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Abstract

Several studies indicated a growing trend in terms of frequency and severity

of extreme events. Extreme rainfall could cause disasters that lead to loss of

property and life. The aim of the study was to model the monthly rainfall

variability in selected provinces of South Africa using extreme value distri-

butions. This study investigated the best-fit probability distributions in the

five provinces of South Africa. Five probability distributions: gamma, Gum-

bel, log-normal, Pareto and Weibull, were fitted and the best was selected

from the five distributions for each province. Parameters of these distribu-

tions were estimated by the method of maximum likelihood estimators. Based

on the Akaike information criteria (AIC) and Bayesian information criteria

(BIC), the Weibull distribution was found to be the best-fit probability distri-

bution for Eastern Cape, KwaZulu-Natal, Limpopo and Mpumalanga, while

in Gauteng the best-fit probability distribution was found to be the gamma

distribution. Monthly rainfall trends detected using the Mann–Kendall test

revealed significant monotonic decreasing long-term trend for Eastern Cape,

Gauteng and KwaZulu-Natal, and insignificant monotonic decreasing long-

term trends for Limpopo and Mpumalanga. Non-stationary generalised ex-

treme value distribution (GEVD) and non-stationary generalized Pareto dis-

tribution (GPD) were applied to model monthly rainfall data. The deviance

statistic and likelihood ratio test (LRT) were used to select the most appropri-

ate model. Model fitting supported stationary GEVD model for Eastern Cape,

Gauteng and KwaZulu-Natal. On the other hand, model fitting supported

ii



non-stationary GEVD models for maximum monthly rainfall with nonlinear

quadratic trend in the location parameter and a linear trend in the scale pa-

rameter for Limpopo, while in Mpumalanga the non-stationary GEVD model,

which has a nonlinear quadratic trend in the scale parameter and no variation

in the location parameter fitted well to the maximum monthly rainfall data.

Results from the non-stationary GPD models showed that inclusion of the time

covariate in our models was not significant for Eastern Cape, hence the best-

fit model was the stationary GPD model. Furthermore, the non-stationary

GPD model with a linear trend in the scale parameter provided the best-fit

for KwaZulu-Natal and Mpumalanga, while in Gauteng and Limpopo the non-

stationary GPD model with a nonlinear quadratic trend in the scale param-

eter fitted well to the monthly rainfall data. Lastly, GPD with time-varying

thresholds was applied to model monthly rainfall excesses, where a penalised

regression cubic smoothing spline was used as a time-varying threshold and

the GPD model was fitted to cluster maxima. The estimate of the shape param-

eter showed that the Weibull family of distributions is appropriate in modelling

the upper tail of the distribution for Limpopo and Mpumalanga, while for East-

ern Cape, Gauteng and KwaZulu-Natal, the exponential family of distributions

was found to be appropriate in modelling the upper tail of the distribution. The

dissertation contributes positively to the body of knowledge in extreme value

theory application to rainfall data and makes recommendations to the govern-

ment agencies on the long-term rainfall variability and their negative impact

on the economy.
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Chapter 1

Introduction and background

1.1 Introduction and background

Rainfall is a principal element of water cycles and the variability of it is im-

portant from both the scientific as well as the socio-economic view. Hanum

et al. (2015) stated that rainfall is an essential element of weather and nor-

mal rainfall is useful for life on the earth. Excessive rainfall is classified as

extreme rainfall, which can be disastrous for life and infrastructure. According

to Masereka et al. (2018), flood risks caused by extreme rainfall events have

resulted in flood disasters that accounted for about 47% of all weather-related

calamities, affecting 2.3 billion people worldwide. In the past decades, extreme

precipitation occasions have made significant effect to properties, public infras-

tructure, agriculture, financial misfortunes just as financial issues and tourism

in the Hawaiian Islands (Chu et al., 2009).

Muchuru et al. (2014) stated that Southern Africa is a region of significant rain-

fall variability and is disposed to serious events such as floods and droughts.
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Recent increases in the frequency and intensity of extreme rainfall events have

raised concern that human activities might have resulted in a change of the cli-

mate system (Syafrina et al., 2015). According to Mazvimavi (2010), there is

a growing concern in Southern Africa about the declining rainfall patterns as

a result of global warming. Extreme rainfall events are one of the primary

natural causes of flooding (Alam et al., 2018). In February 2000, about 1,000

people were killed from severe floods caused by cyclone Eline that hit Mozam-

bique and Zimbabwe (Rapolaki et al., 2019). Manhique et al. (2015) reported

that the flood that occurred in January 2013 left almost 20,000 people homeless

and about 100 dead in central and southern parts of Mozambique. According

to Rapolaki and Reason (2018), in January 2015, tropical storm Chedza devel-

oped severe rainfalls that left more than 20,000 people homeless and 75 dead

in Mozambique, southern Malawi and southern Madagascar.

South Africa is classified as a predominantly semi-arid country. This may be

due to its variable geology, characterised by its atmosphere which ranges from

desert and semi-desert in the dry northwestern region to sub-humid and wet

along the eastern coastal area (du Plessis and Schloms, 2017). South Africa has

nine provinces, namely: Eastern Cape, Free State, Gauteng, KwaZulu-Natal,

Limpopo, Mpumalanga, Northern Cape, North-West and Western Cape. The

present study will be carried out in the provinces of Eastern Cape, Gauteng,

KwaZulu-Natal, Limpopo and Mpumalanga.

According to Alexander (2018), South Africa’s average annual rainfall is about

464 mm, which is below the world’s average of 860 mm per year. Rainfall in

South Africa exhibits seasonal variability, with most of the rainfall occurring

mainly during summer months (South Africa Weather Service (SAWS), 2019).

Botai et al. (2018) stated that annual rainfall in the northwestern region of-

ten remains below 200 mm, whereas much of the eastern highveld receives
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between 500 mm and 900 mm, occasionally exceeding 200 mm of rainfall per

annum. The central parts of the country receive about 400 mm of rainfall per

annum, with wide variations occurring closer to the coast.

According to Nash et al. (2016), KwaZulu-Natal is the wettest province of South

Africa, with rainfall along the northeast coast exceeding 1,300 mm per annum,

but declining to 800 mm per annum inland. Dyson (2009) stated that Gaut-

eng province receives most of its rainfall in summer months, with the north-

western part of the province obtaining rainfall more frequently as compared

to the south and south-east part of the province. A study conducted by Nel

(2009) showed no significant trend, but increases in summer rainfall and de-

creases in autumn and winter rainfall in KwaZulu-Natal. Thomas et al. (2011)

observed an increase in early-season rainfall and a decrease in late-season

rainfall in north-west KwaZulu-Natal for the period 1950-2000. In the same

study, Thomas et al. (2011) showed a tendency for a later seasonal rainfall on-

set accompanied by increased dry spells and fewer rain days in the Limpopo

province. Rainfall variability in the Eastern Cape province causes water re-

duction in reservoirs (Pindura, 2016). Oduniyi (2013) highlighted that over

the past decade in Mpumalanga province, there has been occurrence of climate

change such as excessive temperature, fire outbreaks, rainfall and floods which

caused a damage to agricultural productions. The Western Cape has been im-

pacted by severe storms occurring almost annually over the past two decades,

resulting in damages to homes, agricultural produces and infrastructure (Hol-

loway et al., 2010).
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1.2 Problem statement

According to Masereka et al. (2018), extreme high annual maximum daily rain-

fall events are among environmental events that have caused the most disas-

trous consequences for society. For example, tropical cyclone Idai made landfall

on 14 March 2019 in the district of Dondo, Sofala province in Mozambique (UN

Office for the Coordination of Humanitarian Affairs (UNOCHA, 2019)). The

UNOCHA in Mozambique reported that at least 48 people died and in Zim-

babwe 30 deaths and 100 missing people were reported (UNOCHA, 2019).

Research undertaken in South Africa’s Kruger National Park has shown that

some of the world’s most sensitive and valuable riverine habitat are being de-

stroyed due to increased frequency of cyclone-driven extreme floods (Floodlist,

2018). de Waal et al. (2017) stated that severe floods in the Western Cape of

South Africa have caused significant damage to property and infrastructure

over the past decade 2003–2014. According to Slabbert and Slatter (2019),

tropical cyclone Idai in Mozambique plunged South Africa into phase 4 electric-

ity load shedding. The economies of many African countries and the livelihoods

of many of their people are exposed to risks associated with the impact of cli-

mate variability on agricultural yields since agriculture is heavily dependent

on climate (Connaughton et al., 2017; Alam et al., 2011). An observed increase

in extreme events includes increases in drought and it is expected that more

people globally will be water stressed in the coming decades (Guilbert, 2016).

According to Connaughton et al. (2017), extreme drought in particular can af-

fect large numbers of people over an extended geographical area. Significant

loss of life due to drought remains a real threat for millions of people. On the

contrary, heavy rainfall at the end of the crop cycle causes damages to crops

and financial losses to the farmers (Alam et al., 2011).

According to Singo et al. (2012), Luvuvhu River catchment is one of the re-
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gions in Limpopo province that has been negatively impacted by floods, re-

sulting in loss of life and damage to public and private properties. A study

conducted by Sauka (2016) revealed that the Crocodile River in the eastern

part of Mpumalanga province has experienced three floods in a period of two

years, which resulted in loss of life, damage of agricultural land and public

properties. In Eastern Cape province, the Port Alfred floods in October 2012

left eight dead and caused the damage estimated at R500 million (Pyle and Ja-

cobs, 2016). Dyson (2009) stated that rainfall resulting in flooding occurs from

time to time over the Gauteng province, resulting in widespread flooding and

disruption of infrastructure and even loss of life.

1.3 Rationale

Rainfall variability as a result of climate change and global warming has re-

cently become an active area for studies in extreme value theory (EVT). Recent

findings by de Waal et al. (2017) and de Waal (2012) suggest a change in the

frequency of occurrence and intensity of extreme weather events, particularly

rainfall, over the last two decades in the southern part of the Western Cape

which resulted in marked damage to infrastructure, agriculture and human

life. Extreme rainfall has become a common disaster in Southern Africa (Ma-

posa et al., 2016). Due to its geographical position, South Africa is one of the

countries that face challenges in terms of extreme rainfall (Kajambeu, 2016).

De Waal (2012) conducted a study on extreme rainfall distribution using gener-

alised Pareto distribution (GPD) approach to assess changes in the frequency

and intensity of extreme rainfall events across the Western Cape province over

the historical records of 137 stations. The study revealed that of the 137 sta-

tions which were investigated, 62% showed an increase in 50-year return level,
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22% showed a decrease in 50-year return level, while only 16% of the stations

displayed little change in rainfall intensity over time. The results also indi-

cated an increase in frequency of intense rainfall in the latter half of the 20th

century and early 21st century. In a separate study, Hanum et al. (2015) mod-

elled extreme rainfall using the Gamma-Pareto distribution to the monthly

rainfall data from Jatiwangi station in Jakarta, Indonesia. The results showed

that the Gamma-Pareto distribution was very appropriate for extreme monthly

rainfall.

Kajambeu (2016) conducted a study on flood heights of the Limpopo River

at Beitbridge Border Post using the generalised extreme value distribution

(GEVD) in the presence of a trend covariate and Southern Oscillation Index

(SOI). The study revealed the importance of considering non-stationary mod-

els when using statistics of extremes in a changing climate as these models

provide an improvement in fit over the time-homogeneous models.

Mélice and Reason (2007) studied the return period of extreme rainfall at Saint

George, South Africa, using EVT to assess the likely return period of such ex-

treme rainfall. The study found that according to the Gumbel distribution fam-

ily of EVT, the greatest annual maximum daily rainfall of 230 mm observed at

the town in August 2006 had a return period of 1,222 years. The authors con-

cluded that the August 2006 extreme rainfall at Saint George can be considered

as a particularly rare event.

Singo et al. (2012) applied GEVD, Gumbel, log-normal and log-Pearson type

III distributions in their study. The study used annual maximum flow data

from 8 stations with 50 years hydrological data in Luvuvhu River catchments

in Limpopo province of South Africa. The aim of the study was to analyse flood

frequencies in the catchments. The extreme value analysis revealed that the
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Gumbel and Log-Pearson type III were the best fit distributions. Kruger (2006)

investigated the trends in daily extreme precipitation indices. The study em-

ployed data from SAWS for 138 rainfall stations in South Africa for the period

1910-2004. The author noted that there was an increasing trend in the num-

ber of extreme rainfall days in the Eastern Cape province, Southern Free State

and parts of KwaZulu-Natal.

The present study will explore the use of non-stationary GEVD and GPD in

a changing climate to model monthly rainfall of the five selected provinces of

South Africa. This study will adopt the use of peaks-over-threshold distribution

with time-varying covariates and thresholds to model monthly rainfall time se-

ries data since literature in these techniques is scarce.

1.3.1 Aim

The aim of this study is to model long-term monthly rainfall variability in the

selected provinces of South Africa using extreme value distributions.

1.3.2 Objectives

The objectives of the study are to:

1. Model monthly rainfall using the parent distributions.

2. Investigate the long-term trends of the monthly rainfall and their vari-

ability across the selected provinces.

3. Use the non-stationary GEVD and non-stationary GPD with a fixed thresh-

old to model monthly rainfall.

4. Model monthly rainfall time series data using a GPD with a time-varying

threshold estimated by the non-parametric extremal mixture model.
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1.4 Significance of the study

The outcome of this study will assist the country, particularly the government

agencies of South Africa and outside South Africa, with extreme rainfall risk

assessment using extreme value analysis techniques. In addition, the study

will contribute to the body of knowledge in extreme value theory application

to rainfall data and make recommendations to the government agencies on the

long-term rainfall variability. The citizens of South Africa who live in the five

provinces will also benefit from this study through taking the necessary mea-

sures to save their livestock and property during the rainy season. The need for

modelling variability of rainfall in the selected provinces of South Africa is di-

rected towards helping the agricultural and economic sectors, reduce the num-

ber of rainfall-related deaths and damages to infrastructure in these provinces.

1.5 Structure of the dissertation

The rest of the dissertation is organised as follows: Chapter 2 presents a lit-

erature review with relevant methods and previous studies on rainfall. The

methods used in the modelling of monthly rainfall across the selected provinces

of South Africa in the study are presented in Chapter 3. The data analysis

and research findings are presented and summarised in Chapter 4. This is

followed by the conclusion of the study in Chapter 5. RStudio is used for data

analysis and some RStudio codes used in this dissertation are presented in the

appendix.



Chapter 2

Literature review

2.1 Introduction

This chapter reviews relevant studies in the modelling of rainfall that have

been previously conducted in other studies as well as models applied by differ-

ent researchers.

2.2 Rainfall modelled worldwide

Ender and Ma (2014) employed extreme value theory (EVT) including both

generalised extreme value distribution (GEVD) and generalised Pareto distri-

bution (GPD) to model extreme rainfall events using 60 years of daily data for

four cities in China. The main finding was that GPD has a better fitting per-

formance than GEVD. Zin et al. (2009) used annual series of maximum daily

rainfall from 1975 to 2004 for 50 rain gauge stations in Peninsular Malaysia

to investigate the best fitting distribution. They fitted five EVT distributions
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namely: GEVD, GPD, generalized logistic (GLD), log-normal (LN3) and Pear-

son (P3) distributions (Zin et al., 2009). The main finding of the study was

that most stations in Peninsular Malaysia follow a GLD. The second most fre-

quently selected distribution was the GEVD.

In India, Sharma and Singh (2010) conducted a study entitled: “Use of proba-

bility distribution in rainfall analysis”. The aim of the study was to identify the

best fit distribution. The study revealed that GEVD was the best fitting distri-

bution. Recent studies by Namitha and Ravikumar (2018), and Namitha and

Vinothkumar (2019) also found a similar result. However, the results obtained

by Amin et al. (2016) in Pakistan found the LP3 distribution to be the best-fit

distribution, contradicting the results obtained by Sharma and Singh (2010),

Namitha and Ravikumar (2018), and Namitha and Vinothkumar (2019).

Gao et al. (2016) modelled annual maximum rainfall in China using both non-

stationary and stationary GEVD. The authors found that the GEVD fits well to

the data. The results were also confirmed by Syafrina et al. (2019) in Malaysia.

Chu et al. (2013) applied non-stationary and stationary GEVD to model the

annual maximum daily rainfall data for 18 stations in Taiwan for the period

1961-2010. Findings from the study showed that out of 18 stations, four sta-

tions were well fitted by the non-stationary model and the remaining stations

were well fitted by the stationary model with the Gumbel distribution.

Roghani et al. (2016) conducted a study on the influence of Southern Oscilla-

tion on autumn rainfall in Iran. The study examined the relationship between

Southern Oscillation Index (SOI) and autumn (October-December) rainfall cov-

ering the period of 1951-2011. The results showed that average SOI and SOI

phase during July to September were related with October to December rain-

fall in some regions located in the west and northwest of Iran. Hanum et al.
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(2017) assessed the application of modelling gamma-Pareto (G-P) distributed

data using Generalised linear model (GLM) gamma for monthly rainfall ob-

served in Sukadana station in Indonesia. The study sought to analyse whether

Tropical Rainfall Measuring Mission (TRMM) satellite data is a good estima-

tor for unobserved station’s data. Transformed station’s data was considered

as dependent variable in GLM gamma. The findings of the study revealed that

the station’s data are G-P distributed and the transformed data are gamma

distributed. The findings obtained by Aksoy (2000) and Husak et al. (2007) are

not different from those obtained by Hanum et al. (2017).

2.3 Rainfall modelled in other countries in the

African continent

Maposa (2019) utilised GEVD to annual flood heights time series models in

examining suitable annual maximum moving sums that can be used to model

extreme flood heights in the lower Limpopo River basin of Mozambique. Time

series models were split into four parts, namely: annual daily maxima (AM1),

annual maxima 2 days (AM2), annual maxima 5 days (AM5) and annual max-

ima 10 days (AM10). The study showed that models AM5 and AM10 were

appropriate annual maxima time series models for Chokwe and Sicacate sta-

tions, respectively. In another study Maposa et al. (2014) did the comparative

analysis of the maximum likelihood (ML) and Bayesian parameter estimates of

the GEVD in the lower Limpopo River basin of Mozambique. The authors used

Markov chain Monte Carlo (MCMC) Bayesian method to estimate the param-

eters of the GEVD in order to estimate extreme flood heights and their return

periods. In their study, the Bayesian approach showed an improvement over

the MLE approach.

Boudrissa et al. (2017) fitted the GEVD to model annual maximum daily rain-
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fall for selected stations in the north of Algeria. The empirical results revealed

that the Gumbel distribution fits well for Algiers and Miliana stations while

the Fréchet distribution was found to be more suitable for the Oran station.

Chikobvu and Chifurira (2015) modelled extreme minimum annual rainfall in

Zimbabwe using the GEVD. Annual rainfall data from 1901 to 2009 were fit-

ted to the GEVD. Results from model diagnostics showed that the minimum

annual rainfall for Zimbabwe follows a Weibull class of distributions.

The study conducted by Olofintoye et al. (2009) examined the peak daily rain-

fall distribution characteristic in Nigeria. The study used annual rainfall data

from 20 stations. Five probability distributions namely: Gumbel, log-Gumbel,

LN3, P3 and log-Pearson (LP3) were fitted. The authors found that the LP3 dis-

tribution performed the best by occupying 50% of the total stations, followed by

P3 with 40% of the total stations and lastly by log-Gumbel occupying 10% of the

total stations. Another study on extreme rainfall was conducted in Tanzania

by Ngailo et al. (2016) who found that the Gumbel distribution was the most

suitable distribution to the extreme daily rainfall, while for the data above 99%

the exponential distribution was found to be more appropriate.

2.4 Rainfall modelled in South Africa

Singo et al. (2016) studied evaluation of flood risks using flood frequency mod-

els in Luvuvhu River Catchment in Limpopo province, South Africa. The goal

of the study was to estimate flood risks through rainfall distribution. The Gum-

bel and LP3 distributions were chosen to perform flood frequency analysis. The

study revealed a general increase in the frequency of extreme events, accompa-

nied by floods of higher magnitude. The study by Sauka (2016) used historic-

climatic data for the Crocodile River to determine the critical threshold for past

flood events and to predict the extent of future flood events in the Crocodile
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River in the eastern part of Mpumalanga province. The statistics showed that

when discharge reaches 241.75 m3/s, both locations (Riverside and Tekwane)

are at risk to flooding.

De Waal et al. (2017) employed a GPD and peaks-over-threshold (POT) sam-

pling approach to the 76 rainfall stations across the Western Cape province

in South Africa. The study sought to determine the changes in extreme 1-day

rainfall high percentiles (95th and 98th) and both the 20- and 50- year return

period rainfall, comparing the period 1950-1979 against that of 1980-2009. Of

these stations, 48 (63%) showed an increase in the 50-year return period of ex-

treme 1-day rainfall and 28 (37%) showed a decrease in the 1980-2009 period

at the 95th percentiles POT, while at the 98th percentiles POT, 49 (64%) showed

an increase and 27 (36%) a decrease for the later period.

Dyson (2009) modelled daily rainfall over the Gauteng province in South Africa

for the summer months of October to March using 32 years (1977-2009) daily

rainfall data from about 70 South African Weather Service stations. The re-

sults revealed that the month with the highest monthly average rainfall as well

as the highest number of heavy and very heavy rainfall days was January, fol-

lowed by February, March and lastly October. The conclusion of the study was

that significantly high seasonal rainfall is associated with the above-normal

rainfall in late summer.

Masereka et al. (2018) conducted a study on the statistical analysis of an-

nual maximum daily rainfall (ADMR) for Nelspruit in Mpumalanga province of

South Africa. Empirical continuous probability distribution functions (ECPDF)

and theoretical continuous probability distribution functions (TCPDF) were ap-

plied to carry out the statistical analysis of the extreme high ADMR events.

Findings of empirical frequency analysis revealed that the return period of
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flood disasters was 10 years. Mzezewa et al. (2010) modelled rainfall data col-

lected over the period 1983-2005 to study the basic statistical rainfall char-

acteristics at the University of Venda ecotope. Annual and monthly rainfall

was fitted to theoretical probability distributions. Furthermore, the Anderson-

Darling goodness-of-fit test was used to select the best fit models. The authors

found that the distribution of daily rainfall was highly skewed, with high fre-

quency of occurrence of low-rainfall events.

2.5 Rainfall trends worldwide

Acero et al. (2011) applied POT to study the trends in extreme rainfall over the

Iberian Peninsula at a daily scale. The study used data from 52 observations

regularly distributed over Iberia with no missing data available for the period

1958-2004. The results indicated a high variability of extreme events over the

coastline of the Iberian Peninsula. In another study, Acero et al. (2012) used

non-parametric Mann–Kendall (M-K) test statistic and parametric test based

on the statistical theory of extreme values, involving time-dependent param-

eters to account for possible temporal changes in the frequency distribution.

The scholars found that, in winter, there were significant negative trends for

a greater part of the Iberian Peninsula, while significant positive trends were

found for the southeast, particularly over areas that shrank as the number of

days considered for the precipitation event increased.

Wi et al. (2016) fitted non-stationary GEVD and non-stationary GPD models

to annual maximum precipitation (AMP) and POT, respectively, of 65 weather

stations scattered across South Korea. The M-K test statistic was used for

trend detection and the results showed an increasing trend in AMP to the sta-

tions concentrated in the mountainous areas of South Korea. The results from

GPD indicated fairly different results, with a significantly reduced number of
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stations showing an increasing trend, while some stations showed a decreasing

trend.

In a slightly different study, Bharti (2015) employed remotely sensed TRMM

3B42 version 7 precipitation data to investigate extreme rainfall events during

the monsoon season over the Northwest Himalaya for the period 1998-2013.

Three percentiles: 98th, 99th and 99.99th were used to identify the extreme

rainfall index. Findings from the study revealed that rainfall intensities as-

sociated with these three percentiles for each pixel showed higher rainfall in-

tensity for the regions with less than 3,000 m elevation. The study also re-

vealed an increasing trend of heavy and very heavy rainfall intensity events

over the region. Furthermore, the authors showed that the plains and foothills

of Northwest Himalaya with elevation less than 500 m receive higher number

of extreme events.

2.6 Rainfall trends for some other African coun-

tries

Chikodzi et al. (2013) used time series analysis to investigate trends in the

southeastern region of Zimbabwe. The study used climate data records from

three Zimbabwe Meteorological Services Department run weather stations in

the region. The findings from the study revealed a significant decline in rain-

fall at two of the three stations used. Mazvimavi (2008) fitted non-parametric

test to determine possible changes in extreme annual rainfall in Zimbabwe.

The M-K test statistic was applied to investigate whether rainfall data from 40

rainfall stations in Zimbabwe differ with time. Findings from the study showed

insignificant trend with time for the data. This was also confirmed by Mazvi-

mavi (2010). Mosase and Ahiablame (2018) used daily rainfall, and maximum

and minimum temperature gridded data from the Climate Forecast System Re-
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analysis (CFSR) global weather database to investigate the long-term trend of

the Limpopo River basin. Modified non-parametric M-K test statistic was used

to check the long-term trend. Trend analysis showed upward trends for both

annual and season rainfall in most parts of the basin, except for the winter

season which showed a decreasing trend.

2.7 Rainfall trends in South Africa

Gyamfi et al. (2016) used historical rainfall records from 13 stations of Olifants

basin in South Africa. The historial rainfall records were obtained from South

Africa Weather Service (SAWS) and Department of Water Affairs (DWA) span-

ning the period 1975-2013. M-K test statistic trend was applied to detect

changes in rainfall pattens under a changing climate. Results of the study

indicated an insignifiant declining rainfall trend in the Olifants basin with

a mean annual rainfall of 664 mm. Kruger and Nxumalo (2017) conducted

a study about the historical rainfall trends in South Africa. The study used

two interlinked datasets namely: the district rainfall and individual rainfall

stations covering the period 1921-2015. The authors found that there was an

increase in rainfall over the west of South Africa, particularly in the southern

interior and decreases in rainfall in some places in the far north-east for the

period 1921-2015.

MacKellar et al. (2014) found statistically significant decreases in rainfall over

the central and north-eastern parts of the country in the autumn months and

significant increases in the southern Drakensberg in spring and summer sea-

sons. Easterling et al. (2000) showed a significant increase in heavy rainfall

frequency over the threshold of 25.4 mm and 50.8 mm for the Western Cape

and parts of KwaZulu-Natal provinces, respectively. Botai et al. (2018) investi-

gated the spatial-temporary variability and trends of precipitation concentra-
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tion across South Africa using TRMM 3B42 version 7 satellite precipitation

data sets spanning 1998-2015. The results indicated that precipitation concen-

tration across South Africa exhibits noticeable spatial-temporary variability.

The authors concluded that findings from this study have important scientific

and practical applications in hydrological hazard risk and soil erosion mon-

itoring. Odiyo et al. (2015) investigated long-term changes and variability in

daily rainfall and streamflow in the Luvuvhu River catchments in the Limpopo

province, South Africa. The study applied linear regression method to com-

pute trend in 5- and 10-year average rainfall. The authors further applied

linear regression and M-K test statistic to detect trends for annual rainfall and

streamflow data. The study showed a decreasing trend in 5- and 10-year mean

rainfall. Results from linear regression and M-K test statistic are not different

from those based on 5- and 10-year streamflow.

2.8 Extreme value theory and its applications

Extreme value theory (EVT) can be applied in fields where extreme events may

occur, including climate change, insurance, finance and public health (Ben-

salah, 2000).

Sigauke and Bere (2017) carried out a study in South Africa based on the ap-

plication of the GPD to the modelling of daily peak electricity demand. The

POT approach with time varying covariates and threshold were used to model

non-stationary time series. In their study, the GPD model showed a better fit

to the data than the GEVD model (Sigauke and Bere, 2017). The scholars con-

cluded that peak electricity demand is a major concern for utility companies. A

study carried out by Diriba et al. (2015) modelled extreme daily temperature

using GPD at Port Elizabeth, South Africa. The outcome of the study based

on the return levels analysis showed that by the end of the 21st century, the
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extreme summer maximum temperature could be around 5◦C more than the

current one, while in winter the return level analysis indicated an increase of

about 2◦C.

Thomas et al. (2016) conducted a study on the application of EVT in public

health. The study applied EVT to weekly rates of pneumonia and influenza

deaths over 1979-2011 in Canada. Their findings revealed that an annual

pneumonia and influenza death rate of 12 per 100,000 (the highest maximum

observed) should be exceeded once over the next 30 years, and each year there

should be a 3% risk that the pneumonia and influenza death rate will exceed

this value. In their study, Jakata and Chikobvu (2019) modelled extreme risk

of the South African financial index (J580) using GPD. The study showed that

the upside risk of the financial index (J580) outweighs the downside risk.

2.9 Concluding remarks

This chapter has reviewed research undertaken by other researchers on rain-

fall, finance, public health, wind and temperature in various countries world-

wide including South Africa. Models applied by different researchers have also

been reviewed in this chapter.

Previous literature looked at modeliing climate data using stationary GEVD

and stationary GPD. The present syudy will use similar methods applied by

Gao et al. (2016) and Wi et al. (2016), to model monthly rainfall data for se-

lected provinces of South Africa.



Chapter 3

Research methodology

3.1 Introduction

This chapter presents statistical and graphical tests used to analyse the monthly

rainfall data for selected provinces of South Africa.

3.2 Data source and study area

Monthly rainfall data for Eastern Cape, Gauteng, KwaZulu-Natal, Limpopo

and Mpumalanga provinces were obtained from South Africa Weather Service

(SAWS) and is a time series secondary data measured in millimeters (mm).

The monthly rainfall data for the five selected provinces are summarised in

Table 3.1.



Research methodology 20

Table 3.1: Summary of rainfall data for selected provinces of South Africa.

Provinces Starting year Ending year
Eastern Cape 1900 2017
Gauteng 1900 2017
KwaZulu-Natal 1900 2017
Limpopo 1904 2017
Mpumalanga 1904 2017

3.3 Parent distributions

Probability distributions are basic concepts in statistics (Amin et al., 2016).

Monthly rainfall data for selected provinces of South Africa were assessed with

five parent distributions in order to identify the appropriate distributions. The

probability models explored include log-normal, Gumbel, Weibull, gamma and

Pareto distributions.

3.3.1 Log-normal distribution

The log-normal distribution is a distribution of random variables with a nor-

mally distributed logarithm. The log-normal distribution model includes a ran-

dom variable Y, and log(Y) is normally distributed (Amin et al., 2016). The

probability density function (PDF) and cumulative distribution are calculated

using (3.1) and (3.2), respectively

f(x) =
exp

[
−1

2
( ln(x−γ)−µ

σ
)2
]

(x− γ)σ
√

2π
, (3.1)

F (x) = φ

(
ln(x− γ)− µ

σ

)
=

1

2

[
erfc{− ln(x− γ)− µ

σ
√

2
}
]
, (3.2)

where µ is the shape parameter, σ is the scale parameter, γ is the location

parameter and φ is the Laplace integral and erfc is the error function.
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3.3.2 Gumbel distribution

According to Amin et al. (2016) the Gumbel distribution also referred to as the

extreme value type I distribution has two forms, one is based on the smallest

extreme (minimum case), and the other is based on the extreme (maximum

case). In this study , the maximum case is employed and its PDF and CDF are

given as:

f(x) =
1

σ
exp

(
−x− µ

σ
− exp

(
−x− µ

σ

))
, (3.3)

F (x) = exp

(
− exp

(
−x− µ

σ

))
, (3.4)

where σ and µ are the scale and location parameters, respectively.

3.3.3 Weibull distribution

The Weibull distribution is a two-parameter distribution with parameters α

and β. Alam et al. (2018) mentioned Weibull as a commonly used frequency

distribution in hydrology. The PDF and CDF for two-parameter Weibull distri-

bution are given as:

f(x) =
α

β

(
α

β

)α−1
exp

[
−
(
x

β

)α]
, (3.5)

F (x) = 1− exp
[
−
(x
α

)]
, (3.6)

where α is the shape parameter (α > 0) and β is a scale parameter (β > 0).

3.3.4 Pareto distribution

The Pareto distribution is a continuous distribution with the following PDF

and CDF, respectively

f(x;α, β) =
αβα

xα+1
, (3.7)
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F (x) = 1−
(

β

x+ β

)α
, (3.8)

where α is a shape parameter and β is scale parameter.

3.3.5 Gamma distribution

The gamma distribution function consists of three different types, 1-, 2-, 3-

parameter gamma distribution (Aksoy, 2000). If the continuous random vari-

able x fits to the PDF function of

f(x) =
1

Γ(α)
xα−1e−x;x > 0, (3.9)

it is said that the variable x is 1-parameter gamma distributed, with the shape

parameter α. In equation (3.9), Γ(α), the incomplete gamma function, is given

by

Γ(α) =

∫ ∞
0

xα−1e−xdx. (3.10)

The distribution function has a form of the simple exponential distribution in

the case of α = 1. If x in equation (3.9) is replaced by x
β
, where β is the scale

parameter, then the 2-parameter gamma distribution is obtained as

f(x) =
1

βαΓ(α)
xα−1e−

x
β ;x > 0, (3.11)

which returns to the 1-parameter gamma distribution for β = 1. If x is replaced

by (x−γ)
β

, where γ is the location parameter, then the 3-parameter gamma dis-

tribution is obtained by

f(x) =
1

βαΓ(α)
(x− γ)α−1e−

x− γ
β

;x > γ. (3.12)
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3.4 Model selection

According to Acquah (2012), the Akaike’s information criterion (AIC) and Bayesian

information criterion (BIC) are widely used as criteria of model selection tool

in many problems. AIC and BIC are employed in this study to find the best-fit

family of probability distribution. The probability distribution with the lowest

AIC and BIC will be considered as the best-fit probability distribution (Thiom-

biano et al., 2017; Mandal and Choudhury, 2015; Katz, 2013).

3.4.1 Akaike’s information criterion (AIC)

AIC is one of the most commonly used information criteria. The idea of AIC

is to select the model that minimises the negative likelihood penalised by the

number of parameters as specified in the following equation:

AIC = −2 log(L) + 2p, (3.13)

where L refers to the likelihood under the fitted model and p is the number of

parameters in the model (Acquah, 2012). Specifically, AIC is aimed at finding

the best approximating model to the unknown true data generating process

and its applications (Acquah, 2010)

3.4.2 Bayesian information criterion (BIC)

BIC is another widely used information criterion. BIC is usually explained in

terms of the Bayesian theory, especially as an estimate of the Bayes factor for

comparison of a model to the saturated model (Acquah, 2012). BIC is defined

as:

BIC = −2 log(L) + p log(n), (3.14)
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where n is the sample size and L is the likelihood under the fitted model. BIC

is designed to find the true model where the true model is assumed to be among

the models being compared (Acquah, 2012).

3.5 Parameter estimation using maximum like-

lihood estimation method

The parameters of the probability distributions are estimated using the maxi-

mum likelihood estimator (MLE) method. Maximum likelihood turns out to be

a widely applicable method that yields good estimates when sample sizes are

large: maximum likelihood estimators are consistent, asymptotically normal,

and asymptotically efficient (Pan and Fang, 2002). According to Jakata and

Chikobvu (2019) and Chege et al. (2016), the joint density function of a sample

size n that is independent and identically distributed (iid) is given as follows:

L(θ|x1, x2, ..., xn|θ) = f(x1|θ)f(x2|θ)...f(xn|θ), (3.15)

where θ are the parameters of the model and xi are the observed variables.

Thus the observed variables, xi are known whereas the parameters given by θ

are to be estimated. The estimated likelihood function is then given by

L(θ|x1, x2, ..., xn) = f(x1, x2, ..., xn|θ) =
n∏
i=1

f(xi|θ), (3.16)

and the logarithmic likelihood function is given by the following:

lnL(θ|x1, x2, ..., xn) =
n∑
i=1

f(xi|θ). (3.17)

The estimated parameters are then given by the set which maximizes the like-

lihood function in (3.16) or (3.17).
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3.6 Test for stationarity

Statistical theory offers a wide range of unit root test, with the most commonly

used being augumented Dickey-Fuller (ADF) test, Phillips-Perron (PP) test and

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test (Fedorová, 2016). However, in

this study ADF, PP and KPSS are used to test whether the monthly rainfall

data for selected provinces of South Africa are stationary.

3.6.1 Augmented Dickey-Fuller (ADF) test

The ADF test was employed in this study to check whether the monthly rain-

fall data for selected provinces of South Africa are stationary.

The ADF test is estimated under the following hypothesis:

H0: there exists a unit root and the time series is non-stationary.

H1: time series is stationary.

The ADF test consists of estimating the following regression model:

yt = β + β1t+ δYt−1 +
m∑
i=1

αi4 Yt−1 + εt, (3.18)

where β is a constant, β1 is the coefficient on time trend. The null hypothesis

is δ = 1, and the alternative hypothesis is δ 6= 1, while εt is a pure white noise

error term and the ADF follows an asymptotic distribution (Paparoditis and

Politis, 2013).

3.6.2 Phillips-Perron (PP) Unit Root Tests

The Phillips-Perron (Liolios, 2015; Phillips and Perron, 1988) test is a more

developed test, introduced in 1988 and it has the same null hypothesis with

ADF tests and also uses the same critical values with it. The PP test makes a
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non-parametric correction to the t-statistic. The PP test involves the equation

coming from Dickey-Fuller test:

4Yt = µ+ v + λt + εt, (3.19)

where εt is I(0) and it can be heteroscedastic. For this reason, the test estimates

the equation:

yt = yt−1 + v + λt + εt. (3.20)

The PP method estimates the non-augmented DF test equation and modifies

the t-ratio of the coefficient, so that serial correlation does not affect the asymp-

totic distribution of the test statistic. The PP test is based on the statistic:

t̄µ = tµ

(
γ0
f0

) 1
2

− T (f0 − γ0[se(µ)]

2f
1
2
0 s

. (3.21)

The PP test is estimated under the following hypothesis:

H0: there is a unit root.

H1: there is no unit root.

3.6.3 Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

The present study employed KPSS unit root test model proposed by Poulos

(2016) and Hobijn et al. (2004). This method assumes that a time series yt can

be decomposed as:

yt = ζ + rt + εt, (3.22)

where ζ is a deterministic trend, rt is a random walk and εt is a stationary

error. The random walk component is expressed by the following equation:

rt = rt−1 + ut, (3.23)
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where

ut is a random variable with mean 0 and variance σ2
u.

If σ2
u = 0, the null hypothesis of stationary series is true.

If σ2
u = 0, and ζ = 0, then the series is stationary about the value r0.

If σ2
u = 0, and ζ 6= 0, then the series is stationary about a trend.

The KPSS test is estimated under the following hypothesis:

H0: Series does not have a unit root test or is stationary

H1: Series has a unit root or is not stationary.

3.7 Trend test

This study used non-parametric Mann-Kendall (M-K) test statistic and time

series plot to investigate the long-term trend of the monthly rainfall and their

variability across the selected provinces.

3.7.1 Non-parametric Mann-Kendall (M-K) test statistic

Non-parametric M-K test statistic is frequently used to quantify the signifi-

cance of monotonic trend in hydrometeorological time series (Wi et al., 2016;

Da Silva et al., 2015). The Mann-Kendall test statistic is defined as

S =
n−1∑
j=1

n∑
i=j+1

sgn(ei − ej), (3.24)

where n is the number of extreme values. If S is positive, then there is an

increasing trend, but if S is negative, then there is a decreasing trend, and
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sgn(ei − ej) is a sign function given by:

sgn(ei − ej) =


1, if ei − ej > 0,

0, if ei − ej = 0,

−1. if ei − ej < 0.

(3.25)

Under the null hypothesis of no trend, the theoretical mean of S is 0 and its

variance is given by

V ar(S) =

[
n(n− 1)(2n+ 5)−

g∑
p=1

tp(tp − 1)(2tp + 5)

]
/18, (3.26)

where g is the number of tied groups (a tied group is a set of sample data having

the same value), and tp is the number of data points in the pth tied group. If

no tied group exist, this process can be ignored (Da Silva et al., 2015). In cases

where the sample size n > 30, the normalised test statistic Z can be used to

statistically quantify the significance of the trend. Z is calculated using the

following equation:

Z =



S−1√
V ar(S)

, if S > 0,

0, if S = 0,

S+1√
V ar(S)

, if S < 0.

(3.27)

Positive values of Z indicate an increasing trend, while negative Z values show

decreasing trends. In a one-tailed test at a significance level of α, the null

hypothesis of no trend is rejected if | Z | > zα, where z is the standard normal

variable. In this study, the significance level was set to be 5%.

3.7.2 Time series plots

A time series plot is simply a graph in which the data values are arranged

sequentially in time. It is commonly used to give a pictorial view of the data
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series over time. time series plots and other plots such probability, quantile,

return level, and density will be used as part of exploratory data analysis.

3.8 Test for normality

According to Adefisoye et al. (2016), there are several parametric and non-

parametric methods of assessing whether data are normally distributed or

not. They are split into two groups: graphical and statistical. The most fre-

quently used techniques include: Quantile-Quantile (Q-Q) plots, cumulative,

probability-probability (P-P) plots, Anderson–Darling test (AD), Shapiro–Wilk

(SW) test, D’Agostino-Pearson K2 (DPK) test, chi-square test, Jarque-Bera (JB)

test, kurtosis test, Shapiro-Francia (SF), skewness test, robust Jarque-Bera

(RJB) test. In this study only JB, SW and chi-square methods are employed to

check whether the monthly rainfall data are normally distributed or not. The

SW test is one of the most popular test for normality assumption diagnostics

which has good properties of power and it based on cerrelation withing given

observations and associated normal scores (Das and Imon, 2016). Wuertz and

Katzgraber (2005) and Adefisoye et al. (2016) stated that JB and chi-square

test are likely most widely used procedure for testing normality.

3.8.1 Jarque-Bera (JB) test

The JB test statistic is expressed as:

JB = n

(
(
√
b1)

2

6
+

(b2 − 3)2

24

)
, (3.28)

where
√
b1 and b2 are the skewness and kurtosis measures and are given by

m3

(m2)3/2
and m4

(m2)3
, respectively; and m2, m3 and m4, are second, third and fourth

central moments, respectively. The JB test statistic is chi-square distributed

with two degrees of freedom.
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The hypothesis test for the JB test procedure is

H0: The monthly rainfall data is normally distributed, versus, H1: The monthy

rainfall data do not come from a normal distribution.

3.8.2 Shapiro–Wilk test (SW)

The SW test is of the form:

W =
1

D

[
m∑
i=1

ai(x(n−i+1) − x(i)

]2
, (3.29)

where m = n
2

if n is even, while m = (n−1)
2

if n is odd. D =
∑n

i=1(xi − x̄)2 and x(i)

represent the ith order statistic of a sample, the constants ai are given by:

(a1, a2, ..., an) = mTV −1

(mTV −1V −1m)
1
2

and m is given by m = (m1,m2, ...,mn)T where

m1,m2, ...,mn are the expected values of order statistics of independent and

identically distributed (iid) random variables sampled from the standard nor-

mal distribution, and V is the covariance matrix of those order statistics (Ade-

fisoye et al., 2016).

The S-W test is estimated under the following hypothesis:

H0: The monthly rainfall data is normally distributed

H1: The monthly rainfall data does not come from a normal distribution.

3.8.3 Chi-square test

The chi-square goodness-of-fit is defined as:

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
, (3.30)
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where (Oi) and (Ei) refer to the ith observed and expected frequencies, respec-

tively, and n is the number of groups. When the null hypothesis is true, the

above test statistic follows a chi-square distribution with k − 1 degrees of free-

dom (Adefisoye et al., 2016).

The chi-square test is estimated under the following hypothesis:

H0: The monthly rainfall data are sampled from a normal distribution

H1: The monthly rainfall data are not sampled from a normal distribution.

3.9 Extreme value theory techniques

In extreme value theory (EVT) two approaches exist: the block maxima (BM)

and the peaks-over-threshold (POT) methods. According to Ferreira and De Haan

(2015), the BM approach is an approach in EVT that consists of dividing the ob-

servation period into non-overlapping periods of equal sizes. Kajambeu (2016)

and Coles et al. (2001) defined the POT as the method whereby the peak val-

ues from a continuous record for any period during which values exceed a cer-

tain threshold are extracted. In this study the BM in a changing climate and

POT with time varying covariates and thresholds are utilised to model monthly

rainfall of the five selected provinces of South Africa.

3.9.1 Stationary generalised extreme value distribution

Generalised extreme value distribution (GEVD) is the family of asymptotic

distributions that describes the behaviour of extreme conditions. The GEVD

consists of three extreme value distributions namely: Gumbel, Fréchet and

Weibull families which are also referred to as type I, II and III extreme value

distributions (Syafrina et al., 2019; Ngailo et al., 2016; Coles et al., 2001). The
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cumulative probability distribution for GEVD is of the form:

GEVD(x, µ, σ, ξ) =

exp−
[
1 + ξ

(
x−µ
σ

)]−1
ξ ; ξ 6= 0,

exp
(
− exp

(
−x−µ

σ

))
; ξ = 0,

(3.31)

where x are the extreme values from the blocks, µ, σ and ξ are the location,

scale and shape parameters, respectively. For ξ > 0, we obtain the Fréchet

distribution, for ξ = 0, we get the Gumbel distribution and for ξ < 0, we get the

Weibull distribution.

3.9.2 Non-stationary generalised extreme value distribu-

tion

The non-stationary GEVD model is the fundamental modification of the sta-

tionary GEVD model (Syafrina et al., 2019). To account for non-stationary

GEVD the location parameter µ and the scale parameter σ are assumed to

vary with time t and possibly other covariates (Hundecha et al., 2008; Coles

et al., 2001). The non-stationary GEVD is given by:

F (x;µ(t), σ(t), ξ(t) = exp−
[
1 + ξ

x− µ(t)

σ(t)

]− 1
ξ(t)

. (3.32)

In the simplest case, the following regression structures could be examined for

the location and scale parameters:

µ(t) = µ0 + µ1t+ µ2t
2, (3.33)

σ(t) = exp(σ0 + σ1t+ σ2t
2, ξ(t) = ξ (3.34)

allowing up to quadratic dependence on time t (Panagoulia et al., 2014).
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3.9.3 Parameter estimation of non-stationary GEVD

Parameters of the non-stationary GEVD are estimated using the method of

maximum likelihood (ML).

Maximum likelihood estimation method

For a sample of N observations, the ML of the time-dependent GEVD in (3.32)

was determined by maximising the log-likelihood function, expressed with time-

varying parameters:

l(µ(t), σ(t), ξ) = −
N∑
t=1

log σ(t) +

(
1 +

1

ξ

)
log

[
1 + ξ

(
xi − µ(t)

σ(t)

)]

+

[
1 + ξ

(
xi − µ(t)

σ(t)

)]−1/ξ
,

(3.35)

where N is the number of years of observation. To obtain the GEVD parameter

estimators that maximise equation (3.35) we used the interior algorithm based

nonlinear optimisation as implemented in the MATLAB Optimisation Toolbox

(Wi et al., 2016).

3.10 Goodness-of-fit

Goodness-of-fit test statistics are used for checking the validity of a specified

or assumed probability distribution model. In this study, Kolmogorov-Smirnov

(K-S) test, the Anderson-Darling (A-D) and graphical methods, were applied to

identify the best model.

3.10.1 Kolmogorov-Smirnov (K-S) test

The K-S test, based on the empirical cumulative distribution function is used

to decide if a sample comes from a hypothesised continuous distribution (Alam
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et al., 2018; Chikobvu and Chifurira, 2015; Sharma and Singh, 2010). The K-S

statistic D is defined as the largest vertical difference between theoretical and

the empirical cumulative distribution (ECDF) and is formulated as follows:

Dmax = max
1≤i≤n

(
F (xi)−

i− 1

n
;
i

n
− F (xi)

)
, (3.36)

where Xi are random samples, i = 1, 2, ..., n, and the CDF is

Fn(x) =
1

n
[Number of observations ≤ x] . (3.37)

The K-S test is estimated under the following hypothesis:

H0: The monthly rainfall data follow a specified distribution

H1: The monthly rainfall data do not follow the specified distribution.

3.10.2 Anderson-Darling (A-D)

The A-D test statistic (A2) is defined as:

A2 = −n− 1

n

n∑
i=1

(2i− 1) [lnF (Xi) + ln(1− F (Xn−1+1))] . (3.38)

The A-D test is used to compare the fit of an observed CDF to an expected CDF.

This test gives more weight to the tails of the distribution than the K-S test

(Chikobvu and Chifurira, 2015; Sharma and Singh, 2010).

The A-D test is estimated under the following hypothesis:

H0: The monthly rainfall data follow a specified distribution

H1: The monthly rainfall data do not follow the specified distribution.
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3.10.3 Graphical test

Alam et al. (2018) stated that graphical test is one of the most simple power-

ful techniques for selecting the best-fit model. To check if the time-dependent

GEVD and GPD fit well to the monthly rainfall data, the following graphical

tests were used.

Quantile-quantile (Q-Q) plots

Quantile-quantile (Q-Q) plot, is a comparison of an empirical form for esti-

mating the exceedance and the inverse of fitted distribution function. Any

departure from linearity indicates model failure in perfectly fitting the data

(Iyamuremye et al., 2019; Alam et al., 2018).

Probability-probability (P-P) plots

Probability-probability (P-P) plot is a comparison of an empirical (usually per-

centage rank) and the fitted distribution function. In case of perfect fit, the

data would line up on the diagonal of the probability plots (Iyamuremye et al.,

2019; Alam et al., 2018).

Return level plots

In these plots the empirical estimates of the return level functions are added. If

there is an agreement between the model-based curve and empirical estimates,

then the model is suitable for the data (Iyamuremye et al., 2019; Alam et al.,

2018).

3.10.4 Choice of preferred model

When time-dependent GEVD and GPD are considered with covariates, there

are a number of possible models to select from (Osman et al., 2015). In order to

select between model fits, a test of the likelihood ratio test also known as the
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deviance (D) statistic is used. For models M0 ⊂Mi, we define the D statistic as:

D = 2{li(Mi)− l0(M0)}, i = 1, 2, 3, ... (3.39)

where l0(M0) and li(Mi) are the maximised log-likelihood under models M0 and

Mi respectively. The asymptotic distribution of D is given by χ2
k distribution

with k degrees of freedom, where k is the difference in dimensionality of M1

and M0 . The calculated deviance statistic, D, is compared to critical values

from χ2
k at α level of significance. Large values of D suggest that M1 explains

substantially more of the variation in the data than M0 (Kajambeu, 2016; Os-

man et al., 2015; Coles et al., 2001).

3.11 Stationary generalised Pareto distribution

(GPD)

The generalised Pareto distribution (GPD) is a peaks-over-threshold (POT) dis-

tribution which considers the maximum values exceeding a pre-determined

threshold which is assumed to approximately follow a GPD (Maposa et al.,

2014). Let X be a random variable. The CDF of the GPD (ξ, µ, σ) with shape

parameter ξ, location parameter µ, and scale parameter σ is given by:

Gξ,µ,σ(x)) =

1−
(
1 + ξ x−µ

σ

)−1
ξ , ξ 6= 0

1− exp
(
−x−µ

σ

)
, ξ = 0.

(3.40)

For ξ ≥ 0, the range is µ ≤ x < ∞, and for ξ < 0, µ < x < µ− σ/ξ. When ξ = 0,

the GPD is the exponential distribution (Zhao et al., 2019; Pickands III, 1975).
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3.11.1 Peaks-over-threshold with time-varying covariates

Let Yt be a process with associated time-varying covariates Xt, for t = 1, ..., n,

where n is the number of observations and let τ(t) be the time varying thresh-

old. The extreme quantiles of Yt are denoted by yp and are conditional on the

covariates Xt, and P (Yt > yp|Xt = xt) is the tail probability above the quantile

yp. On average, the high quantile yp is exceeded approximately once every 1
p

(Sigauke and Bere, 2017; Eastoe and Tawn, 2009). The observations yt above

τ(t) are assumed to follow a GPD, that is,

Yt ∼ GPD(σ(xt), ξ(xt)), (3.41)

where σ(xt) is the scale parameter and ξ(xt) is the shape parameter depending

on the time-varying covariates, Xt. The CDF is composed as follows:

G(yt) = 1−
(

1 +
ξ(xt)(yt − τ(t))

σ(xt)

)− 1
ξ(xt)

, (3.42)

where ξ(xt) 6= 0, yt is the monthly rainfall data and the parameters are mod-

elled as a function of the covariates.

3.11.2 Time-varying threshold

From the previous section we let τ(t) to be our time-varying threshold. Sigauke

and Bere (2017) defined τ(t) as a penalised cubic smoothing spline with a posi-

tive shift factor and the function is given as:

τ(t) =
n∑
i=1

(yi − f(ti))
2 + λ

∫
(f
′′
(t))2dt+ u, (3.43)

where yi denotes our monthly rainfall data, λ is a smoothing parameter and u ∈

R is a shift factor which should be large enough to allow asymptotic condition

to be satisfied when we fit the GPD. In this study, extremal mixture models
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were adopted to estimate the positive shift factor u.

3.11.3 Declustering

In order to reduce the dependencies of time series data, we normally declus-

ter the exceedances using the method of declustering which Ferro and Segers

(2003) has discussed. The intervals estimator method that was proposed by

Ferro and Segers (2003) is given as:

ηu =
2
[∑N−1

n−1 (Ti = 1)
]2

(N − 1)
∑N−1

i=1 (Ti − 1)(Ti − 2)
, (3.44)

where u is a sufficiently high threshold and Ti denote the exceedance times. Ac-

cording to Smith (1989) the extremal index, ηu measures the amount of declus-

tering and 0 ≤ η ≤1, where 1
ηu

is the limiting mean cluster size.

3.11.4 Extremal mixture model

This section outlines the extremal mixture models in which the threshold is

used as a parameter to be estimated together with the GPD parameters (Scar-

rott and MacDonald, 2012). Mixture models are divided into three parts, namely:

parametric, semi-parametric and non-parametric. In this study, the non-parametric

mixture models, were employed. According to Scarrott and MacDonald (2012)

the major benift of the non-parametric approaches as compared to the paramet-

ric approaches is that the tail fit is robust to the bulk fit. In non-parametric

mixture models the observations below the threshold are assumed to follow a

non-parametric density h(.|λ,X), which is dependent on parameter λ and the

observation vector X. The excesses above the threshold are assumed to follow

a GPD(σu, ξ).

Suppose the monthly rainfall data consist of a sequence of n iid observations
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X = xi; i = 1, ..., n, with distribution function F defined by

F (x|λ, u, σu, ξ,X) =

(1− φu)H(x|λ,X)
H(u|λ,X)

, if x ≤ u,

(1− φu) + φuG(x|u, σu, ξ), if x > u,

(3.45)

where φuG(x|u, σu, ξ) is the unconditional GPD function given by (3.41) (Scar-

rott and MacDonald, 2012).



Chapter 4

Data analysis and discussion

4.1 Introduction

Chapter 4 presents the analyses and interpretation of results using methods

that were discussed in Chapter 3. This chapter is divided into various sections:

descriptive statistics, stationarity tests, normality tests, parent distribution

selection, trend analysis and model fitting.

4.2 Descriptive statistics

The descriptive statistics evaluated are the mean, standard deviation, median,

kurtosis, skewness, minimum and the maximum monthly rainfall amount for

each province. The summary of the descriptive statistics for each province is

shown in Table 4.1.

From Table 4.1, the monthly rainfall data for each province has a mean value
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X̄ > Q2 (Median), indicating that the monthly rainfall data is positively skewed

and this is confirmed by the positive values of skewness. Eastern Cape, Gaut-

eng KwaZulu-Natal provinces have kurtosis greater than three which indicate

heavy tails than a normal distribution, while Limpopo and Mpumalanga have

kurtosis less than three which indicate lighter tails than a normal distribution.

The standard deviation for all the five provinces ranges from 31.28 to 57.23

mm per month. KwaZulu-Natal province has the highest standard deviation

with the value of 57.23 mm per month which indicates a large variation in

the monthly rainfall series, while Mpumalanga province has the lowest stan-

dard deviation of 31.28 mm per month which implies a small variation in the

monthly rainfall series.

The minimum monthly rainfall ranges between 0.01 mm and 0.50 mm per

month where Eastern Cape receives the highest minimum rainfall of 0.50 mm

per month, while Gauteng and KwaZulu-Natal receive the lowest minimum

rainfall of 0.01 mm per month.

The maximum monthly rainfall lie between 111.00 mm and 478.80 mm per

month where KwaZulu-Natal receives the highest maximum monthly rainfall

of 478.80 mm per month followed by Gauteng with the maximum rainfall of

438.10 mm per month. Mpumalanga receives the lowest maximum rainfall of

111.00 mm per month.
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Table 4.1: The descriptive statistics of the monthly rainfall data.

Provinces Min Max Median Mean Std.dev Kurt Skew
Eastern Cape 0.50 211.00 42.50 49.03 34.46 4.06 0.99

Gauteng 0.01 438.10 45.45 58.45 55.62 5.22 1.18
KwaZulu-Natal 0.01 478.80 67.75 73.92 57.23 5.68 1.10

Limpopo 1.00 112.00 45.00 46.74 31.40 1.93 0.26
Mpumalanga 1.00 111.00 47.00 48.19 31.28 1.85 0.16

Note: Min=Minimum, Max=Maximum, Std.dev=Standard deviation, Kurt=
Kurtosis, Skew= Skewness.

4.3 Test for stationarity results

The augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) tests were used to check for stationarity of monthly

rainfall data for selected provinces of South Africa. Table 4.2 shows the results

of the ADF, PP and KPSS tests.

The ADF and PP tests were tested under the following hypotheses:

H0: the series has a unit root.

H1: the series is stationary.

The KPSS test was tested under the following hypothesis:

H0: The series does not have a unit root test (or series is stationary).

H1: The series has a unit root (or series is not stationary).

From Table 4.2 the p-values of the ADF test statistics for Eastern Cape, Limpopo

and Mpumalanga are significant (p < 0.05), suggesting that the monthly rain-

fall data for these three provinces are stationary. The ADF p-values for Gaut-
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eng and KwaZulu-Natal are insignificant (p> 0.05), suggesting that the monthly

rainfall data for these two provinces are not stationary at 5% level of signifi-

cance.

Also, from Table 4.2 the p-values of the KPSS test for all five provinces are

significant (p < 0.05), suggesting that the monthly rainfall data are not sta-

tionary. Furthermore, from table 4.2 the p-values of the PP test for all five

provinces are significant (p < 0.05), implying that the monthly rainfall data

are stationary.

Overall, based on all the stationarity test findings, we conclude that the monthly

rainfall data are not stationary for the majority of the provinces.

Table 4.2: ADF, KPSS and PP stationarity test results of monthly rainfall data.

Provinces Test Test statistic p-value
Eastern Cape ADF -3.7614 0.02092

KPSS 3.7258 0.01
PP -1432 0.01

Gauteng ADF -2.6238 0.3143
KPSS 4.205 0.01

PP -840.85 0.01
KwaZulu-Natal ADF -2.6452 0.3052

KPSS 4.1714 0.01
PP -1003.5 0.01

Limpopo ADF -7.1461 0.01
KPSS 1.8398 0.01

PP -1502.6 0.01
Mpumalanga ADF -8.1155 0.01

KPSS 0.96204 0.03041
PP -1312.9 0.010
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4.4 Test for normality results

In this study we formally tested for normality of the monthly rainfall data us-

ing the Jarque-Bera (JB), Shapiro-Wilk (SW) and chi-square tests. Table 4.3

presents the results of the normality tests.

The JB, SW and chi-square tests are evaluated under the following hypothe-

ses: H0: The monthly rainfall data are normally distributed, versus, H1: The

monthly rainfall data do not come from a normal distribution.

From Table 4.3, the results for all the three normality tests are significant (p <

0.05), which suggest that the monthly rainfall data do not come from a normal

distribution.

Table 4.3: JB, SW and chi-square normality test test results of monthly rainfall
data.

Provinces Test Test statistic p-value
Eastern Cape JB 298.15 <0.01

SW 0.93113 <0.01
Chi-square 34276 <0.01

Gauteng JB 618.22 <0.01
SW 0.88137 <0.01

Chi-square 78541 <0.01
KwaZulu-Natal JB 710.9 <0.01

SW 0.92103 <0.01
Chi-square 62693 <0.01

Limpopo JB 83.244 <0.01
SW 0.9511 <0.01

Chi-square 29843 <0.01
Mpumalanga JB 83.833 <0.01

SW 0.95219 <0.01
Chi-square 28739 <0.01
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4.5 Results for parent distributions

Five candidate parent distributions, namely: Gumbel, Weibull, gamma, Pareto

and log-normal distributions, were fitted to the monthly rainfall data. The

parent distribution with the lowest Akaike information criterion (AIC) and

Bayesian information criterion (BIC) was considered as the best fitting parent

distribution. From Table 4.4 the best fitting parent distribution for the fol-

lowing provinces: Eastern Cape, Kwazulu-Natal, Limpopo and Mpumalanga is

the Weibull distribution since it has the lowest values of AIC and BIC, while

for Gauteng the best fitting parent distribution was found to be gamma distri-

bution.
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Table 4.4: AIC and BIC results for selection of parent distributions.

Provinces Probability distributions AIC BIC loglikelihood
Eastern Cape log-normal 13812.61 13823.13 -6904.31

Weibull 13609.13 13619.64 -6802.56
Gumbel 13759.98 13770.4 -6877.94
gamma 13625.88 13636.4 -6810.94
Pareto 13859.42 13869.93 -6927.71

Gauteng log-normal 14672.78 14683.29 -7334.39
Weibull 13995.70 14006.21 -6995.85
Gumbel 15098.24 15108.75 -7547.12
gamma 13843.41 13853.92 -6919.71
Pareto 14356.93 14367.45 -7176.47

KwaZulu-Natal log-normal 15333.89 15344.4 -7664.95
Weibull 14954.07 14964.58 -7475.03
Gumbel 15206.38 15216.89 -8187.64
gamma 14979.70 14990.21 -7487.85
Pareto 15022.14 15032.66 -7509.07

Limpopo log-normal 14109.66 14120.17 -7052.83
Weibull 13583.36 13593.87 -6789.68
Gumbel 13750.84 13761.35 -6873.42
gamma 13649.70 13660.21 -6822.85
Pareto 13723.83 13734.34 -6859.91

Mpumalanga log-normal 14201.52 14212.03 -7098.76
Weibull 13636.32 13646.83 -6816.16
Gumbel 13781.86 13792.37 -6888.93
gamma 13717.04 13727.55 -6856.52
Pareto 13810.14 13820.65 -6903.07
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4.5.1 Diagnostic plots of the best fitting parent distribu-

tions in the five provinces.

Figures 4.1-4.5 illustrate the diagnostic plots of the parent distribution for

each of the five provinces: Eastern Cape, Gauteng, KwaZulu-Natal, Limpopo

and Mpumalanga. The diagnostic goodness-of-fit plots presented for each are

quantile-quantile (Q-Q), empirical and theoretical density, empirical and theo-

retical CDFs, and probability-probability (P-P) plots.

Figure 4.1 presents the Weibull distribution diagnostic plots for Eastern Cape.

Both the Q-Q and P-P plots are reasonably linear with very few outliers sug-

gesting a very good fit of the Weibull distribution to the monthly rainfall data.

Also, the density and CDF plots show a very good fit of the Weibull distribution.

Therefore, since all the diagnostic plots suggest a good fit, we conclude that the

suitable parent distribution of the Eastern Cape monthly rainfall data belongs

to the Weibull distribution.

Figure 4.2 presents the gamma distribution diagnostic plots for Gauteng. Both

the Q-Q and P-P plots are reasonably linear with some outliers indicating a

better fit of the gamma distribution to the monthly rainfall data. Also, the den-

sity and CDF plots show a very good fit of the gamma distribution. Therefore,

since all the diagnostic plots suggest a good fit, we conclude that the suitable

parent distribution of the Gauteng monthly rainfall data belongs to the gamma

distribution.

Figure 4.3 presents the Weibull distribution diagnostic plots for KwaZulu-Natal.

Both the Q-Q and P-P plots are reasonably linear with some outliers suggesting

a very good fit of the Weibull distribution to the monthly rainfall data. Also,

the density and CDF plots show a very good fit of the Weibull distribution.

Therefore, since all the diagnostic plots suggest a good fit, we conclude that
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the suitable parent distribution of the KwaZulu-Natal monthly rainfall data

belongs to the Weibull distribution.

Figure 4.4 presents the Weibull distribution diagnostic plots for Limpopo. Both

the Q-Q and P-P plots are reasonably linear with some outliers indicating a bet-

ter fit of the Weibull distribution to the monthly rainfall data. Also, the density

and CDF plots show a very good fit of the Weibull distribution. Therefore, since

all the diagnostic plots suggest a good fit, we conclude that the suitable parent

distribution of the Limpopo monthly rainfall data belongs to the Weibull dis-

tribution.

Figure 4.5 presents the Weibull distribution diagnostic plots for Mpumalanga.

Both the Q-Q and P-P plots are reasonably linear with some outliers suggesting

a very good fit of the Weibull distribution to the monthly rainfall data. Also,

the density and CDF plots show a very good fit of the Weibull distribution.

Therefore, since all the diagnostic plots suggest a good fit, we conclude that the

suitable parent distribution of the Mpumalanga monthly rainfall data belongs

to the Weibull distribution.
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Figure 4.1: Weibull distribution diagnostic plots for Eastern Cape.
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Figure 4.2: gamma distribution diagnostic plots for Gauteng.



Data analysis and discussion 50

Empirical and theoretical dens.

Data

D
en

si
ty

0 100 200 300 400 500

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

0 100 200 300 400

0
10

0
20

0
30

0
40

0

 Q−Q plot

Theoretical quantiles

E
m

pi
ric

al
 q

ua
nt

ile
s

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

Data

C
D

F

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−P plot

Theoretical probabilities

E
m

pi
ric

al
 p

ro
ba

bi
lit

ie
s

Figure 4.3: Weibull distribution diagnostic plots for KwaZulu-Natal.
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Figure 4.4: Weibull distribution diagnostic plots for Limpopo.
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Figure 4.5: Weibull distribution diagnostic plots for Mpumalanga.
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4.6 Trend analysis results

Mann-Kendall test statistic and time series plots were used to analyse the

long-term trends of the monthly rainfall data for the five provinces. The Mann-

Kendall test statistic results are presented in Table 4.5. The outcome of the

Mann-Kendall test results revealed that in the Eastern Cape, Gauteng and

KwaZulu-Natal provinces there were a significant monotonic decreasing long-

term trends (p < 0.05 and τ was negative), while in Limpopo and Mpumalanga

there were no significant monotonic decreasing long-term trends (p > 0.05 and

τ was negative).

Figures 4.6-4.10 illustrate the monthly rainfall data time series plots for East-

ern Cape, Gauteng, KwaZulu-Natal, Limpopo and Mpumalanga provinces. The

time series plots in Figures 4.6-4.10 do not exhibit any significant discrible

long-term trends for all the provinces. This justifies the use of Mann-Kendall

test to help uncover the hidden long-term trends in the monthly rainfall series

in Table 4.5.

Table 4.5: Results for Mann-Kendall test statistic.

Provinces M-K test statistic Kendall’s tau p-value
Eastern Cape -4.130 -0.073 0.01

Gauteng -3.057 -0.054 0.002
KwaZulu-Natal -2.399 -0.043 0.016

Limpopo -0.832 -0.015 0.405
Mpumalanga -0.487 -0.009 0.626
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4.6.1 Time series plot for the five selected provinces of

South Africa.
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Figure 4.6: Time series plot for Eastern Cape monthly rainfall, 1900-2017.
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Figure 4.7: Time series plot for Gauteng, monthly rainfall, 1900-2017.
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Figure 4.8: Time series plot for KwaZulu-Natal, monthly rainfall, 1900-2017.
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Figure 4.9: Time series plot for Limpopo, monthly rainfall, 1904-2017.
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Figure 4.10: Time series plot for Mpumalanga, monthly rainfall, 1904-2017.
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4.7 Non-stationary GEVD modelling of annual

block maxima rainfall data

The time series plots of the annual block maxima rainfall series are shown

in Figures 4.11-4.15. There seems to be rather strong evidence for a positive

long-term trend over the years, for all the provinces. A substantial part of the

variability in the data can probably be explained by a systematic variation in

rainfall over the years. One way of capturing this trend is by allowing the

GEVD location and scale parameters to vary with time. From Figures 4.11-

4.15, a simple linear trend in time seems plausible for our annual maximum

rainfall Xt, and we can use the model

Xt ∼ GEV (µ(t), σ(t), ξ), (4.1)

where µ(t) and σ(t) are the time-dependent location and scale parameters, re-

spectively.

In the present study eight models are proposed for the non-stationary GEVD:

M1,M2,M3,M4,M5,M6,M7 and M8. The reference model is denoted by M0 and

is the stationary GEVD. Model M1 has a linear trend in the location parameter

such that µ(t) = µ0 + µ1t, σ(t) = σ and ξ(t) = ξ; Model M2 has a linear trend

in the scale parameter such that µ(t) = µ, log σ(t) = exp(σ0 + σ1t) and ξ(t) = ξ;

Model M3 has a linear trend in both location and scale parameters such that

µ(t) = µ0 + µ1t, log σ(t) = exp(σ0 + σ1t) and ξ(t) = ξ; Model M4 has a nonlinear

quadratic trend in the location parameter and a linear trend in scale parame-

ter such that µ(t) = µ0 +µ1t+µ2t
2, log σ(t) = exp(σ+σ1t) and ξ(t) = ξ; Model M5

has a linear trend in the location parameter and a nonlinear quadratic trend

in the scale parameter such that µ(t) = µ0 + µ1t, log σ(t) = exp(σ0 + σ1t+ σ2t
2)
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and ξ(t) = ξ; Model M6 has a nonlinear quadratic trend in both location and

scale parameters such that µ(t) = µ0+µ1t+µ2t
2, log σ(t) = exp(σ0+σ1t+σ2t

2) and

ξ(t) = ξ; Model M7 has a nonlinear quadratic trend in the location parameter

only with no variation in scale such that µ(t) = µ0 + µ1t + µ2t
2, σ(t) = σ and

ξ(t) = ξ; Model M8 has a nonlinear quadratic trend in the scale parameter with

no variation in the location parameter such that µ(t) = µ, log σ(t) = exp(σ0 +

σ1t+ σ2t
2) and ξ(t) = ξ.
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Figure 4.11: Time series plot showing the annual block maximum rainfall in
mm observed in Eastern Cape, 1900–2017.
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Figure 4.12: Time series plot showing the annual block maximum rainfall in
mm observed in Gauteng, 1900–2017.
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Figure 4.13: Time series plot showing the annual block maximum rainfall in
mm observed in KwaZulu-Natal, 1900–2017.
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Figure 4.14: Time series plot showing the annual block maximum rainfall in
mm observed in Limpopo, 1904–2017.
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Figure 4.15: Time series plot showing the annual block maximum rainfall in
mm observed in Mpumalanga, 1904–2017.



Data analysis and discussion 60

4.7.1 Eastern Cape

The stationary GEVD model for Eastern Cape data (i.e., model M0) has a maxi-

mum negative log-likelihood (NLLH) of 556.765 (see Table 4.6). A GEVD model

with linear trend in the location parameter (i.e., M1) has a maximum NLLH

of 555.820. The deviance statistic for comparing these two models is there-

fore, D=2(556.769-555.820)=1.898, which is small compared to χ2
1(0.05) = 3.841.

Thus, allowing for a linear trend in the location parameter does not improve

on our stationary GEVD model, M0. Therefore, M1 is not a worth model to con-

sider.

Consider the pair of models (M0,M2) from Table 4.6. The deviance statistic is

2(556.769-555.724)=2.090, which is small compared to χ2
1(0.05) = 3.841. Thus,

allowing for a linear trend in the scale parameter does not improve on our sta-

tionary GEVD model, therefore, we reject model M2 and conclude that is not

worthwhile to allow for a linear trend in the scale parameter.

From Table 4.6, the deviance statistics of model pairs (M0,M3) and (M0,M7)

are 2.478 and 1.442, respectively. Since both values of the deviance statistics

are smaller than χ2
2(0.05) = 5.991, it implies that both models do not provide

any improvement in fit over the stationary GEVD model. The other model

pairs from Table 4.6 (M0,M4) and (M0,M5), have deviance statistics of 1.864

and 0.452, respectively. These results revealed that model M4, which allows

for nonlinear quadratic trend in the location parameter and a linear trend in

the scale parameter, does not provide an improvement in fit over the station-

ary GEVD model since the value of the deviance statistic (1.864) is small as

compared to the value of χ2
3(0.05) = 7.815. On the other hand, model M5, which

allows for linear trend in location parameter and a nonlinear quadratic trend

in the scale parameter, does not provide an improvement in fit over the station-

ary GEVD model since the value of the deviance statistic is smaller than the
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value of χ2
3(0.05) = 7.815.

The nonlinear quadratic model pair (M0,M6), which allows for nonlinear quadratic

trend in both location and scale parameters, does not improve our station-

ary GEVD model since the deviance statistic , D=1.37, is small compared to

χ2
4(0.05) = 9.488. Again in Table 4.6, the model pair (M0,M8), which allows for

nonlinear quadratic trend in scale parameter with no variation in location pa-

rameter, has a deviance statistic of 0.354, which is too small compared to the

critical value of 5.991 with 2 degrees of freedom. Thus, allowing for a quadratic

trend in the scale parameter with no variation in the location parameter does

not improve on our stationary GEVD.

Table 4.6: Non-stationary GEVD models for Eastern Cape for the period 1900-
2017.

Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 100.782 0 0 23.244 0 0 -0.012 556.769
M1 95.768 0.086 0 23.057 0 0 -0.013 555.820
M2 100.7005 0 0 22.328 0.017 0 -0.019 556.724
M3 94.955 0.102 0 20.715 0.041 0 -0.022 555.530
M4 98.043 -0.039 0.001 20.928 0.036 0 -0.010 555.837
M5 99.323 0.002 0 18.126 0.310 -0.003 0.092 556.543
M6 96.672 -0.003 0.001 17.7333 0.246 -0.002 0.095 556.084
M7 98.475 -0.033 0.001 22.982 0 0 -0.002 556.048
M8 99.499 0 0 18.263 0.305 -0.003 0.091 556.592

Key: NLLH = negative log-likelihood.

Overall, the final model for Eastern Cape is the stationary GEVD model, M0.

The general model for Eastern Cape is given by

GEV (x, µ, σ, ξ) = exp−
[
1− 0.012

(
x− 100.782

23.244

)] 1
0.012

. (4.2)

The shape parameter (-0.012) for the model, M0, indicates that the rainfall data

for Eastern Cape can be modelled by the Weibull class of distribution since the
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shape parameter ξ < 0. The diagnostic plots for the stationary GEVD model in

(4.2) are presented in Figure 4.16. The diagnostic plot results in Figure 4.16

show that the stationary GEVD model, M0, is the best fit for the Eastern Cape

monthly rainfall data.
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Figure 4.16: Diagnostic plots for the stationary GEVD best fitting model for
Eastern Cape province.

Goodness-of-fit test for Eastern Cape GEVD model

The goodness-of-fit test based on Kolmogorov-Smirnov (K-S) and Anderson-

Darling (A-D) tests were performed in order to check if the maximum monthly

rainfall data for Eastern Cape follow a stationary GEVD model. Table 4.7

presents the results of the K-S and A-D goodness-of-fit tests for the selected

stationary GEVD model for the Eastern Cape.

The hypotheses are formulated as follows H0: The monthly rainfall data follow

a specified distribution, and H1: The monthly rainfall data do not follow the

specified distribution.
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Since the p-values for both the K-S and A-D tests are greater than the 5% level

of significance, α = 0.05, we conclude that the maximum monthly rainfall for

Eastern Cape follow the specified stationary GEVD.

Table 4.7: Goodness-of-fit for Eastern Cape (1900-2017).

Test Test statistic p-value
K-S 0.056844 0.8403205
A-D 0.1935343 0.8918115

4.7.2 Gauteng

The model pairs (M0,M1) and (M0,M2) from Table 4.8 have the same critical

value of χ2
1(0.05) = 3.841 with the deviance statistic values of 0.022 and 0.250

for M1 and M2, respectively. Since the value of the deviance statistics for M1

(0.022) and M2 (0.250) are smaller than the critical value of 3.841, we conclude

that both models do not provide any improvement in fit over the stationary

GEVD model.

From Table 4.8, the deviance statistics of model pairs (M0,M3) and (M0,M7)

are 0.272 and 0.130, respectively. Since the values of the deviance statistics for

both model pairs are smaller than χ2
2(0.05) = 5.991, it implies that both models

do not provide any improvement in fit over the stationary GEVD model. The

model pair (M0,M6) from Table 4.8 has χ2
4(0.05) = 9.488 and a deviance statistic

value of 1.706. Since the deviance statistic value (1.706) is smaller than the

critical value of 9.488, we conclude that model M6 does not provide any im-

provement in fit over the stationary GEVD model.

The other pairs from Table 4.8, i.e. (M0,M4) and (M0,M5), have deviance statis-

tics of 0.254 and 1.704, respectively. These results revealed that model M4,
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which allows for nonlinear quadratic trend in the location parameter and a

linear trend in the scale parameter, does not improve on the stationary GEVD

model since the value of the deviance statistic (1.864) is small as compared to

the value of χ2
3(0.05) = 7.815. On the other hand, model M5, which allows for

linear trend in the location parameter and a nonlinear quadratic trend in the

scale parameter, does not provide any improvement on the stationary GEVD

model because the value of the deviance statistic is smaller than the critical

value of χ2
3(0.05) = 7.815. The model pair (M0,M8), which allows for nonlinear

quadratic trend in scale parameter with no variation in location parameter,

has a deviance statistic of 1.710, which is small compared to the critical value

of 5.991 with 2 degrees of freedom. Thus, allowing for a quadratic trend in the

scale parameter with no variation in the location parameter does not improve

on the stationary GEVD model, therefore, model M8 is not worthwhile.

Table 4.8: Non-stationary GEVD models for Gauteng for the period 1900-2017.

Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 141.929 0 0 34.705 0 0 0.117 612.516
M1 142.629 -0.012 0 34.669 0 0 0.118 612.505
M2 141.690 0 0 32.345 0.032 0 0.128 612.391
M3 140.811 0.015 0 32.138 0.039 0 0.129 612.380
M4 141.474 0.016 0.000 32.514 0.0319 0 0.133 612.389
M5 142.238 -0.002 0 39.864 -0.303 -0.003 0.108 611.664
M6 141.590 0.007 0.000 39.640 -0.300 0.003 0.105 611.663
M7 142.800 0.007 0.000 34.573 0 0 0.125 612.451
M8 142.117 0 0 39.789 -0.302 0.003 0.108 611.661

Key: NLLH = negative log-likelihood.

The best fit model for Gauteng is the stationary GEVD model, M0, and is given

by

GEV (x, µ, σ, ξ) = exp−
[
1 + 0.117

(
x− 141.292

34.705

)] −1
0.117

. (4.3)

The shape parameter (0.117) for the stationary GEVD model, M0, indicates
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that the rainfall data for Gauteng can be modelled using Fréchet distribution

class of distribution since the shape parameter ξ > 0. The diagnostic plots for

the stationary GEVD model in (4.3) are presented in Figure 4.17. The diag-

nostic plot results in Figure 4.17 reveal that the stationary GEVD model, M0,

in the Fréchet distribution of attraction is the best fit for Gauteng monthly

rainfall data. These findings are consistent with parent distribution selection

findings which revealed that Gauteng monthly rainfall data cannot be best

modelled by a distribution in the Weibull domain of attraction.
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Figure 4.17: Diagnostic plots for the stationary GEVD best fitting model for
Gauteng province.

Goodness-of-fit test for Gauteng GEVD model

Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests were used to de-

termine whether maximum monthly rainfall data for Gauteng follow a station-

ary GEVD. Table 4.9 presents the results of the K-S and A-D goodness-of-fit

tests for Gauteng stationary GEVD model.
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The results from Table 4.9 show that the p-values for both the K-S and A-D

tests are not significant (p > 0.05). Therefore, we conclude that the maximum

monthly rainfall for Gauteng province follow the specified stationary GEVD.

Table 4.9: Goodness-of-fit for Gauteng (1900-2017).

Test Test Statistic p-value
K-S 0.0673058 0.6590246
A-D 0.3562733 0.4519496

4.7.3 KwaZulu-Natal

Consider the model pairs (M0,M1) and (M0,M2) from Table 4.10. The critical

value for both pairs is χ2
1(0.05) = 3.841 with respective deviance statistic values

of (0.210 and 0.026) for the two model pairs. The pairs (M0,M1) and (M0,M2) do

not provide any improvement in fit over the stationary GEVD model since the

deviance statistic values (0.210) and (0.026) are smaller than the critical value

of 3.841 with 1 degree of freedom.

Consider the model pair (M0,M3) from Table 4.10 with χ2
2(0.05) = 5.991 and

deviance statistic of 0.224 which is too small compared to the critical value of

5.991 with 2 degrees of freedom. Thus, allowing for linear trend in the loca-

tion and scale parameter is not worthwhile over the stationary GEVD model.

The other pairs from Table 4.10 (M0,M4) and (M0,M5) have deviance statis-

tics of 0.624 and 0.226, respectively. These results revealed that model M4,

which allows for nonlinear quadratic trend in the location parameter and a lin-

ear trend in the scale parameter, is not worthwhile over the stationary GEVD

model since the value of the deviance statistic (0.624) is small as compared to

the value of χ2
3(0.05) = 7.815. On the other hand, model M5, which allows for

linear trend in the location parameter and a nonlinear quadratic trend in the

scale parameter, does not provide any improvement in fit over the stationary
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GEVD model because the value of the deviance statistic (0.226) is smaller than

the value of χ2
3(0.05) = 7.815.

The model pairs (M0,M7) and (M0,M8) in Table 4.10 share a critical value of

χ2
2(0.05) = 5.991 with deviance statistic values of 2.248 and -0.176 for M7 and

M8, respectively. Since the values of the deviance statistics are smaller than

the critical value of 5.991 with 2 degrees of freedom, it implies that both models

do not provide any improvement in fit over the stationary GEVD model.

The model pair (M0,M6), which allows for nonlinear quadratic trend in both

the location and scale parameters in Table 4.10, has a deviance statistic of

0.598 which is too small compared to the critical value of 9.488 with 4 degrees

of freedom. Thus, allowing for a quadratic trend in both the location and scale

parameters does not improve on our stationary GEVD model.

Table 4.10: Non-stationary GEVD models for KwaZulu-Natal for the period
1900-2017.

Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 153.756 0 0 39.560 0 0 0.070 624.418
M1 156.383 -0.044 0 39.518 0 0 0.070 624.313
M2 153.791 0 0 38.808 0.012 0 0.071 624.405
M3 156.817 -0.051 0 40.195 -0.011 0 0.070 624.306
M4 158.193 -0.002 -0.0007 41.398 -0.003 0 0.009 624.106
M5 157.029 -0.006 0 40.021 0.002 -0.0001 0.007 624.305
M6 157.126 -0.005 -0.0008 39.892 0.036 -0.0006 0.098 624.119
M7 146.685 0.464 -0.004 39.308 0 0 0.066 623.294
M8 153.260 0 0 38.741 0.005 0.0000 0.011 624.506

Key: NLLH = negative log-likelihood.

Overall, the final best model for KwaZulu-Natal is the stationary GEVD model,
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M0. The general model for KwaZulu-Natal is given by

GEV (x, µ, σ, ξ) =

{
exp−

[
1 + 0.070

(
x−153.756
39.560

)] −1
0.070 . (4.4)

The shape parameter (0.070) for the model M0, indicates that the rainfall data

for KwaZulu-Natal can be modelled using Fréchet class of distributions since

the shape parameter ξ > 0. The diagnostic plots for the stationary GEVD model

in (4.4) are presented in Figure 4.18. The results in Figure 4.18 show that

the stationary GEVD model, M0, is the best fit for KwaZulu-Natal maximum

monthly rainfall data since all the four diagnostic plots suggest a reasonable

good fit for the stationary GEVD model.
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Figure 4.18: Diagnostic plots for the stationary GEVD best fitting model for
KwaZulu-Natal province.

Goodness-of-fit test for KwaZulu-Natal GEVD model

Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests were used to de-

termine whether maximum monthly rainfall data for KwaZulu-Natal follow a

stationary GEVD model. Table 4.11 presents the K-S and A-D goodness-of-fit
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tests results for KwaZulu-Natal GEVD.

From Table 4.11 the p-values for both K-S and A-D tests are insignificant (p >

0.05) at 5% level of significance. Thus, we conclude that the maximum monthly

rainfall for KwaZulu-Natal follow the specified stationary GEVD model.

Table 4.11: Goodness-of-fit for KwaZulu-Natal (1900-2017).

Test Test Statistic p-value
K-S 0.04470146 0.9724252
A-D 0.3284819 0.5135279

4.7.4 Limpopo

The stationary GEVD model for Limpopo data (i.e., model M0) has a maxi-

mum NLLH of 669.707. A GEVD model with linear trend in the location

parameter (i.e., M1) has a maximum NLLH of 666.705 (see Table 4.12). The

deviance statistic for comparing these two models is therefore D=2(669.707-

666.705)=6.004, which is greater than the critical value of 3.841 with 1 degree

of freedom and therefore model M1 provides an improvement in fit over the sta-

tionary GEVD model. The likelihood ratio test for µ1 = 0 has p-value= 0.005,

which is significant at 5% level of significance (p < 0.05). This clearly shows

that the non-stationary GEVD model is worthwhile and does provide an im-

provement in fit over the stationary GEVD model.

Consider the pair of models (M0,M2) from Table 4.12. The deviance statistic is

2(669.707-665.327)=8.760, which is large compared to χ2
1(0.05) = 3.841. Thus,

allowing for a linear trend in the scale parameter does improve on our sta-

tionary GEVD model. The likelihood ratio test for σ1 = 0 has p-value of 0.001,

implying that the linear trend in the scale parameter is significant at 5% level

of significance (p < 0.05), which indicates that model M2 is important and does
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provide an improvement in fit over the stationary GEVD model.

From Table 4.12, the pair of models (M0,M3), has the deviance statistic of

11.014, which is greater than the critical value of 5.991 with two degrees of

freedom, implying that model M3 provides an improvement in fit over the sta-

tionary GEVD model. The likelihood ratio test for µ1 = 0 has p-value = 0.067,

which indicates that the likelihood ratio test is not significant at 5% level of

significance (p > 0.05), while the likelihood ratio test for σ1 = 0 has p-value =

0.013, which indicates that the likelihood ratio test is significant at 5% level of

significance (p < 0.05).

The other pairs from Table 4.12, (M0,M4) and (M0,M5), have deviance statis-

tic values of 19.040 and 7.900, respectively. These results revealed that model

M4, which allows for nonlinear quadratic trend in the location parameter and

linear trend in the scale parameter, provides an improvement in fit over the

stationary GEVD model since the value of the deviance statistic (19.040) is

larger as compared to the value of χ2
3(0.05) = 7.815. The likelihood ratio test for

µ1 = 0 has p-value= 0.001, for µ2 = 0 it has p-value of 0.002, and for σ1 = 0 it has

p-value= 0.034, which are all significant at 5% level of significance (p < 0.05).

On the other hand, model M5 which allows for linear trend in the location pa-

rameter and a nonlinear quadratic trend in the scale parameter, provides an

improvement in the stationary GEVD model since the value of the deviance

statistic is greater than the value of χ2
3(0.05) = 7.815. The likelihood ratio test

for µ1 = 0 has p-value= 0.236, which is not significant at 5% level of significance

(p > 0.05), while the likelihood ratio test for σ1 = 0, and σ2 = 0, all have p-values

< 0.001, which are both significant at 5% level of significance (p < 0.05).

The model pair (M0,M6), which allows for nonlinear quadratic trend in both

the location and scale parameters in Table 4.12, has a deviance statistic of
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9.046 which is small compared to the critical value of 9.488 with 4 degrees of

freedom. Thus, allowing for a quadratic trend in both the location and scale

parameters is not worthwhile in fit over the stationary GEVD model M0. The

likelihood ratio test for µ1 = 0 has p-value = 0.145, and for µ2 = 0 has p-value

= 0.185, which is insignficant at 5% level of significance (p > 0.05), while the

likelihood ratio test for σ1 = 0, and σ2 = 0, all have p-values < 0.001, which are

both significant at 5% level of significance (p < 0.05).

Consider the model pair (M0,M7) in Table 4.12 with deviance statistic of 15.820,

which is greater than the critical value of χ2
2(0.05) = 5.991, indicating that the

non-stationary GEVD model provides an improvement in fit over the station-

ary GEVD model. The likelihood ratio tests for µ1 = 0, and µ2 = 0 have p-values

< 0.001, which indicates that the likelihood ratio tests are significant at 5%

level of significance (p < 0.05) for the quadratic trend in the location parameter

with no variation in the scale parameter. This implies that the non-stationary

GEVD model is worthwhile and does give an improvement in fit over the sta-

tionary GEVD model.

Consider the model pair (M0,M8) from Table 4.12 with χ2
2(0.05) = 5.991 and

deviance statistic of 9.338. The likelihood ratio tests for σ1= 0 and σ2 = 0 have

p-values <0.001. These results show that the nonlinear quadratic trend in

scale parameter with no variation in the location parameter is significant at

5% level of significance (p < 0.05). The deviance statistic (9.338) is greater than

the critical value of 5.991, which implies that the non-stationary GEVD model,

M8, is important and does provide an improvement in fit over the stationary

GEVD model.
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Table 4.12: Non-stationary GEVD models for Limpopo for the period 1904-
2017.

Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 132.224 0 0 65.611 0 0 -0.097 669.707
M1 105.813 0.423 0 61.752 0 0 -0.067 666.705
M2 133.060 0 0 78.463 -0.289 0 -0.030 665.327
M3 115.204 0.258 0 73.135 -0.218 0 -0.036 664.200
M4 74.261 2.073 -0.015 65.293 -0.178 0 0.040 660.187
M5 122.793 0.132 0 105.672 -1.988 0.014 0.105 655.757
M6 107.754 0.732 -0.005 99.611 -1.756 0.013 0.094 655.184
M7 62.447 2.432 -0.017 54.826 0 0 0.047 661.797
M8 133.880 0 0 107.223 -2.009 0.015 0.008 665.038

Key: NLLH = negative log-likelihood.

Overall, Limpopo has five competing non-stationary GEVD models: M1, M2,

M4, M7 and M8, for which only two models were considered based on their

deviance statistic values as main and alternative best models. The best non-

stationary GEVD model is M4, which has a nonlinear quadratic trend in the

location parameter and a linear trend in the scale parameter, and is given by

GEV (x, µ, σ, ξ) =

{
exp−

[
1 + 0.040

(
x−74.261
65.293

)] −1
0.040 . (4.5)

The alternative non-stationary GEVD model is M7, which has a nonlinear

quadratic trend in the location parameter and no variation in the scale pa-

rameter, and is given by:

GEV (x, µ, σ, ξ) =

{
exp−

[
1 + 0.047

(
x−62.447
54.826

)] −1
0.047 . (4.6)

The shape parameters in (4.5) and (4.6), that is, 0.040 and 0.047 for the models

M4 and M7, respectively, are poisitive, which indicates that the rainfall data for

Limpopo can be modelled using Fréchet distribution class since the shape pa-

rameter ξ > 0. The diagnostic plots for the stationary GEVD model in (4.5) are
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presented in Figure 4.19. The results in Figure 4.19 show that model M4 is the

best fit for Limpopo maximum monthly rainfall data since the two diagnostic

plots indicate a reasonable good fit for the non-stationary GEVD model with a

nonlinear quadratic trend in the location parameter and a linear trend in the

scale parameter.
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Figure 4.19: Diagnostic plots for the non-stationary GEVD best fitting model
for Limpopo province.

Goodness-of-fit test for Limpopo non-stationary GEVD model

Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests were used to de-

termine whether maximum monthly rainfall data for Limpopo follows the non-

stationary GEVD model, M4. Table 4.13 presents the K-S and A-D goodness-

of-fit tests.

From Table 4.13, the p-value for the K-S test is insignificant (p > 0.05), imply-

ing that the maximum monthly rainfall for Limpopo follows the non-sationary

GEVD model, while the results from the A-D test suggest that the maximum
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monthly rainfall for Limpopo do not follow the specified non-stationary GEVD

model (p < 0.05).

Table 4.13: Goodness-of-fit for Limpopo (1904-2017).

Test Test Statistic p-value
K-S 0.07362455 0.5445211
A-D 1.133259 0.005549523

4.7.5 Mpumalanga

The model pairs (M0,M1) and (M0,M2) in Table 4.14 share the critical value

of χ2
1(0.05) = 3.841 with repective deviance statistic values of 10.008 and 7.236

for the two pairs. The two pairs have p-values of 0.001 and 0.003 for µ1 = 0

and σ1 = 0, respectively for model M1 and M2. These results revealed that the

model pairs (M0,M1) and (M0,M2) are significant at 5% level of significance (p

< 0.05). The deviance statistic values for the two models are large in compar-

ison to χ2
1(0.05) = 3.841. Thus, we conclude that models M1 and M2 provide a

significant improvement over the stationary GEVD model, M0.

From Table 4.14, the pair of models (M0,M3) has a deviance statistic of 19.530,

which is greater than the critical value of 5.991 with two degrees of freedom,

implying that model M3 provides an improvement in fit over the stationary

GEVD model. The likelihood ratio tests for µ1 = 0 and σ1 = 0 have p-values

< 0.001, which indicates that the likelihood ratio tests are significant at 5%

level of significance (p < 0.05) for both the location and scale parameters, im-

plying that the non-stationary GEVD model is important and does provide an

improvement in fit over the stationary GEVD model.

The other model pairs from Table 4.14, (M0,M4) and (M0,M5), have deviance

statistic values of 23.330 and 23.898, respectively. These results revealed that
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model M4, which allows for nonlinear quadratic trend in the location parame-

ter and linear trend in the scale parameter, is worthwhile over the stationary

GEVD model since the value of the deviance statistic (23.330) is greater than

the value of χ2
3(0.05) = 7.815. The likelihood ratio test for µ1 = 0 has p-value=

0.392, and for µ2 = 0 it has p-value of 0.096, which are both not significant at

5% level of significance (p > 0.05), but the likelihood ratio test for σ1 = 0 has p-

value < 0.001, which is significant at 5% level of significance (p < 0.05). On the

other hand, model M5 which allows for linear trend in the location parameter

and a nonlinear quadratic trend in the scale parameter, provides an improve-

ment in fit over the stationary GEVD model since the value of the deviance

statistic is greater than the value of χ2
3(0.05) = 7.815. The likelihood ratio test

for µ1 = 0, σ1 = 0 and σ2 = 0, all have p-values < 0.001, which are significant at

5% level of significance (p < 0.05).

The model pair (M0,M6) in Table 4.14, which allows for nonlinear quadratic

trend in both the location and scale parameters, has a deviance statistic of

24.512 which is greater than the critical value of 9.488 with 4 degrees of free-

dom. Thus, allowing for a quadratic trend in both location and the scale param-

eters is worthwhile in fit over the stationary GEVD model, M0. The likelihood

ratio test for µ1= 0 has p-value = 0.499, and µ2 = 0 has p-value = 0.303, which

is insignficant at 5% level of significance (p > 0.05), while the likelihood ratio

tests for σ1 = 0 and σ2 = 0 all have p-values < 0.001, which are significant at

5% level of significance (p < 0.05).

Consider the model pair (M0,M7) in Table 4.14, with a deviance statistic of

6.394 which is greater than the critical value of χ2
2(0.05) = 5.991. These results

show that the non-stationary GEVD model provides an improvement in fit over

the stationary GEVD model. The likelihood ratio test for µ1 = 0 it has p-value =

0.369 and for µ2 = 0 it has p-value = 0.449, which are both not significant at 5%
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level of significance (p > 0.05). This implies that model M7, with a quadratic

trend in the scale parameter and no variation in the location parameter is not

worthwhile over the stationary GEVD model.

Consider the model pair (M0,M8) from Table 4.14 with χ2
2(0.05) = 5.991 and

deviance statistic value of 29.150. The likelihood ratio tests for σ1= 0 and σ2

= 0 have p-values <0.001. These results show that the nonlinear quadratic

trend in scale parameter with no variation in the location parameter is signif-

icant at 5% level of significance (p < 0.05). The deviance statistic (29.150) is

greater than the critical value of 5.991, which implies that the non-stationary

GEVD model, M8, is important and does provides an improvement in fit over

the stationary GEVD model.

Table 4.14: Non-stationary GEVD models for Mpumalanga for the period 1904-
2017.

Model µ̂0 µ̂1 µ̂2 σ̂0 σ̂1 σ̂2 ξ̂ NLLH
M0 155.612 0 0 59.246 0 0 -0.325 643.234
M1 124.429 0.512 0 54.437 0 0 -0.261 638.230
M2 159.885 0 0 71.217 -0.274 0 -0.228 639.616
M3 131.503 0.428 0 69.312 -0.268 0 -0.240 633.469
M4 114.907 1.296 -0.007 71.758 -0.310 0 -0.207 631.569
M5 161.943 -0.031 0 113.977 -2.386 0.017 -0.006 631.285
M6 145.643 -0.001 0.002 108.921 -2.381 0.017 0.076 630.978
M7 145.591 0.324 -0.0009 58.266 0 0 -0.328 640.037
M8 161.734 0 0 100.364 -1.981 0.014 -0.161 628.659

Key: NLLH = negative log-likelihood.

In general, in Mpumalanga there were five competing non-stationary GEVD

models: M1, M2, M3, M5 and M8, for which only two models were considered

based on their deviance statistic values as main and alternative best models.

The best non-stationary GEVD model is M8, which has a nonlinear quadratic

trend in the scale parameter and no variation in the location parameter, and is
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given by

GEV (x, µ, σ, ξ) =

{
exp−

[
1− 0.014

(
x−161.734
100.364

)] 1
0.161 . (4.7)

The alternative non-stationary GEVD model, is M5, which has a linear trend

in location parameter and nonlinear quadratic trend in scale paramater and is

given by:

GEV (x, µ, σ, ξ) =

{
exp−

[
1− 0.006

(
x−161.943
113.977

)] 1
0.006 . (4.8)

The shape parameter in (4.7) and (4.8), that is, -0.161 and -0.006 for the respec-

tive models M8 and M5 are negative, which indicates that the rainfall data for

Mpumalanga can be modelled using Weibull distribution class since the shape

parameter ξ < 0. The diagnostic plots for the non-stationary GEVD model in

(4.7) are presented in Figure 4.20. The results in Figure 4.20 show that the

non-stationary GEVD model, M8, is the best fit for Mpumalanga maximum

monthly rainfall data because the two diagnostic plots suggest a reasonable

good fit for the non-stationary GEVD model with a quadratic trend in the scale

parameters and no variation in other parameters.
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Figure 4.20: Diagnostic plots for the non-stationary GEVD best fitting model
for Mpumalanga province.
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Goodness-of-fit test for Mpumalanga non-stationary GEVD model

Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests were used to de-

termine whether maximum monthly rainfall data for Mpumalanga follow the

non-stationary GEVD model,M8. Table 4.15 presents the K-S and A-D goodness-

of-fit test results for Mpumalanga non-stationary GEVD model, M8.

From Table 4.15, the p-value for the K-S test is insignificant (p > 0.05), imply-

ing that the maximum monthly rainfall for Mpumalanga follows the specified

non-stationary GEVD model. On the other hand, the results from the A-D test

contradict the results from the K-S test.

Table 4.15: Goodness-of-fit for Mpumalanga (1904-2017).

Test Test Statistic p-value
K-S 0.08991587 0.2957988
A-D 1.791518 0.0001310069

4.8 Non-stationary GPD modelling of monthly

rainfall peaks over a fixed threshold.

This section presents the results of the non-stationary GPD models for monthly

rainfall peaks over a fixed threshold. Results for the stationary GPD model,

M0, and non-stationary GPD modelsM1 andM2 are presented. The appropriate

threshold is found based on the mean residual life plots and the parameter

stability plots. Since the exceedances above the threshold could not be assumed

to be independent from each other, declustering of the cluster maxima was

performed. The MLE method was used to estimate the parameters of all GPD

models.
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4.8.1 Eastern Cape

The mean residual life plot is used to help with the identification of a thresh-

old u (Attalides, 2015; Davison and Smith, 1990). The mean residual life plot

in Figure 4.21 is not easy to interpret for threshold selection, hence we use

the parameter stability plots in Figure 4.22. After examining Figure 4.22, the

threshold u = 55 mm was chosen because it is where the parameters appear

to stabilise. Therefore, of the 533 threshold exceedances for our Eastern Cape

monthly rainfall data we have 129 clusters as illustrated in Figure 4.23 and

the extreme observations above the threshold are indicated by the red dots.
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Figure 4.21: Mean residual life plot for the monthly rainfall data for Eastern
Cape.
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Figure 4.22: Threshold choice or parameter stability plots for Eastern Cape.
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Figure 4.23: The Eastern Cape GPD fitted to cluster maxima (excesses) of the
maximum monthly rainfall. The extreme observations above the threshold are
indicated by the red dots.
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The GPD and non-stationary GPD were applied to monthly rainfall excee-

dences over a threshold of u=55 mm, and the estimates of the scale and shape

parameters of the GPD models are presented in Table 4.16.

The deviance statistic value for the model pair (M0,M1) in Table 4.16 is 0.428,

which is small relative to χ2
1(0.05) = 3.841. Thus, there is no significant evi-

dence of a linear trend in the scale parameter of the GPD model.

The nonlinear quadratic model pair (M0,M2) from Table 4.16 has a deviance

statistic value of 0.520 which is too small compared to the critical value of

5.911 with 2 degrees of freedom. Thus, the non-stationary model, M2, does not

provide an improvement over the stationary GPD model, M0.

Table 4.16: Parameter estimates and negative log-likelihood of the GPD models
for Eastern Cape (1900-2017).

Model σ̂0 σ̂1 σ̂2 ξ̂ NLLH 95 % CI for ξ
M0 34.480 0 0 -0.142 2344.112 (-0.2106,-0.073)
M1 33.373 0.001 0 -0.141 2343.898 (-0.208,-0.074)
M2 33.586 0.0002 0.000 -0.140 2343.852 (-0.207,-0.073)

Key: NLLH = negative log-likelihood.

Overall, the best model for Eastern Cape is the stationary GPD model, M0. The

stationary GPD model is given by

G(y) = 1−
[
1− 0.142

(
y − 55

32.309

)] 1
0.142

. (4.9)

The shape parameter (-0.142) is significantly different from zero (p < 0.001)

for model M0, implying that the distribution of exceedances over the 55 mm

threshold for Eastern Cape is short-tailed negative Weibull and does not come

from exponential distribution family and confidence interval (CI) is signifa-

cantly different from zero. Figure 4.24 shows the diagnostic plots for the sta-
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tionary GPD model in (4.9). The results of the four diagnostic plots all suggest

that the stationary GPD model is a good fit for the Eastern Cape monthly rain-

fall peaks-over-threshold (POT) data.
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Figure 4.24: Diagnostic plots for the stationary GEV at Eastern Cape.

4.8.2 Gauteng

The mean residual life plot is used to aid the identification of a threshold u

(Attalides, 2015; Davison and Smith, 1990). The mean residual life plot in

Figure 4.25 is not easy to interpret for threshold selection, hence the parameter

stability plots were used. After examining Figure 4.26, the threshold u = 72 mm

was chosen because it is where the parameters appear to stabilise. Therefore,

of the 521 threshold exceedances for our Gauteng monthly rainfall data, we

have 30 clusters as illustrated in Figure 4.27 and the extreme observations

above the threshold are indicated by the red dots.



Data analysis and discussion 83

0 100 200 300 400

0
50

10
0

u

M
ea

n 
E

xc
es

s

Figure 4.25: Mean residual life plot for the monthly rainfall data for Gauteng.
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Figure 4.26: Threshold choice or parameter stability plots for Gauteng.
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Figure 4.27: The Gauteng GPD fitted to cluster maxima (excesses) of the max-
imum monthly rainfall. The extreme observations above the threshold are in-
dicated by the red dots.
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The GPD and non-stationary GPD were applied to monthly rainfall excee-

dences over a threshold of u=72 mm, and the estimates of the scale and shape

parameters of the GPD models are presented in Table 4.17.

The model pair (M0,M1) from Table 4.17 has a deviance statistic of 2.484 which

is small in comparison to a critical value of 3.841 with 1 degree of freedom.

Thus, there is no significant evidence of a linear trend in the scale parameter

of the GPD model.

From Table 4.17, the model pair (M0,M2) has a critical value of χ2
2(0.05) = 5.991,

with a deviance statistic value of 22.246. These results show that the nonlinear

quadratic trend in the scale parameter is worthwhile over the non-stationary

GPD model. The likelihood ratio test for σ1= 0 it has p-value <0.001, and for

σ2= 0 it has p-value < 0.001, which is significant at 5% level of significance (p

< 0.05).

Table 4.17: Parameter estimates and negative log-likelihood of the GPD models
for Gauteng (1900-2017).

Model σ̂0 σ̂1 σ̂2 ξ̂ NLLH 95 % CI for ξ
M0 52.006 0 0 -0.076 2539.720 (-0.133,-0.019)
M1 56.688 -0.006 0 -0.092 2538.478 (-0.149,-0.035)
M2 73.331 -0.124 0.000 -0.097 2528.597 (-0.151,-0.040)

Key: NLLH = negative loglikehood.

The proposed model for Gauteng based on the results is the non-stationary

GPD model, M2, with a nonlinear quadratic trend in the scale parameter. The

non-stationary GPD model for Gauteng is given in (4.10)

G (σ(t), ξ; yt, t) = 1−
(

1 +
−0.097yt

exp (73.331− 0.124t+ 0.000t2)

) 1
0.097

. (4.10)

The shape parameter (-0.097) is significantly different from zero (p < 0.001)
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for model M2, implying that the distribution of exceedances over the 72 mm

threshold for Gauteng was short-tailed negative Weibull and does not come

from exponential distribution family and confidence interval (CI) is signifa-

cantly different from zero. Figure 4.28 shows the diagnostic plots for the non-

stationary GPD model in (4.10) and the results suggest a reasonably good fit of

the non-stationary GPD with a quadratic trend in the scale parameter for the

Gauteng monthly rainfall POT data.
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Figure 4.28: Diagnostic plots for the non-stationary GPD model (with a nonlin-
ear quadratic trend in the scale parameter) for Gauteng.
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4.8.3 KwaZulu-Natal

The mean residual plot (Figure 4.29) and parameter stability plots in Fig-

ures 4.30 were used to come up with a reasonably high threshold of 67 mm

for KwaZulu-Natal province which was selected in such a way that it is high

enough for the asymptotic theorem to be considered accurate and low enough

to have adequate data to estimate the GPD parameters.

After examining Figure 4.30, the threshold u = 67 mm was chosen because it

is where the parameters appear to stabilise. Therefore, of the 713 threshold

exceedances for our KwaZulu-Natal monthly rainfall data, we have 84 clusters

as illustrated in Figure 4.31 and the extreme observations above the threshold

are indicated by the red dots.
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Figure 4.29: Mean residual life plot for the monthly rainfall data for KwaZulu-
Natal.
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Figure 4.30: Threshold choice or parameter stability plots for KwaZulu-Natal.
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Figure 4.31: The KwaZulu-Natal GPD fitted to cluster maxima (excesses) of
the maximum monthly rainfall. The extreme observations above the threshold
are indicated by the red dots.
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The GPD and non-stationary GPD were applied to monthly rainfall excee-

dences over a threshold of u=67 mm, and the estimates of the scale and shape

parameters of the GPD models are presented in Table 4.18.

Consider the model pair (M0,M1) in Table 4.18 with a deviance statistic of

4.496, which is large in comparison to a critical value of 3.841 with 1 degree of

freedom. These results reveal overwhelming evidence that the non-stationary

GPD model provides an improvement in fit over the stationary GPD model.

The likelihood ratio test for σ1= 0 has p-value= 0.018, which is significant at

5% level of significance (p < 0.05) for the linear trend in the log-scale parame-

ter.

The other model pair ((M0,M2) from Table 4.18 has a deviance statistic value

of 2.806 which is which is small relative to χ2
2(0.05) = 5.991. Thus, there is

no evidence of a nonlinear quadratic trend in the scale parameter of the GPD

model.

Table 4.18: Parameter estimates and negative log-likelihood of the GPD models
for KwaZulu-Natal (1900-2017).

Model σ̂0 σ̂1 σ̂2 ξ̂ NLLH 95 % CI for ξ
M0 56.807 0 0 -0.090 3528.859 (-0.131,-0.049)
M1 62.119 -0.007 0 -0.096 3526.611 (-0.137,-0.055)
M2 60.613 -0.002 0.000 -0.096 3527.456 (-137,-0.055)

Key: NLLH = negative log-likelihood.

The proposed best model for KwaZulu-Natal based on the findings of this study

is the non-stationary GPD model, M1, with a linear trend in the scale parame-

ter. The non-stationary GPD model for KwaZulu-Natal is given by

G (σ(t), ξ; yt, t) = 1−
(

1 +
−0.096yt

exp (62.119− 0.007t)

) 1
0.096

. (4.11)
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The shape parameter (-0.096) is significantly different from zero (p < 0.001)

for model M1, implying that the distribution of exceedances over the 67 mm

threshold at KwaZulu-Natal is short-tailed negative Weibull and does not come

from exponential distribution family and confidence interval (CI) is signifa-

cantly different from zero. Figure 4.32 shows the diagnostic plots for the non-

stationary GPD model (with a linear trend in the scale parameter) in (4.14).

The results of the diagnostic plots for the non-stationary GPD with a linear

trend in the scale parameter suggest that the selected non-stationary GPD

model is a reasonably good fit for the KwaZulu-Natal POT data.
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Figure 4.32: Diagnostic plots for the non-stationary GPD model (with the non-
linear quadratic trend in the scale parameter) at KwaZulu-Natal.
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4.8.4 Limpopo

The mean residual plot (Figure 4.33) and parameter stability plots in Figures

4.34 were used to come up with a reasonably high threshold of 53 mm for

Limpopo province which was chosen in such a way that it is high enough for

the asymptotic theorem to be considered accurate and low enough to have ade-

quate data to estimate the GPD parameters.

After examining Figure 4.34, the threshold u = 53 mm was chosen because it

is where the parameters appear to stabilise. Therefore, of the 631 threshold

exceedances for our Limpopo monthly rainfall data, we have 328 clusters as

illustrated in Figure 4.35 and the extreme observations above the threshold

are indicated by the red dots.
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Figure 4.33: Mean residual life plot for the monthly rainfall data for Limpopo.
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Figure 4.34: Threshold choice or parameter stability plots for Limpopo.
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Figure 4.35: The Limpopo GPD fitted to cluster maxima (excesses) of the max-
imum monthly rainfall. The extreme observations above the threshold are in-
dicated by the red dots.
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The GPD and non-stationary GPD were applied to monthly rainfall excee-

dences over a threshold of u=53 m, and the estimates of the scale and shape

parameters of the GPD models are presented in Table 4.19.

From Table 4.19, the deviance statistic of model pair (M0,M1) is 0.138 which

is too small compared to the critical value of 3.841 with 1 degree of freedom.

Thus, there is no evidence of a linear trend in the scale parameter of the GPD

model.

Consider the model pair (M0,M2) in Table 4.19 which has a critical value of

χ2
2(0.05) = 5.991, with the deviance statistic value of 17.980. These results

show that the nonlinear quadratic trend in the scale parameter is worthwhile

over the stationary GPD model. The likelihood ratio test for σ1= 0 has p-value

<0.001, and for σ2= 0 has p-value < 0.001, which is significant at 5% level of

significance (p < 0.05).

Table 4.19: Parameter estimates and negative log-likelihood of the GPD models
for Limpopo (1904-2017).

Model σ̂0 σ̂1 σ̂2 ξ̂ NLLH 95 % CI for ξ
M0 45.886 0 0 -0.775 2386.330 (-0.801,-0.750)
M1 45.891 -0.0001 0 -0.773 2386.261 (-0.773,-0.772)
M2 51.378 -0.003 0.000 -0.749 2377.340 (-0.759,-0.739)

Key: NLLH = negative log-likelihood.

In general, the best model for Limpopo based on the findings of this study, is the

non-stationary GPD model, M2. The non-stationary GPD model for Limpopo is

given by

G (σ(t), ξ; yt, t) = 1−
(

1 +
−0.749yt

exp (51.378− 0.003t+ 0.000t2)

) 1
0.749

. (4.12)

The shape parameter (-0.749) is significantly different from zero (p < 0.001)
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for model M2, indicating that the distribution of exceedances over the 53 mm

threshold for Limpopo is short-tailed negative Weibull and does not come from

exponential distribution family and confidence interval (CI) is signifacantly dif-

ferent from zero. Figure 4.36 shows the diagnostic plots for the non-stationary

GPD model (with a nonlinear quadratic trend in the scale parameter) in (4.12).

The results of the diagnostic plots for the non-stationary GPD with a linear

trend in the scale parameter suggest that the selected non-stationary GPD

model is a reasonably good fit for the limpopo POT data.
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Figure 4.36: Diagnostic plots for the non-stationary GPD model (with the non-
linear quadratic trend in the scale parameter) for Limpopo.
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4.8.5 Mpumalanga

The mean residual plot in Figure 4.37 and parameter stability plots in Fig-

ures 4.38, were used to come up with a reasonably high threshold of 50 mm for

Mpumalanga province which was selected in such a way that it is high enough

for the asymptotic theorem to be considered accurate and low enough to have

adequate data to estimate the GPD parameters.

After examining Figure 4.38, the threshold u = 50 mm was chosen because it

is where the parameters appear to stabilise. Therefore, of the 658 threshold

exceedances for our Mpumalanga monthly rainfall data, we have 313 clusters

as illustrated in Figure 4.39 and the extreme observations above the threshold

are indicated by the red dots.
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Figure 4.37: Mean residual life plot for the monthly rainfall data for
Mpumalanga.
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Figure 4.38: Threshold choice or parameter stability plots for Mpumalanga.
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Figure 4.39: The Mpumalanga GPD fitted to cluster maxima (excesses) of the
maximum monthly rainfall. The extreme observations above the threshold are
indicated by the red dots.
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The GPD and non-stationary GPD were applied to monthly rainfall excee-

dences over a threshold of u=50 mm, and the estimates of the scale and shape

parameters of the GPD models are presented in Table 4.20.

Consider the model pair (M0,M1) in Table 4.20 with a deviance statistic of

10.276, which is large in comparison to a critical value of 3.841 with 1 degree of

freedom. These results reveal overwhelming evidence that the non-stationary

GPD model provides an improvement in fit over the stationary GPD model.

The likelihood ratio test for σ1= 0 has p-value< 0.001, which is significant at

5% level of significance (p < 0.05) for the linear trend in the scale parameter.

The nonlinear quadratic model pair (M0,M2) from Table 4.20 has a deviance

statistic value of -21.968 which is too small compared to the critical value of

5.911 with 2 degrees of freedom. Thus, the non-stationary model M2 does not

provide an improvement over the stationary GPD model, M0.

Table 4.20: Parameter estimates and negative log-likelihood of the GPD models
for Mpumalanga (1904-2017).

Model σ̂0 σ̂1 σ̂1 ξ̂ NLLH 95 % CI for ξ
M0 47.591 0 0 -0.779 2686.836 (-0.779,-0.778)
M1 49.961 -0.001 0 -0.817 2681.698 (-0.816,-0.815)
M2 45.584 0.014 0.000 -0.751 2697.820 (-0.751,-0.750)

Key: NLLH = negative log-likelihood.

Overall, the best model for Mpumalanga based on the results of this study is

the non-stationary GPD model, M1, with a linear trend in the scale parameter.

The non-stationary GPD model for Mpumalanga is given in (4.13)

G (σ(t), ξ; yt, t) = 1−
(

1 +
−0.817yt

exp (49.961− 0.001t)

) 1
0.817

. (4.13)

The shape parameter (-0.817) is significantly different from zero (p < 0.001)
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for model M1, indicating that the distribution of exceedances over the 50 mm

threshold for Mpumalanga is short-tailed negative Weibull and does not come

from exponential distribution family and confidence interval (CI) is signifa-

cantly different from zero. Figure 4.40 shows the diagnostic plots for the non-

stationary GPD model (with a linear trend in the scale parameter) in (4.13).

The results from Figure 4.40 reveal a reasonably good fit of the non-stationary

GPD model to the Mpumalanga POT data.
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Figure 4.40: Diagnostic plots for the non-stationary GPD model (with a linear
trend in the scale parameter) at Mpumalanga.
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4.9 Modelling monthly rainfall data using a GPD

with time-varying threshold

4.9.1 Eastern Cape

Figure 4.41 is a time series plot of the monthly rainfall data for Eastern Cape

with a time-varying threshold, which is a penalised cubic smoothing spline.

The smoothing parameter lamda (λ) is selected based on the generalised cross

validation (GCV) criterion. The estimated value for λ is λ̂ = 0.00003596222.

We then determine a sufficiently high threshold by fitting a non-parametric ex-

tremal mixture model and exceedances are declustered using Ferro and Segers

(2003) intervals estimator method. Figure 4.42 shows threshold estimation us-

ing a non-parametric extremal mixture model where a kernel density is fitted

to the bulk model and a GPD fitted to the upper end-point of the model, with

the vertical line indicating the estimated threshold. The estimated threshold

is u=127.600 for the Eastern Cape GPD.
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Figure 4.41: A time series plot of the Eastern Cape monthly rainfall data with
a time-varying threshold, which is a penalised cubic smoothing spline. Blue
dots show the negated observations and the red line shows the smoothing pa-
rameter.
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Figure 4.42: Threshold estimation for Eastern Cape using a non-parametric
extremal mixture model, where a kernel density is fitted to the bulk model and
a GPD fitted to the tail of the distribution (u=127.600).
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The GPD model was fitted to cluster maxima using the threshold estimated

by the non-parametric extremal mixture model. Table 4.21 presents the maxi-

mum likelihood estimates of GPD parameters and the estimated threshold for

Eastern Cape.

Table 4.21: Parameter estimates of Eastern Cape GPD fitted to cluster maxima
of the monthly rainfall.

Threshold σ̂ ξ̂ NLLH 95 % CI for ξ
127.600 18.983 (4.641) 0.052 (0.195) 183.810 (-0.330,0.434)

Key: NLLH = negative log-likelihood.

From Table 4.21, scale and shape parameters are found to be 18.983 and 0.052,

respectively, with standard errors in parentheses. To ensure that the scale pa-

rameter is positive (σ >0), we use the transformation, σ = e18.983. The positive

value of the shape parameter (ξ̂=0.052) indicates that the monthly rainfall data

follows a Pareto distribution. The 95% confidence interval (CI) is not signifa-

cantly different from zero, indicating that the monthly rainfall data for Eastern

Cape can be modelled by the exponential family of distribution. The diagnos-

tic plots in Figure 4.43 show an appropriate fit of the GPD with time-varying

threshold for the Eastern Cape province.
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Figure 4.43: Diagnostic plots for the Eastern Cape GPD fitted to cluster max-
ima.
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4.9.2 Gauteng

Figure 4.44 is a time series plot of the monthly rainfall data for Gauteng with

a time-varying threshold, which is a penalised cubic smoothing spline. The

smoothing parameter lamda (λ) is selected based on the GCV criterion. The

estimated value for λ is λ̂ = 0.00001716462. An initial threshold is set at zero

after fitting time-varying threshold and only positive observations (excesses)

above zero are considered. We then determine a sufficiently high threshold by

fitting a non-parametric extremal mixture model and exceedances are declus-

tered using Ferro and Segers (2003) intervals estimator method.
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Figure 4.44: A time series plot of the Gauteng monthly rainfall data with a
time-varying threshold, which is a penalised cubic smoothing spline. Blue dots
show the negated observations and the red line shows the smoothing parame-
ter.

The monthly rainfall for Gauteng is initial detrended using a penalised cubic

smoothing spline in (3.44). The kernel density technique was applied to es-

timate the value of the threshold, u =122.892. Figure 4.45 shows threshold

estimation using a non-parametric extremal mixture model, where a kernel

density is fitted to the bulk model and a GPD fitted to the upper end-point of
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the model. The estimated threshold is u=122.892 for the Gauteng GPD
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Figure 4.45: Threshold estimation using a non-parametric extremal mixture
model where a kernel density is fitted to the bulk model and a GPD fitted to
the tail of the distribution (u=122.892).

The GPD model was fitted to cluster maxima using the threshold estimated

by the non-parametric extremal mixture model. Table 4.22 presents maximum

likelihood estimates of GPD parameters and the estimated threshold for Gaut-

eng.

Table 4.22: Parameter estimates of Gauteng GPD fitted to cluster maxima of
the monthly rainfall.

Threshold σ̂ ξ̂ NLLH 95 % CI for ξ
122.892 34.888 (3.502) 0.084 (0.071) 927.166 (-0.055,0.223)

Key: NLLH = negative log-likelihood.

From Table 4.22, scale and shape parameters are found to be 34.888 and 0.084,

respectively, with standard errors in parenthesis. To ensure that the scale pa-

rameter is positive (σ >0), we use the transformation, σ = e34.888. The positive

value of the shape parameter (ξ̂=0.084) indicates that the monthly rainfall data
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follows a Pareto distribution.The 95% confidence interval (CI) is not signifa-

cantly different from zero, indicating that the monthly rainfall data for Gaut-

eng can be modelled by the exponential family of distribution. The diagnos-

tic plots in Figure 4.46 show an appropriate fit of the GPD with time-varying

threshold for the Gauteng province.
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Figure 4.46: Diagnostic plots for the Gauteng GPD fitted to cluster maxima.

4.9.3 KwaZulu-Natal

Figure 4.47 is a time series plot of the monthly rainfall data for KwaZulu-Natal

with a time-varying threshold, which is a penalised cubic smoothing spline.

The smoothing parameter lamda (λ) is selected based on the GCV criterion.

The estimated value for λ is λ̂ = 0.002645513. The first threshold is set at zero

after fitting time-varying threshold and only positive observations (excesses)

above zero are considered. We then determine a sufficiently high threshold by

fitting a non-parametric extremal mixture model and exceedances are declus-

tered using Ferro and Segers (2003) intervals estimator method. Figure 4.48

shows threshold estimation using a non-parametric extremal mixture model,
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where a kernel density is fitted to the bulk model and a GPD fitted to the upper

end-point of the model. The estimated threshold is u=148.499 for KwaZulu-

Natal GPD.
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Figure 4.47: A time series plot of the KwaZulu-Natal monthly rainfall data
with a time-varying threshold, which is a penalised cubic smoothing spline.
Blue dots show the negated observations and the red line shows the smoothing
parameter.
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Figure 4.48: Threshold estimation for KwaZulu-Natal using a non-parametric
extremal mixture model, where a kernel density is fitted to the bulk model and
a GPD fitted to the tail of the distribution (u=148.499).

The GPD model was fitted to cluster maxima using the threshold estimated by

the non-parametric extremal mixture model. Table 4.23 shows maximum like-

lihood estimates of GPD parameters and the estimated threshold for KwaZulu-

Natal.

Table 4.23: Parameter estimates of KwaZulu-Natal GPD fitted to cluster max-
ima of the monthly rainfall.

Threshold σ̂ ξ̂ NLLH 95 % CI for ξ
148.499 34.929 (4.196) 0.116 (0.086) 663.056 (-0.053,0.285)

Key: NLLH = negative log-likelihood.

From Table 4.23, scale and shape parameters are found to be 34.929 and 0.116,

respectively, with standard errors in parentheses. To ensure that the scale

parameter is positive (σ >0), we use the transformation, σ = e34.929. The posi-

tive value of the shape parameter (ξ̂=0.116) indicates that the monthly rainfall

data follows a Pareto distribution. The 95% confidence interval (CI) is not sig-
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nifacantly different from zero, indicating that the monthly rainfall data for

KwaZulu-Natal can be modelled by the exponential family of distribution. The

diagnostic plots in Figure 4.49 show an appropriate fit of the GPD with a time-

varying threshold for the KwaZulu-Natal province.
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Figure 4.49: Diagnostic plot for the KwaZulu-Natal GPD fitted to cluster max-
ima.

4.9.4 Limpopo

Figure 4.50 is a time series plot of the monthly rainfall data for Limpopo with

a time-varying threshold, which is a penalised cubic smoothing spline. The

smoothing parameter lamda (λ) is selected based on the GCV criterion. The

estimated value for λ is λ̂ = 0.009853259. The first threshold is set at zero

after fitting time-varying threshold and only positive observations (excesses)

above zero are considered. We then determine a sufficiently high threshold by

fitting a non-parametric extremal mixture model and exceedances are declus-

tered using Ferro and Segers (2003) intervals estimator method. Figure 4.51

shows threshold estimation using a non-parametric extremal mixture model,
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where a kernel density is fitted to the bulk model and a GPD fitted to the upper

end-point of the model. The estimated threshold is u=93 for Limpopo GPD.
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Figure 4.50: A time series plot of the Limpopo monthly rainfall data with a
time-varying threshold, which is a penalised cubic smoothing spline. Blue dots
show the negated observations and the red line shows the smoothing parame-
ter.
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Figure 4.51: Threshold estimation for Limpopo using a non-parametric ex-
tremal mixture model, where a kernel density is fitted to the bulk model and a
GPD fitted to the tail of the distribution (u=93).

The GPD model was fitted to cluster maxima using the threshold estimated

by the non-parametric extremal mixture model. Table 4.24 presents the maxi-

mum likelihood estimates of GPD parameters and the estimated threshold for

Limpopo.

Table 4.24: Parameter estimates of GPD fitted to cluster maxima of the
monthly rainfall.

Threshold σ̂ ξ̂ NLLH 95% CI for ξ
93 16.577 (0.858) -0.868 (0.044) 390.978 (-0.954,-0.782)

Key: NLLH = negative log-likelihood.

From Table 4.24, scale and shape parameters are found to be 34.929 and 0.116,

respectively, with standard errors in parentheses. To ensure that the scale pa-

rameter is positive (σ >0), we use the transformation, σ = e16.577. A negative

value of the shape parameter reveals evidence that the monthly rainfall data

for Limpopo belongs to Weibull family and confidence interval (CI) is signifa-
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cantly different from zero. The diagnostic plots in Figure 4.52 show an appro-

priate fit of the GPD with a time-varying threshold for the Limpopo province.
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Figure 4.52: Diagnostic plots for the Limpopo GPD fitted to cluster maxima.

4.9.5 Mpumalanga

Figure 4.53 is a time series plot of the monthly rainfall data for Mpumalanga

with a time-varying threshold, which is a penalised cubic smoothing spline.

The smoothing parameter lamda (λ) is selected based on the GCV criterion.

The estimated value for λ is λ̂ = 0.00001018565. An initial threshold is set

at zero after fitting time-varying threshold and only positive observations (ex-

cesses) above zero are considered. We then determine a sufficiently high thresh-

old by fitting a non-parametric extremal mixture model and exceedances are

declustered using Ferro and Segers (2003) intervals estimator method.
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Figure 4.53: A time series plot of the Mpumalanga monthly rainfall data with
a time-varying threshold, which is a penalised cubic smoothing spline. Blue
dots show the negated observations and the red line shows the smoothing pa-
rameter.

The monthly rainfall for Mpumalanga is initial detrended using a penalised

cubic smoothing spline in (3.44). The kernel density technique was applied to

estimate the value of the threshold, u =92.996. Figure 4.54 shows threshold

estimation using a non-parametric extremal mixture model, where a kernel

density is fitted to the bulk model and a GPD fitted to the upper end-point of

the model. The estimated threshold is u=92.996 for Mpumalanga GPD.
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Figure 4.54: Threshold estimation for Mpumalanga using a non-parametric
extremal mixture model, where a kernel density is fitted to the bulk model and
a GPD fitted to the tail of the distribution (u=92.996).

The GPD model is fitted to cluster maxima using the threshold estimated

by the non-parametric extremal mixture model. Table 4.25 shows maximum

likelihood estimates of GPD parameters and the estimated threshold for the

Mpumalanga province.

Table 4.25: Parameter estimates of Mpumalanga GPD fitted to cluster maxima
of the monthly rainfall.

Threshold σ̂ ξ̂ NLLH 95 % CI for ξ
92.996 12.240 (1.034) -0.673 (0.060) 410.595 (-0.791,-0.555)

Key: NLLH = negative log-likelihood.

From Table 4.25, scale and shape parameters are found to be 12.240 and -0.673,

respectively, with standard errors in parentheses. To ensure that the scale pa-

rameter is positive (σ >0), we use the transformation, σ = e12.240. A negative

value of the shape parameter reveals evidence that the monthly rainfall data

for Mpumalanga belongs to Weibull family of distribution and confidence in-
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tervals (CI) is significantly different from zero. The diagnostic plots in Figure

4.55 show an appropriate fit of the GPD with a time-varying threshold for the

Mpumalanga province.
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Figure 4.55: Diagnostic plots for the Mpumalanga GPD fitted to cluster max-
ima.



Chapter 5

Conclusion

5.1 Introduction

Over the past few decades, floods have been the most common and serious dis-

asters in most countries worldwide, including South Africa. These disasters

are mainly caused by the occurrence of extreme maximum rainfall. This dis-

sertation can contribute towards understanding the environment and climate

change in general. The aim of this study was to analyse the monthly rainfall

data obtained from the South African Weather Service (SAWS) using various

statistical techniques.

This dissertation sets out to model monthly rainfall data in selected provinces

of South Africa using extreme value distributions. The five provinces consid-

ered in this study are: Eastern Cape, Gauteng, KwaZulu-Natal, Limpopo and

Mpumalanga. This chapter summarises the major findings of the study based

on the data analysed. The chapter also gives recommendations for future work

in the field of extreme value theory.
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5.2 Dissertation summary

This study investigated five candidate parent distributions: gamma, Gumbel,

log-normal, Pareto and Weibull, to establish the best-fit probability distribu-

tion for each of the five provinces. Augmented Dickey-Fuller (ADF), Phillips-

Perron (PP) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) statistical tests

were used to test for stationarity. Non-parametric Mann-Kendall (M-K) test

and time series plots were used to investigate the long-term trends of the

monthly rainfall and their variability across the selected provinces. The study

also employed Jarque-Bera (JB), Shapiro–Wilk (SW) and chi-square tests meth-

ods to check whether the monthly rainfall data were normally distributed.

This research used non-stationary generalised extreme value distribution (GEVD)

and non-stationary generalised Pareto distribution (GPD) with both fixed and

time-varying thresholds in modelling extreme maximum monthly rainfall data

for the five provinces. The deviance statistic and likelihood ratio test were used

to select the best-fit model among non-stationary GEVD and non-stationary

GPD families, while the maximum likelihood estimation method was used to

obtain the estimates of the parameters. Model adequacy was checked using

Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests.

5.3 Conclusion

This section summarises the concluding remarks of the analyses that were

performed in Chapter 4. Firstly, the Weibull distribution provided the best-

fit probability parent distribution for Eastern Cape, KwaZulu-Natal, Limpopo

and Mpumalanga provinces based on the value of the Akaike’s information

criterion (AIC) and the Bayesian information criterion (BIC), while the best-

fit probability parent distribution for Gauteng province was found to be the
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gamma distribution.

The p-values of the ADF test statistics for Eastern Cape, Limpopo and Mpumalanga

are significant (p < 0.05), suggesting that the monthly rainfall data for these

three provinces are stationary. The ADF p-values for Gauteng and KwaZulu-

Natal are insignificant (p > 0.05), suggesting that the monthly rainfall data

for these two provinces are not stationary at 5% level of significance, while the

p-values of the KPSS test for all five provinces are significant (p < 0.05), sug-

gesting that the monthly rainfall data are not stationary. Furthermore, the

p-values of the PP test for all five provinces are significant (p < 0.05), imply-

ing that the monthly rainfall data are stationary. Findings from JB, SW and

chi-square normality tests revealed that the monthly rainfall data do not come

from a normal distribution. The findings of the Mann-Kendall trend test sug-

gested that in Eastern Cape, Gauteng and Kwazulu-Natal provinces there was

a significant monotonic decreasing trend, while in Limpopo and Mpumalanga

provinces there was an insignificant monotonic decreasing trend.

The study presented an application of non-stationary GEVD in modelling max-

imum monthly rainfall data. The stationary GEVD was found as the best dis-

tribution model for Eastern Cape, Gauteng and KwaZulu-Natal provinces. Fur-

thermore, model fitting supported non-stationary GEVD models for maximum

monthly rainfall with nonlinear quadratic trend in the location parameter and

a linear trend in the scale parameter for Limpopo, while in Mpumalanga the

non-stationary GEVD model, which has a nonlinear quadratic trend in the

scale parameter and no variation in the location parameter fitted well to the

monthly rainfall data.

The negative values of the shape parameters for Eastern Cape and Mpumalanga,

indicate that the data follow the Weibull distribution class, while the positive
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values of the shape parameters for Gauteng, KwaZulu-Natal and Limpopo,

suggest that the data follow the Fréchet distribution class.

The study also presented an application of non-stationary GPD with a fixed

threshold in modelling monthly rainfall excesses data. The stationary GPD

provided the best-fit model for Eastern Cape, while the non-stationary GPD

model with a linear trend in the scale parameter was found as the best distri-

bution for KwaZulu-Natal and Mpumalanga provinces and the non-stationary

GPD model with a nonlinear quadratic trend in the scale parameter was found

as the best distribution for Gauteng and Limpopo. The shape parameters of the

stationary GPD and non-stationary GPD were all negative, suggesting that the

distribution of exceedances above the predetermined thresholds in the selected

provinces is short-tailed negative Weibull distribution family.

The study further investigated a GPD with time-varying thresholds in mod-

elling monthly rainfall excesses data. The data were detrended using cubic re-

gression smoothing spline and the GPD was fitted with the threshold that was

estimated using the non-parametric extremal mixture models. Findings indi-

cate that the monthly rainfall data for Eastern Cape, Gauteng and KwaZulu-

Natal comes from the exponential distribution family. On the other hand, for

Limpopo and Mpumalanga, evidence suggested that the monthly rainfall data

belong to the Weibull family.

5.4 Limitations of the dissertation

The monthly rainfall data were obtained from the South African Weather Ser-

vice (SAWS) for the period 1900-2017. However, monthly rainfall data for

Limpopo and Mpumalanga were recorded for the period 1904 up to 2017. This
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research focused only on five selected provinces and this was also considered

as the study limits because it is important to conduct a study with all the

provinces of South Africa. Another limitation of the study concerns scarce lit-

erature on modelling rainfall data using extreme value theory techniques with

time-varying threshold in South Africa.

5.5 Recommendations for future work

Future research work could consider using the Bayesian estimation method

to obtain estimates of the GEVD and GPD parameters. Future studies could

also consider including covariates such as Southern Oscillation Index (SOI) to

model monthly rainfall, as well as extending the study to cover all the nine

provinces of South Africa. Future research could also explore the use of multi-

variate extreme value theory (MEVT) including spatial extremes in analysing

rainfall data.
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ACERO, F. J., GARCÍA, J. A., AND GALLEGO, M. C. (2011). Peaks-over-

threshold study of trends in extreme rainfall over the Iberian Peninsula.

Journal of Climate, 24 (4), 1089–1105.

ACQUAH, H. D.-G. (2010). Comparison of Akaike information criterion AIC

and Bayesian information criterion BIC in selection of an asymmetric price

relationship. Journal of Development and Agricultural Economics, 2 (1),

001–006.

ACQUAH, H. D.-G. (2012). A bootstrap approach to evaluating the performance

of Akaike information criterion (AIC) and Bayesian information criterion

(BIC) in selection of an asymmetric price relationship. Journal of Agricul-

tural Sciences, Belgrade, 57 (2), 99–110.

ADEFISOYE, J., GOLAM KIBRIA, B., AND GEORGE, F. (2016). Performances of

several univariate tests of normality: An empirical study. Journal of Biomet-

rics and Biostatistics, 7.

AKSOY, H. (2000). Use of gamma distribution in hydrological analysis. Turkish

Journal of Engineering and Environmental Sciences, 24 (6), 419–428.



REFERENCES 123

ALAM, M., EMURA, K., FARNHAM, C., AND YUAN, J. (2018). Best-fit prob-

ability distributions and return periods for maximum monthly rainfall in

Bangladesh. Climate, 6 (1), 1–16.

ALAM, M., TORIMAN, M., SIWAR, C., AND TALIB, B. (2011). Rainfall varia-

tion and changing pattern of agricultural cycle. American Journal of Envi-

ronmental Sciences, 7 (1), 82–89.

ALEXANDER, M. (2018). South Africa’s weather and climate. Last accessed:

03.03.2020.

URL: https://southafrica-info.com/land/south-africa-weather-climate/

AMIN, M., RIZWAN, M., AND ALAZBA, A. (2016). A best-fit probability distri-

bution for the estimation of rainfall in northern regions of Pakistan. Open

Life Sciences, 11 (1), 432–440.

ATTALIDES, N. (2015). Threshold-based extreme value modelling. Ph.D. thesis,

University College London.

BENSALAH, Y. (2000). Steps in applying extreme value theory to finance: a

review. Bank of Canada.

BHARTI, V. (2015). Investigation of extreme rainfall events over the northwest

Himalaya Region using satellite data. Ph.D. thesis, University of Twente.

BOTAI, C. M., BOTAI, J. O., AND ADEOLA, A. M. (2018). Spatial distribution

of temporal precipitation contrasts in South Africa. South African Journal

of Science, 114 (7-8), 70–78.

BOUDRISSA, N., CHERAITIA, H., AND HALIMI, L. (2017). Modelling maximum

daily yearly rainfall in northern Algeria using generalized extreme value

distributions from 1936 to 2009. Meteorological Applications, 24 (1), 114–

119.



REFERENCES 124

CHEGE, C. K., MUNGAT’U, J. K., AND NGESA, O. (2016). Estimating the

extreme financial risk of the Kenyan Shilling versus US Dollar exchange

rates. Science Journal of Applied Mathematics and Statistics, 4 (6), 249–255.

CHIKOBVU, D. AND CHIFURIRA, R. (2015). Modelling of extreme minimum

rainfall using generalised extreme value distribution for Zimbabwe. South

African Journal of Science, 111 (9-10), 1–8.

CHIKODZI, D., MURWENDO, T., AND SIMBA, F. M. (2013). Climate change

and variability in southeast Zimbabwe: Scenarios and societal opportunities.

American Journal of Climate Change, 2 (3), 36–49.

CHU, L., MCALEER, M., AND CHANG, C.-H. (2013). Statistical modelling of

extreme rainfall in Taiwan. Technical report. Atlantis Press.

CHU, P.-S., ZHAO, X., RUAN, Y., AND GRUBBS, M. (2009). Extreme rainfall

events in the Hawaiian islands. Journal of Applied Meteorology and Clima-

tology, 48 (3), 502–516.

COLES, S., BAWA, J., TRENNER, L., AND DORAZIO, P. (2001). An introduction

to statistical modeling of extreme values, volume 208. Springer. London.

CONNAUGHTON, C., HERMAN, J., JOHANSEN, A., KAWABATA, E., KERR, R.,

PEGG, M., REIZENSTEIN, J., SAKRAJDA, P., TAWN, N., AND WHINCOP, L.

(2017). African Drought Risk Pay-Out Benchmarking. ESGI30, Univesity of

Warwick.

DA SILVA, R. M., SANTOS, C. A., MOREIRA, M., CORTE-REAL, J., SILVA,

V. C., AND MEDEIROS, I. C. (2015). Rainfall and river flow trends using

Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River

basin. Natural Hazards, 77 (2), 1205–1221.

DAS, K. R. AND IMON, A. (2016). A brief review of tests for normality. Ameri-

can Journal of Theoretical and Applied Statistics, 5 (1), 5–12.



REFERENCES 125

DAVISON, A. C. AND SMITH, R. L. (1990). Models for exceedances over high

thresholds. Journal of the Royal Statistical Society: Series B (Methodologi-

cal), 52 (3), 393–425.

DE WAAL, J. H. (2012). Extreme rainfall distributions: Analysing change in

the Western Cape. Ph.D. thesis, Stellenbosch University.

DE WAAL, J. H., CHAPMAN, A., AND KEMP, J. (2017). Extreme 1-day rainfall

distributions: Analysing change in the Western Cape. South African Journal

of Science, 113 (7-8), 1–8.

DIRIBA, T. A., DEBUSHO, L. K., AND BOTAI, J. (2015). Modeling extreme daily

temperature using generalized Pareto distribution at Port Elizabeth, South

Africa. In: Annual Proceedings of the South African Statistical Association

Conference, volume 2015. South African Statistical Association (SASA), pp.

41–48.

DU PLESSIS, J. AND SCHLOMS, B. (2017). An investigation into the evidence of

seasonal rainfall pattern shifts in the Western Cape, South Africa. Journal

of the South African Institution of Civil Engineering, 59 (4), 47–55.

DYSON, L. L. (2009). Heavy daily-rainfall characteristics over the Gauteng

province. Water SA, 35 (5).

EASTERLING, D. R., EVANS, J., GROISMAN, P. Y., KARL, T. R., KUNKEL,

K. E., AND AMBENJE, P. (2000). Observed variability and trends in extreme

climate events: A brief review. Bulletin of the American Meteorological Soci-

ety, 81 (3), 417–426.

EASTOE, E. F. AND TAWN, J. A. (2009). Modelling non-stationary extremes

with application to surface level ozone. Journal of the Royal Statistical Soci-

ety: Series C (Applied Statistics), 25–45.



REFERENCES 126

ENDER, M. AND MA, T. (2014). Extreme value modeling of precipitation in

case studies for China. International Journal of Scientific and Innovative

Mathematical Research, 2 (1), 23–36.
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sonal rainfall predictability over the Lake Kariba catchment area. Water SA,

40 (3), 461–470.

MZEZEWA, J., MISI, T., AND VAN RENSBURG, L. (2010). Characterisation of

rainfall at a semi-arid ecotope in the Limpopo province (South Africa) and its

implications for sustainable crop production. Water SA, 36 (1), 20–26.



REFERENCES 130

NAMITHA, M. AND RAVIKUMAR, V. (2018). Analysis of extreme rainfall events

and calculation of return levels using generalised extreme value distribution.

International Journal of Pure and Applied Bioscience, 6 (6), 1309–1316.

NAMITHA, M. AND VINOTHKUMAR, V. (2019). Derivation of the intensity-

duration-frequency curve for annual maxima rainfall using generalised ex-

treme value distribution. International Journal of Current Microbiology and

Applied Sciences, 8 (1), 2626–2632.

NASH, D. J., PRIBYL, K., KLEIN, J., NEUKOM, R., ENDFIELD, G. H., ADAM-

SON, G. C., AND KNIVETON, D. R. (2016). Seasonal rainfall variability in

southeast Africa during the nineteenth century reconstructed from documen-

tary sources. Climatic change, 134 (4), 605–619.

NEL, W. (2009). Rainfall trends in the KwaZulu-Natal Drakensberg region of

South Africa during the twentieth century. International Journal of Clima-

tology: A Journal of the Royal Meteorological Society, 29 (11), 1634–1641.

NGAILO, J., REUDER, J., RUTALEBWA, E., NYIMVUA, S., AND MESQUITA, D.

(2016). Modelling of extreme maximum rainfall using extreme value theory

for Tanzania. International Journal of Scientific and Innovative Mathemati-

cal Research, 4 (3), 34–45.

ODIYO, J. O., MAKUNGO, R., AND NKUNA, T. R. (2015). Long-term changes

and variability in rainfall and streamflow in Luvuvhu River Catchment,

South Africa. South African Journal of Science, 111 (7-8), 1–9.

ODUNIYI, O. S. (2013). Climate change awareness: A case study of small scale

maize farmers in Mpumalanga province, South Africa. Ph.D. thesis, Univer-

sity of South Africa.

OLOFINTOYE, O., SULE, B., AND SALAMI, A. (2009). Best-fit probability dis-

tribution model for peak daily rainfall of selected cities in Nigeria. New York

Science Journal, 2 (3), 1–12.



REFERENCES 131

OSMAN, Y. Z., FEALY, R., AND SWEENEY, J. (2015). Modelling extreme

temperatures in ireland under global warming using a hybrid peak-over-

threshold and a generalised pareto distribution approach. International

Journal of Global Warming, 7 (1), 21–47.

PAN, J.-X. AND FANG, K.-T. (2002). Maximum likelihood estimation. In

Growth curve models and statistical diagnostics. Springer, pp. 77–158.

PANAGOULIA, D., ECONOMOU, P., AND CARONI, C. (2014). Stationary and

nonstationary generalized extreme value modelling of extreme precipitation

over a mountainous area under climate change. Environmetrics, 25, 29–43.

PAPARODITIS, E. AND POLITIS, D. N. (2013). The asymptotic size and power

of the augmented Dickey-Fuller test for a unit root.

PHILLIPS, P. C. AND PERRON, P. (1988). Testing for a unit root in time series

regression. Biometrika, 75 (2), 335–346.

PICKANDS III, J. (1975). Statistical inference using extreme order statistics.

the Annals of Statistics, 3 (1), 119–131.

PINDURA, T. H. (2016). An assessment of water security and hydrology re-

sources in the face of climate variability: The case study of Nkonkobe Local

Municipality, Eastern Cape, South Africa. Ph.D. thesis, University of Fort

Hare.

POULOS, M. (2016). Determining the stationarity distance via a reversible

stochastic process. PloS one, 11 (10).

PYLE, D. M. AND JACOBS, T. L. (2016). The Port Alfred floods of 17–23 October

2012: A case of disaster (mis) management? Jàmbá: Journal of Disaster Risk
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Appendices

SOME SELECTED R CODES

R code for fitting non-stationary GEVD using is-

mev package

install.package(“ismev”)

library(ismev)

attach(EC.MAX.VALUESMax)

head(EC.MAX.VALUESMax)

Now to fit the GEV to allow for a linear trend in µ location only, we type:

tail(EC.MAX.VALUESMax)ti=matrix(ncol=1,nrow=118)

ti[,1]=seq(1,118,1)

ti=gev.fit(EC.MAX.VALUESMax,ydat = ti,mul = 1, sigl=NULL)

gev.diag(ti)

We can also create a quadratic linear trend in location only model, and linear

in scale ti2=matrix(ncol=2,nrow=118)

ti2[,1]=seq(1,118,1)

ti2[,2]=(ti2[,1])**2

ti=gev.fit(EC.MAX.VALUESMax,ydat = ti2,mul=c(1,2),sigl = 1)

gev.diag(ti)
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R code for fitting non-stationary GPD

Mean residual life plot and Threshold choice plots

mean residual life plot:

mrp=mrl.plot(data)

tcplot(data, u.range = c(40, 80), nt=10 )

decluster the sequence by using the automatic declustering method

ei <- extremalIndex(data, threshold = 55)

ei

dc <- declust(ei)

par(mfrow=c(1,1))

plot(dc,col=“blue”, xlab=“Time”, ylab=“Rainfall”)

dc

dc <- declust(data, threshold = 55)

freq=gpd.fit(data,threshold=55)

gpd.diag(freq)

Calculating t-ratios and p-values

tb1=abs((-0.1424708)/0.03459958); tb1

pt(tb1,118,lower.tail=FALSE)

ti=matrix(ncol=1,nrow=1416)

ti[,1]=seq(1,1416,1)

ti=gpd.fit(data,threshold=55,ydat=ti,sigl=1)

gpd.diag(ti)

We can also create a quadratic linear trend in location only model, and linear

in scale

ti2=matrix(ncol=2,nrow=1416)

ti2[,1]=seq(1,1416,1)

ti2[,2]=(ti2[,1])**2

ti=gpd.fit(data,threshold=55,ydat = ti2,sigl = c(1,2))

gpd.diag(ti)
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R code for fitting cubic regression smoothing splines

using ismev

attach(data)

head(data)

tail(data)

win.graph()

fitting cubic regression smoothing splines

library(ismev)

fitting cubic regression smoothing splines

plot(data,xlab=“Observation number”, ylab=“Negated maximum rainfall (mm)”,

col=“blue”)

lines(smooth.spline(time(data),data, spar=0.1),col=“red”,lwd=3)

plot(data, type=“p”, ylab=“Negated maximum rainfall (mm)”, col=“blue”,xlab=

“Observation number”)

lines(smooth.spline(time(data), data, spar=0.59369),col=“red”, lwd=3)

smooth.spline(time(data), data) GCV

r2=residuals((smooth.spline(time(data), data, spar=0.59369)))

plot(r2,col=“blue”,ylab=“Residuals observations”, xlab=“Observation number”)

r2pos ≤ r2[r2 > 0]

plot(r2pos, ylab=“Residuals above time-varying threshold (positive residuals)”,

col=“blue”, xlab=“Observation number”)

tail(r2pos)



Appendices 138

R code for fitting non-parametric extremal mix-

ture model using evmix package

Nonparametric extreme value mixture models

Example fit kernel density

attach(data)

install.package(“evmix”)

library(evmix)

win.graph()

fit = fkdengpd(data, phiu = FALSE, std.err = FALSE)

hist(data,breaks=100, freq = FALSE, main=””,xlim = c(0,400))

dataa = seq(0,400, 1)

lines(dataa, dkdengpd(dataa, data, fit$lambda, fit$u, fit$sigmau, fit$xi, fit$phiu),

col=“blue”, lwd =2)

abline(v = fit$u, col=“blue”, lwd = 2)

legend(“topright”, “kdengpd”, col = “blue”,lty = 1, lwd = 2)

box()

fit


