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Abstract

Temperature extremes have a crucial impact on agricultural, economic, health

and energy sectors due to the occurrence of climate extreme events such as

heat waves and cold waves. Limpopo province is among the hottest provinces

of South Africa and experiences little rainfall which affect the water availabil-

ity, food production and biodiversity. In the Limpopo province, temperature

extremes are expected to become more frequent as a result of climate change.

The aim of this study was to model temperature extremes in the Limpopo

province of South Africa using extreme value theory (EVT). The stationarity of

the data was tested using augmented Dickey-Fuller (ADF), Phillips-Peron (PP)

and Kwiatkowski-Phillips-Schmit-Shin (KPSS). Four candidate parent distri-

butions: normal, log-normal, gamma and Weibull distributions, were fitted to

the average monthly maximum and minimum daily temperatures. Prior to the

selection of the parent distributions, the data set at each station was subjected

to normality test using the Shapiro-Wilk (SW) and Jarque-Bera (JB) tests. The

stationarity and normality tests revealed that the maximum and minimum

temperature data series at all the stations are neither stationary nor normally

distributed. Akaike information criterion (AIC) and Bayesian information cri-

terion (BIC) were used to select the best fitting distribution at a particular site.

The findings revealed that both maximum and minimum temperatures series

at all the stations belong to the Weibull domain of attraction. The findings from

the Mann-Kendall (M-K) test and time series plots trend analyses showed that

there is a monotonic downward and upward long-term trend in minimum and

maximum temperature data, respectively.
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Two fundamental approaches of EVT, block maxima and peaks-over-threshold

(POT), were used in this dissertation. The generalised extreme value (GEV),

generalised Pareto (GP) and Poisson point process distributions were fitted to

the data set for each station. In order to account for climate change impact,

non-stationary models were considered with Seasonal Oscillation Index (SOI)

as covariates of the parameters of the GEV distribution. The findings revealed

that both the maximum and minimum temperature data can be modelled by

the Weibull family of distribution. The EVT return level analysis findings of

above 400C for maximum temperature suggests impending heat waves and

droughts in the Limpopo province. The bivariate conditional extremes ap-

proach with a time-varying threshold was used. The findings revealed both

significant positive and negative extremal dependence in some pairs of meteo-

rological stations. The findings of this study play an important role in revealing

information useful to meteorologists, climatologists, agriculturalists and plan-

ners in the energy sector where temperature extremes play an important role.

The scientific contribution of this study was to reduce the risk and impact

of temperature extremes on agricultural, energy and health sectors in the

Limpopo province. An understanding of temperature extremes will help gov-

ernment and other stakeholders to formulate mitigation strategies that will

minimise the negative impact resulting from temperature extremes in the Limpopo

province. Among the major contributions of the study was the use of a pe-

nalised cubic smoothing spline to perform a nonlinear detrending of the tem-

perature data, before fitting bivariate time-varying threshold excess models

based on Laplace margins, to capture the climate change effects in the data.

Future studies may consider exploring the use of extreme value copulas, as

well as spatio-temporal dependence between temperature extremes using the

conditional extremes model of Heffernan and Tawn (2004).
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Chapter 1

Introduction and background

1.1 Introduction

Over the last five decades, South Africa has experienced a considerable in-

crease in mean annual temperatures with hot and cold extremes increasing

and decreasing in frequency across the country respectively (DEA, 2013). Tem-

perature is one of the main climatic elements that can indicate climate change

as climate change seems to be one of the most important issues in the recent

two decades (Worku et al., 2019; Roy and Das, 2013, 2012). Climate change

is a measurable reality posing noteworthy social, economic and environmental

risks and challenges globally (DEA, 2017). Global warming and its associated

increase in temperature extremes pose a substantial challenge on natural sys-

tems.

Limpopo province is one of the nine provinces of South Africa. The province is

among the lowest ranked in terms of regional gross domestic product (GPD) per

capita and it is the most vulnerable province to climate change impacts. How-
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ever, the province is one of South Africa’s richest agricultural regions (Maponya

and Mpandeli, 2012b). Drought is the main problem in the province affecting

agricultural sectors due to high temperatures and unreliable rainfall in the

province (Mpandeli and Maponya, 2013; Tshiala et al., 2011). The recent high

temperatures in the province was experienced in the western bushveld and the

lowveld in October 2019 (Phophi et al., 2020).

According to Tarmizi et al. (2019), human activities are the major causes of cli-

mate change because of the burning of fossil fuel that produces gases like car-

bon dioxide, methane and nitrous oxides which lead to global warming. These

gases are then released into the atmosphere. The atmosphere gets polluted

with the carbon dioxide which covers the earth and absorbs heat, then the ab-

sorbed heat causes the earth to warm, leading to extreme temperatures (Mori,

2016). According to Ochanda (2016), climate change can influence nature and

threaten humans in different aspects of life, both economically and socially.

It is widely believed that the changing temperature due to global warming is

permanently changing the earth’s climate. That is, increase in temperature is

likely to lead to a global increase in drought condition, decrease in water sup-

plies due to evapotranspiration and increase in agricultural demand (Nhamo

et al., 2019; Ochanda, 2016).

The temperature extremes and frequent flooding affect agricultural produc-

tion in the province, leading to scarce food and water resources, which is a big

threat to a country like South Africa, where the population is rapidly grow-

ing (Andersson and Nilsson, 2018). South Africa is also concerned about public

health around extreme hot events rather than extreme cold events and how the

impact of these events may change in the future (Wright et al., 2014). In the

past four decades (1980-2015), Southern Africa experienced 491 climate disas-

ters (meteorological, hydrological, and climatological) that resulted in 110 978
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deaths, left 2.49 million people homeless and affected an estimated 140 million

people (Reddy and Vincent, 2017).

1.2 Background

South Africa is one of the most vulnerable countries to climate variability and

events due to its exposure to extreme weather events and sensitive economy

(Jimmy et al., 2019). Extreme climate and weather events such as flooding,

drought, heat waves and cold waves have negative impacts on the society, en-

vironment and resource management, particularly in developing countries like

South Africa (Gebrechorkos et al., 2019; Wolf et al., 2010). Extreme climate

events are expected to become more frequent as a result of climate change

(Hales et al., 2003). Climate change can be due to natural and anthropogenic

effects (John et al., 2014; Nasri and Modarres, 2009). Climate change has re-

sulted in rising temperature trends with associated changes in temperature

extremes across the globe, which has the potential to impact on human health.

It is generally anticipated that as the planet heats up, climate variability will

increase (Jimmy et al., 2019; Mothupi et al., 2016; Kruger and Sekele, 2013).

Temperature extremes, which are attributed to an increasing concentration of

greenhouse gases, are natural phenomena that affect our socio-economic ac-

tivities (Senyolo et al., 2018). For instance, extremely high temperatures and

prolonged heat waves can damage agricultural production, increase energy and

water consumption and also badly affect human well-being, human health and

even cause loss of human lives (Hasan et al., 2012), while extreme cold temper-

atures can also lead to high energy consumption particularly during the winter

period in South Africa and other parts of Southern Africa.



Introduction and background 4

During the 21st century, the global surface temperature has increased by about

0.850C and many areas have experienced significant warming (Toros et al.,

2019). Kruger and Shongwe (2004) found considerable increase in tempera-

ture between 1960 and 2003 for the three stations Bela Bela, Polokwane and

Musina situated in the Limpopo province in north-eastern South Africa.

1.3 Problem statement

Many areas of society throughout the world are susceptible to the effects of

temperature extremes (Raghavendra et al., 2019; Nemukula et al., 2018; Keellings

and Waylen, 2015). Temperature extremes such as heat waves and cold waves

are deadly natural hazards, although they occur less frequently and are more

difficult to detect than a hurricane or a cyclone (Chan and Nadarajah, 2015;

Henderson and Muller, 1997). Heat waves are reportedly occurring more fre-

quently across much of the globe including South Africa, and under a global

warming climate they are expected to increase in frequency, intensity, and du-

ration (Sigauke and Nemukula, 2018; Keellings and Waylen, 2015; Coumou

et al., 2013; Grumm, 2011). Climate change is regarded as the most contribut-

ing factor to recent increases in global temperatures (Winter, 2016; Beniston

et al., 2007).

Temperature extremes have a major impact on agricultural, economic, health

and energy sectors (Raggad, 2018; John et al., 2014; Reich et al., 2014). For

instance, extreme high temperatures such as heat waves may result in loss of

plant and animal species, losses in economic goods, high energy demand for air

conditioning, death resulting from heart attacks, heat cramps, fainting, heat

strokes and heat exhaustion (Bowling et al., 2018; Sigauke and Nemukula,

2018; Chan and Nadarajah, 2015). Extreme low temperatures such as cold

waves may result in freezing and bursting of water pipelines, a rise in the
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demand for fuels and electricity, animals not able to graze and dying of star-

vation, frostbites in humans and animals, and other serious medical ailments

(Reich et al., 2014; Chikobvu and Sigauke, 2013; Nury et al., 2013).

In Africa, the impact of a changing climate varies by region (Sigauke and Ne-

mukula, 2018; Wright et al., 2014; Yamba et al., 2011). By the end of the

century, Southern Africa is expected to experience an average temperature in-

crease of about two degrees Celsius higher than the predicted average global

increase (Wright et al., 2014). Changing weather conditions increase electric-

ity demand due to the fact that in winter heating systems are used, while in

summer air conditioning appliances are used (Sigauke and Nemukula, 2018;

Chan and Nadarajah, 2015). This creates a big problem, particularly in South

Africa where the national electricity supplier, ESKOM, is already battling with

meeting the demands of the nation in energy supply (Sigauke and Nemukula,

2018; Chikobvu and Sigauke, 2013). Over recent decades, ESKOM has experi-

enced an increased demand for electricity, placing pressure on its supply side,

consequently leading to rolling blackouts (Hohne et al., 2019). According to

Yamba et al. (2011), energy demand is expected to change drastically in South

Africa as a result of increasing temperatures and changing weather patterns,

subsequently affecting heating and cooling demands.

In Limpopo province, temperature extremes have effects on human health

and agricultural production. These temperature extremes result in the trans-

mission and spread of respiratory, diarrhoea and malaria diseases to humans

(Thompson et al., 2012). Temperature extremes are also a major threat to food

security as they have a strong impact on food production, access and distri-

bution (Maponya and Mpandeli, 2012b). Limpopo is a drought prone province

which faces challenges of drought from time to time. During drought, there is

an increased risk for wildfires and dust storms. Agricultural sector is one of
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the industries that have been hardest hit by the drought. As a result of the se-

vere drought, the province experienced reduced grazing and water for livestock

and irrigation which negatively impacted the agricultural sector (Maponya and

Mpandeli, 2012a).

1.4 Rationale

Temperature extremes may have significant effects on various sectors of South

Africa and its economy. Sectors that are most vulnerable to temperature ex-

tremes in South Africa are agriculture, health and energy. There is a critical

need to understand the variability and persistence of temperature extremes

in order to enhance climate impact studies and to act as a baseline for global

climate change (Henderson and Muller, 1997).

Chikobvu and Sigauke (2013) investigated the influence of temperature on av-

erage daily electricity demand in South Africa using a piecewise linear regres-

sion model and the generalised extreme value (GEV) distribution approach for

the period 2000-2010. Their empirical results showed that electricity demand

in South Africa is highly sensitive to cold temperatures. The results also re-

vealed the Weibull as the appropriate distribution to model daily temperature

extremes. Their study focused on the block maxima approach. This study will

use both the block maxima and peaks-over-threshold (POT) approaches, where

a comparative analysis of the GEV with a generalised Pareto (GP) distribu-

tions, Poisson point process and bivariate realisations will be performed.

Nemukula et al. (2018) used bivariate threshold excess to model extreme high

temperature in Limpopo province of South Africa. The aim was to model the

extremal dependence of temperature at three meteorological stations in the

Limpopo province. A penalised cubic smoothing spline was used for non-linear
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detrending of the data. The present study will adopt a similar approach, but

with more meteorological stations of large average monthly temperature data

sets.

In South Africa, few studies have been conducted using extreme value theory

(EVT) to model temperature extremes, and the majority of those that used EVT

mainly focused on the GEV and GP distributions. Again, most of the research

conducted on temperature extremes used daily data. This study will use aver-

age monthly maximum and minimum temperature data to model temperature

extremes using Poisson point process and bivariate threshold excess, since lit-

erature is scarce in South Africa on studies conducted using these approaches.

The GEV and GP distributions will also be explored in the absence and pres-

ence of some covariates. The present study will also investigate the domain

of attraction of the parent distributions of the maximum and minimum tem-

peratures at the selected sites. The purpose of studying temperature extremes

in the Limpopo province is to reduce the associated risk and impact of these

temperature extremes on agricultural, health, economic and energy sectors.

Hence, modelling temperature extremes using EVT will help decision-makers

in the agriculture, economic, health, water and energy sectors in the Limpopo

province of South Africa to plan ahead in order to counter climate related dis-

asters.

1.5 Aim and objectives

1.5.1 Aim

The aim of this study is to model the extreme maximum and minimum tem-

peratures in the Limpopo province of South Africa using extreme value theory.
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1.5.2 Objectives

The objectives of the study are to:

1. Fit the parent distributions to average maximum and minimum temper-

atures and select the best fitting distribution(s).

2. Investigate the long-term trends of the maximum and minimum temper-

atures for four selected weather stations in the province.

3. Model the tail behaviour of the block maxima and minima temperature

extremes in the province in the presence and absence of some covariates.

4. Model the extremal behaviour of the peaks-over-threshold temperature

extremes in the province using the GP distribution and Poisson point pro-

cess approaches.

5. Model maximum temperature extremes in the province using the bivari-

ate conditional extremes approach with a time-varying threshold.

6. Perform a comparative analysis of the various modelling approaches used

in the study.

1.6 Significance of the study

Temperature extremes are expected to increase in South Africa. The study is

intended to enhance awareness and understanding of temperature extremes

for the community and decision-makers in the Limpopo province to develop

tools that will reduce the negative impact of extreme temperature events in the

agricultural, economic, health and energy sectors. The major findings of this

study are of paramount importance in the sense that developing statistical

models for temperature extremes will help in the mitigation strategies and

reduce the deleterious impacts of these temperature extremes on humans and
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property. This will also go a long way in reducing the amount of aid money

required for post-disaster operations.

1.7 Structure of the dissertation

This dissertation is divided into five chapters. Chapter 1 describes the back-

ground, problem statement, rationale, aim and objectives and significance of

the study. Chapter 2 explores the previous literature of similar and related

studies that have been done. Chapter 3 details the research methods that are

used in the data analysis. In Chapter 4 the data is analysed and the results

are presented in the form of graphs and tables. Chapter 5 gives the concluding

remarks and recommendations of the study.



Chapter 2

Literature review

2.1 Introduction

This chapter outlines the related literature review of several studies world-

wide. These include the application of extreme value theory (EVT), and anal-

ysis of long-term trends of temperature extremes using Mann-Kendall (M-K)

test statistics and other time series techniques. EVT provides a rigorous frame-

work for analysis of climate extremes and their return levels. It is widely appli-

cable in a wide range of disciplines including finance, insurance, engineering,

hydrology and climatology (Rasaki et al., 2018; Mothupi et al., 2016). M-K test

has been widely used in hydrological studies (Salman et al., 2017). Its advan-

tages are that it is distribution-free, robust against outliers, and has a higher

power than many other commonly used tests.
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2.2 Climate of Southern Africa and South Africa

The climate across Southern Africa varies from arid conditions in the west to

humid subtropical conditions in the north and east, while much of the central

part of Southern Africa is classified as semi-arid (Daron, 2014; Hulme et al.,

2001). The climate of South Africa is highly variable and unpredictable and

the region is prone to extreme weather conditions such as drought, floods and

heat waves (Makate et al., 2019; Nhemachena and Hassan, 2007). One of the

main components of climate change is temperature, which has increased glob-

ally by approximately 0.9 degree Celsius over the past 100 years (Prokosch

et al., 2019). Climate change with expected long-term changes in rainfall and

extreme temperature patterns are expected to have considerable negative ef-

fects on agriculture, food and water security, and economic growth in Southern

Africa including South Africa (Nhemachena and Hassan, 2007).

2.3 Climate of Limpopo province

Limpopo province is one of the developing provinces in South Africa in terms of

regional GDP per capita and is one of the most vulnerable provinces to climate

change impact due to its exposure to extreme weather events and sensitive

economies (LEO, 2016; Tshiala and Olwoch, 2010). The province has three

distinct climatic regions: the lowveld, middleveld and highveld (Tshiala et al.,

2011). Climate change mostly affects the rural poor communities where the

economy is fully dependent on rain-fed agriculture (Worku et al., 2019).

Agriculture, mining and tourism are the three pillars of the economy of Limpopo

province. However, the agricultural sector has been heavily affected by drought

for a very long time, with particular negative impacts on rain-fed agriculture

(Phophi et al., 2020; Mpandeli and Maponya, 2013). The extreme droughts that

affected many areas in Limpopo province were those in the 1970s, 1980s, 1990s,
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2000, 2005, 2012 and 2015 (Vogel and Olivier, 2019; Mpandeli and Maponya,

2013). Even though drought has been a problem in the province due to high

temperatures, there are other socio-economic factors affecting and constraining

livelihoods in Limpopo, such as HIV/AIDS, poverty and a high unemployment

rate (Phophi et al., 2020; CSP, 2015; Mpandeli and Maponya, 2013).

2.4 Heat and cold waves

A heat wave is a prolonged period of excessively hot weather, lasting for several

days or weeks (Hasan et al., 2012). Heat waves are expected to become more

intense, more frequent and last longer than what has been observed in recent

years (Kauwe et al., 2019; Hatfield and Prueger, 2015; Teskey et al., 2015).

Temperature over subtropical Southern Africa have risen more than twice the

global rate over the last five decades (Reddy and Vincent, 2017). It is, there-

fore, likely that there will be further heat waves across South Africa and the

continent of Africa in general (Russo et al., 2016).

Globally, heat waves cause human mortality more than any other natural haz-

ard like hurricanes, lightning, tornadoes, floods and earthquakes (Luber and

McGeehin, 2008). Increasing temperatures will cause a shift in crop growing

seasons which affects food security and changes in the distribution of disease

vectors, putting more people at risk from diseases such as dengue fever and

malaria (Singh et al., 2014). In South Africa heat waves occur mostly in sum-

mer, and occasionally in spring and early autumn (Phillips, 2020).

Globally, heat waves claim hundreds and thousands of lives each year (Raghaven-

dra et al., 2019). The recent heat wave events such as the 2019 European heat

wave resulted in the deaths of at least 15 people. Five died in France, four in

Germany, three in the United Kingdom, two in Spain and one in Italy (Irfan,
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2019). In South Africa, the recent heat waves that occurred in October 2019 in

the Limpopo province were extremely severe with maximum temperatures of

over 400C in the western bushveld and the lowveld.

Contrary to a heat wave, a cold wave is a weather phenomenon that is distin-

guished by a cooling of the air (Tomczyk et al., 2019). A cold wave can cause

death and injury to livestock and wildlife. Exposure to cold weather mandates

greater caloric intake for all animals, including humans, and if a cold wave is

accompanied by heavy and persistent snow, grazing animals may be unable to

reach needed food intake and die of hypothermia or starvation (Barnett et al.,

2012).

2.5 Impact of temperature extremes

2.5.1 Agriculture

The agricultural sector in Africa has been impacted by flooding, droughts,

soil erosion, land degradation and deforestation, leading to human migration

within Africa and to other continents (Gonzalez-Sanchez et al., 2019). Agri-

culture is the most important sector for the African continent and on average,

70% of the people in the continent are employed in this sector (Pereira, 2017).

Limpopo province is extremely vulnerable to climate variability and change as

agriculture production depends on climatic conditions and mainly on the qual-

ity of the rainy seasons (Musvoto, 2019; Musetha, 2016; Maponya and Mpan-

deli, 2012a).

Higher temperature increases atmospheric vapour pressure, which in turn in-

creases evapotranspiration leading to more rapid soil drying and increased

drought severity (Musvoto, 2019; Teskey et al., 2015; Nelson et al., 2009). Cli-

mate extreme events are projected to increase in the warming climate (Kauwe
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et al., 2019; Coumou and Robinson, 2013; Miller et al., 2008) and this can min-

imise crop production since it is known that environmental factors such as

temperature and soil moisture are determinant factors of crop yield (Mbokodo,

2017).

2.5.2 Economy

The South African economy is dependent on primary sectors such as agricul-

ture and mining. Climate extremes have substantial control on the day-to-

day economic development of the Limpopo province and the whole of South

Africa (DEA, 2019). The likely outcomes of the effects of climate extremes are

loss of jobs in agricultural value chains, reduced local food security, increasing

food prices, the consolidation of production to fewer producers, a decline in ex-

port earnings, and a greater dependency on food produce imported from other

provinces of South Africa and from other countries (Piennar and Boonzaaier,

2018; CDKN, 2012).

In the Western Cape province of South Africa, losses in agricultural production

over the three-year drought period 2015-2017, had a serious economic impact,

which included job losses. The number of jobs lost were approximately 35 000

over the three-year period, with a further knock-on effect in the processing and

food sectors (Archer et al., 2019; Piennar and Boonzaaier, 2018).

2.5.3 Human health

Temperature extremes are prominent threats to human health. Heat waves

and cold waves cause serious effects on human health. High temperature can

trigger a multitude of medical conditions including heat stress, heat exhaus-

tion and heat stroke; with the elderly, the young and people with existing med-

ical conditions being the most vulnerable (Henderson and Muller, 1997). The
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number of emergency hospital admissions and ambulance call-outs has been

observed to increase during heat waves and cold waves (Zuo et al., 2015). In

Chicago in the United States of America in 1995, heat waves claimed approx-

imately 739 deaths over a period of five days (Hintz et al., 2018). In Europe

2018, cold waves occurred, which resulted in 137 deaths (Herring et al., 2020).

2.6 Application of EVT on climate extremes

Diriba et al. (2015) used the GP distribution to model extreme daily tempera-

ture at Port Elizabeth, in the Eastern Cape province of South Africa for the pe-

riod 1949-2013. Since extremes in minimum and maximum temperature series

do not follow a normal distribution, the non-parametric methods of Kendall’s

tau test and Sen’s slope estimator were used for the trend analysis. The max-

imum likelihood estimator (MLE) for parameter estimation and confidence in-

tervals on profile likelihood functions were used. Their results showed a signif-

icant positive trend for the extreme annual minimum temperature. The return

level estimates showed that by the end of the 21st century the extreme summer

temperature would have increased by 5oC, whereas the change in the winter

minimum temperature would be less severe with an increase of 2oC.

Bhagwandin (2017) applied multivariate EVT to climate data in the Western

Cape province for the period 1965-2015. The block maxima, threshold excess

and point process approaches were used on the weather data, rainfall, wind

speed and temperature maxima. Their results showed that models under the

block maxima approach do not perform well in modelling the weather variables

at the five stations in both the univariate and multivariate cases as many use-

ful observations were discarded. Also, threshold excess and point process ap-

proaches performed better in modelling the weather extremes.
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Mothupi et al. (2016) estimated extreme quantiles of the maximum surface air

temperature for the Sir Seretse Khama International Airport weather station

in Gaborone for the period 1985-2015, using the generalised extreme value

(GEV) distribution. Their aim was to predict the future behaviour of the quar-

terly maximum surface air temperature by estimating their high quantiles

using the GEV distribution. The Kwiatkowski-Philips-Schmidt-Shin (KPSS)

test of stationarity on the series revealed that the maximum temperature was

stationary. The seasonal M-K test for trend showed no presence of mono-

tonic trend. The parameters were estimated using the MLE method. The

Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) goodness-of-fit tests

showed that the distribution gives a reasonable fit to the quarterly maximum

surface air temperature.

Sampson and Kwadwo (2019) modelled the extreme maximum temperature in

Ghana using EVT for the period 1900-2013. Their aim was to inform decision-

makers to help them plan appropriate risk mitigating measures to reduce the

damage caused by drought. The block maxima with GEV distribution, and the

GP distribution with all excesses and decluster peaks were used on 113 years

of monthly temperature data. Two statistical tests for stationarity, namely:

augmented Dickey-Fuller (ADF) and M-K tests were performed. In the GEV

modelling, the model selection criteria namely: Akaike’s information criterion

(AIC), likelihood-ratio test and the diagnostic checking indicate that the model

with linear trend in location parameter was appropriate. In fitting the GP dis-

tribution, the results from the parameter estimation showed that GP with all

excesses better fits the data than the GP with decluster peaks. The results

were also confirmed by diagnostic tests which also revealed the same conclu-

sion. This suggests that in 20 years to come, maximum temperature in Ghana

would exceed 36.3oC, which indicates a drought period.
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Ngailo et al. (2016) modelled extreme maximum rainfall using EVT in Tanza-

nia. The aim of their study was to determine the best fitting distribution to the

extreme daily rainfall for 14 stations in Tanzania for the periods 1961-2014 and

1984-2014. They used stationary and non-stationary processes. Their empir-

ical results indicated significant increases in annual maxima over the period

1961-2014 in Dar es Salaam confirming trends over the region, while the trends

for other stations were insignificant. The model fit suggested that the Gumbel

distribution provides the most appropriate model for the annual maximum of

daily rainfall, while the exponential distribution provided a reasonable model

for the daily rainfall data over the threshold value of 99% for all the 14 stations

considered in the study in Tanzania.

Lazoglou et al. (2019) analysed extreme precipitation and temperature events

in the Mediterranean region for the periods 1901-2000, 1916-2015 and 1951-

2010 using EVT. They used both the block maxima and peaks-over-threshold

(POT) approaches and as a result both the GEV and GP distributions were

used to fit the data. Their results were compared in order to select the most

appropriate distribution. Their results revealed that the GP distribution is the

appropriate approach for both precipitation and temperature extreme events.

Also, the GEV distribution with the Bayesian parameter estimation method

was found to be appropriate, especially for the greatest values of extremes.

Andersson and Nilsson (2018) used EVT approach to model risk of extreme

rainfall in Bangladesh for the period 1980-2016. The aim of their study was

to make a univariate extreme value analysis to calculate the extreme rainfall

pattern over the next 10, 50 and 100 years. The block maxima and POT ap-

proaches were used. GEV and GP distributions were fitted to the daily rainfall

data. Their results showed that the return levels for both GEV and GP distri-

butions indicated an increase in rainfall for most of the stations.
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Gao and Zheng (2018) applied non-stationary extreme value analysis to model

temperature extremes in China for the period 1956-2013. The annual temper-

ature extremes were fitted to GEV distribution with time-varying parameters.

The year index and the two climate indices namely; western Pacific substrop-

ical high and Arctic oscillation, were chosen as covariates in non-stationary

GEV distribution of annual extremes of daily maximum and minimum tem-

peratures. The best fitting GEV model to the 20-year return levels of annual

warm and cold extremes in the periods 1961-1980 and 1991-2010 were com-

puted and compared to assess the changes of temperature extremes. Their re-

sults revealed that the changes of 20-year return levels of both maximum and

minimum temperatures were jointly determined by trend and distributional

changes of annual temperature extremes.

Brown et al. (2008) analysed the observed daily temperature anomalies with

regard to the normal climate using POT approach for the period 1961-1990.

Their results revealed that extreme daily maximum and minimum temper-

atures have warmed for most regions of Europe since 1950, showing a sig-

nificant positive trend in extreme temperature anomalies for both upper and

lower tails of their distributions. For the non-stationary POT model, the scale

and shape parameters were assumed to be time-varying parameters, generat-

ing time-varying T-year return levels. In applying non-stationary POT based

model, there is an additional important step, threshold selection, which should

be carefully considered in non-stationary extreme value modelling of climate

extremes.

Osman et al. (2015) applied hybrid POT and GP distribution to model extreme

temperature in Ireland under global warming for the period 1961-2000. Their

study used a combination of POT, that is, GP distribution in which the param-

eter of the distribution was allowed to vary with a dominant feature of climate



Literature review 19

at the location. Their results indicated that considerable changes in extreme

temperature events, which include hotter summers and mild winters, are pro-

jected to occur in Ireland over the course of the present century.

Hasan et al. (2012) modelled extreme temperature behaviour in Penang, Malaysia

using GEV distribution for the period 2000-2009. They studied extreme max-

imum temperature using 10 years of data. Maximums of five different time

periods, namely: weekly, biweekly, monthly, quarterly and half yearly were fit-

ted to the GEV distribution. The results showed that only weekly, biweekly and

monthly maximums were significant to be fitted to the GEV model. The ADF

and KPSS stationarity tests both detected no stochastic trend for maximum

temperature. However, the M-K test showed that all three selected periods

had decreasing trends. The K-S and A-D goodness-of-fit tests showed that all

three selected period maximums converge to the GEV distribution.

Hasan et al. (2013) modelled annual extreme temperature in Malaysia using

GEV distribution for the period 1981-2011. Extreme temperature of several

stations were modelled by fitting the annual maximum to the GEV distribu-

tion. The M-K results showed existence of trend for some stations and absence

in other stations. The annual maximum temperature was modelled by apply-

ing stationary and non-stationary GEV distribution to the different stations.

The parameters were estimated using the MLE and likelihood ratio test was

used to determine the best-fitting model. The non-stationary models were rec-

ommended to describe extreme temperature series in some stations.

Ayuketang and Joseph (2014) modelled extreme temperature in Cameroon us-

ing GEV distribution for the period 1993-2012. Maximums of five different se-

lection periods, namely: monthly, bi-monthly, quarterly, half yearly and yearly

were fitted to the GEV distribution. The results showed that the monthly, bi-
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monthly and quarterly periods were the best selection periods to be fitted to

the GEV distribution. It was also found that the three parameter GEV model

best fit the data as compared to Gumbel, Frechet and Weibull family of dis-

tributions. A normality test conducted using the A-D test rejected the null

hypothesis that the distribution of the data was normal in favour of the alter-

native hypothesis at 5% significance level. The M-K test showed that all se-

lection periods have decreasing trends, while the K-S and A-D goodness-of-fit

tests showed that all three selected periods converge to the GEV distribution,

with monthly maximum having the best convergence.

Worku et al. (2019) examined the changes in rainfall, minimum and maximum

temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for

the period 1981-2014. Ten rainfall and 12 temperature indices were used to

study changes in rainfall and temperature extremes. The non-parametric M-K,

seasonal M-K, and Sen’s slope estimator were used to estimate annual trends.

The results showed an increasing trend of annual and summer rainfall in more

than 78% of the stations and a decreasing trend of spring rainfall in most of

the stations. Annual maximum and minimum temperature and extreme tem-

perature indices showed warming trend in the sub-basin.

2.7 Summary of the chapter

In this chapter relevant literature was reviewed. The general background of

temperature extremes and application of EVT have been discussed. It was

found that there is limited literature on the use of EVT in South Africa.



Chapter 3

Methodology

3.1 Introduction

This chapter mainly presents statistical tests and methods used to analyse the

temperature data in Limpopo province.

3.2 Research methodology

3.2.1 Data source and study area

The study uses time series secondary data. The average daily maximum and

minimum temperature data measured in degrees Celsius ( 0C) were obtained

from South Africa Weather Service (SAWS) database. The data are monthly

maxima and minima average daily temperatures. The study area covers the

following meteorological stations of the Limpopo province in South Africa: Mara

(1949-2018), Messina [also locally known as Musina] (1934-2009), Polokwane

(1932-2018) and Thabazimbi (1994-2018). Some other meteorological stations
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in the Limpopo province such as Giyani, Lephalale, Marken, Mokopane, Tho-

hoyandou and Tzaneen were excluded from this study due to massive miss-

ing values. Figure 3.1 shows the four meteorological stations in the Limpopo

province where the study is being conducted.

Figure 3.1: Study area map showing the four meteorological stations in the
Limpopo province of South Africa. Source: [Author’s own contribution]

3.2.2 Tests for stationarity

Augmented Dickey-Fuller test

Augmented Dickey-Fuller (ADF) is a test for a unit root in a time series sam-

ple and its fundamental aim is to test the null hypothesis that a unit root is

present in a time series sample, that is, Φ = 1, in

yt = Φyt−1 + vt, (3.1)
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where yt is the maximum and minimum temperature data and vt is an inde-

pendently and identically distributed zero-mean error term.

against the one-sided alternative, Φ < 1 (Alhassan and Tela, 2019).

In other words, the hypothesis to be tested is:

H0: the series has a unit root,

against

H1: the series is stationary.

If the value of the ADF test statistic is negative, then the null hypothesis is

rejected. The more negative the test statistic is, the stronger the rejection of

the hypothesis that there is a unit root at some level of significance. Alterna-

tively, if the p-value of the ADF test statistic is small, that is, smaller than the

level of significance, then the null hypothesis is rejected (Ochanda, 2016).

Phillips-Peron test

Phillips-Peron (PP) test is a unit root test and it is used to test the null hy-

pothesis that a time series is integral of order 1 (Ochanda, 2016). The null

hypothesis is that there is a unit root against the alternative that there is no

unit root. If the p-value is greater than the level of significance, then we fail to

reject the null hypothesis.

Kwiatkowski-Phillips-Schmid-Shin test

Kwiatkowski-Phillips-Schmit-Shin (KPSS) test is used to test the null hypoth-

esis of trend stationarity against an alternative of a unit root (Ochanda, 2016).

If the p-value from the test statistic is greater than the level of significance,
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then we fail to reject the null hypothesis and conclude that the data is trend

stationary.

3.2.3 Testing for normality

Shapiro-Wilk test

Shapiro-Wilk tests the null hypothesis that a sample X1, ..., Xn comes from a

normally distributed population.

The test statistic is given by

W =
(
∑n

i=1(ai)(xi))
2∑n

i=1(xi − x̄)2
, (3.2)

where xi is the ith order statistics, that is, the ith smallest number in the sample,

x̄ =
(xi + ...+ xn)

n
. (3.3)

The constants ais in (3.2) are given by

(a1, ..., an) =
mt(V −1)

(mt(V −1(V −1)m)1/2
, (3.4)

where

m = (m1, ...,mn)T , (3.5)

m1, ...,mn are the expected values of the order statistics of independent and

identically distributed (iid) random variables from the standard normal distri-

bution, and V in (3.4) is the covariance matrix of those order statistics (Chifu-

rira, 2018). Shapiro-Wilk is fairly powerful omnibus test, not good with small

samples or discrete data. Good power with symmetrical, short and long tails.

Good with asymmetry.
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Jarque-Bera test

Jarque-Bera (JB) test is defined as:

JB =
n− k + 1

6
(s2 +

1

4
(c− 3)2), (3.6)

where

n is the number of observations,

s is the sample skewness,

c is the sample kurtosis,

k is the number of regressors (Kim et al., 2020; Gel and Gastwirth, 2008).

Additionally, the sample skewness s and sample kurtosis c are given by

s =
µ̂3

σ̂3
, (3.7)

c =
µ̂4

σ̂4
, (3.8)

respectively, where µ̂3 and µ̂4 are the estimates of the third and fourth central

moments (Kim et al., 2020; Gel and Gastwirth, 2008). JB test is good with

symmetric and long-tailed distributions, less powerful with asymmetry, and

poor power with bimodal data.

3.2.4 Parent distributions

This subsection presents the theoretical framework of the parent distributions

investigated in this study.
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Normal distribution

A normal distribution is symmetrical and has a bell-shaped density curve with

a single peak (Chikobvu and Chifurira, 2015). The normal density function is

given by

f(x|σ, µ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, with σ > 0, (3.9)

where µ is the mean, x is the sample mean and σ is the standard deviation,

known as the location and scale parameters of the distribution, respectively

(Al-Suhili and Khanbilvard, 2014).

Log-normal distribution

The log-normal distribution probability density function (PDF) is given by

f(x|σ, µ) =
1

xσ
√

2π
exp

(
−(logx− µ)2

2σ2

)
, (3.10)

with µ and σ as mean and standard deviation, known as the location and scale

parameters of the distribution, respectively (Al-Suhili and Khanbilvard, 2014).

Weibull distribution

The Weibull distribution PDF is given by

f(x|α, β) =

(
α

β−α

)(
xα−1

)
exp

(
−
(
x

β

)α)
, (3.11)

with α and β as shape and scale parameters, respectively.
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Gamma distribution

The PDF of the gamma distribution is given by

f(x|α, β) =
1

βα

(
1

Γ(α)

)(
xα−1

)
exp

(
x

β

)
, (3.12)

with α and β as the shape and scale parameters, respectively.

3.2.5 Maximum likelihood parameter estimation

The maximum likelihood estimator (MLE) is mostly used for fitting probability

distributions to data. For an assumed distribution, it produces asymptotically

efficient and unbiased estimates (Strupczewski et al., 2001).

Let X1, X2, X3, ..., Xn be a joint density denoted by

fθ(x1, x2, ..., xn) = f(x1, x2, ..., xn|θ). (3.13)

Given observed values X1 = x1, X2 = x2, ..., Xn = xn, the likelihood of θ is the

function

L(θ|x) = f(x1, x2, ..., xn|θ), (3.14)

considered as a function of θ.

The MLE of θ is that value of θ that maximises f(θ). If the xi’s are independent

and identically distributed (iid), then the likelihood simplifies to

likelihood = L(θ|x) =
n∏
i=1

f(xi|θ), (3.15)

where L(θ|x) is the likelihood of the set of parameter θ given the observation

X and
∏n

i=1 f(xi|θ) is the probability density function of the probability model

(Maposa, 2016).
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Maximising the log likelihood, we get

log likelihood = ln[L(θ|x)] =
1

n

n∑
i=1

ln[f(xi|θ)]. (3.16)

3.2.6 Model selection criterion

The goodness-of-fit of the distributions is assessed using Akaike’s information

criterion (AIC) and Bayesian information criterion (BIC). AIC and BIC can be

used for nested and non-nested models.

Akaike’s information criterion

The models are selected according to the values of AIC. The model or distribu-

tion with the lowest value of AIC is chosen to be the best (Kim et al., 2020).

The AIC is defined as:

AIC = 2K − 2 log(L), (3.17)

where

K is the number of parameters in the statistical model,

L is the maximum values of the likelihood function for the estimated models.

Bayesian information criterion

The BIC assesses goodness-of-fit of a distribution or model, but avoids over-

fitting by penalising additional degree of freedom. The model with the lowest

BIC value is chosen as the best (Kim et al., 2020).

The BIC is defined as:

BIC = log(n)k − 2 log(L̂), (3.18)
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where

L̂ is the maximised value of likelihood function of the model,

n is the number of data points,

k is the number of free parameters to be estimated.

3.3 Likelihood ratio test for nested models

The likelihood ratio (LR) test compares the log likelihoods of the two models

and tests whether this difference is statistically significant. If the difference

is statistically significant, then the less restrictive model (the one with more

variables) is said to fit the data significantly better than the more restrictive

model. The LR test statistic is given by:

Q = 2 log(LB|LA) = 2(logLB − logLA)),

which is equal to twice the log of the ratio of the likelihoods. The value of LB

must be larger than or equal to that of LA because model A is a special case of

model B.

3.3.1 Trend analysis

Mann-Kendall test

The non-parametric Mann-Kendall (M-K) test is commonly used to detect mono-

tonic trends in series of environmental, climate and hydrological data (Ongoma

and Chen, 2017; Karmeshu, 2012). The advantage of M-K test is that it is a

non-parametric test and does not require the data to be normally distributed.

The null hypothesis, H0, is that there is no trend or serial correlation from a

population, while the alternative hypothesis, H1, states that there is a mono-

tonic increasing or decreasing trend (Ndlovu and Demlie, 2018; Pohlert, 2020).
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Let x1, x2, ..., xn be a sequence of random variables, then the M-K statistic can

be calculated using

S =
n−1∑
k=1

n∑
j=k+1

sign(xj − xk), (3.19)

where xj denotes the ordered data values, n is the length of observation and S

is the M-K statistic. The sign(xj − xk) expression in (3.19) is given by

sign(xj − xk) =


1 if xj − xk > 0,

0 if xj − xk = 0,

−1 if xj − xk < 0.

(3.20)

For n ≥ 10, the statistic S is approximately normally distributed with mean

zero (E(S) = 0) and variance as follows:

v(s) =
n(n− 1)(2n+ 5)−

∑nk
k=1 tk(k)(k − 1)(2k + 5)

18
, (3.21)

where tk denotes the number of duplicates to extend k. Equation (3.21) is used

in case of tie values in time series where nk is the total number of ties in

a dataset. In case of n ≥ 10, the standardised test statistic for M-K can be

written as:

Zs = τ =



s−1√
v(s)

, if s > 0,

0, if s = 0,

s+1√
v(s)

, if s < 0.

(3.22)

The test statistic Zs, also referred to as Kendall’s τ , is used to measure the sig-

nificance of trend. A positive Zs or τ value indicates an upward trend, whereas

a negative value indicates a downward trend (Meng et al., 2018).
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3.4 Generalised extreme value distribution model

3.4.1 Block maximum approach

The block maxima (BM) model uses a series of extreme values formed by se-

lecting the highest value in a year or a block of time and then proceeds with

fitting a statistical distribution to this extracted series. The BM approach mod-

els data by fitting the GEV distribution to a set of block maxima data (Jakata

and Chikobvu, 2019).

Let X1, X2, ..., Xn be a sequence of independent random variables having a com-

mon distribution function F . The model focuses on statistical behaviour of

Mn = Max(X1, ..., Xn), (3.23)

where Xi represent values of a process measured on a regular time scale, for

example, hourly measurements of sea level or daily mean temperatures so that

Mn represents the maximum of the process over n time unit of observation. If

n is the number of observations in a year, then Mn corresponds to the annual

maximum. Then the distribution of Mn is

Pr{Mn ≤ x} = Pr{X1 ≤ x, ..., Xn ≤ x} = Pr{X1 ≤ x}× ...×Pr{Xn ≤ x} = F (x)n.

(3.24)

If there exist sequences of constants {an > 0} and {bn} such that

Pr

(
Mn − bn
an

≤ x

)
→ G(x), as n→∞ (3.25)

where G is a non-degenerate distribution function, then G belongs to one of the

following:

Type I : G(x) = exp

{
− exp

[
−
(
x− b
a

)]}
, −∞ < x <∞ (3.26)
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Type II : G(x) =

0, x ≤ b,

exp
{
−
(
x−b
a

)−α}
, x > b;

(3.27)

Type III : G(x) =

exp
{
−
[
−
(
x−b
a

)α]}
, x < b},

1, x ≥ b

(3.28)

for parameters a > 0 and b. In the case of families II and III, α > 0 (Maposa,

2016).

The GEV distribution consists of parametric distributions, namely: the Gum-

bel, Fréchet, and Weibull distributions. The GEV cumulative distribution func-

tion (CDF) is given by

G(µ, σ, ξ;x) =

exp
(
−
[
1 + ξ

(
x−µ
σ

)]− 1
ξ

)
, for 1 + ξ

(
x−µ
σ

)
> 0, ξ 6= 0,

exp
(
− exp(−x−µ

σ
)
)
, x ∈ R, ξ = 0,

(3.29)

where µ, σ and ξ are location, scale and shape parameters, respectively (Dey

et al., 2020; Maposa, 2016; Maposa et al., 2014).

The estimates of the extreme quantiles are obtained from the quantile function,

Xp, given by

Xp = G−1(1− p) =

µ−
σ
ξ

[
1− {− log (1− p)}−ξ

]
, ξ 6= 0,

µ− σ log (− log (1− p)) , ξ = 0,

(3.30)

where p is the exceedance probability. In (3.30) as p → 0 and ξ < 0, we get

Xp = µ − σ
ξ

(Nemukula and Sigauke, 2018; Maposa et al., 2014; Brown et al.,
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2008).

3.4.2 Parameter estimation

Maximum likelihood estimation

Under the assumption that X1, ..., Xn are iid random variables having the GEV

distribution, the log-likelihood for the GEV parameters when ξ 6= 0 is

` (µ, σ, ξ) = −m log σ − (1 + 1/ξ)
m∑
i=1

log

[
1 + ξ

(
xi − µ
σ

)]

−
m∑
i=1

[
1 + ξ

(
xi − µ
σ

)−1/ξ]
, (3.31)

provided that

1 + ξ
(
xi−µ
σ

)
> 0, for i = 1, ...,m.

For ξ = 0

` (µ, σ) = −m log σ −
m∑
i=1

(
xi − µ
σ

)
−

m∑
i=1

exp

{
−
(
xi − µ
σ

)}
. (3.32)

Maximisation of (3.31) and (3.32) with respect to the parameters (µ, σ, ξ) leads

to the maximum likelihood estimate with respect to the whole GEV family.

Advantage of MLE method over other methods of parameter estimation is its

adaptability to changes in model structures. This allows for the incorporation

of model parameters when they change as functions of the covariates (Osman

et al., 2015; Coles, 2001).

3.4.3 Inference for return level

By substitution of the maximum likelihood estimates of the GEV parameters

into (3.30), the maximum likelihood estimate of Xp, for 0 < p < 1, the 1
p

return
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level, is obtained as (Brown et al., 2008):

X̂p =

µ̂−
σ̂

ξ̂

[
1− {−log (1− p)}−ξ̂

]
, ξ 6= 0,

µ̂− σ̂ log {−log (1− p)}, ξ = 0.

(3.33)

3.5 Model checking

3.5.1 Probability-probability plot

A probability-probability (P-P) plot is a comparison of the empirical and fit-

ted distribution functions (Coles, 2001). With ordered block maximum data

x(1) ≤, ...,≤ x(m); the empirical distribution function evaluated at x(i) is given

by G̃(x(i)) = i
m+1

. When parameter estimates are substituted into (3.29), the

corresponding model-based estimates are

Ĝ(x(i)) = exp

{
−
[
1 + ξ̂

(x(i)−µ̂
σ̂

)]− 1

ξ̂

}
. (3.34)

The model is working well if G̃(x(i)) ≈ Ĝ(x(i)) for each i, so that the plot points{(
G̃(x(i)), Ĝ(x(i))

)}
, i = 1, ...,m, lie close to the unit diagonal. The weakness

of the probability plot for extreme value models is that both Ĝ(x(i)) and G̃(x(i))

are bound to approach 1 as x(i) increases, while it is usually the accuracy of the

model for large values of x that is of greatest concern (Coles, 2001).

3.5.2 Quantile-quantile plot

The quantile- quantile (Q-Q) plot consists of the points
{(
Ĝ−1

(
i

m+1

)
, x(i)

)
, i = 1, ...,m

}
,

where

Ĝ−1
(

i

m+ 1

)
= µ̂− σ̂

ξ̂

[
1−

{
− log

(
i

m+ 1

)}−ξ̂]
. (3.35)
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Departures from linearity in the quantile plot indicate failure in the model

(Coles, 2001).

3.5.3 Return level plot

The return level plot, comprising a graph of xp = µ − σ
ξ

[
1− {− log(1− p)}−ξ

]
against yp = − log(1 − p) on a logarithmic scale, is particularly convenient for

interpreting extreme value models. The tail of the distribution is compressed,

so that return level estimates for long return periods are displayed, while the

linearity of the plot in the case ξ = 0 provides a baseline against which to judge

the effect of the estimated shape parameter. A fitted model of the return level

plot consists of the locus of points {(log yp, x̂p) : 0 < p < 1} (Coles, 2001).

3.5.4 Goodness-of-fit tests

Two goodness-of-fit (GoF) tests, Anderson-Darling (A-D) and Kolmogrov-Smirnov

(K-S) were applied at 5% level of significance. The advantage of the A-D test

over the K-S test is that it is especially sensitive towards differences at the

tail of distribution. There is also evidence that A-D test is better capable of de-

tecting very small differences, even between large sample sizes (Maposa, 2016).

Let x1, x2, ..., xn be a sample of n annual maximum and minimum temperature

observed and suppose the CDF of the random variable X is F (.). The A-D and

K-S tests are presented in detail in the next two subsections.

Anderson-Darling test

The A-D test is based on a comparison between the fit of an observed CDF to a

theoretical (expected) CDF. The test statistic, denoted, A2, is given by

A2 = −n− 1

n

n∑
i=1

(2i− 1) [lnF (xi) + ln (1− Fn−i+1(x))] , (3.36)
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where Fn(x) is the empirical CDF, F (x) is the theoretical CDF, x′is are the or-

dered data, n is the sample size (Maposa, 2016).

The hypothesis for GoF under the A-D test procedure is

H0: The temperature data follow a specified distribution,

H1: The temperature data do not follow the specified distribution.

The null hypothesis, H0, for A-D test is rejected at 5% level of significance if

the p-value is less than 5%, and conclude that the data does not come from the

specified distribution (Maposa, 2016; Sukla et al., 2014).

Kolmogorov-Smirnov test

The K-S test is a non-parametric test applied to test whether the sample un-

der consideration is from a reference probability distribution or to compare

whether two samples come from identical distribution (Masereka et al., 2018).

The K-S test statistic is calculated from the largest vertical distance, Dmax, be-

tween the empirical (observed) CDF, Fn(x), and the theoretical CDF, F (x). The

test statistic of the K-S test is given by

Dmax = Maxx |F ∗(x)− F (x)| . (3.37)

The hypothesis for the GoF under the K-S test procedure is

H0 : F (x) = F ∗(x) for all x from −∞ to∞ (The data follow a specified distribu-

tion)

H1 : F (x) 6= F ∗(x) for at least one value of x (The data do not follow the speci-

fied distribution).

The H0 is rejected at 5% level of significance if Dmax calculated is greater than

the tabulated value D0.05 = 1.36/
√
n (Maposa, 2016; Sukla et al., 2014).
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3.6 The peaks-over-threshold approach

The peaks-over-threshold (POT) technique considers all sample values that ex-

ceed a predefined upper threshold u. The POT is based on fitting GP distri-

bution to all values that exceed a certain threshold u (Bommier, 2014; Coles,

2001).

3.6.1 Generalised Pareto distribution

Let X1, X2, ... be a sequence of iid random variables, having marginal distribu-

tion function F . The conditional probability is given by

Fu(y) = Pr{X > u+ y|X > u} =
1− F (u+ y)

1− F (u)
, y > 0, (3.38)

where u is the threshold, y = x− u are the excesses. If the parent distribution

F was known, the distribution of threshold exceedances in (3.38) would also be

known (Diriba and Debusho, 2020; Maposa et al., 2017).

The following theorem gives the connection between GEV and GP distribu-

tions.

Theorem

Let X1, X2, ... be a sequence of iid random variables with common distribution

function F and Mn = max{X1, ..., Xn}. Denote an arbitrary term in the Xi

sequence by X, and suppose that F satisfies

pr

{
Mn − bn
an

≤ z

}
→ G(z) as n→∞. (3.39)
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For large n, Pr{Mn ≤ z} ≈ G(z), where

G(z) = exp

{
−
[
1 + ξ

(
z − µ
σ

)]− 1
ξ

}
, (3.40)

for some µ, σ > 0 and ξ.

Then for large enough u, the distribution function of (X − u), conditional on

X > u, is approximately,

H(y) = 1−
(

1 +
ξy

σ̃

)− 1
ξ

, (3.41)

defined on {y : y > 0} and
(
1 + ξy

σ̃

)
> 0, where σ̃ = σ + ξ(u + µ). If ξ < 0, the

distribution of excesses has an upper bound of u − σ̃
ξ
; if ξ > 0 the distribution

has no upper limit. The distribution is also unbounded if ξ = 0, which should

be interpreted by taking the limit ξ → 0 in (3.41), leading to

H(y) = 1− exp
(
−y
σ̃

)
, y > 0, (3.42)

which corresponds to an exponential distribution with parameters 1
σ̃

(Ragno

et al., 2019).

3.7 Parameter estimation

3.7.1 Maximum likelihood estimation

Let y1, ..., ym be a random sample of m excesses of a threshold u, the log likeli-

hood function for a GP distribution is given by

`(σu, ξ) = −m log σu −
(

1 +
1

ξ

) m∑
i=1

log

(
1 +

ξyi
σu

)
, ξ 6= 0, (3.43)
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provided
(

1 + ξyi
σu

)
> 0 for i = 1, ...,m. Otherwise, `(σ, ξ) = −∞. The likelihood

can also be reduced to

`(σu) = −m log σu −
1

σu

m∑
i=1

yi, ξ = 0. (3.44)

3.7.2 Return levels

Suppose that GP distribution with parameters σ and ξ is a model for exceedances

of a threshold u by a variable X. That is, for x > u,

Pr{X > x|X > u} =

[
1 + ξ

(
x− u
σ

)]− 1
ξ

. (3.45)

Then it follows that

Pr{X > x} = ζu

[
1 + ξ

(
x− u
σ

)]− 1
ξ

, (3.46)

where ζu = Pr{X > u}. The level xm that is exceeded, on average, once every

m observations can be written as:

ζu

[
1 + ξ

(
xm − u
σ

)]− 1
ξ

=
1

m
, (3.47)

which can be simplified as:

xm =

u+ σ
ξ

[
(mζu)

ξ − 1
]

ξ 6= 0,

u+ σ log(mζu) ξ = 0,

(3.48)

provided m is sufficiently large to ensure that xm > u (Bommier, 2014; Li et al.,

2014). An estimate of ζu is also given as:

ζu =
k

n
, (3.49)
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where k is the number of exceedances and n is the sample size. The number of

exceedances of u follows a binomial distribution, Bin(n, ζu) (Coles, 2001).

3.7.3 Threshold selection

Mean excess plot

The mean excess plot is based on the mean of the GP distribution. If Y has a

GP distribution with parameters σ and ξ, then

E(Y ) =
σ

1− ξ
, (3.50)

provided ξ < 1. Suppose the GP distribution is valid as a model for the excesses

of a threshold µ0 generated by a series X1, ..., Xn, of which an arbitrary term is

denoted by X. Using (3.50),

E(X − u0|X > u0) =
σu0

1− ξ
, (3.51)

provided ξ < 1 and where σu0 is the GP distribution scale parameter for ex-

ceedances over threshold u0 (Kajambeu, 2016). If the GP distribution is valid

for excesses of the threshold u0, then it is valid for all thresholds u > u0. Thus,

for all u > u0,

E(X − u|X > u) = σu
1−ξ =

σu0 + ξu

1− ξ
, (3.52)

where σu = σ+ξ(u−µ). Then, for all u > u0, E(X−u|X > u) is a linear function

of u. Also, E(X − u|X > u) is the mean of the excesses of the threshold u and

can be estimated by the sample mean of the threshold excesses (Zhou et al.,

2017). This leads to the following procedure, the locus of points

{(
u,

1

nu

nu∑
i=1

(xi − u)

)
: u < xmax

}
, (3.53)
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where x(1), ..., x(nu) consist of the nu observations that exceed u, and xmax is the

largest of the Xi (Andersson and Nilsson, 2018; Coles, 2001).

Parameter stability plot

The concept of the parameter stability plot is that if the exceedances of a high

threshold u0 follow a GP distribution with parameters ξ and σu0, then for any

threshold u such that u > u0, the exceedances still follow a GP distribution

with shape parameter ξu = ξ and scale parameter σu = σu0 + ξ(u − u0) (Bom-

mier, 2014).

Let

σ∗ = σu − ξuu. (3.54)

This new parameterisation in (3.54) does not depend on u any longer, given

that u0 is a reasonably high threshold.

The parameter stability plot is defined by the locus of points

{(u, σ∗);u < xmax} and {(u, ξu);u < xmax}, (3.55)

where xmax is the maximum of the observations. Hence, estimates of σ∗ and ξu

are constant for all u > u0 if u0 is an appropriate threshold for the asymptotic

approximation. The threshold should be chosen at the value where the shape

and scale parameters remain constant (Bommier, 2014).
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3.8 Model checking

3.8.1 Probability-probability plots

Assuming a threshold u, threshold excesses y(1) ≤ ... ≤ y(k) and an estimated

model Ĥ, the P-P plot consists of the pairs

{(
1

m+ 1

)
, Ĥ(y(i)); i = 1, ..., k

}
, (3.56)

where Ĥ(y) = 1−
(

1 + ξ̂
σ̂

)− 1

ξ̂
, provided ξ̂ 6= 0 (Andersson and Nilsson, 2018).

3.8.2 Quantile-quantile plot

If ξ̂ = 0, the Q-Q plot is constructed using (3.43) in place (3.42). Assuming

ξ̂ 6= 0, Q-Q plot consists of the pairs

{(
Ĥ−1

(
1

m+ 1
, y(i)

)
, i = 1, ...,m

)}
, (3.57)

where Ĥ−1(y) = u+ σ̂

ξ̂

[
y−ξ̂ − 1

]
(Andersson and Nilsson, 2018).

3.8.3 A return level plot

A return level plot consists of the locus points {(m, x̂m)} for large values of m,

where x̂m is the estimated m-observation return level:

x̂m = u+ σ̂

ξ̂

[
(mζ̂u)

ξ̂ − 1
]
,

provided ξ̂ = 0 (Maposa, 2016).

3.8.4 Declustering

This technique works by filtering of the dependent observations to obtain a set

of threshold excesses that are approximately independent. According to Coles
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(2001) declustering works as follows:

• it uses an empirical rule to define cluster of exceedances;

• it identifies the maximum excess within each cluster;

• it assumes cluster maxima to be independent, with condition excess dis-

tribution given by the GP distribution;

• it fits the GP distribution to the cluster maxima.

3.8.5 Poisson point process

A Poisson process limit for extremes

The point process is defined on a sequence of point process Mm on <2 by

Mm =

{(
1

m+ 1
,
Xi − bm
am

)
: i = 1, ...,m

}
, (3.58)

where time axis is through (0, 1); and the second point ensures stability in the

occurrence of extremes as m→∞ such that on [0, 1]×[τ,∞), Tm → T as m→∞,

where T is heterogeneous Poisson process (Coles, 2001).

Defining a set A = (t1, t2) × (x,∞) provided t1 < t2, then when z ≥ u, the

intensity measure is

Λ(A) = (t1 − t2)
(

1 + ξ

(
x− µ
σ

)) 1
ξ

, (3.59)

valid for 1 + ξ(x−µ
σ

) > 0. When u is sufficiently large on (0, 1) × [u,∞], Mm in

(3.58) is said to follow a Poisson process (Gilleland and Katz, 2016).
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3.8.6 Maximum likelihood estimation

The likelihood for the point process takes on the form of the GEV distribution,

Λ(A) = ny(t2 − t1)
[
1 + ξ(

x− µ
σ

)

]− 1
ξ

, (3.60)

where ny is the number of years of observation (Coles, 2001).

The general form of the Poisson process likelihood is given when [t1, t2] = [0, 1]

is substituted into (3.60),

LA(µ, σ, ξ;x1, ..., xn) = exp{−Λ(A)}
N(A)∏
i=1

λ(ti, xi)× (3.61)

α exp

{
−ny

[
1 + ξ(

u− µ
σ

)

] 1
ξ

}
N(A)∏
i=1

σ−1
[
1 + ξ(

xi − µ
σ

)

]− 1
ξ
−1

.

3.8.7 Return levels

The m-observation return level zm is the level exceeded, on average, once every

m years (Coles, 2001). It is given by

1− 1
m

= Pr{max(X1, ..., Xn) ≤ zm} ≈
∏n

i=1 pi,

where

pi =

1− n−1
[
1 + ξi(

zm−µi
σi

)
]− 1

ξ
, if [1 + ξi(

zm−µi
σi

)] > 0,

1, otherwise,
(3.62)

and (µi, σi, ξi) are the parameters of the point process model for observation i.

Taking logarithms,
n∑
i=1

log pi = log(1− 1

m
), (3.63)

which can easily be solved for zm using standard numerical methods for non-

linear equations.
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3.9 Extremes of a non-stationary series with time-

varying parameters

The time-varying parameters in non-stationary GEV distribution could be mod-

elled as a function of time or other climate indicators (Gao and Zheng, 2018).

Suppose X1, ..., Xn constitute average temperatures that are distributed as in

(3.29), then Xt, where t is the annual maximum temperature in the tth year,

follows GEV distribution (µ(t), σ, ξ) where

µ(t) = µ0 + µ1t, (3.64)

for a linear variation in mean with an intercept parameter µ0 and a slope pa-

rameter µ1 which expresses the annual rate of change in annual average tem-

perature (Nemukula, 2018). A quadratic model in µ is given by

µ(t) = µ0 + µ1t+ µ2t
2, (3.65)

or a change point model,

µ(t) =

µ1 for t ≤ t0,

µ2 for t > t0.

(3.66)

Non-stationarity may also be expressed in terms of exponential variation in

the scale parameter given by

σ(t) = exp(σ0 + σ1(t)), (3.67)

where the exponential function is used to ensure the positivity of σ (Jiang and

Kang, 2019).
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In case the average daily temperature is related to other variables such as

time, the covariates are included in the non-stationary models. This suggests

the model Zt, the annual average temperatures in year t: Zt ∼ GEV(µ(t), σ, ξ),

where

µ(t) = µ0 + µ1SOI(t), (3.68)

and SOI(t) denotes the Southern Oscillation Index in year t (Nemukula, 2018).

The maximum log-likelihood of the non-stationary GEV(µ(t), σ(t), ξ(t)) is given

by

`(µ, σ, ξ) = −
m∑
t=1

{
log σ(t) +

(
1 +

1

ξ(t)

)
log

[
1 + ξ(t)

(
xt − µ(t)

σ(t)

)]}

−
m∑
t=1

{[
1 + ξ(t)

(
xt − µ(t)

σ(t)

)]− 1
ξ(t)

}
, (3.69)

where 1 + ξ(t)
(
xt−µ(t)
σ(t)

)
> 0, for t = 1, 2, ...,m (Chen and Zhao, 2020).

Suppose that X1, ..., Xn are average daily temperatures that follow a GP dis-

tribution. Let the season that contains day t be denoted by s(t) and us(t) be the

threshold for particular seasons, then Xt follows GP(σ, ξ) with the conditional

season model given by

(Xt − us(t)|Xt > us(t)) ∼ GP(σs(t), ξs(t)), (3.70)

where (σs(t), ξs(t)) are GP distribution parameters in season s(t) (Nemukula,

2018).
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3.10 Model choice

3.10.1 Deviance statistics

Maximum likelihood estimation of nested models leads to a simple test proce-

dure of one model against the other. With models Mi ⊂Mo, i = 1, 2, ...,m, where

m denotes the number of the models, the deviance statistics is given as

D = 2{`i(Mi)− `o(Mo)}, (3.71)

where `i(Mi) and `o(Mo) are maximised log-likelihood functions of Mi and Mo,

respectively (Chen and Zhao, 2020; Kajambeu, 2016). Large values of D in-

dicate that model Mi explains substantially more of the variation in the data

than Mo, while small values of D suggest that the increase in model size does

not bring worthwhile improvements in the model’s capacity to explain the data.

Model Mo is rejected by a test at the α-level of significance if D > cα, where cα

is the (1-α) critical value. The distribution of D is given by the χ2
k distribution

with k degrees of freedom, where k is equal to the difference in the dimension-

ality of Mi and Mo (Coles, 2001).

3.11 Conditional multivariate extreme value mod-

elling

3.11.1 Time-varying threshold excess

A time-varying threshold π(t) is a penalised cubic smoothing with a positive

shift operator given by

π(t) =
n∑
i=1

(yi − f(ti))
2 + λ

∫
(f ′′(t))

2
dt+ τ, (3.72)
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where yi denotes maximum temperature, λ is a smoothing parameter and τ ∈ <

is a shift factor which should be large enough to allow asymptotic conditions

to be satisfied when we fit the GP distribution. We extract observations above

the time-varying threshold without the shift factor. The positive shift factor τ

is then estimated using high quantiles in the ‘texmex’ R package (Sigauke and

Bere, 2017).

3.11.2 Bivariate threshold excess model

A class of approximations to the tail of the distribution function F for the

threshold u, with exceedances denoted by a variable X, on the condition that

X > u for large enough u, is given by

G(x) = 1− ζ
{

1 +
ξ

σu
(x− u)

}− 1
ξ

, x > u, (3.73)

where ζ = Pr(X > u), ξ 6= 0 and σu > 0 for a family defined on {(1+ξ(x−u)/σu) >

0 and x−u : x−u > 0}. Hence F (x) ≈ G(x) on x > u for large enough threshold

u with parameters ζ, ξ and σu (Nemukula et al., 2018).

Suppose {(x1, y1), (x2, y2), ...} are independent realisations of a random vector

(X, Y ) with joint distribution function F (x, y). The bivariate threshold ex-

cess model approximates the joint distribution F (x, y) on regions of the form

x > ux, y > uy for large enough ux and uy. For suitable threshold ux and uy,

each of the two marginal distributions of F can be approximated in the form of

a univariate GP distribution, with respective parameter sets (µx, ξx) and (µy, ξy)

(Nemukula et al., 2018; Coles, 2001).
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The transformations

X̃ = −

(
log

{
1− ζx

[
1 +

ξx(X − ux)
σx

]− 1
ξx

})−1
(3.74)

and

Ỹ = −

(
log

{
1− ζy

[
1 +

ξy(Y − uy)
σy

]− 1
ξy

})−1
(3.75)

induce a variable (X̃, Ỹ ) whose distribution function F̃ has margins that are

approximately standard Fréchet for X > ux and Y > uy. The joint distribution

can be expressed as

F (x, y) ≈ G(x, y) = exp{−V (x̃, ỹ)}, x > ux, y > uy, (3.76)

where

V (x̃, ỹ) = 2

∫ 1

0

max

(
w

x̃
,
1− w
ỹ

)
dH(w), (3.77)

and H is a distribution function on [0,1] satisfying the mean constraint

∫ 1

0

wdH(w) =
1

2
. (3.78)

3.11.3 Marginal transformation: Laplace margins

Suppose X = (X1, ...,Xd) is a d-dimension random variable whose marginal

distributions are arbitrary, and F̂j denotes an estimate of the jth, j = 1, ..., d,

marginal distribution function with G indicating the distribution function of

the standardised marginal distribution to be determined. The transformation

of the original vector variable X is done to obtain Y = (Y1, ...,Yd), where Y is

a variable which has standardised marginal distributions due to the use of the
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probability integral transformation (Nemukula et al., 2018):

Yj = (G−1(F̂j(Xj))), j = 1, ...,d. (3.79)

Let G denotes the Laplace margins and assume Y = {Y1, ..., Yd} are marginally

Laplace distributed. If the Yj variable exceeds a sufficiently high threshold u,

then the Heffernan and Tawn (2004) regression type model is given as:

Y−j = α|jYj + (Yj)
β|j R|j, (3.80)

where R|j is a residual vector, α|j and β|j are (d − 1) dimensional parameter

vectors satisfying (α|j, β|j) ε [−1, 1]d−1 × (−∞, 1)d−1, with elements αi|j and βi|j,

i ε {1, ..., d}, i 6= j (Nemukula et al., 2018). In the present study the bivariate

threshold excess is applied only to the maximum temperature data.



Chapter 4

Results and discussion

4.1 Introduction

This chapter presents the analysis and discussion of results using methods

that were presented in Chapter 3 for the following meteorological stations:

Mara (1949-2018), Messina (1934-2009), Polokwane (1932-2018) and Thabaz-

imbi (1994-2018) (Figure 3.1). The block maxima (BM) approach was used

to analyse annual maxima temperature data, where the years were taken as

independent and identically distributed (iid) blocks. R software was used to

analyse the data.

4.2 Descriptive statistics

Descriptive statistics analysis was performed to obtain variation, centralisa-

tion and distribution of maximum and minimum temperature data. The mean

is utilised to measure central tendency of the data while standard deviation is
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utilised to measure variation of the data. Skewness and Kurtosis are used to

obtain the shape of the distribution for monthly temperature data.

4.2.1 Mara temperature record (1949-2018)

Table 4.1: Descriptive statistics of Mara maximum and minimum tempera-
tures.

Variable Min Max Mean Standard
deviation

Range Skewness Kurtosis

Max temp 19.10 34.40 27.39 2.90 15.3 -0.24 -0.71
Min temp 1.10 20.00 12.42 4.92 18.9 -0.42 -1.21

Table 4.1 shows the descriptive statistics of both maximum and minimum tem-

perature data for Mara meteorological station. The highest maximum temper-

ature for Mara was 34.40 degrees Celsius recorded in December 2006, while

the lowest maximum temperature was 19.10 degrees Celsius recorded in July

2009. The lowest minimum temperature for Mara was 1.10 degrees Celsius

recorded in June 2010, while the highest minimum temperature was 20.00 de-

grees Celsius recorded in December 2015. The minimum temperature for Mara

has a standard deviation of 4.92 degrees Celsius, while the maximum temper-

ature has a standard deviation of 2.90 degrees Celsius. For maximum and

minimum temperatures, the skewness is -0.24 and -0.42 respectively. These

values imply that the distribution of the data is skewed to the left or nega-

tively skewed. For the kurtosis of the maximum and minimum temperatures,

we have -0.71 and -1.21 respectively, implying that the distribution of the data

is platykurtic, since the computed values are less than 3.

4.2.2 Messina temperature record (1934-2009)

Table 4.2 shows the descriptive statistics of both maximum and minimum tem-

perature data for Messina meteorological station. The highest maximum tem-
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Table 4.2: Descriptive statistics of Messina maximum and minimum tempera-
tures.

Variable Min Max Mean Standard
deviation

Range Skewness Kurtosis

Max temp 7.50 37.70 29.96 3.35 30.2 -0.52 1.36
Min temp 3.30 24.00 15.39 5.23 20.7 -0.43 -1.16

perature for Messina was 37.70 degrees Celsius recorded in December 2009,

while the lowest maximum temperature was 7.50 degrees Celsius recorded in

May 1938. The lowest minimum temperature for Messina was 3.30 degrees

Celsius recorded in June 1943, while the highest minimum temperature was

24.00 degrees Celsius recorded in January 1983. The minimum temperature

for Messina has a standard deviation of 5.23 degrees Celsius, while the maxi-

mum temperature has a standard deviation of 3.35 degrees Celsius. For maxi-

mum and minimum temperatures, the skewness is -0.53 and -0.43 respectively.

These values imply that the distribution of the data is skewed to the left or neg-

atively skewed. For the kurtosis of the maximum and minimum temperatures,

we have 1.36 and -1.1.6 respectively, implying that the distribution of the data

is platykurtic, since the computed values are less than 3.

4.2.3 Polokwane temperature record (1932-2018)

Table 4.3: Descriptive statistics of Polokwane maximum and minimum tem-
peratures.

Variable Min Max Mean Standard
deviation

Range Skewness Kurtosis

Max temp 16.50 30.90 25.02 2.98 14.4 -0.44 -0.73
Min temp 2.90 18.70 11.70 4.63 16.6 -0.37 -1.73

Table 4.3 shows the descriptive statistics of both maximum and minimum

temperature data for Polokwane meteorological station. The highest maxi-

mum temperature for Polokwane was 30.90 degrees Celsius recorded in Decem-
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ber 1972, while the lowest maximum temperature was 16.50 degrees Celsius

recorded in June 1968. The lowest minimum temperature for Polokwane was

2.9 degrees Celsius recorded in June 1972, while the highest minimum temper-

ature was 18.7 degrees Celsius recorded in January 2005. The minimum tem-

perature for Polokwane has a standard deviation of 4.63 degrees Celsius, while

the maximum temperature has a standard deviation of 2.98 degrees Celsius.

For maximum and minimum temperatures, the skewness is -0.44 and -0.37 re-

spectively. These values imply that the distribution of the data is skewed to the

left or negatively skewed. For the kurtosis of the maximum and minimum tem-

peratures, we have -0.73 and -1.73 respectively, implying that the distribution

of the data is platykurtic, since the computed values are less than 3.

4.2.4 Thabazimbi temperature record (1994-2018)

Table 4.4: Descriptive statistics of Thabazimbi maximum and minimum tem-
peratures.

Variable Min Max Mean Standard
deviation

Range Skewness Kurtosis

Max temp 21.30 39.60 29.34 3.853 18.3 -0.256 -0.838
Min temp 0.10 24.00 13.350 6.489 24.1 -0.484 -1.229

Table 4.4 shows the descriptive statistics of both maximum and minimum tem-

perature data for Thabazimbi meteorological station. The highest maximum

temperature for Thabazimbi was 39.60 degrees Celsius recorded in Decem-

ber 1996, while the lowest maximum temperature was 21.30 degrees Celsius

recorded in July 1996. The lowest minimum temperature for Thabazimbi was

0.1 degrees Celsius recorded in July 1994, while the highest minimum tem-

perature was 24.00 degrees Celsius recorded in December 1997. The minimum

temperature for Thabazimbi has a standard deviation of 6.489 degrees Celsius,

while the maximum temperature has a standard deviation of 3.853 degrees

Celsius. For maximum and minimum temperatures, the skewness is -0.256
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and -0.484 respectively. These values imply that the distribution of the data is

skewed to the left or negatively skewed. For the kurtosis of the maximum and

minimum temperatures, we have -0.838 and -1.229 respectively, implying that

the distribution of the data is platykurtic, since the computed values are less

than 3.

4.2.5 Summary of descriptive statistics

In the four stations, maximum and minimum temperature series are not stable

throughout the year. From May both maximum and minimum temperatures

drop significantly till July and start rising again. The lowest temperatures are

experienced in June, July and August with July being the coldest month of the

year. High temperatures are experienced in the months of December, January,

February and March.

4.3 Stationarity test results

The stationarity test results are presented in Table 4.5 and Table 4.6 for the

average maximum and minimum temperatures, respectively. The significance

level, α, was taken as 0.05. The ADF test results for both maximum and min-

imum temperatures for all stations are greater than the significance level (p

> 0.05), suggesting that we fail to reject the null hypothesis, H0, and conclude

that the temperature series is not stationary or it has a unit root. The KPSS

test results for both maximum and minimum temperatures for all stations are

less than the significance level (p < 0.05), suggesting that we reject the null

hypothesis, H0, and conclude that the temperature series for all stations are

not trend stationary.

The PP test results for maximum temperature for all stations are less than the
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Table 4.5: ADF, KPSS and PP test results for maximum temperature.
Station name Test name Test statistics p-value

Mara ADF -1.905 0.619
KPSS 2.516 0.01

PP -159.3 0.01

Messina ADF -1.883 0.628
KPSS 2.840 0.01

PP -176.64 0.01

Polokwane ADF -1.871 0.633
KPSS 2.705 0.01

PP -184.73 0.01

Thabazimbi ADF -1.468 0.800
KPSS 1.165 0.01

PP -53.973 0.01

Table 4.6: ADF, KPSS and PP test results for minimum temperature.
Station name Test name Test statistics p-value

Mara ADF -0.852 0.957
KPSS 3.008 0.01

PP -13.359 0.365

Messina ADF -0.837 0.958
KPSS 3.144 0.01

PP -19.306 0.082

Polokwane ADF -1.271 0.887
KPSS 3.178 0.01

PP -40.249 0.01

Thabazimbi ADF -0.860 0.956
KPSS 1.201 0.01

PP -6.779 0.730

significance level (p < 0.05), suggesting that we reject the null hypothesis, H0,

and conclude that the temperature series for all the stations are stationary,

while for minimum temperature we fail to reject the null hypothesis, H0, since

p-value is greater than the significance level (p > 0.05) and conclude that the

temperature series for all stations are not stationary, except for Polokwane

minimum temperature series where the null hypothesis is rejected since p <

0.05 and conclude that the temperature series is stationary.
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4.4 Normality test results

The normality test results are presented in Table 4.7 and Table 4.8 for the

average maximum and minimum temperatures, respectively. The significance

level, α, was taken as 0.05. The p-values for both maximum and minimum tem-

peratures for all stations are less than the significance level (p< 0.05), suggest-

ing that the null hypothesis, H0, is rejected and conclude that the temperature

series for all the stations is not normally distributed.

Table 4.7: Shapiro-Wilk (SW) and Jarque-Bera (JB) test results for maximum
temperature.
Station name Test name Test statistics p-value

Mara Shapiro-Wilk 0.981 <0.001
Jarque-Bera 25.554 <0.001

Messina Shapiro-Wilk 0.970 <0.001
Jarque-Bera 110.69 <0.001

Polokwane Shapiro-Wilk 0.967 < 0.001
Jarque-Bera 27.43 <0.001

Thabazimbi Shapiro-Wilk 0.966 <0.001
Jarque-Bera 11.771 0.003

Table 4.8: Shapiro-Wilk (SW) and Jarque-Bera (JB) test results for minimum
temperature.
Station name Test name Test statistics p-value

Mara Shapiro-Wilk 0.915 <0.001
Jarque-Bera 75.121 <0.001

Messina Shapiro-Wilk 0.921 <0.001
Jarque-Bera 78.103 <0.001

Polokwane Shapiro-Wilk 0.930 <0.001
Jarque-Bera 68.317 <0.001

Thabazimbi Shapiro-Wilk 0.894 <0.001
Jarque-Bera 30.388 <0.001
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4.5 Parent distribution selection and diagnos-

tic statistics test results

The four candidate parent distributions were fitted to the data. The best fitting

parent distribution was selected according to the values of Akaike information

criterion (AIC) and Bayesian information criterion (BIC). The lowest value of

AIC and BIC was chosen to be the best.

Table 4.9: Summary of parent distributions information criteria model selec-
tion tests for maximum temperature.
Station name Distribution AIC value BIC value

Mara Normal 4231.283 4240.75
Log-normal 4262.193 4271.66

Gamma 4249.286 4258.753
Weibull 4221.385 4230.852

Messina Normal 4733.907 4743.512
Log-normal 4858.128 4867.732

Gamma 4801.965 4811.57
Weibull 4709.401 4719.006

Polokwane Normal 5305.021 5314.9
Log-normal 5305.021 5314.9

Gamma 5348.834 5358.712
Weibull 5282.204 5292.082

Thabazimbi Normal 1663.706 1671.114
Log-normal 1677.577 1684.984

Gamma 1671.713 1679.121
Weibull 1656.678 1664.085
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Table 4.10: Summary of parent distributions information criteria model selec-
tion tests for minimum temperature.
Station name Distribution AIC value BIC value

Mara Normal 5064.259 5073.726
Log-normal 5309.453 5318.92

Gamma 5183.499 5192.966
Weibull 5050.361 5059.828

Messina Normal 5536.302 5542.907
Log-normal 5740.935 5750.557

Gamma 5643.047 5652.652
Weibull 5500.478 5510.083

Polokwane Normal 6247.431 6257.333
Log-normal 6647.782 6657.684

Gamma 6419.108 6429.009
Weibull 6253.977 6263.878

Thabazimbi Normal 1976.296 1983.703
Log-normal 2156.169 2163.577

Gamma 2049.755 2057.162
Weibull 1999.005 2006.412

The parent distributions goodness-of-fit test results are presented in Table 4.9

and Table 4.10 for the average maximum and minimum temperatures, respec-

tively. The results revealed that the best fitting parent distribution for max-

imum and minimum temperatures is in the Weibull domain of attraction at

all the stations, except for Thabazimbi and Polokwane, where the best fitting

parent distributions for the minimum temperature were found to be in the do-

main of attraction of the normal distribution for both stations. However, given

that the results from the SW and JB normality tests in Table 4.7 and Table

4.8 showed that the maximum and minimum temperature series for all the

stations are not normally distributed, this therefore means that the minimum

temperature series for Polokwane and Thabazimbi cannot be in the normal

domain of attraction.
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4.5.1 Diagnostic plots illustrating the fit of the average

maximum and minimum temperatures

The diagnostic statistics goodness-of-fit tests, quantile-quantile (Q-Q) plots,

probability-probability (P-P) plots, empirical and theoretical density plots and

cumulative distribution function (CDF) plots are presented in Figure 4.1 to

Figure 4.10. The results of the diagnostic plots for Figures 4.1, 4.3, 4.5 and

4.8 suggest that the maximum temperature series for all the four stations in

the Limpopo province can be suitably modelled by a distribution in the Weibull

domain of attraction. The minimum temperature series for all the stations,

Figures 4.2, 4.4, 4.6 and 4.9 present the results of the diagnostic plots for the

Weibull distribution, while Figures 4.7 and 4.10 present the results of the di-

agnostic plots for the normal distribution. The main thrust for presenting both

the Weibull and normal distributions diagnostic plots for some stations were to

make a visual comparative analysis of the plots.

The visual comparative analysis was necessary for Polokwane and Thabazimbi

where the model selection information criteria, AIC and BIC, results contradict

those of the SW and JB normality tests. Based on the AIC and BIC results, the

Weibull distribution was the second best distribution for both Polokwane and

Thabazimbi with values very close to those of the normal distribution, while

there was no doubt about the performance of the Weibull class of distributions

for both Mara and Messina minimum temperature series. However, Figures 4.6

and 4.7 for the Polokwane minimum temperature series Weibull and normal di-

agnostic plots, respectively, and Figures 4.9 and 4.10 for the Thabazimbi mini-

mum temperature series Weibull and normal diagnostic plots, respectively, do

not exhibit much difference in their goodness-of-fit results for both stations.

Combining these findings with those from normality tests and information cri-

teria model selection we can conclude that minimum temperature series par-

ent distribution for all the stations in this study follow the Weibull domain of



Results and discussion 61

attraction.

Empirical and theoretical dens.

Data
D

en
si

ty
20 25 30 35

0.
00

0.
04

0.
08

0.
12

●

● ●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●
●●●●●●

●●
●

15 20 25 30 35

20
25

30
35

 Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

Data

C
D

F

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities
E

m
pi

ric
al

 p
ro

ba
bi

lit
ie

s

Figure 4.1: Diagnostic plots illustrating the fit of the Weibull family of distri-
butions to average maximum temperature for Mara.

Empirical and theoretical dens.
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Figure 4.2: Diagnostic plots illustrating the fit of the Weibull family of distri-
butions to average minimum temperature for Mara.
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Figure 4.3: Diagnostic plots illustrating the fit of the Weibull family of distri-
butions to average maximum temperature for Messina.
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Figure 4.4: Diagnostic plots illustrating the fit of the Weibull family of distri-
butions to average minimum temperature for Messina.
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Figure 4.5: Diagnostic plots illustrating the fit of the Weibull family of distri-
butions to average maximum temperature for Polokwane.
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Figure 4.6: Diagnostic plots illustrating the fit of the Weibull family of distri-
butions to average minimum temperature for Polokwane.
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Figure 4.7: Diagnostic plots illustrating the fit of the normal distribution to
average minimum temperature for Polokwane.
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Figure 4.8: Diagnostic plots illustrating the fit of the Weibull family of distri-
butions to average maximum temperature for Thabazimbi.



Results and discussion 65

Empirical and theoretical dens.

Data
D

en
si

ty

0 5 10 15 20

0.
00

0.
04

0.
08

0.
12

●●
●●●●●●

●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●
●●●●●
●●●●●
●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●
●●●

● ●
●

0 5 10 15 20 25 30 35

0
5

10
15

20

 Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

●● ●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
● ●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●● ●● ●

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

Data

C
D

F

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

● ●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities
E

m
pi

ric
al

 p
ro

ba
bi

lit
ie

s

Figure 4.9: Diagnostic plots illustrating the fit of the Weibull family of distri-
butions to average minimum temperature for Thabazimbi.
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Figure 4.10: Diagnostic plots illustrating the fit of the normal distribution to
average minimum temperature for Thabazimbi.
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4.6 Long-term trends analysis results

The Mann-Kendall (M-K) test statistic trend analysis results are presented in

Table 4.11 for the average maximum and minimum temperatures. The signif-

icance level, α, was taken as 0.05. The p-values for minimum temperature for

Mara, Messina and Polokwane meteorological stations are less than the sig-

nificance level (p < 0.05), suggesting that there is a significant trend in the

minimum temperature data for these stations, while for the maximum tem-

perature the results suggest that there is no significant trend in the data for

all the stations (p > 0.05). For both maximum and minimum temperatures in

Thabazimbi, the results revealed that there is no significant trend in the data

since p-values are greater than the significance level (p > 0.05).

Table 4.11: Summary of Mann-Kendall trend analysis.
Station name M-K test statistic(S) Kendall’s τ Var(S) P-value

Mara Max 71.987 0.138 7233.832 0.659
Min -155.681 -1.099 7234.027 0.0004

Messina Max 26.031 0.0160 8896.256 0.886
Min -120.334 -0.741 8896.724 0.014

Polokwane Max -119.951 -0.153 3645.197 0.589
Min -157.297 -0.718 3773.997 0.0105

Thabazimbi Max 60.096 0.907 1216.053 0.085
Min -24.605 -0.371 1216.122 0.481

The M-K test statistic and Kendall’s τ values are all negative for the mini-

mum temperature suggesting that there is a monotonic decreasing trend in

minimum temperature for all the stations. Therefore, there is a significant

monotonic decreasing trend in minimum temperature for the stations Mara,

Messina and Polokwane (τ < 0 and p< 0.05), while for Thabazimbi the mono-

tonic decreasing trend in minimum temperature is insignificant (τ < 0 and

p> 0.05). For maximum temperature, there is an insignificant monotonic in-

creasing trend in maximum temperature for Mara, Messina and Thabazimbi
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(τ > 0 and p> 0.05), while for Polokwane there is an insignificant monotonic

decreasing trend in maximum temperature (τ < 0 and p> 0.05).

These findings are also supported by the time series plot results in Figure 4.11

to Figure 4.14. For both maximum and minimum temperature data, the results

show that there is no evidence of systematic variation about the mean on the

time series plots; and there is a clear upward and downward trend indicating

that the series is non-stationary.
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Figure 4.11: Time series plot of Mara
maximum (left panel) and minimum (right
panel) temperatures from 1949 to 2018.
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Figure 4.12: Time series plot of Messina
maximum (left panel) and minimum (right
panel) temperatures from 1934 to 2009.
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Figure 4.13: Time series plot of Polokwane
maximum (left panel) and minimum (right
panel) temperatures from 1932 to 2018.
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Figure 4.14: Time series plot of Thabazimbi
maximum (left panel) and minimum (right
panel) temperatures from 1994 to 2018.



Results and discussion 69

4.7 Fitting the GEV distribution

Table 4.12 and Table 4.13 show the maximum likelihood estimates of the sta-

tionary generalised extreme value (GEV) distribution (M0) with standard er-

rors and 95% confidence intervals (CI) for parameter estimates. The estimates

and standard errors were combined to give approximate CI. In particular, a

95% CI for ξ was obtained as ξ± 1.96(SE). The results revealed that both max-

imum and minimum temperature data for Mara and Messina meteorological

stations can be modelled by the Weibull family of distribution since ξ < 0 and

CI is significantly different from zero, while both maximum and minimum tem-

perature data for Polokwane and Thabazimbi can be modelled by the Gumbel

family of distribution since CI for ξ is not significantly different from zero.

Table 4.12: Maximum likelihood estimates of the GEV distribution parameters
with standard errors and 95% CI for maximum temperature.
Station name Parameter Estimate SE 95% CI of parameter estimates

Mara µ 30.929 0.186 (30.564,31.294)
σ 1.412 0.134 (1.149,1.675)
ξ -0.338 0.078 (-0.491,-0.185)

Messina µ 34.135 0.199 (33.745,34.525)
σ 1.569 0.143 (1.289,1.849)
ξ -0.369 0.076 (-0.518,-0.220)

Polokwane µ 28.246 0.131 (27.989,28.503)
σ 1.086 0.097 (0.902,1.270)
ξ -0.082 0.076 (-0.231,0.067)

Thabazimbi µ 33.643 0.288 (33.079,34.207)
σ 1.313 0.201 (0.919,1.707)
ξ -0.008 0.117 (-0.237,0.221)
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Table 4.13: Maximum likelihood estimates of the GEV distribution parameters
with standard errors and 95% CI for minimum temperature.
Station name Parameter Estimate SE 95% CI of parameter estimates

Mara µ̂ 18.035 0.080 (17.878,18.192)
σ̂ 0.612 0.056 (0.502,0.722)
ξ̂ -0.228 0.069 (-0.363,-0.093)

Messina µ̂ 21.166 0.132 (20.907,21.425)
σ̂ 1.063 0.092 (0.883,1.243)
ξ̂ -0.330 0.055 (-0.438,-0.222)

Polokwane µ̂ 16.651 0.110 (16.435,16.867)
σ̂ 0.954 0.075 (0.807,1.101)
ξ̂ 0.032 0.039 (-0.044,0.108)

Thabazimbi µ̂ 20.266 0.209 (19.856,20.676)
σ̂ 0.951 0.144 (0.669,1.233)
ξ̂ -0.062 0.118 (-0.293,0.169)
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4.7.1 Diagnostic analysis

The diagnostic plots for assessing the accuracy of the GEV model fitted to all

meteorological stations are displayed in Figure 4.15 to Figure 4.22. The P-P

plot, Q-Q plot, return level plot and density plot for both maximum and mini-

mum temperatures for Mara, Messina and Polokwane meteorological stations,

show that the plotted points are linear, suggesting that the GEV distribution

fits the temperature data well. For Thabazimbi, maximum and minimum tem-

peratures show that there are deviations from linearity, suggesting that the

GEV distribution model does not fit the temperature data well.
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Figure 4.15: Diagnostic plots illustrating the fit of the Mara maximum tem-
perature to the GEV distribution, (a) P-P plot (top left panel), (b) Q-Q plot (top
right panel), (c) Return level (bottom left panel) and (d) Density plot (bottom
right panel).
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Figure 4.16: Diagnostic plots illustrating the fit of the Mara minimum temper-
ature to the GEV distribution, (a) P-P plot (top left panel), (b) Q-Q plot (top
right panel), (c) Return level (bottom left panel) and (d) Density plot (bottom
right panel).
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Figure 4.17: Diagnostic plots illustrating the fit of the Messina maximum tem-
perature to the GEV distribution, (a) P-P plot (top left panel), (b) Q-Q plot (top
right panel), (c) Return level (bottom left panel) and (d) Density plot (bottom
right panel).
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Figure 4.18: Diagnostic plots illustrating the fit of the Messina minimum tem-
perature to the GEV distribution, (a) P-P plot (top left panel), (b) Q-Q plot (top
right panel), (c) Return level (bottom left panel) and (d) Density plot (bottom
right panel).
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Figure 4.19: Diagnostic plots illustrating the fit of the Polokwane maximum
temperature to the GEV distribution, (a) P-P plot (top left panel), (b) Q-Q plot
(top right panel), (c) Return level (bottom left panel) and (d) Density plot (bot-
tom right panel).
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Figure 4.20: Diagnostic plots illustrating the fit of the Polokwane minimum
temperature to the GEV distribution, (a) P-P plot (top left panel), (b) Q-Q plot
(top right panel), (c) Return level (bottom left panel) and (d) Density plot (bot-
tom right panel).
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Figure 4.21: Diagnostic plots illustrating the fit of the Thabazimbi maximum
temperature to the GEV distribution, (a) P-P plot (top left panel), (b) Q-Q plot
(top right panel), (c) Return level (bottom left panel) and (d) Density plot (bot-
tom right panel).
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Figure 4.22: Diagnostic plots illustrating the fit of the Thabazimbi minimum
temperature to the GEV distribution, (a) P-P plot (top left panel), (b) Q-Q plot
(top right panel), (c) Return level (bottom left panel) and (d) Density plot (bot-
tom right panel).
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4.7.2 Goodness-of-fit test

The goodness-of-fit test results are presented in Table 4.14 and Table 4.15 for

average maximum and minimum temperatures, respectively. The significance

level, α, was taken as 0.05. The p-values for both maximum and minimum

temperatures are greater than the significance level (p> 0.05). This suggests

that we fail to reject the null hypothesis, H0, and conclude that the tempera-

ture data follow a specified distribution, except for Polokwane minimum tem-

perature for A-D test results where p-value is less than the significance level

(p< 0.05), suggesting that the temperature data do not follow the specified dis-

tribution. The Messina minimum temperature data produced not applicable

(N/A) results for both tests.

Table 4.14: Goodness-of-fit test for the maximum temperature.
Station name Test Test statistic p-value

Mara A-D 0.412 0.332
K-S 0.077 0.795

Messina A-D 0.400 0.354
K-S 0.0798 0.748

Polokwane A-D 0.635 0.095
K-S 0.090 0.479

Thabazimbi A-D 0.507 0.182
K-S 0.138 0.726

Table 4.15: Goodness-of-fit test for the minimum temperature.
Station name Test Test statistic p-value

Mara A-D 0.292 0.596
K-S 0.069 0.888

Messina A-D N/A N/A
K-S N/A N/A

Polokwane A-D 1.597 0.000
K-S 0.100 0.340

Thabazimbi A-D 0.438 0.271
K-S 0.112 0.915

Key: N/A represents Not Applicable
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4.7.3 Return level analysis

Table 4.16 presents results for return periods and their corresponding return

levels for both average monthly maximum and minimum temperatures based

on the GEV model. The results in Table 4.16 revealed that return levels for

each station are increasing with increasing return periods. In comparison,

Thabazimbi meteorological station has highest return levels for maximum tem-

perature, while Polokwane has highest return levels for minimum temperature

data.

Thabazimbi has the highest 10-year return level for maximum temperature

of 36.5700C, while Polokwane has the least maximum temperature 10-year re-

turn level of 30.4760C. This suggests that, in Thabazimbi, a maximum temper-

ature of 36.5700C is expected to be exceeded at least once in 10 years. Messina

has the highest 10-year return level for minimum temperature of 22.8540C,

while Polokwane has the least minimum temperature 10-year return level of

18.8780C. This suggests that, in Messina, a minimum temperature of 22.8540C

is expected to be exceeded at least once in 10 years.

Thabazimbi has the highest 100-year return level for maximum temperature

of 39.5690C, while Polokwane has the least maximum temperature 100-year

return level of 32.4030C. This suggests that, in Thabazimbi, a maximum tem-

perature of 39.5690C is expected to be exceeded at least once in 100 years.

Thabazimbi has the highest 100-year return level for minimum temperature

of 24.0740C, while Mara has the least minimum temperature 100-year return

level of 19.7780C. This suggests that, in Thabazimbi, a minimum temperature

of 24.0740C is expected to be exceeded at least once in 100 years. The results

in Table 4.16 also revealed that some stations like Thabazimbi may experience

maximum temperature of over 410C at least once in 500 years.
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For Messina and Thabazimbi maximum temperatures, the extremely high 10-

year and 100-year return levels indicate impending heat waves in the Limpopo

province. These findings are in agreement with those of Kruger and Shongwe

(2004) and Phophi et al. (2020) who also found increasing temperatures in the

Limpopo province.

Table 4.16: GEV model return periods (years) and their corresponding return
levels (oc).
Station name 10 years 20 years 50 years 100 years 500 years

Mara Max 33.154 33.575 33.988 34.222 34.592
Min 19.112 19.355 19.616 19.778 20.067

Messina Max 36.533 36.965 37.379 37.608 37.957
Min 22.854 23.178 23.498 23.681 23.972

Polokwane Max 30.476 31.107 31.869 32.403 33.527
Min 18.878 19.625 20.619 21.383 23.217

Thabazimbi Max 36.570 37.495 38.684 39.569 41.596
Min 22.264 22.847 23.563 24.074 25.174
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4.8 Fitting non-stationary GEV distribution

The models that are considered in this section are:

x v GEVD(µ(t), σ(t), ξ(t))

Model M0 taken as the reference model such that

M0 : µ(t) = µ, σ(t) = σ, ξ(t) = ξ;

Model M1 has a linear trend in the location parameter such that

M1: µ(t) = µ+ µ1t, σ(t) = σ, ξ(t) = ξ;

Model M2 has a linear trend in the location and scale parameters such that

M2 : µ(t) = µ+ µ1t, log σ(t) = σ0 + σ1t, ξ(t) = ξ;

Model M3 has a quadratic trend in the location parameter such that

M3 : µ(t) = µ+ µ1t+ µ2t
2, σ(t) = σ, ξ(t) = ξ;

Model M4 has a quadratic trend in the location parameter and a linear trend

in the scale parameter such that

M4 : µ(t) = µ+ µ1t+ µ2t
2, log σ(t) = σ0 + σ1t, ξ(t) = ξ;

Model M5 has a quadratic trend in both the location and scale parameters such

that

M5 : µ(t) = µ+ µ1t+ µ2t
2, log σ(t) = σ0 + σ1t+ σ2t

2, ξ(t) = ξ;

Model M6 contain SOI (Southern Oscillation Index) covariate term in the loca-

tion parameter of the GEV distribution such that

M6 : µ(t) = µ0 + µ1SOI(t), σ(t) = σ, ξ(t) = ξ;

Model M7 includes both a trend and SOI term in the location parameter of the

GEV distribution such that

M7 : µ(t) = µ0 + µ1SOI(t) + µ2t, σ(t) = σ, ξ(t) = ξ.

The likelihood ratio test p-values for each model parameter are calculated in R

software using “tb1=abs((parameter estimate)/standard error); tb1”,

“pt(tb1,nrow,lower.tail=FALSE)”.
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4.8.1 Non-stationary GEV models with a trend

Mara models

Mara maximum temperature data

Consider the pair of models (M0,M1) from Table 4.17, where M0 is taken as the

reference model: χ2
1,0.05 = 3.841, D = 2[−115.376− (−121.302)] = 11.852. The like-

lihood ratio test for µ1 = 0 has p-value < 0.001 for model M1, which indicates

that the linear trend in the location parameter is significant at 5% significance

level (p-value < 0.05). Since D is greater than the critical value (D > χ2
1,0.05),

we conclude that the model M1 provides significant improvement in fit over

the stationary GEV model, that is, model M1 is worthwhile. The other pair

is (M0,M2) with χ2
2,0.05 = 5.991 and D = 5.578. The likelihood ratio test for

µ1 = 0 has p-value = 0.091 and σ1 = 0 has p-value = 0.0440, which indicates

that the linear trend in the location parameter is not significant at 5% signifi-

cance level (p-value > 0.05), whereas the linear trend in the scale parameter is

significant (p-value< 0.05) in the model. The D statistic is less than the critical

value (D < χ2
2,0.05), which shows that model M2 does not provide any improve-

ment in fit over the stationary GEV model, that is, model M2 is not worthwhile.

The quadratic model pairs (M0,M3) and (M0,M4) have χ2
2,0.05 = 5.991 and χ2

3,0.05 =

7.815, respectively; with D statistic values of 11.900 and 11.592 for M3 and

M4, respectively. For the model M3, the likelihood ratio tests for µ1 = 0 and

µ2 = 0 both have p-value < 0.001. This indicates that the linear and quadratic

trends in the location parameter are significant at 5% significance level (p-

value < 0.05). For the model M4, the likelihood ratio test for µ1 = 0 has

p-value= 0.484; for µ2 = 0, it has p-value < 0.001; and for σ1 = 0, it has p-

value= 0.169. The results show that the linear trend in the location and scale

parameters is not significant (p-value > 0.05), while the quadratic trend in the

location parameter is significant at 5% significance level. Since D statistic for
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each model is greater than the corresponding critical value, we conclude that

there is significant improvement in fit over the stationary GEV model, that is,

model M3 and M4 are worthwhile.

The model pair (M0,M5) has χ2
4,0.05 = 9.488 and D = 5.124. The likelihood

ratio test for µ1 = 0, µ2 = 0, σ1 = 0 and σ2 = 0 has p-value < 0.001, which shows

that the quadratic trend in both the location and scale parameters is highly

significant (p-value < 0.05). However, the overall model is not worthwhile since

the D statistic is less than the critical value, i.e. D < χ2
4,0.05.

The best two competing non-stationary models for Mara maximum tempera-

ture data based on their deviance statistics and likelihood ratio test results

are respectively: model (4.1) as the main model with a linear and quadratic

trend in the location parameter and model (4.2) as the alternative model with

a linear trend in the location parameter. The main model, M3, is given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.323(xi − (29.962 + 0.032ti − 0.000t2i ))

1.279

) 1
0.323

}
,

(4.1)

where xi is the average monthly maximum temperature and ti is the time in

years. The alternative non-stationary GEV model, M1, is

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.327(xi − (30.045 + 0.026ti))

1.282

) 1
0.327

}
, (4.2)

where xi is the average monthly maximum temperature and ti is the time in

years.
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Table 4.17: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Mara maximum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 30.929 1.412 -0.338 121.3019
M1 30.045 0.026 1.282 -0.327 115.376
M2 30.841 0.011 1.320 0.001 -0.414 118.513
M3 29.962 0.032 -0.000 1.279 -0.323 115.353
M4 30.382 -0.000 0.000 1.450 -0.004 -0.353 115.506
M5 31.361 -0.050 0.001 2.000 -0.040 0.000 -0.241 118.740

Key: NLLH denotes Negative Log-likelihood

Mara minimum temperature data

The model pair (M0,M1) from Table 4.18 has χ2
1,0.05 = 3.841 and a D statis-

tic value of 5.462. The likelihood ratio test for µ1 = 0 has p-value=0.008 for

model M1, which indicates that the linear trend in the location parameter is

significant at 5% significance level (p-value < 0.05). Since D is greater than the

critical value (D > χ2
1,0.05), we conclude that the model M1 provides significant

improvement in fit over the stationary GEV model, that is, model M1 is worth-

while. The model pair (M0,M2) has χ2
2,0.05 = 5.991 and D = −4.872. In model

M2, the likelihood ratio test for µ1 = 0 has p-value= 0.473 and for σ1 = 0, it has

p-value= 0.065. This indicates that the linear trend in both the location and

scale parameters are not significant at 5% significance level (p-value > 0.05).

The D statistic is less than the critical value (D < χ2
2,0.05), which shows that

the model M2 does not provide any improvement in fit over the stationary GEV

model, that is, model M2 is not worthwhile.

The quadratic model pairs (M0,M3) and (M0,M4) have χ2
2,0.05 = 5.991 and χ2

3,0.05 =

7.815, respectively; with D statistic values of 5.92 and 6.578 for M3 and M4, re-

spectively. For modelM3, the likelihood ratio test for µ1 = 0 has p-value< 0.001.

This indicates that the linear trend in the location parameter is significant at

5% significance level. For the model M4, the likelihood ratio test for µ1 = 0 has
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p-value < 0.001 and for σ1 = 0, it has p-value= 0.159, which shows that the lin-

ear trend in the location parameter is significant, while for the scale parameter

it is not significant at 5% significance level. Since D statistic is less than the

corresponding critical value for both M3 and M4, we conclude that there is no

significant improvement in fit over the stationary GEV model.

The model pair (M0,M5) has χ2
4,0.05 = 9.488 and D = −4.634. The likelihood

ratio test for µ1 = 0 has p value=0.473, µ2 = 0 and σ2 = 0 have p-value < 0.001

and σ1 = 0 has p-value=0.016. This indicates that the linear trend in the lo-

cation parameter is not significant at 5% significance level (p-value > 0.05),

while the linear trend in the scale parameter, and quadratic trend in both the

location and scale parameters are significant at 5% significance level (p-value

< 0.05). Since D statistic is less than the critical value, i.e. D < χ2
4,0.05, we con-

clude that there is no significant improvement in fit over the stationary GEV

model, that is, model M5 is not worthwhile.

Table 4.18: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Mara minimum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 18.035 0.611 -0.228 66.719
M1 17.725 0.009 0.871 -0.177 63.988
M2 18.097 0.000 0.801 -0.006 0.011 69.155
M3 17.620 0.018 -0.000 0.570 -0.000 63.759
M4 17.640 0.016 -0.000 0.640 -0.002 -0.188 63.430
M5 17.988 -0.000 0.000 0.809 -0.007 0.000 0.100 69.036

Key: NLLH denotes Negative Log-likelihood

The best non-stationary model, M1, for Mara minimum temperature data has

a linear trend in the location parameter given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.177(xi − (17.725 + 0.009ti))

0.571

) 1
0.177

}
, (4.3)
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where xi is the average monthly minimum temperature and ti is the time in

years.

The shape parameters in models (4.1) and (4.2) and (4.3), that is, -0.323 (p-

value = 0.001), -0.327 (p-value = 0.001) and -0.177 (p-value = 0.010), are signifi-

cantly different from zero (p-value < 0.05), implying that the shape parameters

for the three models are significantly negative. This suggests that both the

maximum and minimum temperature data at Mara meteorological station can

be modelled by Weibull family of distribution, which is short-tailed. The diag-

nostic plots for the non-stationary GEV models in (4.1) and (4.3) are presented

in Figure 4.23 and Figure 4.24, respectively. The residual probability plots for

both models suggest a good fit to the data.
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Figure 4.23: Diagnostic plots for the non-
stationary GEV best fitting model (with a
linear trend in the location parameter) at
Mara maximum temperature.
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Figure 4.24: Diagnostic plots for the non-
stationary GEV best fitting model (with a
linear trend in the location parameter) at
Mara minimum temperature.

Messina models

Messina maximum temperature data

The model pair (M0,M1) from Table 4.19 has χ2
1,0.05 = 3.841 and a D statistic

value of 5.106. The likelihood ratio test for µ1 = 0, has p-value=0.012. This

shows that the linear trend in the location parameter is significant at 5% sig-

nificance level (p-value < 0.05). The results showed that there is significant

improvement in fit over the stationary GEV model for M1 since D statistic

is greater than the critical value, i.e. D > χ2
1,0.05. The model pair (M0,M2)

has χ2
2,0.05 = 5.991 and D = 4.924. The likelihood ratio test for µ1 = 0 has p-

value=0.204, and for σ1 = 0 it has p-value=0.053. This indicates that the linear

trend in the location and scale parameters are not significant at 5% significance

level (p-value > 0.05). Since D is less than the critical value (D < χ2
2,0.05), we
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conclude that there is no significant improvement in fit over stationary GEV

model, that is, model M2 is not worthwhile.

The quadratic model pairs (M0,M3) and (M0,M4) have χ2
2,0.05 = 5.991 and χ2

3,0.05 =

7.815, respectively; with D statistic values of 12.938 and 13.444 for M3 and M4,

respectively. For the model M3, the likelihood ratio tests for µ1 = 0 and µ2 = 0

have p-value < 0.001. This indicates that the linear and quadratic trends in

the location parameter are significant at 5% significance level (p-value < 0.05).

For the model M4, the likelihood ratio tests for µ1 = 0 and µ2 = 0, have p-value

< 0.001; and for σ1 = 0, it has p-value= 0.225. This indicates that the linear and

quadratic trends in the location parameter are significant at 5% significance

level (p-value < 0.05), while the linear trend in the scale parameter is not sig-

nificant at 5% significance level (p-value > 0.05). Since the D statistic values

are greater than the corresponding critical values for both model M3 and M4,

we conclude that there is significant improvement in fit over the stationary

GEV model.

The model pair (M0,M5) has χ2
4,0.05 = 9.488 and D = −14.266. Since D statistic

is less than the critical value, i.e. D < χ2
4,0.05, we conclude that there is no sig-

nificant improvement in fit over the stationary GEV model, that is, model M5

is not worthwhile.
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Table 4.19: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Messina maximum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 34.135 1.569 -0.369 136.473
M1 33.617 0.015 1.540 -0.403 133.920
M2 33.756 0.013 1.561 -0.000 -0.424 134.011
M3 34.529 -0.055 0.001 1.465 -0.408 130.004
M4 34.434 -0.054 0.001 1.613 -0.004 -0.399 129.751
M5 33.887 -0.029 0.001 3.043 -0.062 0.000 0.172 143.606

Key: NLLH denotes Negative Log-likelihood

The best two competing non-stationary models for Messina maximum tempera-

ture data based on their deviance statistics and likelihood ratio test results are

respectively: model (4.4) as the main model with a linear trend and quadratic

trend in the location parameter, and model (4.5) as alternative model with a

linear trend in the location parameter. The main model, M3, is given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.408(xi − (34.529− 0.055ti + 0.001t2i ))

1.465

) 1
0.408

}
,

(4.4)

where xi is the average monthly maximum temperature and ti is the time in

years. The alternative non-stationary GEV model, M1, is

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.403(xi − (33.617 + 0.015ti))

1.540

) 1
0.403

}
, (4.5)

where xi is the average monthly maximum temperature and ti is the time in

years.

Messina minimum temperature data

The model pair (M0,M1) from Table 4.20 has χ2
1,0.05 = 3.841 andD statistic value

10.074. The likelihood ratio test for µ1 = 0 has p-value < 0.001. This indicates
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that the linear trend in the location parameter is significant at 5% significance

level (p-value < 0.05) for M1. Since D statistic is greater than the critical value,

i.e. D > χ2
1,0.05, we conclude that there is significant improvement in fit over

the stationary GEV model, that is, model M1 is worthwhile. The model pair

(M0,M2) has χ2
2,0.05 = 5.991 and D = 10.554. For the model M2, the likelihood

ratio test for µ1 = 0 has p-value < 0.001 and for σ1 = 0, it has p-value = 0.172.

This indicates that the linear trend in the location parameter is significant at

5% significance level (p-value < 0.05), while the linear trend in the scale pa-

rameter is not significant at 5% significance level (p-value > 0.05). Since D is

greater than the critical value (D > χ2
2,0.05), we conclude that there is signif-

icant improvement in fit over the stationary GEV model, that is model M2 is

worthwhile.

The quadratic model pairs (M0,M3) and (M0,M4) have χ2
2,0.05 = 5.991 and χ2

3,0.05 =

7.815, respectively; with D statistic values of 10.430 and 11.028 for M3 and M4,

respectively. For the model M3, the likelihood ratio test for µ1 = 0 has p-value

= 0.275 and µ2 = 0, it has p-value < 0.001. This indicates that the linear trend

in the location parameter is not significant at 5% significance level (p-value

> 0.05), while the linear trend in the scale parameter is significant at 5% sig-

nificance level (p-value < 0.05).

For the model M4, the likelihood ratio test for µ1 = 0 has p-value = 0.256;

for µ2 = 0, it has p-value < 0.001; and for σ1 = 0, it has p-value = 0.155. This

indicates that the linear trend in the location and scale parameters is not sig-

nificant at 5% significance level (p-value > 0.05), while the quadratic trend in

the location parameter is significant at 5% significance level (p-value < 0.05).

Since D statistic is greater than the critical value, we conclude that there is

significant improvement in fit over the stationary GEV model. The model pair

(M0,M5) has χ2
4,0.05 = 9.488 and D = −6.714. Since D statistic is less than the
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critical value, i.e. D < χ2
4,0.05, we conclude that there is no significant improve-

ment in the model.

Table 4.20: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Messina minimum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 21.166 1.063 -0.330 108.048
M1 20.531 0.017 0.990 -0.329 103.011
M2 20.458 0.019 1.097 -0.003 -0.314 102.771
M3 20.703 0.003 0.000 0.979 -0.313 102.833
M4 20.756 -0.003 0.000 1.108 -0.004 -0.285 102.534
M5 21.066 -0.032 0.000 1.272 -0.008 0.000 0.094 111.404

Key: NLLH denotes Negative Log-likelihood

The best non-stationary model, M1, for Messina minimum temperature data

has a linear trend in the location parameter given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.329(xi − (20.531 + 0.017ti))

0.990

) 1
0.329

}
, (4.6)

where xi is the average monthly minimum temperature and ti is the time in

years.

The shape parameters in models (4.4) and (4.5) and (4.6), that is, -0.408 (p-

value < 0.001), -0.403 (p-value < 0.001) and -0.329 (p-value < 0.001), are signifi-

cantly different from zero (p-value < 0.05), implying that the shape parameters

for the three models are significantly negative. This suggests that both the

maximum and minimum temperature data at Messina meteorological station

can be modelled by Weibull family of distribution which is short-tailed. The

diagnostic plots for the non-stationary GEV models in (4.4), (4.5) and (4.6) are

presented in Figure 4.25, Figure 4.26 and Figure 4.27, respectively. The resid-

ual probability plots for all the three models suggest a good fit to the data.
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Figure 4.25: Diagnostic plots for the non-stationary GEV best fitting model
(with a quadratic trend in the location parameter) at Messina maximum tem-
perature.



Results and discussion 92

●

●
●
●●
●●
●●
●
●●
●●
●●
●●●

●●
●●
●●●

●
●●
●
●●
●●
●
●●
●
●
●
●

●●
●●
●

●
●

●
●●●

●●●
●●●

●
●●
●
●
●
●
●●
●●
●●●

●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical

M
od

el

Residual Probability Plot

●

●
●
●●
●●
●●●
●●●
●●
●●●●
●●●●●

●●●●
●●
●●
●●●
●●●
●●
●
●●●
●●

●●
●●●●

●●●
●●●

●
●●●

●
●
●

●
●

●●

●
●

●

●

●

●

−1 0 1 2 3 4

−
2

−
1

0
1

2
3

4
5

Model

E
m

pi
ric

al

Residual Quantile Plot (Gumbel Scale)

Figure 4.26: Diagnostic plots for the non-
stationary GEV best fitting model (with a
linear trend in the location parameter) at
Messina maximum temperature.
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Figure 4.27: Diagnostic plots for the non-
stationary GEV best fitting model (with a
linear trend in the location parameter) at
Messina minimum temperature.
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Polokwane models

Polokwane maximum temperature data

The model pair (M0,M1) from Table 4.21 has χ2
1,0.05 = 3.841 andD statistic value

of 4.988. The likelihood ratio test for µ1 = 0 has p-value = 0.011. This indicates

that for model M1, the linear trend in the location parameter is significant at

5% significance level (p-value < 0.05). Since D statistic is greater than the crit-

ical value (D < χ2
1,0.05), we conclude that there is significant improvement in fit

over the stationary GEV model, that is, model M1 is worthwhile.

The model pair (M0,M2) has χ2
2,0.05 = 5.991 and D = 3.360. Since D is less

than the critical value (D < χ2
2,0.05), we conclude that there is no significant im-

provement in adding the linear trend component in the location and scale pa-

rameters. The quadratic model pairs (M0,M3) and (M0,M4) have χ2
2,0.05 = 5.991

and χ2
3,0.05 = 7.815, respectively; with D statistic values of 5.256 and 5.616 for

M3 and M4, respectively. The results show that the D statistics for both model

M3 and M4 are less than the corresponding critical values. Therefore, we con-

clude that there is no significant improvement in fit over the stationary GEV

model, after adding the quadratic trend component in the location parameter

and the linear trend component in the scale parameter. Also, since the model

pair (M0,M5) has χ2
4,0.05 = 9.488 and D = −0.048, i.e. D < χ2

4,0.05, we conclude

that there is no significant improvement in the model.
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Table 4.21: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Polokwane maximum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 28.246 -0.082 140.433
M1 27.773 0.011 1.037 -0.048 137.939
M2 28.175 0.004 1.232 -0.003 -0.116 138.753
M3 27.927 0.001 0.000 1.041 -0.057 137.805
M4 27.977 -0.000 0.000 1.139 -0.002 -0.081 137.6250
M5 28.222 -0.000 0.000 1.485 -0.019 0.000 0.100 140.457

Key: NLLH denotes Negative Log-likelihood

The best non-stationary model, M1, for Polokwane maximum temperature data

has a linear trend in the location parameter given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.048(xi − (27.773 + 0.011ti))

1.037

) 1
0.048

}
, (4.7)

where xi is the average monthly maximum temperature and ti is the time in

years.

Polokwane minimum temperature data

The model pair (M0,M1) from Table 4.22 has χ2
1,0.05 = 3.841 and a D statistic

value of 25.850. The likelihood ratio test for µ1 = 0 has p-value < 0.001 for

M1. This indicates that the linear trend in the location parameter is significant

at 5% significance level (p-value < 0.05). Since D statistic is greater than the

critical value D > χ2
1,0.05, we conclude that there is significant improvement in

fit over the stationary GEV model, that is, model M1 is worthwhile. The model

pair (M0,M2) has χ2
2,0.05 = 5.991 and D = 26.288. The likelihood ratio test for

µ1 = 0 has p-value < 0.001 and σ1 = 0 has p-value = 0.224. This indicates that

the linear trend in the location parameter is significant at 5% significance level

(p-value < 0.05), while the linear trend in the scale parameter is not significant



Results and discussion 95

at 5% significance level (p-value > 0.05). Since D is greater than the critical

value, i.e. (D > χ2
2,0.05), we conclude that there is significant improvement in fit

over the stationary GEV model.

The quadratic model pairs (M0,M3) and (M0,M4) have χ2
2,0.05 = 5.991 and χ2

3,0.05 =

7.815, respectively; with D statistic value of 53.656 and 53.964 for M3 and M4,

respectively. For model M3, the likelihood ratio tests for µ1 = 0 and µ2 = 0 have

p-value < 0.001. This indicates that the linear trend in the location parameter

is significant at 5% significance level (p-value < 0.05). For model M4, the likeli-

hood ratio tests for µ1 = 0 and µ2 = 0 have p-value < 0.001, while for σ1 = 0, it

has p-value= 0.258. This indicates that the linear and quadratic trends in the

location parameters are significant at 5% significance level (p-value < 0.05),

while the linear trend in the scale parameter is not significant at 5% signifi-

cance level (p-value > 0.05). Since D statistics for both model M3 and M4 are

greater than the corresponding critical values, we conclude that there is signif-

icant improvement in fit over the stationary GEV model.

Table 4.22: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Polokwane minimum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 16.651 0.954 0.032 131.198
M1 15.993 0.016 0.802 0.067 118.273
M2 16.087 0.014 0.881 -0.002 0.055 118.054
M3 15.023 0.080 -0.001 0.647 0.134 104.370
M4 15.061 0.079 -0.001 0.695 -0.002 0.129 104.216
M5 N/A N/A N/A N/A N/A N/A N/A N/A

Key: NLLH denotes Negative Log-likelihood

The best two competing non-stationary models for Polokwane minimum tem-

perature data based on their deviance statistics and likelihood ratio test re-

sults are respectively: model (4.8) as the main model with linear and quadratic
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trends in the location parameter and model (4.9) as the alternative model with

a linear trend in the location parameter. The main model, M3, is given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
0.134(xi − (15.023 + 0.080ti − 0.001t2i ))

0.647

)− 1
0.134

}
,

(4.8)

where xi is the average monthly minimum temperature and ti is the time in

years. The alternative non-stationary GEV model, M1, is given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
0.067(xi − (15.993 + 0.016ti))

0.802

)− 1
0.067

}
, (4.9)

where xi is the average monthly minimum temperature and ti is the time in

years.

The shape parameter in model (4.7), that is, -0.048 (p-value = 0.261) is not

significantly different from zero (p-value > 0.05); while the shape parameter

in model (4.8) and model (4.9), that is, 0.134 (p-value = 0.008) and 0.067 (p-

value = 0.049) respectively, are significantly different from zero, implying that

the shape parameters for the two models are significantly negative. This sug-

gests that the maximum temperature data at Polokwane station can be mod-

elled by Gumbel family of distribution which is light-tailed, while minimum

temperature data at Polokwane station can be modelled by Weibull family of

distribution which is short-tailed. The diagnostic plots for the non-stationary

GEV models in (4.7) and (4.8) are presented in Figure 4.28 and Figure 4.29,

respectively. The residual probability plots for all models suggest a good fit to

the data.
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Figure 4.28: Diagnostic plots for the non-
stationary GEV best fitting model (with a
linear trend in the location parameter) at
Polokwane maximum temperature.
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Figure 4.29: Diagnostic plots for the non-
stationary GEV best fitting model (with lin-
ear and quadratic trends in the location pa-
rameter) at Polokwane minimum tempera-
ture.

Thabazimbi models

Thabazimbi maximum temperature data

The model pair (M0,M1) from Table 4.23 has χ2
1,0.05 = 3.841 and a D statistic

value of 0.234. The likelihood ratio test for µ1 = 0 has p-value = 0.319. This

indicates that, for model M1, the linear trend in the location parameter is not

significant at 5% significance level (p-value > 0.05). Since D statistic is less

than the critical value, i.e. (D < χ2
1,0.05), we conclude that there is no significant

improvement in fit over the stationary GEV model, that is, M1 is not worth-

while. The model pair (M0,M2) has χ2
2,0.05 = 5.991 and D = 0.192. For the model

M2, the likelihood ratio test for µ1 = 0 has p-value= 0.395; and for σ1 = 0, it has

p-value = 0.457. This indicates that the linear trend in the location and scale

parameters is not significant at 5% significance level (p-value > 0.05). Since D
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is less than the critical value, i.e. (D < χ2
2,0.05), we conclude that there is no

significant improvement in fit over the stationary GEV model, that is, M2 is

not worthwhile.

The quadratic model pairs (M0,M3) and (M0,M4) have χ2
2,0.05 = 5.991 and χ2

3,0.05 =

7.815, respectively; with D statistic values of 0.238 and 0.238 for M3 and M4,

respectively. For model M3, the likelihood ratio test for µ1 = 0 has p-value

= 0.428; and for µ2 = 0, it has p-value = 0.474. This indicates that the linear

and quadratic trends in the location parameter are not significant at 5% sig-

nificant level (p-value > 0.05). The likelihood ratio test for µ1 = 0 has p-value =

0.435; for µ2 = 0, it has p-value = 0.475; and for σ1 = 0, it has p-value = 0.499.

This indicates that the linear and quadratic trends in the location and scale

parameters are not significant at 5% significance level (p-value > 0.05). The

results show that there is no significant improvement in fit over the stationary

GEV model, that is, M3 and M4 are not worthwhile. The model pair (M0,M5)

has χ2
4,0.05 = 9.488 and D = 0.022. Since D < χ2

4,0.05, we conclude that there is no

significant improvement in fit over the stationary GEV model.

Table 4.23: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Thabazimbi maximum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 33.643 1.313 -0.008 46.002
M1 33.423 0.017 1.311 -0.011 45.885
M2 33.551 0.010 1.372 -0.004 -0.022 45.906
M3 33.389 0.027 -0.000 1.311 -0.012 45.883
M4 33.387 0.027 -0.000 1.309 0.000 -0.011 45.883
M5 33.761 -0.012 0.001 1.108 0.071 -0.003 0.017 45.991

Key: NLLH denotes Negative Log-likelihood

For Thabazimbi maximum temperature data, the best model is stationary GEV

model, M0, and it is given by:
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G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.008(xi − 33.643)

1.313

) 1
0.008

}
, (4.10)

where xi is the average monthly maximum temperature and ti is the time in

years.

Thabazimbi minimum temperature data

The model pair (M0,M1) from Table 4.24 has χ2
1,0.05 = 3.841 and a D statistic

value of 0.384. Since D statistic is less than the critical value (D < χ2
1,0.05),

we conclude that there is no significant improvement in fit over the stationary

GEV model. The model pair (M0,M2) has χ2
2,0.05 = 5.991 and D = 4.684. Since

D is less than the critical value, i.e. (D < χ2
2,0.05), we conclude that there is no

significant improvement in adding the linear trend component in the location

and scale parameters.

The quadratic model pairs (M0,M3) and (M0,M4) have χ2
2,0.05 = 5.991 and χ2

3,0.05 =

7.815, respectively; with D statistic value of 2.730 and 7.710 for M3 and M4, re-

spectively. Since D statistic values are less than the corresponding critical

values for both M3 and M4, we conclude that there is no significant improve-

ment in adding the quadratic trend component in the location and scale pa-

rameters, that is, M3 and M4 are not worthwhile. The model pair (M0,M5) has

χ2
4,0.05 = 9.488 and D = 8.936. Since D < χ2

4,0.05, we conclude that there is no

significant improvement in fit over the stationary GEV model.
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Table 4.24: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Thabazimbi minimum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 20.266 0.951 -0.062 37.210
M1 20.009 0.019 0.935 -0042 37.018
M2 20.142 0.024 1.648 -0.050 -0.199 34.868
M3 20.477 -0.116 0.006 0.854 0.027 35.845
M4 19.993 -0.029 0.003 1.609 -0.052 -0.138 33.355
M5 21.245 -0.0190 0.008 2.365 -0.173 0.004 -0.298 32.742

Key: NLLH denotes Negative Log-likelihood

For Thabazimbi minimum temperature data, the best model is stationary GEV

model, M0, and it is given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.062(xi − 20.266)

0.951

) 1
0.062

}
, (4.11)

where xi is the average monthly minimum temperature and ti is the time in

years.

The shape parameters in models (4.10) and (4.11), that is, -0.008 (p-value =

0.473), -0.062 (p-value = 0.302) are not significantly different from zero (p-value

> 0.05). This suggests that the maximum and minimum temperature data

at Thabazimbi meteorological station can be modelled by Gumbel family of

distribution which is light-tailed.

4.8.2 Non-stationary GEV models with trend and SOI co-

variates

Mara model

Figure 4.30 presents the scatter plot for the Mara station between average

monthly temperatures and SOI. From the scatter plot (Figure 4.30), there is no

clear positive linear relationship between average monthly temperatures and



Results and discussion 101

SOI. These findings are investigated further using results in Table 4.25 and

Table 4.26.
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Figure 4.30: Scatter plot of average maximum temperatures and the Southern
Oscillation Index (SOI) at Mara maximum (left panel) and minimum (right
panel) temperatures from 1951 to 2018.

Mara maximum temperature data

The model pair (M0,M6) from Table 4.25 has χ2
1,0.05 = 3.841 and a D statistic

value of 13.430. The likelihood ratio test for µ1 = 0 has p-value = 0.007. This

indicates that the SOI term in location parameter is significant (p-value < 0.05)

and worthwhile (D > χ2
1,0.05). The overall model M6 is significant and provides

an improvement in fit over the stationary GEV model. The model pair (M0,M7)

has χ2
2,0.05 = 5.991 and D = 24.244. The likelihood ratio test for µ1 = 0 has

p-value = 0.005 and for µ2 = 0, it has p-value = 0.160. This implies that ad-

ditional of trend term in model M7 is not significant, although the SOI term
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remains significant. Therefore, model M7 is worthwhile (D > χ2
2,0.05), but not

significant in the additional trend term.

Table 4.25: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Mara maximum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂ ξ̂ NLLH
M0 30.929 1.412 -0.338 121.302
M6 30.950 -0.371 1.348 -0.338 114.587
M7 30.079 -0.351 0.025 1.206 -0.285 109.180

Key: NLLH denotes Negative Log-likelihood

The best non-stationary model, M6, for Mara maximum temperature data has

a SOI term in the location parameter given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.338(xi − (30.950− 0.371SOI(ti)))

1.348

) 1
0.338

}
,

(4.12)

where xi is the average monthly maximum temperature and ti is the time in

years.

Mara minimum temperature data

The model pair (M0,M6) from Table 4.26 has χ2
1,0.05 = 3.841 and a D statistic

value of 6.658. The likelihood ratio test for µ1 = 0 has p-value = 0.008. This im-

plies that the SOI term in the location parameter is significant (p-value < 0.05)

and worthwhile (D > χ2
1,0.05). Thus, overall, model M6 is significant and pro-

vides an improvement in fit over the stationary GEV model. The model pair

(M0,M7) has χ2
2,0.05 = 5.991 and D = 12.194. The likelihood ratio tests for µ1 = 0

and µ2 = 0 have p-value < 0.001. This implies that the model M7 is significant

and worthwhile (D > χ2
2,0.05). Thus, the model M7 is significant and provides an
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improvement in fit over the stationary GEV model.

Table 4.26: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Mara minimum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂ ξ̂ NLLH
M0 18.035 0.611 -0.228 66.719
M6 18.065 -0.155 0.607 -0.249 63.390
M7 17.756 -0.149 0.009 0.566 -0.205 60.622

Key: NLLH denotes Negative Log-likelihood

The best two competing models for Mara minimum temperature data with a

SOI term in the location parameter based on their deviance statistics and like-

lihood ratio test results are respectively: model (4.13) as the main model with

a linear trend and a SOI term in location parameter, and model (4.14) as the

alternative model with a SOI term only in the location parameter. The main

model, M7, is given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.205(xi − (17.756− 0.149SOI(ti) + 0.009ti))

0.566

) 1
0.205

}
,

(4.13)

where xi is the average monthly minimum temperature and ti is the time in

years. The alternative non-stationary GEV model, M6, is

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.249(xi − (18.065− 0.155SOI(ti)))

0.607

) 1
0.249

}
,

(4.14)

where xi is the average monthly minimum temperature and ti is the time in

years.

The shape parameters in models (4.12), (4.13) and (4.14), that is, -0.338 (p-

value < 0.001), -0.205 (p-value=0.001) and -0.249 (p-value=0.005), are signifi-
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cantly different from zero (p-value < 0.05), implying that the shape parameters

for the three models are significantly negative. This suggests that the maxi-

mum and minimum temperature data at Mara meteorological station can be

modelled by Weibull family of distribution which is short-tailed.

Messina model

Figure 4.31 presents the scatter plot for the Messina station between average

monthly temperatures and SOI. From the scatter plot (Figure 4.31), there is no

clear positive linear relationship between average monthly temperatures and

SOI. These findings are investigated further using results in Table 4.27 and

Table 4.28.
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Figure 4.31: Scatter plot of average maximum temperatures and the Southern
Oscillation Index (SOI) at Messina maximum (left panel) and minimum (right
panel) temperatures from 1951 to 2009.
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Messina maximum temperature data

The model pair (M0,M6) from Table 4.27 has χ2
1,0.05 = 3.841 and a D statis-

tic value of 73.160. The likelihood ratio test for µ1 = 0 has p-value < 0.001.

This implies that the SOI term in the location parameter is significant (p-

value < 0.05) and worthwhile (D > χ2
1,0.05). The results show that model M6

is significant and provides an improvement in fit over stationary GEV model.

The model pair (M0,M7) has χ2
2,0.05 = 5.991 and D = 85.312. The likelihood ratio

tests for µ1 = 0 and µ2 = 0 have p-value < 0.001. This implies that the model

M7 is significant and worthwhile (D > χ2
2,0.05).

Table 4.27: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Messina maximum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂ ξ̂ NLLH
M0 34.135 1.569 -0.369 136.473
M6 33.934 -0.832 1.398 -0.329 99.893
M7 33.909 -0.659 0.036 1.123 -0.287 93.817

Key: NLLH denotes Negative Log-likelihood

The best two competing models for Messina maximum temperature data with

a SOI term in the location parameter based on their deviance statistics are

respectively: model (4.15) as the main model with a linear trend and a SOI

term in location parameter, and model (4.16) as the alternative model with a

SOI term only in the location parameter. The main model, M7, is given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.287(xi − (33.909− 0.659SOI(ti) + 0.036ti))

1.123

) 1
0.287

}
,

(4.15)

where xi is the average monthly maximum temperature and ti is the time in
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years. The alternative non-stationary GEV model, M6, is

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.329(xi − (33.934− 0.832SOI(ti)))

1.398

) 1
0.329

}
,

(4.16)

where xi is the average monthly maximum temperature and ti is the time in

years.

Messina minimum temperature data

The model pair (M0,M6) from Table 4.28 has χ2
1,0.05 = 3.841 and a D statistic

value of 58.570. The likelihood ratio test for µ1 = 0 has p-value < 0.001. This

implies that the SOI term in the location parameter is significant (p-value

< 0.05) and worthwhile (D > χ2
1,0.05). Thus, the model M6 is significant and

provides an improvement in fit over stationary GEV model. The model pair

(M0,M7) has χ2
2,0.05 = 5.991 and D = 68.342. The likelihood ratio tests for µ1 = 0

and µ2 = 0 have p-value = 0.002. This implies that the model M7 is significant

and worthwhile (D > χ2
2,0.05). Thus, the model M7 is significant and provides an

improvement in fit over the stationary GEV model.

Table 4.28: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Messina minimum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂ ξ̂ NLLH
M0 21.166 1.063 -0.330 108.048
M6 21.315 -0.284 1.052 -0.487 78.763
M7 20.549 -0.277 0.025 0.886 -0.321 73.877

Key: NLLH denotes Negative Log-likelihood

The best two competing models for Messina minimum temperature data with

a SOI term in the location parameter based on their deviance statistics are

respectively: model (4.17) as the main model with a linear trend and a SOI

term in location parameter, and model (4.18) as the alternative model with a
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SOI term only in the location parameter. The main model, M7, is given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.321(xi − (20.549− 0.277SOI(ti) + 0.025ti))

0.886

) 1
0.321

}
,

(4.17)

where xi is the average monthly minimum temperature and ti is the time in

years. The alternative non-stationary GEV model, M6, is

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.487(xi − (21.315− 0.284SOI(ti)))

1.052

) 1
0.487

}
,

(4.18)

where xi is the average monthly minimum temperature and ti is the time in

years.

The shape parameters in models (4.15), (4.16), (4.17) and (4.18), that is, -0.287,

-0.329, -0.321 and -0.487, are significantly different from zero (p-value < 0.05),

implying that the shape parameters for the four models are significantly neg-

ative. This suggests that the maximum and minimum temperature data at

Messina meteorological station can be modelled by Weibull family of distribu-

tion which is short-tailed.

Polokwane model

Figure 4.32 presents the scatter plot for the Polokwane station between aver-

age monthly temperatures and SOI. From the scatter plot (Figure 4.32), there

is no clear positive linear relationship between average monthly temperatures

and SOI. These findings are investigated further using results in Table 4.29

and Table 4.30.

Polokwane maximum temperature data

The model pair (M0,M6) from Table 4.29 has χ2
1,0.05 = 3.841 and a D statis-

tic value of 80.866. The likelihood ratio test for µ1 = 0 has p-value = 0.003.
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Figure 4.32: Scatter plot of average maximum temperatures and the South-
ern Oscillation Index (SOI) at Polokwane maximum (left panel) and minimum
(right panel) temperatures from 1951 to 2018.

This implies that the SOI term in the location parameter is significant (p-

value < 0.05) and worthwhile (D > χ2
1,0.05). Therefore, model M6 provides an

improvement in fit over the stationary GEV model. The model pair (M0,M7)

has χ2
2,0.05 = 5.991 and D = 86.036. The likelihood ratio test for µ1 = 0 has p-

value = 0.005 and for µ2 = 0, it has p-value = 0.007. This implies that model M7

is significant (p-value < 0.05) and worthwhile (D > χ2
2,0.05). Thus, overall model

M7 provides an improvement in fit over the stationary GEV model.

Table 4.29: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Polokwane maximum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂ ξ̂ NLLH
M0 28.246 1.086 -0.082 140.433
M6 28.298 -0.376 0.982 -0.163 100
M7 27.822 -0.309 0.016 0.985 -0.240 97.415

Key: NLLH denotes Negative Log-likelihood

The best two competing models for Polokwane maximum temperature data

with a SOI term in the location parameter based on their deviance statistics
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are respectively: model (4.19) as the main model with a linear trend and a SOI

term in location parameter, and model (4.20) as the alternative model with a

SOI term only in the location parameter. The main model, M7, is given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.240(xi − (27.822− 0.309SOI(ti) + 0.016ti))

0.985

) 1
0.240

}
,

(4.19)

where xi is the average monthly maximum temperature and ti is the time in

years. The alternative non-stationary GEV model, M6, is

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.163(xi − (28.298− 0.376SOI(ti)))

0.982

) 1
0.163

}
,

(4.20)

where xi is the average monthly maximum temperature and ti is the time in

years.

Polokwane minimum temperature data

The model pair (M0,M6) from Table 4.30 has χ2
1,0.05 = 3.841 and a D statistic

value of 123.954. The likelihood ratio test for µ1 = 0 has p-value = 0.247. This

implies that the SOI term in the location parameter is not significant (p-value

> 0.05). Therefore, model M6 provides an improvement in fit over the sta-

tionary GEV model, although the SOI term is not significant. The model pair

(M0,M7) has χ2
2,0.05 = 5.991 and D = 127.034. The likelihood ratio test for µ1 = 0

has p-value = 0.208 and for µ2 = 0, it has p-value = 0.034. This implies that

the additional trend term in model M7 is significant, although the SOI term

remains not significant. Therefore, model M7 is worthwhile (D > χ2
2,0.05), but

not significant in the SOI trend term.
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Table 4.30: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Polokwane minimum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂ ξ̂ NLLH
M0 16.651 0.954 0.032 131.198
M6 17.045 -0.050 0.658 -0.264 69.221
M7 16.794 -0.058 0.008 0.660 -0.303 67.681

Key: NLLH denotes Negative Log-likelihood

The best non-stationary model, M7, for Polokwane minimum temperature data

has a linear trend and a SOI term in the location parameter given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.303(xi − (16.794− 0.058SOI(ti) + 0.008ti))

0.660

) 1
0.303

}
,

(4.21)

where xi is the average monthly minimum temperature and ti is the time in

years.

The shape parameters in models (4.19) and (4.20), that is, -0.240, -0.163, are

not significantly different from zero (p-value > 0.05), implying that the shape

parameters for the two models are not significantly negative. The shape pa-

rameter in model (4.21), that is, -0.303 is significantly different from zero. This

suggests that the maximum temperature data at Polokwane station can be

modelled by Gumbel family of distribution which is light-tailed, while mini-

mum temperature data at Polokwane station can be modelled by Weibull fam-

ily of distribution which is short-tailed.

Thabazimbi model

Figure 4.33 presents a scatter plot for Thabazimbi station between average

monthly temperatures and SOI. Results in Figure 4.33 show that there is a

probabilistic linear relationship between the average monthly temperatures

and SOI with considerable randomness. This relationship is further investi-

gated using Table 4.31 and Table 4.32.
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Figure 4.33: Scatter plot of average maximum temperatures and the Southern
Oscillation Index (SOI) at Thabazimbi maximum (left panel) and minimum
(right panel) temperatures from 1994 to 2018.

Thabazimbi maximum temperature data

The model pair (M0,M6) from Table 4.31 has χ2
1,0.05 = 3.841 and a D statistic

value of 0.370. The likelihood ratio test for µ1 = 0 has p-value = 0.264. This

implies that the SOI term in the location parameter is not significant (p-value

> 0.05) and not worthwhile (D < χ2
1,0.05). Therefore, model M6 is not significant

and does not improve the stationary GEV model. The model pair (M0,M7) has

χ2
2,0.05 = 5.991 and D = 1.982. The likelihood ratio test for µ1 = 0 has p-value

= 0.068 and for µ2 = 0, it has has p-value = 0.096 . This implies that the SOI

and the additional trend term in the location parameter are not significant (p-

value> 0.05) and model M7 is not worthwhile (D < χ2
2,0.05).
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Table 4.31: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Thabazimbi maximum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂ ξ̂ NLLH
M0 33.364 1.313 -0.008 46.002
M6 33.664 -0.130 1.277 -0.023 45.817
M7 33.892 -0.383 0.060 1.163 0.125 45.011

Key: NLLH denotes Negative Log-likelihood

The best model for Thabazimbi maximum temperature data is the stationary

GEV model, M0, given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.008(xi − 33.643)

1.313

) 1
0.008

}
, (4.22)

where xi is the average monthly maximum temperature and ti is the time in

years.

Thabazimbi minimum temperature data

The model pair (M0,M6) from Table 4.32 has χ2
1,0.05 = 3.841 and a D statistic

value of 0.506. The likelihood ratio test for µ1 = 0 has p-value = 0.134. This

implies that the SOI term in the location parameter is not significant (p-value

> 0.05). Since D is less than the critical value, i.e. (D < χ2
1,0.05), we conclude

that there is no significant improvement in fit over the stationary GEV model.

The model pair (M0,M7) has χ2
2,0.05 = 5.991 and D = 1.144. The likelihood ratio

test for µ1 = 0 has p-value = 0.110 and for µ2 = 0, it has p-value = 0.217. This

implies that the SOI and trend term in the location parameter are not signifi-

cant (p-value > 0.05). Since D is less than the critical value, i.e. (D < χ2
2,0.05),

we conclude that there is no significant improvement in fit over the stationary

GEV model, that is, model M7 is not worthwhile.
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Table 4.32: Parameter and maximum likelihood estimates of the non-
stationary GEV distribution for Thabazimbi minimum temperature.
Model µ̂0 µ̂1 µ̂2 σ̂ ξ̂ NLLH
M0 20.266 0.951 -0.062 37.210
M6 20.111 0.236 0.875 0.056 36.957
M7 19.816 0.236 0.023 0.860 0.065 36.638

Key: NLLH denotes Negative Log-likelihood

The best model for Thabazimbi minimum temperature data is the stationary

GEV model, M0, given by:

G(µ, σ, ξ, xi, t) = exp

{
−
(

1 +
−0.062(xi − 20.266)

0.951

) 1
0.062

}
, (4.23)

where xi is the average monthly minimum temperature and ti is the time in

years.

The shape parameters in models (4.22) and (4.23), that is, -0.008 (p-value =

0.473), -0.062 (p-value = 0.302), are not significantly different from zero (p-

value > 0.05). This suggests that the maximum and minimum temperature

data at Thabazimbi meteorological station can be modelled by Gumbel family

of distribution which is light-tailed.

4.9 Peaks-over-threshold (POT) approaches

This section presents results of the POT approaches which include threshold

selection, declustering, generalised Pareto (GP) and Poisson point process dis-

tributions.

4.9.1 Threshold selection

Thresholds were chosen based on mean residual life and parameter stability

plots. Figure 4.34 to Figure 4.37 present the mean residual life plots and Fig-
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ure 4.38 to Figure 4.45 present parameter stability plots for average monthly

maximum and minimum temperature data. Table 4.33 presents the selected

threshold values for each meteorological station obtained from Figure 4.34 to

Figure 4.45 for both maximum and minimum temperature data. The thresh-

olds were chosen in order to meet the requirements of the bias-variance thresh-

old trade-off balance such that they were high enough and low enough to have

sufficient data to estimate the parameters.
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Figure 4.34: Mean residual life plots for
Mara maximum (left panel) and minimum
(right panel) temperature.
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Figure 4.35: Mean residual life plots for
Messina maximum (left panel) and mini-
mum (right panel) temperature.
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Figure 4.36: Mean residual life plots for
Polokwane maximum (left panel) and min-
imum (right panel) temperature.
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Figure 4.37: Mean residual life plots
for Thabazimbi maximum (left panel) and
minimum (right panel) temperature.
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Figure 4.38: Parameter stability plots for
Mara maximum temperature.
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Figure 4.39: Parameter stability plots for
Mara minimum temperature.
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Figure 4.40: Parameter stability plots for
Messina maximum temperature.
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Figure 4.41: Parameter stability plots for
Messina minimum temperature.
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Figure 4.42: Parameter stability plots for
Polokwane maximum temperature.
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Figure 4.43: Parameter stability plots for
Polokwane minimum temperature.
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Figure 4.44: Parameter stability plots for
Thabazimbi maximum temperature.
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Figure 4.45: Parameter stability plots for
Thabazimbi minimum temperature.
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Table 4.33: Threshold values for the average maximum and minimum temper-
atures in all meteorological stations.
Station name Threshold

Mara Max 27
Min 11

Messina Max 27
Min 13.7

Polokwane Max 22.3
Min 11

Thabazimbi Max 30
Min 8

4.9.2 Declustering

Since the exceedances above the threshold could not be assumed to be indepen-

dent from each other, declustering of the cluster maxima and minima was per-

formed and the results are presented in Figure 4.46 to Figure 4.53 for all mete-

orological stations cluster maxima and minima. The declustered exceedances

are assumed independent from each other.
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Figure 4.46: Mara declustered maxi-
mum temperature showing cluster maxima
above 27 oC threshold.
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Figure 4.47: Mara declustered minimum
temperature showing cluster minima above
11 oC threshold.
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Figure 4.48: Messina declustered maxi-
mum temperature showing cluster maxima
above 27 oC threshold.
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Figure 4.49: Messina declustered mini-
mum temperature showing cluster maxima
above 13.7 oC threshold.
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Figure 4.50: Polokwane declustered maxi-
mum temperature showing cluster minima
above 22.3 oC threshold.
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Figure 4.51: Polokwane declustered mini-
mum temperature showing cluster minima
above 11 oC threshold.
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Figure 4.52: Thabazimbi declustered maxi-
mum temperature showing cluster maxima
above 30 oC threshold.
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Figure 4.53: Thabazimbi declustered mini-
mum temperature showing cluster minima
above 8 oC threshold.
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4.9.3 GP distribution approach

The generalised Pareto (GP) distribution parameter estimation results are pre-

sented in Table 4.34. The results revealed that both maximum and minimum

temperature data for Mara, Messina, Polokwane and Thabazimbi can be mod-

elled by the Weibull family of distribution since the values of all shape param-

eters are negative (ξ̂ < 0) and confidence intervals (CIs) for shape parameters

are all significantly different from zero.

Table 4.34: Maximum likelihood estimates of the GP distribution parameters
with standard errors in the parentheses and 95% CI for maximum tempera-
ture.
Station name σ̂ ξ̂ 95 % CI for ξ̂

Mara Max 3.540(0.163) -0.471(0.024) (-0.518, -0.424)
Min 8.418(0.000) -0.935(0.000) (-0.935, -0.935)

Messina Max 6.586(0.031) -0.613(0.001) (-0.615, -0.611)
Min 8.581(0.000) -0.833(0.000) (-0.833, -0.833)

Polokwane Max 4.818(0.172) -0.298(0.012) (-0.322, -0.274)
Min 4.747(0.197) -0.256(0.013) (-0.281, -0.231)

Thabazimbi Max 3.315(0.295) -0.316(0.043) (-0.400, -0.232)
Min 15.906(0.000) -0.994(0.000) (-0.994, -0.994)

The diagnostic plots for assessing the accuracy of the GP model fitted to all me-

teorological stations are presented in Figure 4.54 to Figure 4.61. The P-P, Q-Q

and return level plots for maximum temperature data of the following stations:

Mara and Messina show that the plotted points are linear, suggesting that GP

distribution fit temperature data well. The P-P, Q-Q, return level and density

plots for Mara and Messina minimum temperature data deviate from linearity,

suggesting that the GP distribution does not fit the data well. The P-P, Q-Q

and return level plots for both Polokwane maximum and minimum tempera-

ture data deviate from linearity, suggesting that the GP distribution does not

fit the data well. The P-P, Q-Q, return level and density plots for Thabazimbi

maximum temperature data revealed that the plotted points are linear, sug-

gesting that GP distribution fit temperature data well, while minimum tem-
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perature plots deviate from linearity, suggesting that the GP distribution does

not fit the data well.
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Figure 4.54: Diagnostic plots illustrating the fit of the GP distribution to Mara
maximum temperature: (a) P-P plot (top left panel), (b) Q-Q plot (top right
panel) and (c) Return level (bottom left panel).
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Figure 4.55: Diagnostic plots illustrating the fit of the GP distribution to Mara
minimum temperature: (a) P-P plot (top left panel), (b) Q-Q plot (top right
panel), (c) Return level (bottom left panel) and (d) Density plot (bottom right
panel).
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Figure 4.56: Diagnostic plots illustrating the fit of the GP distribution to
Messina maximum temperature: (a) P-P plot (top left panel), (b) Q-Q plot (top
right panel) and (c) Return level (bottom left panel).
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Figure 4.57: Diagnostic plots illustrating the fit of the GP distribution to
Messina minimum temperature: (a) P-P plot (top left panel), (b) Q-Q plot (top
right panel), (c) Return level (bottom left panel) and (d) Density plot (bottom
right panel).
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Figure 4.58: Diagnostic plots illustrating the fit of the GP distribution to Polok-
wane maximum temperature: (a) P-P plot (top left panel), (b) Q-Q plot (top
right panel) and (c) Return level (bottom left panel).
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Figure 4.59: Diagnostic plots illustrating the fit of the GP distribution to Polok-
wane minimum temperature: (a) P-P plot (top left panel), (b) Q-Q plot (top right
panel) and (c) Return level (bottom left panel).
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Figure 4.60: Diagnostic plots illustrating the fit of the GP distribution to
Thabazimbi maximum temperature: (a) P-P plot (top left panel), (b) Q-Q plot
(top right panel), (c) Return level (bottom left panel) and (d) Density plot (bot-
tom right panel).
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Figure 4.61: Diagnostic plots illustrating the fit of the GP distribution to
Thabazimbi minimum temperature: (a) P-P plot (top left panel), (b) Q-Q plot
(top right panel), (c) Return level (bottom left panel) and (d) Density plot (bot-
tom right panel).
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Return level analysis for GP distribution

Table 4.35 presents results for return periods and their corresponding return

levels for both average monthly maximum and minimum temperatures based

on the GP distribution. The results in Table 4.35 revealed that return levels

for each station are increasing with increasing return periods. In comparison,

Thabazimbi meteorological station has highest return levels for maximum tem-

perature, while Polokwane has highest return levels for minimum temperature

data.

Thabazimbi has the highest 10-year return level for maximum temperature

of 37.1240C, while Polokwane has the least maximum temperature 10-year re-

turn level of 32.9390C. This suggests that, in Thabazimbi, a maximum tem-

perature of 37.1240C is expected to be exceeded at least once in 10 years.

Thabazimbi has the highest 10-year return level for minimum temperature

of 23.5530C, while Mara has the least minimum temperature 10-year return

level of 19.9600C. This suggests that, in Thabazimbi, a minimum temperature

of 23.5530C is expected to be exceeded at least once in 10 years.

Thabazimbi has the highest 100-year return level for maximum temperature

of 38.8640C, while Mara has the least maximum temperature 100-year re-

turn level of 34.0490C. This suggests that, in Thabazimbi, a maximum tem-

perature of 38.8640C is expected to be exceeded at least once in 100 years.

Polokwane has the highest 100-year return level for minimum temperature

of 25.4510C, while Mara has the least minimum temperature 100-year return

level of 19.9650C. This suggests that, in Polokwane, a minimum temperature

of 25.4510C is expected to be exceeded at least once in 100 years.

The extremely high 10-year and 100-year maximum temperature return lev-

els, particularly for Messina and Thabazimbi, indicate impending heat waves
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in the Limpopo province. These findings are in support of those from the GEV

distribution.

Table 4.35: GP model return periods (years) and their corresponding return
levels (oc).
Station name 10 years 20 years 50 years 100 years 500 years

Mara Max 33.135 33.520 33.869 34.049 34.296
Min 19.690 19.839 19.932 19.965 19.993

Messina Max 36.554 36.963 37.295 37.447 37.628
Min 23.490 23.716 23.871 23.930 23.986

Polokwane Max 32.939 33.972 35.049 35.689 36.752
Min 22.162 23.363 24.656 25.451 26.835

Thabazimbi Max 37.124 37.786 38.466 38.864 39.512
Min 23.553 23.776 23.910 23.955 23.991
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4.9.4 Poisson point process approach

The Poisson point process approach parameter estimation results are presented

in Table 4.36. The results revealed that both maximum and minimum temper-

ature data for Mara, Messina, Polokwane and Thabazimbi can be modelled by

the Weibull family of distribution since the values of all shape parameters are

negative (ξ̂ < 0) and CI are all significantly different from zero.

Table 4.36: Maximum likelihood estimates of the Poisson point process param-
eters with standard errors in the parentheses and 95% CI for maximum and
minimum temperatures.
Station name µ̂ σ̂ ξ̂ 95 % CI for ξ̂

Mara Max 33.918(0.093) 0.282(0.026) -0.471(0.025) (-0.520, -0.422)
Min 19.945(N/A) 0.0527(N/A) -0.935(N/A) (N/A)

Messina Max 37.393(0.053) 0.207(0.021) -0.614(0.024) (-0.661, -0.567)
Min 23.895(0.023) 0.092(0.014) -0.833(0.035) (-0.902, -0.764)

Polokwane Max 35.439(0.202) 0.906(0.034) -0.298(0.012) (-0.322, -0.274)
Min 24.814(0.291) 1.212(0.044) -0.256( 0.013) (-0.281, -0.231)

Thabazimbi Max 38.457(0.385) 0.642(0.099) -0.316(0.043) (-0.400, -0.232)
Min 23.936(0.006) 0.064(0.006) -0.994(0.018) (-1.029, -0.959)

Key: N/A represents Not Applicable.

The diagnostic plots for assessing the accuracy of the Poisson point process

model fitted to all meteorological stations are presented in Figure 4.62 to Fig-

ure 4.69. The P-P and Q-Q plots for maximum temperature of the following

stations: Mara, Messina and Thabazimbi show that the plotted points are lin-

ear, suggesting that the distribution fits temperature data well, while mini-

mum temperature data shows that the plotted points deviate from linearity,

suggesting that the distribution does not fit the data well. For Polokwane, both

maximum and minimum temperature data show that there are deviations from

linearity suggesting that the distribution does not fit the data well.
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Figure 4.62: Diagnostic plots of stationary Poisson point process model fitted
to Mara maximum temperature data.
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Figure 4.63: Diagnostic plots of stationary Poisson point process model fitted
to Mara minimum temperature data.



Results and discussion 131

●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability plot

empirical

m
od

el

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●●●
●●●●●
●●●●
●●
●●
●●
●

28 30 32 34 36

28
30

32
34

36
38

Quantile Plot

model

em
pi

ric
al

Figure 4.64: Diagnostic plots of stationary Poisson point process model fitted
to Messina maximum temperature data.
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Figure 4.65: Diagnostic plots of stationary Poisson point process model fitted
to Messina minimum temperature data.
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Figure 4.66: Diagnostic plots of stationary Poisson point process model fitted
to Polokwane maximum temperature data.
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Figure 4.67: Diagnostic plots of stationary Poisson point process model fitted
to Polokwane minimum temperature data.
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Figure 4.68: Diagnostic plots of stationary Poisson point process model fitted
to Thabazimbi maximum temperature data.
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Figure 4.69: Diagnostic plots of stationary Poisson point process model fitted
to Thabazimbi minimum temperature data.
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Return level analysis for Poisson point process

Table 4.37 presents results for return periods and their corresponding return

levels for both average monthly maximum and minimum temperatures based

on the Poisson point process model. The results in Table 4.37 revealed that

return levels for each station are increasing with increasing return periods. In

comparison, Thabazimbi meteorological station has highest return levels for

maximum temperature, while Polokwane has highest return levels for mini-

mum temperature data.

Thabazimbi has the highest 10-year return level for maximum temperature

of 39.4910C, while Mara has the least maximum temperature 10-year return

level of 34.3080C. This suggests that, in Thabazimbi, a maximum temperature

of 39.4910C is expected to be exceeded at least once in 10 years. Polokwane has

the highest 10-year return level for minimum temperature of 26.8870C, while

Mara has the least minimum temperature 10-year return level of 19.9950C.

This suggests that, in Polokwane, a minimum temperature of 26.8870C is ex-

pected to be exceeded at least once in 10 years.

Thabazimbi has the highest 100-year return level for maximum temperature

of 40.0140C, while Mara has the least maximum temperature 100-year re-

turn level of 34.4470C. This suggests that, in Thabazimbi, a maximum tem-

perature of 40.0140C is expected to be exceeded at least once in 100 years.

Polokwane has the highest 100-year return level for minimum temperature

of 28.0900C, while Mara has the least minimum temperature 100-year return

level of 20.0010C. This suggests that, in Polokwane, a minimum temperature

of 28.0900C is expected to be exceeded at least once in 100 years.

The return level analysis results for Poisson point process further reveal that

maximum temperature exceeding 400C are expected in the Limpopo province
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at least once in the next 100 to 500 years time. These findings are consis-

tent with the return level analysis findings based on both GEV and GP dis-

tributions. All these three approaches suggest impending heat waves in the

Limpopo province to occur at least once in 10 years to come.

Table 4.37: Poisson point process model return periods (years) and their corre-
sponding return levels (oc).
Station name 10 years 20 years 50 years 100 years 500 years

Mara Max 34.308 34.368 34.420 34.447 34.483
Min 19.995 19.998 19.999 20.001 20.001

Messina Max 37.646 37.677 37.700 37.711 37.724
Min 23.988 23.996 24.001 24.003 24.005

Polokwane Max 36.925 37.225 37.529 37.709 38.004
Min 26.887 27.335 27.805 28.090 28.584

Thabazimbi Max 39.491 39.694 39.897 40.014 40.204
Min 23.994 23.997 23.999 23.910 23.000

4.10 Bivariate threshold excess approach

4.10.1 Introduction

This section of bivariate conditional extremes approach with a time-varying

threshold is based on maximum temperature series. The data cover four major

meteorological stations of the Limpopo province of South Africa: Mara (1949-

2018), Messina [or Musina] (1934-2009), Polokwane (1932-2018) and Thabaz-

imbi (1994-2018) [see Figure 3.1].

As can be noted from the previous paragraph, the longest series spans the pe-

riod 1932-2018, while the shortest series spans the period 1994-2018. Also one

station (Messina) has a series that terminates much earlier (in 2009) than the

other three stations, implying that the years 2010-2018 which are included in

the other stations are missing for Messina, and hence the period 2010-2018 will

be excluded in the bivariate threshold excess approach so that all the stations
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terminate in 2009. Therefore, given the differences in the time spans from the

four stations and that in bivariate modelling approach the data variables must

span the same time period, the section considers only the monthly maximum

temperature for the period 1994-2009 for all the stations. This means that all

the results in the next subsections and the findings therein are based on the

time period 1994-2009.

4.10.2 Time series plot with time-varying threshold ex-

cess

Figure 4.70 to Figure 4.73 present the time series plots for Mara, Messina,

Polokwane and Thabazimbi average monthly maximum temperature, respec-

tively, with a time-varying threshold.
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Figure 4.70: Mara maximum temperature
with a time-varying threshold.
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Figure 4.71: Messina maximum tempera-
ture with a time-varying threshold.
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Figure 4.72: Polokwane maximum temper-
ature with a time-varying threshold.
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Figure 4.73: Thabazimbi maximum tem-
perature with a time-varying threshold.
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4.10.3 Extremal dependence

The pairwise correlation in Figure 4.74 shows the extremal dependence amongst

the four stations. The results in Figure 4.74 reveal strong positive correla-

tion between Messina and Mara (0.48), a very weak positive correlation be-

tween Polokwane and Mara (0.00115) and a weak positive correlation between

Thabazimbi and Mara (0.234), between Polokwane and Messina (0.144) and

between Thabazimbi and Polokwane (0.299).

Figure 4.75 and Figure 4.76 present the multivariate conditional Spearman’s

ρ correlation plots, where ρ denotes the Spearman’s coefficient of correlation.

The results in Figure 4.75 suggest a weak positive association in Messina and

Polokwane, Messina and Thabazimbi, and Polokwane and Thabazimbi, while

Figure 4.76 suggests a strong positive association in Mara and Messina, a very

weak positive association in Mara and Polokwane, and a weak positive associa-

tion in Mara and Thabazimbi. The multivariate conditional Spearman’s corre-

lation plots in Figure 4.75 and Figure 4.76 support the results of the pairwise

correlation in Figure 4.74 by confirming the findings.
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Figure 4.74: Pairwise scatterplot and correlation of the data.
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Figure 4.75: Multivariate conditional Spearman’s correlation for Messina,
Polokwane and Thabazimbi.
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Figure 4.76: Multivariate conditional Spearman’s correlation for Mara,
Messina, Polokwane and Thabazimbi.

4.10.4 Conditional extremal dependence

Table 4.38 presents the dependence structure conditioning on each station. The

estimates of the parameter a in Table 4.38 denote strong negative (or positive)

extremal dependence for values close to -1 (or 1), respectively. Conditioning

on Thabazimbi station, the estimates of the dependence parameters for Mara,

Messina and Polokwane stations are a = 0.2405, a = −0.001963 and a = 0.2575,

respectively. This implies that Mara and Polokwane stations have a positive

extremal dependence on large values of Thabazimbi, while Messina has a neg-

ative extremal dependence on large values of Thabazimbi. Conditioning on

Polokwane, the estimates of the dependence parameters for Mara, Messina

and Thabazimbi are a = −0.2902, a = −0.3007 and a = −0.02911, respectively.

This implies that Mara, Messina and Thabazimbi have a significant negative

extremal dependence on large values of Polokwane.
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Table 4.38: Estimates of dependence models.

Dependence parameters Mara Messina Polokwane
Conditioning on a 0.2405∗ -0.001963 0.2575∗
Thabazimbi b 0.2938 -0.128200 0.3147

Dependence parameters Mara Messina Thabazimbi
Conditioning on a -0.2902∗ -0.3007∗ -0.02911
Polokwane b 0.0711 0.4061 -0.21600

Dependence parameters Mara Polokwane Thabazimbi
Conditioning on a -0.1475∗ -0.59110∗ -0.4077∗
Messina b 0.6061 -0.06039 -0.1408

Dependence parameters Messina Polokwane Thabazimbi
Conditioning on a 0.4060∗ -0.4624∗ 0.5155∗
Mara b -0.3634 -0.5239 0.1690

∗ denotes significant positive or negative values of a at 5% significance level

Conditioning on Messina, the estimates of the dependence parameters for Mara,

Polokwane and Thabazimbi are a = −0.1475, a = −0.59110 and a = −0.4077,

respectively. This implies that Mara, Polokwane and Thabazimbi have signif-

icant negative extremal dependence on large values of Messina, the strongest

negative being that of Polokwane on large values of Messina. Conditioning on

Mara, the estimates of the dependence parameters for Messina and Thabaz-

imbi are a = 0.4060 and a = 0.5155, respectively, which shows significant pos-

itive extremal dependence, while the estimate of the dependence parameter

for Polokwane (a = −0.4624) shows significant negative extremal dependence

on large values of Mara. These results reveal that Thabazimbi exhibits the

strongest positive extremal dependence on large values of Mara.

Figure 4.77 presents the diagnostic plots for conditioning Thabazimbi on Mara,

Messina and Polokwane. The plots from top to bottom show; dependence model

residuals across the range of the extreme conditioning variable, the absolute

values of the centred and scaled values of the residuals across the range of the

extreme conditioning variable and the original untransformed data with con-
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tours showing quantiles of the fitted conditional model. The results in Figure

4.77 revealed that the parameter estimates are stable at the 75th percentile

since the horizontal lines are smoothest.
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Figure 4.77: Diagnostic plots for conditioning on Thabazimbi.
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4.11 Summary of the chapter

This chapter provided statistical modelling of temperature extremes in the four

meteorological stations of Limpopo province. The data was first tested for sta-

tionarity and normality. The parent distributions of the data were investigated

and the long-term trends were tested using M-K test statistic. The GEV, GP,

Poisson point process distributions and bivariate threshold excess were fitted

to the four meteorological stations of the Limpopo province of South Africa.

The data were analysed using R software package. The main findings are as

follows:

1. The distribution of the data is skewed to the left and platykurtic as shown

by the skewness and kurtosis values.

2. The ADF, KPSS and PP tests were used to test for the stationarity of the

maximum and minimum temperature data. The findings revealed that

both maximum and minimum temperature data in the four meteorologi-

cal stations are not stationary.

3. The Shapiro-Wilk and Jarque-Bera tests were used to test the normality

of the temperature data. The findings revealed that the temperature data

for all the stations are not normally distributed.

4. The four parent distributions namely: normal, log-normal, gamma and

Weibull were fitted to the maximum and minimum temperature data.

The findings revealed that the parent distribution for the maximum tem-

perature in the Limpopo province lies in the Weibull domain of attrac-

tion, while for the minimum temperature the common parent distribu-

tions also lie in the Weibull domain of attraction based on the diagnostic

tests conducted.

5. The Mann-Kendall (M-K) test and time series plots were used to inves-

tigate the long-term trend. The findings revealed both increasing and
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decreasing long-term trends of maximum and minimum temperature ex-

tremes, respectively.

6. The GEV distribution was fitted to the block maxima and minima. The

findings revealed that the maximum and minimum temperature data for

Mara and Messina can be modelled by the Weibull family of distribution,

while Polokwane and Thabazimbi data can be modelled by the Gumbel

family of distribution.

7. The non-stationary GEV distribution with additional SOI covariate term

was fitted to the block maxima and minima temperature data. The find-

ings revealed that models with the SOI term, linear and quadratic trends

in the location parameter provide significant improvement in fit over the

stationary GEV model.

8. The GP distribution was fitted using the peaks-over-threshold approach.

The findings revealed that maximum temperature data for the four sta-

tions can be modelled by the Weibull family of distribution.

9. The Poisson point process was fitted using the peaks-over-threshold ap-

proach. The findings revealed that both maximum and minimum tem-

perature data for the four meteorological stations can be modelled by the

Weibull family of distribution.

10. The maximum temperature 10-year return levels for all the various ap-

proaches GEV, GP and Poisson point process distributions suggest an im-

pending heat wave and drought in the Limpopo province.

11. The bivariate conditional extremes approach with a time-varying thresh-

old was applied to the maximum temperature data for the four meteo-

rological stations in the study. The findings of the pairwise correlation

matrix revealed positive extremal dependence amongst the four stations

[Figure 3.1].
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12. Conditional extremal dependence for the four meteorological stations re-

vealed significant positive and negative extremal dependence among the

stations.



Chapter 5

Conclusion

5.1 Conclusion

The aim of this study was to model the extreme maximum and minimum tem-

peratures in the Limpopo province of South Africa. Temperature extremes

accompanied by heat waves and cold waves pose serious challenges in major

sectors such as economic, energy, agricultural and health sectors. For exam-

ple, in the agricultural sector high temperatures lead to droughts and loss

of livestock, in the health sector hospitalisation and loss of lives are experi-

enced, while in the energy sector high demand for electricity is experienced

due to changing weather conditions that affect the heating and cooling sys-

tems. The maximum and minimum temperatures in the Limpopo province are

not stationary throughout the year with June, July and August being the cold-

est months of the year, while December, January, February and March are the

hottest months. Recent studies have indicated increasing maximum and mini-

mum temperatures attributed to climate change and global warming.
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The present study has investigated the stationarity of the data using ADF,

KPSS and PP tests. The findings for ADF and KPSS tests revealed that both

maximum and minimum temperature data for the four meteorological stations

are not stationary. The Shapiro-Wilk (SW) and Jarque-Bera (JB) tests were

used to test for normality of the temperature data. The findings revealed that

both maximum and minimum temperature data for the four meteorological

stations are not normally distributed. These findings lead to the conclusion

that both maximum and minimum temperature data in the four meteorologi-

cal stations are neither stationary nor normally distributed.

The study also investigated parent distributions for all the stations. The four

parent distributions considered in this study are: normal, log-normal, gamma

and Weibull. The findings suggest that the underlying distribution of the data

belongs to the Weibull domain of attraction (which is a family of short-tailed

distributions). The long-term trend of the temperature data was investigated

using Mann-Kendall (M-K) test and time series plots. The findings revealed

both monotonic increasing and decreasing long-term trends of maximum and

minimum temperature extremes, respectively.

The major contribution of the study on parent distributions was on establishing

that the underlying distribution of the maximum and minimum temperatures

in the Limpopo province belongs to the Weibull domain of attraction, while

the major contribution of the M-K test was on detecting the long-term trends

of the maximum and minimum temperatures in the Limpopo province which

could not be easily detected using time series plots.

The GEV distribution was fitted to both maximum and minimum average monthly

temperature data using the block maxima approach. Non-stationary GEV

models with linear and quadratic trends in the location and scale parameters
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were considered in this study. The findings revealed that the model with the

linear and quadratic trends in the location parameter provides significant im-

provement in fit over the stationary GEV model for Mara, Messina and Polok-

wane meteorological stations. An alternative modelling approach involved fit-

ting a GEV model with a SOI term covariate in the location parameter of the

model was considered. The findings for the non-stationary GEV model with a

SOI term covariate revealed that the SOI term and a linear trend in the loca-

tion parameter provide significant improvement in fit over the stationary GEV

model. These climate change findings in this study could be attributed mainly

to the effects of global warming and natural modes of interdecadal variability

such as the El Niño and La Niña phenomenon (Maposa, 2016).

The GP and Poisson point process distributions were fitted using a peaks-over-

threshold approach. The findings revealed that both maximum and minimum

temperature data in the four stations can be modelled by the Weibull family of

distribution. The return levels for the GEV, GP and Poisson point process dis-

tributions revealed that maximum and minimum temperatures in the Limpopo

province are expected to increase in the next 10 to 500 years. These findings

suggests that temperature extremes in the Limpopo province are expected to

occur more frequently, last longer and become more intense.

The major contributions of the three univariate extreme value theory approaches,

GEV, GP and Poisson point process distributions were in predicting impending

heat waves in the Limpopo province of South Africa, as well as establishing

that the distribution of the temperature data in the Limpopo province belongs

to the Weibull domain of attraction.

The bivariate conditional extremes approach with a time-varying threshold

was also considered in this study. The findings for the pairwise correlation
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matrix revealed that Messina, Polokwane and Thabazimbi all have positive

extremal dependence on Mara, the strongest being that of Messina and the

weakest being that of Polokwane. Other weak pairwise extremal dependence

correlations were revealed for the pairs Polokwane and Messina, Thabazimbi

and Messina, and Thabazimbi and Polokwane.

Conditioning on Thabazimbi station, the values of the estimated dependence

parameters show that the maximum temperatures of Thabazimbi have a posi-

tive extremal dependence on Mara and Polokwane, and a negative extremal de-

pendence on Messina. Conditioning on Polokwane station, the values of the es-

timated dependence parameters show that Mara, Messina and Thabazimbi all

have negative extremal dependence on Polokwane, the strongest being that of

Messina on Polokwane. Conditioning on Messina station, the values of the esti-

mated dependence parameters show that Mara, Polokwane and Thabazimbi all

have negative extremal dependence on large values of Messina, the strongest

being that of Polokwane on Messina. Conditioning on Mara station, the values

of the estimated dependence parameters show that the maximum tempera-

tures of Mara have positive extremal dependence on Messina and Thabazimbi,

and negative extremal dependence on Polokwane. The strongest positive con-

ditional extremal dependence was revealed to be that of Thabazimbi on Mara.

This suggests that the occurrence of extreme maximum temperatures in Mara

would imply some extreme high temperature dependence impact on Thabaz-

imbi.

The major contribution of this bivariate time-varying threshold excess approach

was in using a penalised cubic smoothing spline to perform a nonlinear de-

trending of the temperature data prior to fitting bivariate threshold excess

models based on Laplace margins to positive residuals above the threshold

and a positive shift factor as a time-varying threshold to capture the season-
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ality or climate change effects in the data. The existing gap in literature was

in combining these two approaches in conditional extremes dependence mod-

elling. The overall significance of this bivariate conditional extremes depen-

dence modelling approach lies on quantifying the dependence effects of max-

imum temperature extremes amongst the various meteorological stations in

order to reveal some useful information needed for planning by climatologists,

meteorologists, agriculturalists, decision markers and planners in the energy

sector.

5.2 Recommendations of the study

The reseacher makes the following recommendations based on the present

study:

1. The South Africa Weather Service (SAWS) should make attempts to record

and provide researchers with daily temperature data to allow more sta-

tistical inferences to be made on the data compared to monthly average

temperature data.

2. The SAWS should make efforts to provide researchers with data that does

not have many missing values so that the number of meteorological sta-

tions in studies of this nature can be increased.

3. The findings in this study are intended to enhance awareness and un-

derstanding of temperature extremes for the community and decision-

makers in the Limpopo province to improve their mitigation strategies

and reduce the deleterious impacts of these temperature extremes on hu-

mans and property.

4. The return level analyses suggested impending heat waves. Therefore,

the Limpopo province community must brace itself for such heat waves in

the near future.
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5.3 Limitations of the study

The researcher was aware and mindful of some limitations to the study. For

instance, the data that was brought forth before the research was extremely

limited hence posing some challenges in terms of the data itself and the anal-

yses that followed. The data had 11 stations, but due to missing values, only

four stations were considered. Another challenge was that the data did not

span over the same period, making it difficult to model using bivariate condi-

tional extremes time-varying threshold approach.

5.4 Future studies

Future studies in modelling of temperature extremes will consider the use of

Bayesian approach using Markov chain Monte Carlo (MCMC) techniques. In

extremal dependence modelling of temperature extremes, future studies may

consider exploring the use of extreme value copulas while paying special atten-

tion to asymptotic independence. With increased availability of meteorological

stations, another important consideration in the future will be investigation

of spatio-temporal dependence between temperature extremes using the con-

ditional extremes model of Heffernan and Tawn (2004).
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TOMCZYK, A. M., BEDNORZ, E., PóLROLNICZAK, M., AND KOLENDOWICZ, L.

(2019). Strong heat and cold waves in Poland in relation with the large-scale

atmospheric circulation. Theorectical and Applied Climatology, 137 (3-4),

1909–1923.

TOROS, H., MOKARI, M., AND ABBASNIA, M. (2019). Regional variability of

temperature extremes in the maritime climate of Turkey: A case study to

develop agricultural adaptation strategies under climate change. Modeling

Earth System and Environment, 5 (3), 857–865.

TSHIALA, M. F. AND OLWOCH, J. M. (2010). Impact of climate variability on

tomato production in Limpopo province, South Africa. Journal of Agricul-

tural Research, 5 (21), 2945–2951.

TSHIALA, M. F., OLWOCH, J. M., AND ENGELBRECHT, F. A. (2011). Analy-

sis of temperature trends over Limpopo province, South Africa. Journal of

Geography and Geology, 3 (1), 13.

VOGEL, C. AND OLIVIER, D. (2019). Re-imagining the potential of effective

drought responses in South Africa. Regional Environmental Change, 19 (6),

1561–1570.

WINTER, H. (2016). Extreme value modelling of heatwaves. PhD Thesis, Lan-

caster University.



REFERENCES 167

WOLF, J., ADGER, W. N., AND LORENZONI, I. (2010). Heat waves and cold

spells: An analysis of policy response and perception of vulnerable popula-

tion in the UK. Environment and Planning A, 42 (11), 2721–2734.

WORKU, G., TEFERI, E., BANTIDER, A., AND DILE, Y. T. (2019). Observed

changes in extremes of daily rainfall and temperature in Jemma Sub-Basin,

Upper Blue Nile Basin. Theoretical and Applied Climatology, 135 (3-4), 839–

854.

WRIGHT, C. Y., GARLAND, R. M., NORVAL, M., AND VOGEL, C. (2014). Hu-

man health impacts in a changing South African climate. South African

Medical Journal, 104 (8), 579–582.

YAMBA, F. D., WALIMWIPI, H., JAIN, S., ZHOU, P., CUAMBA, B., AND

MZEZEWA, C. (2011). Climate change/variability implications on hydroelec-

tricity generation in the Zambezi River Basin. Mitigation and Adaptation

Strategies for Global Change, 16 (6), 617–628.

ZHOU, G. D., YI, T. H., CHEN, B., AND ZHANG, H. (2017). A generalised

Pareto distribution based extreme value model of thermal gradients in a

long-span bridge combining parameter updating. Advances in Structural En-

gineering, 20 (2), 202–213.

ZUO, J., PULLEN, S., PALMER, J., BENNETTS, H., CHILESHE, N., AND MA,

T. (2015). Impacts of heat waves and corresponding measures: A review.

Journal of Cleaner Production, 92, 1–12.



Appendix

SOME SELECTED R CODES

Tempdata< − read.delim(“C:/Users/Lerato/Desktop/DATA SET/Tempdata.txt”)

View(Tempdata)

data=c(TempdataJAN, TempdataFEB,TempdataMAR, TempdataAPR,TempdataMAY,

TempdataJUN,TempdataJUL, TempdataAUG,TempdataSEP,

TempdataOCT, TempdataNOV, TempdataDEC)

View(data)

summary(data)

win.graph()

par(mfrow = c(1,2))

R codes for fitting parent distributions

# Fitting normal distribution

normMLE< −fitdist(data,“norm”,method=“mle”)

normMLE

summary(normMLE)

plot(normMLE)

# Fitting log-normal distribution
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lnormMLE< −fitdist(data,“lnorm”,method=“mle”)

lnormMLE

summary(lnormMLE)

plot(lnormMLE)

# Fitting gamma distribution

gamMLE< −fitdist(data,“gamma”,method=“mle”)

gamMLE

summary(gamMLE)

plot(gamMLE)

# Fitting Weibull distribution

weiMLE< −fitdist(data,“weibull”,method=“mle”)

weiMLE

summary(weiMLE)

plot(weiMLE)

R codes for fitting EVT

# Installing packages for Extreme Value Analysis

library(VGAM)

library(extRemes)

library(ismev)

library(“evd”)

library(fitdistrplus)

library(nortest)

library(aTSA)
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library(actuar)

library(EnvStats)

freq=gev.fit(AM)

gev.diag(freq)

# Goodness-of-fit test

library(EnvStats)

gofTest(AM,distribution=“gev”,test=“ks”)

gofTest(AM,distribution=“gev”,test=“ad”)

# Non-stationary GEV distribution

# Linear model for location parameter

ti=matrix(ncol=1,nrow=75)

ti[,1]=seq(1,75,1)

ti=gev.fit(AM,ydat=ti,mul=1,sigl = NULL)

gev.diag(ti)

# Linear model for location and scale parameters

ti=matrix(ncol=1,nrow=25)

ti[,1]=seq(1,25,1)

ti=gev.fit(AM,ydat=ti,mul=1,sigl = 1)

gev.diag(ti)

# A quadratic model in location parameter

ti2=matrix(ncol=2,nrow=75)

ti2[,1]=seq(1,75,1)

ti2[,2]=(ti2[,1])∗ ∗ 2

gev.fit(AM,ydat=ti2,mul=c(1,2))
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gev.diag(ti)

# A quadratic model in location and linear scale parameter

ti2=matrix(ncol=2,nrow=25)

ti2[,1]=seq(1,25,1)

ti2[,2]=(ti2[,1])∗ ∗ 2

gev.fit(AM,ydat=ti2,mul=c(1,2),sigl = 1)

# A quadratic model in location and scale parameter

ti2=matrix(ncol=2,nrow=75) ti2[,1]=seq(1,75,1)

ti2[,2]=(ti2[,1])∗ ∗ 2

gev.fit(AM,ydat=ti2,mul=c(1,2),sigl = c(1,2))

# Calculating t-ratios and p-values (an example)

tb1=abs((0.004051329)/ 2.000028e-06 ); tb1

pt(tb1,25,lower.tail=FALSE)

# Using POT approach to make inference # Plotting mean residual Life plot

mrp=mrl.plot(data)

# Stability plots to validate u

win.graph()

par(mfrow=c(1,1))

threshrange.plot(data, r = c(20, 30), nint=10)

# Declustering data

ei< −decluster(data,threshold =8)

ei

xcl=ts(ei,start=1994,frequency=12)

plot(ei,col=“red”,xlab=“Time”,ylab=“Temperature”,)
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# Fitting point process approach

y < − pp.fit(data,8)

pp.diag(y)

# Fitting generalised Pareto distribution

y < − gpd.fit(data,8)

gpd.diag(y)

R codes for fitting bivariate

tempmaximum < − na.omit(tempmaximum) # removing missing values

attach(tempmaximum)

head(tempmaximum)

plot(Mara, type=“l”, ylab=“Maximum temperature(deg C)”,col=“blue”,lwd=2,

main=”Mara maximum temperature”,xlab=”Observation number”)

z < − smooth.spline(time(Mara), Mara)

z

lines(smooth.spline(time(Mara), Mara, spar= 0.5),col=“red”,lwd=2,lty=2,) #spar=

0.2002359

legend(“topleft”,col=c(“black”,“red”), lty=1:2,lwd=2,

legend=c(“Mara max temp”, “Time varying threshold”))

Temp < − data.frame(cbind(excessMapos,excessMespos))

Temp < − na.omit(Temp)

#palette(c(“black”,“purple”,“cyan”,“orange”))

summary(Temp,digits=2)
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GGally::ggpairs(Temp)

# Examining pairwise extremal dependence using the

# Multivariate conditional Spearman’s correlation coefficient

mcsMara-Mes < −MCS(Temp[, c(“excessMapos”, “excessMespos”)])

mcsMara-Pol < −MCS(Temp[, c(“excessMapos”, “excessPolpos”)])

mcsMara-Tha < −MCS(Temp[, c(“excessMara”, “excessThapos”)])

mcsMes-Pol < −MCS(Temp[, c(“excessMespos”, “excessPolpos”)])

mcsMes-Tha < −MCS(Temp[, c(“excessMespos”, “excessThapos”)])

mcsPol-Tha < −MCS(Temp[, c(“excessPolpos”, “excessThapos”)])

g1 < − ggplot(mcsMara-Mes, main=“MCS: excessMapos and excessMespos”)

gridExtra::grid.arrange(g1,ncol=1)

g2 < − ggplot(mcsMara-Pol, main=“MCS: excessMapos and excessPolpos”)

g3 < − ggplot(mcsMara-Tha, main=“MCS: excessMapos and excessThapos”)

gridExtra::grid.arrange(g1,g2,g3,ncol=1)

g4 < − ggplot(mcsMes-Pol, main=“MCS: excessMespos and excessPolpos”)

g5 < − ggplot(mcsMes-Tha, main=“MCS: excessMespos and excessThapos”)

g6 < − ggplot(mcsPol-Tha, main=“MCS: excessPolpos and excessThapos”)

gridExtra::grid.arrange(g4,g5,g6,ncol=1)

# Dependence model diagnostics

ggplot(mex.Temp)

mrf < − mexRangeFit(marg, “Mara”, trace=11)

ggplot(mrf)

# Fitted model parameters

mex.Temp


