
Finite element solution of the Reaction-Diffusion equation

by

Richard Kagisho Mahlakwana

DISSERTATION

submitted in fulfilment of the

requirements for the degree of

Master of Science

In

Applied Mathematics

In the

FACULTY OF SCIENCE AND AGRICULTURE

(School of Mathematical and Computer Sciences)

at the

UNIVERSITY OF LIMPOPO

Supervisor: Dr G T Marewo

2020

Declaration

I declare that the dissertation hereby submitted to the University of Limpopo,
for the Master of Science in Applied Mathematics has not previously been
submitted by me for a degree at this or any other university; that it is my work
in design and in execution, and that all material contained herein has been duly
acknowledged.

Mr Mahlakwana RK November 2020

Contents

1 Introduction 1

2 Approximating continuous functions 4

2.1 Introduction . 4

2.2 Piecewise polynomial approximation on the real line 4

2.3 Piecewise polynomial approximation in the real plane 8

2.4 Summary . 10

3 Reaction-diffusion equation on the real line 11

3.1 Introduction . 11

3.2 Model problem . 11

3.3 Variational formulation . 12

3.4 Finite element approximation . 13

3.5 Existence and uniqueness of weak solution 14

3.5.1 A simple problem . 14

3.5.2 A more general problem 16

3.5.3 Application of the Lax-Milgram Lemma 18

3.6 Computer implementation for original problem 20

3

3.6.1 Assembly of stiffness matrix 21

3.6.2 Assembly of mass matrix 23

3.6.3 Assembly of load vector 24

3.6.4 Assembly of boundary matrices 26

3.6.5 Putting it all together . 27

3.7 Adaptive finite element method 29

3.8 Summary . 36

4 Reaction-diffusion equation in the real plane 37

4.1 Introduction . 37

4.2 Model problem . 37

4.3 Variational formulation . 38

4.4 Finite element approximation . 38

4.5 Existence and uniqueness of weak solution 39

4.6 Derivation of a linear system . 40

4.7 Assembly . 40

4.7.1 Assembly of the stiffness matrix 41

4.7.2 Assembly of the mass matrix 42

4.7.3 Assembly of the load vector 43

4.7.4 Assembly of the boundary matrices 44

4.7.5 Example . 45

4.7.6 Solution . 45

4.8 Summary . 45

4

5 Conclusion 46

A Solution of the 2-d example problem using MATLAB 47

B Solution of the 2-d example problem using Python 52

5

Abstract

In this study we present the numerical solution of boundary value problems for
the reaction-diffusion equations in 1-d and 2-d that model phenomena such as
kinetics and population dynamics. These differential equations are solved nu-
merically using the finite element method (FEM). The FEM was chosen due to
several desirable properties it possesses and the many advantages it has over
other numerical methods. Some of its advantages include its ability to handle
complex geometries very well and that it is built on well established Mathemat-
ical theory, and that this method solves a wider class of problems than most
numerical methods. The Lax-Milgram lemma will be used to prove the existence
and uniqueness of the finite element solutions. These solutions are compared
with the exact solutions, whenever they exist, in order to examine the accuracy
of this method. The adaptive finite element method will be used as a tool for
validating the accuracy of the FEM. The convergence of the FEM will be proven
only on the real line.

Chapter 1

Introduction

The reaction-diffusion equations (RDEs) have been investigated by many re-
searchers due to their many industrial applications. Such applications include
describing pattern-formation phenomena in a variety of biological, chemical and
physical system. RDEs can be used to describe the change in space and time of
the concentration of one or more chemical substances. The spread of a popula-
tion of many individuals in space may be modelled using RDEs. The transport
processes and kinetics of substrate and redox-mediator in surface deposited film,
or kinetics of electroenzymes at electrode/solution interface can be modelled by
a reaction-diffusion equation.

RDEs have been at the centre of attention for many researchers over the years.
For example, Alvarez-Ramirez [1] used a non-standard finite difference schemes
to find a numerical solution for a non-linear reaction-diffusion equation in cylin-
drical and spherical coordinates. Their numerical results illustrated that the
finite difference scheme based on Green’s function formulations gives better
results for a coarse-grained mesh compared to non-standard finite difference
schemes. Ashyraliyev [3] used a finite volume method to find an approximate
solution of 1-D and 2-D RDEs with singular reaction source terms. The chal-
lenge they had was that the solution they obtained was continuous, but not
continuously differentiable. This was conquered by examining discretization on
a number of special locally refined grids analytically in 1-D and experimentally
in 2-D. Hence, the maximum norm second-order convergence was restored. A
new Homotopy perturbation method was used by Shanthi and Rajendran [15] to
find the approximate analytic solution to a non-linear reaction-diffusion equa-
tion with Michaelis-Menten kinetics. This method was discovered to be easy to
apply.

Bhrawy and Doha [4] studied a non-linear time-dependent RDEs subject to
Dirichlet boundary conditions using the spectral Jacobi-Gauss-Lobatto collo-
cation method (SJ-G-LCM). The method made use of Jacobi polynomials and
Gauss-Lobatto collocation points to construct semi-analytic solutions. They re-

1

duced the differential problem to systems of ordinary differential equations in
the time variable and the systems were solved using standard numerical meth-
ods like Jacobi spectral collocation method. The SJ-G-LCM was found to be
efficient and it produced accurate results with less than 10 collocation points.
Wang and Zhang [17] solved systems of 2-dimensional non-linear time-dependent
RDEs using a compact finite difference method (FDM). The systems were re-
duced to non-linear discrete systems which were solved using three monotone
iterative algorithms. The compact FDM was discovered to be fourth order ac-
curate in both space and time variables. In [9] Madzvamuse and Chung sought
numerical solutions for systems of non-linear time dependent RDEs. In this
study, the finite element method was used to discretize the problem in space.
To discretize the problem in time the backward Euler method, Crank-Nicolson
method and the fractional-step θ method were employed with a uniform time-
step. The Newton method and the Picard iteration were used to handle the
non-linearities of the systems. Their results showed that the fractional-step θ
method coupled with a single Newton iteration at each time-step was as ac-
curate as the fully adaptive Newton method, and that the Newton method
outperformed the Picard iteration.

Non-linear partial differential equations (NPDEs) are not generally easy to solve
and in most cases exact solutions may not exist. It is for these reasons that
approximate analytic methods and numerical methods are used to approximate
the solutions of NPDEs.

There are a number of approximate analytic methods to find solutions to various
NPDEs. For example, Akram and Sadaf [2] used the homotopy analysis method
(HAM) to solve a boundary value problem for a 9th order differential equation.
They showed that the HAM is highly accurate. One feature of the HAM is that
solutions are obtained in terms of infinite series. If the auxiliary parameter,
auxiliary function, auxiliary linear operator and initial guess are not carefully
chosen, then the infinite series may not converge. Kumar and Singh [7] used the
homotopy analysis transform method (HATM) to determine the approximate
solution of the Klein-Gordon equations arising in quantum field theory. They
showed that the HATM is very efficient and gives highly accurate results. An-
other approximate analytic method is the variational iteration method (VIM).
It was applied to different NPDEs by various researchers [16, 6] and it was dis-
covered that the VIM takes a few iterations to obtain highly accurate solutions
for the problems they studied.

Lots of numerical methods have also been used for approximating NPDEs.
Makanda [10] used the spectral quasilinearization method, spectral relaxation
method and spectral local linearization method to solve various systems of dif-
ferential equations modelling fluid flow problems. The results indicated that
these methods are efficient, they produce accurate results with only few itera-
tions, and they posses straightforward algorithms. The finite difference method
(FDM) [14, 12] was used to solve nonlinear differential equations such as the
Fokker-Planck equation and the Boltzmann transport equation. The FDM was
shown to give highly accurate numerical solutions. However, it is generally dif-
ficult to implement the FDM on irregular geometries or with complex boundary

2

conditions. A numerical method which handles irregular geometries much bet-
ter is the FEM. Among the many authors who used this method, Chaudhari and
Pate [5] used it to solve Poisson’s equation. The FEM is an efficient discretiza-
tion technique for solving differential equations accurately using a considerably
small number of grid points. The theory behind the FEM provides error es-
timates which can be used to establish convergence of numerical solutions to
the exact solution. However, the FEM is computationally intensive. With the
advent of fast computers recently, this disadvantage is overshadowed by merits
of the method.

In this study, boundary value problems for reaction-diffusion equations in 1-d
and 2-d are numerically solved using the finite element method. This numer-
ical method was chosen due to its many desirable properties, and it also has
many advantages over other numerical methods. For example, the finite el-
ement method handles complex geometries very well, its analysis makes use
of well established branches of mathematics like functional analysis, and the
method solves a wider class of problems than most numerical methods.

At this point we give an overview of the subsequent chapters. In Chapter 2,
we make use of continuous piecewise polynomials to approximate continuous
functions on the real line and in the real plane. We also derive error estimates
for these approximations and we use these estimates to prove quadratic con-
vergence. In Chapter 3, we introduce the finite element method for solving a
boundary value problem that models the reaction-diffusion equation in the real
line. This boundary value problem is converted to its equivalent variational for-
mulation (weak formulation), then we seek approximate solution for the weak
formulation from the space of all continuous piecewise linear functions. we prove
the existence and uniqueness of the weak form solution, then prove some basic
error estimates and use these estimates to formulate the adaptive finite element
method. In chapter 4, we briefly demonstrate how a variational formulation is
derived from its equivalent reaction-diffusion equation in the real plane. The
existence and uniqueness of the solution for the variational formulation will be
proved using the Lax-Milgram Lemma. The MATLAB’s pdetool will be em-
ployed to find the approximate solution for the boundary value problem, and
an illustrative example is given to investigate the computational efficiency of
the method. Chapter 5 gives a conclusion to the study. This is followed by
an appendix with MATLAB code for an example problem on 2-d. Finally, an
appendix is given for the same problem that consists of code in Python.

3

Chapter 2

Approximating continuous
functions

2.1 Introduction

In this chapter we introduce continuous piecewise polynomial functions which
are used to approximate continuous functions on the real line and in the real
plane. Error estimates and convergence for these approximations will be proved.

2.2 Piecewise polynomial approximation on the
real line

Let I = [x0, x1]. We denote the space of all continuous functions on I1 by C(I),
and the space of all linear functions on Ii by P1(I). The linear interpolant
πf ∈ P1(I) of f ∈ C(I) is given by

πf(x) = f(x0)L0(x) + f(x1)L1(x)

where
L0(x) = x− x1

x0 − x1
and L1(x) = x− x0

x1 − x0
.

Since
Li(xj) =

{
1, i = j
0, i 6= j

i, j = 0, 1.

then it follows that

πf(x0) = f(x0) and πf(x1) = f(x1).

4

a b

y

x
�

πf ∈ P1(I)

f ∈ C(I)

Figure 2.1: Linear interpolation on I = [a, b] = [x0, x1].

Function f is interpolated by πf as shown in Figure 2.1. In the following
theorem we estimate the error in approximating f with πf(x0) on I = [x0, x1].

Theorem 1 (Error estimates for linear interpolant) Linear interpolant πf
satisfies the following estimates

‖πf − f‖L2(I) ≤ Ch2‖f ′′‖L2(I) and (2.1)

‖(πf − f)′‖L2(I) ≤ Ch‖f ′′‖L2(I) (2.2)
where C is a constant, ‖f‖L2(I) :=

∫
I
f(x)dx and h = x1 − x0.

Proof 1 To prove inequality (2.2) we first let e = πf − f . We notice that
f ∈ C(I), x0 < x1, and e(x0) = 0 but e′(x0) 6= 0. Rolle’s theorem says that
there exists x̄ ∈ (x0, x1) such that e′(x̄) = 0. Now, for any point y ∈ (x0, x1)
such that y > x̄ we have∫ y

x̄

e′′dx = e′(y)− e′(x̄) = e′(y) (e′(x̄) = 0) (2.3)

⇒ e′(y) ≤
∫ y

x̄

|e′′|dx
(
|
∫
f |≤

∫
|f |
)

(2.4)

≤
∫

I1

1.|e′′|dx ((x̄, y) ⊂ (x0, x1) =: I1)

≤
(∫

I1

12dx

) 1
2
(∫

I1

|e′′2|dx
) 1

2

(Cauchy-Schwarz inequality)

= h
1
2 ‖e′′‖L2(I1)

(
‖e′′‖L2(I1) =

(∫
I1

|e′′2|dx
) 1

2
)

Thus, we have
e′(y)2 ≤ h‖e′′‖2L2(I1) (2.5)

which results from squaring both sides. Integrating inequality (2.5) with respect
to y over I1 ∫

I1

e′(y)2 ≤ h‖e′′‖2L2(I1)

∫
I1

dy (2.6)

5

⇒ ‖e′‖2L2(I1) ≤ h
2‖e′′‖2L2(I1) (2.7)

Taking square roots gives inequality (2.2).

Now, we prove inequality (2.1). Since e(x0) = πf(x0)−f(x0) = 0, for any point
y in I we have ∫ y

x0

e′(x)dx = e(y)− e(x0) = e(y) (e(x0) = 0) (2.8)

An argument similar to that consisting of inequalities (2.4) through (2.7) gives

‖e‖L2(I) ≤ h‖e′‖L2(I) (2.9)

Therefore

‖e‖L2(I) ≤ h‖e′‖L2(I) ≤ h2‖e′′‖L2(I) = h2‖f ′′‖L2(I). (2.10)

Let I := [a, b], let I = ∪n
i=1Ii where Ii := [xi−1, xi], and a = x0 < x1 < · · · <

xn = b. Let Vh denote the space

Vh = {v ∈ C(I) : v|Ii∈ P1(Ii), Ii = [xi−1, xi], 1 ≤ i ≤ 1}

of all continuous piecewise linear functions on I. The function f ∈ C(I) is
interpolated on I by πf ∈ Vh given by

πf =
n∑

i=1
f(xi)ϕi(x) (2.11)

where

ϕi(x) =


x−xi−1

hi
, x ∈ [xi−1, xi]

xi+1−x
hi+1

, x ∈ [xi, xi+1]
0, otherwise

is a hat function defined on I. Function f is interpolated by πf as shown in
Figure 2.2. In the following theorem we estimate the error in approximation
πf ≈ f on I = [a, b] = ∪n

i=1Ii.

Theorem 2 Linear interpolant πf satisfies the error estimate.

‖πf − f‖L2(I) ≤ Ch2‖f‖L2(I) (2.12)

where h = max
1≤i≤n

hi on I = [a, b].

6

�

�

�

�

�

�

y

x� | | | | | |

πf ∈ Vh

f ∈ C(I)

x0 = a x1 x2 · · · xn−2 xn−1 xn = b

Figure 2.2: Linear interpolation on I = [a, b].

Proof 2

‖f − πf‖2L2(I) =
∫

I

(f − πf)2dx (2.13)

=
n∑

i=1

∫
Ii

(f − πf)2

≤
n∑

i=1

(
Ch2

i ‖f‖L2(Ii)
)2 (

since ‖f − πf‖L2(Ii) ≤ Ch
2
i ‖f‖L2(Ii)

)
.

≤ C

n∑
i=1

h4
i ‖f‖2L2(Ii)

≤ C

n∑
i=1

h4‖f‖2L2(Ii) (h = max
1≤i≤n

hi).

(2.14)

Therefore
‖πf − f‖2L2(I) ≤ Ch

4‖f‖2L2(I). (2.15)

Now, taking the square roots of (2.15), we get

‖πf − f‖L2(I) ≤ Ch2‖f‖L2(I). (2.16)

Corollary 1 πf → f as h→ 0.

Proof 3 Since
0 ≤ ‖πf − f‖L2(I) ≤ h2‖f ′′‖L2(I) → 0 (2.17)

as h→ 0, then it follows from squeeze theorem that

πf → f as h→ 0.

7

2.3 Piecewise polynomial approximation in the
real plane

Let Ω ∈ R2 be a bounded domain with boundary ∂Ω in the real plane. We define
a triangulation K of Ω as a set {K} of triangles K such that Ω = ∪k∈KK and
the intersection of two triangles is either an edge, a corner or empty. We refer
to the corners of the triangles as nodes. Let hk be the local mesh size (length
of the longest edge in K), then h = maxk∈K hK is called a global mesh size of K.

A triangulation K with np nodes and nt elements is stored in a computer as two
matrices, P called the point matrix and T called the connectivity matrix. The
matrix P is of order 2× np and T is of order 3× nt.

bb b

b

b b

b

b

N1 = (0, 0) N2 = (1, 0)

N4 = (1, 1)N3 = (0, 1)

N6 = (1, 2)
N5 = (0, 2)

1

2

3

4

x

y

Figure 2.3: A simple mesh of a rectangular region.

Figure 2.3 shows a simple mesh on a rectangular region consisting of 6 nodes
and 4 triangles. From Figure 2.3, we obtain the point matrix

P =
[
0 1 0 1 0 1
0 0 1 1 2 2

]
and the connectivity matrix

T =

1 2 3 4
2 4 4 6
3 3 5 5


The entries of the point matrix P in the jth column are given by the coordinates
(x(j), y(j)) of the node Nj . The entries of the connectivity matrix T in the jth

column contains node numbers i, j and k for the nodes Ni, Nj and Nk of triangle
Kj .

Let
P1(K) = {v : v = c0 + c1x1 + c2x2, (x1, x2) ∈ K, c0, c1, c2 ∈ R}

8

be the space of linear functions on triangle K. Given f ∈ C(K), then on K :

f ≈ πf :=
N∑

j=1
f(Ni)ϕj(x, y)

where ϕj ∈ P1(K) and

ϕj(Ni) =
{

1, i = j
0, i 6= j.

Define

Df :=

√∣∣∣∣∂f∂x
∣∣∣∣2 +

∣∣∣∣∂f∂y
∣∣∣∣2,

D2f :=

√∣∣∣∣∂2f

∂x2

∣∣∣∣2 + 2
∣∣∣∣ ∂2f

∂y∂x

∣∣∣∣2 +
∣∣∣∣∂2f

∂y2

∣∣∣∣2
and let

‖f‖L2(K) :=
(∫

K

f2
) 1

2

.

Proposition 1 Linear interpolant πf satisfies the error estimate.

‖f − πf‖L2(K) ≤ Ch2
K‖D2f‖L2(K) (2.18)

where hK is the length of the longest edge in K, and C a constant. Proof was
left out.

Define space
Vh = {v : v ∈ C(Ω), v|K ∈ P1(K),∀K ∈ K}

of all continuous piecewise linear polynomials on Ω, where C(Ω) is the space of
all continuous functions on Ω.

Given f ∈ (Ω), then on Ω

f ≈ πf =
np∑

j=1
f(Nj)ϕj(x, y) (2.19)

where {ϕj(x, y)}np

j=1 is a basis (of hat functions) for the space Vh of all continous
piecewise linear functions on K.

Proposition 2 Linear interpolant πf satisfies the error estimate

‖f − πf‖2L2(Ω) ≤ C
∑

K∈K
h4

K‖D2f‖2L2(Ω) (2.20)

where hK is the length of the longest edge in K, and C a constant.

9

Proof 4

‖f − πf‖2L2(Ω) =
∫

Ω
(f − πf)2

(
since ‖f‖2L2(Ω) =

∫
Ω
f2
)

=
∑

K∈K

∫
K

(f − πf)2

≤
∑

K∈K
Ch4

K‖D2f‖2L2(K) (by estimate 2.18).

Corollary 2 πf → f as h→ 0 where h = max
K∈K

hk.

Proof 5 Since

‖f − πf‖2L2(Ω) ≤
∑

K∈K
Ch4

K‖D2f‖2L2(K) = Ch4‖f ′′‖2L2(I). (2.21)

Taking square roots in (2.21) we obtain that

0 ≤ ‖πf − f‖L2(I) ≤ Ch2‖f ′′‖L2(I) → 0 (2.22)

as h→ 0. Therefore, it follows from the squeeze theorem that

‖πf − f‖L2(I) → 0 as h→ 0. (2.23)

Hence
πf → f as h→ 0

with rate O(h2).

2.4 Summary

In this chapter we approximated continuous functions on R using their con-
tinuous piecewise linear interpolants. We did the same thing in R2 and we
derived estimates for these approximations. We also managed to use these error
estimates to establish convergence for these approximations.

10

Chapter 3

Reaction-diffusion equation
on the real line

3.1 Introduction

In this chapter the FEM is introduced is used to find a numerical solution of
a boundary value problem for the RDE on the real line. Firstly, the boundary
value problem is converted to its equivalent variational formulation. We shall
make use of Lax-milgram lemma to prove that the variational formulation has
a unique solution for two cases. The FEM will be used to seek the approximate
solution in the space of continuous piecewise linear functions. This reduces the
boundary value problem to a system of linear algebraic equations. The FEM will
be implemented on a computer using Octave [13]. We derive an error estimate
and use it to formulate an adaptive FEM. We also investigate whether or not
the adaptive FEM gives more accurate results than the standard FEM. We will
only do two illustrative examples.

3.2 Model problem

We consider the problem of finding u satifying the differential equation

− (pu′)′ + cu = f, x ∈ I = [0, L] (3.1)

subject to boundary conditions

p(0)u′(0) = c0(u(0)− d0)− e0 (3.2)
−p(L)u′(L) = cL(u(L)− dL)− eL (3.3)

11

where p(x) > 0, c(x) > 0 and f(x) are given functions with c0 > 0, d0, e0, cL >
0, dL and eL as given constants.

3.3 Variational formulation

We will transform equation (3.1) to its equivalent variational or weak form.
First, we define the space of all functions that are square integrable on the
interval I := [0, L] and whose first derivatives are also square integrable on I,
by:

V = {v(x) : ‖v‖L2(I) <∞, ‖v′‖L2(I) <∞}

where

‖v‖L2(I) =
(∫

I

|v|2dx
) 1

2

is the L2-norm of v on I. Now, multiplying equation (3.1) by a test function
v ∈ V , and integrating by parts gives

− pu′v|L0 +
∫ L

0
pu′v′dx+

∫ L

0
cuvdx =

∫ L

0
fvdx (3.4)

A test function is a function that it:

1. is smooth (all its derivatives are continuous).

2. has compact support (i.e supp f is closed and bounded where supp f :=
{x : f(x) 6= 0},).

Substituting boundary conditions (3.2) and (3.3) into (3.4), we get

(cL(u(L)− dL)− eL)v(L) + (c0(u(0)− d0)− e0)v(0) +
∫ L

0
(pu′v′ + cuv)

=
∫ L

0
fv (3.5)

Now, taking all the terms without the function u to the right hand side, we get
the desired variational formulation: Find u ∈ V satifying

cLu(L)v(L) + c0u(0)v(0) +
∫ L

0
(pu′v′ + cuv)

=
∫ L

0
fv + (cLdL + eL)v(L) + (c0d0 + e0)v(0) (3.6)

for all v ∈ V . We will show in section (3.5) that variational formulation (3.6)
has a unique solution.

12

3.4 Finite element approximation

Let 0 = x0 < x1 < x2 < · · · < xN = L be a partition of interval I. Associated
with each node xi is the hat function ϕi which was introduced in Section 2.2
We replace V by Vh so that the finite element method seeks uh ∈ Vh satifying

cLuh(L)v(L) + c0uh(0)v(0) +
∫ L

0
(pu′hv′ + cuhv)

=
∫ L

0
fv + (cLdL + eL)v(L) + (c0d0 + e0)v(0) (3.7)

for all v ∈ Vh. Replacing the function v with hat functions ϕi, i = 0, 1, 2, ..., N ,
changes equation (3.7) to

cLuh(L)ϕi(L) + c0uh(0)ϕi(0) +
∫ L

0
pu′hϕ

′
i +
∫ L

0
cuhϕi

=
∫ L

0
fϕi + (cLdL + eL)ϕi(L) + (c0d0 + e0)ϕi(0) (3.8)

for i = 0, 1, 2, ..., N . Since uh ∈ Vh, then

uh =
N∑

j=0
ξjϕj (3.9)

where ξj , with j = 0, 1, ..., N are unknown coefficients to be found. Conse-
quently, equation (3.8) becomes

cL

N∑
j=0

ξjϕj(L)ϕi(L) + c0

N∑
j=0

ξjϕj(0)ϕi(0) +
∫ L

0
p

N∑
j=0

ξjϕ
′
jϕ
′
i +
∫ L

0
c

N∑
j=0

ξjϕjϕi

=
∫ L

0
fϕi + (cLdL + eL)ϕi(L) + (c0d0 + e0)ϕi(0)

with i = 0, 1, ..., N . Interchanging integration and summation, we get

cL

N∑
j=0

ξjϕj(L)ϕi(L) + c0

N∑
j=0

ξjϕj(0)ϕi(0) +
N∑

j=0
ξj

∫ L

0
pϕ′jϕ

′
i +

N∑
j=0

ξj

∫ L

0
cϕjϕi

=
∫ L

0
fϕi + (cLdL + eL)ϕi(L) + (c0d0 + e0)ϕi(0)

with i = 0, 1, ..., N , or in matrix form

(A+M +R)ξ = b+ r (3.10)

13

where

Aij =
∫ L

0
pϕ′jϕ

′
i, (3.11)

Mij =
∫ L

0
cϕjϕi, (3.12)

Rij =cLϕj(L)ϕi(L) + c0ϕj(0)ϕi(0), (3.13)

bi =
∫ L

0
fϕi (3.14)

and
ri = (cLdL + eL)ϕi(L) + (c0d0 + e0)ϕi(0) (3.15)

The matrix A is known as the stiffness matrix,M is the mass matrix, b is the load
vector and R and r are boundary matrices. Upon solving linear system (3.10),
coefficients ξ1, ξ2, · · · , ξN−1 become known. Hence, we compute the desired
solution using equation (3.9). Algorithm 1 shows the basic steps involved when
implementing the previously discusssed finite element method.
Algorithm 1: A basic finite element method

1 Divide the interval I into N subintervals and define the corresponding
space Vh of continuous piecewise linear functions.

2 Compute the (N + 1)× (N + 1) matrices A,M,R and (N + 1)×1 matrices
b and r, with entries (3.11), (3.12), (3.13), (3.14) and (3.15) respectively

3 Solve the linear system (A+M +R)ξ = b+ r.
4 Set uh =

∑N
j=0 ξjϕj .

3.5 Existence and uniqueness of weak solution

3.5.1 A simple problem

We consider a simple case of (3.1) by setting c = 0, so that equation (3.1)
simplifies to

− (pu′)′ = f, x ∈ I (3.16)

Taking c0 −→ ∞ and setting d0 = 0 reduces the boundary condition (3.2) to
the Dirichlet boundary condition

u(0) = 0 (3.17)

Similarly, taking cL −→∞ and setting dL = 0 reduces (3.3) to

u(L) = 0. (3.18)

Let
V = {v(x) : ‖v‖, ‖v′‖ <∞, v(0) = v(L) = 0}.

14

The boundary value problem consisting of equations (3.16) to (3.18) has varia-
tional formulation: Find u ∈ V such that∫ L

0
pu′v′ =

∫ L

0
fv,∀v ∈ V (3.19)

Note that the function u that solves (3.19) need not be as smooth as the func-
tion u that solves (3.1). Consequently, the former u is called a weak solution.
Next, we prove existence and uniqueness of such a solution for the simple case
introduced in this section. First recall the following theorem,

Theorem 3 (First vanishing theorem) Let D be a bounded interval on R
and let a function f(x) be continuous on D. If f(x) > 0 and

∫
D̄
f(x)dx = 0,

then f(x) = 0 in D̄ := D ∪ ∂D where ∂D is the boundary of D.

Theorem 4 Solution u to (3.19) exists and is unique.

Proof 6 Assume that u1, u2 ∈ V are solutions of (3.19) such that u1 6= u2,
then we have ∫ L

0
pu′1v

′ =
∫ L

0
fv,∀v ∈ V (3.20)

and ∫ L

0
pu′2v

′ =
∫ L

0
fv,∀v ∈ V (3.21)

Taking the same v ∈ V in (3.20) and (3.21), then subtracting equation (3.21)
from equation (3.20) we get∫ L

0
p(u1 − u2)′v′ = 0,∀v ∈ V (3.22)

If we let v = u1 − u2 ∈ V, then equation (3.22) becomes∫ L

0
p(u1 − u2)′2 = 0 (3.23)

Since p(x) > 0, it follows from the first vanishing theorem that

(u1 − u2)′ = 0

in [0, L] which upon integrating and substituting boundary conditions gives

u1 = u2

This contradicts the assumption that u1 6= u2. Therefore, the weak solution to
the variational formulation is unique. Since this solution is constructed using
the solution of a linear system, existence follows from uniqueness.

15

3.5.2 A more general problem

In this section we prove the existence and uniqueness of a weak solution for the
following boundary value problem

− (pu′)′ + cu = f, x ∈ I = [0, L], (3.24)

u(0) = u(L) = 0 (3.25)
where c > 0. Before we do that, we introduce some essential concepts.

Preliminaries

Definition 1 (Vector space) A real vector space V is a set with operations
+ : V × V → V and · : R× V → V such that, for all elements u, v, w ∈ V also
called vectors, and scalars λ, µ ∈ R, we have

1. u+ v = v + u

2. (u+ v) + w = u+ (v + w)

3. λ(u+ v) = λu+ λv

4. (λ+ µ)u = λu+ µu

Furthermore, there is a zero vector 0 such that u + 0 = u and there exists a
negative vector −u such that u+ (−u) = 0.

Definition 2 (Norm) A norm on a vector space V is a mapping ‖· ‖ : V → R
such that the following properties are satisfied

1. ‖u+ v‖ 6 ‖u‖+ ‖v‖ (triangle inequality)

2. ‖λu‖ = |λ|‖u‖

3. ‖u‖ > 0, with equality holding if and only if u = 0

for all u, v ∈ V and ∀λ ∈ R.

Definition 3 (Normed vector space) A normed vector space is a vector space
equipped with a norm.

Definition 4 (Linear form) A linear form on a vector space V is a mapping
l(·) : V → R that satisfies

l(αu+ βv) = αl(u) + βl(v), ∀u, v ∈ V and ∀ α, β ∈ R (3.26)

16

Definition 5 A linear form is said to be continuous on V, if there exist a con-
stant C such that

|l(v)|6 C‖v‖, ∀v ∈ V (3.27)

Definition 6 Let V be a vector space, and let u, v, w ∈ V and let α, β ∈ R,
then

i. A bilinear form is a mapping a(· , ·) : V × V → R such that

(a) a(αu+ βv,w) = αa(u,w) + βa(v, w)
(b) a(u, αv + βw) = αa(u, v) + βa(u,w)

ii. The bilinear form is symmetric if

a(u, v) = a(v, u) (3.28)

iii. The bilinear form is continuous if there is a constant C such that

|a(u, v)| 6 C‖u‖‖v‖ (3.29)

Definition 7 (Inner product) An inner product is a symmetric bilinear form
a(· , ·) such that a(u, u) > 0, with equality holding if and only if u = 0, ∀u ∈ V.

Definition 8 (Inner product space) An inner product space is a vector space
equipped with an inner product.

In order to define a Hilbert space, we need to first understand what completeness
means. Recall that a Cauchy sequence in a normed vector space V is a sequence
{vi}∞i=0 of elements vi ∈ V, i = 1, 2..., which for all ε > 0 there is a positive
integer n such that

‖vi − vj‖ 6 ε for i, j > n. (3.30)

A sequence {vi}∞i=1 is convergent if there exist v ∈ V such that for all ε > 0
there is a positive integer n such that

‖v − vi‖ 6 ε, for i > n (3.31)

Definition 9 A vector space is said to be complete if every Cauchy sequence in
it is also convergent.

Definition 10 (Hilbert space) A complete inner product space is called a
Hilbert space.

17

Definition 11 Let V be a Hilbert space and let a(· , ·) : V ×V → R be a bilinear
form. We say that a(· , ·) is coercive if ∀v ∈ V , there exists a constant m such
that

m‖v‖2V 6 a(v, v) (3.32)

Theorem 5 (Cauchy-Schwarz Inequality) Let V be a vector space equipped
with an inner product (· , ·), then

|(u, v)| 6 ‖u‖‖v‖, ∀u, v ∈ V (3.33)

Theorem 6 (Lax-Milgram Lemma) Let V be a Hilbert space with inner
product (· , ·), let a(· , ·) be a coercive and continuous bilinear form on V, and
let l(·) be a continuous linear form on V . Then, there exist a unique solution
u ∈ V to the variational problem: Find u ∈ V such that

a(u, v) = l(v), ∀v ∈ V (3.34)

3.5.3 Application of the Lax-Milgram Lemma

Poisson equation

Consider the boundary value problem consisting of equations (3.16) to (3.18).
This problem has variational formulation: Find u ∈ V such that

A(u, v) = l(v), ∀v ∈ V (3.35)

where
A(u, v) := (pu′, v′) =

∫ L

0
pu′v′,

l(v) := (f, v) =
∫ L

0
fv

and V = H1
0 with

H1
0 = {w : [0, L]→ R| ‖w‖2V := ‖w′‖2 + ‖w‖2 <∞, w(0) = w(L) = 0} (3.36)

as a Hilbert space. We will make use of Lax-Milgram lemma to prove existence
and uniquenes of solution for (3.35). We define the norm ‖ · ‖ by

‖w‖ ≡ ‖w‖L2[0,L] =
(∫ L

0
w2

) 1
2

≡
√

(w,w)

Linearity of l(·) follows from

l(αu1 + βu2) := (f, αu1 + βu2) = α(f, u1) + β(f, u2) =: αl(u1) + βl(u2)

18

The bilinearity of A(· , ·) follows from

A(αu1 + βu2, v) := (p(αu1 + βu2)′, v′) = α(pu′1, v′) + β(pu′2, v′) =: αA(u1, v) + βA(u2, v)

and a similar argument follows for the second slot. Continuity of l(·) follows
from using the Cauchy-Schwarz (C-S) inequality as follows

|l(v)| := |(f, v)| 6 ‖f‖‖v‖
6 ‖f‖(‖v‖+ ‖v′‖) (‖· ‖ > 0)

6
√

2‖f‖(‖v‖2 + ‖v′‖2) 1
2

 n∑
i=1

aibi 6

(
n∑

i=1
a2

i

) 1
2
(

n∑
i=1

b2i

) 1
2


= C‖v‖V

The continuity of A(· , ·) follows from the discrete C-S inequality as shown below

|A(u, v)| := |(pu′, v′)|
6 ‖pu′‖‖v′‖
6 ‖p‖∞‖u′‖‖v′‖ (‖p‖∞ := max

06x6L
|p(x)|)

6 ‖p‖∞(‖u′‖‖v′‖+ ‖u‖‖v‖) (0 6 ‖· ‖)

6 ‖p‖∞(‖u′‖2 + ‖u‖2) 1
2 (‖v′‖2 + ‖v‖2) 1

2 (discrete C-S inequality)
= C‖u‖V ‖v‖V ,

where C = ‖p‖∞. Lastly, we show that A(· , ·) is coercive as follows

A(u, u) = (pu′, u′)
> p̄‖u′‖2 (p(x) > 0 and p̄ := min

06x6L
p(x))

= C‖u′‖2

where C = p̄. By the Lax-Milgram lemma, it follows that the variational for-
mulation (3.35) has a unique solution.

Reaction-diffusion equation

As a second example of applying Lax-Milgram Lemma, we consider the bound-
ary value problem consisting of equations (3.24) and (3.25), where c > 0. This
problem has the variational formulation: Find u ∈ V such that

A(u, v) = l(v), ∀ v ∈ V (3.37)

where
A(u, v) := (pu′, v′) + (cu, v) =

∫ L

0
pu′v′ +

∫ L

0
cuv,

l(v) := (f, v) =
∫ L

0
fv

19

and V = H1
0 is the Hilbert space shown in equation (3.36).

The linearity of l(.) follows from the fact that integration is linear.
The continuity of l(.) was already proved for the Poisson equation.
The bilinearity of A(· , ·) follows from linearity of the derivatives and linearity
of the integral.
The continuity of A(· , ·) follows from

|A(u, v)| ≤ |(pu′, v′) + (cu, v)| (Triangle inequality)
6 ‖pu′‖‖v′‖+ ‖cu‖‖v‖ (Cauchy-Schwarz inequality)
6 ‖p‖∞‖u′‖‖v′‖+ ‖c‖∞‖u‖‖v‖ (‖c‖∞ := min

06x6L
c(x))

6 C(‖u′‖‖v′‖+ ‖u‖‖v‖) (C = max{‖p‖∞, ‖c‖∞})

6 C(‖u′‖2 + ‖u‖2) 1
2 (‖v′‖2 + ‖v‖2) 1

2 (discrete Cauchy-Schwarz inequality)
= C‖u‖V ‖v‖V

Lastly, the coercivity of A(· , ·) follows from

A(u, u) := (pu′, u′) + (cu, u)
> p̄‖u′‖2 + c̄‖u‖2 ((c > 0, c̄ := min

06x6L
c(x)) and p̄ := min

06x6L
p(x))

> C(‖u′‖2 + ‖u‖2) where (C = min{p̄, c̄})
= C‖u‖2V (3.38)

By the Lax-Milgram lemma, variational formulation (3.37) has a unique solu-
tion.

3.6 Computer implementation for original prob-
lem

Let mi = xi+xi−1
2 be the mid-point of each subinterval Ii = [xi−1, xi].

Recall the following quadrature rules:

1. Mid-point rule ∫
Ii

f(x)dx ≈ f(mi)hi (3.39)

2. Trapezoidal rule ∫
Ii

f(x)dx ≈ f(xi−1) + f(xi)
2 hi (3.40)

20

3. Simpson’s rule ∫
Ii

f(x)dx ≈ f(xi−1) + 4f(mi) + f(xi)
6 hi (3.41)

where hi = xi − xi−1.

3.6.1 Assembly of stiffness matrix

Since

Ars =
∫ L

0
pϕ′rϕ

′
s =

N∑
i=1

∫ xi

xi−1

pϕ′rϕ
′
s =

N∑
i=1

Ai
rs (3.42)

then

A =
N∑

i=1
Ai (3.43)

From the definition of ϕi we have that

ϕ′i(x) =


1
hi

on Ii
1

hi+1
on Ii+1

0, elsewhere

which implies that, all the entries of A are zero except Ai−1,i−1, Ai−1,i, Ai,i−1
and Ai,i and

Ai
rs =

{ ∫ xi

xi−1
prϕ

′
rϕ
′
s 6= 0, r = i− 1 or i and s = i− 1 or i

0, otherwise
Making use of the Mid-point rule gives:

Ai
i−1,i−1 =

∫ xi

xi−1

piϕ
′2
i−1 ≈ pi

(
−1
hi

)2
hi = pi

hi

where pi = p(mi).

Also,

Ai
i−1,i =

∫ xi

xi−1

piϕ
′
i−1ϕ

′
i ≈ pi

(
−1
hi

)(
1
hi

)
hi = − pi

hi
(3.44)

By symmetry of the inner product, we have that

Ai
i,i−1 = − pi

hi

Therefore, all non-zero terms of Ai are contained in the local element stiffness
matrix (

Ai
i−1,i−1 Ai

i−1,i

Ai
i,i−1 Ai

i,i

)
= pi

hi

(
1 −1
−1 1

)

21

which is part of the global element stiffness matrix:

Ai = pi

hi

i− 1 i 1 −1
−1 1

 i− 1
i

where the only non-zero terms are in rows i − 1 and i, and in columns i − 1
and i. If we pad the local element stiffness matrix with zeros to form the global
element stiffness matrix Ai then we construct A using equation (3.43). A more
practical way is the assembly procedure. In this case we add the 2 × 2 local
element stiffness matrices to stiffness matrix A which is originally filled with
zeros to get

A =



p1
h1

− p1
h1

− p1
h1

p1
h1

+ p2
h2

− p2
h2

− p2
h2

p2
h2

+ p3
h3

− p3
h3

.
− pn−1

hn−1

pn−1
hn−1

+ pn

hn
− pn

hn

− pn

hn

pn

hn


in the appropriate rows and columns. Algorithm 2 highlights all the necessary
steps for assembling A.
Algorithm 2: Assemble stiffness matrix

1 Initialize A ∈ R(n+1)×(n+1) as a zero matrix.
2 for i = 1, 2, · · · , n do
3 Compute local element stiffness matrix

AIi = pi

hi

(
1 −1
−1 1

)
where pi = p((xi−1 + xi)/2) and hi = xi − xi−1.

4 Add AIi
11 to Mii.

5 Add AIi
12 to Mi,i+1.

6 Add AIi
21 to Mi+1,i.

7 Add AIi
22 to Mi+1,i+1.

8 end

This algorithm translates to the MATLAB code shown in Listing 1.

Listing 3.1: MATLAB code for assembling stiffness matrix
function A=StiffnessAssembler1D(x,p)

n=length(x)−1; % number of elements
A=zeros(n+1,n+1); % initialise stiffness matrix
for i=1:n

22

h=x(i+1)−x(i); % element length
pmid=p((x(i+1)+x(i))/2);
A(i,i)=A(i,i)+pmid/h;
A(i,i+1)=A(i,i+1)−pmid/h;
A(i+1,i)=A(i+1,i)−pmid/h;
A(i+1,i+1)=A(i+1,i+1)+pmid/h;

end

Input arguments for this routine are vector x containing nodes x0, x1, . . . , xn,
and function p (assumed to be a separate routine) liable for passing function p(x)
to the function StiffnessAssembler1D. Output from this routine is the stiffness
matrix A.

3.6.2 Assembly of mass matrix

Since

Mrs =
∫ L

0
cϕrϕs =

N∑
i=1

∫ xi

xi−1

cϕrϕs =
N∑

i=1
M i

rs (3.45)

then

M =
N∑

i=1
M i (3.46)

where M is the global element mass matrix. On [xi−1, xi], only ϕi−1,ϕi 6= 0.
Consequently,

M i
rs =

{ ∫ xi

xi−1
cϕrϕs 6= 0, r = i− 1 or i and s = i− 1 or i

0, otherwise

Now, we compute the non-zero terms of Mi.

M i
i−1,i−1 =

∫ xi

xi−1

cϕ2
i−1

≈ ci

(
(ϕi−1(xi−1))2 + 4(ϕi−1(mi))2 + (ϕi−1(xi))2

6 hi

)
= ci

(1 + 4(1
2)2 + 0
6 hi

)
= cihi

3 (3.47)

where we have used Simpson’s rule to estimate the integral. Similarly,

M i
i,i = cihi

3
Also

M i
i−1,i =

∫ xi

xi−1

cϕi−1ϕi ≈
ci(1(0) + 4(1

2)2 + 0(1))
6 hi = cihi

6 = M i
i,i−1 (3.48)

by the symmetry of (· , ·). Therefore, all non-zero terms of M i are contained in
the local element mass matrix(

M i
i−1,i−1 M i

i−1,i

M i
i,i−1 M i

i,i

)
= cihi

6

(
2 1
1 2

)

23

The following algorithm summarizes the assembly procedure for constructing
M .
Algorithm 3: Assemble mass matrix

1 Initialize A ∈ R(n+1)×(n+1) as a zero matrix.
2 for i = 1, 2, · · · , n do
3 Compute local element stiffness matrix

M Ii = cihi

6

(
2 1
1 2

)
where hi = xi − xi−1.

4 Add M Ii
11 to Mii.

5 Add M Ii
12 to Mi,i+1.

6 Add M Ii
21 to Mi+1,i.

7 Add M Ii
22 to Mi+1,i+1.

8 end

Algorithm 3 translates to MATLAB code in Listing 3.2.

Listing 3.2: MATLAB code to assemble mass matrix
function M = MassAssembler1D(x,c)

n = length(x) − 1; % number of elements
M = zeros(n+1); % initialise mass matrix
for i = 1 : n

h = x(i+1)−x(i); % element length
cmid=c((x(i+1)+x(i))/2); % c at the midpoint
M(i,i) = M(i,i) + cmid*h/3;
M(i,i+1) = M(i,i+1) + cmid*h/6;
M(i+1,i) = M(i+1,i) + cmid*h/6;
M(i+1,i+1) = M(i+1,i+1) + cmid*h/3;

end

The function MassAssembler1D takes in two parameters: vector x containing
the nodes x0, x1, . . . , xn and a user defined function for computing c(x). Output
from this routine is the global mass matrix M .

3.6.3 Assembly of load vector

By linearity of the integral we have that

b =
N∑

i=1
bi (3.49)

where

24

bi
r =

{ ∫ xi

xi−1
fϕr 6= 0, r = i− 1, i

0, otherwise
since the hat functions have small support. We compute non-zero terms of b
below.

bi
i−1 =

∫ xi

xi−1

fϕi−1 ≈
f(xi−1)ϕi−1(xi−1) + f(xi)ϕi−1(xi)

2 hi = f(xi−1)hi

2
(3.50)

where we have used the Trapezoidal rule for estimating the integral. Similarly

bi
i =

∫ xi

xi−1

fϕi ≈
f(xi−1)ϕi(xi−1) + f(xi)ϕi(xi)

2 hi = f(xi)hi

2 (3.51)

Therefore, all non-zero terms of bi are contained in local element load vector(
bi

i−1
bi

i

)
= hi

2

(
f(xi−1
f(xi)

)
The assembly procedure for load vector is shown in Algorithm 4, which trans-
lates to the MATLAB code in Listing 3.3.

Algorithm 4: Assembling load vector
1 Initialise b ∈ R(n+1)×1 as a zero matrix.
2 for i = 1, 2, · · · , n do
3 Compute local element load vector

bIi = hi

2

(
f(xi−1)
f(xi)

)
where hi = xi − xi−1.

4 Add bIi
1 to bi−1.

5 Add bIi
2 to bi.

6 end

Listing 3.3: MATLAB code to assemble load vector
function b = LoadAssembler1D(x,f)

n = length(x) − 1; % number of elements
b = zeros(n+1,1); % initialise load vector
for i = 1:n

h = x(i+1) − x(i); % element length
b(i) = b(i) + h*f(x(i))/2;
b(i+1) = b(i+1) + h*f(x(i+1))/2;

end

The routine LoadAssembler1D takes in two input arguments, a vector x holding
the nodal coordinates and function f which is also a routine on its own. Output
from LoadAssembler1D is the load vector b.

25

3.6.4 Assembly of boundary matrices

Since
ϕi(xj) = δij =

{
1, i = j
0, i 6= j

then
Rij = cLϕj(L)ϕi(L) + c0ϕj(0)ϕi(0) = cLδjLδin + c0δj0δi0

and Rij 6= 0 only when either i = j = 0 or i = j = n. Consequently, R00 = c0
and Rnn = cL. Therefore,

R =

c0 . . .
cL


The routine StiffnessAssembler1D for assembling the stiffness matrix is modified
to include the boundary matrix R as shown in Listing 3.4.

Listing 3.4: MATLAB code for assembling stiffness matrix and including bound-
ary terms

function A=StiffnessAssembler1D(x,p,c)
n=length(x)−1; % number of elements
A=zeros(n+1,n+1); % initialise stiffness matrix
for i=1:n

h=x(i+1)−x(i); % element length
pmid=p((x(i+1)+x(i))/2);
A(i,i)=A(i,i)+pmid/h;
A(i,i+1)=A(i,i+1)−pmid/h;
A(i+1,i)=A(i+1,i)−pmid/h;
A(i+1,i+1)=A(i+1,i+1)+pmid/h;

end
A(1,1) = A(1,1) + c(1); % c_0
A(n+1,n+1) = A(n+1,n+1) + c(2); % c_L

Output from this routine is the matrix A+R.
We compute matrix r in a similar manner to that for R. Since

ri = (cLdL + eL)ϕi(L) + (c0d0 + e0)ϕi(0) = (cLdL + eL)δin + (c0d0 + e0)δi0,

then ri 6= 0 only when either i = 0 or i = n. Therefore, r0 = c0d0 + e0 and
rn = cLdL + eL, and

r =

 c0d0 + e0
...

cLdL + eL


Similarly, the routine LoadAssembler1D is modified to include the matrix r as
shown in Listing 3.5.

26

Listing 3.5: MATLAB code to assemble load vector
function b = LoadAssembler1D(x,f,c,d,e)

n = length(x) − 1; % number of elements
b = zeros(n+1,1); % initialise load vector
for i = 1:n

h = x(i+1) − x(i); % element length
b(i) = b(i) + h*f(x(i))/2;
b(i+1) = b(i+1) + h*f(x(i+1))/2;

end
b(1) = b(1) + c(1)*d(1) + e(1); % c_0 d_0 + e_0
b(n+1) = b(n+1) + c(2)*d(2) + e(2); % c_L d_L + e_L

This routine takes an additional input argument vector a for including the
boundary terms and produces the matrix b+ r.

3.6.5 Putting it all together

Example 1

Consider the problem of finding the approximate solution to the boundary value
problem

−u′′ + u = x, x ∈ [0, 1] (3.52)
u(0) = 0, u(1) = 0 (3.53)

Solution

In order to obtain equation (3.52) from the governing equation (3.1), we set
p(x) = c(x) = 1, and f(x) = x. Boundary conditions (3.53) result from (3.2)
and (3.3) if we set cL = c0 = 106, dL = d0 = 0, and eL = e0 = 1.

Listing 3.6: MATLAB main solver routine
function ReactionDiffusionSolver1D() % no input, no output

h=0.01; % element length
x=0:h:1; % mesh
c=[10^6 10^6]; % c_0, c_L
K=StiffnessAssembler1D(x,@pfun,c);
M=MassAssembler1D(x,@qfun);
d=[0 0]; % d_0, d_L
e=[1 1]; % e_0, e_L
b=LoadAssembler1D(x,@ffun,c,d,e);
u=(K+M)\b; % solve linear system
plot(x,u); xlabel('x'); ylabel('u')

function y=pfun(x)
y=1; % p(x)

function y=qfun(x)
y=1; % q(x)

function y=ffun(x)

27

y=x; % f(x)

The MATLAB routine in Listing 3.6 together with routines in Listings 3.2, 3.4,
and 3.5 generate the finite element approximation uh shown in Figure 3.1 that
makes use of a mesh with 100 elements. The solution uh satisfies the Dirichlet
boundary condition at x = 0 and x = 1 as shown in Figure 3.1.

Differential equation (3.52) subject to boundary condition (3.53) has exact so-
lution

u(x) = x− sinh x
sinh 1 . (3.54)

Figure 3.1 shows good agreement between the exact and approximate solutions

Figure 3.1: Comparison of the approximate solution with the exact solution for
problem (3.52) and (3.53).

Let
‖e‖∞ := max

1≤i≤n
|e(xi)|,

and let

‖e‖L2(I) :=
(∫

I

|e(x)|2dx
) 1

2

where e(x) = u(x)− uh(x).

Recall from the theory that

‖u− uh‖L2(I) = ‖e‖L2(I) ≤ Ch2

as h→ 0 and for some constant C > 0. Hence, the finite element solution uh is
second order accurate and we write

‖e‖L2(I) = O(h2).

28

Table 3.1 shows that as the number of elements n increases, i.e as we refine
the mesh, the size of each element h→ 0. It also suggests that

‖e‖∞/h2 ≤ 4.422× 10−3 = C

as h→ 0

n h = 1/n ‖e‖∞ ‖e‖∞/h2

4 0.250000 2.698×10−4 4.303×10−3

8 0.125000 6.885×10−5 4.406×10−3

16 0.062500 1.722×10−5 4.409×10−3

32 0.031250 4.319×10−6 4.422×10−3

64 0.015625 1.080×10−6 4.422×10−3

128 0.007812 2.699×10−7 4.422×10−3

Table 3.1: Maximum errors of the finite element solution for problem (3.52) and
(3.53).

The integral ‖e‖L2(I) in Table 3.2 is evaluated numerically using Trapezoidal
rule since it is generally difficult to evaluate analytically. Table 3.2 shows that

‖e‖L2(I)/h
2 ≤ 3.170× 10−3 = C

as h→ 0, which is in agreement with the theory in Chapter 2.

n h = 1/n ‖e‖L2(I) ‖e‖L2(I)/h
2

4 0.250000 1.990×10−4 3.185×10−3

8 0.125000 4.962×10−5 3.175×10−3

16 0.062500 1.239×10−5 3.171×10−3

32 0.031250 3.096×10−6 3.170×10−3

64 0.015625 7.739×10−7 3.170×10−3

128 0.007812 1.935×10−7 3.170×10−3

Table 3.2: L2 norm errors of the finite element solution for problem (3.52) and
(3.53).

3.7 Adaptive finite element method

Model problem

Consider the simple model problem (3.16) - (3.18) where p ≡ 1, then we have
the following error estimate.

29

Theorem 7 (Error estimate) The finite element solution uh ∈ Vh such that∫
I

uhϕi =
∫

I

fϕi, i = 1, 2, . . . , n− 1, (3.55)

satisfies the estimate

‖(u− uh)′‖2L2(I) ≤ C
n∑

i=1
η2

i (uh) (3.56)

where

ηi(uh) = hi‖f + u′′h‖L2(Ii) = hi‖f‖L2(Ii) (since u′′h|Ii = 0)

and I = ∪n
i=1Ii is disjoint.

Proof 7 Let e = u− uh, then

‖e′‖2L2(I) =
∫

I

e′2dx

=
∫

I

e′(e− πe)′dx (Galerkin orthogonality)

=
n∑

i=1

∫ xi

xi−1

e′(e− πe)′dx

=
n∑

i=1
e′(e− πe)|xi

xi−1
−
∫ xi

xi−1

e′′(e− πe)dx (Integrating by parts)

=
n∑

i=1

∫ xi

xi−1

−e′′(e− πe)dx (e = πe at the nodes)

=
n∑

i=1

∫ xi

xi−1

(−u′′ + u′′h)(e− πe)dx (e = u− uh)

=
n∑

i=1

∫ xi

xi−1

(f + u′′h)(e− πe)dx (−u′′ = f)

≤
n∑

i=1
‖(f + u′′h)‖L2(Ii)‖(e− πe)‖L2(Ii) (Triangle inequality)

≤ C
n∑

i=1
hi‖(f + u′′h)‖L2(Ii)‖e

′‖L2(Ii) (‖e‖L2(I) ≤ h‖e′‖L2(I)

≤ C

(
n∑

i=1
h2

i ‖(f + u′′h)‖2L2(Ii)

) 1
2
(

n∑
i=1
‖e′‖2L2(Ii)

) 1
2

 n∑
i=0

aibi 6

(
n∑

i=0
a2

i

) 1
2
(

n∑
i=0

b2i

) 1
2


Now, replacing
(

n∑
i=1
‖e′‖2L2(Ii)

) 1
2

by ‖e′‖L2(I) and dividing both sides by ‖e′‖L2(I)

we get

‖e′‖L2(I) ≤ C

(
n∑

i=1
h2

i ‖(f + u′′h)‖2L2(Ii)

) 1
2

. (3.57)

30

Adaptive mesh refinement

Recall from Chapter 2 that

‖e‖L2(I) ≤ C‖e′‖L2(I)

for some constant C. It follows from inequality (3.56) that the size of the error
depends on the element residual ηi(uh) on Ii, where i = 1, 2, · · · , n. Therefore,
it is essential to reduce the size of elements with largest residual to obtain more
accurate solutions. This process of refining elements together with the finite
element methods result in the adaptive finite element method and Algorithm 5
is the summary of this process.
Algorithm 5: Adaptive finite element method

1 Given a coarse mesh with n elements.
2 while n is not large enough do
3 Compute finite element solution uh.
4 Evaluate element residuals

ηi(uh) = hi‖f + u′′h‖L2(Ii); i = 1, 2, . . . , n

where hi = xi+1 − xi is the length of each element.
5 Select and refine the most error prone elements i.e with the largest

residuals.
6 end

Algorithm 5 has four basic steps:

1. Computation of ηi(uh); i = 1, 2, . . . , n. ηi was evaluated using the Trape-
zoidal rule. Listing 3.7 shows how this step was implemented.

2. Selection of elements for refinement happens if

ηi > α max
i=1,2,...,n

ηi

where 0 ≤ α ≤ 1 is a parameter to be chosen. Note that, if α = 0 we get
uniform refinement whereas α = 1 gives no refinement.

3. Suppose element Ii was chosen for refinement. The refinement procedure
consists of replacing Ii with

[xi, (xi + xi+1)/2] ∪ [(xi + xi+1)/2, xi+1].

4. Stopping criteria for the algorithm take the form of a maximum bound on
the number of elements, the memory usage, the total size of the residual,
and so on.

Listing 3.7: MATLAB routine for computing element residuals

31

function eta = residual(x,f)
eta = zeros(1,n);
for i = 1:n % loop over elements

h = x(i+1) − x(i); % element length
a = f(x(i)); % temporary variables
b = f(x(i+1));
%use Trapezoidal rule to evaluate the integral of f^2.
t = (a^2+b^2)*h/2;
eta(i) = h*sqrt(t); % element residual

end
end

The function residual in Listing 3.7 requires 2 inputs arguments x and f , and
it produces one output argument ηi.

Listing 3.8: MATLAB routine highlighting the refinement procudure
function x = refine(eta,x)

alpha = 0.9; % allocate element residuals
for i = 1:n % loop over elements

if eta(i) > alpha*max(eta)
x = [x (x(i+1) + x(i))/2];

end
end
x = sort(x);

end

Basic steps 2 and 3 of Algorithm 5 translate to the MATLAB code in Listing
3.8. In basic step 4, we chose to use the maximum number N of nodes as a
stopping criterion.

Example 2

Consider the problem of finding an approximate solution of the following bound-
ary value problem

−u′′ = f(x), x ∈ [0, 1] (3.58)
u(0) = u(1) = 0 (3.59)

where
f(x) =

{
2x, x ∈

[
0, 1

2
]

2− 2x, x ∈
[1

2 , 1
]

First we shall do this using the classical FEM, then we solve the problem using
the adaptive FEM. We conclude by comparing results of the two methods.

Solution

Setting p(x) = 1 and c(x) = 0 in the governing equation (3.1) gives equation
(3.58). Now, in order to obtain the boundary conditions (3.59) making use of

32

the boundary conditions (3.2) and (3.3), we set d0 = dL = 0, e0 = eL = 1, cL =
c0 = 106.

Figure 3.2: Approximate solution of the problem consisting of equations (3.58)
and (3.59) using the classical FEM.

Listing 3.9: MATLAB code for the classical FEM solver.
function ReactionDiffusionSolver1D() % no input, no output

x = linspace(0,1,29) % mesh with 22 elements
c=[10^6 10^6]; % c 0, c L
K=StiffnessAssembler1D(x,@pfun,c);
M=MassAssembler1D(x,@qfun);
d=[0 0]; % d 0, d L
e=[1 1]; % e 0, e L
b=LoadAssembler1D(x,@ffun,c,d,e);
u=(K+M)\b; % solve linear system
plot(x,u); xlabel('x'); ylabel('u')

end
function y=pfun(x)

y=1; % p(x)
end
function y=qfun(x)

y=0; % q(x)
end
function y=ffun(x)

for i = 1:length(x)
y(i)=2*x(i);
if x(i) >= 0.5

y(i) = 2 − 2*x(i);
end

end
end

The numerical solution uh shown in Figure 3.2 was generated by the MATLAB
routine in Listing 3.9 using a mesh with 28 elements or 29 equally spaced nodes.

33

The classical FEM was used in this case, this routine makes use of the routines
in Listings 3.2, 3.4, and 3.5 to generate the mass matrix, the stiffness matrix
and the load vector respectively. It is clear from Figure 3.2 that uh satisfies
the Dirichlet boundary condition at x = 0 and at x = 1. Figure 3.3 shows the
adaptive finite element solution to the boundary value problem 3.58 .

Figure 3.3: Adaptive finite element solution of problem (3.58) and (3.59).

The adaptive FEM turns to focus more on the peak. Figure 3.3 shows that the
nodes on the peak are very close to each other with irregular spacing to make
the geometry finer. The reason for doing this is to obtain high accurate results.
In Listing 3.10 is the MATLAB routine used to acquire the results shown in
Figure 3.3.

Listing 3.10: MATLAB code fot the adaptive FEM solver.
function n=AdaptiveReactionDiffusionSolver1D()

x = 0:0.2:1; % start with a course mesh
n = length(x); % number of nodes
N = 23; % maximum number of nodes
while 1

u = ReactionDiffusionSolver1D(x);
if n >= N
break

end
eta = residual(x,@ffun);
x = refine(eta,x);
n = length(x);

endwhile
u=u';
x;
nodes=length(x)
plot(x,u',x,u','−ro')

end
function u=ReactionDiffusionSolver1D(x) % no input, no output

c=[10^6 10^6]; % c 0, c L
K=StiffnessAssembler1D(x,@pfun,c);
M=MassAssembler1D(x,@qfun);

34

d=[0 0]; % d 0, d L
e=[0 0]; % e 0, e L
b=LoadAssembler1D(x,@ffun,c,d,e);
u=(K+M)\b; % solve linear system

end
function y=pfun(x)

y=1; % p(x)
end
function y=qfun(x)

y=0; % q(x)
end
function y = ffun(x)

for i=1:length(x)
y(i)=2*x(i);
if x(i) >= 0.5

y(i)=2−2*x(i);
end

end
end

Shown in Listing 3.10 is the routine used to produce the results shown in Fig-
ure 3.3. According to Algorithm 5 we start with a coarse mesh consisting of
6 equally spaced nodes on [0, 1] then, elements with the largest residuals are
selected for refinement. This routine terminates once the number of nodes in
the refined mesh on [0, 1] reaches 23 otherwise only refine once beyond 23 nodes.
For this experiment, the routine terminated once the number of nodes reached
29 and this is highly possible since more than 2 elements could be refined si-
multaneously.

Figure 3.4: Comparison of the finite element solution with the Adaptive finite
element solution of problem (3.58) and (3.59).

Figure 3.4 suggests that the finite element solution uh and the adaptive finite
element solution ua

h are the same, but

‖uh‖∞ = 0.083844

35

and
‖ua

h‖∞ = 0.0835472

indicating that solutions are slightly different.

3.8 Summary

In this chapter we used the FEM to seek a numerical solution for the RDE
in R. We proved the existence and the uniqueness of the solution for a simple
problem and a more general problem. We made used of Octave to implement the
FEM. We also derived error estimates and used them to formulate the adaptive
FEM. Lastly, we used two illustrative examples to investigate the computational
efficiency of the method.

36

Chapter 4

Reaction-diffusion equation
in the real plane

4.1 Introduction

In this chapter we develop a finite element method for numerically solving the
reaction-diffusion equation in the real plane. We first convert the gorverning
equation to its equivalent variational form and then we look for an approximate
solution of the variational problem in the space of continuous piecewise linear
functions. We also provide proofs for some error estimates. For application
purposes MATLAB’s pdetool [13] and Python’s FEniCS [8] will be employed to
find an approximate solution for a simple problem.

4.2 Model problem

Consider the problem of solving the reaction-diffusion equation

−∇ · p∇u(x, y) + qu(x, y) = f(x, y), x, y Ω ⊂ R2 (4.1)

subject to boundary condition

− (n̂ · p∇u) = c(u− d)− e on ∂Ω (4.2)

where n̂ is an outward pointing unit vector, ∇ :=
(

∂
∂x ,

∂
∂y

)
, p(x) > 0, q(x) > 0

and f(x, y) are given functions with the following given constants c, d and e.
Furthermore, Ω is a domain.

37

4.3 Variational formulation

Green’s formula

Let F̄ be a vector field on the domain Ω with boundary ∂Ω then from the
divergence theorem we have that∫

Ω
∇ · F̄ dx =

∫
∂Ω
n̂ · F̄ ds (4.3)

where n̂ is an outward pointing unit vector and x = (x, y) ∈ R. Setting F̄ = v∇u
we obtain ∫

Ω
∇ · v∇udx =

∫
∂Ω
n̂ · v∇uds where x = (x, y) ∈ R (4.4)

Expanding the left hand side using product rule we get∫
Ω

(v∇ · ∇u+∇u · ∇v)dx =
∫

∂Ω
n̂ · v∇uds (4.5)

Rearranging (4.5) gives Green’s formula∫
Ω
v∇ · ∇udx =

∫
∂Ω
n̂ · v∇uds−

∫
Ω
∇u · ∇vdx (4.6)

Let
V := {v : ‖v‖L2(Ω) + ‖∇v‖L2(Ω) <∞}

be the space of square integrable functions and whose first derivatives are also
square integrable in the domain Ω.
Multiplying equation (4.1) by a test function v ∈ V and integrating we get∫

Ω
fvdx = −

∫
Ω
v∇ · p∇udx +

∫
Ω
quvdx

=
∫

Ω
p∇u · ∇vdx +

∫
Ω
quvdx +

∫
∂Ω
v(−n̂ · p∇u)ds (Green’s formula)

Substituting the boundary conditions and simplifying we obtain∫
Ω
fvdx =

∫
Ω
p∇u · ∇vdx +

∫
Ω
quvdx +

∫
∂Ω
cuvds−

∫
∂Ω

(cd+ e)vds

Hence the variational formulation: Find u ∈ V such that∫
Ω

(p∇u· ∇v + quv)dx +
∫

∂Ω
cuv =

∫
Ω
fvdx +

∫
∂Ω
v(cd+ e)ds ∀v ∈ V. (4.7)

4.4 Finite element approximation

Let K be a triangulation which consists of nt triangles and np nodes. Associated
with each node Ni := (xi, yi) is the hat function ϕi(x, y). Let

Vh = {v ∈ V |v is continous piecewise linear on K}

38

be the space of continous piecewise linear functions on K. The finite element
method consists of finding uh ∈ Vh:

A(uh, v) = l(v), ∀v ∈ Vh (4.8)
where

A(uh, v) =
∫

Ω
(p∇uh· ∇v + quhv)dx +

∫
∂Ω
cuhvds

and
l(v) =

∫
Ω
fvdx +

∫
∂Ω

(cd+ e)vds

4.5 Existence and uniqueness of weak solution

In this section, we prove the existence and uniquenes of the weak solution uh.
We make use of the bilinear form

A(u, v) := (p∇u,∇v) + (qu, v) =
∫

Ω
(p∇u· ∇v + quv)dx,

linear form
l(v) := (f, v) =

∫
Ω
fvdx

and Hilbert space V = H1
0 (Ω) with

H1
0 (Ω) = {w : Ω→ R2| ‖w‖2V := ‖∇w‖2 + ‖w‖2 <∞} (4.9)

The linearity of l(·) follows from the fact that integration and defferentiation
are linear. The continuity of l(·) follows in a similar manner to the linear form
l(·) for the poisson equation in 1−d. What is left is to prove the continuity and
coercivity of A(·, ·).

The continuity of the bilinear form follows from the triangle inequality as shown
below
|A(u, v)| := |(p∇u,∇v) + (qu, v)|

6 ‖p∇u‖‖∇v‖+ ‖qu‖‖v‖ (C-S inequality)
6 ‖p‖∞‖∇u‖‖∇v‖+ q̄‖u‖‖v‖ (q̄ := max

x∈Ω
q(x))

6 C(‖∇u‖‖∇v‖+ ‖u‖‖v‖) (C = max{‖p‖∞, q̄})

6 C(‖∇u‖2 + ‖u‖2) 1
2 (‖∇v‖2 + ‖v‖2) 1

2 (discrete C-S inequality)
= C‖u‖V ‖v‖V .

The coercivity of A follows from
A(u, u) := (p∇u,∇u) + (qu, u)

> p̄‖∇u‖2 + q̄‖u‖2 (p̄ := min
x∈Ω

p(x) and q := min
x∈Ω

q(x))

> C(‖∇u‖2 + ‖u‖2) where (C = min{p̄, q})
= C‖u‖2V (4.10)

Invoking the Lax-Milgram lemma concludes the proof.

39

4.6 Derivation of a linear system

Equation (4.8) is equivalent to∫
Ω

(p∇uh · ∇ϕi + quhϕi) +
∫

∂Ω
cuhϕi =

∫
Ω
fϕi +

∫
∂Ω
ϕi(cd+ e) (4.11)

for i = 0, 1, 2, . . . , ni. Since

uh =
ni∑

j=1
ξjϕj (4.12)

then upon interchanging diffentiation with summation and interchanging inte-
gration with summation equation (4.11) becomes

ni∑
j=1

ξj

∫
Ω

(p∇ϕj · ∇ϕi + qϕjϕi) +
ni∑

j=1
ξj

∫
∂Ω
cϕjϕids =∫

Ω
fϕi +

∫
∂Ω

(cd+ e)ϕids (4.13)

with j = 0, 1, 2 . . . , ni. In matrix form, this is

(A+M +R)ξ = b+ r (4.14)

where

Aij =
∫

Ω
p∇ϕj · ∇ϕi

Mij =
∫

Ω
qϕjϕi

Rij =
∫

∂Ω
cϕjϕids (c is a constant).

bi =
∫

Ω
fϕi

and
ri =

∫
∂Ω

(cd+ e)ϕids

4.7 Assembly

In this section we assemble matrices A, M , R, b and r in equation (4.14). Let
K be a triangle in the mesh K on Ω. See Figure 4.1. Let |K| be the area of K
and let Ni(xi, yi), i = 1, 2, 3 denote the nodes of K.
The following quadrature rules can be used to compute the integrals over each
triangle K.

1. The centre of gravity rule∫
K

fdx ≈ f
(
N1 +N2 +N3

3

)
|K| (4.15)

40

b

b b

N1

N3

N2

K

Figure 4.1: Triangle K with 3 nodes N1, N2 and N3.

2. The corner quadrature formula∫
K

fdx ≈
3∑

i=1
f(Ni)

|K|
3 (4.16)

3. 2-dimensional mid-point rule∫
K

fdx ≈
3∑

1≤i,j≤3
f

(
Ni +Nj

2

)
|K|
3 (4.17)

4.7.1 Assembly of the stiffness matrix

Since ∫
Ω
p∇ϕi· ∇ϕj =

∑
K∈K

∫
K

p∇ϕi· ∇ϕj , i = 1, 2, 3. (4.18)

The entries of the 3 × 3 local element stiffness matrix A corresponding to a
triangle K with nodes Ni = (x(i)

1 , x
(i)
2), i = 1, 2, 3 are given by

AK
ij =

∫
K

p∇ϕi· ∇ϕj , i = 1, 2, 3. (4.19)

Since the hat function ϕi associated with each node Ni on triangle K is linear,
it can be written as

ϕi = ai + bix1 + cix2

where ai, bi, ci ∈ R. Hence, the gradient of ϕi

∇ϕi = bi + ci = [bi, ci]T (4.20)

41

is a constant vector. Substituting (4.20) into (4.19) and computing it using the
centre of gravity rule we get

AK
ij =

∫
K

p(bibj + cicj) ≈ (bibj + cicj)p
(
N1 +N2 +N3

3

)
|K| (4.21)

where |K| is the area of triangle K. The necessary steps for assembling the
stiffness matrix A are summarized by Algorithm 6.
Algorithm 6: Assembling stiffness matrix

1 Let P be point matrix and T be connectivity matrix for the mesh K with
np nodes and nt triangles.

2 Initialise the np × np stiffness matrix A as a zero matrix.
3 for K = 1, 2, · · · , nt do
4 Compute the gradients ∇ϕi = (bi, ci); i = 1, 2, 3 on K.
5 Compute local element stiffness matrix

AK = p̄|K|

 b21 + c21 b1b2 + c1c2 b1b3 + c1c3
b2b1 + c2c1 b22 + c22 b2b3 + c2c3
b3b1 + c3c1 b3b2 + c3c2 b23 + c23


where p̄ = p

(
N1+N2+N3

3
)
.

6 Set up the local-to-global mapping, loc2glb = [r, s, t].
7 for i = 1, 2, 3 do
8 for j = 1, 2, 3 do
9 Aloc2glbi,loc2glbj

= Aloc2glbi,loc2glbj
+AK

ij

10 end
11 end
12 end

4.7.2 Assembly of the mass matrix

Since
Mij =

∫
Ω
qϕiϕj =

∑
K∈K

∫
K

qϕiϕj =
∑

K∈K
MK

ij (4.22)

and on triangle K, ϕl 6= 0 only when l is one of the nodes r, s, t, then

MK
ij =

{ ∫
K
qϕiϕj 6= 0, i, j = r, s, t

0, otherwise.

To assemble M , we need

• Local-to-global mapping: {r, s, t} 7→ {1, 2, 3}.

• Integration formula:∫
K

ϕm
1 ϕ

n
2ϕ

p
3 = 2m!n!p!

(m+ n+ p+ 2)!AK (4.23)

where AK is the area of triangle K, and m,n, p ∈ {0, 1, 2, · · · }.

42

Substituting m = n = 1 and p = 0 on the formula 4.23, we obtain∫
K

ϕ1ϕ2dx =
{ 2

4!AK = 1
12AK , when ϕ1 6= ϕ2

2(2!)
4! AK = 2

12AK , when ϕ1 = ϕ2

Hence, the above equations suggest that entries of the local mass matrix MK

are given by

MK
ij =

∫
K

qϕiϕj = q

12(1 + δij)AK for i, j = 1, 2, 3 (4.24)

where δij = 0 if i = j otherwise 0. In matrix form

MK = q

12

2 1 1
1 2 1
1 1 2

AK .

Algorithm 7: Assemble mass matrix
1 Let P, T be point matrix, connectivity matrix for mesh K with np nodes,

nl elements.
2 Initialize mass matrix M ∈ Rnp×np as a zero matrix.
3 for K = 1, 2, · · · , nl do

4 Form local element mass matrix MK = q
12

2 1 1
1 2 1
1 1 2

AK where AK

is the area of triangle K.
5 Define local-to-global mapping loc2glb = [r, s, t].
6 for i = 1, 2, 3 do
7 for i = 1, 2, 3 do
8 Mloc2glbi,loc2glbj = Mloc2glbi,loc2glbj +MK

ij

9 end
10 end
11 end

Algorithm 7 gives an outline of the assembly procedure for constructing mass
matrix M .

4.7.3 Assembly of the load vector

By the linearity of the integral

b =
∑

K∈K

∫
K

fϕi︸ ︷︷ ︸
bK

, (4.25)

where
bK

i =
∫

K

fϕi, i = 1, 2, 3 (4.26)

43

are the only non-zero terms of bK . This follows from the fact that the only basis
functions that are non-zero on triangle K are ϕi; i = 1, 2, 3. Using the corner
quadrature rule gives

bK
i =

∫
K

fϕi ≈ f(Ni)
|K|
3 , i = 1, 2, 3. (4.27)

Therefore, the load vector is given by

bK = |K|3

f(N1)
f(N2)
f(N3)


Algorithm 8 shows how the load vector b is assembled.
Algorithm 8: Assembling load vector

1 Let P be point matrix and T be connectivity matrix for the mesh K with
np nodes and nt triangles.

2 Initialise the np × 1 load vector b as a zero matrix.
3 for K = 1, 2, · · · , nt do
4 Compute local element load vector

bK = |K|3

f(N1)
f(N2)
f(N3)



5 Set up the local-to-global mapping, loc2glb = [r, s, t].
6 for i = 1, 2, 3 do
7 bloc2glbi

= bloc2glbi
+ bK

i

8 end
9 end

Algorithms 6,7 and 8 can be translated to their equivalent MATLAB codes
respectively. The MATLAB codes were left out due to the fact that this chapter
is beyond the scope of the study. However, this chapter can be extended in
possible future work.

4.7.4 Assembly of the boundary matrices

Let E be the edge of triangle K which lies on the boundary ∂Ω, and let Ni and
Nj be two nodes at the ends of edge E. Let E = {E} be the set of all edges on
∂Ω, then linearity of the integral implies that

R =
∑
E∈E

RE (4.28)

where
RE = c

∫
E

ϕiϕjds.

44

Since on edge E the only non-zero basis functions are ϕi and ϕj , then the only
non-zero entries of RE are

RE
ij =

∫
E

cϕiϕj ≈
c|E|

6 (1 + δij), i, j = 1, 2 (4.29)

where |E| denotes the length of the edge E and nodes Ni and Nj have been
tacitly replaced by N1 and N2 respectively.

Similarly, making use of the midpoint rule gives the only non-zero entries of
the local boundary load vector

bE
i = (cd+ e)

∫
E

ϕi ≈ (cd+ e) |E|2 , i = 1, 2. (4.30)

Just like in section 4.7.3 we intentionally skip including the code here. Even if
we did not include our own code for the problem on this chapter, we can make
use of MATLAB or Octave’s PDE solvers. We demonstrate this in the following
example.

4.7.5 Example

Consider the problem of finding solution u(x, y) which satisfies the 2-d Poisson
equation

−∆u(x, y) = f(x, y) on Ω (4.31)

ue = ud = x2 + y2

4 on ∂Ω (4.32)

where ∆ = (∂2

∂x2 ,
∂2

∂y2), Ω = [0, 1]2 is the unit square and f(x, y) = 1. This
problem has exact solution ue = x2+y2

4 .

4.7.6 Solution

We made use of MATLAB’s pdetool [13] and Python’s FEniCS [8] to approx-
imate the solution to equations (4.31) and (4.32). In Appendix A, we discuss
how this solution was obtained using MATLAB’s pdetool. In Appendix B we
solve the same problem using Python’s FEniCS.

4.8 Summary

In this chapter we used the FEM to numerically solve the RDE in the real plane.
We used the Lax-Milgram lemma to prove the existence and uniqueness of the
approximate solution. We used the MATLAB’s pdetool and Python’s FEniCS
to find approximate solutions for a simple problem. The results basically look
the same.

45

Chapter 5

Conclusion

In this study we used the FEM to solve boundary value problems for the
reaction-diffusion equation on the real line and in the real plane. We used
the Lax-Milgram lemma to prove the existence and uniqueness of the weak so-
lutions. We used Octave to implement the FEM in R and produce results. In
one example an exact solution existed and we used it to validate the finite el-
ement solution. In the real plane, we used MATLAB’s pdetool and Python’s
FEniCS to solve the RDE. We did not make use of our own code in this case.
Instead we used inbuilt code. Possible future work could involve using the FEM
with adaptive mesh refinement in R2. Furthermore free software libraries like
deal.ii could be used.

46

Appendix A

Solution of the 2-d example
problem using MATLAB

In this appendix, we present the code and the results generated by MATLAB’s
pdetool for the problem consisting of equations (4.31) - (4.32).

Model equation

We start by creating an empty model container for 1 partial differential
equation (PDE) of the form

(1) mutt + dut −∇ · (c∇u) + au = f

To this end we make use of the inbuilt function createpde. This function
returns a structure array with several empty fields for describing the problem
and it is used as follows:

model = createpde(1);

We wish to solve equation (1) on the unit square Ω = [0, 1]2. To this end we
add the unit square geometry to the model container as follows:

47

gd = [3 4 0 1 1 0 0 0 1 1]'; g = decsg(gd);
geometryFromEdges(model,g);

We create a mesh on Ω and add it to the model container:

generateMesh(model);

At this point, what does the struct array model contain?

model

model =
PDEModel with p r op e r t i e s :

PDESystemSize : 1
IsTimeDependent : 0

Geometry : [1 x1 AnalyticGeometry]
Equa t i onCoe f f i c i en t s : []

BoundaryConditions : []
I n i t i a lC ond i t i o n s : []

Mesh : [1 x1 FEMesh]
So lverOpt ions : [1 x1 pde.PDESolverOptions]

Inspect the Geometry property in model:

geometry = model.Geometry

geometry =
AnalyticGeometry with p r op e r t i e s :

NumCells : 0
NumFaces : 1
NumEdges : 4

NumVertices : 4

We observe that Ω has 1 face, 4 edges and 4 vertices as expected.

48

Poisson’s equation

In this example we seek a solution to

(2) −∆u = 1

This is a particular case of equation (1) with m = d = 0, c = 1, a = 0 and
f(x, y) = 1. We specify these coefficients and add them to the model container.

specifyCoefficients(model,'m',0,'d',0,'c',1,'a',0,'f',1);

Boundary conditions

On the boundary ∂Ω of Ω we impose the dirichlet boundary condition

(3) u = x2 + y2

4 on ∂Ω

In MATLAB this is achieved by doing the following:

applyBoundaryCondition(model,'dirichlet','Edge',1:model.Geometry.NumEdges,'u',@rfun);

which means that we are imposing the zero dirichlet boundary condition on all
edges of ∂Ω.

Inspect model:

model

49

model =
PDEModel with p r op e r t i e s :

PDESystemSize : 1
IsTimeDependent : 0

Geometry : [1 x1 AnalyticGeometry]
Equa t i onCoe f f i c i en t s : [1 x1 Coe f f i c i entAss ignmentRecords]

BoundaryConditions : [1 x1 BoundaryConditionRecords]
I n i t i a lC ond i t i o n s : []

Mesh : [1 x1 FEMesh]
So lverOpt ions : [1 x1 pde.PDESolverOptions]

and plot mesh

pdeplot(model.Mesh)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Solve PDE and plot solution

Finally we call solvepde to solve PDE (2) subject to boundary condition (3)
based on the information in the model container then we plot the solution

50

with the mesh.

results = solvepde(model); u = results.NodalSolution;
pdeplot(model,'XYData',u,'ZData',u,'Mesh','on')
xlabel('x'); ylabel('y'); zlabel('u');
title('-\Delta u = 1 in \Omega, u = (x ^ 2 + y ^ 2)/4 on \partial\Omega')

Figure A.1 Finite element solution.

Matlab function for non-constant boundary condition

function r = rfun(location,~)
x = location.x; y = location.y; % (x,y)
r = (x. ^ 2 + y. ^ 2)/4; % u = r on boundary

end

Shown in Figure A.1 is the finite element solution to the problem consisting of
equations (2) and (3).

51

Appendix B

Solution of the 2-d example
problem using Python

In this appendix we present finite element solution of the equations (4.31) and
(4.32) obtained by making use of Python’s FEniCS PDE solver. Shown in
Listing B.1 is the Python program that was used to solve problem (4.31) with
boundary condition (4.32).

Listing B.1: Python code generating solution to the problem (4.31).
"""
Solve bounday value problem:

−del u=f in Omega
u=u_D on boundary_of_Omega

where:
f=1 and
u_D=(x*x + y*y)/4

"""
from fenics import * # import key classes from FEniCS library
"""
create mesh using the inbuilt UnitSquare class
"""
mesh=UnitSquareMesh(13,13)
"""
Define function space of (continuous) piecewise (Lagrange)
polynomials of degree 1 on the mesh of triangles
"""
V=FunctionSpace(mesh,'Lagrange',1)
"""
Set u=u_D:=(x*x + y*y)/4 (polynomial in x and y of degree 3)
on the boundary
"""
u_D=Expression('(x[0]*x[0]+x[1]*x[1])/4',degree=2)
def boundary(x,on_boundary):

return on_boundary # Is a point x on the boundary or not?
bc=DirichletBC(V,u_D,boundary) # set u=u_D on boundary
define (abstract) variational problem

52

u=TrialFunction(V) # u is a trial function in function space V
v=TestFunction(V) # v is similarly in V
f=Expression('1.0',degree=0) # RHS of Poisson's equation=−y
a=dot(grad(u),grad(v))*dx # define bilinear form a(u,v)
L=f*v*dx # define linear form L(v)
compute solution
u=Function(V) # redefine u as the finite element solution
solve(a==L,u,bc) # solve variational problem for u with given bc
"""
open file for exporting solution
"""
vtkfile=File("2−D_example_latex_file/eg_2_solution.pvd")
vtkfile << u # write solution u to file
l2_norm_error=errornorm(u_D,u,norm_type="l2") # ||u−uh|| L2 norm
print('L2 norm error = ',l2_norm_error)

The solution that was generated by the program in Listing B.1 was exported to
the software Paraview for plotting the solution. See Figure B.1. Furthermore,
this program also calculate the L2- norm error ‖u− uh‖L2(Ω) to provide a com-
parison of the exact solution ue = x2+y2

4 with the finite element solution uh

shown in Figure B.1. The L2- norm error obtained was 0.0817069256190016.

Figure B.1: The solution of the problem (4.31) and (4.32) using Python’s PDE
solver.

53

Bibliography

[1] J Alvarez-Ramirez, F J Valdes-Parada, J Alvarez, J A Ochoa-Tapia, Non-
standard finite difference scheme for reaction-diffusion equations in curvi-
linear coordinates, Computer and Chemical Engineering, Vol 3, Issue 1,
2009, pp 277-286.

[2] G Akram, M Sadaf, Application of homotopy analysis method to the solu-
tion of ninth order boundary value problem in AFTI-F16 fighter, Journal
of the Association of Arab Universities for Basic and Applied Science, 2016,
http://dx.doi.org/10.1016/j.jaubus.2016.08.002, pp 1-7.

[3] M Ashyraliyev, J G Blom, J G Verwer, On the numerical solution of
diffusion-reaction equations with singular source terms, Journal of Com-
putational and Applied Mathematics, Vol 216, Issue 1, 2008, pp 20-38.

[4] A H Bhrawy, E H Doha, M A Abdelkawy, R A Van Gorder, Jacobi-Guass-
Lobatto collocation method for solving nonlinear reaction-diffusion equa-
tions subject to Dirichlet boundary conditions, Applied Mathematical Mod-
elling, Vol 40, 2016, pp 1703-1716.

[5] T U Chaudhari, D M Patel, Finite element solution of Poisson’s equation
in a homogeneous medium, International Research Journal of Engineering
and Technology (IRJET), Vol 02, Issue 9, 2015, pp 674-679.

[6] A Ghorbani, M Bakherad, A variational iteration method for solving non-
linear Lane-Emden Problems, New Astronomy, Vol 54, 2017, pp 1-6.

[7] D Kumar, J Singh, S Kumar, Numerical computation of Klein-Gordon
equations arising in quantum field theory by using homotopy analysis trans-
form method, Alexandria Engineering Journal, Vol 53, Issue 2, 2014, pp
469-474.

[8] H P Langtangen, A Logg, Solving PDEs in Python, Simula SpringerBriefs
on Computing, Vol 03, 2016.

[9] A Madzvamuse, A H W Chung, Fully implicit time-stepping schemes
and non-linear solvers for systems of reaction-diffusion equations, Applied
Mathematics and Computation, Vol 244, 2014, pp 361-374.

[10] G Makanda, Numerical study of convective fluid flow in porous and non-
porous media, PhD dissertation, University of KwaZulu Natal, 2015.

54

[11] B Muatjetjela, C M Khalique, Exact solutions of the generalised Lane-
Emden equations of the first and second kind, Journal of Physics, Vol 77,
No 3, 2011, pp 545-554.

[12] D Priimak, Finite difference numerical method for superlattice Boltzmann
transport equation and case comparison of CPU(C) and GPU(CUDA) im-
plementations, Journal of Computational Physics, Vol 278, 2014, pp 182-
192.

[13] A Quarteroni, F Saleri, P Gervasio, Scientific Computing with MATLAB
and Octave, Springer, 2014.

[14] R N Rao, P P Chakravarthy, A finite difference method for singularly per-
turbed differential difference equations with layer and oscillatory behaviour,
Applied Mathematical Modelling, Vol 37, Issue 8, 2013, pp 5743-5755.

[15] D Shanthi, V Ananthaswamy, L Rajendran, Analysis of non-linear reaction-
diffusion processes with Michaelis-Menten kinetics by a new Homotopy per-
turbation method, Natural Science, 5(9), 2013,pp 1034-1046.

[16] W Sikander, U Khan, N Ahmed, Optimal variation itera-
tion method for nonlinear problems, Journal of the Associa-
tion of Arab Universities for Basic and Applied Science, 2016.
http://dx.doi.org/10.1016/j.jaubus.2016.09.004, pp 1-7.

[17] Y M Wang, H B Zhang, Higher-order compact finite difference method
for system of reaction-diffusion equations, Journal of Computational and
Applied Mathematics, Vol 233, 2009, pp 502-518.

55

	Introduction
	Approximating continuous functions
	Introduction
	Piecewise polynomial approximation on the real line
	Piecewise polynomial approximation in the real plane
	Summary

	Reaction-diffusion equation on the real line
	Introduction
	Model problem
	Variational formulation
	Finite element approximation
	Existence and uniqueness of weak solution
	A simple problem
	A more general problem
	Application of the Lax-Milgram Lemma

	Computer implementation for original problem
	Assembly of stiffness matrix
	Assembly of mass matrix
	Assembly of load vector
	Assembly of boundary matrices
	Putting it all together

	Adaptive finite element method
	Summary

	Reaction-diffusion equation in the real plane
	Introduction
	Model problem
	Variational formulation
	Finite element approximation
	Existence and uniqueness of weak solution
	Derivation of a linear system
	Assembly
	Assembly of the stiffness matrix
	Assembly of the mass matrix
	Assembly of the load vector
	Assembly of the boundary matrices
	Example
	Solution

	Summary

	Conclusion
	Solution of the 2-d example problem using MATLAB
	Solution of the 2-d example problem using Python

