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Abstract

In this study, we consider two problems. The first one is the problem of computing hedging

portfolios for options that may have discontinuous payoff functions. For this problem we use

the Malliavin property called the Clark-Ocone formula and give some examples for different

types of payoff functions of the options of European type. The second problem is based on the

computation of price sensitivities (derivatives of the probabilistic representation of the payoff

functions with respect to the underlying parameters of the model) also known as ‘Greeks’

of discontinuous payoff functions and also give some examples. We restrict ourselves to the

computation of Delta, Gamma and Vega. For this problem we make use of the properties

of the Malliavin calculus like the integration by parts formula and the chain rule. We find

the representations of the price sensitivities in terms of the expected value of the random

variables that do not involve the actual direct differentiation of the payoff function, that is,

E[g(XT )π] where g is a payoff function which depend on the stochastic differential equation

XT at maturity time T and π is the Malliavin weight function. In general, we study the

regularity of the solutions of the stochastic differential equations in the sense of Malliavin

calculus and explore its applications to Mathematical finance.

i



Declaration

I declare that the dissertation hereby submitted to the University of Limpopo, for the degree

of Master of science in Applied Mathematics has not previously been submitted by me for

a degree at this or any other university; that it is my work in design and in execution, and

that all materials contained herein has been duly acknowledged.

Mr S.M Kgomo November 2020

ii



Dedication

To my family and my late father.

iii



Acknowledgements

I would like to take this opportunity to thank my supervisor, Dr F.J Mhlanga for supervising

me on this work. He often took out of his busy time to provide me with valuable guidance

and advice. It was awesome working with him.

I would like to thank Services SETA for their financial support but most importantly thank

the National Research Foundation (NRF) for their financial support throughout the years of

this study. I would also like to thank Teaching Development Grant (TDG) and the Depart-

ment of Mathematics and Applied Mathematics at the University of Limpopo for assisting

me financially during some conferences and workshops.

I would thank my friends and colleagues at the Department of Mathematics and Applied

Mathematics at the University of Limpopo for their useful inputs and suggestions. Special

thanks to the Department of Mathematics and Applied Mathematics for granting me tutor-

ship and the part-time lectureship opportunities during the period of my study.

I would like to thank my family for their love and support.

Finally I would like to thank God for wisdom, strength and the ability to complete this

study.

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction 1

1.1 Construction of Hedging portfolio . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Structure of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Introduction to Malliavin calculus 9

2.1 Gaussian Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 1-dimensional Gaussian Hilbert space . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Wiener’s construction of Brownian motion and the stochastic integral. . . . . 16

2.4 The Mallaivin derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 The space of polynomials in elements of W(H) . . . . . . . . . . . . . 18

2.4.2 The Malliavin derivative on P(H) . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Extending the Domain of the derivative . . . . . . . . . . . . . . . . . 21

2.5 Skorohod integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 The Clark-Ocone formula . . . . . . . . . . . . . . . . . . . . . . . . 27

v



vi CONTENTS

3 SDEs and Malliavin calculus 29

3.1 Existence and uniqueness of solutions . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Weak differentiability of the solution . . . . . . . . . . . . . . . . . . . . . . 31

4 The replicating portfolio 37

4.1 Representation of Hedging portfolio . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Replicating portfolios (general case) . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Construction of Hedging portfolio . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 Black-Scholes model . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Replication of European call option . . . . . . . . . . . . . . . . . . . 50

5 Computation of price sensitivities 52

5.1 Variations in the diffusion coefficient . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Greeks w.r.t the correlation in a stochastic volatility model . . . . . . . . . . 67

5.2.1 The independent case . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusion 78

References 80



Chapter 1

Introduction

In mathematical finance, the method most widely used in practice for evaluating hedging

portfolios of options in standard diffusion models is based on the fact that the optimal num-

ber of shares to be held is typically obtained by differentiating the option price with respect

to the underlying factors. For example, one would use the resampling method [12] which

involves computing different values of a factor X(α) for some close values of the parameter

α and then forming some appropriate differences to approximate the derivatives. However,

this approach is costly when the dimension of the parameter α is large and it also provides

biased estimators [16].

Other approaches that have been used include the pathwise method and the likelihood ratio

method. The pathwise method computes the derivative of the option price with respect

to the parameter of interest. This method only works for specific option prices, hence its

implementation cannot be generalized. The method gives unbiased results when applicable

(see [12]). This approach cannot be applied to non-differentiable option prices as in the case

of barrier and digital options. The likelihood ratio method avoids computing the derivative

of the option price [14]. Instead, the derivative of the probability density of the underlying

variable is computed rather than the derivative of the option price. It has been proven that

when applicable the likelihood ratio method gives results with minimal variance [3]. How-

ever, in general, the density function of the underlying factor is not explicitly known as in

the case of Asian options [9].

In many practical cases, the option price is either discontinuous or the density of the underly-

ing factors is not explicitly known, hence the above mentioned approaches cannot be applied.

1



2 CHAPTER 1. INTRODUCTION

To circumvent these difficulties, Fournie et al. [9] used a Malliavin calculus approach. Using

this approach, the authors showed that the calculation can can be transformed to avoid

the need for computing the derivative of the option price. This is quite useful as typical

option prices are not everywhere differentiable and the density of the underlying factors is

not explicitly known.

In this study we are particularly interested in computing hedging portfolios and price sensi-

tivies where the option prices are discontinuous following the Malliavin calculus approach.

A typical example is the digital option. The main difficulty is that the discontinuity of

the option price will cause many technical problems using the above-mentioned standard

approaches.

The aim of this study is to derive hedging portfolios and compute price sensitivities using

the Malliavin calculus approach which does not involve differentiating the payoff function.

The objectives of the study are to:

1. Review the main features of Malliavin calculus on the Wiener space.

2. Investigate the regularity of solutions of stochastic differential equations.

3. Establish the Malliavin derivatives of stochastic integrals and solutions of stochastic

differential equations.

4. Apply Malliavin calculus to mathematical finance, in particular, to compute hedging

portfolios and price sensitivities.

1.1 Construction of Hedging portfolio

In order to make our goal precise, we introduce mathematical notations. We assume that

(Ω,F ,P) is a complete probability space on which a d-dimensional Brownian motion W =

{Wt}t≥0 is defined and {Ft}t≥0 denotes the natural filtration generated by W , argument

by the p-null sets of F and let F = F∞. We consider the market model which consists

of one risky asset and one riskless asset, whose prices at time t are denoted by S0
t and S1

t ,

respectively. We assume that the prices follow the following stochastic differential equations
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in the integral form:

S0
t = S0

0 +

∫ T

0

rtS
0
t dt (1.1)

S1
t = S1

0 +

∫ T

0

rtS
1
t dt+

∫ T

0

σtS
1
t dWt. (1.2)

We suppose that the volatility matrix σt is invertible and the discounted stock prices are

martingales. We recall the standard option pricing framework. Suppose the seller (hereafter

called the investor) of the option is trying to replicate the option payoff by investing in the

market. We denote by π the amount of money is invested in the stock at time t. Typically,

the payoff of the option is given by g̃(ST ) for some function g̃, and by definition, the (option)

price process is equal to the wealth process which replicates the option at the maturity time

T . The discounted price process satisfies

Zt = Z0 +

∫ t

0

RsπsσsdWs,

where Rt = exp{−
∫ t

0
rsds}. Since σ and R are both invertible, we can simply set φt = Rtπtσt

so that the discounted wealth process Y is now described by a simple form

Zt = Z0 +

∫ t

0

φsdWs. (1.3)

To be more precise, we consider a state process X governed by the following stochastic

differential equation

dXt = b(Xt)dt+ σ(Xt)dWt (1.4)

where the process {Wt : 0 ≤ t ≤ T} is a standard Brownian motion. We can then set the

discounted payoff function to be g(X) = Rg̃(S), and thus the discounted price process Y of

the option at each time is given by

Zt = E[g(XT ) | Ft]

= Z0 +

∫ T

t

φsdWs.

= g(XT )−
∫ T

t

φsdWs. (1.5)

In order to perform hedging in our model, we have to find an efficient method for computing

the portfolio π, or equivalently, to compute the process φ that makes ZT = RT g̃(ST ). φt

can be computed by differentiating the payoff function with respect to the underlying asset.

We are particularly interested in computing hedging portfolio φ where the payoff function is
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discontinuous using the Malliavin calculus approach. A typical example is the digital option,

that is

g̃(s) = 1{s≥K}

for some K > 0. The main difficulty is that the discontinuity of the option price will cause

many technical problems using the above mentioned standard approaches.

We will also focus on the application of Malliavin calculus in mathematical finance which

includes the derivatives of the probabilistic representation (option price) of the payoff func-

tion called price sensitivities (also known as Greeks). These are important sensitivities of

an option prices with respect to the involved underlying parameters. The Greeks cannot

be expressed in closed form in many cases, as a results, they require numerical methods

for computation. These derivatives are basically the derivatives of the expectations. In our

case, we focus on the case of the digital and barrier options where we have the discontinuous

payoff functions or where the payoff function is non-differentiable. Mathematically, a Greek

is defined as follows: We first consider a general Itô diffusion process {Xt : 0 ≤ t ≤ T} given

by the stochastic differential equation of the form (1.4) where {Wt : 0 ≤ t ≤ T} is a stan-

dard Brownian motion. The coefficients b(·) and σ(·) are deterministic functions which are

assumed to satisfy some usual conditions which ensures the existence and uniqueness of the

solution to stochastic differential equation given by equation (1.4). The diffusion coefficient

σ(·) is also assumed to satisfy a uniform ellipticity conditions of which will be stated later.

We let Φ to be a payoff function which depend on the whole sample path of the stochastic

process {Xt : 0 ≤ t ≤ T}, Φ : [0, T ] −→ R and satisfying

E[Φ(X(·))2] <∞

and being given by

Φ = Φ(XT )

where Φ : Rn → R is infinitely differentiable function of which all its partial derivatives have

polynomial growth. We define an option price u(α) as the probabilistic representation of the

payoff function Φ which depends on the stochastic process XT given by

u(α) = E[Φ(XT )] (1.6)

where α represent the underlying parameter of the model, E denotes the expectation and

T denote the maturity time. We are much interested in the options of the European type.

The parameter α could be the initial stock price, the price volatility, the interest rate or the

maturity time. A Greek is generally computed as follows:

Greek =:
∂

∂α
E[Φ(XT )]
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where the underlying parameter α can be the initial price x, the drift coefficient b if it is

constant, the volatility coefficient σ if it is also a constant or any other underlying constant

parameter of the model.

Different Greeks are defined as follows:

i. If α is the initial price x, then we have the Delta which is defined as the derivative of

the option price with respect to the initial price, and is denoted by ∆.

The value of delta measures how sensitive the option price is to the underlying security

and it plays an important role in portfolio hedging.

ii. Gamma is defined as the second partial derivative of an option price with respect to

the initial price x and is denoted by Γ. It is used to measures the sensitivity of Delta.

iii. If α is the volatility, then we have Vega of a which is defined as the derivative of an

option price with respect to the volatility σ and is denoted by V .

iv. If α is the interest rate then we have Rho which is defined as the derivative of an option

price with respect to the interest rate r and is denoted by ρ.

v. If α is the time then we have Theta which is defined as the derivative of an option

price with respect to the maturity time and is denoted by Θ.

We will focus on Delta, Gamma and Vega. This study is motivated by the increasingly

complicated problems in mathematical finance which cannot be solved using the existing

traditional methods. We are further motivated by the fact that computations of solutions

of stochastic differential equations amount to pricing an option in the financial mathematics

framework where one is required to represent the solution as an expectation. Our moti-

vation to use Malliavin calculus is that we want a method which is applicable to a wide

class of option prices. This approach allows us to derive explicit hedging strategies without

much restrictions. The Malliavin calculus approach is applicable to both complicated and

discontinuous option prices. The approach also allows for more general option prices than

the Markovian ones, in particular, we want to allow path-dependent option prices. The

calculus enables us to obtain tractable formulae for hedging portfolios. Such formulae can

be simulated using Monte Carlo methods.
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1.2 Literature review

The Malliavin calculus, sometimes referred to as the calculus of variation of stochastic pro-

cesses, is an infinite-dimensional differential calculus defined on the Wiener space. Much of

the theory builds on Itô’s stochastic calculus. It was first introduced by Paul Malliavin in

the 1970’s [19]. The purpose of this calculus was to prove results about the smoothness of

densities of solutions of stochastic differential equations driven by Brownian motion. For

several years this was the only known application [24]. The Malliavin calculus was consid-

ered quite complicated by many, as a result it remained a relatively unknown theory among

mathematicians for some time. Many mathematicians simply considered the theory as too

difficult compared to the results it produced. Moreover, to a large extent these results could

also be obtained by using Hörmander’s earlier theory on hypo-elliptic operators ([31] and

the references therein).

In 1984, Ocone [29] obtained an explicit interpretation of the Clark representation formula

in terms of the Malliavin derivative. This remarkable result later became known as the

Clark-Ocone formula, sometimes also called Clark-Haussmann-Ocone formula in view of the

contribution of Haussmann, [15]. In 1991, Ocone and Karatzas [30] applied this result to

mathematical finance. The authors proved that the Malliavin derivative can be used to

obtain explicit formulae for the replicating portfolios of contingent claims in markets driven

by Brownian motion. This hugely increased in the interest in the Malliavin calculus both

among mathematicians and finance researchers ([1, 7, 8, 24, 22], and the introductory lecture

notes [23]).

The next breakthrough came in 1999, when Fournié et al. [9] obtained numerically tractable

formulae for the computation of the so-called Greeks in mathematical finance also known as

parameters of sensitivity. In recent years many new applications of the Malliavin calculus

have been found including in partial information optimal control, insider trading, and more

generally, anticipative stochastic calculus [24].

Malliavin calculus has also been extended from the original setting of Brownian motion

to more general Lévy processes [8]. These extensions were at first motivated by and tailored

to the original application within the study of smoothness of densities and regularity of of

solutions of stochastic differential equations in the sense of Malliavin calculus [25]. Today

the range of applications has extended even further to include numerical methods, stochastic

control and insider trading, not just for systems driven by Brownian motion, but for systems
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driven by general Lévy processes [10]. The main computational tool of the Malliavin calculus

is the integration by parts formula which can be applied to transform a derivative into a

weighted integral of random variables.

In this study, we are particularly interested in computing hedging portfolios for option prices

that are discontinuous following the Malliavin calculus approach. We will consider models

with the following features:

1. the number of factors may be larger than the number of Brownian motions, and

2. the option price functions are discontinuous.

A typical model with feature (1) is one in which the underlying stock is driven by Brownian

motion, but the interest rate and volatility are also diffusion processes driven by the same

Brownian motion. The prototypical example of feature (2) is the digital option, which will

be the focus of our study.

We are also interested in the computation of Greeks. We consider the option price of the

form (1.6) for a given payoff function Φ and for a fixed time T .

1.3 Structure of the dissertation

In chapter 2, we give a brief introduction of the Malliavin calculus. We first concentrate

on the Wiener’s construction of Brownian motion and look at some of the definitions and

examples that will be useful in other chapters. We introduce a powerful tool of Malliavin

calculus called the integration by parts formula also known as the duality formula which

will be very useful in the application to mathematical finance, most importantly for the

computation of price sensitivities. We also look at the Skorohod integral which is actually

the extension of the Malliavin derivative for non-adapted stochastic processes. We conclude

this chapter by stating the Clark-Ocone formula which is important in the computation of

hedging portfolios.

In chapter 3, we consider the stochastic differential equation where the drift and the dif-

fusion coefficients are assumed to be functions. We then take the Malliavin derivative of

the stochastic differential equation. We also take the partial derivative of the considered

stochastic differential equation with respect to the initial value where we obtain what we

call the first variational process. We again considering the stochastic differential equation
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for a geometric Brownian motion as an example where the drift and the diffusion coefficients

are constants.

In chapter 4 and 5, we apply Malliavin calculus to mathematical finance. In chapter 4 we

apply the Clark-Haussman Ocone formula to compute the general representation formula

for replicating portfolio for options hedging and give some examples based on different pay-

off functions. In chapter 5, we apply some important properties of Malliavin calculus to

compute the general representation formulas of the price sensitivities ‘Greeks’ like Delta,

Gamma and Vega where we consider the standard Brownian motion. We consider the geo-

metric Brownian motion as an example.

Lastly we consider the hybrid stochastic volatility model for 3-dimensional standard Brown-

ian motion and use the general formula to compute price sensitivities where we include the

computation of Rho. We consider two cases, the first one consist of correlated Brownian

motions and the second one consist of uncorrelated (independent) Brownian motions. In

chapter 6 we give the general conclusion of the study.



Chapter 2

Introduction to Malliavin calculus

We look at the important definitions which we will make use of in the next chapters. We

introduce the Gaussian Hilbert spaces [18] which are real or complex inner product spaces

that are also a complete metric space with respect to the distance function induced by the

inner product. We also look at some properties of Malliavin calculus like the Malliavin

derivative and the Skorohod integral in the Brownian motion sense. For a detailed account

of Malliavin calculus we refer to [24].

2.1 Gaussian Hilbert spaces

We work on a measure space (Ω,F ,P) where P is a probability measure (non negative) and

P(Ω) = 1.

Definition 2.1.1 A random variable is a real-valued measurable function on the probability

space (Ω,F ,P).

Let B denote the σ-algebra of Borel sets.

Definition 2.1.2 The distribution of a random variable X is the measure µX defined on

(R,B, µX) by

µX((−∞, t]) = P({X(ω) ≤ t}), t ∈ R. (2.1)

Definition 2.1.3 The function FX(t) = µX((−∞, t]) is called the cumulative distribution

function of X and if FX(t) is differentiable, then fX(t) = F ′X(t) is called the probability

9
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density of X. Thus we can write

P({X(ω) ≤ t}) =

∫ t

−∞
dµX =

∫ t

−∞
dFX(s) =

∫ t

−∞
fX(s)ds. (2.2)

Definition 2.1.4 The expected value of a function g(x), g : R −→ R is defined as follows

E[g(X)] :=

∫
Ω

g(X(ω))dP(ω) =

∫
R
gdµX =

∫
R
g(s)dFX(s)

=

∫
R
g(s)fX(s)ds

where ω ∈ Ω.

For a random variable X, we define

mean(X) = E[X],

var(X) = E[(X − E[X])2] = E[X2]− (E[X])2.

We define the space of square integrable functions as

L2(Ω) =

{
g :

∫
Ω

g2(ω)dP(ω) <∞
}
.

Then L2(Ω) is a Hilbert space with inner product

〈f, g〉 =

∫
Ω

f(ω)g(ω)dP(ω)

and norm

‖f‖2 = 〈f, f〉.

The Hilbert space is complete with respect to convergence in the norm topology:

fn −→ f ⇐⇒ ‖fn − f‖ −→ 0,

that is, every Cauchy sequence has a limit.

Every separable Hilbert space H has a denumerable orthonormal basis. Let {ei} be such a

basis. Then

1. ‖ei‖ = 1, 〈ei, ej〉 = 0 when i 6= j.

2. For every x ∈ H we have

x =
∞∑
i=0

〈x, ei〉ei. (2.3)
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3. 〈x, y〉 =
∑∞

i=0〈x, ei〉〈y, ei〉.

4. ‖x‖2 =
∑∞

i=0〈x, ei〉.

5. If {fi} is an orthogonal sequence, then

∞∑
i=0

fi converges if and only if
∞∑
i=0

‖fi‖2 <∞.

The series in (2.3) converges in the norm of H. L2(Ω) is a separable Hilbert space.

Definition 2.1.5 A random variable X is called centred Gaussian if there is a σ > 0 such

that

fX(t) =
1√

2πσ2
e−

t2

2σ2 .

Then X ∼ N(µ, σ2).

The term centred refers to the fact that the mean is zero. (i.e µ = 0) A Gaussian linear space

can always be completed to a Gaussian Hilbert space which is well stated by the following

theorem.

Theorem 2.1.6 If Xn −→ X in L2(Ω) and for each n, Xn is a centred Gaussian then X

is centred Gaussian

Proof:

Convergence in L2(Ω) implies that σ2
n = var(Xn) = ‖Xn‖2 −→ ‖X‖ = var(X) = σ2 and

that

P(Xn ≤ t) −→ P(X ≤ t)

so that Xn −→ X in distribution. Clearly N(0, σ2
n) −→ N(0, σ2) in distribution such that

X ∼ N(0, σ2). 2

Definition 2.1.7 Two normally distributed random variables X and Y are independent if

and only if they are orthogonal, that is, if and only if

E[XY ] = 0.

Definition 2.1.8 A Gaussian Hilbert space is a Hilbert space whose elements are centred

Gaussian random variables.



12 CHAPTER 2. INTRODUCTION TO MALLIAVIN CALCULUS

Example 2.1.9 Consider the probability space (R,B, γ) where

dγ =
1√
2π
e−

x2

2 dx. (2.4)

We show that g(x) = x is a centred Gaussian random variable. We have

P({g(x) ≤ t}) = γ({x ≤ t}) = γ((−∞, t]) =
1√
2π

∫ t

∞
e−

x2

2 dx.

This shows that g is centred Gaussian.

Example 2.1.10 Let Y be a set of random variables such that every finite subset is centred

multivariate normal. Then the closure in L2(Ω) of Y is a Gaussian Hilbert space.

Example 2.1.11 Set Y = {Wt}t∈R+ where Wt(ω) is a Brownian motion on Ω.

It is well known that finite subsets of Y are centred multivariate normal. The Gaussian

Hilbert space W (H) generated by Y has a well known characterisation given in the following

theorem.

Theorem 2.1.12 Let f be a deterministic function. Then

H(W ) =

{∫ T

0

f(t)dW (t, ω) : f ∈ L2([0, T ], dt)

}
.

where the process W (t) at time t is the standard Brownian motion.

Proof

Consider a linear map I defined by

I(
∑

ai1[0,ti]) =
∑

aiWti

which we write as I(f) = F . The functions of type
∑
ai1[0,ti] are called simple functions

and belongs to L2([0, T ]). We can write such functions in the form

f =
∑

âi1[ti−1,ti]

for some new constants âi. The functions of type ΣaiW (ti)(ω) are also called simple functions

and belong to L2(Ω). They can be written in the form

F =
∑

ai4W (ti)
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with some constants ai. Riemann sums suggests that we define

F =

∫ T

0

f(t)dW (t).

We extend this definition to the closure of these simple functions. Taking expected values

and using

E[WsWt] =

∫ T

0

1[0,s](u)1[0,t](u)du,

it follows that

‖I(f)‖2
L2(Ω) = ‖F‖2

L2(Ω) = E

[∑
i,j

aiWtiajWtj

]

=

∫ T

0

(∑
i,j

ai1[0,ti]aj1[0,tj ]

)
du

=

∫ T

0

f 2(u)du

= ‖f‖2
L2([0,T ]).

Any function f ∈ L2([0, T ]) is a limit of simple functions of the above type. Given such

a function f , we construct the approximate sequence fn which is then a Cauchy sequence.

Then

‖Fi − Fj‖L2(Ω) = ‖fi − fj‖L2([0,T ]).

This shows that Fn is a Cauchy sequence. Thus Fn converges to a limit point F in L2(Ω).

Also

‖Fn‖ = ‖I(fn)‖ = ‖fn‖

so that

‖F‖L2(Ω) = ‖I(f)‖L2(Ω) = ‖f‖L2([0,T ]),

where f ∈ L2([0, T ]). Thus, I is an isometry of L2([0, T ]) into H. Conversely, a similar

argument shows that for any F ∈ H there exists an f ∈ L2([0, T ]) such that

F = I(f),

and so I is a surjective map. 2

Theorem 2.1.13 There is an isometry I : L2([0, T ]) −→ H which is onto. If I(f) = F

then we define ∫ T

0

f(t)dW (t) := F.
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By the isometry, we have

V ar(F ) = E

[(∫ T

0

f(t)dW (t)

)2
]

= ‖
∫ T

0

f(t)dW (t)‖2
L2([0,T ])

= ‖f‖2
L2([0,T ]). (2.5)

If fn is a sequence of simple functions converging to f in L2([0, T ]), then

lim
n→∞

∫ T

0

fn(t)dW (t) =

∫ T

0

f(t)dW (t).

We have shown that H(W ) is the set of all integrals of the form∫ T

0

f(t)dW (t), f ∈ L2([0, T ]).

We have also defined a stochastic integral for square integrable deterministic functions.

We note that
∫ T

0
f(t)dW (t) does not exist for an arbitrary limit of sums for arbitrary con-

tinuous functions but the limit does exist in L2(Ω).

2.2 1-dimensional Gaussian Hilbert space

Let

〈x, y〉 = E[x(t)y(t)] =

∫
R
x(t)y(t)dγ(t)

=
1√
2π

∫
R
x(t)y(t)e−

t2

2 dt

denote the inner product in L2(γ). This space includes all functions bounded above in

absolute value by some exponential ect.

Define

(∂x)(t) = x′(t).

Then integration by parts shows that

〈∂x, y〉 =
1√
2π

∫
R
(∂x)(ye−

t2

2 )dt

= − 1√
2π

∫
R
x∂(ye−

t2

2 )dt

=
1√
2π

∫
R
x(−∂y + ty)e−

t2

2 dt

= 〈x, ∂∗y〉



2.2. 1-DIMENSIONAL GAUSSIAN HILBERT SPACE 15

where ∂∗ is the adjoint of ∂, and hence we have

∂∗x = −∂x+ tx

〈∂x, y〉 = 〈x, ∂∗y〉

Then

∂∂∗ − ∂∗∂ = 1. (2.6)

By induction, we have

∂(∂∗)n − (∂∗)n∂ = n(∂∗)n−1, n ≥ 2 (2.7)

Define the Hermite polynomials by

Hn(t) =: (∂∗)n(1) n = 0, 1, 2... (2.8)

Then

H0(t) = 1, H1(t) = t, H2(t) = t2 − 1

and clearly all Hn are monic of degree n (coefficient of tn is 1). Applying (2.6) with value n

to the function 1, and using ∂(1) = 0, we obtain

H ′n = nHn−1. (2.9)

Further, we have

〈Hm, Hn〉 = 〈(∂∗)m1, Hn〉 = 〈1, ∂mHn〉 = E[∂mHn].

Here if m < n, then Hm ⊥ Hn. This means that Hm is orthogonal to Hn. By symmetry

of the relation, this holds also for m > n and hence, for m 6= n. Since the polynomials are

monic of degree n, it follows that

‖Hn‖n = 〈Hn, Hn〉 = E[∂nHn] = n!

Therefore {
1√
n!
Hn(t)

}
is an orthonormal sequence. It can be shown that it forms an orthogonal basis of L2(γ).

For x(t) ∈ L2(γ), we have

x =
∑ 1

n!
〈x,Hn〉Hn
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and if all derivatives of x are in L2(γ), we have

〈x,Hn〉 = 〈x, (∂∗)n1〉 = 〈∂nx, 1〉 = E[∂nx].

Hence, for such x,

x =
∞∑
n=0

1

n!
E[∂nx]Hn.

Applying this to x(t) = ect, we obtain

ect = E[ecu]
∞∑
n=0

cn

n!
Hn.

By calculating the expectation integral

1√
2π

∫ ∞
−∞

ecue−
u2

2 du = e
c2

2
1√
2π

∫ ∞
−∞

e−
(u−c)2

2 du

= e
c2

2

this becomes

ect−
c2

2 =
∞∑
n=0

cn

n!
Hn.

The operator ∂ is called the annihilation operator, the operator ∂∗ is called the creation

operator.

2.3 Wiener’s construction of Brownian motion and the

stochastic integral.

In the construction of Brownian motion on an arbitrary state Ω, the space has no algebraic

structure. We will see that if we want to differentiate with respect to the states, we need

some sort of structure to make it a vector space. We thus construct Ω explicitly as a vector

space, the space of all continuous functions on the non-negative real axis.

Firstly, we notice that W (t, ω) is a function of two variables. If we fix ω then this becomes a

continuous function of one variable t. So to each state ω, the Brownian motion W associates

a continuous function. Different states will give rise to different functions with probability 1

so we can identify the states with continuous functions.
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Here we need a measure over the continuous functions which tells us what is the probability

of getting paths lying in a cylinder about the given path. We can construct this measure on

the continuous functions by working at the probability of getting paths lying within a finite

number of intervals at times t1, t2, ..., tk, one interval at each time, finding probability using

a Gaussian probability measure so that the probabilities at all times come out to be normal.

This can be extended to a measure on the continuous functions. The measure of all the

differentiable functions turns out to be zero. Sets of functions which have non-zero measure

are made up of Holder continuous functions of a certain functional index. Once we have

defined the measure, µ(ω) say, we have∫
F (ω)dµ(ω)

which is well defined by measure theory. The integral has as domain some set of continuous

functions. The Brownian motion is defined by

W (t, ω) = W (t).

We can then define the stochastic integral in the same way as before using some state space

and measure to define the probability structure. We thus obtain an integral∫
f(t)dW (t, ω) =

∫
f(t)dW (t),

for deterministic functions in the same way we indicated above using the isometry and thus

this may be extended to stochastic functions f(t, ω) in one of the usual ways.

2.4 The Mallaivin derivative

In this section we denote the Gaussian Hilbert space of Example 2.1.10 by W (H) where

H = L2([0, T ]). and we use the notation

W (h) =

∫ T

0

h(t)dW (t), h ∈ H. (2.10)

Having defined our state space as a vector space, we can try to define the derivative, DF (ω, h)

of random variable F (ω) in the direction h ∈ H in a standard way, where H is a Gaussian

Hilbert space.

DF (ω, h) =
d

dε
F (ω + εh)|ε=0 = lim

ε→0

F (ω + εh)− F (ω)

ε
.
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However, there is a problem with this definition. We recall that random variables are el-

ements of L2 and hence only defined a.s with respect to the Wiener measure. Functions

different in value only on a set of measure zero are regarded as the same. Given a random

variable F (ω), define

G(ω) = F (ω + k)

where k is a continuous function. If k lies in the Cameron-Martin space then a set A has a

measure zero if and only if A+K has measure zero. Thus G is well-defined function in L2.

However, it can be shown that if k lies in the complement, any ω-set has translated measure

zero. This cannot be the case for a function in L2. Thus G is not a well-defined function in

L2 and cannot be used to define the directional derivative. Hence the directional derivative

can be defined only for directions in the Cameron-Martin space. To be able to extend the

derivative to more general functions, we extend the space W(H).

2.4.1 The space of polynomials in elements of W(H)

Denote by Pn(H) the space of all polynomials of degree n in elements of W (H) and denote

by P(H) of all such polynomials. We note that W (H) is not an algebra, that is, product of

Gaussian random variables generally have non-Gaussian distribution, so most of the elements

of P(H) are not in W (H). However, the polynomials are all in L2(Ω) since this space is an

algebra. If f ∈ P(H), then for some n, there exist a polynomial p of degree n and h1, ..., hn

such that

f(ω) = p(W (h1)), ...,W (hn))

If we use the Gram-Schmidt procedure to orthonormalize the hi (letting e1 = h1
‖h1‖ , e2 =

h2−〈e1,h2〉e1
‖h2−〈e1,h2〉e1‖ , ....) and then write the hi in terms of the ei and multiply out, we find that

f(ω) = p̂(W (e1)), ...,W (en))

where p̂ is another polynomial of degree n and e1 = h1
‖h1‖ . Hence we can assume where

appropriate that the hi are orthonormal in H. Note that if e ∈ H is normal then

1 = ‖e‖2 =

∫ T

0

|e(t)|2dt = var(W (e))

so

W (e) ∼ N(0, 1)

and

E[p(W (e))] =

∫
R
p(x)dγ(x).
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More generally

E[p(W (e1, ...,W (en)))] =

∫
Rn
p(x)dγ(x)

where

dγn(x) =
1

(2π)n/2
e−|x|

2/2dx.

2.4.2 The Malliavin derivative on P(H)

We have

lim
ε→0

W (h)(ω(t) + ε
∫ t

0
η(s)ds)−W (h)ω(t)

ε
=

1

ε

(∫ T

0

h(t)d(ω(t) + ε

∫ t

0

η(s)ds)−
∫ T

0

h(t)dω(t)

)
=

∫ T

0

h(t)η(t)dt. (2.11)

So if we define

W (H) −→ L2([0, T ]× Ω)

on W (H) at F = W (h) by

DF = h

then the directional derivative of F in the direction
∫ t

0
h(s)η(s)ds, η ∈ H is

〈h, η〉H =

∫ T

0

h(t)η(t)dt.

A standard type of the calculation shows the following:

Define DF on P(H) at

F = f(W (h1)), ...,W (hn)) (2.12)

by

DF =
n∑
i=1

∂f

∂xi
(W (h1), ...,W (hn))hi. (2.13)

Then the directional derivative in the above direction is

〈DF, η〉H =
n∑
i=1

∂f

∂xi
(W (h1), ...,W (hn))〈hi, η〉H . (2.14)

This holds for all η ∈ H.
Although DF is defined only a.e, we will sometimes select a representative and speak of

DtF =
n∑
i=1

∂f

∂xi
(W (h1), ...,W (hn))hi(t).
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An easy calculation for F,G ∈ P(H) yields

D(FG) = D(FG) + F (DG) (2.15)

for F,G ∈ D1,2. Behind the derivative operator we have the following:

1.

DtWs = 1{t≤s}. (2.16)

2.

Dtf(Ws) = f ′(Ws)DtWs

= f ′(Ws)1{t≤s}.

3.

Dt(exp(W (S1))) = exp(W (s1)Dt(W (s1)))

= exp(W (s1)1{t≤s1}).

Examples of Malliavin derivatives of random variables in P(H)

Example 2.4.1

D(W (1[0,t1])) = D

(∫ T

0

1[0,t1](t)dW (t,ω)

)
= 1[0,t1]

= D(W (t1, ω))

= D(W (t1))

.

Example 2.4.2

D

(∫ t

0

s2dW (s)

)
= t21[0,T ]

The following gives an integration by parts formula.[22]

Theorem 2.4.3 Let h ∈ H, F ∈ P(H). Then

E[〈DtF (ω), h(t)〉H ] = E[F (ω)

∫ T

0

h(t)dW (t, ω)]

= E[F (ω)W (h)(ω)]. (2.17)
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Proof

Since (2.17) is linear in h, we first normalise the equation and assume that the norm of h is

one, that is ||h|| = 1. Then there exist orthonormal elements e1, ..., en ∈ H such that e1 = h

and F ∈ P of the form

F = f(W (e1), ...,W (en))

where f ∈ C∞p (Rn) and n ≥ 1. We also recall the density of the standard normal distribution

function defined in (2.4)

Then

E[〈DF (ω), h(ω)〉H ] = E[〈DF (ω), e1〉H ]

= E

[∑
i

∂

∂xi
f(ei, ei)

]

= E
[
∂

∂x1

f

]
=

∫
Rn

∂

∂x1

f(x)dγn(x)

= − 1√
(2π)n

∫
Rn
f(x)

∂

∂x1

(e−
x2

2 )dx

=
1√

(2π)n

∫
Rn
f(x)x1e

−x
2

2 dx

= E[F (ω)W (e1)]

= E[F (ω)W (h(ω))].

Thus, this complete the proof. 2

Lemma 2.4.4 Let F,G ∈ P(H) and h ∈ H. Then

E[G〈DF, h〉H ] = E[FGW (h)]− E[F 〈DG, h〉H ]. (2.18)

2.4.3 Extending the Domain of the derivative

Define

||F ||1,2 = ‖F‖L2(Ω) + ‖DF‖L2([0,T ]×Ω).

All the Malliavin derivatives that we have defined above have finite ‖.‖1,2.

Let D1,2 be a closure of P(H) in this norm. We shall show that the derivative on P (H) can
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be extended to a closed operator on D1,2, [24]

A : H −→ K is a closable operator on a normed complete linear space if

Fn −→ F,AFn −→ G1, Gn −→ F,AGn −→ G2 =⇒ G1 = G2.

If A is closable and we know F on a subset S of the space then we can extend A to an

operator on the closure of S by defining AF = G whenever there exist a sequence Fn −→ F

such that AFn −→ G. The closability implies that G is uniquely defined by the latter two

conditions. The extended operator is called the closure.

To prove closability, we need only to show that Fn −→ 0 and AFn converges implies AFn −→
0.

Theorem 2.4.5 The Malliavin derivative D : P(H) −→ L2([0, T ]× Ω) is closable.

proof: Let {Fn : n ≥ 1} be a sequence of random variables in P(H) such that Fn −→ 0 in

L2(Ω) and the sequence of the derivative of Fn, DFn −→ α in L2([0, T ] × Ω), then for all

h ∈ H and F ∈ P(H) such that FW (h) is bounded, we have that

E[F 〈α, h〉H ] = lim
n→∞

E[F 〈DFn, h〉H ]

= lim
n→∞

E[−Fn〈DF, h〉H + FnFW (h)]

= lim
n→∞

E[FnFW (h)]− E[Fn〈DF, h〉H ]

= 0

because Fn −→ 0 as n −→ ∞ in L2(Ω) and both 〈DF, h〉H and FW (h) are bounded, this

conclude that α = 0. Thus, this complete the proof. 2

Define D : D1,2 −→ L2([0, T ] × Ω) as the closure of our previously defined operator. In

general it will not be defined on the whole L2(Ω) and will not be continuous. However, Fn

converges in D1,2 if and only if both Fn and DFn converges. It follows that the domain of D

is precisely D1,2 and the space is complete.

The following result is the chain rule:[24]

Proposition 2.4.6 Let ϕ : Rn −→ R be a continuously differentiable function with bounded

partial derivatives. Suppose that F = (F1, ..., Fn) is a random vector whose components

belong to the space D1,2. Then ϕ(F ) ∈ D1,2, and

D(ϕ(F )) =
n∑
i=1

∂

∂xi
ϕ(F )DFi. (2.19)
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Proof.

Let ϕε(x) = ϕ ∗ ψε, where ψε is an approximation of the identity for ε > 0 , x ∈ R where ψ

is an infinitely continuous positive function with support in [−1, 1] such that
∫
R ψ(x)dx = 1.

We observe that ϕε ∈ C∞ and is bounded with partial derivatives.

On the other hand, because F ∈ D1,2, there exist a sequence {Fk}k≥1, Fk ∈ S meaning from

the definition

Fk = fk(W (h1), ..., w(hn(k)))

where fk ∈ C∞p (Rn) that converges to F in L2(Ω) as k →∞ and the sequence DFk converges

to DF in L2(Ω, H) as k →∞. By using the definition of the derivative, we have that

D(ϕε(Fk)) =

nk∑
i=1

∂

∂x
(ϕε(Fk))(W (h1), ...,W (hn(k)))hi

= ϕ′ε(Fk)DFk.

On the hand , by using the triangle inequality we obtain

‖ϕ′ε(Fk)DFk − ϕ′(F )DF‖L2(Ω,H) ≤ ‖ϕ′ε(Fk)(DFk −DF )‖L2(Ω,H)

+‖(ϕ′ε(Fk)− ϕ′(Fk))DF‖L2(Ω,H)

+‖(ϕ′(Fk)− ϕ′(F ))DF‖L2(Ω,H).

We write the above triangle inequality as Q ≤ A + B + C. We see that for any ε > 0

and k ≥ 1, ϕ′ε(Fk) is bounded a.s by a constant which does not depend on ε and k, and

hence (A) converges to zero as k → ∞. On the other hand, by the dominated convergence

theorem, we have that for any k ≥ 1, (B) converges to zero as ε→ 0. In the same way, (C)

converges to zero as k → ∞. Thus D(ϕε(Fk)) converges to ϕ′(F )DF in L2(Ω, H) as ε → 0

and k → ∞. On the other hand, ϕ′ε(Fk) converges to ϕ(F ) in L2(Ω) as ε → 0 and k → ∞.

Finally, the closability of the Malliavin derivative operator D from Theorem 2.4.5 implies

that ϕ(F ) ∈ D1,2 and that

D(ϕ(F )) = ϕ′(F )DF.

2

The chain rule can be extended to the case of a Lipschitz function, (see [24]).

Lemma 2.4.7 Let {Fn : n ≥ 1} be a sequence of random variables in the space D1,2 which

converges to F in the space L2(Ω) and such that

sup
n

E[||DFn||2H ] <∞. (2.20)
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Then F ∈ D1,2 and the sequence {DFn : n ≥ 1} converges to DF in the weak topology of

L2(Ω;H).

Proof:

There exist a subsequence {Fn(k) : k ≥ 1} of the sequence {Fn : n ≥ 1} such that the

sequence {DFn(k) : k ≥ 1} converges in L2([0, T ] × Ω), say to some element τ ∈ L2(Ω;H),

then by (2.20), the projections of DFn(k) on any Wiener chaos converge in the weak topology

of L2(Ω) as k −→∞, to those of τ . Consequently, (2.20) implies that F ∈ D1,2 and τ = DF .

Thus, for any weakly convergent subsequence, the limit must be equals to τ and this implies

the weak convergent of the entire sequence. Thus, this complete the proof. 2

The next results is central in proving the existence of strong solutions.

Proposition 2.4.8 Let fn ∈ D1, 2, n = 1, 2, ... be a sequence of Malliavin differentiable

random variables. Assume that there exist constants α > 0 and C > 0 such that

sup
n

E[| fn |2] ≤ C

sup
n

E[| Dtfn −Dt′fn |2] ≤ C | t− t′ |α, 0 ≤ t′ ≤ t ≤ T

sup
n

sup
0≤t≤T

E[| Dtfn |2] ≤ C.

Then the sequence fn, n = 1, 2, ... is relatively compact in L2(Ω)

2.5 Skorohod integral

We now interoduce δ. the Skorohod integral ,defined as the adjoint operator of D.

Definition 2.5.1 The Skorohod integral (δ), is a linear operator on L2([0, T ] × Ω) with

values in L2(Ω) such that:

1. The domain of δ, (denoted by Dom(δ)), is the set of processes u ∈ L2([0, T ]×Ω) such

that for any F ∈ D1,2

|E
[∫ T

0

DtFu(t)dt

]
| ≤ cu||F ||L2(Ω) (2.21)

where cu is a constant depending on u.
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2. If u belongs to Dom(δ), then

δ(u) =

∫ T

0

u(t)δW (t) (2.22)

is the element in L2(Ω) such that the integration by parts formula holds

E[〈DF, u〉H ] = E
[∫ T

0

DtFu(t)dt

]
= E[Fδ(u)] (2.23)

for any F ∈ D1,2.

In the following propositions, we sum up few properties of the Skorohod integral. [24]

Proposition 2.5.2 If u is an adapted process belonging to L2([0, T ]×Ω), then the Skorohod

integral and the Itô integral coincides

δ(u) =

∫ T

0

u(t)dW (t). (2.24)

Proposition 2.5.3 If F belongs to D1,2 then for any u ∈ Dom(δ) such that

E[F 2

∫ T

0

‖ut‖2dt] <∞,

one has

δ(Fu) = Fδ(u)−
∫ T

0

DtF.utdt (2.25)

whenever the right hand side belongs to L2(Ω). In particular, if u is in addition adapted, we

have

δ(Fu) = F

∫ T

0

utdWt −
∫ T

0

DtFt.utdt

Proof:

For G ∈ D1,2 and using (2.15) and (2.23), we have

E[〈δ(Fu), G〉H ] = E[〈Fu,DG〉H ]

= E[〈u, FDG〉H ]

= E[〈u,D(FG)−GDF 〉H ]

= E[(δ(u))FG− 〈u,DF 〉HG]

= E[(Fδ(u)− 〈u,DF 〉H)G].

Since G ∈ D1,2 is arbitrary, (2.25) follows. 2

In general, the duality formula also known as the integration by parts formula is given by

the following results:
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Theorem 2.5.4 (Duality formula). Let u be a square-integrable, adapted process and F ∈
D1,2. Then

E[δ(Fut)] = E
[
F

∫ T

0

utdW (t)

]
= E

[∫ T

0

utDtFdt

]
. (2.26)

The following are the examples based on the Skorohod integral: For τ ∈ [0, T ],

Example 2.5.5

δ(W (τ)) = W (τ)δ(1)−
∫ T

0

Dt(W (τ))dt

= W (τ)

∫ T

0

dWt −
∫ T

0

1{t≤τ}dt

= W (τ)WT − τ.

Example 2.5.6

δ(W 2(τ)) = W (τ)δ(W (τ))−
∫ T

0

Dt(W (τ))W (τ)dt

= W (τ)[W (τ)WT − τ ]−
∫ T

0

1{t≤τ}W (τ)dt

= W 2(τ)WT − τW (τ)− τW (τ)

= W 2(τ)WT − 2τW (τ).

The Malliavin derivative of a Skorohod integral is given by the following example:

For τ ∈ [0, T ],

Example 2.5.7

Dt(δ(W (τ))) = Dt(W (τ)WT − τ)

= W (τ)Dt(WT ) +WTDt(W (τ))−Dt(τ)

= W (τ)1[0,T ](t) +WT1[0,τ ](t)

= W (τ) +WT1[0,τ ],

where 1(·) is an indicator function.

The Malliavin derivative is applied in order to simplify the calculation of the price sensitivities

called the ’Greeks’ which we will computer later on. The next proposition plays a huge role in

the derivation of quantities where we have two random variables, say F,G and a continuously

differentiable function f [24].
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Proposition 2.5.8 Let F and G be two random variables such that F ∈ D1,2. Consider

an H−valued random variable u such that DF = 〈DF, u〉H 6= 0 and Gu(DF )−1 ∈ Dom(δ).

Then, for any continuously differentiable function f with bounded derivative, we have

E[f ′(F )G] = E[f(F )δ(Gu(DF )−1)] (2.27)

where δ(u) is the Skorohod integral of u and DF is the Malliavin derivative in the direction

u.

Proof:

First of all we note that

〈Df(F ), u〉H = 〈f ′(F )DF, u〉H = f ′(F )〈DF, u〉H (2.28)

which is obtained by applying the chain rule from prop...... Since we know that 〈DF, u〉H 6= 0,

by making f ′(F ) the subject above, we obtain

f ′(F ) = 〈Df(F ), u〉H(〈DF, u〉H)−1.

As a results, for a random variable G, we have

E[f ′(F )G] = E[〈Df(F ), u〉HG(〈DF, u〉H)−1]

= E[〈Df(F ), Gu(〈DF, u〉H)−1)〉H ].

Now, since Gu(DF )−1 ∈ Dom(δ), an application of eqn(2.23) yields

E[f ′(F )G] = E[f(F )δ(Gu(DF )−1)] (2.29)

which completes the proof. 2

2.5.1 The Clark-Ocone formula

Suppose W = {Wt : t ∈ [0, T ]} is a 1-dimensional Brownian motion. The Itô representation

theorem states that any F ∈ L2(Ω) can be written as

F = E[F ] +

∫ T

0

φ(t)dWt (2.30)

where φ is an adapted process in L2([0, T ] × Ω). In addition, if F ∈ D1,2, it turns out that

the process φ can be expressed as a Malliavin derivative of F . This is the Clark-Haussmann-

Ocone formula (see [29] thereof).
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Theorem 2.5.9 Let F ∈ D1,2. Then

F = E[F ] +

∫ T

0

E[DtF |Ft]dWt (2.31)

Proof:

Suppose that F can be written in the form (2.30) with φ ∈ L2([0, T ] × Ω). Then any

ϕ ∈ L2([0, T ]× Ω) using Itô isometry and that the expected value of an Itô integral is zero,

we have

E[δ(ϕ)F ] = E
[∫ T

0

ϕ(t)dWt

(
E[F ] +

∫ T

0

φdWt

)]
= E

[∫ T

0

E[ϕ(t)φ(t)]dt

]
.

On the other hand, using integration by parts and taking into account that ϕ is adapted,

we obtain

E[δ(ϕ)F ] = E
[∫ T

0

ϕ(t)DtFdt

]
=

∫ T

0

E[ϕ(t)E[DtF ]]dt.

Comparing this, we get

φ(t) = E[DtF |Ft].

2

The above theorem shows that the Malliavin derivative provides an identification of the

integrand in the martingale representation theorem in a Brownian motion framework. This

plays a central role in financial mathematics. In particular, to obtain replicating portfolio

strategies for options. Therefore the hedging portfolio is naturally related to the Malliavin

derivative D of the terminal payoff.



Chapter 3

SDEs and Malliavin calculus

This chapter we discuss the existence, uniqueness and smoothness of the solutions to stochas-

tic differential equations. We also show how to compute the Malliavin derivative of a stochas-

tic process Xt.

Suppose that (Ω,F ,P) be a probability space where the standard Brownian motion {Wt :

0 ≤ t ≤ T} is defined. Let Ω = C([0, T ],R) and P be the Wiener measure and F is the com-

pletion of the Borel σ−field of Ω with respect to P. Let H = L2([0, T ],R) be the underlying

Hilbert space.

Let b and σ be measurable functions satisfying globally Lipschitz and boundedness condi-

tions:

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y| (3.1)

for some x, y ∈ R,

t ∈ [0, T ].t→ b(t, 0) and t→ σ(t, 0) (3.2)

are bounded on [0,T]. We denote by X = {Xt : 0 ≤ t ≤ T} the solution of the stochastic

differential equation

dXt = b(Xt)dt+ σ(Xt)dWt (3.3)

of which can be written in the integral form as

Xt = x+

∫ t

0

σ(Xs)dWs +

∫ t

0

b(Xs)ds. (3.4)

where x ∈ R is the initial value of the process Xt. We want to show that there is a unique

continuous solution to (3.4) such that for all t ∈ [0, T ], the random variable Xt belongs to

the space D1,2.

29
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In addition, if the coefficients of (3.4) are infinitely differentiable and their partial derivatives

of all orders are uniformly bounded, then the process Xt belongs to D1,2.

3.1 Existence and uniqueness of solutions

In this section, we establish the existence and uniqueness result that generalizes (3.4). Sup-

pose that σ : R → R and b : R → R are measurable functions satisfying the following

conditions: for a positive constant C:

|b(x, y)− b(x, y′)|+ |σ(x, y)− σ(x, y′)| ≤ C|y − y′| (3.5)

for any x ∈ R, y, y′ ∈ R.

The functions x→ b(x, 0) and x→ σ(x, 0) have at most polynomial growth order. i.e.

| b(x, 0) | + | σ(x, 0) |≤ C(1+ | x |). (3.6)

With the above assumptions, we have the following results. [26]

Lemma 3.1.1 Consider a continuous and adapted process α = {α(t) : 0 ≤ t ≤ T} such that

d2 = E
[

sup
0≤t≤T

|α(t)|2
]
<∞.

Then there exist a unique and continuous adapted process X = {Xt : 0 ≤ t ≤ T} satisfying

the stochastic differential equation

Xs = α(t) +

∫ t

0

σ(s,Xs)dWs +

∫ t

0

b(s,Xs)ds. (3.7)

Moreover,

E
[

sup
0≤t≤T

|Xt|2
]
≤ C1

where C1 is a positive constant

Proof:

By using Picard’s iteration scheme, We introduce the process X0(t) = α(t) and

Xn+1(t) = α(t) +

∫ t

0

b(s,Xn(s))ds+

∫ t

0

σ(s,Xn(s))dWs (3.8)

if n ≥ 0. By recursive argument, one can show that Xn is a continuous and adapted process

such that

E
[

sup
0≤t≤T

|Xn(t)|2
]
<∞. (3.9)
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By applying Doob’s maximal inequality and Burkholder’s inequality, and making use of

conditions (3.1) and (3.2), we obtain

E
[

sup
0≤t≤T

|Xn+1(t)|2
]
≤ c2

(
d2 + E

[(∫ T

0

|b(s,Xn(s))|ds
)2
]

+ E
[
|
∫ T

0

σ(s,Xn(s))dWs|2
])

≤ c2

[
d2 + c′2K

2T

∫ T

0

(1 + E[|s|2]) + E[|Xn(s)|2])ds

]
≤ c2

[
d2 + c′2K

2T 2

(
1 + β′2 + sup

0≤t≤T
E[|Xn(t)|2]

)]
,

where c2 and c′2 are constants. Thus, (3.9) holds. Again by applying Doob’s maximal

inequality, Burkholder’s inequality and making use of conditions (3.5) and (3.6), we obtain

E
[

sup
0≤t≤T

|Xn+1(t)−Xn(t)|2
]
≤ c2K

2T

∫ T

0

E[|Xn(s)−Xn−1(s)|2]ds.

It follows inductively that the preceding expression is bounded by

1

n!
(c2K

2T )n+1 sup
0≤s≤T

E[|X1(s)|2].

As a results, we have
∞∑
n=0

E
[

sup
0≤t≤T

|Xn+1(t)−Xn(t)|2
]
<∞,

which implies the existence of a continuous process X satisfying (3.7) such that

E
[

sup
0≤t≤T

|Xt|2
]
≤ C1.

The uniqueness of the solution is derived by means of a similar method.

3.2 Weak differentiability of the solution

We consider the case where the coefficients b and σ of the stochastic differential equation

(3.4) are functions which satisfy globally Lipschitz and linear growth conditions. We want

to compute the Malliavin derivative of (3.4).

Recall the identity on the 1-dimensional Gaussian Hilbert space ∂∂∗ − ∂∗∂ = 1. Malliavin

calculus and its adjoint, the Skorohod integral are sort of representation of these on the other

spaces. We would expect this identity to be preserved:

Dδ − δD = 1.
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Theorem 3.2.1 Suppose that u ∈ L2([0, T ]× Ω) and that ‖u2‖L2([0,T ]×Ω) <∞ and

‖(δ(Dtu))2‖L2([0,T ]×Ω) <∞. Then the above identity holds for u and

Dt(δ(u)) = δ(Dtu) + u(t, ω). (3.10)

If in addition u(t, ω) is adapted, (3.10) can be written as

Dt

(∫ T

0

u(s)dW (s)

)
=

∫ T

t

Dtu(s)dW (s) + u(t, ω).

Remark:The lower limit of the integral on the right is t since Dt

∫ T
0

=
∫ T
t

if the integrand is

adapted.

Let u(s, ω) be some Fs-adapted process and let r ≤ t. For the deterministic integral we have

Dr

∫ t

0

u(s)ds =

∫ t

r

Dru(s)ds. (3.11)

Proof: (Theorem 3.2.1)

For the stochastic integral, we restrict ourself to a simple adapted process of the form

u(t, ω) = F (ω)h(t)

with h(t) = 1(s1,s2)(t) and Fs1-measurable F (ω). Let again r ≤ t. Then from the Funda-

mental Theorem of Calculus, we have

Dr

∫ t

0

Fh(s)dBs = Dr

(∫
[0,r)

Fh(s)dWs +

∫
[r,t]

Fh(s)dWs

)
= 0 +Dr

∫ 1

0

Fh(s)1[r,t](s)dWs

= Dr(FW (h1[r,t]))

= (DrF )W (h1[r,t]) + Fh(r)

=

∫ 1

0

DrFh1[r,t](s)dWs + u(r)

= u(r) +

∫ t

r

Dru(s)dWS. (3.12)

2

Let W be a scalar Brownian motion. Consider n-dimensional stochastic differential equation

of the form (3.4) under the usual conditions on the coefficients. Then we have the following

results:
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Theorem 3.2.2 Suppose that (3.11) and (3.12) holds and let Xt ∈ D1,2. Then the Malliavin

derivative of (3.4) is given by

DrXt = σ(Xr) +

∫ t

r

σ′(Xs)DrXsdWs +

∫ t

r

b′(Xs)DrXsds. (3.13)

From Theorem 3.2.2, if we fix r and set X̂ = DrX, we then have

X̂t = σ(Xr) +

∫ t

r

σ′(Xs)X̂sdWs +

∫ t

r

b′(Xs)X̂sds,

from which we obtain the linear stochastic differential equation of the form

dX̂t = σ′(Xt)X̂tdWt + b′(Xt)X̂tdt, (t > r) (3.14)

with the initial condition X̂r = σ(Xr).

Solving (3.14) we obtain

X̂t = X̂r exp

{∫ t

r

[b′(Xs)−
1

2
(σ′(Xs))

2]ds+

∫ t

r

σ′(Xs)dWs

}
. (3.15)

Since X̂ = DrXt, we have

DrXt = σ(Xr) exp

{∫ t

r

[b′(Xs)−
1

2
(σ′(Xs))

2]ds+

∫ t

r

σ′(Xs)dWs

}
. (3.16)

The sensitivity of (3.4) with respect to the initial condition X0 = x is given by the following

results:

Theorem 3.2.3 Suppose that (3.1) and (3.6) holds, then the partial derivative of (3.4) with

respect to the initial condition x (the first variational process ) denoted by Yt, that is,

Yt =
∂

∂x
Xt.

is the solution to the following stochastic differential equation

Yt = I +

∫ t

r

σ′(Xs)YsdWs +

∫ t

r

b′(Xs)Ysds. (3.17)

where I is an identity matrix. We can write (3.17) in differential notation as

dYt = σ′(Xt)YtdWt + b′(Xt)Ytdt, t > 0 (3.18)

with Y0 = I. Moreover, the inverse valued process Z = Y −1
t exist and satisfies

Zt = I −
∫ t

r

Zsσ
′
sdWs −

∫ t

r

Zs(b
′
s − (σ′s)

2)ds. (3.19)
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By making the application of the Itô’s lemma, we see that the solution to stochastic differ-

ential (3.4) is given by

Xt = x exp

(∫ t

0

(
b′(Xs)−

1

2
(σ′(Xs))

2

)
ds+

∫ t

0

σ′(Xs)dWs

)
(3.20)

and the solution to (3.18) is given by

Yt = exp

(∫ t

0

(
b′(Xs)−

1

2
(σ′(Xs))

2

)
ds+

∫ t

0

σ′(Xs)dWs

)
. (3.21)

Proposition 3.2.4 Suppose that the conditions (3.1) and (3.6) holds and let Yt = ∂
∂x
Xt.

Then one has

DsXt = YtY
−1
s σ(Xs)1s≤t. (3.22)

Proof:

The proof is obtained from comparing (3.14) and (3.18). 2

From Proposition 3.22, we have the following result (see [22]).

Lemma 3.2.5 Let a(t) be a deterministic function of the form∫ T

0

a(t)dt = 1 (3.23)

and Xti ∈ D1,2. Then ∫ T

0

DtXtia(t)σ−1(t)Ytdt = Yti , i = 1, ..., n. (3.24)

Proof:

By making the use of (3.22), we have∫ T

0

DtXtia(t)σ−1(t)Ytdt =

∫ T

0

YtiY
−1
t σt1t≤tka(t)σ−1(t)Ytdt

=

∫ T

0

YtiY
−1
t σ(t)σ−1(t)Yta(t)1t≤tidt

=

∫ ti

0

Ytia(t)dt

= Yti

∫ tk

0

a(t)dt

= Yti .
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2

For a geometric Brownian motion

dXt = bXtdt+ σXtdWt, X0 = x ∈ R. (3.25)

If the coefficients b and σ are constants then the process Xt in the integral form is given by

Xt = x+ b

∫ t

0

Xsds+ σ

∫ t

0

XsdWs.

The first variational process Yt = ∂
∂x

(Xt) is given by

Yt = I + b

∫ t

0

Ysds+ σ

∫ t

0

YsdWs. (3.26)

It can be written in differential form as

dYt = bYtdt+ σYtdWt Y0 = I (3.27)

where I is an identity matrix. By applying the Itô’s lemma to (3.27), we obtain the solution

Yt = e(b− 1
2
σ2)t+σWt . (3.28)

The solution to (3.25) is given by

Xt = xe(b− 1
2
σ2)t+σWt . (3.29)

By comparing (3.28) and (3.29), we see that

Xt = xYt (3.30)

which is equivalent to

Yt =
Xt

x
.

Now we consider the one dimensional ordinary differential equation

dY = f(t)Y dt.

Clearly Z = 1
Y

satisfies

dZ = −f(t)Zdt.

If we now consider

dX = A(X)dt, X(0) = x
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and

dY =
∂

∂x
A(X)Y dt, Y (0) = I.

Consider the matrix ODE

dZ = −Z ∂

∂x
A(X)dt, Z(0) = I.

By computing

d(ZY ) =

(
−Z ∂

∂x
A(X)dt

)
Y + Z

(
∂

∂x
A(X)Y

)
dt

= 0.

We see that Y −1 exists for all times and Z = Y −1 with Y defined as

dY =
∂

∂x
A(X)Y dB +

∂

∂x
A(X)Y dt, Y (0) = I

and Z = Y −1 exists for all times we have

dZ = −Z ∂

∂x
A(X)dB − Z ∂

∂x
A(X)Zdt, Z(0) = I

Now we can generalize (3.22) as follows.

DrXt = YtY
−1
r σ(Xr)

= YtZrσ(Xr).

which implies that

Z = Y −1DrXtσ
−1(Xt) (3.31)

If we fix t and write X = Xt. The covariance matrix γ is given by

γ =

∫ 1

0

DrX[DrX]Tdr

= Yt

[∫ t

0

Zrσ(Xr)σ
T (Xr)Z

T
r dr

]
Y T
t

where aT denote the transpose of a.

Example 3.2.6 Let X solve the stochastic differential equation

dXt = µXtdt+ σXtdWt, X0 = x

where the coefficients µ and σ are constants. The stochastic differential equation has exact

solution

Xt = x exp

(
(µ− 1

2
σ2)t+ σWt

)
.

Then

DtXt = σXt1{t>s} (3.32)



Chapter 4

The replicating portfolio

In this chapter, we give the application of Malliavin calculus in mathematical finance. We

apply the Clack Ocone formula [30] to the computation of the replicating portfolios in the

Malliavin calculus sense and give some examples based on the different types of payoff func-

tions.

4.1 Representation of Hedging portfolio

From chapter 1, we recall (1.4) and (1.5):

Xt = x+

∫ T

0

b(Xt)dt+

∫ T

0

σ(Xt)dWt (4.1)

Zt = g(XT )−
∫ T

0

φtdWt. (4.2)

We assume that the dimension of X is n and that of the Brownian motion W is d. We also

assume that the drift coefficient b and the diffusion coefficient σ are uniformly bounded and

that the function g is a measurable function and that there exist a constant C > 0 such that

|g(x)| ≤ C(1 + |x|) for x ∈ R.

The dimension of Z is assumed to be one. The following representation theorem for the

hedging portfolio φ can be regarded as a special case of the Clark-Ocone formula [7]. Here

we do not require the volatility matrix σ to be square matrix.

37
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Theorem 4.1.1 Suppose that the coefficients b and σ of (4.1) and their partial derivatives

are uniformly bounded and that the function g is continuous. Denote A = {x ∈ Rn :
∂
∂x
g(x) does not exist}. In addition, we assume that P(XT ∈ A) = 0 and that ∂

∂x
g(x) is

uniformly bounded outside A. Then we have

φt = E
[
∂

∂x
g(XT )YT1{XT 6∈A}

]
Y −1
t σ(Xt) (4.3)

where YT is the solution of the first variational process

Yt = I +

∫ T

0

b′(Xt)Ytdt+

∫ T

0

σ′(Xt)YtdWt. (4.4)

Here I denotes the n× n identity matrix.

Proof:

Let {gn}n>0 be a sequence approximating g. That is gn are smooth functions such that the

partial derivatives ∂
∂x
gn are uniformly bounded, gn → g uniformly and ∂

∂x
gn(x)→ ∂

∂x
g(x) for

all x 6∈ A as n→∞. Since

gn(XT )→ g(XT ),

by the standard stability results of backward stochastic differential equations, one has

E
[∫ T

0

|φnt − φt|2dt
]
→ 0 as n→∞. (4.5)

On the other hand, we set

φ̂t = E
[
∂

∂x
g(XT )YT1{XT 6∈A}

]
Y −1
t σ(Xt).

Then

|φnt − φ̂t| ≤ E
[
| ∂
∂x
gn(XT )− ∂

∂x
g(XT )||YT |1{XT 6∈A}

]
|Y −1
t ||σ(XT )|

+E
[
| ∂
∂x
gn(XT )||YT |1{XT∈A}

]
|Y −1
t ||σ(Xt)|. (4.6)

where

|x| = [|x1|, ..., |xn|]T whenever x = [x1, ..., xn]T .

By noting that P(XT ∈ A) = 0 and that ∂
∂x
gn(XT ) → ∂

∂x
g(XT ) as n → ∞ for XT 6∈ A, the

application of the dominated convergence theorem yields

E
[∫ T

0

|φnt − φ̂t|2dt
]
→ 0 as n→∞ (4.7)
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We note that (4.5) and (4.7) imply that φ̂ = φ, dt× dP a.s. φ̂ has a cádlág version since it is

the product of a martingale and a continuous process. As a modification of φ̂, we conclude

that φ has a cádlág version as well. This complete the proof 2

We have to make use of the assumption that P(XT ∈ A) = 0. In practice, such an assumption

is not easy to verify, especially in the case where the dimension d < n. Therefore the following

theorem is useful [7].

Theorem 4.1.2 Assume that the coefficients b and σ from (4.1) and their derivatives are

uniformly bounded and that a function g is uniformly Lipschitz in all variables, and dif-

ferentiable with respect to (xd+1,...,xn). In addition, assume that det(σ1(XT )) 6= 0. Then

P(XT ∈ A) = 0. In particular (4.3) holds.

Proof:

Set X̂ = (x1, ..., xd)
T . We first show that the law of X̂T is absolutely continuous with

Lebesgue measure on Rd, denoted by |.|d. Let Â = ProjRd(A) be the projection of A on Rd,

where A is defined in Theorem 4.1.1. That is,

Â = {X̂ = (x1, ..., xd) : ∃(xd+1, ..., xn) such that x = (x1, ..., xn) ∈ A}.

Since a function g is Lipschitz continuous on (x1, ...., xd) and differentiable on (xd+1,...,xn),

we note that |A|d = 0. We note that by the standard arguments, one can show that XT is

Malliavin differentiable as in (3.22) and (3.32), that is XT ∈ D1,2 and

DtXT = YTY
−1
t σ(Xt). (4.8)

In particular,

DTXT = σ(XT ) and DtX̂T = σ1(XT )

Now we define γ̂ =
∫ T

0
DtX̂T (DtX̂T )Tdt. From (4.8), we note that DtXT is continuous in t

and that

det(DT X̂T ) = det(σ1(XT )) 6= 0 a.s.

Therefore, for every x ∈ Rd−{0}, xDtX̂T (DtX̂T )TxT is nonnegative for every t ∈ [0, T ] and

positive for t next to T . Hence we have

x

{∫ T

0

DtXT (DtXT )Tdt

}
xT > 0
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which implies that the symmetric matrix γ̂ has a positive determinant. Now we can conclude

that the law of X̂T is absolutely continuous with respect to |.|d, which if we combine with

the fact that |Â|d = 0, we see that P(X̂T ∈ Â) = 0. Since g is differentiable with respect to

xd+1, ..., xn, we see that P(XT ∈ A) = 0, thus, the results from Theorem (4.1.1) follows. 2

In chapter 1, we gave a digital option as an example where the payoff function is discontin-

uous. We will look at an option which is discontinuous at only one point. The results can

be extended to the situation where we have many discontinuity points [7].

Theorem 4.1.3 Suppose that d = 1, σ1(x) ≥ c0 and b, σ ∈ C0,2 with bounded first and

second derivatives. Assume that a function g is uniformly Lipschitz continuous with respect

to x1, except for the point x1 = x∗1 and both g(x∗1+, x2, ..., xn) and g(x∗1−, x2, ..., xn) exist and

are differentiable. Then for A as defined in Theorem (4.1.1) and t ∈ [0, T ], we have

φt = E
[
∂

∂x
g(XT )YTut1{X1

T 6∈A} + 1{X1
T>x

∗
1}δ(Ftu)

]
(4.9)

where X̂2 = (x2, ..., xn)T , Y =

(
Y 1

Y 2

)
is the solution of the first variational process (4.4),

δ(·) is the infinite Skorohod integral over [t, T ]

Ft =
∆g(x∗1, X̂

2
T )[Y 1

T ut]Y
1
T

‖DX1
T‖2

[t,T ]

, ut = [Yt]
−1σ(Xt), t ∈ [0, T ] (4.10)

and

‖DX1
T‖2

[t,T ] =

∫ T

t

|DsX
1
T |2ds, ∆g(x∗1, X̂

2
T ) = g(x∗1+, x̂2)− g(x∗1−, x̂2). (4.11)

4.2 Replicating portfolios (general case)

In this section we compute the replicating portfolio by considering the general case [24]. To

compute the replicating portfolios, we assume that the process {St : 0 ≤ t ≤ T} denote the

underlying asset price process which satisfy the following stochastic differential equation

dSt = b(St)Stdt+ σ(St)StdWt, S0 = x. (4.12)

If we assume that the volatility matrix σ and the drift b are bounded and Lipschitz continuous

then the stochastic differential equation (4.12) has a unique solution. We assume that the
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interest rate process is constant. We furthermore suppose that the volatility matrix σ is

invertible (satisfy the uniform elliptic condition). The underlying asset price process S1
t and

the associated discounted price process S̃1
t

S̃1
t = e−rtS1

t (4.13)

evolve as

S1
t = S1

0 +

∫ t

0

rsS
1
sds+

∫ s

0

σ(S1
s )S

1
sdWs, (4.14)

S̃1
t = S̃1

0 +

∫ t

0

σ(S1
s )S

1
sdWs. (4.15)

By making the use of the Itô’s formula, we obtain

S1
t = x exp

(∫ t

0

(rs −
1

2
σ(S1

s )
2)ds+

∫ t

0

σ(S1
s )dWs

)
, (4.16)

S̃1
t = x exp

(
−
∫ t

0

(
1

2
σ(S1

s )
2)ds+

∫ t

0

σ(S1
s )dWs

)
. (4.17)

Now we let (B,T) denote a European option where T is the expiry time and B is a positive

Ft-measurable random variable representing the payoff of the contingent claim. For such an

option, a replicating portfolio V at time t is given by the process

Vt = φ0
t e
rt + φ1

tS
1
t (4.18)

such that the following holds. (see [1]).

1. Technical assumption:

φ0 and φ1 are adapted processes such that φ0
t ∈ L2([0, T ]) a.s and φ1

t ∈ L2([0, T ]×Ω).

2. Self-financing:

dVt = rφ0
t e
rtdt+ φ1

tdS
1
t t < T.

3. Admissibility:

Vt ≥ 0 a.s for a.e t < T.

4. Replicating:

VT = B a.s.

Note that if the random variable B is square integrable, a replicating portfolio for such an

option (B, T ) exist and is given by

Vt = E[e−r(T−t)B|Ft]. (4.19)
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Vt is a non-arbitrage option price of (B, T ) as seen at time t. Since the issue of price is

addressed, the question is, how can we determine the shares φi, i = 1, 2 (for hedging) to

invest in order to replicate the option. The discounted process

Ṽt = e−rTVt (4.20)

satisfies the stochastic differential equation

dṼt = φ1
tdS̃

1
t = φ1

tσ(S1
t )S̃

1
t dWt (4.21)

where the last equation is obtained due to (4.15) into consideration. Moreover, the non-

arbitrage option price of the discounted process is given by

Ṽt = E[e−rtB|Ft]

which is a square integrable martingale in a Brownian motion sense and it can be expressed

as

Ṽt = V0 +

∫ t

0

ψsdWs (4.22)

which is obtained by integrating (4.21) both sides and ψ is an adapted process such that it

belongs to the space L2([0, T ]× Ω). Therefore from (4.19) and (4.22) we have

ψt = φ1
tσ(S1

t )S̃
1
t .

By rearranging and making φ1
t the subject we obtain

φ1
t =

1

S̃1
t

ψtσ
−1(S1

t ). (4.23)

If φ1 and V can be determined, then φ0 can be calculated as follows:

φ0
t = Ṽt − φ1

t S̃
1
t . (4.24)

The unsatisfactory issue is that (4.23) gives the replicating strategy φ1 in terms of the process

ψ but if the payoff function satisfies some regularity properties in the Malliavin sense, then

the Clark-Ocone formula is concluded. We have the following result. (see [1] and [24])

Proposition 4.2.1 Let B ∈ D1,2 then

φ1
t =

e−r(T−t)

S1
t

E [DtB|Ft]σ−1(S1
t ) (4.25)
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Proof:

The Clark-Ocone formula from Theorem 2.5.9 shows that

e−rTB = E
[
e−rTB

]
+ e−rT

∫ t

0

E[DsB|Fs]dWs

so that

Ṽt = E
[
e−rTB|Ft

]
= E

[
e−rTB

]
+ e−rT

∫ t

0

E[DsB|Fs]dWs.

Then from (4.22), we have that

ψt = e−rTE[DtB|Ft]

and from (4.23) we have

φ1
t =

e−rT

S̃1
t

E [DtB|Ft]σ−1(S1
t ). (4.26)

By substituting (4.13) into (4.26), we obtain

φ1
t =

e−rT

S̃1
t

E [DtB|Ft]σ−1(S1
t )

=
e−rT

e−rtS1
t

E [DtB|Ft]σ−1(S1
t )

=
e−r(T−t)

S1
t

E [DtB|Ft]σ−1(S1
t ).

2

4.2.1 Examples

Example 4.2.2 European call option

Here we give some examples of hedging strategies of different payoff functions. The first one

is the particular case of the European option where the payoff function B is given by

B = Φ(S1
T ). (4.27)

From Proposition 4.2.1, we note that

φ1
t =

e−r(T−t)

S1
t

E [DtB|Ft]σ−1(S1
t ) =

e−r(T−t)

S1
t

E
[
DtΦ(S1

T )|Ft
]
σ−1(S1

t ). (4.28)
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By using the chain rule from Proposition 2.4.6, we can see that

DtΦ(S1
t ) = Φ′(S1

T )DtS
1
T = Φ′(S1

T )σS1
T

where the last equality is obtained by making the use of (3.32). Thus from (4.28)

φ1
t =

e−r(T−t)

S1
t

E
[
DtΦ(S1

T )|Ft
]
σ−1(S1

t ) =
e−r(T−t)

S1
t

E
[
Φ′(S1

T )σS1
T |Ft

]
σ−1(S1

t )

=
e−r(T−t)

S1
t

E
[
Φ′(S1

T )σS1
T |Ft

] 1

σS1
t

=
e−r(T−t)

S1
t

E
[
Φ′(S1

T

S1
t

S1
t

)
S1
T

S1
t

|Ft
]

=
e−r(T−t)

S1
t

E
[
Φ′(xS1

T−t)S
1
T−t
]
|x=S1

t
.

Thus, the replicating strategy φt is given by

φ1
t =

e−r(T−t)

S1
t

E
[
Φ′(xS1

T−t)S
1
T−t
]
|x=S1

t
. (4.29)

Example 4.2.3 Asian option

We consider an option whose payoff function is the average of the stock price given by

S̄1
T =

1

T

∫ T

0

S1
t dt. (4.30)

The payoff function is this case is given by

B = Φ(S̄1
T ). (4.31)

From Proposition 4.2.1, we note that

φt =
e−r(T−t)

S1
t

E [DtB|Ft]σ−1(S1
t )

=
e−r(T−t)

S1
t

E
[
DtΦ(S̄1

T )|Ft
]
σ−1(S1

t )

=
e−r(T−t)

S1
t

E
[
Φ′(S̄1

T )DtS̄
1
T |Ft

]
σ−1(S1

t ). (4.32)

Now, from (3.32), we note that

DtS̄
1
T = Dt

(
1

T

∫ T

0

S1
t dt

)
=

1

T

∫ T

0

DtS
1
t dt

=
1

T

∫ T

t

σS1
rdr

=
σ

T

∫ T

t

S1
rdr. (4.33)
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Now, from (4.32) and the fact that σ(S1
t ) = σS1

t , we note

φt =
e−r(T−t)

S1
t

E
[
Φ′(S̄1

T )DtS̄
1
T |Ft

]
σ−1(S1

t )

=
e−r(T−t)

S1
t

E
[
Φ′(S̄1

T )
σ

T

∫ T

t

S1
rdr|Ft

]
1

σS1
t

. (4.34)

We can write the average stock price S̄1
T as

S̄1
T =

t

T
S̄1
t +

1

T

∫ T

t

S1
rdr (4.35)

Equation (4.35) implies that

1

T

∫ T

r

S1
rdr = S̄1

T −
t

T
S̄1
t =

T S̄1
T − tS̄1

t

T
.

At final time T , S̄1
t = S̄1

T . Hence

T S̄1
T − tS̄1

t

T
=
T S̄1

T − tS̄1
T

T
=

(T − t)S̄1
T

T
.

Now, from (4.34)

Φ′(S̄1
T )

1

T

∫ T

t

S1
rdr = Φ′

(
t

T
S̄1
t +

1

T

∫ T

t

S1
rdr

)(
1

T

∫ T

t

S1
rdr

)
= Φ′

(
t

T
S̄1
t +

(T − t)S̄1
T

T

)(
(T − t)S̄1

T

T

)
. (4.36)

Finally, by considering (4.34) and (4.36), we obtain

Φt =
e−r(T−t)

S1
t

E
[
Φ′(S̄1

T )
1

T

∫ T

t

S1
rdr|Ft

]
1

S1
t

=
e−r(T−t)

S1
t

E
[
Φ′
(
t

T
S̄1
t +

(T − t)S̄1
T

T

)(
(T − t)S̄1

T

T

)
|Ft
]

1

S1
t

=
e−r(T−t)

S1
t

E
[
Φ′
(
t

T
S̄1
t +

S1
t (T − t)S̄1

T

S1
t T

)(
(T − t)S̄1

T

S1
t T

)
|Ft
]

=
e−r(T−t)

y
E
[
Φ′
(
tx

T
+
y(T − t)S̄1

T−t

T

)(
(T − t)S̄1

T−t

T

)]
|x = S̄1

t , y = S1
t .

4.3 Construction of Hedging portfolio

In this section we consider the construction of a hedging portfolio for some derivative of

financial instruments. We follow closely the work presented by [7] where we consider the
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consumption process denoted by c. We consider the market model consisting of a money

market (or bond) S0
t and one stock S1

t whose dynamics are governed by

S0
t = S0

0 +

∫ t

0

rsS
0
sds. (4.37)

S1
t = S1

0 +

∫ t

0

µsS
1
sds+

∫ t

0

σsS
1
sdWs (4.38)

where processes rt and µt are L1(Ω× [0, T ])-integrable, process σt is L2(Ω× [0, T ])-integrable,

all defined on (Ω,F , {Ft},P).

We define the discounted price process by

βt =
1

S1
t

. (4.39)

Let η0(t) be the number of shares of bond and η1(t) be the number of shares of stock

respectively, so the value of the investor’s holdings at time t is π0(t) + π1(t) where

π0(t) = η0(t)S0
t , π1(t) = η1(t)S1

t . (4.40)

The process π = (π0, π1) = {π0(t), π1(t) : 0 ≤ t ≤ T} with the values in R2 is called a

portfolio process. We suppose that the portfolio π = π(t) is adapted to the natural filtration

Ft. We define the gain process G(t) by

dG(t) = η0(t)rtS
0
t dt+ η1[dS1

t + S1
t %t]dt

where %t denotes the dividend rate process and G(0) = 0 (there is no gain at initial time

t=0). The wealth process X = {Xx,π,c(t) : 0 ≤ t ≤ T} is given by

Xt = x−
∫ t

0

c(s)ds+G(t),

where x > 0 denote the initial value of an investment and c(t) describe the consumption

process. The wealth process satisfy

Xt = x+

∫ t

0

[rsXs − c(s)]ds+

∫ t

0

π1(s)[rs + %s − rs]ds+

∫ t

0

π1(s)σsdWs.

We define a process called the market price of risk by

θt =
µt + %t − rt

σt
.

In addition, we define

W̃t = Wt +

∫ T

0

θtdt, (4.41)

Zt = E
[
exp

(
−
∫ t

0

θsdWs −
1

2

∫ s

0

θ2
sds

)]
. (4.42)
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We assume that the process Zt is a martingale. We introduce a probability measure on Ω,

given by

P̃(A) =

∫
A

ZTdP for A ∈ Ft.

Remark: The Girsanov theorem state that the process {W̃t : 0 ≤ t ≤ T} is a Brownian

motion on the probability space (Ω,F , {Ft}, P̃).

By applying the Itô’s formula and taking into consideration the discounting process β = βt,

for a wealth process X = Xt, we derive stochastic differential equation

βtXt = x−
∫ t

0

βtc(s)ds+

∫ t

0

βsπ1(s)σsdW̃s

on (Ω,F , {Ft}, P̃). Finally, we introduce the state price density process which is given by

H̃t = βt exp

(
−
∫ t

0

θsdWs −
1

2

∫ t

0

θ2
sds

)
. (4.43)

Again by applying Itô’s formula, we obtain the stochastic differential equation for the wealth

process Xt which is given by

H̃tXt = x−
∫ t

0

H̃sc(s)ds+

∫ t

0

H̃s[σsπ1(s)σs −Xsθs]dWs

on (Ω,F , {Ft},P).

4.3.1 Black-Scholes model

Here the aim is to compute the replicating portfolio for the Black-Scholes model based on the

calculation of the Malliavin derivatives of appropriate stochastic processes. The following

theorem ensures the existence of the replicating portfolio [5].

Theorem 4.3.1 Let B denote a nonnegative Ft-measurable random variable. If a consump-

tion process c(t) and initial wealth x satisfies the condition

x = E
[∫ T

0

H̃tc(t)dt+ H̃TB

]
,

then there exist a portfolio a portfolio π = (π0, π1) such that the corresponding wealth process

Xt which depends on x, c, π satisfies the following conditions

X0 = x, XT = B, Xt ≥ 0 a.s. Xt = π0(t) + π0(t),

and can be described for all {0 ≤ t ≤ T} by

H̃tXt = E
[∫ T

0

H̃c(t)dt+ H̃TXT

]
.
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Remark: There exists a stochastic process φt such that

σtπ1(t) =
φt

H̃t

+Xtθt (4.44)

This process can be derived from the relation

E
[∫ T

0

H̃c(t)dt+ H̃TXT

]
= x+

∫ T

0

φtdWt.

The main tool that we are going to use for the computation of the replicating portfolio is

the Clark-Ocone formula from Theorem 2.5.9. We will consider the case when c(t) = 0 and

the case when B = 0 a.s. For the case c(t) = 0, we have the following results [5]

Theorem 4.3.2 We suppose that all the assumptions from Theorem 4.3.1 are satisfied. If

c(t) = 0, then from the condition H̃TB ∈ D1,2, it follows that the portfolio replicating a

random variable B is given by

π1(t) =
1

H̃tσt

(
E[H̃TDtB]− E

[
H̃TB

(∫ T

t

Dtrsds+

∫ T

t

DtθsdW̃s

)])

If rt and θt are deterministic functions, then the portfolio is given by

π1(t) = exp

(
−
∫ T

t

rsds

)
σ−1
t Ẽ[DtB]

= exp

(
−
∫ T

t

(rs −
1

2
θ2
s)ds−

∫ T

t

θsdWs

)
σ−1
t E[DtB]. (4.45)

Proof:

Since c(t) = 0, the process Xt is given by

Xt =
1

H̃t

E[F ].

Let F = H̃TB. If F ∈ D1,2 then by the Clark-Ocone formula from Theorem 2.5.9, φt =

E[DtF ]. Hence from (4.44), we have

π1(t) =
1

σt

(
E[DtF ]

H̃t

+
E[F ]

H̃t

θt

)
=

1

H̃tσt

(
E[DtH̃TB] + E[H̃TB]θt

)
=

1

H̃tσt

(
E[BDtH̃T ] + E[H̃TDtB] + E[H̃TB]θt

)
. (4.46)
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where the last equality is obtained by making the use of (2.15). From (4.46), the process

DtH̃T is given by

DtH̃T = Dt

(
βt exp

(
−
∫ T

0

θtdWt −
1

2

∫ T

0

θ2
t dt

))
= −H̃t

(
θt +

∫ s

t

Drrudu+

∫ s

t

DtθudW̃u

)
1{0,s}(t). (4.47)

By substituting (4.47) into (4.46), we obtain

π1(t) =
1

H̃tσt

(
E[H̃TB]θt + E[H̃TDtB]− E

[
H̃TB

(
θt +

∫ s

t

Drrudu+

∫ s

t

DtθudW̃u

)])
.

=
1

H̃tσt

(
E[H̃TB]θt + E[H̃TDtB]− E[H̃TB]θt − E

[
H̃TB

(∫ s

t

Drrudu+

∫ s

t

DtθudW̃u

)])
.

=
1

H̃tσt

(
E[H̃TDtB]− E

[
H̃TB

(∫ s

t

Drrudu+

∫ s

t

DtθudW̃u

)])
. (4.48)

2

For the case where B = 0, we have the following results.

Theorem 4.3.3 We suppose that all the assumptions from Theorem 4.3.1 are satisfied. If

B = 0 a.s, then for
∫ T

0
H̃tc(t)dt ∈ D1,2, the replicating portfolio is given by

π1(t) =
1

H̃tσt
E
[∫ T

t

H̃sDtc(s)ds

]
− 1

H̃tσt
E
[∫ T

t

H̃sc(s)

(∫ S

t

Dtrudu+

∫ S

t

DtθudW̃u

)
ds

]
. (4.49)

Proof:

Since B = 0, The process Xt in this case is given by

Xt =
1

H̃t

E[F ].

Now we let F =
∫ T
t
H̃sc(s)ds. Similarly, if F ∈ D1,2, then φt = E[DtF ]. Hence from (4.44),

we have

π1(t) =
1

σt

(
E[DtF ]

H̃t

+
E[F ]

H̃t

θt

)
=

1

H̃tσt

(
E
[
Dt

∫ T

t

H̃sc(s)ds

]
+ E

[∫ T

t

H̃sc(s)ds

]
θt

)
=

1

H̃tσt

(
E
[∫ T

t

H̃sDtc(s)ds

]
+ E

[∫ T

t

c(s)DtH̃sds

]
+ E

[∫ T

t

H̃sc(s)ds

]
θt

)
(4.50)
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where the last equality is obtained by making the use of (2.15). From (4.50), by considering

the Malliavin derivative DtH̃ from (4.47), we obtain

π1(t) =
1

H̃tσt

(
E
[∫ T

t

H̃sDtc(s)ds

]
+ E

[∫ T

t

H̃sc(s)ds

]
θt

)
− 1

H̃tσt

(
E
[∫ T

t

c(s)

(
H̃t

(
θt +

∫ s

t

Drrudu+

∫ s

t

DtθudW̃u

))
ds

])
.

=
1

H̃tσt

(
E
[∫ T

t

H̃sDtc(s)ds

]
+ E

[∫ T

t

H̃sc(s)ds

]
θt

)
− 1

H̃tσt

(
E
[∫ T

t

H̃sc(s)ds

]
θt

)
− 1

H̃tσt

(
E
[∫ T

t

H̃tc(s)

(∫ s

t

Drrudu+

∫ s

t

DtθudW̃u

)
ds

])
.

=
1

H̃tσt

(
E
[∫ T

t

H̃sDtc(s)ds

])
− 1

H̃tσt

(
E
[∫ T

t

H̃tc(s)

(∫ s

t

Drrudu+

∫ s

t

DtθudW̃u

)
ds

])
. (4.51)

2

4.3.2 Replication of European call option

Fir the Black-Scholes model, we consider the following stochastic differential equation

S0
t = S0

0 +

∫ t

0

rS0
sds. (4.52)

S1
t = S1

0 +

∫ t

0

µS1
sds+

∫ t

0

σS1
sdWs (4.53)

for t ∈ [0, T ] and given that S0
0 > 0, S1

0 > 0. A European call option for a stock price

St given by stochastic differential equation (4.37) for t ∈ [0, T ] is described by a random

variable

B = max{ST −K, 0} (4.54)

where K is the strike price. Note that for us to describe a portfolio π(t) = (π0(t), π1(t)) on

a market with one stock of a stock price St, it is enough to compute η1(t) such that

π1(t) = η1(t)S1
t

Hence, we have the following results for Black-Scholes model.
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Theorem 4.3.4 Let S1
t be a stochastic differential equation of the form (4.52). Let B be

defined by (4.54). Then, we have

η1(t) =
β(T )

β(t)

1

σS1
t

E[σS1
T1{K,∞}(S

1
T )]

= E
[
β(T )S1

T

β(t)S1
t

1{K,∞}(S
1
T )

]
(4.55)

Proof:

We can rearrange (4.40) such that

η1(t) =
π1(t)

S1
t

. (4.56)

From Theorem 4.3.2, π1(t) is given by

π1(t) = exp

(
−
∫ T

t

(rs −
1

2
θ2
s)ds−

∫ T

t

θsdWs

)
σ−1
t E[DtB] (4.57)

We are required to take the Malliavin derivative of the process B given by (4.54). This is

given as follows

DtB = Dt(max{ST −K, 0}) = DtST1{K,∞}(ST ). (4.58)

Now for DtST , we take the Malliavin derivative of the solution of the stochastic differential

equation given by (4.52). By making the use of Itô’s formula, we obtain

S1
t = S1(0)e(µ−1 1

2
σ2)t−Wt

and its Malliavin derivative is given by

DtS
1
t = σtS

1
t 1[0,T ](t). (4.59)

Hence

E[DtB] = E[σtS
1
T1{K,∞}(S

1
T )] (4.60)

We note that

exp

(
−
∫ T

t

(rs −
1

2
θ2
s)ds−

∫ T

t

θsdWs

)
= exp

(
−
∫ T

t

rsds

)
exp

(
−1

2
θ2
sds−

∫ T

t

θsdWs

)
of which by taking (4.43) into consideration, we observe that

βT
βt

= exp

(
−
∫ T

t

rsds

)
. (4.61)

By substituting (4.60) and (4.61) into (4.56), we obtain the results. 2



Chapter 5

Computation of price sensitivities

In this chapter we apply Malliavin calculus compute the price sensitivities (known as Greeks).

The calculus is useful for discontinuous payoff function. We follow the work of Fournie et

al. [9]. We also give few examples. We first define the option price u(·) as the probabilistic

representation of the payoff function Φ given by

Φ = Φ(XT )

which depend on the process {Xt : 0 ≤ t ≤ T}. We assume that Φ satisfy the integrability

condition

E[Φ(XT )2] <∞. (5.1)

We will denote the option price by u(x). From the arbitrary theory, the option price can be

expressed in terms of the expectation as

u(x) = E[Φ(XT )]. (5.2)

where Φ : Rn → R is infinitely differentiable function of which all its partial derivatives

have polynomial growth. Our focus is on the options of the European type which can be

exercised only at maturity time T . The main interest of our study is on discontinuous payoff

functionals, that is, we shall consider digital option. The aim is to take the partial derivative

of the option price u(·) with respect to the underlying factor. That is:

∂

∂α
E[Φ(XT )].

We will require the coefficient matrix σ to satisfy the following uniform elliptic condition:

∃η > 0 : ξTσ(x)Tσ(x)ξ > η|ξ|2 for all ξ, x ∈ Rn with ξ 6= 0 (5.3)

52
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where ξT denotes the transpose of ξ. This condition ensures that σ(Xt)
−1Yt belongs to the

space L2(Ω× [0, T ]) where Yt is the first variational process (3.21) of the stochastic process

Xt for t ≥ 0 given by (3.4).

The next results allows us to assume infinite smoothness of the payoff function when deriving

the price sensitivity formulas. Let L2 denote the class of locally integrable functions such

that the set of discontinuous payoff functions has Lebesgue measure zero and satisfy (5.1).

The following Lemma verifies some quite standard but useful result. It justifies the differen-

tiation under the expectation operator [29].

Lemma 5.0.1 Let Φ be a real valued random variable depending on a parameter x ∈ R.

Suppose further that, for almost every ω ∈ Ω, the mapping x → Φ(ω) is continuously

differentiable in [a, b] and that

E

[
sup
x∈[a,b]

| ∂
∂x

Φ(Xx
T )|

]
<∞.

Then the mapping x→ E[Φ(Xx
T )] is differentiable in (a, b) and for every x ∈ (a, b), we have

∂

∂x
E[Φ(Xx

T )] = E
[
∂

∂x
Φ(Xx

T )

]
.

Proof:

Since a function Φ is continuously differentiable with bounded derivatives, we have

Φ(Xx+h
T )− Φ(Xx

T )

‖h‖
−
〈 ∂
∂x

Φ, h〉
‖h‖

→ 0 as h→ 0.

The second term is uniformly integrable in h since the partial derivative of the payoff function

Φ are assumed to be bounded. In addition, by the mean value theorem

‖ Φ(Xx+h
T )− φ(Xx

T )

‖h‖
‖≤M

m∑
i=1

‖ Xx+h
Ti
−Xx

Ti
‖

‖h‖
.

Since
m∑
i=1

‖ Xx+h
Ti
−Xx

Ti
‖

‖h‖

is uniformly integrable in h leads to the uniform integrability in h of

‖ Φ(Xx+h
T )− Φ(Xx

T )

‖h‖
‖ .

This in turn tells us that
Φ(Xx+h

T )− Φ(Xx
T )

‖h‖
−
〈 ∂
∂x

Φ, h〉
‖h‖
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is uniformly integrable in h. Since it converges to 0, the dominated convergence theorem

tells us that it also converges to 0 in L1 and hence, the results follows. 2

Lemma 5.0.2 Suppose that

∂

∂x
E[Φ(XT )] = E[Φ(XT )π] (5.4)

holds for Φ ∈ C∞0 (R), π ∈ L2(Ω,F ,P). Suppose also that x → π is continuous, almost

surely. Then (5.4) holds for Φ ∈ L2.

Proof:

Let Φ satisfy (5.1) and approximate it by a sequence {Φn}n>0 of infinitely differentiable

functions each with bounded derivatives and compact support such that Φn → Φ Lebesgue

almost everywhere as n → ∞. Since x has transition probability that are absolutely con-

tinuous with respect to Lebesque measure and discontinuous of Φ have measure zero, we

have

Φn(XT )→ Φ(XT ) a.s

Furthermore, the family Φn(Xt)
2 is uniformly integrable so

Φn(XT )→ Φ(XT ) a.s

in L2(Ω,F ,P) and turns also in L1(Ω,F ,P) as n→∞.

Define the option price

u(x) = E[Φ(XT )]

and

un(x) = E[Φn(XT )]

and note that

Un(x)→ u(x) for every x ∈ [a, b].

Furthermore, let

g(x) = E[Φ(XT )π].

By Cauchy-Schwartz inequality

| ∂
∂x
un(x)− g(x) |≤ εn(x)ψ(x)
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where

εn(x) =
(
E
[
(Φn(XT )− Φ(XT ))2])1/2

and

ψ(x) =
(
E[|π|2]

)1/2
.

From the assumption, it follows that ψ and ε are continuous. Thus for arbitrary compact

set K ⊂ R, we have

sup
x∈K
| ∂
∂x
un(x)− g(x) |≤ Cn sup

x∈K
εn(x)

with

Cn = sup
x∈K

ψ(x).

Since supx∈K εn(x)→ 0 as n→∞, it follows that

∂

∂x
un(x)→ g(x),

uniformly on compact subsets of R, proving the results. 2

We are now ready to derive the formulas for the price sensitivities.

Theorem 5.0.3 Let a(t) be a continuous deterministic function of the form (3.23). Let

Xt be a stochastic differential equation of the form (3.4) and Φ : R → R be a function of

polynomial growth. Then the Delta of the option is given by

∆ = E
[
Φ(XT )

∫ T

0

a(t)σ−1(Xt)YtdWt

]
. (5.5)

Proof:

We assume that the payoff function Φ is continuously differentiable with bounded gradient.

∆ = u′(x) =
∂

∂x
E[Φ(XT )].

Using Lemma 5.0.1, we have

∂

∂x
E[Φ(XT )] = E

[
∂

∂x
Φ(XT )

]
= E

[
Φ′(XT )

∂

∂x
(XT )

]
. (5.6)

Recall that Yt = ∂
∂x

(Xt), we have

∂

∂x
E[Φ(XT )] = E[Φ′(XT )YT ]. (5.7)



56 CHAPTER 5. COMPUTATION OF PRICE SENSITIVITIES

From Lemma 3.2.5, we see that

Ytk =

∫ T

0

DtXtka(t)σ−1(t)Ytdt.

Therefore

E[Φ′(XT )YT ] = E
[∫ T

0

Φ′(XT )DrXTa(t)σ−1(Xt)Ytdt

]
By chain rule (Proposition 2.4.6), we obtain

E
[∫ T

0

Φ′(XT )DrXTa(s)σ−1(Xs)Ysds

]
= E

[∫ T

0

Dr(Φ(XT ))a(s)σ−1(Xs)Ysds

]
.

By applying the integration by parts formula (Theorem 2.5.4), we deduce that

E
[∫ T

0

Dr(Φ(XT ))a(s)σ−1(Xs)Ysds

]
= E

[
Φ(XT )

∫ T

0

a(s)(σ−1(Xs)Ys)dWs

]
(5.8)

which complete the proof. 2

Remarks:

i. There is no differentiation of the payoff function Φ.

ii. There is no need to know the density of the density function, but the diffusion.

iii. The Malliavin weight function π does not depend on the payoff function Φ.

Example 5.0.4 Now for a geometric Brownian motion given by the stochastic differential

equation of the following type

dXt = bXtdt+ σXtdWt, X0 = x ∈ R (5.9)

where the coefficients b and σ are constants and the process {Wt : 0 ≤ t ≤ T} is the standard

Brownian motion. From Theorem 5.0.3, we need to calculate∫ T

0

a(t)(σ−1(Xt)Yt)dWt.

The fact that

σ(Xt) = σXt (5.10)

implies that

σ−1(Xt) =
1

σXt

.
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We recall that

Yt =
∂

∂x
(Xt) =

Xt

x
.

Therefore, choosing a(t) = 1
T

, we have

∫ T

0

a(t)(σ−1(Xt)Yt)dWt =
1

T

∫
1

σXt

Xt

x
dWt

=
1

T

∫ T

0

1

σx
dWt

=
WT

σxT
.

Therefore from Theorem 5.0.3, we have

∆ = E
[
Φ(XT )

WT

σxT

]
.

The second price sensitivity to be computed is Gamma (Γ). This Gamma measures the

change in Delta. This is actually the second derivative of the option price with respect to

the initial price x and it is given by the following result [22]

Proposition 5.0.5 Let a(·) be a deterministic function of the form (3.23), Φ : R → R be

a function with polynomial growth and Yt be the first variational process of the form (3.21).

Assume that u = a(t)(σ−1(Xt)Yt) and δ(u) =
∫ T

0
a(t)(σ−1(Xt)Yt)dWt then Gamma is given

by

Γ = E
[
Φ(XT )

(
δ(u)δ(u) +

∂

∂x
(δ(u))

)]
. (5.11)

Proof:

First we suppose that a function Φ(·) is a continuously differentiable with bounded deriva-

tives, by the definition of Gamma, we have

Γ =
∂2

∂x2
E[Φ(XT )] =

∂

∂x
E[Φ(XT )δ(u)]. (5.12)

The expectation (5.12) is the same as the Delta we computed from Theorem 5.0.3 where

we made the use of both the integration by parts formula and the chain rule. So to take

the partial derivative of that expectation, we note that the product Φ(XT )δ(u) is a function

which depend on both the process XT and the initial value x. Hence by making the use of
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the product rule, we obtain

Γ =
∂

∂x
E[Φ(XT )δ(u)] = E

[
∂

∂x
Φ(XT )δ(u)

∂

∂x
(XT ) + Φ(XT )

∂

∂x
(δ(u))

]
= E

[
∂

∂x
Φ(XT )δ(u)YT + Φ(XT )

∂

∂x
(δ(u))

]
= E

[
∂

∂x
Φ(XT )δ(u)YT

]
+ E

[
Φ(XT )

∂

∂x
(δ(u))

]
.

Again we note that the first expectation on from the last equality is the same as the one

from the computation of Delta, so in the same way we obtain

Γ = E [Φ(XT )δ(u)δ(u)] + E
[
Φ(XT )

∂

∂x
(δ(u))

]
= E

[
Φ(XT )δ(u)δ(u) + Φ(XT )

∂

∂x
(δ(u))

]
(5.13)

= E
[
Φ(XT )

(
δ(u)δ(u) +

∂

∂x
(δ(u))

)]
.

2

Example 5.0.6 From (5.13), we have

Γ = E[Φ(XT )δ(u)δ(u)] + E
[
Φ(XT )

∂

∂x
(δ(u))

]
(5.14)

Recall that

δ(u) = δ(a(t)(σ−1(Xt)Yt))

=

∫ T

0

a(t)(σ−1(Xt)Yt))dWt.

From Example (5.0.4), we see that∫ T

0

a(t)(σ−1(Xt)Yt))dWt =
WT

σxT
. (5.15)

For the first term in (5.13), we have

δ(u)δ(u) =
1

xσT
δ

(
WT

σxT

)
.

If we let F = WT and u = 1
σxT

from Proposition 2.25, we obtain

1

xσT
δ

(
WT

σxT

)
=

1

σxT

(
WT

σxT

∫ T

0

dWt −
∫ T

0

DtWT .
1

σxT
dt

)
=

1

σxT

(
W 2
T

σxT
− 1

σx

)
=

1

σx2T

(
W 2
T

σT
− 1

σ

)
.



5.1. VARIATIONS IN THE DIFFUSION COEFFICIENT 59

Note that from property (2.16), DtWs = 1{t≤s}. Therefore the first term in (5.13) reduces to

E[Φ(XT )δ(u)δ(u)] = E
[
Φ(XT )

1

σx2T

(
W 2
T

σT
− 1

σ

)]
. (5.16)

From the second term we have

∂

∂x
(δ(u)) =

∂

∂x

(
WT

σxT

)
= − WT

σx2T
.

Therefore the second term in (5.13) reduces to

E
[
Φ(XT )

∂

∂x
(δ(u))

]
= −E

[
Φ(XT )

WT

σx2T

]
. (5.17)

Combining (5.16) and (5.17), we obtain

Γ = E
[
Φ(XT )

1

σx2T

(
W 2
T

σT
− 1

σ

)]
− E

[
Φ(XT )

WT

σx2T

]
= E

[
Φ(XT )

1

σx2T

(
W 2
T

σT
− 1

σ
−WT

)]
.

5.1 Variations in the diffusion coefficient

The last price sensitivity to be computed is the so called Vega (V) which is defined as the

partial derivative of the option price with respect to the diffusion coefficient (volatility) σ.

Since the drift coefficient (
¯
·) and the diffusion coefficient σ(·) from (3.4) are functions of

the underlying asset price, Vega and Rho quantify the impact of small perturbation in a

specified direction on both the drift and the diffusion coefficients b(·) and σ(·). The payoff

function Φ is assumed to be path dependent and has finite L2 norm. First we introduce a

set of deterministic functions [9]

Λ̂m =

{
a ∈ L2([0, T ]) :

∫ ti

ti−1

a(t)dt = 1 for i = 1, 2, ...,m

}
. (5.18)

Let σ̃ : R → Rn be a continuously differentiable with bounded derivatives. We suppose

that for every small perturbation ε ∈ [0, T ], (σ + εσ̃)(·) is continuously differentiable with

bounded derivatives. The functions σ and σ̃ are assumed to satisfy the following uniform

ellipticity conditions:

∃η > 0 : ξ∗(σ + σ̃)∗(x)(σ + σ̃)(x)ξ ≥ η|ξ|2 for any ξ, x ∈ R with ξ 6= 0 (5.19)
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In order to compute the partial derivative of the option price u(x) with respect to the

diffusion coefficient matrix σ in the direction σ̃, we consider the perturbed stochastic process

{Xε
t : 0 ≤ t ≤ T} defined by

dXε
t = b(Xε

t ) + [σ(Xε
t ) + εσ̃](Xε

t )dWt, Xε
0 = x ∈ R (5.20)

where the process {Wt : 0 ≤ t ≤ T} is the standard Brownian motion and ε is a very small

parameter. For the payoff function Φ, we define ta perturbed option price uε(x) by

uε(x) = E[Φ(Xε
T )] (5.21)

of the perturbed stochastic process Xε
t . We also introduce the first variational process Zε

t .

This is actually the partial derivative of the process Xε
t with respect to ε given by

dZε
t = b′(Xε

t )Z
ε
tdt+ σ̃(Xε

t )dWt + [σ′ + εσ̃′](Xε
t )Z

ε
tdWt

Zε
0 = 0

where 0 is the zero column vector of Rn. Now we define the generalized Vega (V) as follows:

Definition 5.1.1 :V is defined as the partial derivative of the perturbed option price with

respect to the small parameter ε in the direction σ̃ given by

V =
∂

∂ε
uε(x) |ε=0 .

Next we consider the process {βt : 0 ≤ t ≤ T} defined by

βt = ZtY
−1, 0 ≤ t ≤ T. (5.22)

This process satisfies the following regularity results:

Lemma 5.1.2 The process {βt : 0 ≤ t ≤ T} belongs to D1,2.

The process {Y −1
t : 0 ≤ t ≤ T} satisfies

dY −1
t = Y −1

t [−b′(Xt) + [σ′(Xt)]
2]dt− σ′(Xt)Y

−1
t dWt

Y −1
0 = I.

The process {Y −1
t : 0 ≤ t ≤ T} belongs to D1,2 and also the process {Zt : 0 ≤ t ≤ T} belongs

to D1,2. The following proposition gives the partial derivative of the perturbed option price

uε(x) with respect to the small parameter ε at ε = 0 given by
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Proposition 5.1.3 Assume that the matrix σ is uniformly elliptic. Then for any payoff

function Φ of polynomial growth, the function ε → uε(x) is differentiable at ε = 0 for any

x ∈ R. For any a ∈ Λ̂ we have

∂

∂ε
uε(x) |ε=0= E[Φ(XT )δ(σ−1(Xt)Ytβ̃a(T ))]

where

β̃a(t) =
m∑
i=1

a(t)(β(ti)− β(ti−1))1{ti−1≤t≤ti} (5.23)

and δ(σ−1(Xt)Ytβ̃a(t)) is the Skorohod integral of the anticipating process

{σ−1(Xt)Ytβ̃a(t) : 0 ≤ t ≤ T}.

Proof:

In the same way from the proof of Theorem 5.0.3, we assume that Φ is a continuously

differentiable function with bounded derivatives. From Lemma 5.0.1, we note that the

partial derivative of the option price uε(x) with respect to the small parameter ε is actually

obtained by differentiating inside the expectation operator. If we choose versions of the

process {Xε
t : 0 ≤ t ≤ T} which are continuously differentiable with respect to ε. Since Φ is

continuously differentiable, we have

V =
∂

∂ε
uε(x) |ε=0 = E

[
∂

∂ε
Φ(Xε

T )

]
= E

[
Φ′(Xε

T )
∂

∂ε
(Xε

T )

]
= E[Φ′(Xε

T )Zti ].

From equation (3.22), we have

DtXt = YtiY
−1
t σt1{t≤ti} for any t ∈ [0, T ].

Hence we have∫ T

0

DtXtiσ
XtYt1{t≤ti}β̃a(T )dt =

∫ T

0

YtiY
−1
t σ(Xt)σ

−1(Xt)Ytβ̃a(T )1{ti−1≤t≤ti}dt

=

∫ T

0

Yti β̃a(T )1{ti−1≤t≤ti}dt

= Yti

∫ T

0

β̃a(T )1{ti−1≤t≤ti}dt.
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Considering (5.26), we obtain

Yti

∫ T

0

β̃a(T )1{t≤ti}dt = Yti

i∑
j=1

∫ T

0

a(t)(βti − βti−1
)1{ti−1≤t≤ti}dt

= Yti

i∑
j=1

∫ ti

ti−1

a(t)(βti − βti−1
)dt.

Using the fact that a(·) is a deterministic function such that∫ ti

ti−1

a(t)dt = 1 and βt0 = 0.

It follows that from (5.22)

Yti

i∑
j=1

∫ ti

ti−1

a(t)(βti − βti−1
)dt = Ytiβti

= Zti . (5.24)

Hence

∂

∂ε
uε(x) |ε=0 = E[Φ′(Xε

T )Zti ]

= E
[∫ T

0

Φ′(Xε
t )DtXtiσ

−1(Xt)Ytβ̃tdt

]
.

By making the use of the chain rule from Proposition 2.4.6, we obtain

E
[∫ T

0

Φ′(Xε
t )DtXtiσ

−1(Xt)Ytβ̃tdt

]
= E

[∫ T

0

Dt(Φ(Xε
t ))σ

−1(Xt)Ytβ̃tdt

]
.

Finally, since the process {σ−1(Xt)Yt : 0 ≤ t ≤ T} belongs to L2(Ω×[0, T ]) and is Ft-adapted

by the uniform elliptic conditions (5.3) and by Lemma 5.1.2, β̃a(T ) belongs to D1,2 where

a(·) is a deterministic function. By making the use of the integration by parts formula from

proposition 2.5.4 we conclude that

E
[∫ T

0

Dt(Φ(Xε
t ))σ

−1(Xt)Ytβ̃tdt

]
= E

[
Φ(Xε

t )δ(σ
−1(Xt)Ytβ̃t)

]
= E

[
Φ(Xε

t )

∫ T

0

σ−1(Xt)Ytβ̃tdWt

]
.

2

Remark:

Note that the Mallivin weight
∫ T

0
σ−1(Xt)Ytβ̃tdWt does not depend on the payoff function

Φ(·) but on the deterministic function a(·).
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Example 5.1.4 The last example of the price sensitivity is Vega (V). The general formula

for Vega from Proposition 5.26 is given by

V =
∂

∂ε
uε(x) |ε=0= E[Φ(XT )δ(σ−1(Xt)Ytβ̃a(T ))] (5.25)

where

β̃a(t) =
m∑
i=1

a(t)(β(ti)− β(ti−1))1{ti−1≤t≤ti} (5.26)

Now, the Malliavin weight δ(σ−1(Xt)Ytβ̃a(T )) can be computed by letting F = β̃a(T )) and

u = σ−1(Xt)Yt from Proposition 2.25 such that

δ(σ−1(Xt)Ytβ̃a(T )) = β̃a(T )

∫ T

0

σ−1(Xt)YtdWt −
∫ T

0

Dtβ̃a(T )(σ−1(Xt)Yt)dt. (5.27)

By expanding the summation β̃a(T ) from (5.26), we obtain a(t)βtm where βt0 = β0 = 0.

Since βtm is the last term of the summation, we can set tm = T so that we have

a(t)βtm = a(t)βT .

From equation (5.22),

a(t) =
1

T
and βT = ZTY

−1
T (5.28)

where ZT is the variational process with respect to the diffusion coefficient σ. The solution

to (5.9) is given by

XT = xe(b− 1
2
σ2)T+σWT (5.29)

Therefore
∂

∂σ
XT = (−σT +WT )xe(b− 1

2
σ2)T+σWT = (WT − σT )XT . (5.30)

Y −1
T is the inverse of the first variational process (3.21) given by

Y −1
T =

x

XT

. (5.31)

From (5.28), we have

a(t)βT =
ZTY

−1
T

T
=

(WT − σT )XT

T
.
x

XT

=
xWT

T
− σx. (5.32)

The Malliavin derivative of (5.32) is given by

Dt

(
xWT

T
− σx

)
= Dt

(
xWT

T

)
− σxDt(1) =

x

T
(5.33)
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By substituting (5.32) and (5.33) into (5.27), we obtain

β̃a(T )

∫ T

0

σ−1(Xt)YtdWt −
∫ T

0

Dtβ̃a(T )(σ−1(Xt)Yt)dt =

(
xWT

T
− σx

)∫ T

0

σ−1(Xt)YtdWt

−
∫ T

0

x

T
(σ−1(Xt)Yt)dt. (5.34)

By making the use of (5.10), we obtain(
xWT

T
− σx

)∫ T

0

σ−1(Xt)YtdWt −
∫ T

0

x

T
(σ−1(Xt)Yt)dt =

(
xWT

T
− σx

)∫ T

0

1

σT
dWt

−
∫ T

0

x

T

1

σx
dt

=

(
xWT

T
− σx

)(
WT

σx

)
−
(

1

σT

)
(T )

=
W 2
T

σT
−WT −

1

σ
. (5.35)

Thus

δ(σ−1(Xt)Ytβ̃a(T )) =
W 2
T

σT
−WT −

1

σ
.

Therefore Vega is given by (From Proposition 5.1.3 )

V = E
[
Φ(XT )

(
W 2
T

σT
−WT −

1

σ

)]
. (5.36)

Remark:

We note that the relationship between Γ and V can be summarized as follows:

Γ =
1

σx2T
E
[
Φ(XT )

(
W 2
T

σT
− 1

σ
−WT

)]
=

V
σxT

. (5.37)

The results we have shown can be extended to the case where we consider a random variable

G that is Malliavin differentiable and is independent of the initial value x (see [1]). Thus

the extension is given by the following results

Theorem 5.1.5 Suppose that the the diffusion coefficient σ is uniform elliptic and that

E[
∫ T

0
| σ−1(Xs)Ys |2 ds] <∞, in which Y denotes the first variational process. Let G ∈ D1,2

be a random variable which does not depend on x. Then for any measurable function Φ with

polynomial growth one has

∆ = E [Φ(XT )π]



5.1. VARIATIONS IN THE DIFFUSION COEFFICIENT 65

where

π =
1

T

(
G

∫ T

0

σ−1(Xt)YtdWt −
∫ T

0

DtG(σ−1(Xt)Yt)dt

)
. (5.38)

Proof:

We assume that the payoff function Φ is continuously differentiable with bounded gradient.

By Lemma 5.0.1, Delta is given by

∆ = E
[
Φ′(XT )

∂

∂x
(XT )G

]
= E[Φ′(XT )YTG]

This from Lemma 3.2.5 yields

E[Φ′(XT )YTG] = E
[∫ T

0

(Φ′(XT )DrXT )a(t)σ−1(Xt)YtGdt

]
= E

[∫ T

0

Dr(Φ(XT ))a(t)σ−1(Xt)YtGdt

]
.

The last equality is obtained by using the Chain rule from (2.4.6). The random variable

σ−1(Xt)Yt ∈ L2(Ω × [0, T ]) by Elliptic conditions (5.3), we let a(t) = 1
T

and apply the

duality formula (2.5.4) to obtain

∆ = E
[
Φ(XT )

1

T

∫ T

0

σ−1(Xt)YtGdt

]
= E

[
Φ(XT )δ

(
1

T
σ−1(Xt)YtG

)]
.

Now we let π = δ
(

1
T
σ−1(Xt)YtG

)
, since σ−1(Xt)Yt is adapted, we can let F = G and

u = σ−1(Xt)Yt from Proposition 2.25 such that

π =
1

T

(
G

∫ T

0

τsdWs −
∫ T

0

DsG(τs)ds

)
=

1

T

(
G

∫ T

0

σ−1(Xs)YsdWs −
∫ T

0

DsG(σ−1(Xs)Ys)ds

)
. (5.39)

This complete the proof for the payoff function Φ being continuously differentiable. In the

very same fashion, the general case is proven by the density argument. 2

In the Black-Scholes model (where we consider the drift coefficient and the diffusion coeffi-

cient as constants), we obtain the following result.
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Corollary 5.1.6 Suppose b(x) = µx and σ(x) = σx with σ being invertible. Then π is given

by

π =
1

Tx

(
(σ−1)(GWT −

∫ T

0

DtGdt)

)
. (5.40)

proof:

Since σ(Xt) is assumed to be invertible, we have

σ−1(Xt) =
1

σx
.

We recall that Yt = Xt
x

, Therefore from (5.39), we have

π =
1

T

(
G

∫ T

0

σ−1(Xt)YtdWt −
∫ T

0

DtG(σ−1(Xt)Yt)dt

)
=

1

T

(
G

∫ T

0

1

σXt

Xt

x
dWt −

∫ T

0

DtG(
1

σXt

Xt

x
)dt

)
=

1

T

(
G

∫ T

0

1

σx
dWt −

∫ T

0

DtG(
1

σx
)dt

)
=

1

Tx

(
σ−1

(
G

∫ T

0

dWt −
∫ T

0

DtGdt

))
=

1

Tx

(
σ−1

(
GWT −

∫ T

0

DtGdt

))
.

2

Proposition 5.1.7 Suppose b(x) = µx and σ(x) = σx with σ invertible. Then for any Φ

with polynomial growth and a random variable G = 1, one has

∆ =
∂

∂x
E[Φ(XT )] = E[Φ(XT )π∆], Γ =

∂2

∂x2
E[Φ(XT )] = E[Φ(XT )πΓ] (5.41)

where

π∆ =
1

xTσ
WT (5.42)

πΓ = (π∆)2 − 1

Tx2σ2
− π∆

x
. (5.43)

Note that the above result is a special case for a random variable G = 1 and yields the same

results as in example (5.0.4) and (5.0.6)
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5.2 Greeks w.r.t the correlation in a stochastic volatil-

ity model

Here we do the computation of price sensitivities (Greeks) using the Malliavin calculus

under assumptions that the underlying asset and interest rate both evolve from a stochastic

volatility model and the interest rate model respectively. We suppose that the process S

evolve as the following stochastic differential equation of the Black-Scholes dynamics (see

[1]).

dSt = rStdt+ λtStdW
1
t , (5.44)

dλt = k(θ − λt)dt+ βdW 2
t (5.45)

where the processes W 1
t and W 1

t are correlated Brownian motions with

d〈W 1
t ,W

2
t 〉 = ρdt, ρ ∈ [−1, 1].

We consider a digital option with a payoff 1[k,∞). We are interested in computing the

sensitivity of the option with respect to ρ. First we set

W 1
t =

√
1− ρ2B1

t , W 2
t = B2

t (5.46)

where B1
t and B2

t are independent Brownian motion and B = (B1
t , B

2
t ) is a 2-dimensional

Brownian motion. By substituting (5.46) into (5.44) and (5.45), we obtain the stochastic

differential equation

dSt = rStdt+ λtSt(
√

1− ρ2dB1
t + ρdB2

t ), (5.47)

dλt = k(θ − λt)dt+ βdB2
t . (5.48)

By applying Itô’s formula to (5.47), we obtain the solution

ST = exp

(∫ t

0

(r − 1

2
λ2
s)ds+

√
1− ρ2

∫ t

0

λtdB
1
t + ρ

∫ t

0

λtdB
2
t

)
. (5.49)

For a smooth function Φ, one has

∂

∂ρ
E[Φ(ST )] = E

[
Φ′(ST )

∂

∂ρ
(ST )

]
.

By considering (5.49), we obtain

∂

∂ρ
(ST ) = ST

∂

∂ρ

(∫ t

0

(r − 1

2
λ2
s)ds+

√
1− ρ2

∫ t

0

λtdB
1
t + ρ

∫ t

0

λtdB
2
t

)
= ST

(∫ T

0

λtdB
2
t −

2ρ√
1− ρ2

∫ T

0

λtdB
1
t

)
= STR (5.50)
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where

R =

∫ T

0

λtdB
2
t −

2ρ√
1− ρ2

∫ T

0

λtdB
1
t . (5.51)

From (5.49), by making the use of chain rule from Proposition 2.4.6, we obtain

D1
sST = STD

1
s

(√
1− ρ2

∫ T

0

λtdB
1
t + ρ

∫ T

0

λtdB
2
t

)
= ST (

√
1− ρ2 × λt)

=
∂

∂ρ
(ST )

λs
√

1− ρ2

R
(5.52)

so that

D1
sΦ(ST ) = Φ′(ST )D1

sST = Φ′(ST )
∂

∂ρ
(ST )

λs
√

1− ρ2

R
.

Therefore

Φ′(ST )
∂

∂ρ
(ST ) =

R

λs
√

1− ρ2
D1
sΦ(ST ) =

1

T
√

1− ρ2

∫ T

0

D1
sΦ(ST )

R

λs
ds.

By applying the duality formula from Theorem 2.5.4 with respect to the Brownian motion

B1
t , we obtain

E
[
Φ′(ST )

∂

∂ρ
(ST )

]
=

1

T
√

1− ρ2
E
[∫ T

0

D1
sΦ(ST )

R

λs
ds

]
= E

[
Φ(ST )

1

T
√

1− ρ2
δ1

(
R

λ

)]
. (5.53)

Now by applying the properties of the Skorohod integral from (2.25) for adapted processes,

we obtain

δ1

(
R

λ

)
= Rδ1

(
1

λ

)
−
∫ T

0

D1
sR

1

λ1

ds

=

∫ T

0

λ−1
s dB1

s −
∫ T

0

D1
sR

1

λ1

ds. (5.54)

Moreover, we note that the Malliavin derivative of R in (5.51) is given by

D1
sR = − 2ρ√

1− ρ2
λs.

Hence, we can conclude that

∂

∂ρ
E[Φ(ST )] = E

[
Φ(ST )

(
R

∫ T

0

λ−1
s dB1

s +
2ρT√
1− ρ2

)]
. (5.55)
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Remark: We note that from (5.55), there is no need to differentiate the function Φ and the

Malliavin weight function R
∫ T

0
λ−1
s dB1

s + 2ρT√
1−ρ2

does not depend on Φ.

Next we consider a 3-dimensional Brownian motion {W j
t : 0 ≤ t ≤ T} j = 1, 2, 3 is defined.

The dynamics of the underlying asset price and the interest rate evolves according to the

stochastic differential equation system. (see [5]).
dSt = rtStdt+ Stσ(Vt)dZ

1
t

dVt = u(Vt)dt+ v(Vt)dZ
2
t

drt = f(rt)dt+ g(rt)dZ
3
t ,

(5.56)

where {Zt}j0≤t≤T are correlated Brownian motions with correlation coefficients ρij ∈ (−1, 1)

for i, j = 1, 2, 3. The solution to the stochastic differential equation system (5.56) is given

by St which represent the underlying asset, Vt which represent the volatility and rt which

represent the interest rate process. This processes has the initial values S0, V0 and r0 re-

spectively. These correlated Brownian motions may be written as the combination of three

independent Brownian motions {W j
t : 0 ≤ t ≤ T} as

dZ1
t = dW 1

t

dZ2
t = ρ12dW

1
t + µ1dW

2
t

dZ3
t = ρ13dW

1
t + µ2dW

2
t + µ3dW

3
t ,

(5.57)

where

µ1 =
√

1− ρ2
12, µ2 =

ρ23 − ρ12ρ13

µ1

,

µ3 =

√
1− ρ2

12 − ρ2
13 − ρ2

23 + 2ρ13ρ12ρ13

µ1

.

We assume that the correlation coefficients ρij are chosen in a way that µ3 is a real number.

It is also assumed that σ(·), u(·), v(·), f(·) and g(·) are continuously differentiable functions

with bounded derivatives. We also assume that σ, v and g are adapted and non-zeros.

Now if we substitute (5.57) into (5.56) we obtain
dSt = rtStdt+ Stσ(Vt)dW

1
t

dVt = u(Vt)dt+ v(Vt)(ρ12dW
1
t + µ1dW

2
t )

drt = f(rt)dt+ g(rt)(ρ13dW
1
t + µ2dW

2
t + µ3dW

3
t )

(5.58)
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which can be represented in a matrix form as

d


St

Vt

rt

 =


rtSt

u(Vt)

f(rt)

 dt+


Stσ(Vt) 0 0

ρ12v(Vt) µ1v(Vt) 0

ρ13g(rt) µ2g(rt) µ3g(rt)

 d


W 1
t

W 2
t

W 3
t

 . (5.59)

If we let

Xt =


St

Vt

rt

 , A(Xt) =


rtSt

u(Vt)

f(rt)

 ,

and

B(Xt) =


Stσ(Vt) 0 0

ρ12v(Vt) µ1v(Vt) 0

ρ13g(rt) µ2g(rt) µ3g(rt)

 (5.60)

and

x =


S0

V0

r0

 , Wt =


W 1
t

W 2
t

W 3
t


where the process {Wt : 0 ≤ t ≤ T} is a standard three-dimensional Brownian motion, then

we obtain a stochastic differential equation given by

dXt = A(Xt)dt+B(Xt)dWt, X0 = x ∈ R. (5.61)

Note that the stochastic differential equation (5.61) is similar to (3.4) but it is in 3-dimension

whereas (3.4) is in 1-dimension. We assume that the drift coefficient A(·) and the diffusion

coefficient B(·) are bounded with partial derivatives and satisfy linear growth and the Lips-

chitz conditions:

There exist a constant C <∞ such that

| A(x)− A(y) | + | B(x)−B(y) |≤ C | x− y |;

| A(x) | + | B(x) |≤ C(1+ | x |).

These conditions ensures the existence and uniqueness of the strong solution of (5.61). We

also require the coefficient matrix to B to satisfy the following uniform Elliptic condition:

There exist η > 0 such that (ξTB(x)T )(Bξ) ≥ η|ξ|2 for all ξ, x ∈ R3 with ξ 6= 0
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where ξT denotes the transpose of ξ. These conditions ensures the existence of the inverse

of the coefficient matrix B. The first variational process in this is given by

dYt = A′(Xt)Ytdt+
3∑
j=0

B′j(Xt)YtdW
j
t , (5.62)

Y0 = 13×3.

Here A′(·) is the Jacobian of A(·) and B′j(·) is the jth column vector of the matrix B(·) with

respect to x respectively and 13×3 is the identity matrix of R3.

Recall that the first variational process is given by Yt = ∂
∂x
Xt. Thus it follows that if

(YtY
−1
s B) ∈ L2([0, T ]×Ω) for all s, t ∈ [0, T ], then the process Xt is Malliavian differentiable

and its Malliavin derivative is given by

DsXt = YtY
−1
s B(Xt)1s≤t, s ≥ 0, as. (5.63)

The components of the first variational process Yt can be calculated as in the following results

[5].

Proposition 5.2.1 Let Xt and Yt be defined by (5.61) and (5.62) respectively, Then Y 23
t = 0

and Y ij
t = 0 for i > j where ij = 1, 2, 3. Thus the diagonal entries Y 11

t , Y 22
t and Y 33

t have

the following solutions.

Y 11
t = exp

(∫ T

0

(
rt −

1

2
σ2(Vt)

)
dt+

∫ T

0

σ(Vt)dZ
1
t

)
, (5.64)

Y 22
t = exp

(∫ T

0

(
u′(Vt)−

1

2
v′(Vt)

2

)
dt+

∫ T

0

v′(Vt)dZ
2
t

)
, (5.65)

Y 33
t = exp

(∫ T

0

(
f ′(rt)−

1

2
g′(rt)

2

)
dt+

∫ T

0

g′(rt)dZ
3
t

)
. (5.66)

Furthermore, Y 12
t and Y 13

t satisfy

dY 12
t = rtY

12
t dt+ [σ(Vt)Y

12
t + Stσ

′(Vt)Y
22
t ]dW 1

t , (5.67)

dY 13
t = [rtY

13
t + StY

33
t ]dt+ σ(Vt)Y

13
t dW 1

t (5.68)

with the initial values Y 12
0 = Y 13

0 = 0.

Note that if we apply Itô lemma to (5.64), (5.65) and (5.66), we obtain

dY 11
t = rtY

11
t dt+ σ(Vt)Y

11
t dZ1

t ,

dY 22
t = u′(Vt)Y

22
t dt+ v′(Vt)Y

22
t dZ2

t ,

dY 33
t = f ′(rt)Y

33
t dt+ g′(rt)Y

33
t dZ3

t
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with the initial values Y 11
0 = Y 22

0 = Y 33
0 = 1

Remark: The first variational process Y 11
t from (5.64) satisfy

Y 11
t =

1

S0

St. (5.69)

We consider the payoff function Φ which depends on the process XT given by

Φ = Φ(XT ) (5.70)

where T is the maturity time. The option price u is the probabilistic representation of the

payoff function (5.70) given by

u(x) = E[Φ(XT )].

To obtain a valid computation result, we avoid the degeneracy of the Malliavin weights with

probability one [see [5]], we introduce the set of deterministic functions given by

Γ̃ =

{
a(t) ∈ L2([0, T ]) :

∫ ti

0

a(t)dt = 1 ∀i = 1, 2, ..., n

}
in R. (5.71)

As in Theorem 5.0.3. The general formula for Delta (∆) in 3-dimensional case is given by

∆ = u′(x) = E
[
Φ(XT )π∆

]
(5.72)

where

π∆ =

∫ T

0

a(t)(B−1(Xt)Yt)
TdWt. (5.73)

To compute the inverse of matrix B(Xt) given in (5.60), we use the adjoint method. The

determinant of the matrix B(Xt) is given by

det(B(Xt)) = µ1µ3Stσ(Vt)v(Vt)g(rt). (5.74)

The adjoint (the transpose of the cofactor matrix) of B(Xt) is given by

Adj(B(Xt)) =


µ1µ3v(Vt)g(rt) 0 0

−ρ12µ3v(Vt)g(rt) µ3Stσ(Vt)g(rt) 0

ρ12µ2v(Vt)g(rt)− ρ13µ1v(Vt)g(rt) −µ2Stσ(Vt)g(rt) µ1Stσ(Vt)v(Vt)


(5.75)

where Adj(·) is the adjoint of (·). The inverse of the volatility matrix B(Xt) is given by

B−1(Xt) =
1

det(B(Xt))
Adj(B(Xt))

=


1

Stσ(Vt)
0 0

−ρ12
µ1Stσ(Vt)

1
µ1v(Vt)

0
ρ12µ2−ρ13µ1
µ1µ3Stσ(Vt)

−µ2
µ1µ3v(Vt)

1
µ3g(rt)

 . (5.76)
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We calculate the product B−1(Xt)Yt as follows:

B−1(Xt)Yt =


1

Stσ(Vt)
0 0

−ρ12
µ1Stσ(Vt)

1
µ1v(Vt)

0
ρ12µ2−ρ13µ1
µ1µ3Stσ(Vt)

−µ2
µ1µ3v(Vt)

1
µ3g(rt)



Y 11
t Y 12

t Y 13
t

0 Y 22
t 0

0 0 Y 33
t



=


Y 11
t

Stσ(Vt)

Y 12
t

Stσ(Vt)

Y 13
t

Stσ(Vt)
−ρ12Y 11

t

µ1Stσ(Vt)

Y 22
t

µ1v(Vt)
− ρ12Y 12

t

µ1Stσ(Vt)
− ρ12Y 13

t

µ1Stσ(Vt)
(ρ12µ2−ρ13µ1)Y 11

t

µ1µ3Stσ(Vt)

(ρ12µ2−ρ13µ1)Y 12
t

µ1µ3Stσ(Vt)
− µ2Y 22

t

µ1µ3v(Vt)

(ρ12µ2−ρ13µ1)Y 13
t

µ1µ3Stσ(Vt)
− Y 33

t

µ3g(rt)

 .

The transpose of the above matrix is given by

(B−1(Xt)Yt)
T =


Y 11
t

Stσ(Vt)

−ρ12Y 11
t

µ1Stσ(Vt)

(ρ12µ2−ρ13µ1)Y 11
t

µ1µ3Stσ(Vt)
Y 12
t

Stσ(Vt)

Y 22
t

µ1v(Vt)
− ρ12Y 12

t

µ1Stσ(Vt)

(ρ12µ2−ρ13µ1)Y 12
t

µ1µ3Stσ(Vt)
− µ2Y 22

t

µ1µ3v(Vt)
Y 13
t

Stσ(Vt)
− ρ12Y 13

t

µ1Stσ(Vt)

(ρ12µ2−ρ13µ1)Y 13
t

µ1µ3Stσ(Vt)
− Y 33

t

µ3g(rt)

 . (5.77)

If we choose the deterministic function a(t) = 1
T

from (5.71), we see that∫ T

0

a(t)(B−1(Xt)Yt)
TdWt

=
1

T

∫ T

0


Y 11
t

Stσ(Vt)

−ρ12Y 11
t

µ1Stσ(Vt)

(ρ12µ2−ρ13µ1)Y 11
t

µ1µ3Stσ(Vt)
Y 12
t

Stσ(Vt)

Y 22
t

µ1v(Vt)
− ρ12Y 12

t

µ1Stσ(Vt)

(ρ12µ2−ρ13µ1)Y 12
t

µ1µ3Stσ(Vt)
− µ2Y 22

t

µ1µ3v(Vt)
Y 13
t

Stσ(Vt)
− ρ12Y 13

t

µ1Stσ(Vt)

(ρ12µ2−ρ13µ1)Y 13
t

µ1µ3Stσ(Vt)
− Y 33

t

µ3g(rt)



dW 1

t

dW 2
t

dW 3
t

 . (5.78)

We observe that the derivative of the option price is denoted by

∂

∂x
u(x) =

(
∂u

∂S0

,
∂u

∂V0

,
∂u

∂r0

)T
where T denote the transpose. We note that the first row of the solution from matrix (5.78)

correspond to Delta which the change in option price with respect to the initial price S0.

The second row correspond to Vega (V) which is the change in option price with respect to

the initial volatility V0. The last row correspond to Rho (ρ) which is the change in option

price with respect to the initial interest rate r0. Hence the Malliavin weight of Delta is given

by

π∆ =
1

T

(∫ T

0

Y 11
t

Stσ(Vt)
dW 1

t −
∫ T

0

ρ12Y
11
t

µ1Stσ(Vt)
dW 2

t +

∫ T

0

+
(ρ12µ2 − ρ13µ1)Y 11

t

µ1µ3Stσ(Vt)
dW 3

t

)
(5.79)

Since

Y 11
t =

1

S0

St.
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We obtain

π∆ =
1

S0T

(∫ T

0

dW 1
t

σ(Vt)
− ρ12

µ1

∫ T

0

dW 2
t

σ(Vt)
+

(ρ12µ2 − ρ13µ1)

µ1µ3

∫ T

0

dW 3
t

σ(Vt)

)
. (5.80)

The Malliavin weight for Vega is given by

πV =

∫ T

0

Y 12
t

Stσ(Vt)
dW 1

t +

∫ T

0

(
Y 22
t

µ1v(Vt)
− ρ12Y

12
t

µ1Stσ(Vt)

)
dW 2

t

+

∫ T

0

(
(ρ12µ2 − ρ13µ1)Y 12

t

µ1µ3Stσ(Vt)
− µ2Y

22
t

µ1µ3v(Vt)

)
dW 3

t (5.81)

and the Malliavin weight for Rho is given by

πρ =

∫ T

0

Y 13
t

Stσ(Vt)
dW 1

t −
∫ T

0

ρ12Y
13
t

µ1Stσ(Vt)
dW 2

t

+

∫ T

0

(
(ρ12µ2 − ρ13µ1)Y 13

t

µ1µ3Stσ(Vt)
− Y 33

t

µ3g(rt)

)
dW 3

t . (5.82)

The computation of Rho (ρ) and Vega (V) is not straight forward as in the computation

of Delta (∆) since the drift and the diffusion coefficients are not constants. Vega and Rho

quantify the impact of small perturbation as in Proposition 5.1.3, (see [5] thereof). It can

be again seen that all the Malliavin wight functions π∆, πV and πρ does not depend on the

payoff function Φ but on the deterministic function a(·).

5.2.1 The independent case

We consider the follwing system
dSt = rtStdt+ Stσ(Vt)dW

1
t

dVt = u(Vt)dt+ v(Vt)dW
2
t

drt = f(rt)dt+ g(rt)dW
3
t .

(5.83)

which can be represented in a matrix form as

d


St

Vt

rt

 =


rtSt

u(Vt)

f(rt)

 dt+


Stσ(Vt) 0 0

0 v(Vt) 0

0 g(rt)

 d


W 1
t

W 2
t

W 3
t

 (5.84)

where {W i
t : 0 ≤ t ≤ T} for i = 1, 2, 3 are uncorrelated independent Brownian motions. If

we let

Xt =


St

Vt

rt

 , A(Xt) =


rtSt

u(Vt)

f(rt)

 ,
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and

B(Xt) =


Stσ(Vt) 0 0

0 v(Vt) 0

0 0 g(rt)

 (5.85)

and

x =


S0

V0

r0

 , Wt =


W 1
t

W 2
t

W 3
t


where the process {Wt : 0 ≤ t ≤ T} is a standard three-dimensional Brownian motion, then

we obtain a stochastic differential equation given by

dXt = A(Xt)dt+B(Xt)dWt, X0 = x ∈ R. (5.86)

We assume that the drift coefficient A(·) and the diffusion coefficient B(·) are bounded with

partial derivatives and satisfy linear growth and the Lipschitz conditions. From the general

formula from Theorem 5.0.3, since in this case our matrix B(Xt) from (5.85) is a strictly

diagonal matrix, its inverse is given by

B−1(Xt) =


1

Stσ(Vt)
0 0

0 1
v(Vt)

0

0 0 1
g(rt)

 (5.87)

The first variation process Yt for Delta is given by

Yt =


St
S0

0

0


Thus

(B−1(Xt)Yt)
T = Y T

t (B−1(Xt))
T

=
(
St
S0

0 0
)

1
Stσ(Vt)

0 0

0 1
v(Vt)

0

0 0 1
g(rt)


=

(
1

S0σ(Vt)
0 0

)
. (5.88)
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where T denote the transpose. If we multiply (5.88) by a 3-dimensional Browinan motion

column matrix we obtain

(B−1(Xt)Yt)
TdWt =

(
1

S0σ(Vt)
0 0

)
dW 1

t

dW 2
t

dW 3
t

 .

=
1

S0σ(Vt)
dW 1

t . (5.89)

If we let the deterministic function a(t) = 1
T

. Then the Malliavin weight function for Delta

(∆) is given by

π∆ =

∫ T

0

a(t)(B−1(Xt)Yt)
TdWt =

1

TS0

∫ T

0

1

σ(Vt)
dW 1

t .

For the computation of Vega, the first variational process Yt is given by

Yt = Yt =


St
S0

Vt
V0

0

 . (5.90)

Similarly to Delta, we have

(B−1(Xt)Yt)
TdWt = Y T

t (B−1(Xt))
TdWt

=
(
St
S0

Vt
V0

0
)

1
Stσ(Vt)

0 0

0 1
v(Vt)

0

0 0 1
g(rt)



dW 1

t

dW 2
t

dW 3
t



=
(

1
S0σ(Vt)

Vt
V0v(Vt)

0
)

dW 1
t

dW 2
t

dW 3
t


=

1

S0σ(Vt)
dW 1

t +
Vt

V0v(Vt)
dW 2

t . (5.91)

If we again let a deterministic function a(t) = 1
T

, then the Maliavin weight function for Vega

(V) is given by

πV =

∫ T

0

a(t)(B−1(Xt)Yt)
TdWt =

1

TS0

∫ T

0

1

σ(Vt)
dW 1

t +
1

TV0

∫ T

0

Vt
v(Vt)

dW 2
t .

Lastly for the computation of Rho, the first variational process Yt is given by

Yt =
∂

∂r0

St =


St
S0

0
rt
r0

 (5.92)
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. In the very same way, we have

(B−1(Xt)Yt)
TdWt = Y T

t (B−1(Xt))
TdWt

=
(
St
S0

0 rt
r0

)
1

Stσ(Vt)
0 0

0 1
v(Vt)

0

0 0 1
g(rt)



dW 1

t

dW 2
t

dW 3
t



=
(

1
S0σ(Vt)

0 rt
r0g(rt)

)
dW 1

t

dW 2
t

dW 3
t


=

1

S0σ(Vt)
dW 1

t +
rt

r0g(rt)
dW 3

t . (5.93)

If we again let a deterministic function a(t) = 1
T

, then the Maliavin weight function for Rho

(ρ) is given by

πρ =

∫ T

0

a(t)(B−1(Xt)Yt)
TdWt =

1

TS0

∫ T

0

1

σ(Vt)
dW 1

t +
1

Tr0

∫ T

0

rt
g(rt)

dW 3
t .

We note that in all the cases where we computed the price sensitivities, there are no direct

computations of the derivative of the payoff functions. All the results we got indicates that

the efficiency of the Malliavin calculus in the computation of price sensitivities does not

depend on the type/nature of the payoff function. By making use of the integration by parts

formula, we have indeed seen that a Greek can be represented as the expectation of the

product of the payoff function and the Malliavin weight function.



Chapter 6

Conclusion

This study was based on the computation of the hedging portfolios and the price sensitivities,

known as Greeks, in the case where we have the discontinuous payoff functions using the

Malliavin calculus approach. We introduced the importance and the background of Malliavin

calculus and also what have been done before. We developed the Wiener’s construction of

Brownian motion and the stochastic integral. We discussed some important properties of

Malliavin calculus which includes essential tools such as the integration by parts formula.

This formula avoid the direct derivation of the functional, instead result in the product of

the functional and the so called Malliavin weight function. The integration by parts formula

plays a huge role in the computation of the price sensitivities. We only restricted ourselves

to one dimensional case. The Clark-Ocone formula is used for the computation of hedging

portfolios. We showed the Malliavin derivative of stochastic differential equation where the

focus is on the diffusion process. As a result, we constructed the first variational process

which is the partial derivative of the stochastic differential equation with respect to the initial

condition.

For the application of the Malliavin calculus to mathematical finance, we used the Clark-

Ocone formula to obtain the general representation formula of the replicating strategy. The

general formula was applied to different types of payoff functions of the European type where

we realised that the hedging portfolio is naturally related to the Malliavin derivative of the

terminal payoff. In addition, we computed the price sensitivities in the Malliavin sense.

The Malliavin calculus properties are used to compute the general representation formula of

price sensitivities which include the Delta (∆), Gamma (Γ) and Vega (V). We considered

the geometric Brownian motion case as an example.

Further we computed the price sensitivities with respect to the correlation in a stochastic

78



79

volatility model. We considered the 2-dimensional correlated Brownian motion where we

computed the sensitivity of the option with respect to ρ. We considered also a 3-dimensional

Brownian motion and compute the price sensitivity which includes the Delta, Vega and Rho.

We conclude our study by considering a 3-dimensional uncorrelated Brownian motion and

compute again the Delta, Vega and Rho of the option price. We hope to extend the diffusion

case to processes that include jumps. We would also like to apply similar concepts to option

price of American type where the exercise of the option take place on or before the maturity

time T .
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