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Abstract 
 
Language modelling (LM) work for under-resourced languages that does not consider 

most linguistic information inherent in a language produces language models that in- 

adequately represent the language, thereby leading to under-development of natural 

language processing tools and systems such as speech recognition systems. This 

study investigated the influence that the orthography (i.e., writing system) of a lan- 

guage has on the quality and/or robustness of the language models created for the 

text of that language. The unique conjunctive and disjunctive writing systems of isiN- 

debele (Ndebele) and Sepedi (Pedi) were studied. 

 
The text data from the LWAZI and NCHLT speech corpora were used to develop lan- 

guage models. The LM techniques that were implemented included: word-based n- 

gram LM, LM smoothing, LM linear interpolation, and higher-order n-gram LM. The 

toolkits used for development were: HTK LM, SRILM, and CMU-Cam SLM toolkits. 

 
From the findings of the study – found on text preparation, data pooling and sizing, 

higher n-gram models, and interpolation of models – it is concluded that the orthogra- 

phy of the selected languages does have effect on the quality of the language models 

created for their text. The following recommendations are made as part of LM devel- 

opment for the concerned languages. 1) Special preparation and normalisation of the 

text data before LM development – paying attention to within sentence text markers 

and annotation tags that may incorrectly form part of sentences, word sequences, and 

n-gram contexts. 2) Enable interpolation during training. 3) Develop pentagram and 

hexagram language models for Pedi texts, and trigrams and quadrigrams for Ndebele 

texts. 4) Investigate efficient smoothing method for the different languages, especially 

for different text sizes and different text domains. 

 
Keywords: Language modelling, automatic speech recognition, natural language pro- 

cessing, under-resourced languages 
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Chapter 1: Introduction 
Language modelling (LM) is a process of developing models of word sequences that 

capture the regularities of a language such as syntactic, semantic and pragmatic char- 

acteristics to determine the likelihood of unknown word sequences as being legal or 

valid sequences of the language [1] [2]. Together with feature vectors, acoustic and 

lexical models, language models are used by an automatic speech recognition (ASR) 

system when attempting to transcribe utterances into their corresponding textual rep- 

resentation. 

 
This chapter summarises the research work that is reported in this dissertation docu- 

ment. The problem area of investigation is briefly described in the Section 1.1. Section 

1.2 defines the characterisation of a disjunctive and conjunctive language. Section 1.3 

elaborates on some of the reasons why an investigation such as the one undertaken 

by this study may be deemed significant. The section continues to outline the aim and 

objectives behind the study. The structure of the rest of the dissertation is laid out in 

the last section of the Chapter, Section 1.4. 

 
 

1.1. Problem Statement 
 
The ideal situation in the development of natural language processing (NLP) applica- 

tions and tools such as ASR systems is to incorporate as much linguistic information 

in their processing as possible. This step produces systems that accurately and suffi- 

ciently model a natural language. Language models better represent a language when 

they consider most linguistic information of that language [2]. 

 
However, a major challenge is modelling the unique linguistic attributes (such as spe- 

cial phonological, morphological and orthographic systems) of most under-resourced 

languages. This is one of the problems faced with when porting NLP systems and 

techniques to processing new languages [3]. The Southern Bantu1 languages fall at the 

centre of the category of under-resourced languages, with the South African (SA) 

Nguni and Sotho language classes included [3]. 

 
1https://global.britannica.com/topic/Bantu-languages 

https://global.britannica.com/topic/Bantu-languages
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Under-resourced languages are languages with lack of a unique or stable orthography, 

have limited presence on the web, lack linguistic expertise, lack electronic resources 

for speech and language processing such as monolingual corpora, bilingual electronic 

dictionaries, transcribed speech data, pronunciation dictionaries, vocabulary lists, lan- 

guage models and so on [3]. The failure to enhance the LM work for under-resourced 

languages does not help in their development, their language processing tools use 

obsolete and inefficient technology and techniques. Insufficient modelling of the unique 

attributes of the languages further aggravates the LM underperformances. Thus, the 

spoken language processing systems such as ASR systems cannot accu- rately 

recognise input utterances in the absence of robust language models. 

 
To develop additional spoken technology resources, this study developed different 

language models for the unique linguistic attributes of the South African isiNdebele 

(autonym for Ndebele) and Sepedi (autonym for Pedi) languages. The development 

was conducted using proven methods and techniques for improved LM performance. 

The linguistic attribute of these languages that was taken into consideration is their 

conjunctive and disjunctive writing forms. The Ndebele language is typically conjunc- 

tively-written, meaning that morphemes such as nominal concords, prefixes and stems 

are clustered or combined to form words - whereas morphemes are written disjunc- 

tively to make words for the disjunctive Pedi [4]. For example, the Ndebele word 

“ngiyakuthanda” (I love you) is made up by the morphemes ngi-, -ya-, -ku-, -thand-, 

and –a; whilst the corresponding Pedi sentence “ke a go rata” (I love you) is constituted 

by the morphemes ke, a, go, rat-, and -a. The language models were developed for 

later engagement into speech recognition experiments. 

 
 

1.2. Disjunctive and Conjunctive Languages 
 
The Bantu languages are generally agglutinative, i.e., they use prefixes and suffixes in 

forming novel words from base words [5]. The words are formed by adding these 

affixes to the root morpheme, making the formed words inflections and derivations. 

South Africa’s four Nguni and three Sotho languages are spoken throughout the coun- 

try. The official Nguni languages are Ndebele (Ndebele) or Southern Ndebele, 
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isiXhosa (Xhosa), isiZulu (Zulu), and siSwati (Swati); whereas the official Sotho lan- 

guages include: Sepedi (Pedi) or Northern Sotho, Sesotho or Southern Sotho, and 

Setswana (Tswana). 

 
The Nguni languages are generally conjunctively-written [6]. This means, their writing 

system concatenates several morphemes to make up word tokens [5]. Furthermore, 

the morphemes making up the linguistic words do not occur individually as words 

themselves. The Sotho languages on the other hand employ the disjunctive writing 

system. Here, a linguistic word may not be constituted by many morphemes, and the 

morphemes can be whole words on their own. 

 
This study focuses on Ndebele and Pedi. Examples of sentences contrasting the con- 

junctive and disjunctive writing systems are shown in Table 1.1 and Table 1.2 shows 

the morphological analysis of one of the sentences. 

Table 1.1: Conjunctive versus Disjunctive writing forms [5] 
 

No. Ndebele Sepedi English 
1 Uyakhamba. O a sepela. He/She is going. 
2 Bayakhamba. Ba a sepela. They are going. 
3 Uyathanda. O a rata. He/She loves. 
4 Bayathanda. Ba a rata. They love. 
5 Siyathandana. Re a ratana. We love each other. 
6 Ube nekhambo eliphephileko. O be le leeto leo le bolokegilego. Have a safe journey. 

 
Table 1.2: Morphological analysis of Ndebele and Pedi text [7] 

 
Language Sentence 

Morphological analysis 
English I like/love them 
Ndebele Ngiyabathanda. ngi- -ya- -ba- -thand- -a 
Sepedi Ke a ba rata. ke a ba rat- -a 

Morphological class s.c. 1p.sg PRES o.c. cl 2 verb, root inflectional ending 
 
 
The morphological classes from Table 1.2 have the following meanings: s.c 1p.sg 

(subject concord, first person singular), PRES (present tense) o.c cl 2 (object concord, 

class 2), verb (a word that indicates an action, event, or state)2, root (basic form of a 
 
 

2 http://www.yourdictionary.com/verb 

http://www.yourdictionary.com/verb
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word, to which affixes are added)3, inflectional ending (letter or group of letters added 
to the end of a word to change its meaning)4. 

 
 

1.3. Motivation 
 
The ASR systems seek to accurately predict text corresponding to vocal input. More 

accurate ASR systems enable computers and other machines to freely interact with 

humans using natural language. To successfully develop an ASR system that deter- 

mines the most likely sequence of the words spoken, it is necessary to build a lan- 

guage model. 

 
Existing speech recognition literature carefully acknowledges that better and improved 

language models do not necessarily lead to better and optimal speech recognition 

systems [8]. However, there is also work that has seen good language models impact- 

ing positively on the speech recognition accuracy rates [9], [10], [11], [12], [13]; and 

consequently better and improved recognition systems. Generally, the performance of 

different language technology applications and tools gets improved with improved lan- 

guage models [9]. 

 
1.3.1. Aim 

 
The aim of this study was to develop language models for speech recognition based 

on the disjunctive Pedi and conjunctive Ndebele languages. 

 
1.3.2. Objectives 

 
The objectives of this study were to: 

 
i. determine the impact of conjunctive and disjunctive language orthography 

on ASR language modelling. 

ii. evaluate standardized LM methods. 
iii. compare language models’ performance. 

 
 
 
 
 

3 http://www.readingrockets.org/article/root-words-roots-and-affixes 
4 https://en.oxforddictionaries.com/grammar/grammar-a-z 

http://www.readingrockets.org/article/root-words-roots-and-affixes
https://en.oxforddictionaries.com/grammar/grammar-a-z
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iv. contribute an in-depth analysis and study of LM work for the under-re- 
sourced South African Ndebele and Pedi languages. 

 
1.4. Structure of the Dissertation 

 
The rest of the the dissertation document is structured as follows: Chapter 2 explores 

the background and framework for ASR. Chapter 3 outlines the background and 

framework for LM. In the same chapter, previous studies that bear relation to our study 

are briefly explored.. The research design adopted for the experimental work is 

described in Chapter 4. Chapter 5 presents and analyses the results from the different 

experiments that were conducted. The results are further discussed in the same 

chapter. Chapter 6 summarises and gives conclusions to the conducted research 

work, and also hints at possible future work beyond this study. 
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Chapter 2: Automatic Speech Recognition 
Background 
Automatic speech recognition as a human language technology is defined and its de- 

velopment process explored in the first two Sections 2.1 and 2.2. Section 2.3 defines 

the evaluation metric that could be used to assess the efficacy of a developed speech 

recogniser. The components of an ASR system as briefly introduced in Section 2.2 are 

further detailed in Section 2.4. The tools and toolkits that could be used for speech 

recognition development are mentioned in Section 2.5. Section 2.6 discusses the ap- 

plications of the speech recognition technology as an enabling technology in various 

sectors of human technology. 

 
 

2.1. Definition 
ASR is the process of converting a speech signal to a text sequence of words by means 

of algorithms [14]. It takes a raw acoustic signal as input, and produces the 

corresponding hypothesised string of words as output [1]. It is also sometimes referred 

to as the speech-to-text (STT) process. 

 
The goal of ASR and automatic language understanding (ALU) is for machines to be 

able to ‘hear’, ‘understand’, and ‘act upon’ spoken information [14]. An ASR partially 

addresses this goal computationally by building systems that map from an acoustic 

signal to a string of words, thus enabling the machine to ‘hear’ what was spoken. An 

ALU system then formulates an understanding associated with the produced string of 

words [1]. The completed intelligent system will thereafter act upon the formulated 

understanding. 

 
By achieving adequate processing of spoken language, which is generalized as the 

spoken language understanding (SLU) problem, the historic ideal of enhancing hu- 

man-machine interaction (HMI) by using natural language may be realized. Typically, 

any human being would be able to interact with and use a trained machine system 

(such as a computer, telephone or car) using spoken words and sentences through a 

‘speak to’ and ‘listen to’ interface. This enables even the not-so-literate end-users to 
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enjoy the benefits and “wonders” of modern speech-enabled technological systems. 

Furthermore, many Pedi and Ndebele speakers will be able to use voice-enabled sys- 

tems, thereby removing the necessity of having to know a foreign (and often previously 

colonial) language, such as English, before using modern technological systems. Many 

people will be empowered by a technology enabling human-machine interaction. This is 

likely to dominate almost every sphere of our modern lives as we aspire for the reality 

of the Internet of Things (IoT)5. 

 
 

2.2. Automatic Speech Recognition Approach 
Speech recognition takes as input an acoustic waveform and produces a probable 

string of words as output. The statistical-based approach to speech recognition which 

makes use of mathematical and statistical tools is explored. This approach starts with 

the collection of a corpus of transcribed speech recordings, then the computer system 

is trained to learn the correspondences between the recordings and their transcriptions 

and finally, at run time – statistical processes are applied to search through the space 

of possible sentences to select the most probable sentence matching the speech in- 

put. 

 
Problem statement: “What is the most likely sentence W out of all sentences in the 

language L, given the observation sequence (i.e., acoustic input) O?” That is, find Ŵ 

such that: 

Ŵ = argmax w∈L P(W|O) (2.1), 

with: O = o1, o2, … , ok representing the observed sequence (i.e., acoustic observa- 

tions such as feature vectors) and W = w1, w2, … , wk representing the candidate word 

sequence. To make equation (8) operational, we employ the Bayes’ rule, which states: 

P(X|Y) = (P(Y|X) * P(X)) / P(Y) (2.2). 

Using equation (9), it then follows  that equation (8) can be transformed to become: 

Ŵ = argmax w∈L (P(O|W) * P(W)) / P(O) (2.3). 

 
The language model or prior probability, P(W), models how likely a string of words W 

is to be a source sentence of the language L. The acoustic model (AM) or observation 
 
 

5 https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone- 
can-understand/#45da40091d09 

https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#45da40091d09
https://www.forbes.com/sites/jacobmorgan/2014/05/13/simple-explanation-internet-things-that-anyone-can-understand/#45da40091d09
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likelihood, P(O|W), expresses how likely the word sequence W can match the obser- 

vation sequence O. The probability of the acoustic observation sequence O, P(O), 

expresses how likely the observation sequence could be a source sentence of the 

language L. From equation (10), the P(O) remains constant for each candidate se- 

quence W and thus its omission will not influence the maximum likelihood estimation 

task of W. The simplified equation (11) then follows: 

Ŵ = argmax w∈L P(W|O) = argmax w∈L P(O|W) * P(W) (2.4). 
 
 
Given the AM and LM probabilities, i.e., P(O|W)s and P(W)s respectively, the proba- 

bilistic speech recognition model can be operationalized in a search algorithm, as 

shown on Figure 2.1, to compute the maximum probability sentence for the given 

acoustic waveform. 

 
 

Figure 2.1: Observed sequence O processed by an HMM recogniser [15] 
 
 
Figure 2.2 summarizes the main elements of a statistical approach to ASR through an 

HMM-based recogniser decoding a speech signal. The recognition stages are briefly 

described below [1]: 

• In the feature extraction (or signal processing) phase, the acoustic waveform is 
sampled into a sequence of spectral features such as the Mel Frequency 
Cepstrum Coefficients (MFCCs). 
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• In the acoustic modelling (or phone recognition) phase, likelihoods of observed 
words, phones, or subparts of phones are computed. 

• In the LM phase, prior probabilities of word sequences are computed to deter- 

mine whether the sequences make valid sentences of the language. These 
word sequences are called n-grams in N-gram LM. 

• In the decoding or search phase, the acoustic model (consisting of acoustic 

likelihoods), the lexicon or HMM dictionary (consisting of word or phone pro- 

nunciations), and the language model (consisting of n-gram prior probabilities) 

are all used to search and output the most likely sequence of words making up 

the recogniser’s most likely hypothesised sentence. 
 
 

 
Figure 2.2: Statistical ASR [1] 

 
 
 

2.3. Evaluation Metric 
The standard evaluation metric for speech recognition systems is called the word error 

rate (WER): which is the rate or percentage of misrecognized words, and is based on 

how much the word string returned by the recogniser (called the hypothesised word 
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string) differs from its correct transcription (called the reference transcription). For- 

mally, the WER is defined by the following equation: 

WER = ((D + I + S) / N) * 100 (2.5), 
where N is the number of words in the reference transcription; and D, I and S are 

respectively the deletion, insertion and substitution errors discernible when comparing 

or aligning the hypothesised transcription and the reference transcription. The lower 

the WER the more accurate the ASR system is in recognition. 

 
 

2.4. ASR Components and Development Techniques 
This section explores the different ASR components as introduced in Section 2.2. 

 
2.4.1. Feature Extraction 

At this stage of the ASR framework, the acoustic waveform (speech signal) is trans- 

formed into a sequence of discrete (or continuous) observations called the observation 

sequence, or input sequence. The symbols used to represent these observations are 

called feature vectors and contain acoustic information from the original signal. In a 

general setting, the feature vectors have a probability distribution associated with them 

[16]. 

 
An ASR system thus converts a speech signal into a symbolic description of the mes- 

sage produced in that signal during speech articulation [17]. Table 2.1 lists some of the 

various methods that can be used for feature extraction. One of the commonly used 

method, MFCCs approach, is detailed in Section 2.4.1.1. 
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Table 2.1: Feature Extraction techniques with their properties [15] 
 

No. Method Property Comments 

 
1 

Principal Component 
Analysis (PCA) 

Nonlinear feature method; Linear map; Fast; Ei- 

genvector-based. 

Traditional eigenvector-based method; also known 

as Karhunen-Loeve expansion; Good for Gauss- 

ian data. 

2 
Linear Discriminate Anal- 
ysis (LDA) 

Nonlinear feature extraction method; Supervised 
linear map; Fast; Eigenvector-based. 

Better than PCA for classification. 

3 
Independent Component 

Analysis (ICA) 

Nonlinear feature extraction method; Linear map; 

Iterative non-Gaussian. 

Used for de-mixing 

sources (features). 

non-Gaussian distributed 

4 
Linear Predictive Coding 

(LPC) 

Static feature extraction method, 10 to 16 low or- 

der coefficients. 

Used for feature extraction at lower order. 

5 Cepstral Analysis Static feature extraction method; Power spectrum. Used to represent spectral envelope. 

 
6 

Mel-frequency 

Analysis 

Scale 
Static feature extraction method; Spectral analy- 
sis. 

Spectral analysis is done with a fixed resolution 
along a subjective frequency scale, i.e., Mel-fre- 

quency scale. 

7 Filter bank analysis Filters tuned required frequencies  

8 
Mel-Frequency Cepstrum 

Coefficients (MFCCs) 

Power is computed by performing Fourier Analy- 

sis. 

Commonly used feature extraction method. 
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No. Method Property Comments 

 
9 

Kernel based feature ex- 

traction method 

Nonlinear transformation. Dimensionality reduction leads to better classifica- 

tion and it is used to redundant features, and is im- 
proved in classification error. 

 
 
10 

 
 
Wavelet 

Better resolution than Fourier Transform. Replaces the fixed bandwidth of Fourier Transform 

with one proportional to frequency which allows 

better time resolution at high frequencies than 

Fourier Transform. 

 
11 

Dynamic feature extrac- 
tions: (i) LPC (ii) MFCC 

Acceleration and delta coefficients, i.e., II and III 

order derivatives of normal LPC and MFCC coeffi- 

cients. 

 

12 Spectral subtraction Robust Feature extraction method. It is based on Spectrogram. 

13 
Cepstral mean subtrac- 

tion 

Robust Feature extraction method. Same as MFCC but working on Mean statistical 

parameter. 

14 RASTA filtering Used for noisy speech. Used to extract features in Noisy data. 

15 
Integrated Phoneme sub- 

space 

A transformation based on PCA + LDA + ICA. Higher accuracy than existing methods. 
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2.4.1.1. The Mel Frequency Cepstrum Coefficients Feature Extrac- 
tion Approach 

One representation of the feature vectors extracted through a feature extraction pro- 

cess is the MFCC coefficients. The coefficients are extracted from a digitized and 

quantized speech signal. The feature extraction process follows seven steps [1], as 

shown by Figure 2.3. 
 
 

 
Figure 2.3: MFCCs feature extraction [1] 

 
 

A. Pre-emphasis 
Pre-emphasis is the first stage of MFCC feature extraction that boosts the amount of 

energy in the high frequencies of the signal. The spectrum of the speech signal has 

more energy in the lower frequencies and less energy in the higher frequencies. Boost- 

ing energy at these higher frequency levels makes information contained in them to be 

more available for acoustic modelling. This also improves phone detection accu- racy. 

 
B. Windowing 

A spectral feature is not extracted from the entire utterance signal, but from a small 

window of the signal that characterises a sub-phone or a phone – and for which we 

can assume that the signal is stationary (i.e., its statistical properties are constant). 

The windowed signal is called a frame. 

 
C. Discrete Fourier Transform (DFT) 
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DFT is the process used to extract spectral information from the windowed speech 

signal. Information such as the amount of energy the windowed signal contains at 

different frequency bands. DFT gets its name from the fact that it extracts spectral 

information for discrete frequency bands for a discrete time. 

 
D. Mel Filter Bank and Log 

The DFT process results in information about the amount of energy at each frequency 

band. The Mel Filter Bank (a collection of filters) then collects energy from each fre- 

quency band of the signal. At the Log stage, a log (i.e., logarithmic computation) of 

each Mel spectrum value is computed. The log values make feature estimates to be 

less sensitive to variations in input – such as the speaker’s mouth moving closer or 

further from the microphone during recording. 

 
E. The Cepstrum: Inverse Discrete Fourier Transform (IDFT) 

A cepstrum is a spectrum of the log of the Mel spectrum. After having the Mel spec- 

trum, the log stage produced a log spectrum; IDFT then represents or visualizes the 

log spectrum as a waveform, wherein it is called a cepstrum. One visible distinction 

between a spectrum and a cepstrum (ceps reverse of spec) is that the former uses the 

frequency domain and the latter uses the time domain. 

 
The MFCC extraction process then considers the first 12 cepstral values (the lower 12 

cepstral values when detecting phones, and the first 12 higher values when detecting 

the pitch of the phones). A phone is the smallest unit of sound, while pitch refers to 

how high or low a sound is. These 12 cepstral values are called the 12 MFCC coeffi- 

cients. 

 
F. Deltas and Energy 

The extraction of the cepstrum using IDFT results in 12 MFCC coefficients for each 

frame of the signal. A 13th feature, the energy feature from the frame - that relates with 

a phone - is added. For example, vowels and sibilants have more energy than stops in 

a language. 

 
A speech signal is not constant from frame to frame. As such, features that relate to 
change are added to the cepstral features. To each of the 13 features, a delta (or 
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velocity) feature and a double delta (or acceleration) feature is added. Each of the 

added 13 delta features models the change between the frames in the corresponding 

energy feature, and each of the added 13 acceleration features models the change 

between the frames in the corresponding delta feature. 

 
 

2.4.2. Acoustic Modelling 
Acoustic modelling, also referred to as the phone detection stage, is the process of 

mapping acoustic features, derived from the feature extraction process, into distinct 

sub-word units such as phonemes, syllables, and words [18]. Acoustic models are 

developed for detecting the spoken phonemes in an utterance. Their creation involves 

the use of audio recordings of speech and corresponding text transcriptions, and then 

compiling them into a statistical representation of sounds which make up words [19]. 

Satisfactory performance with respect to acoustic modelling is achieved when the 

acoustic model is matched to a domain-specific task, and this is obtained through ad- 

equate domain-specific training data (corpora). 

 
The hidden Markov models (HMMs), an important method for modelling time series 

data or sequences of observations [20], are the most popular acoustic models in use. 

Their popularity is attributed to two strong reasons [21]: (a) the models are very rich in 

mathematical structure and hence can form theoretical basis for use in a wide range 

of applications, and (b) when applied properly, the models work very well in practice 

for several important applications as seen successfully used in areas such as speech 

recognition, computational molecular biology, data compression, computer vision ap- 

plications, and other areas of artificial intelligence and pattern recognition [20]. 

 
Some of the acoustic modelling techniques are explored next. 

 
2.4.2.1. Adaptation Techniques 

These are the techniques used to compensate for variation at the feature extraction 

level. One approach is estimating a linear (or nonlinear) transformation of the model 

parameters using a maximum likelihood (MLE) criterion, or a maximum posterior func- 

tion [22]. Another approach is the Eigenvoice approach – which builds a low dimension 

eigenspace in which any speaker is located and modelled as a linear combination of 

‘eigenvoices’. 
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With adaptation techniques, knowledge about the effect of the interspeaker variabili- 

ties is gathered in the model to re-estimate optimal model parameters for given cir- 

cumstances – hence adaptation, while such speech variation information is discarded 

in other traditional approaches. 

2.4.2.2. Multiple Modelling Techniques 

Rather than adapting the models to certain conditions, the multiple modelling tech- 

nique trains a collection of models specialized to specific conditions or variability. In 

such an environment where the speech recognition system should handle various con- 

ditions, several speech corpora can be used together for estimating the acoustic mod- 

els, leading to mixed models or hybrid systems. 

2.4.2.3. Auxiliary Acoustic Features Techniques 
Speech recognition systems rely on the acoustic parameters that represent the speech 

signal, such as the (cepstral) coefficients. These features, however, are sensitive to 

auxiliary information inherent in the speech signal such as pitch, energy, rate-of- 

speech, formants, and so on. The auxiliary acoustic feature approach considers this 

auxiliary information in its modelling process. Here, the auxiliary features are directly 

introduced in the feature vector, along with the (cepstral) coefficients. 

 
For example; formants were used together with MFCC coefficients in [23], the pitch 

parameter was included in the feature vector in [24], and both the pitch and energy 

features were used in [25]. 

2.4.3. Language Modelling 
Statistical and grammar-based language models can be developed. On one hand, a 

statistical language model is basically a file containing probabilities of sequences of 

words [26]. It expresses how likely a sequence of words is to be an acceptable/legal 

sentence of a language. On the other hand, two constructs are important for the gram- 

mar-based language model: the grammar and the parsing algorithm [27]. The gram- 

mar is the formal specification of the permissible structures for the language, usually 

based on expert knowledge; and the parsing algorithm is the method of analysing a 
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sentence to see if its structure is compliant with the grammar. In ASR, statistical mod- 

els are conventional due to their simplicity, modelling performance, and applicability to 

even large domain tasks [28]. 

 
The LM process is specially detailed in Chapter 3. 

 
2.4.4. Decoding 

The decoding process searches for the most likely word sequence corresponding to 

the observed acoustic data [29] using inputs from the various acoustic, lexical, and 

language models. This process finds the best word sequence that might match the 

input speech signal. The techniques used by speech recognition engines to match a 

detected word sequence to a known word sequence include the following: 

2.4.4.1. Whole-word Matching 
Here, the recognition engine compares an incoming digital-audio signal with a pre- 

recorded template of a word. This technique requires that there be a pre-recorded 

template for every word that is to be recognised. Each word template occupies storage 

amounts between 50 and 512 bytes. Whole-word matching is practical only if a small 

recognition vocabulary is known in advance. 

2.4.4.2. Sub-word Matching 

In this decoding technique, the engine looks for sub-words, usually phonemes, and 

then performs further pattern recognition on them. Each sub-word word requires 5 to 

20 bytes in storage. This technique takes more processing time than whole-word 

matching. 

 
 

2.5. ASR Tools 
A wide range of tools are readily and freely available from designated internet portals 

for use to develop a working speech recognizer, and some of these tools and toolkits 

that could be used are [30] [31] [8] [32] [33]: 

• HTK: a toolkit used to build and manipulate HMMs. 

• SPHINX: an open-source large vocabulary speech recognition toolkit, based on 
C, C++, and Java programming languages. 
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• PRAAT: a free software tool for recording and analysing human speech, which 
can run on different platforms such as UNIX, Windows, and Macintosh. 

• JULIUS: a two-pass, real-time, and open-source large vocabulary continuous 
speech recognition engine. 

• KALDI: an open-source speech recognition toolkit that is based on finite-state 
transducers and the C++ programming language. 

• Microphone: a tool used to record speech data. 
 
 
 

2.6. Applications Areas of ASR 
Since its introduction, the speech recognition technology has been applied in a wide 

variety of areas [1] [34], including but not limited to: 

• Human-Computer Interaction – enabled ability for humans to interact with the 
machine systems (such as phone, car, escalator, and robotic systems) using 
voice recognition interfaces. 

• Transcribing systems - that transcribe recorded speech to its textual form. 

• Telephony – incorporating telephone systems with intelligent speech recogni- 
tion technology, adding capabilities such as: 

o Entering/dialling digits using speech 
o Call routing/forwarding/steering – putting callers through to the right de- 

partment or unit of an organisation. 

o Booking or enquiring about airplane or train information. 
o Online help services 
o Automated caller identification – where there is a need to authenticate 

someone’s identity on the phone without using risky personal data. 

o Removing and/or enhancing the interactive voice response (IVR) menus 
– replacing the complicated and often frustrating ‘push button’ IVR using 

intelligent call steering (ICS) where the IVR system simply asks the cus- 

tomer to say what they want (to which they respond in their words) and 

then transfers them to the most suitable resource to handle their call; or 

add the speech recognition capability on the already available IVR key- 

pad menu. 

• Dictation – speaking to a writing system that writes down what is spoken. 
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• Eyes-busy and hands-busy applications (for use in automobiles, for medical 
doctors, etc.) 

• Speaker Identification – identifying the person who is speaking by charac- 
teristics of their voice. 

• Language identification – identifying the language of the speaker from their 
utterance. 

• Voice search – searching files on the internet using voice or speech. 

• Language advancement – technological systems such as ASR recognisers 
help advance the identity and usage of a language. 

• Language learning – helping speakers to learn and understand transcrip- 
tions for utterances of a language. 

 
The many application areas for speech recognition signify its importance in modern 

day technology since its advent in the early 1930s. As such, the speech recognition 

technology has become an established community with its own language and termi- 

nology, and this way it continues to grow day by day. 
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Chapter 3: Language Modelling Framework 
This chapter gives the background to LM as an aspect of automatic speech recogni- 

tion. Sections 3.1 and 3.2 define the concept of LM in relation to speech recognition; 

and the LM process, implemented by different techniques, is explored in Section 3.3. 

Section 3.4 describes the measures used to evaluate the accuracy of developed lan- 

guage models. LM challenges leading to LM research are briefly explored in Section 

3.5. The classification of LM development is characterised in Section 3.6. Section 3.7 

and 3.8 gives a mention of some the tools and toolkits used for LM development. 

Lastly, Section 3.9 surveys some of the existing research works bearing similarity to 

this study. 

 
 

3.1. Language Modelling Definition 
LM as the art or process of determining the probability of a sequence of words [35], is 

one of the core processes in NLP systems that deals with text such as: speech recog- 

nition, machine translation, optical character recognition, handwriting recognition, and 

spelling recognition systems. For most of these NLP technologies, statistical language 

models have become state-of-the-art models. 

 
In ASR systems, statistical n-gram models are conventional due to their simplicity and 

modelling performance [28]. An n-gram is a sequence of n elements (e.g. words) and 

an n-gram language model is used to estimate the chances of any element occurring 

in the sequence given its n-1 predecessors. 

 
 

3.2. Role of Language Modelling in Automatic Speech Recognition 
Statistically, the ASR LM task is to determine the prior probability P(W) that the 

speaker would utter the word sequence W = w1, w2,…, wn in the recognition problem 

Ŵ =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑊𝑊 𝑃𝑃(𝑊𝑊|𝑋𝑋)  =   𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑊𝑊 𝑃𝑃(𝑋𝑋|𝑊𝑊)𝑃𝑃(𝑊𝑊) (3.1), 

where X is the observed speech signal and W any valid sequence of words from the 

prescribed vocabulary [36] [37]. The language model P(W) of the word sequence W, 

together with the acoustic model P(X|W) of the acoustic signal X, are used in speech 

recognition when searching for the best word sequence Ŵ that matches X. In this 

relation, the LM component complements the acoustic models with prior information 
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about word sequences occurring in a language or language task. The prior information 

helps the speech recogniser to be able to choose between word and sentence hypoth- 

eses for which there is evidence in the acoustic data. The correctness of a sentence 

hypothesis is backed by evidence of more likely words in the hypothesis. 

 
The crucial role that is played by the language model can be summarized into: (a) 

constraining acoustic analysis, guiding the search through multiple text hypotheses, 

and contributing to the final transcription; and (b) encapsulating as much syntactic, 

semantic, and pragmatic characteristics of the language task as possible [2]. In terms 

of (b), the successful capture of most of this information is important to help the rec- 

ogniser determine the most likely sequence of words spoken as the information quan- 

tifies which word sequences are valid and which are not in terms of the language task. 

 
 

3.3. Language Modelling Approaches 
The general LM process for speech recognition is presented by Figure 3.1. The major 

steps involved include data preparation, language model training, and then language 

model testing. The data preparation step prepares the text data into a format suitable 

for LM training, such as having the text separated into one sentence per line and each 

sentence marked with sentence boundary markers <s> (start-of-sentence symbol) and 

</s> (end-of-sentence symbol). The LM training step estimates the statistical LM dis- 

tribution from the training text using various techniques such as n-gram modelling, 

smoothing, and back-off. The LM testing step then evaluates the trained language 

model on the testing and/or development data and outputs its perplexity (PPL) score. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: General LM framework 
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The general step-by-step procedure as described through Figure 3.1 gets adapted and 

further detailed by different LM frameworks, especially on the training phase. Sec- tions 

3.3.1 through 3.3.8 discuss this point for various LM techniques. 

3.3.1. Conventional Statistical N-gram Language Modelling 
An n-gram language model is used to predict each symbol in the n-gram sequence, 

given its n-1 predecessors. This prediction assumes that the probability of a specific 

n-gram occurring in some unknown test text can be estimated from the frequency of 

its count/occurrence in the training text. 

 
The n-gram LM construction process is three-phased, as shown by Figure 3.2. In the 

first phase, the training text is scanned and its n-grams are counted and stored in a 

database of gram files. In the second phase, some class mapping may be applied and 

some of the words be mapped to classes such as the out-of-vocabulary (OOV) class. 

Then in the final phase, the counts from the resulting n-gram files are used to compute 

n-gram probabilities which are stored in a language model file. 
 
 

 
Figure 3.2: N-gram LM framework [8] 
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Ultimately, the effectiveness of the resulting language model is determined using the 

perplexity measure on some unseen test text data set. In general, a better language 

model has a lower test text perplexity. 

3.3.2. Neural Network Language Modelling 
Neural network language modelling (NNLM) embeds words in a continuous space 

where LM probability estimation is performed using single hidden layer trained neural 

networks. NNLM with multiple hidden layers is called Deep Neural Network LM (DNN 

LM). A schematic representation of a single hidden layer NNLM framework is shown in 

Figure 3.3. 

 
 

Figure 3.3: NNLM framework [28] 
 

Each word in the vocabulary is represented by an N dimensional sparse vector, in 

which only the index of that word is 1 and the rest of the entries 0. Input to the network 

is the concatenated continuous feature representations of previous n-1 words, i.e. the 

history/context words. Each word is mapped to its continuous space representation 

using linear projections. Discrete to continuous space mapping is a look-up table with 

N x P feature dimension. The ith row of the table corresponds to the continuous space 

representation of the ith word in the vocabulary. 

 
The continuous space feature representations of the history words are combined to 

form the projection layer. The hidden layer has H hidden units and it is followed by a 
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𝑙𝑙=1 

𝑗𝑗−𝑛𝑛+1 

hyperbolic tangent non-linearity. The output layer has N targets followed by the soft- 

max function. Its posterior probabilities, P(wi=i|hj), are the LM probabilities of each word 

in the vocabulary for a specific history hj. 

 
From the architecture in Figure 3.3, c represents linear activations in the projection 

layer, while M and V are the weight matrices between the projection and hidden layers 

and hidden and output layers, respectively. d, o, and p are the allowable operations in 

the framework and they are defined as follows: 

d = tanh(M * c + b) (3.2), 
o = V * d + k 

p = exp(o) / ∑𝑁𝑁 𝑒𝑒𝑜𝑜𝑙𝑙 

where bj and ki are the hidden and output layer biases [37]. 
 
 

The algorithm used in training the models is the standard stochastic back-propagation 

algorithm. Basically, a neural network language model performs two tasks: first, it pro- 

jects all words of the context (hj = 𝑤𝑤 𝑗𝑗−1 ) onto a continuous space; and second, it 

calculates the language model probability P(wj=i/hj) for the given context. These two 

tasks are performed by the NNLM model using two layers, the projection layer and the 

hidden layer. That is, the projection layer is responsible for the continuous represen- 

tation of all words in the context and the hidden layer does non-linear probability esti- 

mation. The network is trained by stochastic back-propagation to minimize perplexity 

of the training data. 

 
Set N to be the size of the vocabulary and P the dimension of the continuous space. 

Input to the network are the N dimensional binary vectors of the previous (n-1) words 

in/from the vocabulary. The vectors are created using the 1-of-n coding mechanism, 

where the ith word of the vocabulary is coded by setting the ith element of the vector to 

1 and all other elements to 0. These continuous projections/representations of all 

words in the context are concatenated to form the projection layer. The projection layer 

uses a linear activation function. The activities taking place at this layer could be de- 

noted as ci with i=1, 2, ..., (n-1) x P. 
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3.3.3. Neural Networks: an emerging modern standard for 
language modelling 

Neural network language models (NNLMs) as introduced in the preceding section 

(Section 3.3.2) are becoming state of the art for LM as they do for other modelling 

tasks such as ASR and machine translation [38] [39]. NNLMs’ prominence over n- 

gram models is due to, amongst other factors: ability to model long term history con- 

texts, implicit parameter sharing in a continuous space of projected words, and effi- 

cient interpolation or merging with other effective language models such as n-grams. 

Another key factor with NNLMs, however, is that they are processing power demand- 

ing, thus successful development and application thereof relies on computation inten- 

sive hardware and techniques such as multi-core processors, graphical processing 

units (GPUs), multi-threading and parallel computation. 

 
The widely developed NNLMs are feedforward and recurrent NNLMs [39]. A survey of 

the use of NNLMs in LM and ASR was conducted by Kipyatkova et al. [39] and in- 

cludes the following highlighted studies. Initial work on NNLM in 2005 by Schwenk et 

al. [40] which compared an NNLM model with a Kneser-Ney smoothed trigram model. 

Recurrent NNLMs (RNNLMs) were first used by Mikolov et al. [41] for rescoring n-best 

lists of ASR hypotheses generated through a Kneser-Ney smoothed pentagram to ob- 

tain the best (1-best) hypothesis of the input speech. Sundermeyer et al. [42] com- 

pared feedforward and recurrent NNLMs that were separately interpolated with an n- 

gram model. Speech recognition results indicated RNNLMs outperforming feedfor- 

ward NNLMs. In general, the following common traits are seen from the surveyed 

NNLM studies: use of NNLMs to rescore n-best output generated through use of n- 

gram LMs; interpolating NNLMs with n-gram LMs; improved language model and 

speech recognition results; and the prevalence of recurrent NNLMs over feedforward 

NNLMs. 

3.3.4. Syntactico-Statistical N-gram Language Modelling 
The syntactico-statistical LM approach exploits both the syntactic and statistical text 

analyses for LM. One such process is illustrated in Figure 3.4. 
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Figure 3.4: Syntactico-statistical n-gram LM framework/flowchart [11] 
 
 

Initially, the training text corpus is processed in parallel to discover regular n-grams 

and syntactic word dependencies in sentences. The results of both analyses are then 

processed to obtain count files, after which statistical and syntactic n-gram models are 

computed. At the final stage, the two types of language models are interpolated to 

create a model of the required n-gram order. Thus, the eventual n-gram language 

model is the result of joint statistical and syntactic text analysis (where the latter learns 

long-distance/grammatical dependencies between non-adjacent words, and the for- 

mer examines such relations between adjacent words) at the training stage. 

3.3.5. Syntactic Language Modelling with Formal Grammars 
The syntactic LM approach described by Kaufmann and Pfister [43] follows the two- 

stage decoding ASR paradigm, also known as lattice rescoring recognition, in which 

LM is carried out in two stages. In this paradigm, formal grammar models are inte- 

grated in the speech recogniser’s decoding stage. 

 
A formal grammar intends to discriminate between grammatical word sequences and 

ungrammatical word sequences. Grammatical word sequences are those sequences 
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that can be generated by a sequence of rule applications. The formal grammars that 

are used additionally make the following assumptions. (a) The grammar allows the 

determination of possible syntactic structures of a grammatical sentence. With these 

structures, statistical models can compute probabilities of derivations or word se- 

quences. (b) The grammaticality and syntactic structures can be determined for lin- 

guistically motivated units other than sentences, e.g. noun phrases. This allows ex- 

traction of linguistic information even in the face of ungrammatical sentences. 

 
The combination of the described formal grammars with a statistical model is different 

from a statistical parsing model. A typical statistical parser is completely guided by a 

statistical model and allows for any (word sequence) derivation that is structurally pos- 

sible. A grammar-based parser, on the other hand, is restricted by the hard-linguistic 

constraints encoded in the grammar – and thus the statistical model of the parser 

complements the grammar with quantitative information. 

 
Formal grammars have been used as language models since the beginning of time for 

speech recognition. However, they have almost exclusively been applied to re- stricted 

domains because, amongst other reasons, small domains (such as money value 

description, digits, and vowel recognition tasks) allow for very restrictive gram- mars 

that constrain both the syntax and semantics of the acceptable utterances. Large 

vocabulary speech recognition domains (such as media news, parliamentary debates, 

and university lectures transcription tasks) are difficult for formal grammars because 

for one the syntax for such domain is very productive, and thus many incorrect hypoth- 

eses should be considered grammatical. 

 
The architecture for the described syntactic LM approach is shown in Figure 3.5. 
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Figure 3.5: Syntactic LM (with formal grammars) architecture [43] 
 
 

In the first stage, the speech signal is processed by a baseline speech recogniser 

(having a baseline n-gram model) and the resulting word lattice is automatically seg- 

mented into sub-lattices that represent sentence-like units. In the second stage, for 

each sub-lattice, N best hypotheses are extracted with respect to the baseline recog- 

niser score. The baseline recogniser score is the weighted sum of a score and a word 

insertion penalty. 

 
For each (sub-lattice) hypothesis, a parser determines a unique parse tree and its 

associated disambiguation score. The disambiguation score represents the plausibility 

(validness or likeliness) of the parse tree: highly plausible trees receive large negative 

scores. 

 
Finally, a discriminative re-ranking component chooses the most likely hypothesis for 

each sub-lattice. Various features taken into consideration during the re-ranking pro- 

cess include the baseline recogniser score, the disambiguation score and different 

properties of the parse tree. Together, these features are used to compute the final 

score for each hypothesis, and then the hypothesis with the maximum score gets cho- 

sen as the recogniser’s transcription result. 
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3.3.6. Approximate Language Modelling Inference 
The approximate LM approach approximates long span and complex language mod- 

els (such as neural or recurrent language models) using simple n-gram models [44]. 

This is done using variational inference, the widely used method for approximate in- 

ference. The approximated language model is then used for first pass decoding and 

the resulting lattices are then rescored with a bigger full-blown model, such as the one 

being approximated. The pictorial representation of this concept of distributions is 

shown in Figure 3.6. 
 
 

 
Figure 3.6: Pictorial representation of family of distributions in variational inference [44] 

 
 

Given a complex long-span model P, we seek a computational tractable model Q* that 

will be a good surrogate for P. In particular, among all models Q of the family 𝒬𝒬 of 

tractable models, we seek one that minimizes the Kullback-Leibler divergence (KLD) 

from P. When found, the model is used for first pass decoding and richer lattices and/or 

faithful N-best lists are produced as a result. Then, full blown (i.e. non-approximated) 

bigger language models are used to rescore the lattices or they are deployed on the 

extracted N-best lists. 

 
In variational (approximate) inference, a surrogate model (characterized by the distri- 

bution Q ϵ 𝒬𝒬) is selected to replace a complex model (characterized by the distribution 

P) such that inference under Q becomes more tractable. Q is found such that it is 
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𝑖𝑖 𝑖𝑖 

closest to P in some way. Given that the models are probability distributions, a natural 

choice of distance metric is Kullback-Leibler divergence. Thus, the surrogate model Q 

is chosen such that among all the distributions in the family of the parameterization 

distribution 𝒬𝒬, it has the minimum KLD with the complex distribution P. 

3.3.7. Factored Language Modelling 
Factored LM (FLM) approach considers various sources of information and combines 

the information in a manner that produces an efficient statistical language model [9]. 

The FLM approach makes it possible to build a statistical model over heterogene- 

ous/numerous factors assigned to (or incorporated in) each input word. 

 
Within the FLM framework, as described by  Falavigna  and Gretter [10] , and Karpov 

et al.  [11], each  word  (wi, 1  ≤ i ≤ N) is  regarded as  a bunch  of (k) factors, i.e., wi = 

𝑓𝑓𝑖𝑖
1𝑓𝑓2 … 𝑓𝑓 𝑘𝑘. Factors are features of the word such as: the class of  the word, the word 

itself, part-of-speech (POS) of the word, possible lemmas of the word, syntactic and 

semantic factors, and distinct factors corresponding to the different morphemes of the 

word. The choice of factors depends on the available information and the researcher’s 

ideas to better language models. The chosen factors eventually become the features 

of the resulting model. 

 
In summary, the FLM approach to LM makes it possible to build a statistical model 

over different/heterogeneous factors inherent in a word. Each word is thus regarded 

as a bunch of factors such as the word itself and its inherent morphemes that include 

the stem, POS, lemma, morphological tag and so on. The chosen factors, as per the 

will of the designer/developer/researcher, become features of the resulting language 

model. 

3.3.8. Statistical Language Model Adaptation 
When the discourse in training and recognition tasks differs in terms of lexical, syntac- 

tic, or semantic characteristics; language model adaptation becomes necessary to 

compensate for the mismatch as it severely affects the performance of statistical lan- 

guage models [2]. Generally, an adaptive language model seeks to maintain an ade- 

quate representation of the current task domain under changing (language) conditions 

such as variations in vocabulary, syntax, content, and style. This helps reduce the 
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𝑞𝑞=1 

degradation in speech recognition performance usually observed with a new set of 
operating conditions. 

 
Figure 3.7 depicts the general statistical language model (SLM) adaptation framework. 

The framework considers two text corpora in training the adapted model: a usually 

small adaptation corpus A, that is associated to the recognition task; and a usually 

large background corpus B, associated with a somewhat different task. 
 

 
Figure 3.7: SLM adaptation framework [2] 

 
 

For the adaptation problem, given a sequence of n words wq (1 ≤ q ≤ N) consistent 

with the corpus A, the goal is to determine a robust estimate of the LM probability 

P(w1,…,wN) = ∏𝑁𝑁 𝑃𝑃(𝑤𝑤𝑞𝑞|ℎ𝑞𝑞) (3.3), 

where hq is the history (composed of previous words) available at time q. The Markov- 

ian assumption implies that hq = wq-n+1,…, wq-1 . 

 
Estimation of P(w1,…,wN) exploits two distinct sources of knowledge: (i) the well- 

trained, possibly mismatched, background statistical language model that yields 

PB(w1,..,wN) as shown on Figure 3.7, and (ii) the adaptation data that is used to extract 

some information relevant to the current task we are adapting to. The general idea is 

to dynamically modify the background SLM estimate based on the information ex- 

tracted from the adaptation corpus A. All SLM probabilities are assumed to be appro- 

priately smoothed. 

 
The adaptation method depends much on the quality of the available adaptation data 
(i.e., corpus A). If not already available, ways of gathering corpus A include: (i) when 
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𝑖𝑖−𝑛𝑛+1 

𝑖𝑖=1 

𝑖𝑖−𝑛𝑛+1 

the recognition task is recovered by a grammar - using the grammar to generate ex- 

pected user utterances to make up an artificial version of corpus A; and (ii) accumu- 

lating the data during the recognition process from N-best lists of (multiple) sentence 

hypotheses. Adaptation data may also be from repositories such as online databases 

or the Internet. 

 
 

3.4. Evaluation Metric 
The most commonly used metrics for evaluating language models are: the probability 

assigned to the test data by the language model, cross-entropy, and perplexity 

measures [13]. Given the language model that assigns probabilities P(𝑤𝑤𝑖𝑖 |𝑤𝑤 𝑖𝑖−1 ), the 

probability of a sentence P(s) is calculated using the equation: 
P(s) = P(W) = ∏𝑙𝑙+1 𝑃𝑃(𝑤𝑤𝑖𝑖 |𝑤𝑤𝑖𝑖−1 ) 

 
(3.4), 

𝑖𝑖=1 𝑖𝑖−𝑛𝑛+1 

where s is the sentence or word sequence W=w1w2…𝑤𝑤𝑙𝑙 of length 𝑙𝑙. Then, for a test 

data set T composed of sentences (s1,s2, …,sT), the probability of the test set P(T) is 

derived from the product of the probabilities in the set, i.e., 

P(T)= ∏𝑙𝑙𝑇𝑇 𝑃𝑃(𝑠𝑠𝑖𝑖 ) (3.5). 

 
 

The cross-entropy Hp(T)  for the language  model P(𝑤𝑤𝑖𝑖 |𝑤𝑤 𝑖𝑖−1 ) on the test data T, is 

defined as:  
Hp(T) = -  1

 
𝑊𝑊𝑇𝑇 

 
 
log2 

 
 
𝑃𝑃(𝑇𝑇) (3.6), 

where WT is the length of T in terms of words. 
 
 

The perplexity measure PPL on the test data is defined by its relation with the cross 
entropy as: 

PPL = 2Hp(T) (3.7). 
 
 

The quality of the language model in terms of modelling the test data is better if it 

assigns the highest test data probability P(T), the lowest cross-entropy Hp(T), and the 

lowest perplexity PPL. The PPL metric defines, within it, relations to both P(T) and 

Hp(T) and is thus used to measure the performance of the language models in this 

study. Therefore, using equations (5), (6), and (7), one can convert from a test data 
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set’s PPL value to its cross-entropy and/or probability, and vice-versa. 
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As an approximate rule of thumb, it is suggested by Rosenfeld [45] that PPL reductions 

of 5% may be said to be practically insignificant to the application domain, noteworthy 

if it is a reduction of about 10-20%, and quite significant (and rare) when the reduction 

is of 30% or more. These significance or insignificance levels were mentioned in rela- 

tion to the speech recognition application domain. 

 
In multi-stage recognition systems, lattice rescoring approach is used to evaluate the 

output of language models. The lattice is made of the several transcription hypotheses 

output generated through the baseline language model (with relevant scores), and is 

rescored by another language model in the next stage of recognition. 

 
Other measures can be used to report on other valuable information about the quality 

and performance of the language models, over and above those mentioned here. For 

example, n-gram hit rates are also reported on by Karpov et al. [11]. 

 
 

3.5. Language Modelling Challenges 
LM challenges, some unique to a language, are often the central focus of LM research. 

This section attempts to survey some of these challenges as they have manifested 

themselves in studies of LM and ASR. 

 
At the forefront of the many challenges, there is the need to advance both ASR and 

LM research, especially for under-developed languages. 

 
The nature and regularities of a language - such as rich morphology, high inflexion, 

flexible word order, and compounding of words - present unique LM challenges that 

need to be addressed specifically for that language. The language structures of differ- 

ent languages belonging to different language families often warrant different LM ap- 

proaches and features. Furthermore, these complex language structures lead to large 

vocabulary sizes and OOV rates. Large word vocabularies themselves demand added 

knowledge about words. As examples: Russian is a morphologically rich inflective lan- 

guage that creates words by using affixes on stems and by inflecting for various syn- 

tactic features such as case, number, gender, etc. [46]; Khmer is written without 
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spaces between words [47]; French and Italian are highly inflective; and German com- 
pounds its content words [36]. 

 
The under-development of languages, as defined in terms of NLP resources scarcity, 

is the major LM challenge. Resources necessary for developing human language tech- 

nologies - such as text and speech corpora, pronunciation dictionaries, monolingual 

and multilingual electronic dictionaries, etc. - are lacking for the under-resourced lan- 

guages. Most of these languages are particularly African, South Asian, and Eastern 

European in origin [11]. 

 
There is a need to develop improved ASR systems with improved and/or robust mod- 

els for convenient and efficient HMI to be realisable. The improvement is towards con- 

tinuous, speaker-independent and spontaneous ASR systems with increased speed, 

robustness, vocabulary, and usefulness for the end-user [11]. 

 
N-gram modelling on word dependencies alone fails to represent the sub-word unit 

dependencies that may not be present at word level such as the relatedness of words 

sharing the same stem [48]. 

 
The standard n-grams (e.g. trigrams) modelling only on adjacent words result in low 

n-gram coverage, since this is a minimal observation of the information contained by 

the training data, and thus lead to high misrecognized valid n-grams. The poor word 

n-gram coverage is also realized when some sub-word language models are devel- 

oped [47]. 

 
The standard n-grams are also fallible to failing to capture complex syntactic, semantic 

and/or discourse information inherent in text sentences during LM. The relationships 

or dependencies between non-adjacent words in the sentence are not reliably esti- 

mated, if any, by the n-grams’ use of the independence Markov chain assumption of 

order n-1 [48]. Thus, the n-grams estimate with information or knowledge that is less 

representative of the language or language task. 
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Generalisation to unseen n-grams is difficult for language models estimating from a 

discrete space, such as standard n-grams using the word vocabulary, because a 

change of a word causes arbitrary changes in the n-gram probability [28]. 

 
The complex language models (such as approximated language models) that advance 

on the standard n-grams - increase the size of the (sentence hypotheses) search 

space, are computationally intensive, require added memory, and take time to train 

[44]. Even more demanding are the combinations of such models. At times, good lan- 

guage models may work quite well when used separately but diminish in performance 

when combined [35]. 

 
The data sparsity prevents the use of the full word history to estimate the word, and 

thus leads to poor estimates of LM probabilities. Across NLP domains, data sparsity 

(also known as data scarcity or data paucity) refers to the phenomenon of not observ- 

ing enough data to accurately model a language [49]. This makes it difficult to deter- 

mine the (true) distribution and pattern of a language as aspired by language models. 

Generally, sufficiently large in-domain data is often lacking to accurately model most 

language tasks. One of the unpleasant consequences of data sparsity is when there is 

large irrelevant training corpora leading to extremely small or zero probabilities being 

assigned to many valid word sequences. 

 
On the other hand, working or training with large data has implications of requiring 

increased amounts of training time and memory consumption [50]. Such models are 

sometimes too large for real applications to implement or use. 

 
The demand by statistical models for large in-domain training data for any language 

task, even the simplest, calls for universal language models that are universal and 

robust enough to be adapted to changing purposes [36]. 

 
There is no finite vocabulary, however chosen, that can fully cover a speaker’s need 

[36]. Speakers are fond to using routine words (such as names of friends, technical 

terms, etc.), code-switching speech, or a way of speaking depending on who they talk 

to. 
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The PPL measure for evaluating language models is not directly related to the recog- 

niser’s evaluation measure, namely, the WER. A better performing language model 

does not guarantee a better performing speech recogniser, since a lower PPL lan- 

guage model may not result in lower WER speech recognition performance. In part, 

the cause of such a relation may be because the PPL metric does not consider the 

acoustic similarity between words [36]. 

 
The dependence of statistical models on relative frequency estimates is not sufficient 

for the determination of the likeliness of an n-gram or word sequence. Is a trigram seen 

k times really k times more probable than one never seen? Or, is the appearance of a 

singleton (i.e., n-gram occurring just once in the training data) only a lucky coinci- 

dence signifying little likelihood [36]? Many perfect valid word sequences may not ap- 

pear even in very large corpora [49]. 

 
Another LM challenge is the inability to use linguistic grammars - constructed based on 

expert knowledge - for large domain language tasks. Grammars are thus far used for 

small restricted domains [43], and thus the grammatical knowledge uniquely mod- elled 

by the expert-based grammars is lost for broad domains. 

 
 

3.6. Characterisation and Classification of Language Modelling 
The units of LM include whole words, sub-word units such as morphemes (e.g. stems, 

roots, affixes, etc.), and could extend to even whole sentences. The use of whole words 

has become standard and ideal for traditional state-of-the-art speech recogni- tion LM 

[47]. Unique structures of a language, however, may prompt and necessitate deviation 

from convention to achieve improved modelling for the language task at hand. 

 
The use of a finite vocabulary by an ASR system means that all the words not listed in 

the vocabulary get classified as OOV and thus have high chances of being misrec- 

ognised [51]. The vocabulary mainly lists the units (words and/or sub-words) of LM. It 

thus follows that when the vocabulary entries are words – LM is word-based, and sub- 

word LM is implemented when sub-word units are listed by the vocabulary. On the 

hand, sentence-based LM will require the vocabulary to list individual sentences. As a 
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result, the complexity of the LM process grows as the LM unit gets bigger. It grows in 

terms of the required LM vocabulary size that would best represent the language task. 

An increasing vocabulary increases system complexity especially for morphologically 

rich languages. It also demands increase in the amount of training data required to 

train the language models. However, a bigger LM unit has benefits such as good word 

coverage though with less representative vocabulary [47]. 

 
Morpheme or sub-word based modelling has therefore become a promising direction 

that achieves better language models than those based on whole words and sen- 

tences for other languages, especially languages rich in morphemic structure such as 

inflective, derivative, and compounding languages [9]. This type of modelling yields 

morpheme or sub-word unit sequences as the recognised output and thus after recog- 

nition, the sequences are reconstructed to form whole words hypothesised sentences. 

 
The use of LM units other than whole-words requires that the vocabulary and the cor- 

pora be reconstructed to reflect such units. Morphological decomposers (e.g. Morfes- 

sors [52]) and text segmenters (e.g. Finite state machine (FSM)-based segmenter [51]) 

may be used to transform the word corpora into one that is morphemic for exam- ple. 

 
The modelling technique employed in the LM process further classifies the LM ap- 

proach. The usage of neural networks leads to a neural network LM approach [28]. 

The factored LM is based on modelling over a set of morphemes grouped into factors 

[53]. A decision-tree-based approach uses decision trees such as random forests in 

modelling word sequences [9]. The syntactico-statistical LM uses a combination of 

syntactic and statistical analyses of the text data to model the word sequences [11]. 

 
Both word-based and morphology-based language models were studied in Kirchhoff 

et al. [54] for the dialectic Arabic language. The models trained were: word bigrams 

and trigrams, particle models, class-based models where classes were defined by 

morphological components, morphological stream models where sequences of mor- 

phemes (e.g. stems, morph tags, etc.) are considered individually, and factored lan- 

guage models. The language models trained on morphological text data produced by 
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the Morfessor and FSM-based morphology learning and segmenting tools, respec- 
tively, were investigated in Tachbelie et al. [51] for the Amharic language whose writing 

system is syllabary. In Seng et al. [47] - word, syllables and character-cluster sub-word 

models were investigated in modelling the Khmer language that is written without 

spaces between words. Combinations or hybrids of the sub-word models were also 

investigated. Word and morphological random forests, standard word and morpholog- 

ical decision trees, and morphological class models have been studied for the inflec- 

tive languages Czech and Russian by Oparin [9]. 

 
 

3.7. Language Modelling Tools 
There exists processing and development tools for the various stages of LM (the 

stages as shown in Figure 3.1). For each stage, there may be special tools for that 

kind of processing – such as text normalization or pre-processing tools, training and 

testing tools. There are also toolkits that often include processing services and appli- 

cations for all stages of language model development. 

 
The existing LM toolkits include: Carnegie Mellon University-Cambridge University 

Statistical LM (CMU-Cam SLM) toolkit [55], Hidden Markov Model toolkit (HTK) for LM 

(HTK LM) [8], and Stanford Research Institute LM (SRILM) toolkit [56]. Amongst these 

toolkits, SRILM is the most widely used for LM research [50]. 

 
SRILM was first implemented in 1995 and released for public usage in 1999 [56]. Over 

and above the functionality for text processing and language model training, it has 

added functionality for perplexity computation, N-best and lattice rescoring, text tag- 

ging and text segmentation. The toolkit’s functionality is mainly distributed across three 

layers. The core functionality of the toolkit is contained in the first layer, where C++ 

libraries, language model classes, data structures, and smoothing methods are found. 

The second layer consist of functionality that is most relevant to the users of the toolkit: 

set of executable tools to carry out standard language model building and application 

tasks, and manipulation of LM lattices, N-best lists and confusion networks. The third 

layer comprises of scripts to conduct text manipulation tasks such as replacing words 

with classes and creating word lists from the training data. 
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The major LM techniques and/or algorithms supported by SRILM include: support for 

factor language models; a range of smoothing methods (such as Good-Turing, Witten- 

bell, modified and unmodified Kneser-Ney, additive smoothing, natural discounting, 

and absolute discounting); methods for reading n-gram counts in google format; vo- 

cabulary mapping mechanism to port count statistics; methods for n-gram adaptation; 

n-gram approximation mechanism of any implemented non-standard language mod- 

els; a client-server implementation that enables connection of LM computations and 

applications over a TCP/IP network connection; and vocabulary selection mechanism 

that allows selection of ranked vocabulary words [57]. 

 
The work in Karpov et al. [11] used SRILM for statistical text analyses and VisualSynan 

for syntactic text analysis to develop syntactico-statistical language model. The two 

tools, SRILM and VisualSynan, were also used in Kipyatkova et al. [46] for respective 

statistical text analysis and for obtaining morphological word features. Factor language 

models were developed as a result. The features (or factors) obtained were: the word, 

its lemma, stem, POS (part-of-speech), and morphological tag. 

 
The ClipText toolkit [58] can be used at the text processing stage to normalize/process 

the data into a format suitable for LM development. Morfessor, a freely available mor- 

phology learning tool that attempts to identify all morphemes found in a word, can be 

used for morphological decomposition [51]. 

 
 

3.8. Language Modelling Development 
 

This section details the development framework of the three LM toolkits that were used 

to implement the LM work of this study: HTK LM, SRIM, and CMU-Cam SLM. 

3.8.1. HTK LM development 
The LM building process as implemented by the HTK LM toolkit is three phased [8]: in 

the first phase, the training text is scanned and its n-grams are counted and stored in 

a database of gram files. In the second phase, some class mapping may be applied 

and some of the words be mapped to classes such as the OOV class. Then in the final 

phase, the counts from the resulting n-gram files are used to compute n-gram proba- 
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bilities which are stored in a language model file. Ultimately, the goodness/effective- 

ness of the resulting language model can be determined using the perplexity measure 

on some unseen test text data set. This process is represented by Figure 3.2. 

3.8.2. SRILM development 
The SRILM toolkit is based on the LM development framework shown on Figure 3.8. 

It is mainly a three steps modelling process [56] [59]: an n-gram count statistics file is 

firstly generated from the training text; then a language model is estimated using the 

count file and a word or sub-word unit lexicon/vocabulary; and lastly, the generated 

language model is evaluated on the test data. The main SRILM tools that are invoked 

in these three steps are ngram-count and ngram as shown on Figure 3.9. 
 
 

 
Figure 3.8: SRILM LM framework [51] 

 
 

3.8.3. CMU-Cam SLM Development 
The LM development process as implemented by the CMU-Cam SLM toolkit is cap- 

tured on Figure 3.9. At the first stage, the language model’s vocabulary is defined from 

the training text using the tools text2wfreq and wfreq2vocab. The first step of the sec- 

ond stage turns the training text into id n-grams (n-grams in which each word is mapped 

into an integer id). The second step uses the id n-grams and the vocabulary to estimate 

a language model. The last stage of the LM process evaluates the lan- guage model 

on the test text using performance measures such as perplexity. 
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Figure 3.9: CMU-Cam SLM framework [55] 
 
 
 

3.9. Related Work 
The work of this study takes a focused attention on LM for under-resourced languages. 

The under-resourced languages considered are Ndebele and Pedi, SA Nguni and So- 

tho languages respectively. One peculiar characteristic of these languages is their 

writing system or orthography: they are conjunctively- and disjunctively-written respec- 

tively. This means that the morphemes are written separately/disjunctively in the Sotho 

languages while they are often written clustered to form single words in Nguni lan- 

guages [4]. The interest is on determining the effect that this unique writing system 

may have on the quality of the language model produced to model word sequences 

for these languages. Studies done for other under-resourced languages in the context 

of LM are now explored. 

 
Improvements in LM for the dialectic Arabic language were investigated by Kirchhoff et 

al. [54] by development of various morphology-based language models. Among the LM 

challenges associated with Arabic are its complex morphology, huge dialectical 

variability, and differences between the spoken and written forms of the language. The 

stated challenges lead to increased PPL and OOV rates of language models devel- 

oped for the language. To address the associated challenges and thus improve the LM 

capability of the language models, four types of morphology-based language mod- els 

were explored: particle based models, morphological stream models, class-based 
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models, and factored language models. Improved LM results from some of the mor- 

phology-based language models are reported over standard word-based models. Sig- 

nificant WER reductions on an ASR application system are also reported. 

 
Factored language models were also researched for rescoring N-best lists for the mor- 

phologically rich inflective Russian [46]. To adequately model the rich morphology of 

the language, very large vocabulary and thus more data are required. Lack of such 

vocabulary and data leads to increased OOV entries. The influence of factor models 

on LM PPL and recognition WER were investigated. Language models were devel- 

oped using five factors: the word, its lemma, stem, part-of-speech, and morphological 

tag. The conducted experiment on large vocabulary continuous Russian speech 

recognition showed that FLM can reduce WER. 

 
The Russian language is also under-resourced in terms of language technology re- 

sources and research. To further develop better and improved statistical models for 

Russian, and address LM challenges associated with the language, Karpov et al. [11] 

introduced a method that empowers statistical text analysis with syntactic analysis. 

Here, text data was both statistically and syntactically analysed before n-gram LM de- 

velopment. Mainly, the method increases n-gram (bigram) coverage with the consid- 

eration of non-adjacent bigrams (i.e., bigrams from grammatically connected words 

separated by other words). The increased n-gram coverage reduces WER for large 

vocabulary continuous speech recognition (LVCSR) of Russian. Software tools used 

in the study include SRILM for LM statistical analysis, VisualSynan software for LM 

syntactical analysis, HTK for training of acoustic models, and Julius version 4.2 for 

decoding. The created language models used Kneser-Ney discounting and did not 

apply n-gram cut-off. 

 
The study by Oparin [9] implemented morphological random forest language models 

for automatic speech recognition of Russian and Czech languages. These languages 

are inflectional by nature characterised by a relatively free word order, reflected on the 

lexical level by rich morphological and derivation system. Morphological random for- 

ests are tree-based language models that incorporate various sources of morpholog- 

ical information into a language model. This work showed that exploiting random mor- 
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phological information using the random forest approach helps improve perplexity per- 

formance of language models, and ultimately recognition accuracies of Czech and 

Russian ASR systems. Word and morphological random forests were trained and then 

compared with a standard n-gram language model, word and morphological decision 

trees’ models, and morphological class models. Morphological random forests re- 

ported superior LM performance. 

 
In Seng et al. [47] different views of the text data (word and sub-word units) were 

exploited for the LM of the under-resourced Cambodian Khmer language. Language 

characteristics associated with Khmer that are challenging for ASR include: lack of text 

and speech language resources in digital form; a writing system with no explicit word 

boundary (i.e., like Chinese and Thai, Khmer is written without spaces between words) 

and thus requiring automatic segmentation into words or sub-words to make LM 

feasible; and inadequately studied acoustical and phonological characteristics. The LM 

work implemented uses a sub-word vocabulary and corresponding sub-word training 

data (syllable and character-cluster sub-words), a word vocabulary, and a hy- brid sub-

word/word (character-cluster/word) vocabulary. 

 
The hybrid character-cluster/word vocabulary is created by progressively adding N- 

most frequent words to the character-cluster vocabulary (N ϵ {1 000, 5 000, 10 000, 

15 000, and 20 000}). Trigram language models were trained on the different vocabu- 

laries. Language models developed using different corpora were linearly interpolated, 

and interpolation parameters were tuned on a separate development text set. For eval- 

uation, the language models were tested on a speech recognition system and three 

measures of performance were used: WER, syllable error rate (SER), and character- 

cluster error rate (CCER). CCER gave more accurate evaluation. For the recognition 

task, the word-based language model performed best. The progressively built hybrid 

character-cluster/word language model performed like (and elsewhere slightly better 

than) the word-based language model when the hybrid vocabulary contained at least 

5 000 words. 

 
Word and morpheme language models were investigated for the under-resourced 

morphologically rich Ethiopian Amharic language [51]. Coupled with data sparseness 

problem (having insufficient relevant training data) is the high OOV problem for ASR 



45 
 

of under-resourced languages. An OOV word is misrecognised by an ASR system, 

causing the neighbouring words to be also misrecognised. On average, an OOV word 

in the test data contributes to 1.6 errors in the speech recognition system. The ap- 

proach of vocabulary optimization (where the vocabulary is selected such that the OOV 

rate is reduced by, for example, increasing the vocabulary size or including more 

frequent words in the vocabulary – which in turn require increased amounts of data) 

does not work well for under-resourced languages due to the lack of substantial 

amounts of relevant data. System complexity is also increased with large vocabularies 

for morphologically rich languages. Thus, different approaches of dealing with the OOV 

problem are sought, and here morpheme-base language models are investi- gated. 

 
Naturally, sub-word vocabularies are smaller than word vocabularies. Text was seg- 

mented into morphemes using the unsupervised morphological segmentation method 

(employing the Morfessor tool) and a finite state machine-based supervised method. 

Word and morpheme-based trigram models have been developed using the SRILM 

toolkit. The language models were smoothed with modified Kneser-Ney smoothing, 

and all trigrams (regardless of their number of occurrence) found in the training data 

were included in the models. The study concluded that the use of morphemes for lex- 

ical and language modelling together with syllables and/or hybrid acoustic units for 

acoustic modelling is best for Amharic speech recognition. 

 
Sub-word units were investigated and found to reduce PPL significantly for the mor- 

phologically rich agglutinative Turkish language [48]. The LM challenges posed to the 

standard LM techniques by the language structure of such a language include the large 

OOV rates and modelling of regularities (such as morpheme syntactic depend- encies) 

possessed at sub-word level. Split words (words split into their stem and suffix 

components) n-grams and flexible n-grams (n-grams that condition the probability of a 

token on the previous n-1 tokens anywhere in the token sequence, not only on the 

preceding adjacent n-1 tokens as used by standard n-grams), derived using a mor- 

phological analyser and a disambiguator, are investigated over the standard word n- 

grams. The toolkit used for LM development was SRILM, and interpolated Kneser-Ney 

smoothed language models were developed. Split-words and flexible hexagrams 
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achieved a PPL reduction of 25% and 27% respectively, over the standard word hex- 
agram. 

 
On the local front, the SA context, a few NLP resource-creation projects for the SA 

languages are noted: the African Speech Technology (AST) project [60], the LWAZI 

project [61], and the National Centre for Human Language Technology (NCHLT) pro- 

ject [6] [62]. These three projects (and in their order) were publicly-funded by the SA 

Government. 

 
The AST project led to the creation of annotated speech corpora for five SA languages 

(Xhosa, Sesotho, Zulu, English, and Afrikaans), and ASR and TTS systems for de- 

ployment in a multilingual hotel booking system (a prototype) [60]. This was a four years 

project (2000 to 2003) and was funded by the Department of Science and Tech- nology 

(DST). The development of indigenous languages at a technological level for modern 

ICT and to help facilitate information access for all citizens, these were the motivating 

reasons at the back of the project. 

 
Considering the different speech varieties used by mother-tongue and non-mother- 

tongue speakers, eleven (11) transcribed speech databases were developed: 5 for 

English, 3 for Afrikaans, 1 for Xhosa, 1 for Zulu, and 1 for Sesotho. The speech varie- 

ties for English were mother-tongue speakers’ variety and four non-mother-tongue 

speakers’ varieties (Black, Coloured, Asian, and Afrikaans speakers). The speech va- 

rieties for Afrikaans included the mother-tongue speakers’ variety and two non-mother- 

tongue speakers’ (Black and Coloured) varieties. For each speech database, between 

300 and 400 speakers were recruited, and phone call recordings of each speaker had 

about 40 utterances of a mixture of spontaneous and read speech. 

 
The eventual SLU or spoken language dialogue prototype system that was developed 

for a hotel reservation task had its ASR sub-system developed using HTK and the TTS 

sub-system using Festival toolbox6. Usability tests that used mother-tongue speakers 

from three languages (Afrikaans, English, and Xhosa) indicated high percentage rates 

of successful bookings. Out of between 78 and 88 calls: 83%, 77%, and 60% were the 

 
6 www.festfox.org 

http://www.festfox.org/
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successful bookings through the Afrikaans, English, and Xhosa prototype systems, 
respectively. 

 
The LWAZI project [61] [63] [64] carried on the aims of the AST project in demonstrat- 

ing the usage of speech technology for information service delivery in SA. The three 

years long (2006 to 2009) LWAZI project produced core tools, technologies, and lin- 

guistic resources for the development of multilingual spoken dialogue systems (SDSs) 

in all the eleven official SA languages. The project was funded by the Department of 

Arts and Culture (DAC). 

 
The speech technology resources developed include: DictionaryMaker7 (a toolkit used 

for bootstrapping of pronunciation dictionaries), ASR-Builder8 (tools for training and 

experimenting with acoustic models for speech recognition), Speect9 (toolkit for TTS 

system development), LWAZI platform (Asterik platform for the development and de- 

ployment of SDSs), corpora (speech and text corpora for the development of ASR and 

TTS systems), phoneme sets, and electronic pronunciation dictionaries (with approx- 

imately 5000 words) [65]. The ASR speech data (approximately 5-10 hours long, per 

language) is made up of read and elicited speech, recorded over a telephone channel, 

from about 200 speakers (each producing 30 utterances) per language. 

 
Phone and word recognition ASR systems were developed. The systems were devel- 

oped using the HTK toolkit, with a flat phone-based language model employed for 

phone recognition. The recognition results from the developed systems included: 

phone-recognition correctness (i.e., percentage of correctly recognised phone labels 

relative to total number of expected phone labels), phone-recognition accuracy 

(phone-recognition correctness taking into consideration phone label insertions and 

deletions as well), phone PPL (bigram PPL on phoneme sequences that occur in the 

training data), and word-recognition accuracies from a selected small ten-words vo- 

cabulary recognition task. English recognisers (LWAZI, Ntimit, and WSJ) were used to 

perform the cross-language transfer procedure where a well-trained recogniser for 
 
 
 

7 www.dictionarymaker.sourceforge.net 
8www.asr-builder.sourceforge.net 
9 www.speect.sourceforge.net 

http://www.dictionarymaker.sourceforge.net/
http://www.asr-builder.sourceforge.net/
http://www.speect.sourceforge.net/
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a well-resourced language like English is used to recognise utterances of an under- 
resourced language. 

 
The NCHLT text and speech corpora projects like LWAZI, were done with collabora- 

tion by the DAC, Council for Scientific and Industrial Research (CSIR), and North-West 

University (NWU). Like its predecessors, i.e., the AST and LWAZI projects, the publicly 

funded NCHLT projects continued the development of linguistic and speech technol- 

ogy resources for the advancement of research and development in relation to NLP 

for all official SA languages. Unlike its predecessors, however, NCHLT was earmarked 

for the development of large vocabulary and broadband corpora. 

 
From the text corpora project, data resources and associated core technologies were 

developed for ten languages (excluding English) [6]. The data resources were: domain 

specific monolingual unannotated corpora and parallel annotated corpora (annotated 

at the token, orthographic, morphological, and morpho-syntactic layers). The associ- 

ated core technologies developed were: tokenisers, sentecisers, lemmatisers, POS 

taggers, and morphological decomposers. 

 
The NCHLT speech corpora project produced as results speech technology resources 

that include: orthographically transcribed speech corpora (approximately 50 hours long 

for each language, 800 hours in total, and from around 200 different speakers per 

language), pronunciation dictionaries (with approximately 15 000 words per lan- 

guage), benchmark ASR and TTS systems, and a data collection smartphone tool 

(Woefzela) [62]. 

 
The ASR systems were built using Kaldi and HTK to measure both word and phone 

accuracies during speech recognition. Phone-based systems were developed using 

HTK and word-based systems using Kaldi. The word-based systems used two types 

of language models: modified Kneser-Ney 3-gram (trigram) and 4-gram (quadrigram), 

and an ergodic word loop. 

 
An audit conducted in 2009 by Grover et al. [66] established the landscape of the South 

African languages with regards to human language technologies. The audit 
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came about after the realisation that the HLT research and development (R&D) com- 

munity – comprising of universities, science councils, and private companies – was 

not thriving as expected given the many opportunities of the field. The R&D activities 

were found to be fragmented and lacking central coordination. Hence the establish- 

ment of the audit as a step to improving on the situation by identifying HLT resources 

that were available and the amount of work being done for each SA language, and 

what needs to be done further towards creating a thriving HLT R&D industry. 

 
The audit was conducted through various steps: from developing the HLT audit termi- 

nology (to create a common frame of reference), defining an HLT inventory criteria 

framework (which specified the criteria on which HLT resources would be audited and 

documented), creating the audit questionnaire (to aid with the recording of information 

for various categories of resources – data, modules, applications, tools and platforms), 

to performing an inventory gap analysis (which identified gaps between current status 

of HLT components in South Africa and HLT components prioritised by the SA HLT 

community) upon feedback from the collected information. 

 
As part of the output from the audit, the following frameworks resulted: the HLT lan- 

guage index (list that ranks SA languages based on total HLT activity within the lan- 

guage, as well as the stage of maturity and accessibility of the language’s resources 

and applications), HLT component index (which provides an alternative perspective of 

the quantity of activity taking place within the various HLT component groupings – data, 

modules, and application categories), maturity index (level of maturity for the HLT 

component), accessibility index (accessibility of the language resources and ap- 

plications), HLT inventory analysis, and an inventory gap analysis representations. 

 
The mentioned representations are available as an online resource10, and application 

based language models for complete speech recognition are prioritised as needed 

speech modules. Although there has been much significant HLT work since the com- 

pletion of the audit, the findings remain relevant even today and help guide on-going 

efforts for HLT R&D research, such as the efforts of this study. 
 

10 https://static-content.springer.com/esm/art%3A10.1007%2Fs10579-011-9151-2/MediaOb- 
jects/10579_2011_9151_MOESM1_ESM.pdf 

https://static-content.springer.com/esm/art%3A10.1007%2Fs10579-011-9151-2/MediaObjects/10579_2011_9151_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1007%2Fs10579-011-9151-2/MediaObjects/10579_2011_9151_MOESM1_ESM.pdf
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With the explored literature, one notes similar objectives that were studied in compar- 

ison with our study: 

i. studying LM for under-resourced languages; 

ii. developing languages models with consideration to the unique nature of a lan- 
guage; 

iii. employing standard LM methods such as: word-based LM, n-gram LM, inter- 
polation, LM smoothing/discounting techniques such Kneser-Kney smoothing; 

iv. using standard development toolkits such as SRILM; 
v. varying the LM development approach to improve the quality of the models and 

thus PPL rates; 

vi. developing NLP resources for SA ‘s indigenous languages; 

Simultaneously, we observe the following main differences (in objectives): 

i. Using other standard LM techniques such as morphology-based random for- 

ests and FLM to incorporate various sources of morphological information into 

the developed model over and above the word level information; 

ii. examining the developed language models in a speech recognition system to 
determine influence on the systems’ performance; 
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Chapter 4: Methodology for Experiments 
This chapter describes the methodological development framework on which this study 

is based. The question of the need for LM research is explored in Section 4.1. Section 

4.2 describes the secondary data used to conduct the work. Sections 4.3, 4.4, and 4.5 

briefly describe the smoothing, interpolation and back-off, as well as higher- order n-

gram LM techniques, respectively, that were implemented in the experiments. To end 

the chapter, Section 4.6 details the conducted experiments. 

 
 

4.1. Significance of the Study 
 

Several reasons, theoretical and practical, have and continue to influence and moti- 

vate research studies of language models. We survey some of these reasons and 

thereby attempt signifying the necessity of continuing the investigation of better lan- 

guage models as ASR continues to evolve. At the onset, we are faced with the major 

LM problem: which LM unit, approach or technique, tools and toolkits best model a 

specific language task? 

 
The nature of, and thus the need to specially optimize LM development for, the lan- 

guage or language task; the interest to advance further standard LM approaches and 

techniques; addressing specific LM challenges such as data scarcity and efficient 

smoothing (and those mentioned in Section 3.5); and incorporating additional lan- 

guage information such as syntactic, semantic, and pragmatic information for im- 

proved modelling - these are amongst some of the reasons signifying LM research. 

 
Varying language model smoothing techniques such as absolute discounting, Good- 

Turing, un-modified and modified Kneser-Ney, Witten-Bell, and so on, have proved to 

lead to that smoothing technique that best models a language or language task. For 

example, modified Kneser-Ney smoothing, a variation of Kneser-Ney, was found to 

best model English [13]; and modified Kneser-Ney smoothing and absolute discount- 

ing for Portuguese [12]. 
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Under-resourced languages, also known as low density or low developed languages, 

mainly lack sufficient resources and tools required for implementation of human lan- 

guage technologies such as speech recognisers [3]. Their lack of unique writing sys- 

tem or stable orthography; limited presence on the web; lack of linguistic expertise; and 

lack of NLP resources such as text and speech corpora, dictionaries, robust acoustic 

and language models makes it difficult to port successfully and with ease HLT systems 

that are available for the resourced languages of the world such as English and 

Spanish. Furthermore, the complex morphology of many of these languages ag- 

gravates the data sparsity problem associated with languages that lack sufficient de- 

velopment data. It thus seems necessary to identify and recommend methods that will 

model the unique nature of a language and make best with the limited resources avail- 

able for that language. 

 
Exploiting different views of the text data, or sub-word units other than whole words, 

has yielded noteworthy results for various (under-resourced) languages. The influence 

of a word, its lemma, stem, POS, and morphological tag on the quality of the language 

model for Russian was investigated by Kipyatkova et al. [46]. Additional information 

was incorporated in the models for English by Deoras et al. [44]. Here, long context 

information, i.e., relations between non-adjacent words in a sentence, were incorpo- 

rated in LM for a multi-stage recognition process. Additional syntactic information was 

incorporated to statistical models via formal grammars by Kaufmann and Pfister [43]. 

 
The investigation of better models that advance the standard n-gram models has seen 

several efficient types of models being contributed as outcomes. Some of these ad- 

vances were elaborated on in Section 3.3. Such models include factored language 

models [53], neural network language models [28], approximated models [44] and 

maximum entropy language models [50]. Especially over the standard trigram model, 

other improvements found are: higher-order n-grams (beyond trigrams), caching, skip- 

ping, interpolated, modified Kneser-Ney smoothed, clustered, and sentence mixture 

models [35]. 

 
LM challenges, some unique to a language, have always motivated LM research. It has 

been found that data sparsity and word error segmentation, for example, could be 

addressed by exploiting different views of the text data other than the standard whole 
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word [47]. More training data for data sparsity, and varied smoothing and pruning tech- 

niques have shown to lead to better LM parameter estimates [12]. Given that the in- 

ternal structure of language models is language dependent, unlike acoustic models, 

many theoretical and practical LM advances cannot be applied to different languages 

and similar gain be realized [9]. Languages belonging to different language families 

usually differ greatly in structure and thus unique features, if not different approaches, 

should be developed for LM. 

 
 

4.2. Data 
 

The training data used in this study was obtained or acquired from the LWAZI [63] and 

the NCHLT [62] transcribed speech corpora projects. These were projects done with 

collaboration by the CSIR, DAC, and the NWU as part of the ongoing efforts for devel- 

oping large reusable resources for spoken language processing of under-resourced 

languages of South Africa. The data is managed and distributed by the Resource Man- 

agement Agency (RMA) at NWU [67] and is freely downloadable for research pur- 

poses. As exemplified in these projects, we develop language models using the ortho- 

graphic transcriptions of the produced speech. 

 
The LWAZI data was developed from 200 speakers with about 30 transcribed utter- 

ances each, producing about 5 to 8 hours of speech for each of the eleven SA lan- 

guages. About 148 to 210 speakers produced the NCHLT data, with around 56 hours 

of speech transcribed for each language. Both forms of data were compiled for devel- 

oping sufficient speech recognition vocabularies using read and elicited recorded 

prompts. The LWAZI data was telephone-based recordings and NCHLT recordings 

were smartphone-based. Tables 4.1 and 4.2 summarise the two corpora. 
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Table 4.1: LWAZI data summary [63] 
 

Language Code # total minutes 
# speech 
minutes 

# distinct 
phones 

Afrikaans Afr 213 182 37 
SA English Eng 304 255 44 
isiNdebele Nbl 564 465 46 
Sepedi Nso 394 301 45 
Sesotho Sot 387 313 44 
siSwati Ssw 603 479 39 
Setswana Tsn 379 295 34 
Xitsonga Tso 378 316 54 
Tshivenda Ven 354 286 38 
isiXhosa Xho 470 370 52 
isiZulu Zul 525 407 46 

 
Table 4.2: NCHLT  data summary [62] 

 
 

Language 
 

Code 
 

Speakers 
Words  

Duration 
Types Tokens 

Afrikaans Afr 210 8640 191023 56:22 
SA English Eng 210 8351 222884 56:25 
isiNdebele Nbl 148 15283 151276 56:14 
isiXhosa Xho 209 29130 136904 56:15 
isiZulu Zul 210 25650 130866 56:14 
Sepedi Nso 210 11196 294081 56:19 
Sesotho Sot 210 10600 273834 56:19 
Setswana Tsn 210 5610 280853 56:19 
siSwati Ssw 197 12246 132225 56:14 
Tshivenda Ven 208 7728 245510 56:16 
Xitsonga Tso 198 6118 236062 56:16 

 
 

Guided by the planned experiments, data was downloaded for all the Nguni (Ndebele, 

Zulu, Swati, and Xhosa) and Sotho (Pedi – also known as Northern Sotho, Southern 

Sotho, and Tswana) languages. The data was specially prepared before LM develop- 

ment was carried out as detailed by the next sub-section. 

 
4.2.1. Data Preparation and Analysis 

 
The text is prepared or pre-processed to a format suitable for LM development. The 
preparation procedure data gets tuned for optimal development on a specific toolkit. 
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Using the tocorpus.pl11 text data preparation script, the original acquired text was pro- 

cessed. Amongst other text elements, sentence constructs such as the following were 

removed in order to not form part of sentence/n-gram context during n-gram develop- 

ment: ellipses (…), unicodes (character codes), dashes surrounded by spaces and 

those at word ends (as in “phrase – phrase” and “three- to five-years”), some punctu- 

ation markers (such as , ; : % ! i () ), quotes, trailing spaces, double spaces, line/sen- 

tence leading spaces, starting and trailing tags (such as <s> and </s>, <orth> and 

</orth>, <p> and </p>), and annotation tags. The prepared text was added with sen- 

tence boundary markers <s> and </s> for HTK LM development. All text was case 

folded to lower case. Table 4.3 shows instances of prepared Pedi and Ndebele sen- 

tences. 

Table 4.3: Pre-processed text examples 
 

Pre-processed Text Examples 
Text Version Pedi  Ndebele 

 
Original 

le ge [s] Lepelle la ka go, le ka goa [um] bjang [n], le 
bjang , [s] ke tla yo bona moro- , moratiwa, [s] wa ka 
gosasa. 

 [n] [um] lilanga, elimatjhumi amabili [n], 
nabunane, kuNtaka. 

Without 
sentence 
boundary 
markers 

 
le ge lepelle la ka go le ka goa bjang le bjang ke tla yo 
bona moro- moratiwa wa ka gosasa 

 
 
lilanga elimatjhumi amabili nabunane kuntaka 

With 
sentence 
boundary 
markers 

 
<s> le ge lepelle la ka go le ka goa bjang le bjang ke tla 
yo bona moro- moratiwa wa ka gosasa </s> 

 
<s> lilanga elimatjhumi amabili nabunane 
kuntaka </s> 

 
 

The data was partitioned into train and test sets as detailed in Table 4.4. The LWAZI 

data was divided using the ratio of 80% train and 20% test sets; the NCHLT data came 

partitioned already into train and test sets (with test sets comprising data from 8 speak- 

ers and the rest for training sets). The training sets were augmented further when data 

pooling was done from related languages. 
 
 
 
 
 
 
 
 
 
 
 

11 http://source.cet.uct.ac.za/svn/people/smarquard/sphinx/experiments/scripts/tocorpus.pl 

http://source.cet.uct.ac.za/svn/people/smarquard/sphinx/experiments/scripts/tocorpus.pl
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Table 4.4: Train and Test data statistics 
 

 
 
 
 

Corpus 

 
Train 

 
Test 

 
Total 

 
 

# words 

 
# 

sentence 
s 

Average 
#words 

per 
sentence 

 
Min. 

Sentence 
length 

 
Max. 

Sentence 
length 

 
 
# words 

 
# 

sentenc 
es 

Average 
#words 

per 
sentenc 

e 

 
Min. 

Sentence 
length 

 
Max. 

Sentence 
length 

 
 
# words 

 
 
# sentences 

Average 
#words 

per 
sentence 

IsiNdebele_LWAZI 33098 4810 7 1 26 8173 1203 7 1 31 41271 6013 7 
IsiNdebele_NCHLT 140871 39415 4 1 16 10405 3108 3 1 11 151276 42523 4 
Sepedi_LWAZI 45206 4512 10 1 38 11317 1128 10 1 32 56523 5640 10 
Sepedi_NCHLT 279995 56284 5 1 6 14086 2829 5 2 5 294081 59113 5 
 
IsiNdebele_LWAZI+NC 
HLT 

173969 44225 4  

1 

 

26 
18578 4311 4  

1 

 

31 
192547 48536 4 

173969 44225 4 8173 1203 7 182142 45428 4 
173969 44225 4 10405 3108 3 184374 47333 4 

 

Sepedi_LWAZI+NCHLT 
325201 60796 5  

1 

 

38 
25403 3957 6  

1 

 

32 
350604 64753 5 

325201 60796 5 11317 1128 10 336518 61924 5 
325201 60796 5 14086 2829 5 339287 63625 5 

Nguni_LWAZI 146509 22675 6  8173 1203 7  154682 23878 6 
Nguni_NCHLT 540866 174241 3 10405 3108 3 551271 177349 3 
 

Nguni_LWAZI+NCHLT 
687375 196916 3 18578 4311 4 705953 201227 4 
687375 196916 3 8173 1203 7 695548 198119 4 
687375 196916 3 10405 3108 3 697780 200024 3 

Sotho_LWAZI 144228 16509 9 11317 1128 10 155545 17637 9 
Sotho_NCHLT 834682 172227 5 14086 2829 5 848768 175056 5 
Sotho_LWAZI+NCHLT 978910 188736 5 25403 3958 6 1004313 192694 5 

 
 

The average sentence (or word sequence) lengths in Table 4.4 show that the LWAZI 

sentences were designed (as prompts) longer than the NCHLT sentences. Because of 

the bigger size of the NCHLT corpus, the combination with the LWAZI corpus re- 

sembles more of the properties of the NCHLT text such as average sentence size. The 

average sentence length also suggests that n-gram development will go up to around 

this size for the different corpora, after-which LM evaluation of test sentences will rely 

on measures such as backing-off to lower n-grams to arrive at PPL estimates. 

 
 

4.3. Language Model Smoothing Techniques 
 

Language modelling mainly uses n-gram (i.e., word sequence) frequency counts from 

the training data to arrive at probability rates for the likeliness of a word sequence. 

Without smoothing, the MLE estimation method is used on its own for the estimation 

of these probabilities. In MLE estimation, using n-gram counts from the training data: 

more frequent n-grams will have high probabilities, less frequent n-grams low proba- 

bilities, and n-grams not present in the training data zero probabilities [1]. Even to those 

acceptable n-grams (according to the rules of the language, or generally known from 

human intuition), incorrect zero or low probabilities are assigned when they have no or 

less frequency counts according to the frequency distribution of the training data. 
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Furthermore, given that a language is ever evolving and that part(s) of the word se- 

quence may be correct when the entire sequence is not (e.g., individual words correct 

on their own) – it is thus difficult to arrive with certainty that a word sequence is entirely 

not probable, that it has a zero probability. Smoothing methods (SMs) are there to aid 

LM estimation in conditions when there are these zero and low-frequency counts lead- 

ing to zero and poor low probabilities associated with n-grams [1] [13]. 

 
There exist several smoothing techniques including the following that were imple- 

mented in this study: Good-Turing (GT), Absolute discounting (AD), Witten-Bell (WB), 

Linear discounting (LD), Additive smoothing (AS), Natural discounting (ND), modified 

Kneser-Ney (KN), and unmodified Kneser-Ney (UKN). 

 
 

4.4. Language Model Interpolation and Back-off 
 

Language model back-off and interpolation are other ways that help deal with the prob- 

lem of zero counts leading to zero probable n-grams, by relying on the n-gram hierar- 

chy [1]. In back-off, LM estimation “backs off” to a lower n-gram whenever there are 

higher-order n-grams not seen in the training data. In LM interpolation, probability es- 

timates are mixed from all n-grams in the estimation task. 

 
For example, a trigram model may be interpolated with unigram and bigram models 
as follows [35]: 
𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑤𝑤|𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1) 

= 𝜆𝜆𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑤𝑤|𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1) 

+ (1 − 𝜆𝜆)[𝜇𝜇𝜇𝜇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (𝑤𝑤|𝑤𝑤𝑖𝑖−1) 

+ (1 − 𝜇𝜇)𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑤𝑤)] (4.1), 
 
 

where λ and μ are constants such that 0 ≤ λ ≤ 1 and 0 ≤ μ ≤ 1. In back-off, when the 

trigram is observed in the training data – the count is used in estimating the trigram’s 

probability; otherwise – estimates from the lower bigram and unigram are recursively 

used to estimate the trigram’s probability. That is: 
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P∗(𝑤𝑤|𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1) if c(𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1𝑤𝑤𝑖𝑖 ) > 0, 

P(𝑤𝑤|𝑤𝑤𝑖𝑖−2𝑤𝑤𝑖𝑖−1) = α(𝑤𝑤𝑖𝑖−1𝑤𝑤𝑖𝑖 ) P∗(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−1)  elseif c(𝑤𝑤𝑖𝑖−1𝑤𝑤𝑖𝑖 ) > 0, (4.2), 

α(𝑤𝑤𝑖𝑖 ) P∗(𝑤𝑤𝑖𝑖 ) otherwise. 

where α is a constant such that 0 ≤ α ≤ 1. 
 
 

Language model interpolation also acts as one of the ways of combining LM tech- 

niques and/or language models together [35] [13]. Generally, higher-order n-grams 

are combined with lower-order n-grams, whilst elsewhere differently developed n- 

grams may be combined for efficient estimation. In the combination/interpolation, the 

different techniques or n-grams empower each other during estimation to avoid esti- 

mating probabilities of zero for some word sequences [13]. 

 
 

4.5. Higher-order N-grams 
 

Trigrams (i.e., n-grams of order 3, relying on two words contexts/histories) have proven 

to be the best performing standard n-grams [35]. However, in other LM tasks 

– longer or higher-order n-grams may be helpful and give better word sequence esti- 

mates than the conventional trigram model. The word histories or contexts relied on 

by the higher-order n-grams to predict the probability of a word may not be found in 

the training data, in such a case, techniques such as smoothing, back-off and interpo- 

lation are useful to help use estimates from lower n-grams. 

 
 

4.6. Experimentation 
The nature of the experimentation work determines best LM approaches to develop 

language models for the orthographic Pedi and Ndebele text for speech recognition. 

The designs of the experiments and how they were implemented are discussed next. 

 
4.6.1. Experiment Design and Implementation 

 
This section details the experiment work carried out in this study. The experiments 
were conducted using three LM toolkits: SRILM, HTK LM, and CMU-Cam SLM. 

 
When it was possible according to the limitations of - amongst others - the data, toolkit 

or LM approach, the experiments had n-gram development up to n-gram order 6 as a 
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default setup, and up to order 20 for experiment 3. The LM smoothing methods sup- 

ported in the toolkits were all exploited in the experimentation. The CMU-Cam SLM 

toolkit supports GT, AD, WB, and LD. The SRILM supports GT, AD, WB, AS, ND, KN, 

and UKN. GT is default for both toolkits. The HTK LM was used with GT discounting. 

 
Effective n-grams and smoothing methods for LM development of the two languages 

were thus investigated. In all the experiments, either the Ndebele or Pedi test data set 

was used when testing the developed models. 

4.6.1.1. Experiment 1: Baseline N-gram Models 
Ndebele and Pedi baseline n-gram language models were developed on the prepared 

data using the three toolkits: SRILM, HTK LM, and CMU-Cam SLM. The development 

framework for these toolkits is as described in Section 3.8. 

4.6.1.2. Experiment 2: Pooling data 

Text data was pooled from the two different text corpora (LWAZI and NCHLT), and 

from languages belonging to the same group (Nguni or Sotho). The different pooled 

data combinations were thus: Ndebele LWAZI+NCHLT, Nguni LWAZI, Nguni NCHLT, 

Nguni LWAZI+NCHLT, Pedi LWAZI+NCHLT, Sotho LWAZI, Sotho NCHLT, Sotho 

LWAZI+NCHLT. Experimentation was then carried out on the different data combina- 

tions. 

 
Table 4.5 presents the unique number of words per data set, with the unique words in 

non-pooled sets subsets of the pooled sets. 
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Table 4.5: Unique words count per data set 
 

Text 
Total # 
Words 

Unique # 
words 

Ndebele_LWAZI 33098 4503 
Ndebele_NCHLT 140871 14930 

Ndebele_LWAZI+NCHLT 173969 18293 

Pedi_LWAZI 45206 3171 
Pedi_NCHLT 279995 11083 
Pedi_LWAZI+NCHLT 325201 12862 
Nguni_LWAZI 146509 17975 
Nguni_NCHLT 540866 72026 
Nguni_LWAZI+NCHLT 687375 84238 
Sotho_LWAZI 144228 7664 
Sotho_NCHLT 834682 22911 
Sotho_LWAZI+NCHLT 978910 27097 

 
4.6.1.3. Experiment 3: Higher-order N-grams 

Language models were developed up to n-gram order 20 when it was possible with 

the toolkit, to determine the performance trend of the models as they increase in n- 

gram order. Other experiments developed up to n-gram order 6. N-gram order 6 was 

chosen because language model training for hexagrams is the maximum allowable for 

toolkits such as HTK LM and SRILM; and 20 was randomly chosen considering that 

the length of Pedi sentences could easily be 20 and more words. For each language, 

the experiment considered the different sized text in LWAZI, NCHLT, LWAZI+NCHLT, 

and cluster grouped text. 

4.6.1.4. Observations from the first three experi- 
ments 

At this stage of development, observations were made based on the initial three ex- 

periments to arrive at insights as to which n-grams and which smoothing methods 

modelled better the different texts and thus the different languages. The drawn insights 

were meant to inspire the manner of development to be carried out in the other exper- 

iments that were to follow. 
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4.6.1.5. Experiment 4: Interpolation 
Experiment 4 combined different language models. Models were combined using 

SRILM’s tools, during the training stage through the “-interpolate” parameter and dur- 

ing testing through the “-mix-lm” parameter. An experiment based on the LWAZI and 

NCHLT data was re-conducted with interpolation enabled during training. Best per- 

forming models from previous experiments were then combined with the hope of yield- 

ing an improved model out of them with the “mix-lm” parameter enabled at the testing 

stage. 



62 
 

Chapter 5: Results and Discussion 
Chapter 4 outlined the methodological approach of the study and described the nature 

and details of experiments that were designed. This chapter presents and discusses 

the results from the implementation of the experiments. The results are presented and 

analysed for each experiment at a time after analysing the vocabulary statistics of the 

LM training text. The chapter concludes by discussing the observed results. 

 
 

5.1. Vocabulary Statistics 
 

The vocabulary statistics presented in Table 5.1 map the unique most frequent words 

found in the training text, the lists of words are required for language model develop- 

ment. The words found in the testing data but unknown to the language model (as 

captured by the vocabulary lists) are modelled as out-of-vocabulary (OOV) words. The 

vocabularies consist of the top 20 000 words that are most frequent. The vocabularies 

were open such that OOV words were mapped to a special token such as “!!UNK” 

during LM estimation. The vocabulary tools “text2wfreq” and “wfreq2vocab” from the 

CMU-Cam SLM toolkit were used to define the vocabularies. 

 
In general, the statistics show that the bigger the size of the training text the bigger the 

vocabulary mapping the unique topmost frequent words. The vocabulary size, as was 

the text size in Section 4.2.1, increases as you analyse Ndebele/Pedi LWAZI, Nde- 

bele/Pedi NCHLT, Nguni/Sotho LWAZI, Ndebele/Pedi LWAZI+NCHLT, Nguni/Sotho 

NCHLT and Nguni/Sotho LWAZI+NCHLT texts, in that order. 

 
We note in the LWAZI+NCHLT and Nguni/Sotho LWAZI texts that the effect of pooling 

the data in this manner reduces the SRILM and CMU-Cam SLM’s OOV rates for the 

corresponding testing data. This observation suggests that pooling the data this way 

increases the coverage of the vocabulary with the addition of extra commonly used 

unique words. A similar observation can be observed from the HTK LM rates for the 

Ndebele test data, however, the Pedi test data rates are on the contrary increasing. 

Whilst we suspect that this contrary increase, in comparison with results from the other 

two toolkits, may be influenced by the nature of the toolkit more than that of the lan- 

guage, we could not verify this assertion. 
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The reduction in OOV rates is also not seen for the Nguni/Sotho NCHLT and 

LWAZI+NCHLT texts, here the rates significantly increase. Given that the test data is 

the same in both the grouped and non-grouped cases, the worsening of the rates in 

the grouped cases may be due to the limitation of the vocabulary containing the most 

frequent 20 000 words from the training corpora. This limited vocabulary is not wide 

enough to match the augmented training data (because of pooling and grouping) and 

thus does not include all the most frequent words as contained by the non-grouped 

text vocabulary (which alone make more than half of the maximum vocabulary size). 

Table 5.1: Text Vocabulary Size and OOV rates 
 

 
Train 

 
Test 

Vocabulary Size 
(most frequent 
20000 words) 

Out-Of-Vocabulary 

OOV OOV% 

Ndebele_LWAZI Ndebele_LWAZI 4503 426 5.21 
Ndebele_NCHLT Ndebele_NCHLT 14930 367 3.53 
Pedi_LWAZI Pedi_LWAZI 3171 319 2.82 
Pedi_NCHLT Pedi_NCHLT 11083 158 1.12 
 
Ndebele_LWAZI+NCHLT 

Ndebele_LWAZI+NCHLT 18293 717 3.86 
Ndebele_LWAZI 18293 372 4.55 
Ndebele_NCHLT 18293 345 3.32 

 
Pedi_LWAZI+NCHLT 

Pedi_LWAZI+NCHLT 12862 393 1.55 
Pedi_LWAZI 12862 244 2.16 
Pedi_NCHLT 12862 149 1.06 

Nguni_LWAZI Ndebele_LWAZI 17975 353 4.32 
Nguni_NCHLT Ndebele_NCHLT 20000 2032 19.53 
Nguni_LWAZI+NCHLT Ndebele_LWAZI+NCHLT 20000 3711 19.98 
Sotho_LWAZI Pedi_LWAZI 7664 264 2.33 
Sotho_NCHLT Pedi_NCHLT 20000 322 2.29 
Sotho_LWAZI+NCHLT Pedi_LWAZI+NCHLT 20000 719 2.83 

 
 
 

5.2. Baseline N-gram Models 
 

This section reports on the languages models developed as per Experiment 1 setup 

designed in the previous methodology chapter. Results from the three toolkits are an- 

alysed. The language model performance from this experiment will serve as a baseline 

on which models from the other experiments will be compared. 
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5.2.1. HTK LM Results 
 

LM experimentation using the HTK LM toolkit estimated statistical language models 

using the default GT smoothing method, for the allowable n-gram orders 1-6. Testing, 

however, is allowed up to n-gram order 10 by the toolkit. The data used in developing 

the toolkit’s models had sentence boundary markers. Table 5.2 shows the PPL results 

of the baseline language models with the associated OOV rates. The results are for 

the GT smoothed unigram to hexagram models for both LWAZI and NCHLT corpora. 

Table 5.2: Baseline PPL values using HTK LM toolkit 
 

Language Corpora SM 
N-gram PPL 

OOV% 
1g 2g 3g 4g 5g 6g 

Ndebele 
LWAZI 

GT 
657.60 11.47 8.83 8.83 8.75 8.77 4.39 

NCHLT 675.78 46.34 30.46 46.15 42.37 37.38 2.26 
 

Pedi 
LWAZI 

GT 
146.57 23.54 9.63 9.13 9.17 9.44 13.95 

NCHLT 45.14 22.63 11.39 10.29 10.36 10.85 11.56 

 
 

The lowest PPL value obtained for the LWAZI text was 8.75 by a 5-gram (pentagram) 

model, and 30.46 for the NCHLT text by a 3-gram (trigram) model. It is worth noting 

that the LWAZI pentagram differed with other models with an insignificant PPL amount 

of not more than 0.10, whilst the NCHLT trigram model differed with the higher models 

by a PPL difference from 6.00 to 16.00. We recall the sentence length averages from 

Table 4.4 that indicated that Ndebele LWAZI text sentences are on average 7 words 

long (train and test), whilst sentences in the NCHLT corpus are on average 4 and 3 

words long for the train and test sets, respectively. A correlation between the highest 

performing n-gram and average sentence length is thus observed. 

 
For the Pedi language, quadrigrams estimated the Pedi text with a relatively low PPL 

value of 9.13 for the LWAZI text, and 10.29 for the NCHLT text. The differences in PPL 

performance of the quadrigrams’ performance with other higher n-gram models are 

very low if not insignificant, they were found to be less than absolute 1.00. Recalling 

the sentence lengths averages Table 4.4 (10 words for LWAZI test and train sen- 

tences, and 5 words for the NCHLT sets), the quadrigram performance and the relative 

higher n-grams’ absolute PPL difference of 1.00 substantiate why n-grams higher than 

trigrams perform relatively better. 
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5.2.2. SRILM Results 
 

The second toolkit used for developing statistical language models was the SRILM 

toolkit. Tables 5.3 and 5.4 report results for the baseline SRILM language models. The 

results are for unigrams to hexagram models smoothed differently and not smoothed. 

KN language model development was not supported for the prepared LWAZI texts, 

hence the exclusion of the KN smoothing results on both tables for the LWAZI texts. 

 
Observantly, non-smoothed models are not necessarily under-performing when com- 

pared to all smoothed models. For example, unsmoothed versus AS smoothed (LWAZI 

and NCHLT) models for the Pedi language, and unsmoothed versus AD, KN, and AS 

(NCHLT) smoothed models for the Ndebele language. However, in most cases, and on 

average, smoothed models consistently outperform the unsmoothed models. For the 

higher n-gram models (i.e., trigrams to hexagrams), UKN (trigrams) and WB 

(quadrigrams to hexagrams) models consistently model better the LWAZI Pedi text; 

GT models for the NCHLT Pedi text; ND models for the LWAZI Ndebele text; and GT 

models for the NCHLT Ndebele text. 

Table 5.3: Baseline PPL values for Pedi using SRILM toolkit 
 

Language Corpora SM 
N-gram PPL 

OOV% 
1g 2g 3g 4g 5g 6g 

 
 
 
 
 
 
 
 

Pedi 

 
 
 

LWAZI 

NoSM 511.98 58.32 19.36 17.21 17.00 17.02  
 
 

2.82 

GT 511.98 41.31 13.82 12.34 12.26 12.33 
AD 511.98 38.95 13.34 11.83 11.69 11.72 
WB 522.15 38.76 12.76 11.15 10.99 10.99 
UKN 511.98 38.50 12.24 11.20 11.50 11.82 
ND 511.98 37.44 12.74 11.22 11.06 11.06 
AS 511.98 38.95 38.95 11.83 11.69 11.72 

 
 
 
 
 

NCHLT 

NoSM 383.98 67.17 26.88 20.91 19.51 18.75  
 
 
 

1.12 

GT 383.98 68.48 21.35 14.96 13.46 12.65 
AD 383.98 68.48 33.24 27.29 25.30 24.32 
WB 382.64 69.85 26.58 19.94 18.30 17.36 
KN 380.95 77.66 31.76 24.47 22.42 19.83 
UKN 383.98 67.59 26.44 19.44 17.92 16.86 
ND 383.98 66.69 26.20 19.95 18.38 17.47 
AS 383.98 68.48 68.48 27.29 25.30 24.32 
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Table 5.4: Baseline PPL values for Ndebele using SRILM toolkit 
 

Language Corpora SM N-gram PPL OOV% 
1g 2g 3g 4g 5g 6g 

 
 
 
 
 
 
 
 

Ndebele 

 
 
 

LWAZI 

No Sm. 2596.81 25.38 19.48 19.57 19.62 19.66  
 
 

5.21 

GT 2596.81 19.41 15.76 16.14 16.26 16.35 
AD 2596.81 18.83 14.53 14.61 14.56 14.70 
WB 2686.11 18.99 14.32 14.34 14.38 14.39 
UKN 2596.81 18.16 14.11 14.69 15.08 15.31 
ND 2596.81 17.85 13.69 13.70 13.74 13.75 
AS 2596.81 18.83 18.83 14.61 14.56 14.70 

 
 
 
 
 

NCHLT 

No Sm. 11414.60 103.06 70.80 66.59 66.57 66.57  
 
 
 

3.53 

GT 11414.60 94.40 55.49 50.28 50.27 50.27 
AD 11414.60 100.15 93.69 81.54 83.56 79.50 
WB 11290.80 96.82 61.87 56.63 56.60 56.60 
KN 11245.50 139.36 104.10 87.18 76.95 70.58 
UKN 11414.60 88.82 61.83 54.24 55.87 57.21 
ND 11414.60 89.08 58.59 53.79 53.77 53.77 
AS 11414.60 100.15 100.15 81.54 83.56 79.50 

 

5.2.3. CMU-Cam Results 
 

The language models developed with the third LM toolkit, CMU-Cam SLM, gave re- 

sults that bear similarity with some of the results derived from statistical language 

models of the other two toolkits already presented. Using trigrams to hexagrams for 

reporting, Tables 5.5 and 5.6 show CMU-Cam baseline n-grams’ performance. Uni- 

gram and bigram models are excluded because the CMU-Cam development setup 

either did not support their development with our data or resulted in unusually high 

PPL values such as 559230269.12. 

 
Of the four smoothing methods, WB, appeared to produce better models for both lan- 

guages. The lowest PPL values for trigram to hexagram models used WB smoothing 

for most corpora. 
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Table 5.5: Baseline PPL values for Pedi using CMU-Cam SLM toolkit 
 

Language Corpora SM 
N-gram PPL 

OOV% 
3g 4g 5g 6g 

 
 
 
 

Pedi 

 

LWAZI 

AD 12.18 11.25 11.75 12.32  

2.82 
GT 12.82 12.22 13.11 13.96 
LD 13.26 12.62 13.33 14.16 
WB 11.50 10.06 9.98 10.04 

 
 

NCHLT 

AD 18.85 13.34 12.18 12.17  

1.12 
GT 378.02 268.94 246.81 251.75 
LD 19.03 13.58 12.62 13.09 
WB 18.28 12.32 10.76 10.37 

 
Table 5.6: Baseline PPL values for Ndebele using CMU-Cam SLM toolkit 

 

Language Corpora SM 
N-gram PPL 

OOV% 
3g 4g 5g 6g 

 
 
 
 

Ndebele 

 

LWAZI 

AD 14.81 15.65 16.25 16.73  

5.21 
GT 14.92 16.02 16.78 17.40 
LD 18.50 20.63 22.37 23.80 
WB 14.78 15.14 15.32 15.42 

 
 

NCHLT 

AD 12.03 10.65 11.00 11.47  

3.53 
GT 14.08 12.26 12.69 13.17 
LD 11.52 10.17 10.52 10.90 
WB 11.79 10.11 10.12 10.21 

 
 

In analyzing N-gram models’ performance, quadrigrams and pentagrams do relatively 

well to model the Pedi LWAZI text, whilst pentagrams and hexagrams best model the 

Pedi NCHLT text. The Ndebele text appears to be best modeled by trigrams and quad- 

rigrams for LWAZI and NCHLT respectively. 

 
 

5.3. Pooling Data 
 

The pooling data experiment augmented the corpora by combining data from those 

languages that are most likely to share words and/or text with the Pedi and Ndebele 

languages, i.e., the Sotho and Nguni languages respectively. The text data size in- 

creased to help develop better estimates, the language domain of the text was wid- 

ened and models were exposed to new text to learn. Data was pooled from the two 
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LWAZI and NCHLT corpora, and from similar corpora belonging to other languages in 
the Nguni and Sotho language groups. 

 
5.3.1. HTK LM Results 

 
For the Pedi LWAZI+NCHLT data combination, the lowest PPL result of 13.50 was 

achieved with the trigram model, whereas the pentagram model was the other higher 

n-gram model closest in terms of performance by a PPL result of 14.19 on the same 

test data. LM PPL results from this experiment are tabulated in Table 5.7. 

Table 5.7: Pedi LWAZI+NCHLT data language models PPL performance 
 

Experiment 2, LWAZI+NCHLT Baseline 

Language 
Corpora N-gram PPL 

OOV% N-gram PPL OOV% 
Training Testing 3g 4g 5g 6g 

 
Pedi 

 
LWAZI+NCHLT 

LWAZI 13.95 20.52 28.74 15.29 17.20 4g 9.13 13.95 
NCHLT 12.58 18.17 24.26 12.35 19.13 4g 10.29 11.56 
LWAZI+NCHLT 13.50 19.73 27.14 14.19 11.91 N/A 

 
 

On the Pedi LWAZI test text, the trigram model gave the lowest PPL of 13.95. On Pedi 

NCHLT test data, the hexagram model gave the lowest 12.35 PPL. The models trained 

on the combined Pedi language data have not outdone those trained on the individual 

LWAZI or NCHLT data as reported with the baseline n-grams. 

 
While the Pedi LWAZI+NCHLT trigram model modelled better the Pedi LWAZI+NCHLT 

and LWAZI test data, the hexagram did for the Pedi NCHLT test text. The trigram also 

modelled the NCHLT test data well in that its PPL result differed with the hexagram’s 

by 0.23 PPL. 

 
Table 5.8 shows that for the Ndebele language, the higher n-gram models did not differ 

much in PPL performance amongst themselves as they did for the Pedi language. The 

model combinations, on each of the test data, do not give a PPL difference of more 

than 2; whilst the highest difference of 14.79 is realised for Pedi models when com- 

paring the trigram and pentagram models for example on the LWAZI test data. 
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Table 5.8: Ndebele LWAZI+NCHLT data language models PPL performance 
 

Experiment 2, LWAZI+NCHLT Baseline 
 
Language 

Corpora N-gram PPL  
OOV% 

 
N-gram 

 
PPL 

 
OOV% 

Training Testing 3g 4g 5g 6g 

 
Ndebele 

 
LWAZI+NCHLT 

LWAZI 14.91 15.04 15.24 15.39 2.67 5g 8.75 4.39 
NCHLT 32.08 30.20 30.38 30.15 3.52 3g 30.46 2.26 
LWAZI+NCHLT 23.85 23.13 23.40 23.43 2.13 N/A 

 
 

Although without significant differences among the LWAZI+NCHLT higher n-gram 

models: trigrams modelled Ndebele LWAZI test data better than other models (with 

PPL of 14.91), hexagrams outperformed on the NCHLT data (with PPL of 12.35), and 

quadrigrams gave better estimates on the combined LWAZI+NCHLT test data (with 

PPL of 23.13). We note that the LWAZI+NCHLT quadrigrams to hexagrams modelled 

the NCHLT data better than the baseline models. 

 
The models trained with the Sotho class LWAZI text and tested on the Pedi LWAZI 

text had the trigram model giving the lowest PPL of 14.61 as reflected in Table 5.9. 

The lowest PPL from a model trained on the combined Sotho languages’ NCHLT text 

is 13.80 from the quadrigram model tested on the Pedi NCHLT text. The Sotho class 

LWAZI+NCHLT quadrigram model gave the lowest 17.32 PPL  on the Pedi 

LWAZI+NCHLT test data. 

Table 5.9: Pedi and Sotho n-gram language models PPL performance 
 

Experiment 2, Sotho Baseline 
Corpora N-gram PPL 

OOV% N-gram PPL OOV% 
Training Testing 3g 4g 5g 6g 

Sotho_LWAZI Pedi_LWAZI 14.61 14.91 16.23 17.53 22.40 4g 9.13 13.95 
Sotho_NCHLT Pedi_NCHLT 13.97 13.80 14.54 15.81 19.05 4g 10.29 11.56 
Sotho_LWAZI+NCHLT Pedi_LWAZI+NCHLT 22.61 17.32 19.12 20.42 26.80 3g 13.50 11.91 

 
 

A gain from the Sotho class data is observed from the LWAZI+NCHLT models. The 
Sotho LWAZI+NCHLT quadrigram and pentagram performed better (with PPLs of 

17.32 and 19.12 respectively) than their corresponding baseline Pedi LWAZI+NCHLT 

quadrigram and pentagram (which had 19.73 and 27.14 PPL respectively as shown 

on Table 5.7). 
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Therefore, a single instance of benefit was observed from pooling data for the Pedi 

language in terms of PPL reduction. Except for LWAZI+NCHLT quadrigram and pen- 

tagram, both forms of augmentation (i.e., combining different corpora and combining 

corpora from related languages) resulted in models that gave higher/worse PPL val- 

ues than the baseline models. 

 
Nguni cluster language models performed as shown on Table 5.10 on the Ndebele 

test data. The only lowered PPL performance was seen from the Nguni class NCHLT 

quadrigram model which gave better estimates of the NCHLT test data with a PPL 

result of 40.09 compared to Ndebele NCHLT quadrigram’s of 46.15 (see Table 5.2). 

Table 5.10: Ndebele and Nguni n-gram language models PPL performance 
 

Experiment 2, Nguni Baseline 
Corpora N-gram PPL 

OOV% N-gram PPL OOV% 
Training Testing 3g 4g 5g 6g 

Nguni_LWAZI Ndebele_LWAZI 12.96 13.00 13.05 12.79 3.37 5g 8.75 4.39 
Nguni_NCHLT Ndebele_NCHLT 37.21 40.09 42.47 43.12 12.22 3g 30.46 2.26 
Nguni_LWAZI+NCHLT Ndebele_LWAZI+NC 33.37 31.30 33.37 34.11 13.66 4g 23.13 2.13 

 

5.3.2. SRILM Results 
 

No gain in terms of lowered PPL was deduced from combining the LWAZI and NCHLT 

corpora for training language models using the SRILM toolkit. The combination of the 

LWAZI and NCHLT data did not result in better models for modelling either corpus. 

Tables 5.11 and 5.12 show that no improvement in PPL was gained when testing the 

models trained on the augmented data on the same test text as the baseline models. 

In comparison, the baseline models gave better PPL results for both languages. 

Table 5.11: Pedi LWAZI+NCHLT PPL results on different test data 
 

Experiment 2, LWAZI+NCHLT Baseline 

Language 
Corpora 

SM 
N-gram PPL 

OOV% N-gram PPL OOV% Training Testing 3g 4g 5g 6g 
 
 
 
 

Pedi 

 
 
 
 
LWAZI+N 

CHLT 

 
LWAZI 

WB 31.29 23.83 22.90 22.85  
2.16 

5g / 6g 10.99  
2.82 

UKN 24.16 17.94 17.60 17.97 4g 11.20 
NCHLT GT 22.31 15.39 13.76 12.93 1.06 6g 12.65 1.12 
 
 
LWAZI+NC 

HLT 

WB 27.23 20.31 18.88 18.29 
 
 

1.55 

 
 

N/A 
GT 25.91 18.68 17.24 16.64 

UKN 26.19 19.31 18.29 17.88 
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Table 5.12: Ndebele LWAZI+NCHLT PPL results on different test data 
 

Experiment 2, LWAZI+NCHLT Baseline 

Language 
Corpora 

SM 
N-gram PPL 

OOV% N-gram PPL OOV% 
Training Testing 3g 4g 5g 6g 

 
 
 
Ndebele 

 
 

LWAZI+N 
CHLT 

LWAZI ND 24.79 24.65 24.73 24.74 4.55 3g 13.69 5.21 
NCHLT GT 59.95 54.21 54.20 54.20 3.32 5g / 6g 50.27 3.53 

 
 
LWAZI+NC 

HLT 

ND 42.08 39.97 40.01 40.02 
 
 

3.86 

 
 

N/A 
GT 43.51 41.41 41.54 41.64 

 
 

We note a lowered OOV rates when testing the LWAZI+NCHLT models on the Pedi 

NCHLT data, Ndebele LWAZI data, and Ndebele NCHLT data 

 
Although there are the benefits of the broadened domain and increased size of text, 

together with decreased OOV rates, the LWAZI+NCHLT results show that the merging 

of these two different corpora does not generally improve the performance of the lan- 

guage models in terms of lowering PPL. One factor to this may be the different ap- 

proaches used in designing and developing the two corpora. 

 
We also note from a smoothing methods perspective that the UKN models have shown 

improved performance when the two corpora were merged for the Pedi language. 

 
In borrowing data from other related languages to create Sotho or Nguni class data, 

no improvements in PPL were observed for both Pedi and Ndebele texts. Tables 5.13 

and 5.14 show PPL results from this experiment. 

Table 5.13: Sotho class language models’ PPL results 
 

Experiment 2, Sotho Baseline 
Corpora 

SM 
N-gram PPL 

OOV% N-gram PPL OOV% 
Training Testing 3g 4g 5g 6g 

Sotho_LWAZI Pedi_LWAZI WB 17.02 14.21 13.93 13.93 2.33 5g / 6g 10.99 2.82 
Sotho_NCHLT Pedi_NCHLT GT 29.23 19.82 17.72 16.66 2.29 6g 12.65 1.12 
 
Sotho_LWAZI+NCHLT 

Pedi_LWAZI+NCHL 
T 

WB 34.30 24.39 22.49 21.76  
2.83 

6g 18.29  
1.55 GT 34.52 23.97 21.98 21.22 6g 16.64 

UKN 32.16 22.55 21.19 20.71 6g 17.88 
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Table 5.14: Nguni class language models’ PPL results 
 

Experiment 2, Nguni Baseline 
Corpora 

SM 
N-gram PPL 

OOV% N-gram PPL OOV% 
Training Testing 3g 4g 5g 6g 

Nguni_LWAZI Ndebele_LWAZI ND 21.10 21.10 21.17 21.18 4.32 3g 13.69 5.21 
Nguni_NCHLT Ndebele_NCHLT GT 175.67 160.79 160.75 160.75 19.53 5g / 6g 50.27 3.53 

 
Nguni_LWAZI+NCHLT 

Ndebele_LWAZI+ 
NCHLT 

ND 114.98 110.15 110.24 110.28  
19.98 

4g 39.97  
3.86 

GT 117.59 113.30 113.55 113.76 4g 41.41 

 
 

The Sotho LWAZI models worsened the Pedi LWAZI performance by PPL results of 

up to 6 for the WB higher n-gram models. Increases between 4 and up to 16 in PPL 

were observed for the Sotho NCHLT GT models when compared to their baseline. The 

Sotho UKN LWAZI+NCHLT models outperformed the Sotho WB LWAZI+NCHLT 

models. This emergence of the UKN models in giving better performance for the 

merged corpora, suggests for Pedi and Sotho languages, an effort of investigating a 

fitting smoothing method whenever there is a change of corpus for LM purposes is 

necessary. The Pedi LWAZI OOV rate was lowered by the Sotho LWAZI models. 

 
The Nguni class language models did not show any PPL improvements over the Nde- 

bele baseline language models. Increases in PPL of more than 200% are realized when 

the performance of Nguni GT NCHLT higher n-gram models are compared to their 

baseline, and more than 100% increases are seen for the Nguni GT LWAZI+NCHLT 

models. It appears that the size of the text data, amongst other fac- tors, was a huge 

factor for the Nguni language models as the difference in average PPL is very large 

when compared to the NCHLT and LWAZI+NCHLT Ndebele models (approximately 

113 and 71 respectively) and small when compared to the LWAZI Nde- bele models 

(≈7). 

 
5.3.3. CMU-Cam Results 

 
No performance gains from pooling the data under the CMU-Cam SLM toolkit were 

observed as was generally the case for the other two toolkits. From all the combina- 

tions, the baseline models had better performance. Cross examining the PPL rates 

however, the rates of the Sotho models are generally not that far from those of the 

Pedi language, with PPL differences of at least 1.97 and at most 5.44. This may sug- 

gest that the added data from the other languages does not cause much confusion to 
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the models, thus not degrading their quality. This also remarks on the closeness/relat- 

edness of the text of the concerned Sotho class of languages. Wide PPL differences 

(at least 4.79 and at most 16.64) were observed when comparing the Nguni class and 

Ndebele language models. Tables 5.15 and 5.16 reflect these observations. 

Table 5.15: Pedi data pooling experiment, CMU-Cam SLM 
 

Experiment 2, LWAZI+NCHLT and Sotho Baseline 
Corpora 

SM 
N-gram PPL 

OOV% N-gram PPL OOV% 
Training Testing 3g 4g 5g 6g 

Sepedi_LWAZI+NCHL Sepedi _LWAZI+NCHLT  
 

WB 

19.71 13.71 12.40 12.13 1.55 N/A 
Sotho_LWAZI Sepedi_LWAZI 14.74 12.26 12.08 12.14 2.33 5g 9.98 2.82 
Sotho_NCHLT Sepedi_NCHLT 23.72 15.11 12.87 12.34 2.29 6g 10.37 1.12 
Sotho_LWAZI+NCHLT Sepedi _LWAZI+NCHLT 25.03 16.44 14.48 14.08 2.83 6g 12.13 1.55 

 
Table 5.16: Ndebele data pooling experiment, CMU-Cam SLM 

 
Experiment 2, LWAZI+NCHLT and Nguni Baseline 

Corpora 
SM 

N-gram PPL 
OOV% N-gram PPL OOV% 

Training Testing 3g 4g 5g 6g 
Ndebele_LWAZI+NCHLT Ndebele_LWAZI+NCHLT  

 
WB 

16.26 14.99 15.07 15.19 3.86 N/A 
Nguni_LWAZI Ndebele_LWAZI 21.50 21.96 22.25 22.38 4.32 3g 14.78 5.21 
Nguni_NCHLT Ndebele_NCHLT 26.19 16.38 15.18 15.04 19.53 4g 10.11 3.53 
Nguni_LWAZI+NCHLT Ndebele_LWAZI+NCHLT 32.90 23.58 22.11 21.89 19.98 4g 14.99 3.86 

 
 
 

5.4. Higher-order N-grams 
 

The higher-order n-grams experiment sought to estimate language models up to the 

(random selected) order 20 to determine the performance trend of the models as they 

increase in n-gram order. 

 
5.4.1. HTK LM Results 

 
There was not much that could be deduced from this experiment (i.e., developing and 

estimating with n-grams beyond hexagrams) when using the HTK LM toolkit. This is 

because the toolkit supports estimation of n-grams up to order 6 (i.e., n = 6). Since 

testing is allowed beyond n-gram order 6 and up to order 10, the back-off method of 

estimation - that uses estimates from lower n-grams when not present in higher n- 

grams - was employed to test and give estimates at the n-gram order levels of 7-10 

(i.e., heptagrams to decagrams). The results indicate rising or stable levels of PPL 

performance beyond hexagrams, this is expected since the testing model is not of the 
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required order, i.e., it is not of the same n-gram order as the word sequences that are 
tested. 

 
Figure 5.1 shows the PPL performances of the Pedi and Sotho models for the n-gram 

orders 1 to 10. The performances for Ndebele and Nguni n-gram models are projected 

on Figure 5.2. 
 
 

 
Figure 5.1: Pedi and Sotho higher-order language models’ PPL results, HTK LM 
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Figure 5.2: Ndebele and Nguni higher-order language models’ PPL results 
 
 
 

5.4.2. SRILM Results 
 

SRILM allows, according to the manual description of the ngram-count 12 tool, n-gram 

estimation up to order 9 although not restricting estimation when commands specify 

orders beyond 9. 

 
The results shown on Figures 5.3 and 5.4 indicate that high-order n-grams above the 

standard trigrams appear to be suitable for modelling both the disjunctive and con- 

junctive Pedi and Ndebele languages. The high order appears to be bounded to n = 6, 

after which the performance remains stable throughout or stable up to n-gram order 9 

and then deteriorates a bit thereafter. 

 
For the Pedi language, low PPL n-gram language models were pentagrams and hex- 

agrams. Trigrams and quadrigrams were observed to better model the Ndebele text. 
 
 

12 http://www.speech.sri.com/projects/srilm/manpages/ngram-count.1.html 

http://www.speech.sri.com/projects/srilm/manpages/ngram-count.1.html
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An exception, however, and the only PPL gain observable beyond hexagrams out of 

this experiment was when the Sotho LWAZI 10-gram (decagram) best modeled the 

Pedi LWAZI data. 
 
 

 
Figure 5.3: Pedi and Sotho higher-order language models’ PPL results, SRILM 

 
 
 

 
Figure 5.4: Ndebele and Nguni higher-order language models’ PPL results, SRILM 
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5.4.3. CMU-Cam Results 
 

The third experiment revealed that CMU-Cam SLM supports LM training up to n-gram 

order 6 like HTK LM, and LM testing up to n-gram order 9. The results, as shown on 

Figure 5.5 and Figure 5.6 indicate that when using the CMU-Cam SLM toolkit for LM 

development: pentagrams and hexagrams are sufficient to model the disjunctive Pedi 

text, and trigrams and quadrigrams for modelling the conjunctive Ndebele text. 
 
 

 
Figure 5.5: Higher-order n-gram performance for Pedi, CMU-Cam SLM. 

 

 
Figure 5.6: Higher-order n-gram performance for Ndebele, CMU-Cam SLM. 
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5.5. Interpolation 
 

In further attempts to improve on the developed language models, this experiment 

augmented the developed models with interpolation: during training and during testing. 

By default, n-gram language models are not trained to include interpolation for SRILM 

LM estimation. The interpolation technique was enabled and language models were 

retrained using the development procedure of the baseline models. Best performing 

models from previous experiments, trained with interpolation and not, were then mixed 

for the during-testing interpolation. 

 
5.5.1. Interpolation at Training 

 
When interpolation was enabled during training, LM performance remained the same 

for some smoothing methods and noticeably improved for others. Thus, interpolation 

during training had effect in the quality of some of the language models. The OOV 

rates remained unchanged when compared to the baselines. 

 
In the case of Ndebele LWAZI text, training with interpolation enabled did not change 

the performance of baseline GT, AD, KN, ND, and AS smoothed models. Table 5.17 

shows the (positive) changes in PPL performance for the WB and UKN smoothed 

language models. Interestingly, interpolated WB models emerged as better modelling 

the LWAZI text – better than baseline ND models (interpolated or not). The difference 

in performance between the two sets of models is not negligible though, interpolated 

WB higher n-grams gave an average PPL performance of 13.42 and 13.72 was given 

by the ND higher n-grams (thus an average difference of 0.30). The interpolated WB 

quadrigram model performed with the lowest 13.30 PPL. 
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Table 5.17: Ndebele n-grams trained with interpolation 
 

Experiment 4, Interpolation enabled at Training Baseline 
Toolkit & 
Language 

Corpus 
Smoothing 

Method 
PPL 

N-gram PPL OOV% 
3g 4g 5g 6g 

 
SR

IL
M

, N
de

be
le

 

 
LWAZI 

ND 13.69 13.70 13.74 13.75 3g 13.69  
5.21 WB 13.41 13.30 13.44 13.56 3g 14.32 

UKN 13.58 13.89 14.05 14.18 3g 14.11 
 

 
 
 

NCHLT 

 
GT 

 
55.49 

 
50.28 

 
50.27 

 
50.27 

 
5g / 6g 

 
50.27 

 
 
 

3.53 WB 56.96 50.80 50.15 50.15 5g / 6g 56.60 
KN 77.02 66.84 61.06 58.74 6g 70.58 
UKN 58.37 50.14 51.22 51.83 4g 54.24 

 
 

Interpolated WB, KN, and UKN smoothed models were observed with changes in PPL 

performance when compared to their corresponding baseline models for the Ndebele 

NCHLT data. No changes in performance were shown by interpolated GT, AD, ND, 

and AS smoothed models. In terms of higher n-grams average performance, interpo- 

lated/baseline GT smoothed models remained better in estimation by 51.58 PPL, fol- 

lowed by interpolated WB smoothed models with 52.01 PPL. However, interpolated 

UKN quadrigram model the lowest PPL of 50.14, followed by interpolated WB penta- 

gram and hexagram models with PPLs of 50.15. 

 
Table 5.18 helps us analyse the effect of interpolation at training for Pedi language 

models. Like the Ndebele language, interpolation improved the performance of the WB 

and UKN smoothed models for the LWAZI data; and WB, KN, and UKN smoothed 

models for the NCHLT data. The performance for the interpolated GT, AD, ND, and AS 

smoothed models was the same as the baseline models’. 

Table 5.18: Pedi n-grams trained with interpolation 
 

Experiment 4, Interpolation enabled at Training Baseline 
Toolkit & 
Language 

Corpus 
Smoothing 

Method 
PPL 

N-gram PPL OOV% 
3g 4g 5g 6g 

 
SR

IL
M

, P
ed

i 

LWAZI 
WB 12.38 10.64 10.54 10.68 5g / 6g 10.99 

2.82 
UKN 11.80 10.61 10.72 10.89 4g 11.20 

 
 
 

NCHLT 

GT 21.35 14.96 13.46 12.65 6g 12.65  
 

1.12 
WB 25.63 18.97 17.28 16.38 6g 17.36 
KN 28.59 21.40 19.42 17.57 6g 19.83 
UKN 25.69 18.71 17.04 15.88 6g 16.86 
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The WB and UKN higher n-grams continue complementing each other in better mod- 

elling the Pedi LWAZI data. 

 
For the Pedi NCHLT data, interpolated GT higher n-grams maintained the relatively 

best performance although with same PPL results as in the non-interpolated models 

case. The WB, KN, and UKN models did improve in performance but not to the level 

of toppling the GT models. 

 
5.5.2. Interpolation at Testing 

 
Interpolation was further explored, this time at the testing phase and for selected mod- 

els. Using SRILM’s “–mix-lm” tool, best performing language models from the previous 

experiments were mixed/interpolated with the hope that a better performing model 

would result out of their combination. Models that did not implement interpolation dur- 

ing training from experiment setups 1 through 3, and the models that implemented 

interpolation during training in experiment setup 4 were used for the mixing experi- 

ment. Furthermore, having learnt that certain n-grams do well in modelling either the 

Pedi or Ndebele language (i.e., mostly pentagrams and hexagrams for the former and 

trigrams and quadrigrams for the latter), non-interpolated and interpolated pentagrams 

and hexagrams were mixed for the Pedi language, and trigrams and quadrigrams for 

the Ndebele language. For each corpus, the test data was used to compute the re- 

quired mixture weights for the mixing exercise. 

 
A survey of best performing models from the first three experiments revealed the mod- 

els in Table 5.19 for the different language corpora. These models were mixed and 

their PPL performance recorded in the “Mixed_LM” column. In comparison, the mixing 

led to relatively better models (although the PPL differences are negligible) compared 

to at least one of the models in the mixture. The performance of the mixed model was 

better than that of the two individual models that were mixed for the Ndebele language 

and Nguni class LWAZI texts only. 
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Table 5.19: Mixed best language models 
 

Experiment 4, Interpolation at Testing (models trained without interpolation) 

Toolkit Corpus LM1 PPL LM2 PPL 
Mixture 
Weight 

Mixed_LM 
 

SR
IL

M
 

Ndebele_LWAZI 3g_ND 13.69 3g_UKN 14.11 0.679969 13.26 
Ndebele_NCHLT 5g_GT 50.27 4g_ND 53.79 0.672540 52.77 
Ndebele_LWAZI+ 
NCHLT 4g_ND 39.97 4g_UKN 40.35 0.933360 41.83 

Nguni_LWAZI 3g_ND 21.10 3g_KN 21.28 0.587611 20.09 
Nguni_NCHLT 5g_GT 160.75 4g_UKN 167.98 0.926465 169.31 
Nguni_LWAZI+N 
CHLT 4g_ND 110.15 4g_WB 111.69 0.712472 113.51 

 

Pedi_LWAZI 5g_WB 10.99 5g_ND 11.06 0.383562 12.50 
Pedi_NCHLT 6g_GT 12.65 6g_UKN 16.86 0.972926 20.76 
Pedi_LWAZI+NC 
HLT 6g_GT 16.64 6g_UKN 17.88 0.898434 23.07 

Sotho_LWAZI 5g_WB 13.93 4g_UKN 14.10 0.971018 17.07 

Sotho_NCHLT 6g_GT 16.66 6g_UKN 20.02 0.967848 28.27 

Sotho_LWAZI+NC 
HLT 

6g_UKN 20.71 6g_GT 21.22 0.114647 30.35 

 
 

The second part of the mixing experiment combined pentagrams and hexagrams for 

the Pedi language and trigrams and quadrigrams for the Ndebele language. No benefit 

in terms of lowered PPL is noted for the Pedi pentagram and hexagram model combi- 

nations as shown by Table 5.20. 
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Table 5.20: Mixed Pedi pentagrams and hexagrams 
 

Experiment 4, Interpolation at Testing (penta-hexagrams trained without interpolation) 
Toolkit Language & Corpus LM1 PPL LM2 PPL Mixed_LM PPL 

  
SR

IL
M

 

Pedi_LWAZI 
5g_WB 10.99 6g_WB 10.99 12.76 
5g_ND 11.06 6g_ND 11.06 12.74 

Pedi_NCHLT 
5g_GT 13.46 6g_GT 12.65 21.35 
5g_UKN 17.92 6g_UKN 16.86 62.26 

Pedi_LWAZI+NCHLT 
5g_GT 17.24 6g_GT 16.64 25.91 
5g_UKN 18.29 6g_UKN 17.88 65.34 

Sotho_LWAZI 
5g_WB 13.93 6g_WB 13.93 17.02 
5g_UKN 14.44 6g_UKN 14.87 51.25 

Sotho_NCHLT 
5g_GT 17.72 6g_GT 16.66 29.23 
5g_UKN 21.28 6g_UKN 20.02 77.59 

Sotho_LWAZI+NCHLT 
5g_UKN 21.19 6g_UKN 20.71 79.65 
5g_GT 21.98 6g_GT 21.22 34.52 

 
 

Although there is also no gain in terms of lowered PPL values for the Ndebele trigram 

and quadrigram models as reflected by Table 5.21, some of the mixed models gave 

performances similar to individual models of the combination. 

Table 5.21: Mixed Ndebele trigrams and quadrigrams 
 

Experiment 4, Interpolation at Testing (tri-quadrigrams trained without interpolation) 
Toolkit Language & Corpus LM1 PPL LM2 PPL Mixed_LM PPL 

  
SR

IL
M

 

Ndebele_LWAZI 
3g_ND 13.69 4g_ND 13.70 13.69 
3g_UKN 14.11 4g_UKN 14.69 14.12 

Ndebele_NCHLT 
3g_GT 55.49 4g_GT 50.28 55.49 
3g_ND 58.59 4g_ND 53.79 58.59 

Ndebele_LWAZI+NCHLT 
3g_ND 42.08 4g_ND 39.97 42.08 
3g_UKN 42.37 4g_UKN 40.35 42.41 

Nguni_LWAZI 
3g_ND 21.10 4g_ND 21.10 21.10 
3g_WB 21.94 4g_WB 21.94 21.94 

Nguni_NCHLT 
3g_GT 175.67 4g_GT 160.79 175.65 
3g_UKN 184.24 4g_UKN 167.98 184.43 

Nguni_LWAZI+NCHLT 
3g_ND 114.98 4g_ND 110.15 116.77 
3g_WB 116.77 4g_WB 111.69 114.98 

 
 

The language models trained with interpolation were also mixed. Mainly, interpolated 

WB and UKN smoothed models were found to best model the Ndebele language and 

were thus mixed; and interpolated WB, GT, and UKN models were mixed for the Pedi 
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language. As shown by Table 5.22, the only comparatively lowered PPL value was 
observed for the Ndebele LWAZI mixed smoothed model. 

Table 5.22: Mixed models trained with interpolation 
 

Experiment 4, Interpolation at Testing (tri-quadrigrams trained with interpolation) 

Toolkit Language & Corpus LM1 PPL LM2 PPL Mixed_L 
M PPL 

 
SR

IL
M

 

Best Ndebele LMs 
Ndebele_LWAZI 4g_WB 13.30 3g_UKN 13.58 13.16 

Ndebele_NCHLT 4g_UKN 50.14 6g_WB 50.15 57.04 

Best Pedi LMs 
Pedi_LWAZI 5g_WB 10.54 4g_UKN 10.61 12.39 
Pedi_NCHLT 6g_GT 12.65 6g_UKN 15.88 20.83 

 
Tri-quadrigrams trained with interpolation 

 
 

Ndebele_LWAZI 
3g_WB 13.41 4g_WB 13.30 13.41 

3g_UKN 13.58 4g_UKN 13.89 13.60 

 
Ndebele_NCHLT 

3g_UKN 58.37 4g_UKN 50.14 58.42 

3g_WB 56.96 4g_WB 50.80 56.96 
Penta-hexagrams trained with interpolation 

Pedi_LWAZI 
5g_WB 10.54 6g_WB 10.68 12.38 
5g_UKN 10.72 6g_UKN 10.89 33.04 

Pedi_NCHLT 
5g_GT 13.46 6g_GT 12.65 21.35 
5g_UKN 17.04 6g_UKN 15.88 54.42 

 
 
 

5.6. Discussion of Results 
 

This section discusses the analysed results and findings. 
 
 

Selected findings from this study confirmed some standard LM practices to be appli- 

cable to the development of language models even for the Pedi and Ndebele lan- 

guages. A few findings are noted. 

 
Data preparation is a crucial LM step that adequately prepares the text data for effi- 
cient LM development. Smoothing of language models yielded models that improved 
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modelling quality. Higher-order n-gram language models (i.e., trigrams to hexagrams) 

were more efficient than lower-order n-grams (unigrams and bigrams) in LM estima- 

tion. Interpolation can improve the LM estimation process to arrive at a reasonable 

estimation for a likely word sequence due to the combination of models and therefore 

combined modelling efficiency and knowledge. 

 
That trigrams and quadrigrams model Ndebele text better and quadrigrams to hexa- 

grams model better the Pedi text could be stemming from the average length of word 

sequences and sentences of the two languages as a consequence of their conjunctive 

and disjunctive writing systems respectively. The Ndebele language word sequences 

are usually short, whilst the Pedi language word sequences are usually long. This 

observation is confirmed when one analyses the text of the concerned languages as 

could be deduced, for example, in Tables 1.1, 4.3, 4.4, and 4.5. 

 
Especially as realised using the widely adopted SRILM toolkit, different smoothing 

methods cope differently with the two writing systems. ND and GT seem to naturally 

cope well with the conjunctive writing of the Ndebele language, whilst UKN and WB 

appeared to cope better with the disjunctive Pedi language writing 

 
Some of the findings did not confirm existing literature assertions. For example, trigram 

n-grams and the KN smoothing method are recommended for standard LM develop- 

ment. In this study, higher-order n-grams beyond trigrams (i.e., quadrigrams to hexa- 

grams) were most performing and thus recommended; and other smoothing methods 

such as GT, WB, ND, and UKN smoothing led to better language models. As per the 

observations, KN smoothed models either performed with higher PPL values or their 

estimation was not supported on the development setup. Trigram n-grams did give 

best performances in some of the LM estimation cases, especially for the Ndebele 

language, but such performances could not be observed generally as expected. 

 
The pooling data experiment did not yield improved language models. There were 

positive expectations behind the design of the experiment given that such a design 

would significantly increase the size of the text data, widen the text domain, and com- 

paratively reduce OOV rates. Also, the two classes of languages (Nguni and Sotho 

classes) are in speech or when spoken closely related to an extent that you need only 
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be fluent or master one of them too ably converse with speakers of the other languages 

belonging to the same group. Whilst this holds true from the speech point of view, a 

contrast is observed on the orthography of the language. The pooling data exercise 

appears to have brought confusion (in terms of unfamiliar words and sentences) to the 

language models and their performances were thus poor. This observation was more 

elaborated for the Nguni class of languages than for the Sotho class of languages. 

Therefore, although the clustered languages are similarly spoken and written, the in- 

dividual languages – the pooling experiments reveal - use significantly different word 

forms that cannot be simply combined in attempts of increasing training data. 

 
In order to not carelessly discount or disregard any hidden or potential benefits result- 

ing from pooling data from the clustered languages, an interesting endeavour would be 

to interpolate pooled-data models with non-pooled-data models to realise the in- 

herent efficacy the former may add to the latter’s, and vice versa. 
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Chapter 6: Conclusions, Summary and Future 
Work 
In this chapter, conclusions from the results and findings are drawn in Section 6.1. The 

study is summarised in Section 6.2. Section 6.3 sets potential targets of future work 

beyond this study. 

 
 

6.1. Conclusions 
 

The following conclusions are drawn from the results and findings thus far reported. 
 

 Specially prepared text produces better performing language models. Using the 

LWAZI and NCHLT text corpora, the text preparation process should include 

removal of all sentence text markers and annotation tags, punctuations and all 

character symbols that are not part of the words. 

o For development with HTK LM, the normalised text should be appended 
with start- and end-of-sentence markers (e.g., <s> and </s>). 

o Changing the casing of the text streams does not affect the performance 
of the language models. The performance is only degraded when the 
casing is mixed. 

 Trigrams to hexagrams better estimate both the Ndebele and Pedi texts across 
all three toolkits. 

o Using the HTK LM toolkit, quadrigrams estimate better the Pedi text, and 
trigrams the Ndebele text. 

o Developing with the SRILM toolkit: better models for the Pedi text were 
WB pentagrams and hexagrams for the LWAZI text; and GT hexagrams 
for the NCHLT text. For the Ndebele text, ND trigrams model the LWAZI 
text well, and GT pentagrams the NCHLT text. 

o On the CMU-Cam SLM toolkit, best n-gram performance is derived by 
developing WB quadrigrams for the Pedi LWAZI text, WB pentagrams for 
the Pedi NCHLT text, WB trigrams for the Ndebele LWAZI text, and WB 
quadrigrams for the Ndebele NCHLT text. 
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 Pooled LWAZI and NCHLT data does not necessarily yield better performing 

language models. However, there were a few exceptions to this observation 

from models developed using the HTK LM toolkit: 

o Ndebele LWAZI+NCHLT quadrigrams to hexagrams gave best PPL per- 
formance on the Ndebele NCHLT test data when compared to their Nde- 
bele NCHLT counterparts; 

o Sotho quadrigrams and pentagrams outperformed Pedi quadrigrams 
and pentagrams in modelling the Pedi LWAZI+NCHLT text; 

o Nguni quadrigrams gave better estimation of the Ndebele NCHLT text 
than Ndebele quadrigrams. 

 Varied smoothing yields better models. 
o Using the SRILM toolkit, best models were smoothed with UKN and WB 

for the Pedi LWAZI text, GT for the Pedi NCHLT text, ND for the Ndebele 
LWAZI text, and GT for the Ndebele NCHLT text. 

o Working with the CMU-Cam SLM toolkit, AD smoothed unigrams and 
bigrams together with WB smoothed trigrams to hexagrams gave better 
PPL results for texts belonging to the two languages. 

 When there is improvement from higher-order n-gram estimation of the test 

data, n-gram performance does not significantly improve beyond hexagrams. 

 Language models trained with the interpolation techniques enabled yielded im- 

proved PPL results. 

 In general, mixing/interpolating models at the testing phase using SRILM does 

not produce a better language model. Slight exceptional PPL improvements 

from mixed Ndebele and Nguni LWAZI best performing models were found. 

 Lower PPL values were found associated with language models of the Pedi text, 
whilst Ndebele text models gave relatively high PPL values. 

 The disjunctiveness of Pedi writing leads to longer sentences or word se- 

quences, thus more text in terms the number of words. The conjunctive writing 

of the Ndebele language leads to relatively small text for the training of lan- 

guage models. As found in the preceding observation, the more the LM text 

data, the better the estimation of the developed languages models. 

 The length of the modelling unit is relatively longer for the Ndebele language and 

shorter for the Pedi language, LM development coped relatively better with the 

shorter modelling unit of the Pedi language. 
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With the LM results reported and analysed thus far, it can be concluded that the or- 

thography of the two languages does have effect on the quality of language models 

developed on their text. 

 
 

For LM of texts belonging to the two languages, a differing LM approach is thus rec- 

ommended given their differing writing systems. The following recommendations are 

made as part of LM development. 

 Firstly, specially prepare and clean the text before LM development – paying 

attention to within sentence text markers and annotation tags that may incor- 

rectly form part of LM sentences, word sequences, and n-gram contexts. 

 Secondly, enable interpolation during LM training. 
 Thirdly, develop with quadrigrams to hexagrams for Pedi texts, and trigrams 

and quadrigrams for the Ndebele texts. 

 Lastly, and not the least, investigate the efficient smoothing method for different 

text sizes (e.g., LWAZI is smaller than NCHLT in terms of the amount of text), 

text domain (e.g., language subject and/or topics of the LWAZI and NCHLT text 

are different), and change in languages (e.g., in the pooling data experiments, 

other languages were incorporated). 

o In particular: GT, WB, and UKN smoothing methods appear to well 
smooth the Pedi texts; and GT, ND and WB methods better smooth the 
Ndebele texts. 

 
 

6.2. Summary 
 

This study proposed an investigation in LM for speech recognition. In further determin- 

ing the influence that the unique and inherent nature of a language has on the lan- 

guage models created for text of that language, we undertook to study the influence of 

the orthography of selected languages. The unique conjunctive and disjunctive writ- ing 

systems of the South African Ndebele and Pedi languages were studied. 
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Ultimately, we sought to contribute an in-depth analysis and study of LM work for the 

selected under-resourced languages. This was earmarked to become a significant ad- 

dition to the body of HLT research in the context of under-resourced languages of the 

world. 

 
LM as art of determining probabilities and/or likelihood of word sequences is funda- 

mental in the workings of a speech recognition system as it helps quantify which word 

sequence, amongst all estimated, the system outputs as its best estimate to the input 

speech signal. Having pre-processed the text data: language models are trained on the 

training set and then evaluated on a separate testing set. The quality of the models 

could be evaluated using the PPL metric, where the model with the lowest PPL score 

is most accurate in the modeling task. There exist various methods and techniques for 

developing quality and low PPL language models such as smoothing, factored lan- 

guage models, neural network LM, and approximate inference LM. 

 
This study used the data from the LWAZI and NCHLT speech corpora projects. The 

LM techniques that were implemented included: word-based LM, various LM smooth- 

ing methods, LM interpolation and higher-order n-gram LM. The toolkits used in de- 

velopment were: HTK LM, SRILM, and CMU-Cam SLM toolkits. Four main experi- 

ments were conducted under the designs: baseline LM, pooled data, higher-order n- 

grams, and n-gram interpolation. 

 
With the LM results reported and analysed thus far, it can be concluded that the or- 

thography of the two languages does have effect on the quality of language models 

developed on their text. 

 
 

For LM of texts belonging to the two languages, a differing LM approach is recom- 

mended given their differing writing systems. The following recommendations are 

made as part of LM development. Firstly, specially prepare and clean the text before 

LM development – paying attention to within sentence text markers and annotation 

tags that may incorrectly form part of sentences, word sequences, and n-gram con- 

texts. Secondly, enable interpolation during LM training. Thirdly, develop with quadri- 

grams to hexagrams for Pedi texts, and trigrams and quadrigrams for the Ndebele 
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texts. Lastly, investigate the efficient smoothing method for different text sizes, text 
domain, and change in languages. 

 
 

Parts of the work of this study were shared with the research community in presenta- 

tions and publications as referred to by [68], [69], [70], [71], and [72]. 

 
 

6.3. Future Work 
 

Possible next phase(s) of this study may partly be guided by the questions raised from 

the findings. Some of these questions were the following: 1) what causes the LM de- 

velopment setup not to support estimation of KN smoothed models in certain experi- 

ments? 2) Why could no benefits be derived, in general, from the models mixing ex- 

periment? 3) What causes the big differences in PPL performance for the Nguni lan- 

guages? 

 
On-going research in the field of LM has led to new developments. Such as: factored 

language models, neural network language models, investigating sub-word language 

models for under-resourced languages, and wider morphology-based language mod- 

els for morphology rich languages. Adaptation and interpolation of these models is an 

interesting LM research perspective. These developments could be explored even for 

languages of this study. 

 
What will give more significance to the work of this study would be the eventual incor- 

poration and the evaluation thereafter of the developed language models in an ASR 

application system developed for the concerned languages. 
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