− F (u+ y)

1− F (u)
, y > 0,

describes the stochastic behaviour of extreme events (Coles, 2001). The distri-

bution of exceedances is obtained using the results in Theorem 2.1.



Chapter 3

Methodology

Introduction

In this chapter we give the statistical approach used in this study. We present

the analysis of extreme value theory. Furthermore, we define what is meant by

stationarity and describe the tests of stationarity. Lastly, the Chapter discusses

the goodness-of-fit techniques to be applied in this study.

3.1 Extreme value theory

In Chapter 2, we demonstrated that when modelling using EVT, the model

development is based on the statistical behaviour of

Mn = max{X1, · · · , Xn}

where X1, · · · , Xn is a sequence of independent and identically distributed (iid)

random variables with the distribution function F . We further introduced the
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three types of extreme value distributions and their properties. The next sec-

tion is constructed based on the last section of Chapter 2.

3.1.1 The generalised extreme value distribution

Theorem 2.1 presented three types of limiting distributions with distinct forms

of behaviour. These three types match the different forms of tail behaviour for

the distribution function F . As a result, the three models can be unified into

one family of models called generalised extreme value distribution (GEVD):

G(z) = exp

{
−

[
1 + ξ

(
z − µ
σ

)]−1

ξ
}
, (3.1)

defined on {z : 1 + ξ(z − µ)/σ > 0}, such that −∞ < µ < ∞, σ > 0 and −∞ <

ξ <∞. The equation (3.1) is called the generalised extreme value distribution.

The equation has three parameters, namely: location (µ), scale (σ) and shape

(ξ). The shape parameter plays an important role in distinguishing the three

classes of extreme value distributions (Smith, 2005). When ξ > 0 and ξ < 0,

the equation leads to the types II and III in Theorem 2.1. For the case ξ = 0 or

ξ −→ 0, the equation leads to the Gumbel-type distribution, that is:

G(z) = exp

[
− exp

{
−

(
z − µ
σ

)}]
, −∞ < z <∞ (3.2)

Thus, Theorem 2.1 can be written in the following form for large values of n:

Pr{(Mn − bn)/an ≤ z} ≈ G(z).

Equivalently,
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Pr{Mn} ≈ G{(z − bn)/an}

= G∗(z), (3.3)

whereG∗ is a member of the GEVD family. Since a member of the GEVD family

managed to approximate a distribution of M∗n for large n, then the GEVD family

can be fitted directly to a series of observations of Mn.

Therefore, the procedure to model the extreme events of independent obser-

vations, X1, X2, · · · for the GEVD is as follows: the data must be blocked into

m sequences of length n, where n represents the number of years or periods.

Taking maxima of each block (or year) generates a series, Mn1, · · · ,Mnm to fit

GEVD. An important aspect about this procedure is that the choice of block size

m is crucial. A small value of m can result in poor approximation which can

lead to bias. A large value of m can also result in large estimation of variances.

As a result, when using the block maxima approach, there is a need to find a

balance between the bias and the sizes of variances (Smith, 2005).

Another consideration is the estimation of extreme quantiles of the annual

maxima. The quantile estimations play a vital role when modelling extreme

events (Smith, 2005). They provide useful information on the behaviour of

extreme observations in the successive years (Smith, 2005; Coles, 2001). Ac-

cording to Smith (2005), the quantile estimations are of particular interest,

especially in environmental extremes since they also give an estimate of the

level the process is expected to exceed once, on average, in a given number of

years. The mathematical representation of the quantile function is obtained by

inverting the generalised extreme value distribution as follows:
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zp =


µ− σ

ξ

[
1−

{
− log(1− p)

}−ξ]
, ξ 6= 0

µ− σlog
[
− log(1− p)

]
, ξ = 0

(3.4)

where G(zp) = 1 − p and the quantity zp is called the return level associated

with the return period 1
p
. The quantity zp is also defined as the level which is

expected to be exceeded on average, once every 1
p

years.

The use of GEVD arising from the block maxima approach is sometimes criti-

cised for wasting data if more data on extremes are available (Nemukula and

Sigauke, 2018; Smith, 2005). The GEVD for r-largest order statistics method

was developed to overcome this problem. Using the results in (3.3) for fixed

values of r, gives:

Mk
n = kth largest of (X1, · · · , X2)

and the limiting behaviour of Mk
n, for fixed k, as n −→∞, is given by:

Pr

[
Mk

n − bn
an

≤ z

]
−→ Gk(k)

such that z : 1 + ξ

(
z−µ
σ

)
> 0 where

Gk(z) = exp

(
− τ(z)

) s=0∑
k−1

τ(z)s

s!

with

τ(z) =

[
1 + ξ

(
z − µ
σ

)]−1

ξ
.

Therefore, the joint probability density function of GEVD for r-largest order

statistics,
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Mn =

(
M(1)

n − bn
an

, · · · , Mr
n − bn
an

)
,

is given by:

f(z(1), · · · , z(r)) = exp

(
−
[
1 + ξ

(
z(r) − µ

σ

)]− 1
ξ
)
×

r∏
k=1

σ−1

[
1 + ξ

(
z(k) − µ

σ

)]− 1
ξ
−1

,

(3.5)

where −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞, z(r) ≤ z(r−1) ≤ · · · ≤ z(1) and

z(k) : 1 + ξ

(
zk−µ
σ

)
> 0, for k = 1, · · · , r. Equation (3.5) reduces to the density of

the Gumbel family when r = 1.

Therefore, the procedure to model r-largest order statistics uses the idea of

block maxima approach. The series of iid variables data are blocked into m

blocks. Recording the largest ri observations in the block i, leads to the series:

M(ri)
i =

(
z

(1)
i , · · · , z(ri)

i

)
, for i = 1, · · · ,m. Guedes and Scotto (2004) presented

evidence on how the choice of r can lead to high variance and bias if it is not

carefully handled.

3.1.2 Peaks-Over Threshold model

Peaks-Over Threshold (POT) approach considers those of the initial observa-

tions that exceed a predetermined threshold regardless of the block (Ferreira

and de Haan, 2015). The development of r-largest order statistics method was

designed to overcome the limitations of the block maxima approach. However,

recent studies have noted that the r-largest order statistics approach also has

some limitations, for example if one block happens to contain more extreme ob-

servations than another (Soares and Scotto, 2015). The POT approach is more

preferred in this situation than the two former approaches.
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3.1.3 The generalised Pareto distribution

Suppose X is an arbitrary term of the X1, X2, · · · and let F satisfy Theorem 2.1.

Then for large n, we have:

Pr{Mn ≤ z} ≈ G(z),

where

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]− 1
ξ
}

for some parameters µ and σ > belongs to real numbers and ξ. Then for large

u, the distribution function of (X − u), conditional on X > u, is approximately:

H(y) = 1−
(

1 +
ξy

σ̄

)−1

ξ
, (3.6)

defined on {y : y > 0 and (1 + ξy/σ̄) > 0}, where σ̄ = σ+ ξ(u− µ). Equation (3.6)

reduces to an exponential distribution with parameter 1
σ̄

if ξ = 0, that is:

H(y) = 1− exp(−y
σ̄

), y > 0. (3.7)

Thus, (3.6) is called the generalised Pareto distribution (GPD).

The return levels of the GPD can be determined as follows: let GPD be an

appropriate model for exceedances over a threshold, u, with parameters σ and

ξ. Then for ξ = 0 and x > u, we have:

Pr{X > x | X > u} =

[
1 + ξ

(
x− u
σ

)]− 1
ξ

.

It follows that,
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Pr{X > x} = ζu

[
1 + ξ

(
x− u
σ

)]−1

ξ
,

where ζu = Pr{X > u} and xm is called the level that is exceeded on average,

once every m observations. The mathematical representation of xm is given by

the solution to:

1

m
= ζu

[
1 + ξ

(
xm − u
σ

)]−1

ξ
.

After rearranging, we have

xm = u+
σ

ξ

[
(mζu)

ξ − 1

]
, (3.8)

provided that m is sufficiently large to ensure that xm > u. When ξ = 0, we

have:

xm = u+ σlog(mζu),

for sufficiently large m. Furthermore, suppose that there are ny observations

per year, then the N-year return level will be given by:

zN =


u+ σ

ξ

[
(Nnyζu)

ξ − 1

]
, ξ 6= 0,

u+ σlog(Nnyζu), ξ = 0.

3.1.4 The Choice of Threshold

There are many techniques used to select appropriate threshold for a data set

before the modelling of GPD can commence (Coles, 2001). This study presents

commonly used techniques of threshold selection, namely: the mean residual

life plot, the dispersion index plot and the parameter stability plot (Nemukula

and Sigauke, 2018; Maposa, 2016). Next, we give details of these three thresh-

old choices.
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The mean residual plot

The mean residual plot is based on the mean of the GPD (Beirlant et al., 2004;

Coles, 2001). Let Y be a GPD with parameters σ and ξ. Then:

E(Y ) =
σ

1− ξ
, (3.9)

provided ξ < 1. For the case ξ ≥ 1, we then have E(Y ) = ∞. Suppose that

Y is valid as a model for the excess of a threshold u0 generated by a series

X1, · · · , Xn, of which an arbitrary term is denoted by X. Then, from (3.9), we

have:

E(X − u0 | X > u0) =
σu0

1− ξ
,

provided ξ < 1, where σu0 denotes the scale parameter corresponding to u0 and

also hold for all thresholds. That is, if u > u0, then we have:

E(X − u | X > u) =
σu

1− ξ

=
σu0 + ξu

1− ξ
. (3.10)

Equation (3.10) shows that the E(X − u | X > u) is linear for u > u0. Therefore,

E(X − u | X > u) is called the mean of the excesses of the threshold u. Using

the results in (2.2), we have:

{(
u,

1

nu

nu∑
i=1

(x(i) − u)

)
: u < xmax

}
, (3.11)

where x(1), · · · , xm consist of the nu observations such that u > u0. Which Xi

is called the mean residual life plot. This procedure will be used to determine

appropriate threshold u (Nkrumah, 2017).
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The dispersion index plot

The dispersion index plot is another technique used to determine an appro-

priate threshold u. This plot assumes that the data is generated by a Poisson

process. According to Coles (2001), all the observations above the specified high

threshold must be Poisson distributed. Thus, suppose that X has a Poisson dis-

tribution with parameter λ, then

P(X = k) = exp(−λ)
λk

k!
, k ∈ N

and E(X) = Var(X). Therefore, the dispersion index (DI) is given by:

DI =
σ2

µ
,

where σ2 is the intensity of Poisson process and λ is the mean number of events

in a year or block. The appropriate threshold is selected after testing if the ratio

DI differs from 1. That is, if DI is close to 1, the corresponding threshold is not

reject (Khuluse, 2010).

The parameter stability plot

The idea of parameter stability plot is that exceedances of specified threshold

u0 follow a GPD with parameters ξ and σu0 (Nkrumah, 2017). Hence the ex-

ceedances of the threshold u0 such that u > u0 will also follow a GPD with

ξu = ξ and σu = σu0 + ξ(u − u0) being the shape and scale parameters, respec-

tively. Suppose

σ∗ = σu − ξuu. (3.12)

Then, if u0 is a suitable high threshold, (3.12) does not depend on u. The pa-

rameter stability plot is then defined by the following locus points:

{(u, σ∗);u < xmax} and {(u, ξu);u < xmax}
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where xmax is the maximum of the observations, σ∗ and ξu are constants for all

u > u0. Then, the correct threshold will be chosen at the value where the shape

and scale parameters remain constant (Maposa, 2016; Coles, 2001).

3.2 Maximum likelihood estimation

There are several techniques for parameter estimation when modelling ex-

treme observations (Nkrumah, 2017; Maposa, 2016; Smith, 2005). According

to Coles (2001), the method of maximum likelihood estimation (MLE) is consid-

ered to be the best when dealing with large samples, but performs badly when

the sample size is small. Before we present the MLEs of GEVD and GPD, we

first need to define the following terminologies: the likelihood function, maxi-

mum likelihood estimator, delta method and profile likelihood.

Definition 3.1. (Likelihood function) (Hogg et al., 2015).

Let Y1, Y2, · · · , Yn be a random sample from a distribution that depends on one or

more unknown parameters α1, α2, · · · , αm, with pdf that is denoted by g(y;α1, α2, · · · , αm).

Suppose that (α1, α2, · · · , αm) is restricted to a given parameter space Ω. Then

the joint pdf of Y1, Y2, · · · , Yn is given by:

L(α1, α2, · · · , αm) = g(y1;α1, · · · , αm)g(y2;α1, · · · , αm) · · · g(yn;α1, · · · , αm)

such that (α1, α2, · · · , αm) ∈ Ω. Then, the function L is called the likelihood

function.

Definition 3.2. (Maximum likelihood estimator) (Hogg et al., 2015).

Suppose u1(y1, · · · , yn), u2(y1, · · · , yn), · · · , um(y1, · · · , yn) are m-tuple in Ω that max-

imises L(α1, α2, · · · , αm). Then

α̂1 = u1(Y1, · · · , Yn); α̂2 = u2(Y1, · · · , Yn); · · · ; α̂m = um(Y1, · · · , Yn)
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are called the maximum likelihood estimators of α1, α2, · · · , αm, respectively, and

the corresponding observed values of these statistics, that is:

u1(Y1, · · · , Yn), u2(Y1, · · · , Yn), · · · , um(Y1, · · · , Yn

are called maximum likelihood estimates.

Theorem 3.3. (Delta method) (Coles, 2001).

Let α̂0 be the large-sample maximum likelihood estimator of the d-dimensional

parameter α0 with approximate variance matrix Vα. Then if φ = g(α) is a scalar

function, the maximum likelihood estimator of φ0 = g(α0) satisfies:

φ̂0 ∼ N(φ0, Vφ),

where

Vφ = ∆φ>Vα∆φ,

with

∆φ =

[
∂φ

∂α1

,
∂φ

∂α2

, · · · , ∂φ
αd

]
evaluated at α̂0.

Definition 3.4. (Profile likelihood function) (Coles, 2001).

According to Coles (2001) the profile log-likelihood function is a more accu-

rate method which is based on profile likelihood. For example, the profile log-

likelihood for θi will be defined as:

`p(θi) = maxθ−i`(θi, θ−1)

where `p(θi) is called the profile of the log-likelihood surface viewed from the θi

axis.
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From the above definitions and theorems, we can now present the log-likelihood

functions for GEVD, GPD and their corresponding quantile functions.

3.2.1 The log-likelihood function of the GEVD

Assume that z1, z2, · · · , zm are independent variables having the GEVD. Then,

the log-likelihood for the GEVD when ξ 6= 0 is given by:

`(µ, σ, ξ) = −mlogσ − (1 +
1

ξ
)

m∑
i=1

log
[
1 + ξ

(
zi − µ
σ

)]
−

m∑
i=1

[
1 + ξ

(
zi − µ
σ

)]− 1
ξ

(3.13)

such that 1 + ξ

(
zi−µ
σ

)
> 0, for i = 1, · · · ,m. Then for the case ξ = 0, the

log-likelihood in (3.13) changes to:

`(µ, σ) = −mlogσ −
m∑
i=1

(
zi − µ
σ

)
−

m∑
i=1

exp

{
−
(
zi − µ
σ

)}
(3.14)

Since there is no analytical solution for both (3.13) and (3.14), then there is a

need for numerical solutions to obtain maximum likelihood estimates.

3.2.2 The likelihood function of GEVD for r-largest order

statistics

The likelihood function of GEVD for r-largest order statistics is given by:

L(µ, σ, ξ) =
m∏
i=1

(
exp

{
−
[
1 + ξ

(
zrii − µ
σ

)]− 1
ξ
}
×

ri∏
k=1

σ−1

[
1 + ξ

(
z

(k)
i − µ
σ

)]− 1
ξ
)
,

(3.15)

such that 1+ξ

(
z(k)−µ
σ

)
> 0, k = 1, · · · , ri, i = 1, · · · ,m; otherwise the likelihood

is zero. Then for the case ξ = 0, we have:
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L(µ, σ, ξ) =
m∏
i=1

(
exp

{
− exp

[
−
(
z(ri) − µ

σ

)]}
×

ri∏
k=1

σ−1 exp

[
−
(
z

(k)
i − µ
σ

)])
.

(3.16)

In the case r = 1, the likelihood in (3.16) reduces to the GEVD. Since there is no

analytical solution for (3.15) and (3.16), the numerical solution will be applied

to obtain maximum likelihood estimators.

3.2.3 The log-likelihood function for the GPD

Let x1, x2, · · · , xk represent k excesses of a threshold u. Then, for ξ 6= 0 the

log-likelihood is given by:

`(σ, ξ) = −klogσ −
(

1 +
1

ξ

) k∑
i=1

log
(

1 +
ξxi
σ

)
(3.17)

such that
(

1 + ξxi
σ

)
> 0, for i = 1, · · · , k; otherwise the log-likelihood is nega-

tive infinity, that is `(σ, µ) = −∞. Then for the case ξ = 0, the log-likelihood in

(3.17) reduces to:

`(σ) = −klogσ − 1

σ

k∑
i=1

xi. (3.18)

An analytical solution is not possible for both (3.17) and (3.18). The use of

algorithm will be adopted in order to obtain maximum likelihood estimates.

Furthermore, R programming will be used to obtain the maximum likelihood

estimates of unknown parameters.

3.2.4 Inference on return levels of GEVD

In order to derive the maximum likelihood estimate of zp, we need to use MLEs

of GEVD parameters in (3.12). Then, for 0 < p < 1, the 1
p

return level is given

by:
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ẑp =

µ̂−
σ̂

ξ̂

[
1− y−ξ̂p

]
, for ξ̂ 6= 0,

µ̂− σ̂logyp, for ξ̂ = 0

such that yp = −log(1− p). Then by Theorem 3.3 the variance of ẑp is given by:

Var(ẑp) ≈ ∆zTp V∆zp ,

where V is the variance-covariance matrix of the estimates (µ̂, σ̂, ξ̂) and

∆zTp =

[
∂zp
∂µ

,
∂zp
σ
,
∂zp
∂ξ

]
=
[
1,−ξ−1(1− y−ξp ), σξ−2(1− y−ξp )− σξ−1y−ξp logyp

]
evaluated at

(
µ̂, σ̂, ξ̂

)
.

3.2.5 Inference on return levels of GPD

Suppose that m = N × ny, then the N-year return levels is given by:

zN =

u+ σ
ξ

[
(Nnyζu)

ξ − 1
]
, ξ 6= 0

u+ σlog(Nnyζu), ξ = 0.

Since the estimation of return levels requires unknown parameters to be esti-

mated, we then start by estimating the probability of an individual observation

exceeding the threshold, ζ̂u = k
n
. Now, in order to determine the estimation of

return levels, estimation of unknown parameters is required. Since ζ̂u follows

a binomial distribution and it is estimated by k
n
, then by standard properties of

the binomial distribution the variance of ζu, is given by Var(ζ̂u) ≈ ζ̂u(1 − ζ̂u)/n.

This implies that the variance-covariance matrix for ζ̂u, σ̂, ξ̂ is approximated

by:
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V =


ζ̂u(1− ζ̂u)/n 0 0

0 v1,1 v1,2

0 v2,1 v2,2


where vi,j denotes the (i, j) term of variance-covariance matrix of σ̂ and ξ̂. By

Theorem 3.3:

Var(x̂m) ≈ ∆xTmV∆xm

where,

∆xTm =

[
∂xm
∂ζu

,
∂xm
∂σ

,
∂xm
∂ξ

]
=
[
σmξζξ−1, ξ−1{(mζu)ξ − 1},−σξ2{(mζu)ξ − 1}+ σξ−1(mζu)

ξlog(mζu)
]

which is evaluated at
(
ζ̂u, σ̂, ξ̂

)
.

3.3 Candidate distributions

This section presents the investigation of goodness-of-fit of candidate distribu-

tions, namely; 2-parameter Weibull, 3-parameter Weibull, Gumbel, Gamma,

2-parameter log-normal, 3-parameter log-normal, 2-parameter Pareto and 3-

parameter Pareto. In this section we are interested in looking at how the can-

didate distributions fit the tails compared with the EVT approach. Next, we

define these distributions.
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Weibull distribution

We have two types of Weibull distributions: the cumulative distribution func-

tion (CDF) of the two-parameter Weibull distribution is given by:

F (x) = 1− exp

(
−
(
x

β

)α)
,

while the CDF of the three-parameter Weibull distribution is given by:

F (x) = 1− exp

(
−
(
x− γ
β

)α)
,

where γ is a continuous location parameter, β is the continuous scale parameter

and α is a continuous shape parameter. This distribution is commonly used in

hydrology and reliability studies (Alam et al., 2018; Maposa, 2016).

Gumbel distribution

The Gumbel distribution is an extreme value type I which is commonly used

in flood frequency analysis and engineering (Alam et al., 2018; Maposa, 2016).

The CDF of the Gumbel distribution is given by:

F (x) = exp

(
− exp

(
−x− µ

σ

))
,

where µ, σ > 0 are called the continuous location and scale parameters, respec-

tively.

Gamma distribution

The CDF of the gamma distribution is defined as:

F (x) =
Γ(x−γ)/β(α)

Γ(α)
,
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where γ, β > 0 and α are the continuous location, scale and shape parameters

respectively. Γ is called the gamma function (Alam et al., 2018; Maposa, 2016;

Beirlant, 2004).

Pareto distribution

There are two types of Pareto distributions, the two and three parameter distri-

bution. According to Arnold (2003) Pareto distribution was designed to present

the distribution of income. Suppose X is a random variable that follows a two-

parameter Pareto distribution, then the CDF of X is

F (x) =
(x
σ

)−ξ
, x > σ,

where σ and ξ are called the scale and shape parameter respectively. The CDF

of the three-parameter Pareto distribution is given by:

F (x) =

[
1 +

(
x− µ
σ

)]−ξ
, x > µ,

where σ, µ and ξ are called scale, location and shape parameter respectively.

Log-normal distribution

There are two log-normal distributions (Alam et al., 2018; Maposa, 2016; Beir-

lant, 2004): the two-parameter, whose CDF is given by:

F (x) = Φ

(
lnx− µ

µ

)
,

and the three-parameter Log-normal defined as:

F (x) = Φ

(
ln(x− γ)− µ

σ

)
,
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where γ, σ > 0 and µ are the continuous location, scale and shape parameters,

respectively. Φ is called the Laplace integral.

The parameters of all candidate distributions discussed in this section will be

estimated using the method of maximum likelihood.

3.4 Stationarity

There are two main purposes for modelling stationary time series. Firstly, it

maintains model stability and secondly, it provides a framework in which aver-

aging can be properly used to describe the time series (Arltova and Fedorova,

2016). However, many researchers define stationarity as a statistical structure

of series which is independent of time (Khuluse, 2010; Nason, 2006; Smith,

2005). Before we can define the concept of stationarity, we shall begin with the

simple building blocks and then proceed to complex structures.

Definition 3.5. (Purely random process) (Nason, 2006).

A purely random process is a stochastic process,
{
ξt
}∞
t=∞, where each element ξt

is statistically independent of every other element, ξs for s 6= t, and each element

has an identical distribution.

Next, we define the concept of stationarity using Definition 3.5.

Definition 3.6. (Stationary process) (Coles, 2001).

A random process x1, x2, · · · is said to be stationary if given any set of integers

{ji, · · · , jk} and for any integer m, the joint distribution of (Xji , · · · , Xjk) and

(Xji+m, · · · , Xjk+m) are identical.

Definition 3.5 and 3.6 enable us to provide details on the techniques used to

test for stationarity tests.
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3.4.1 Test for unit root

According to Arltova and Fedorova (2016) the most essential task in modelling

is to keep the order of analysed time series fixed through the use of unit root

tests. There are many techniques used to check whether or not a series con-

tains a unit root (Oliver and Mung’atu, 2018; Hasan et al., 2012). The study

focuses on the augmented Dickey-Fuller (ADF) test for stationarity.

Dickey-Fuller and Augmented Dickey-Fuller Tests

We start by introducing the concept of Dickey-Fuller (DF) test and then use

this concept to build the augmented Dickey-Fuller (ADF) test.

The DF test is most widely used to test whether a certain series has a unit

root. The test is based on the model of the first-order autoregressive process

(Arltova and Fedorova, 2016). Thus, we have:

yt = β1yt−1 + εt , t = 1, · · · , T, (3.19)

where β1 is the autoregression parameter and εt is a white noise process. The

null hypothesis to be tested is given by: H0 : β1 = 1 (the process contains

a unit root and hence it is non-stationary) and the alternative hypothesis is:

H1 : |β1| < 1 (the process does not contain a unit root and is stationary). Using

the following equation:

∆yt = αyt−1 + εt, where α = β1 − 1,

The DF test statistic is given by:

tDF =
β̂1 − 1

sβ̂1
, (3.20)
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where β̂1 is the estimate of β and sβ̂1 is the standard error of the estimator, β̂.

This follows the DF distribution, and the critical values can be obtained from

the Dickey and Fuller table.

For ADF test, we extend (3.20) by a constant or a linear trend, that is:

yt = α0 + β1yt−1 + εt,

yt = α0 + α1t+ β1yt−1 + εt. (3.21)

The ADF test is constructed by transforming the following equation:

yt = β1yt−1 +

ρ−1∑
i=1

γi∆yt−1 + εt.

The test statistic of the ADF test is derived from:

∆yt = (β1 − 1)yt−1 +

ρ−1∑
i=1

γi∆yt−i + εt.

An important part when using the ADF test is the choice of lags ρ. The number

of lags should be carefully chosen. A very small value of ρ will affect the auto-

correlation of the test and a very large ρ will substantially reduce the power of

the test (Arltova and Fedorova, 2016). To avoid this problem, we expand (3.21)

with a linear trend, and the new ADF test is based on the model:

yt = dt + β1yt−1 +

ρ−1∑
i=1

γi∆yt−i + εt, (3.22)

where dt =
∑ρ

i=1 φit
i, for ρ = 0, 1, contains the analytical parts of the models

mentioned earlier in the section. When T → ∞, the limit distribution of the

ADF test statistic is identical to the distribution of the DF test.
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3.5 Goodness of fit tests

The goodness-of-fit tests are widely used to assess how a given data follow

a specified distribution. Suppose that x1, x2, · · · , xn is a sample of n average

monthly rainfall observed. Let F be the cumulative distribution function (CDF)

of the random variable X. Next, we present the following two tests: the Ander-

son Darling (A-D) test and the Kolmogorov-Smirnov (K-S) test.

3.5.1 Anderson Darling test

According to Maposa (2016) the mechanism behind this test is that it compares

the fitted observed CDF to a theoretical CDF. Furthermore, the test statistic of

A-D test is given by:

A2 = −n− 1

n

n∑
i=1

(2i− 1)[lnF (x) + ln(1− F (x))], (3.23)

where F (x) is the theoretical CDF and Fn(x) represents the empirical CDF. The

null hypothesis to be tested says that the data follow a specified distribution,

while the alternative hypothesis states that the data does not follow the spec-

ified distribution. The rejection rule states that we reject the null hypothesis

at α% level of significance when A-D test is greater than the tabulated value,

or we reject the null hypothesis if the p-value is less than the specified level of

significance.

3.5.2 Kolmogorov-Smirnov test

In the case of K-S, a comparison is made between the largest vertical distance

Dmax, of the empirical CDF Fn(x) and the theoretical CDF F (x) (Maposa, 2016).

The test statistic of the K-S test is given by:

Dmax = Maxx | Fn(x)− F (x) | . (3.24)
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The null hypothesis to be tested is given by H0 : F (x) = F (x; β), while the alter-

native hypothesis is: H1 : F (x) 6= F0(x; β), where F0 is a specified distribution

and β is a vector of unknown parameters. The rejection rule states that we

reject the null hypothesis at α% level of significance if Dmax is greater than the

tabulated value of Dα, or we reject the null hypothesis if the p-value is less

than the specified level of significance.

According to Maposa (2016) the K-S test is more sensitive to the centre of the

distribution. In a separate study, Nemukula and Sigauke (2018) presented

some evidence about the A-D test in which they stated that the A-D test is

more sensitive to the tail of the distribution. Using the two findings, and given

that the modelling of extreme observations is interested in the tails of the dis-

tribution, this implies that the A-D test will be appropriate for testing the tails

of the distribution while the K-S will be appropriate for testing the centre of

the distribution.

3.5.3 Deviance statistic

The deviance statisitc is a statistical procedure used to assess the goodness-

of-fit of models. The idea behind this approach is that, it uses the maximum

likelihood function of i and j to obtain deviation statistic to be compared to a

chi-square of one degrees of freedom. The deviance statistic is given by:

D(i,j) = 2 [lnλ(ri)− lnλ(rj)] ∼ χ2
1, for i, j = 2, 3, · · · , 6(i 6= j), (3.25)

where λ(ri) and λ(rj) are the maximum likelihood functions of ri and rj respec-

tively. The test validates the model based on ri relative to rj (Nemukula and

Sigauke, 2018; Coles, 2001).
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3.5.4 Diagnostic plots

Another procedure of assessing the goodness-of-fit is by using the diagnostic

plots. There are many diagnostic plots used to assess the goodness-of-fit, but

in this study we focus mainly on the probability-probability (P-P) plots and the

quantile-quantile (Q-Q) plots, the definitions of which have been quoted from

Maposa (2016).

Definition 3.7. (P-P plot) (Maposa, 2016; Beirlant et al., 2004).

A P-P plot is used to graphically assess the goodness-of-fit of a specified distri-

bution. The P-P plot is plotted based on the empirical CDF values against the

theoretical CDF values.

Definition 3.8. (Q-Q plot) (Maposa, 2016; Beirlant et al., 2004).

A Q-Q plot is used to visualise and assess the goodness-of-fit of a distribution

graphically. The plot uses this information to form its structure, (Q(i/(n+ 1));xi,n) ,

for i = 1, 2, · · · , n and the structure must be linear if x1, · · · , xn are from a dis-

tribution with quantile function Q.

The best model for both P-P and Q-Q plots will be chosen when the specified

distribution fits the observed data. That is, the P-P and Q-Q plots must be ap-

proximately linear (Maposa, 2016).

Nemukula and Sigauke (2018) criticised the use of P-P plots in favour of Q-Q

plots. It was argued that Q-Q plots are not affected by the symmetry of the

distribution and also the shifts in location and scale parameters.

3.6 Point process approach

This section presents the point process models about the statistics of extremes.

There are two fundamental Poisson processes, namely: the homogeneous and
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non-homogeneous Poisson point processes. This study is interested in mod-

elling extremes using non-homogeneous Poisson process in time. Next, we de-

fine the point process and Poisson point process.

3.6.1 Point process

Point processes are defined as the stochastic or random processes composed

of time series of point events that occur in continuous time (Daley and Vere-

Jones, 2003). For example, the point processes in time is the occurrence of

tornado or heat wave at a certain location in time (Khuluse, 2010). According

to Coles (2001) there are two purposes of using point processes. Firstly, point

processes provide an interpretation of extreme value behaviour that unifies all

the models of GPD and GEVD. Secondly, the point process models lead directly

to a likelihood that is non-stationary in threshold excess than that obtained

from the GPD. Next, we define the concept of Poisson point process.

3.6.2 The Poisson point process

For statistical purposes a point process need to be characterised. We present

some definitions that will assist in characterising a point process.

Definition 3.9. (Statistical properties of a point process) (Coles, 2001).

Suppose that N(A) is a set of non-negative integer-valued random variables for

each A ⊂ A, such that N(A) is the number of points in the set A. Then, the

probability distribution of each of the N(A) determines the characteristics of the

point process, that is N .

In summary, we can define the features of a point process as,

Λ(A) = E{N(A)},
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which is the expected number of points in any subset A ⊂ A. Thus, Λ is some-

times called the intensity measure of the process. In order to present the math-

ematical representation of a Poisson point process, we first need to define the

intensity function of the process and the canonical point process.

Definition 3.10. (The intensity function) (Coles, 2001).

Suppose that A = [a1, x1]× [a2, x2]× · · · × [ak, xk] ⊂ Rk exists. Then, the intensity

function of the process is given by the derivative function as follows:

λ(x) =
∂Λ(A)

∂x1∂x2 · · · ∂xk
.

Definition 3.11. (The canonical point process) (Coles, 2001).

The canonical point process is the one-dimensional homogeneous Poisson pro-

cess with a parameter λ > 0 such that A ⊂ R satisfies:

1. for all A = [t1, t2] ⊂ A,

N(A) ∼ Poi(λ(t2 − t1))

2. for all non-overlapping subset A and B of A, N(A) and N(B) are indepen-

dent random variables.

Summarising the above definitions, it is clear that given an interval with a

certain number of points, it is believed that the interval will follow the Pois-

son distribution having the mean proportional to the interval length and the

occurrence of number of points in separate intervals are mutually independent.

Coles (2001) states that the Poisson process with parameter λ can be shown to

be an appropriate stochastic model for points that occur randomly in time (at

a uniform) of λ per unit time interval, with its intensity measure given by:

Λ([t1, t2]) = λ(t2 − t1),
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and λ(t) = λ is called the intensity density function.

Therefore, Definition 3.11 can be generalised to a model of points that occur

randomly in time at a variable rate of λ(t). Thus,

N(A) ∼ Poi(Λ(A)) (3.26)

is called the one-dimensional homogeneous Poisson process having the proper-

ties as in Definition 3.11, but with the modified property A = [t1, t2] ⊂ A. The

unknown parameters in (3.26) are given by the following;

Λ(A) =

∫ t2

t1

λ(t)dt.

with Λ(·) being the intensity measure and λ(·) being the density function.

Therefore, a k-dimensional non-homogeneous Poisson process with intensity

density function λ(·) such that A ⊂ Rk is given by;

N(A) ∼ Poi(Λ(A)),

where

Λ(A) =

∫
A

λ(x)dx,

provided that it satifies the property of independent counts on non-overlapping

subsets and for all A ⊂ A.

3.6.3 Maximum likelihood of the Poisson point process

The statistical approach of point process is similar to that of the POT. The es-

timation of the process requires a set of observed points, that is, x1, · · · , xn in a

region or interval. Then from those observed points, we choose the appropriate

class of points to estimate the process models. Since in this study our inter-
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est is on non-homogeneous Poisson process, λ(·) is said to belong to the family

of parametric models of λ(·; θ). In line with that, we now know that the only

problem which is related to model verification is the estimation of the vector θ.

Therefore, we are now ready to present the likelihood function of the Poisson

process.

Now using the likelihood approach, we let Ii = [xi, xi + δi], for i = 1, 2, · · · , n be

small intervals based around the observations and I = A
⋃n
i=1 I. Then using

the properties of Poisson process,

Pr{N(Ii) = 1} = exp{−Λ(Ii; θ)}Λ(Ii; θ), (3.27)

where

Λ(Ii; θ) =

∫ xi+δi

xi

λ(u)du ≈ λ(xi)δi. (3.28)

Substituting (3.28) into (3.27), we have

Pr{N(Ii) = 1} ≈ exp{−λ(xi)δi}λ(xi)δi ≈ λ(xi)δi, (3.29)

such that exp{−λ(xi)δi} ≈ 1 and also

Pr{N(I) = 0} = exp{Λ(I)} ≈ exp{−Λ(A)}, (3.30)

for small δi. Therefore, the likelihood function of Poisson point process is given

by:
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L(θ;x1, · · · , xn) = Pr{N(I) = 0, N(I1) = 1, N(I2) = 1, · · ·N(In) = 1}

= Pr{N(I) = 0}
n∏
i=1

Pr{N(Ii) = 1}

≈ exp{−Λ(A; θ)}
n∏
i=1

λ(xi; θ)δi. (3.31)

After dividing (3.31) by δi, we have

L(θ;xi, · · · , xn) = exp{−Λ(A; θ)}
n∏
i=1

λ(xi; θ), (3.32)

where,

Λ(A; θ) =

∫
A
λ(x; θ)dx.

3.6.4 Applying the Poisson process to EVT

In the beginning of this section, it was stated that the point process framework

is similar to that of POT. It was also stated that the inference made by the

point process model could be similar to the one from the threshold exceedance

approach.

Therefore, suppose that X1, X2, · · · are iid random variables with the same dis-

tribution function F as stated in section 3.1.1. Again, we suppose that the Xi

are extreme values such that Mn = max{X1, · · · , Xn}.

Now, if there are sequences of constants {an > 0} and {bn} such that

Pr{(Mn − bn)/an ≤ z} → G(z),

where
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G(z) = exp


[
1 + ξ

(
z − µ
σ

)]−1

ξ


with z− and z+ being the lower and upper endpoints of G, respectively. There-

fore, we have the sequence of point processes

Nn = (i/(n+ 1)), (Xi − bn)/an : i = 1, · · · , n)

that will converge on this region (0, 1) × [u,∞), for any u > z−, to a Poisson

process with intensity measure on A = [t1, t2]× [z, z+] which is given by:

Λ(A) = (t2 − t1)

[
1 + ξ

(
z − µ
σ

)]−1

ξ
. (3.33)

3.6.5 Connections between the Poisson process and POT

models

Let Xi, for i = 1, · · · , n, be iid random variables. Assume that the distribution

of the exceedance follows the GPD. Let ζ = Pr{Xi > u}, so that by (3.7)

ζ = Pr{Xi > u} ≈ 1

n

[
1 + ξ

(
u− µ
σ

)]−1

ξ
, (3.34)

where (µ, σ, ξ) are the parameters corresponding to that of the GEVD and

σ̄ = σ + ξ(u− µ) (Coles, 2001).

Since in the peaks-over threshold approach we only focus on the model dis-

tribution of the observations above the threshold, then it is believed that the

likelihood of the observations below u, is

Pr{Xi < u} = 1− ζ. (3.35)
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This implies that the likelihood contribution for all the observations exceeding

u, is

Pr{Xi = x} = Pr{Xi > u}Pr{Xi = x | Xi > u} = ζf(x− u; σ̂, ξ), (3.36)

where f(·; σ̄, ξ) is the density function of GPD having the following parameters,

σ̄ and ξ. Thus, the product of the independent observations gives the likelihood

of

L(ζ, σ̂, ξ;x1, · · · , xn) = (1− ζ)n−nu
nu∏
i=1

ζσ̂−1

[
1 + ξ

(
xi − u
σ̂

)]− 1
ξ
−1

, (3.37)

where nu is the number of exceedance over the threshold, u. If u is very high,

then nu is said to be smaller than n, that is

(1− ζ)n−nu ≈ (1− ζ)n ≈ exp{−nζ}. (3.38)

This implies that by using σ̄ = σ + ξ(u− µ) and (3.34), we have:

ζσ̂−1

[
1 + ξ

(
xi − u
σ̂

)]−1

ξ
−1

= (nσ̂)−1

[
1 + ξ

(
xi − µ
σ̂

)]−1

ξ
−1

×
[
1 + ξ

(
u− µ
σ

)]−1

ξ

= (nσ)−1

[
1 + ξ

(
xi − µ
σ

)]−1

ξ
−1

. (3.39)

3.6.6 The maximum likelihood of the point process model

Suppose that A = (0, 1) × [u,∞), where u represents the threshold frequency

(Khuluse, 2010; Coles, 2001). Then, the observations

{(t1, x1), (t2, x2), (t3, x3), · · · , (tN(A), xN(A))}
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can be treated as observed exceedances. Therefore, the term ny is multiplied by

Λ(A) in order to represent the extreme value limits in annual forms. We now

assume that the Poisson process is valid and determine the likelihood function:

L(A;µ, σ, ξ) = exp{−Λ(A)}
N(A)∏
i=1

λ(ti, λi)

= exp

{
− ny

(
1 + ξ

(
u− µ
σ

))−1

ξ
}
×

N(A)∏
i=1

1

σ

(
1 + ξ

(
xi − µ
σ

))− 1
ξ
−1

.

(3.40)

The parameter estimates are determined by taking the logarithm of 3.40 and

minimise it. The parameters correspond to that of the GEVD. The GPD param-

eter, which is the scale, is determined in this manner σ̂∗ = σ̂+ ξ̂(u− µ̂). But the

shape parameter and threshold are the same as that of the GPD model.

Quantile estimation of the point process

Before presenting the quantile function of the point process model, it is impor-

tant to estimate the threshold exceedance proportion given by:

τ̂ =
nu
n
. (3.41)

Thus, the quantile function of the point process is:

xN = u+
σ∗
ξ

[(τnyN)ξ − 1, ] (3.42)

which corresponds to that of the GPD.
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3.7 Model diagnostics

The main purpose of this section is to obtain models that are adequate repre-

sentations of the observed data. However, there are cases where all models fit

the observed data to a similar degree, making it difficult to determine which

model is the best. Among several statistical methods developed to search for

the best model, are the following: stepwise regression, likelihood ratio tests,

Alkaike information criterion (AIC) and Bayesian information criterion (BIC).

This study concentrates on the AIC and BIC because the first two methods

have some limitations when comparing at least two models (Takane and Ham-

parsum, 1987).

3.7.1 Akaike information criterion

Takane and Hamparsum (1987) define AIC as a useful statistic for statistical

model selection and evaluation. The procedure was developed by Akaike in

1973 and is defined as follows:

AIC = −2log(L) + 2K, (3.43)

where K is the number of parameters in the model and L is the value of the

likelihood function. One important advantage of AIC is that, it is simple and

easy to use. Furthermore, another important aspect of AIC is that, the best

model chosen does not imply the true model, but it means that the model is

best among competing models. The selection rule states that, the best model

will be the one with the lowest value of AIC (Takane and Hamparsum, 1987).

3.7.2 Bayesian information criterion

The development of BIC uses the concept of AIC. By the early 1978, Glideon

Schwarz added a penalty term to the AIC equation, which resulted in the pro-
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cedure called the Bayesian information criterion (BIC), defined by:

BIC = −2log(L) + Klog(n), (3.44)

where L is the maximised value of the likelihood function, n is the number of

observations and K is the number of parameters in the model. The selection

rule states that the best model will be the one with the lowest value of BIC.



Chapter 4

Results and discussion

4.1 Introduction

The literature in Section 2.4 explained how climate change has affected the

characteristics of rainfall patterns in South Africa. It also revealed that rainy

seasons differ from one location to another. This chapter presents the analysis

of average monthly rainfall data in South Africa and it is organised into two

parts. The first part consists of stationarity test, summary statistics and fitting

of candidate distributions, while the second part presents an extreme value

analysis of the given data.

4.2 Data description

Secondary data on average monthly rainfall (in millimeters) for the period

1940-2017 obtained from the South Africa Weather Service (SAWS) is used

in this study.



Results and discussion 54

The statistical analysis analysis was performed using the statistical package

and particular packages such ismev, evd, extRemes and fitdistr were utilised.

4.3 Descriptive Statistics

In this section, we present the summary statistics and the test for stationarity

of the data.

In Table 4.1, the test for stationarity was conducted using augmented Dickey-

Fuller (ADF) test.

Table 4.1: Stationarity test using ADF.

Name t-stat
ADF -9.41

P-value 0.01

The level of significance used in this study is 5%. Since p-value is 0.01 in Ta-

ble 4.1, this implies that the null hypothesis stating that the time series is not

stationary was rejected. According to the ADF test in Table 4.1, the time series

data is stationary.

Table 4.2: Summary statistics of the rainfall data.

min mean median Q1 Q3 max kurtosis skewness
3.20 51.15 44.80 19.57 75.03 175.00 3.05 0.80

Table 4.2 presents the summary statistics for average monthly rainfall data.

The results in Table 4.2 reveal that the average monthly rainfall readings for
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South Africa range from 3.20 mm to 175.00 mm, with a median of 44.80 mm.

The data is positively skewed (mean > median) and the kurtosis value (which

is greater than 3) suggests that the data follows a heavy-tailed distribution.

However, the kurtosis value in Table 4.2 is not far from 3, hence one can con-

clude that the data might follow a normal distribution. The above findings give

rise to the next section.

4.4 Candidate distributions

This section presents an assessment on the goodness-of-fit of candidate dis-

tributions. The study focuses on the following candidate distributions: log-

normal, Pareto, gamma and Weibull. Figure 4.1 presents the diagnostic plots

of the log-normal and Pareto distributions.
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Figure 4.1: Diagnostic plots for log-normal and Pareto distributions (Key: The
red line represents the Pareto distribution and the green line represents the
log-normal distribution).
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From Figure 4.1, the quantile-quantile (Q-Q) plot suggests a lack of fit for

both the Pareto and log-normal distributions at the tails. Furthermore, the

probability-probability (P-P) plot shows a lack of fit at the centre of both the

Pareto and the log-normal distributions.
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Figure 4.2: Diagnostic plots for Weibull and gamma distributions (Key: The
red line represents the gamma distribution and the green line represents the
Weibull distribution).

Figure 4.2 presents the diagnostic plots for the Weibull and gamma distribu-

tions. The diagnostic plots for the Q-Q plot in Figure 4.2, reveal that there is

lack of fit at the tails of both the Weibull and gamma distributions. However,

the P-P plot suggests a reasonably good fit for both the Weibull and gamma dis-

tributions. We next make use of the goodness-of-fit selection criterion to choose

the best distribution(s) to represent the average monthly rainfall data.
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Table 4.3: Selection of the most appropriate parent distribution.

Name Pareto Weibull gamma log-norm
Akaike’s Information Criterion (AIC) 9241.879 9059.184 9061.132 9122.403
Bayesian Information Criterion (BIC) 9251.563 9068.867 9070.815 9132.086

Table 4.3 presents results for the goodness of fit tests AIC and BIC. The results

in Table 4.3 suggest that the Weibull distribution is the best distribution to

represent the average monthly rainfall in South Africa based on both the AIC

and BIC. In the next section, we determine the return levels and return period

for the Weibull distribution.

4.4.1 Estimation of return levels and return periods using

the Weibull distribution

In this section we present the return levels and their corresponding return

periods for the Weibull distribution.

Table 4.4: Quantile estimates and the number of exceedances based on the
Weibull model.

Quantiles Rainfall (mm) T (year) Number of exceedances
90th 100.23 10 98
95th 120.02 20 44

97.5th 138.41 40 21
98th 144.10 50 16
99th 161.13 100 3

Table 4.4 presents the results of the return levels and their corresponding re-

turn periods for the Weibull distribution. Thus, the average monthly rainfall

that is expected, to be exceeded at least once every 20 years (0.95 quantile) is

120.02 mm. This implies that some areas in South Africa will have a greater
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chance of receiving average monthly rainfall above 120.02 mm at least once

every 20 years.

Mohamed and Ibrahim (2016) fitted probability distributions to an annual

rainfall data in Sudan. Their results revealed that the normal and gamma

distributions were the best distributions. In another study Kang and Yusof

(2013) fitted candidate distributions to the rainfall data in Malaysia. Their

study showed that Wakeby, generalised extreme value distribution (GEVD)

and Weibull distributions turn out to perform well in the estimation which

support the findings in this study.

4.5 Extreme value analysis

This section presents the analysis of two building block approaches of extreme

value theory (EVT). The section is divided into four subsections. The first sub-

section presents the fitting of GEVD model. The second one is the GEVD for

r-largest order statistics. The third subsection presents the fitting of the gen-

eralised Pareto distribution (GPD) model, while the forth and last subsection

presents the point process approach.

4.5.1 GEVD model

Table 4.5: Parameter estimates and standard errors (in parentheses) of the
GEVD.

Location (µ) Scale (σ) Shape (ξ) 95% CI of ξ Neg. log-likelihood (λ)
107.41 (3.15) 24.53 (2.30) -0.25 (0.09) (-0.43, -0.07) 362.31

Table 4.5 represents the parameter estimates of the GEVD with standard er-

rors (in brackets). The sign of the shape parameter in Table 4.5 is negative,
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which suggests that the data can be modelled by a distribution that falls in

the Weibull domain of attraction. The normal confidence interval of the shape

parameter does not include zero, which further confirms that the data can be

modelled by a distribution that falls in the Weibull domain attraction.

Chikobvu and Chifurira (2015) modelled minimum rainfall for Zimbabwe using

GEVD. Their results revealed that the distribution that can best fit the data

fall in the Weibull domain of attraction which is in line with our findings in

this study.

The results for the profile likelihood are presented in Tables A1 and A2. The

main purpose of profile likelihood is to produce accurate confidence limits about

the parameter estimates (Coles, 2001). The 95% normal confidence intervals of

location, µ, and scale, σ, from Table A2, are (101.24, 113.58) and (20.03, 29.02),

respectively. The 95% confidence intervals obtained from the profile likelihood

of parameters µ and σ are (101.24, 113.57) and (20.03, 29.02), respectively (Ta-

ble A1), which are the same for µ and σ to those in Table A2. The 95% normal

confidence interval of the shape parameter, ξ, obtained from the profile likeli-

hood in Table A1 is (-0.41, 0.05), which is slightly different to the one in Table

4.5.

Figure 4.3 presents the diagnostic plots for the GEVD. The results in Figure

4.3 reveal that both the Q-Q and P-P plots appear linear, which implies a good

fit for the GEVD model. The density plot also appears to follow a normal dis-

tribution, which indicates that the GEVD model fits well to the rainfall data.
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Figure 4.3: Diagnostic plots for the GEVD.

Table 4.6: GEVD goodness-of-fit test.

Goodness-of-fit tests Statistic P-values
Anderson-darling test 0.39 0.38

Kolmogrov-Smirnov test 0.07 0.54

Table 4.6 presents an assessment of the goodness-of-fit tests for the GEVD

using the Anderson Darling (A-D) and Kolmogorov-Smirnov (K-S) tests. The

results from Table 4.6 reveal that the null hypotheses of both A-D and K-S tests

were not rejected since the p-values (0.38 and 0.54, respectively) were greater

than 5% level of significance. This implies that indeed the GEVD model is ap-

propriate for the average monthly rainfall for South Africa.

The EVT results in this section are in agreement with those based on the can-

didate distributions in the previous section. Both results revealed that the

Weibull distribution is the best fitting model for the time series data in this

study.
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Quantile estimation of the GEVD model

In this section, we determine the average monthly rainfall expected to be ex-

ceeded at least once every T years.

Table 4.7: Quantile estimates and number of exceedances based on the GEVD
model.

Quantiles Rainfall (mm) T (years) Number of exceedances
90th 149.80 10 9
95th 159.11 20 3

97.5th 166.77 40 3
98th 168.96 50 2
99th 174.99 100 0

Equation (3.4) was used to determine the return levels for the GEVD. Column

4 of Table 4.7 presents the return levels, corresponding return periods and the

number of observed average monthly rainfall that is greater than the estimated

tail quantiles. Results from Table 4.7 reveal that the 0.95 quantile corresponds

to z0.05 = 159.11 mm which is the 20-year return period in Table 4.7. This im-

plies that an average monthly rainfall of 159.11 mm is expected to be exceeded,

at least once every 20 years. However, this magnitude is lower than the max-

imum value of 175 mm in our observed actual data which in turn is equal to

the 100-year return level. Therefore, based on these GEVD findings, it cannot

be concluded that South Africa will expect extreme average monthly rainfall

in the near future. Another consideration was the 100-year return level. Table

4.7 present the 100-year return level of the GEVD (174.99) which is slightly

equivalent to the maximum observed value average monthly rainfall for South

Africa.

The 95% normal and profile likelihood confidence intervals for the 20-year, 50-

year and 100-year return levels are presented in Tables A3 and A4 respectively.
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The 95% confidence intervals obtained from profile likelihood in Table A4 for

all the return levels are slightly different from those in Table A3. It can be

observed that the 95% profile likelihood confidence intervals in Table A4 are

slightly higher than the corresponding 95% confidence intervals in Table A3.

4.5.2 GEVD for r-largest order statistics

In this section, we present the fitted model of the GEVD for r-largest order

statistics (GEVDr). Firstly, we start by estimating model parameters using

the maximum likelihood estimation method. Table 4.8 shows the estimates of

location(µ̂), scale(σ̂), shape(ξ̂), the 95% confidence interval for the shape param-

eter and the negative log-likelihood (λi).

Table 4.8: Parameter estimates and standard errors (in parentheses) of r-
largest order statistics models fitted to average monthly rainfall data.

r µ̂ σ̂ ξ̂ CI(95%) of ξ λi
1 107.41(3.15) 24.53(2.30) -0.25(0.09) (-0.43,-0.07) 362.31
2 95.42(1.98) 21.65(1.44) -0.09(0.07) (-0.23,0.05) 718.56
3 87.29(1.61) 21.96(1.13) -0.10(0.05) (-0.20,-0.002) 1080.04
4 79.61(1.37) 21.49(0.98) -0.05(0.04) (-0.13,0.03) 1441.55
5 72.94(1.23) 21.45(0.89) -0.02(0.04) (-0.09,0.06) 1807.80
6 66.87(1.19) 23.10(0.84) -0.05(0.03) (-0.11,0.01) 2195.52
7 60.50(1.19) 24.74(0.85) -0.06(0.03) (-0.12,-0.0012) 2596.49
8 54.09(1.18) 25.92(0.85) -0.04(0.03) (-0.1,0.02) 3002.42
9 48.09(1.16) 26.38(0.87) -0.12(0.03) (-0.18,-0.06) 3404.04

10 42.46(1.13) 26.31(0.87) 0.04(0.04) (-0.04,0.12) 3801.57
11 37.30(1.09) 25.70(0.87) 0.10(0.04) (0.02,0.18) 4193.00
12 32.28(1.04) 24.67(0.86) 0.18(0.04) (0.10,0.26) 4576.79

The shape parameter estimates in Table 4.8 are negative for r ≤ 9, suggest-

ing that the data can be modelled by a distribution that fall in the Weibull

domain of attraction. The confidence limits for the shape parameter when

r = 2, 4, 5, 6, 8, 10 includes zero which indicates that the Gumbel distribution
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might also be suitable to model the data. The value of the standard errors for

all parameter estimators are stable, especially for the shape parameter when

r ≤ 6. According to Nemukula and Sigauke (2018), Guedes and Scotto (2004)

and Coles (2001), this suggests a good fit for r ≤ 6.

The results obtained from the GEVDr in Table 4.8 for r ≤ 9 reveal that the data

can be modelled well by a distribution in the Weibull domain of attraction. Fig-

ures 4.4, 4.5 and 4.6 display the diagnostic plots for r = 2, 5 and 8, respectively.

Other plots are included in the Figures A5 to A11.

Figure 4.4: Diagnostic plots showing the GEVDr fit of average monthly rainfall
for r = 2.

Figure 4.5: Diagnostic plots showing the GEVDr fit of average monthly rainfall
for r = 5.
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Figure 4.6: Diagnostic plots showing the GEVDr fit of average monthly rainfall
for r = 8.

Figure 4.5 suggests that the model fitted with r = 5 order statistic is a good fit

compared to those fitted with r = 2 order statistic (Figure 4.4) and r = 8 (Figure

4.6). The diagnostic plots alone are not sufficient to reveal the adequacy of the

GEVDr fits to the data. Another procedure to assess the goodness-of-fit is the

deviance statistic. The mechanism behind this procedure is that, it uses the

maximum likelihood function for ri and rj to obtain deviance statistics to be

compared with the chi-square distribution with one degree of freedom. Table

4.9 presents an assessment of goodness-of-fit using the deviance statistics. The

test will validate the model based on ri relative to rj.

Table 4.9: The deviance statistics.

D(1,2) D(2,3) D(3,4) D(4,5) D(5,6)

-712.5 -722.96 -723.02 -732.5 -775.44

The critical value of the χ2
1 distribution is 3.84. In deviance statistics we com-

pare the log-likelihood estimates of the following statistics: D(1,2), D(2,3), D(3,4), D(4,5)

and D(5,6) in Table 4.9. Thus all the statistics are less than 3.84 meaning that

at 5% level of significance we fail to reject λ(ri) for i = 2, 3, · · · , 6 (Nemukula and

Sigauke, 2018; Guedes and Scotto, 2004). In other words, all the log-likelihood
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estimates for r = 2, 3, · · · , 6 order statisitics are valid. Therefore according to

deviance statistics test and diagnostic plots we can conclude that r = 5 is a

reasonable order statistic in this study.

The 95% confidence intervals for the location, µ, scale, σ, and shape, ξ, parame-

ters are presented in Table A6. Table A7 presents the 95% confidence intervals

for the location, scale and shape parameters obtained from profile likelihood

for r = 5. The 95% confidence intervals obtained from the profile likelihood

for the location and scale parameters are slightly different from those in Table

A6. Moreover, the 95% normal confidence interval for the shape parameter in

Table A6 is similar to the one obtained from profile likelihood (Table A7). The

return levels and their corresponding return periods for r = 5 are presented in

Table 4.10.

Table 4.10: Quantile estimates and the number of exceedances based on the
GEVD model for r-largest order statistics for r = 5.

Quantiles Rainfall (mm) T (years) Number of exceedances
90th 120.14 10 44
95th 134.80 20 21

97.5th 148.97 40 10
98th 153.45 50 6
99th 167.21 100 2

The 95th percentile corresponds to a 20-year return period. Therefore, on av-

erage, 134.80 mm of monthly rainfall is expected to be exceeded at least once

every 20 years. It was observed that the estimated 100-year return level of

167.21 mm is far less than the largest observation of the actual data of 175

mm. Hence, based on the results in Table 4.10 of GEVDr it cannot be con-

cluded that heavy rainfall is expected in South Africa in the near future years.

The 100-year return level of the GEVDr (167.21 mm) from 4.10 is lower than

that of the GEVD (174.99 mm).
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The profile likelihood confidence intervals were determined for r = 5. Tables A8

and A9 present the 95% confidence intervals obtained from quantile estimates

and profile likelihood, respectively. The confidence limits show that the two

sets of confidence intervals are slightly different.

4.5.3 GPD model

In this section, we present the analysis of the results from fitting the gener-

alised Pareto model to the average monthly rainfall in South Africa. We start

by using the mean residual life and threshold stability plots to determine an

appropriate threshold. We later present the full model of the GPD. Figure 4.7

presents the mean residual life plot for the data.
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Figure 4.7: Mean residual life plot for average monthly rainfall for GPD model.

Figure 4.7 provided some evidence of linearity above u = 22 mm for the aver-

age monthly rainfall. Figures 4.8 and 4.9 present the threshold stability plots

which are also essential when determining an appropriate threshold.
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Figure 4.8: Threshold stability plot for the modified scale parameter for GPD
model.
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Figure 4.9: Threshold stability plot for the shape parameter for GPD model.

The threshold stability plots in Figures 4.8 and 4.9 suggest that the stable

threshold is u = 24 mm. Using threshold stability and mean residual life

plots, the most appropriate threshold is chosen to be u = 24. Therefore, 652

exceedances were extracted with a proportion above 0.6966.
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Table 4.11: Parameter estimates and standard errors (in parentheses) of the
GPD model.

Scale (σ) Shape (ξ) CI(95%) of ξ CI(95%) of σ Neg. log-likelihood (λ)
58.39 (2.59) -0.37 (0.03) (-0.43, -0.31) (53.30, 63.45) 3064.99

From Table 4.11, the shape parameter is negative, which suggests that the

GPD has a light-tailer than the exponential distribution. The diagnostic plots

are also presented in Figure 4.10.

The 95% normal confidence interval of scale, σ, and shape, ξ, from Table 4.13

are (53.30, 63.45) and (-0.42, -0.32), respectively. The 95% confidence inter-

vals obtained from the profile likelihood for the parameters σ and ξ are (53.47,

63.65) and (-0.41, -0.31), respectively and are presented in Table A5, and are

slightly different from those in Table 4.11.
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Figure 4.10: Diagnostic plots for GPD.

Figure 4.10 shows linearity and thus the GPD is appropriate and can well
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represent the data.

Quantile estimation of the GPD model

Table 4.12 presents the return levels and their corresponding return periods,

as well as the number of exceedances based on the GPD model.

Table 4.12: Quantile estimates and the number of exceedances based on the
GPD model.

Quantiles Rainfall (mm) T (years) Number of exceedances
90th 151.13 10 9
95th 158.07 20 3

97.5th 163.44 40 3
98th 164.89 50 3
99th 168.72 100 2

Before computing return levels, we first need to estimate the parameter: (ζ̂u =

k
n

= 652
936

= 0.6966), where k represents the number of exceedances and n is the

number of observations. The 0.95 quantile corresponds to a 20-year return

period, and based on the results from Table 4.12, the average monthly rainfall

expected to be exceeded, at least once, every 20 years is 158.07 mm. The 100-

year return level based on the GPD results from Table 4.12 is 168.72 mm which

is lower than the maximum observed average monthly rainfall for South Africa

of 175 mm. Thus, the return levels for the GPD results are quite low compared

to those obtained from the GEVD, but higher than those of the GEVDr.

4.5.4 Point process approach

This subsection presents the analysis of average monthly rainfall using the

point process approach. Since it was stated in Chapter 3 that this approach

is more similar to models of exceedances (Khuluse, 2010; Coles, 2001), this

implies that the mean residual life plot and threshold stability plot will be
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used to determine a reasonable high threshold, u. It is also advisable to check

for clusters when modelling exceedances (Nkrumah, 2017).
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Figure 4.11: Mean residual life plot for average monthly rainfall for point pro-
cess model.

The results in Figure 4.11 reveal that linearity is observed above u = 22 mm

for average monthly rainfall data. The threshold stability plots results are

presented in Figure 4.12.

Figure 4.12: Threshold stability plots for the modified scale and shape param-
eters for point process model.
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According to Figure 4.12, the graph is stable when u = 24. Therefore, using the

results from mean residual and threshold stability plots, the chosen threshold

is u = 24 for the point process model (Nkrumah, 2016; Khuluse, 2010; Coles,

2001).

Table 4.13: Parameter estimates and standard errors (in parentheses) of the
point process model when u = 24.

Location (µ) Scale (σ) Shape (ξ) Neg. log-likelihood (λ) AIC BIC
62.48 (3.10) 7.68 (0.80) -0.37 (0.03) 105.55 217.11 230.55

From Table 4.13, we observed that the shape of the point process model is sim-

ilar to that of the GPD in Table 4.11. This indicates that, the results obtained

from the GPD are likely to be the silimar to those of the point process model.

Table A10 presents the 95% normal confidence interval of the location, scale

and shape parameters.

Figure 4.13: Diagnostic plots for the point process model for u = 24.

The results from Figure 4.13 reveal that both the P-P and Q-Q plots are linear,

suggesting a good fit for the point process model when u = 24.
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Table 4.14: Quantile estimates and the number of exceedances based on the
point process model.

Quantiles Rainfall (mm) T (years) Number of exceedances
90th 174.26 10 1
95th 176.40 20 0

97.5th 178.01 40 0
98th 178.44 50 0
99th 179.58 100 0

The point process return levels and their corresponding return periods for

u = 24 are presented in Table 4.14. The 0.95 quantile for the point process

results from Table 4.14 suggests that 176.40 mm is the average monthly rain-

fall expected, to be exceeded at least once every 20 years. This estimate of re-

turn level is slightly above the maximum observed value with average monthly

rainfall of 175.0 mm which suggests that South Africa might see the floods of

February 2000 coming back again more frequently. The 100-year return level

based on the point process model is estimated to be 179.58 mm which is quite

higher than the maximum value in our actual data for South Africa. Table

A11 presents 95% normal confidence limits of quantile estimates of the point

process model.

4.6 Summary of the chapter

The augmented Dickey-Fuller test revealed that the average monthly rainfall

data for South Africa is stationary. The assessment of goodness-of-fit on the

candidate distributions was also conducted. The diagnostic plots with the help

of K-S and A-D tests revealed that the best candidate parent distribution that

can model the average monthly rainfall data for South Africa is the distribu-

tion that falls in the Weibull domain of attraction.
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The GEVD was fitted to the average monthly rainfall for South Africa for the

period 1940-2017 using block maxima approach. The GEVD results revealed

that the data can be modelled by a distribution that falls in the Weibull domain

of attraction. The quantile estimation of the GEVD revealed that the maximum

value of the observed average monthly rainfall in the series of 175 mm is equal

to the 100-year return level. That is, the year 2000 average monthly rainfall of

175 mm has a return period of 100 years.

The GEVDr was fitted to average monthly rainfall data for South Africa. The

order statistic, r = 5, gave a suitable fit for the data. The deviance statis-

tics and diagnostic plots also played an important role in determining the best

model when using the r-largest order statistics approach. The r-largest order

statistics approach also revealed the distribution that can model the average

monthly rainfall falls in the Weibull domain of attraction. However, the 95%

confidence limits results suggest that the Gumbel distribution may also be a

suitable distribution to model average monthly rainfall for South Africa.

The GPD and point process models were fitted to average monthly rainfall for

South Africa. The mean residual and threshold stability plots were used to

determine the thresholds. A threshold of u = 24 was obtained for both the GPD

and point process model. The quantile estimates of the point process model

were found to be higher than those of GEVD, GPD and GEVDr. The 100-year

return level of the point process model (179.58 mm) is greater than the max-

imum observed average monthly rainfall of 175 mm which in turn is equal to

the 100-year return level of the GEVD (174.99 mm), whereas the 100-year re-

turn level of the GPD (168.72 mm) and GEVDr (167.21 mm) are slightly lower.

The profile likelihood method was incorporated in determining the 95% confi-

dence intervals for the GEVD, GEVDr and GPD.



Chapter 5

Conclusion and

Recommendations

5.1 Introduction

The chapter presents the conclusion and recommendations based on the find-

ings of the statistical analysis on average monthly rainfall for South Africa.

The first part of the chapter presents concluding remarks based on the previ-

ous chapter. The second part offers some recommendations and future research

directions.

5.2 Conclusion

In Chapter 1, five objectives of this study were stated. In Chapter 4 the time

series was first checked for stationarity. The augmented Dickey-Fuller test
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revealed that the series is stationary at 5% level of significance. The fitting

of candidate parent distributions revealed the distribution that can model the

average monthly rainfall for South Africa falls in the Weibull domain of at-

traction. The return level estimates of the Weibull distribution suggested that

120.02 mm is the average monthly rainfall expected, to be exceeded, once ev-

ery 20 years. The 100-year return level of 161.13 mm based on the Weibull

distribution is less than the maximum value of 175 mm observed in the se-

ries which occured in February 2000 and destroyed many households in the

Limpopo province.

In the block maxima approach, two models, i.e. GEVD and GEVDr were fitted.

The results of both GEVD and GEVDr reveals that the underlying distribution

of the average monthly rainfall belongs to the Weibull domain of attraction.

This means the distribution has a finite right end-point and hence do not in-

crease indefinitely. The GEVDr results further suggested the Gumbel domain

to be a possible model for the average monthly rainfall for South Africa. Fur-

thermore, the GPD and point process models were also fitted using the peaks-

over threshold approach.

The return levels of the estimated GEVD and GEVDr showed that 159.11 mm

and 134.80 mm are respectively the average monthly rainfall expected, to be

exceeded, at least once every 20 years. In the case of the GPD, 158.07 mm is the

average monthly rainfall that is expected, to be exceeded, at least once every 20

years. Thus, this magnitude is greater than that of the GEVDr but less than

that of the GEVD. On the other hand, the point process results showed that

176.40 mm is the average monthly rainfall that is expected to be exceeded at

least once every 20 years. This is slightly higher than the maximum observed

average monthly rainfall for South Africa, 175 mm.
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The 0.95 quantile estimates from GEVD and GPD were close and also greater

than the corresponding 0.95 quantile estimate of the GEVDr model. However,

for the point process model, the 0.95 quantile estimate was greater than that

of the other three models and also higher than the maximum observed value in

the series. Thus, for planning purposes, the estimates from the point process

offers a realistic estimate to help in obtaining exceedance probabilities beyond

the observed maximum in the rainfall data.

The 100-year quantile return level estimates of the GEVD, GEVDr, GPD and

point process models revealed that the 100-year return level of the GEVD and

point process model were equal to and greater than, respectively, the maximum

observed average monthly rainfall for South Africa. Furthermore, the 100-year

return of both the GPD and GEVDr were lower than the maximum observed

average monthly rainfall for South Africa.

The 0.95 quantile estimate obtained from the point process model suggests

that, some areas in South Africa are expected to experience heavy rainfall

at least once every 20 years whereas the GPD, GEVD and GEVDr suggested

otherwise. The 100-year return level of the point process model is higher as

compared to those from the GEVD, GPD, GEVDr and the parent distribution

Weibull.

Therefore, when we model using the block maxima approach, the GEVD and

GEVDr revealed that we cannot conclude that South Africa might experience

higher than expected rainfall in the near future years. The findings of the GPD

model were similar to those of the GEVDr and GEVD whereas the findings from

the point process model suggest that South Africa might experience higher

rainfall in the forthcoming years.
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5.3 Contribution

This section presents the major contribution of the study.

The impacts of maximum rainfall around the world has tormented people and

animals and tempered with the daily activities of the society. Following the

recent disruptions caused by high rainfall in Mozambique, Zimbabwe, Malawi

and some parts of South Africa (OCHA, 2019), the findings from this study will

act as an awareness tool for these countries. It will help reduce the impact of

high rainfall and countries can better prepare for such disasters.

The extreme value models found and recommended in this study will act as a

benchmark for future studies on average monthly rainfall for South Africa.

5.4 Future research

The study suggests some future research directions that may help improve the

accuracy and realiability of the findings.

Since the study revealed some evidence that South Africa might experience

higher than expected rainfall in the coming years based on the point process

model, it is now left to the meteorologists and hydrologists to determine the

locations of the likely impact or vulnerable areas. The study recommends that

the results might be improved by modelling with multivariate extremes and

Bayesian approach to include expert knowledge in estimation. The use of non-

stationary time series and other parameter estimation methods such as mo-

ments may be employed in the future. On the peaks-over threshold approach,

further studies might also consider using time-varying covariates and thresh-

olds.
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Appendix A

Plots and tables for Chapter 4

Table A1: GEVD 95% confidence interval from Profile log-likelihood.

CI(95%)

Location (µ) (101.24, 113.57)

Scale (σ) (20.03, 29.02)

Shape (ξ) (-0.41, 0.05)

Table A2: GEVD 95% normal confidence interval for location (µ) and scale (σ)

parameters.

CI(95%)

Location (µ) (101.24, 113.57)

Scale (σ) (20.03, 29.02)

Table A3: GEVD 95% normal confidence interval for the quantile estimation.

CI(95%)

20-year return level (149.63, 169.61)

50-year return level (155.71, 182.35)

100-year return level (158.47, 191.32)

Table A4: GEVD 95% confidence interval for the quantile estimation from

Profile likelihood.
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CI(95%)

20-year return level (151.45, 173.52)

50-year return level (159.91, 191.26)

100-year return level (164.50, 204.22)

Table A5: GPD confidence interval obtained from profile log-likelihood of scale

(σ) and shape (ξ) parameters.

CI(95%)

Scale (σ) (53.47, 63.65)

Shape (ξ) (-0.41, -0.31)

102 104 106 108 110 112 114

−
36

4.
0

−
36

3.
5

−
36

3.
0

−
36

2.
5

Profile Log−likelihood of Loc

loc

pr
of

ile
 lo

g−
lik

el
ih

oo
d

22 24 26 28 30

−
36

4.
5

−
36

4.
0

−
36

3.
5

−
36

3.
0

−
36

2.
5

Profile Log−likelihood of Scale

scale

pr
of

ile
 lo

g−
lik

el
ih

oo
d

−0.4 −0.3 −0.2 −0.1

−
36

4.
5

−
36

4.
0

−
36

3.
5

−
36

3.
0

−
36

2.
5

Profile Log−likelihood of Shape

shape

pr
of

ile
 lo

g−
lik

el
ih

oo
d

150 160 170 180 190

−
36

9
−

36
8

−
36

7
−

36
6

−
36

5
−

36
4

−
36

3

Profile Log−likelihood of Quantile

quantile

pr
of

ile
 lo

g−
lik

el
ih

oo
d

Figure A1: Profile log-likelihood for

shape, location, scale and quantile estimation.
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Figure A2: GEVD profile log-likelihood for

quantile estimation for a 20-year return level.
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Figure A3: GEVD profile likelihood for quantile

estimation for a 50-year return level.
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Figure A4: GEVD profile log-likelihood for
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quantile estimation for a 100-year return level.

Figure A5: Diagnostic plots showing the

fit of average monthly rainfall for r = 1.

Figure A6: Diagnostic plots showing the

fit of average monthly rainfall for r = 2.

Figure A7: Diagnostic plots showing the

fit of average monthly rainfall for r = 3.

Figure A8: Diagnostic plots showing the

fit of average monthly rainfall for r = 4.
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Figure A9: Diagnostic plots showing the

fit of average monthly rainfall for r = 6.

Figure A10: Diagnostic plots showing

the fit of average monthly rainfall for r = 7.

Figure A11: Diagnostic plots showing

the fit of average monthy rainfall for r = 9.
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Figure A12: Profile log-likelihood for shape,

location and scale parameters when r = 5.

Table A6: The 95% normal CI of GEVD for r-largest order statistics for scale,

shape and location parameters when r = 5.

95% CI

Location (µ) (70.54, 75.34)

Scale (σ) (19.71, 23.18)

Shape (ξ) (-0.09, 0.06)

Table A7: The profile log-likelihood 95% CI of GEVD for r-largest order statisitcs

for scale, shape and location parameters when r = 5.

95% CI

Location (µ) (70.57, 75.37)

Scale (σ) (19.81, 23.29)

Shape (ξ) (-0.09, 0.06)

Table A8: The confidence interval of GEVD for r-largest order statisitcs for the

quantile estimation when r = 5.
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95%CI

20-year return level (127.60, 142.15)

50-year return level (152.17, 182.62)

100-year return level (142.25, 164.83)

Table A9: The profile log-likelihood confidence interval of GEVD for r-largest

order statisitcs for the quantile estimation when r = 5.

95% CI

20-year return level (128.47, 143.32)

50-year return level (154.85, 186.06)

100-year return level (144.07, 167.20)

Table A10: The 95% normal confidence intervals of the point process model for

location, scale and shape parameters.

95% CI

Location (156.42, 168.55)

Scale (6.11, 9.26)

Shape (-0.42, -0.32)

Table A11: The 95% normal confidence intervals for the quantile estimates of

the point process model.

CI

10-year return level (166.25, 182.27)

20-year return level (167.85, 184.84)

40-year return level (169.00, 187.01)

50-year return level (169.30, 187.58)

100-year return level (170.06, 189.09)
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SOME SELECTED R CODES

The main R codes of the study

#Choosing the working directory

getwd()

#installing Packages for Extreme Value Analysis

install.packages(c("VGAM","rmutils"))

library(VGAM)

install.packages("extRemes")

library(extRemes)

install.packages("ismev")

library(ismev)

install.packages("evd")

library("evd")

install.packages("fitdistrplus")

library(fitdistrplus)

install.packages("nortest")

library(nortest)

install.packages("aTSA")

library(aTSA)

install.packages("actuar")

library(actuar)

install.packages("MASS")

library(MASS)

##################End of installation#####################
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#Importing data to R

Rainfall_Data <- read.csv2("Datum.csv")

#Computing summary statistics

install.packages("moments")

library(moments)

kurtosis(Rainfall_Data$Rainfall)

skewness(Rainfall_Data$Rainfall)

summary(Rainfall_Data$Rainfall)

#Testing for Stationarity using Argumented Dickey Fuller

adf.test(Rainfall_Data$Rainfall)

####################Candidate distributions################

P <- fitdist(Rainfall_Data$Rainfall, "pareto",

start=list(shape = 0.4, scale = 1))

W <- fitdist(Rainfall_Data$Rainfall, "weibull")

G <- fitdist(Rainfall_Data$Rainfall, "gamma")

Lon <- fitdist(Rainfall_Data$Rainfall, "lnorm")

#Plotting diagnostic plots for Weibull and Gamma

par(mfrow = c(2, 2))

plot.legend <- c("Weibull", "gamma")

denscomp(list(W, G), legendtext = plot.legend)

qqcomp(list(W, G), legendtext = plot.legend)

cdfcomp(list(W, G), legendtext = plot.legend)

ppcomp(list(W, G), legendtext = plot.legend)
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#Plotting diagnostic plots for Pareto and log-normal

par(mfrow = c(2, 2))

plot.legend <- c("pareto", "lognormal")

denscomp(list(P, Lon), legendtext = plot.legend)

qqcomp(list(P, Lon), legendtext = plot.legend)

cdfcomp(list(P, Lon), legendtext = plot.legend)

ppcomp(list(P, Lon), legendtext = plot.legend)

#Goodness of fit test using KPSSS and AD tests

ss <- gofstat(list(P, W, G, Lon), fitnames =

c("Pareto", "Weibull", "Gamma", "lnorm"))

#####################THE BLOCK MAXIMA APPROACH#######################

# The GEVD model

#Importing data to R

DataGEVD <- read.csv2("dsbase_r1.csv")

DataGEVD.fit <- fgev(DataGEVD$Rainfall)

#Diagnostic plots

par(mfrow = c(2, 2))

plot(DataGEVD.fit)

# profile log-likelihood for parameters

DataGEVD.prof <- profile(DataGEVD.fit,conf = 0.95)

par(mfrow = c(2, 2))

plot(DataGEVD.prof)

confint(DataGEVD.fit)
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# Profile log-likelihood for quantile

DataGEVD.qfit <- fgev(DataGEVD$Rainfall,prob = 0.05)

DataGEVD.qprof <- profile(DataGEVD.qfit, which = "quantile")

plot(DataGEVD.qprof)

confint(DataGEVD.qprof)

#Fitting GEVD for r-largest order statistics model

#Gev when r=1

R1 <- read.csv2("dsbase_r1.csv")

fit1 <- fevd(R1$Rainfall, type = "GEV", method = "MLE")

ci(fit1, type = "parameter")

plot(fit1)

return.level(fit1, return.period = c(10, 20, 40, 50, 100))

#Gev when r=2

R2 <- read.csv2("dsbase_r2.csv")

fit2 <- fevd(R2$Rainfall, type = "GEV", method = "MLE")

ci(fit2, type = "parameter")

plot(fit2)

return.level(fit1, return.period = c(10, 20, 40, 50, 100))

#Gev when r=3

R3 <- read.csv2("dsbase_r3.csv")

fit3 <- fevd(R3$Rainfall, type = "GEV", method = "MLE")

fit3

ci(fit4, type = "parameter")

plot(fit3)
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return.level(fit3, return.period = c(10, 20, 40, 50, 100))

#Gev when r=4

R4 <- read.csv2("dsbase_r4.csv")

fit4 <- fevd(R4$Rainfall, type = "GEV", method = "MLE")

ci(fit4, type = "parameter")

plot(fit4)

return.level(fit4, return.period = c(10, 20, 40, 50, 100))

#Gev when r=5

R5 <- read.csv2("dsbase_r5.csv")

fit5 <- fevd(R5$Rainfall, type = "GEV", method = "MLE")

ci(fit5, type = "parameter")

plot(fit5)

return.level(fit5, return.period = c(10, 20, 40, 50, 100))

#Gev when r=6

R6 <- read.csv2("dsbase_r6.csv")

fit6 <- fevd(R6$Rainfall, type = "GEV", method = "MLE")

ci(fit6, type = "parameter")

plot(fit6)

return.level(fit6, return.period = c(10, 20, 40, 50, 100))

#Gev when r = 7

R7 <- read.csv2("dsbase_r7.csv")

fit7 <- fevd(R7$Rainfall, type = "GEV", method = "MLE")

ci(fit7, type = "parameter")

plot(fit7)
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return.level(fit7, return.period = c(10, 20, 40, 50, 100))

#Gev when r=8

R8 <- read.csv2("dsbase_r8.csv")

fit4 <- fevd(R8$Rainfall, type = "GEV", method = "MLE")

ci(fit4, type = "parameter")

plot(fit8)

return.level(fit8, return.period = c(10, 20, 40, 50, 100))

#Gev when r =9

R9 <- read.csv2("dsbase_r9.csv")

fit9 <- fevd(R9$Rainfall, type = "GEV", method = "MLE")

ci(fit9, type = "parameter")

plot(fit9)

return.level(fit9, return.period = c(10, 20, 40, 50, 100))

#Gev when r=10

R10 <- read.csv2("dsbase_r10.csv")

fit4 <- fevd(R10$Rainfall, type = "GEV", method = "MLE")

ci(fit10, type = "parameter")

plot(fit10)

return.level(fit10, return.period = c(10, 20, 40, 50, 100))

#Gev when r=11

R11 <- read.csv2("dsbase_r11.csv")

fit11 <- fevd(R11$Rainfall, type = "GEV", method = "MLE")

ci(fit11, type = "parameter")

plot(fit11)
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return.level(fit11, return.period = c(10, 20, 40, 50, 100))

#Gev when r=12

R12 <- read.csv2("dsbase_r12.csv")

fit12 <- fevd(R12$Rainfall, type = "GEV", method = "MLE")

ci(fit12, type = "parameter")

plot(fit12)

return.level(fit12, return.period = c(10, 20, 40, 50, 100))

####################THE PEAKS-OVER-THRESHOLD APPROACH#######################

#GPD model

mrlplot(Rainfall_Data$Rainfall,tlim = c(10,150))

tcplot(Rainfall_Data$Rainfall,tlim = c(10,150))

fitGPD <- fevd(Rainfall_Data$Rainfall, threshold = 24, type = "GP", method = "MLE")

plot(fitGPD)

return.level(fitGPD, return.period = c(10, 20, 40, 50, 100))

#Point Process Model

threshrange.plot(Rainfall_Data$Rainfall, r = c(1,60), nint =20)

mrlplot(Rainfall_Data$Rainfall)

fitpm <- fevd(Rainfall_Data$Rainfall, threshold = 24, type = "PP")

plot(fitpm)

ci(fitpm, type = "parameter")

ci(fitpm, return.period = c(10, 20, 40, 50, 100))


