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ABSTRACT  

 

Background: Death and economic losses due to road traffic accidents (RTA) are 

huge global public health and developmental problems and need urgent attention. 

Each year nearly 1.24 million people die and millions suffer various forms of disability 

as a result of road accidents. This puts road traffic injuries (RTIs) as the eighth leading 

cause of death globally and RTIs are set to become the fifth leading cause of death 

worldwide by the year 2030 unless urgent actions are taken. 

Aim: In this paper, we investigate factors that contribute to road traffic deaths (RTDs) 

in the Limpopo province of South Africa using models such as the generalized linear 

models (GLM) and zero inflated models.   

Methods: The study was based on retrospective data that comprised of reports of 

18,029 road traffic accidents and 4,944 road traffic deaths over the years 2009 – 

2015. Generalized linear modelling and zero-inflated models were used to identify 

factors and determine their relationships to RTDs. 

Results: The data was split into two categories: deaths that occurred during holidays 

and those that occurred during non-holiday periods. It was found that the following 

variables, namely, Monday, human actions, vehicle conditions and vehicle makes, 

were significant predictors of RTDs during holidays. On the other hand, during non-

holiday periods, weekend, Tuesday, Wednesday, national road, provincial road, 

sedan, LDV, combi and bus were found to be significant predictors of road traffic 

deaths. 

Conclusion: GLM techniques, such as the standard Poisson regression model and 

the negative binomial (NB) model, did little to explain the zero excess, therefore, zero-

inflated models, such as zero-inflated negative binomial (ZINB), were found to be 

useful in explaining excess zeros.  

Recommendation: The study recommends that the government should make more 

human power available during the festive seasons, such as the December holidays, 

and over weekends. 

Key concepts: Poisson, ZIP, ZINB, NB, accidents, deaths, RTAs, RTDs, zeros.   
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CHAPTER 1: INTRODUCTION 

 

1.1. INTRODUCTION 

Transportation is the heartbeat of South Africa’s economic growth and social 

development and allows both the development of internal and external 

merchandising. South African transport compromises of general transport, rail, civil 

aviation, shipping, motor vehicles and freight (Klynsmith, 2015).  

Rapid population growth and urbanization has a dramatic effect on the increasing 

demand for transport. An increase in demand for transport increases the number of 

road traffic accidents (RTAs) (Zhang et al., 2006). RTAs cause economic loss to 

company owners, insurance companies and, subsequently, the country as a whole. 

RTAs might also result in the loss of lives, with some individuals suffering non-fatal 

injuries, while others may incur disabilities as a result of RTAs. 

1.2. BACKGROUND OF THE STUDY 

Globally, RTAs are a major cause of death and severe injuries (WHO, 2013). Each 

year nearly 1.24 million people die and millions suffer various forms of disability as a 

result of road accidents (Agyemang et al., 2013; WHO, 2013; Subhan, 2017). This 

puts road traffic injuries (RTIs) as the eighth leading cause of death globally, which is 

likely to increase to the fifth leading cause of death worldwide by the year 2030 unless 

urgent action is taken (Masuri et al., 2012; WHO, 2013 and Subhan, 2017) 

Death rates due to road accidents are increasing rapidly in lower- and middle-income 

countries (Sharma, 2008). The social and economic costs of deaths and injuries due 

to RTAs are considerable. Road accidents in lower- and middle-income countries cost 

over US$ 100 billion each year (WHO, 2013). Furthermore, it was reported by the 

WHO (2013) that road traffic death (RTD) rates vary considerably from region to 

region. Africa, with only 2% of the world’s vehicles, is the least motorised region of 

the world, but accounts for 16% of all global traffic deaths, with Nigeria and South 

Africa contributing the most to fatality rates in the region (WHO, 2013). 

The Department of Roads and Transport (DOT, 2007), reported that South Africa has 

one of the worst road safety records in the world, recording road accident-related 

deaths of approximately 120,000 people per annum and injuries in excess of a million 
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people per annum. RTDs have increased from 25.1 fatalities per 100,000 people in 

1994 to 30.3 fatalities per 100,000 people in 2008. Additionally, this annual road 

carnage costs the South African economy approximately R43 billion. Approximately 

60% of these costs include damage to vehicles and other properties (Harris and 

Olukoga, 2005). People most affected by the consequences of these RTAs are young 

people, aged between 20 and 44 (Mohamed et al., 2009). 

The Road Traffic Management Corporation (RTMC) (2016), reported that the number 

of road fatalities in South Africa increased by 10% between 2014 and 2015. Within 

South Africa, the Limpopo Province had the highest crude RTD rate for the period 

2001-2006 (Lehohla, 2009). This shows that there is a need to analyse RTAs in the 

Limpopo Province in order to identify the important factors that contribute to RTDs. 

1.3. STUDY SITE 

The province of Limpopo is the northernmost province of South Africa. Statistics 

South Africa’s Census 2011, showed that the Limpopo Province comprises 125,755 

square kilometres of the country’s total land area (StatsSA, 2012). It is the fifth largest 

of the country’s nine provinces, accounting for 10.3% of South Africa’s total land area. 

 
Figure 1: South Africa map (source: Wikipedia image) 

According to the 2011 census report, 5 404 868 people live in Limpopo, constituting 

10.4% of South Africa’s total population. The majority of the people living in the 

province were born in the province (91%), while 3% of the people living in the province 

were born outside of South Africa (StatsSA, 2012). Furthermore, at the time of the 
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2011 census, 34% of the population in the province were children aged between 0-

14 years, 60% were aged between 15-64 years and 6% of the population were elderly 

people. Black Africans constitute the majority of the population, followed by Whites, 

Indians or Asians and Coloureds. Sepedi is the dominant language spoken in 

Limpopo, followed by Xitsonga and Tshivenda. 

The province is divided into five district municipalities. The most populated district in 

the province is Vhembe (1,294,22 population), followed by Capricorn (1,261,463 

population), Mopani (1,092,507 population), Greater Sekhukhune (1,076,840 

population) and Waterberg (679,336 population), as reported by (StatsSA, 2012). In 

2011, there were more females than males across all districts, with the exception of 

Waterberg. 

 

Figure 2: Limpopo province map (source: Wikipedia image) 

Limpopo is the second poorest province in South Africa with a poverty rate of 59.1% 

of the total population (Kyei, 2011). It is a typical developing area, with many rural 

settlements practising subsistence farming. According to the 2011 census, the 

unemployment rate in Limpopo was 38.9%. The Greater Sekhukhune district has the 

highest unemployment rate and the highest unemployment rate among people 

without education in the province. The Capricorn district had the highest proportion 

of the people with Grade 12 or Matric and higher education qualifications.  

1.3. PURPOSE OF THE STUDY 

The goals and objectives of this study are divided into the main aim and the objectives 

of the study. 



4 
 

1.3.1. Main Aim of the Study 

The main aim of this study was to determine factors that contribute to RTD in Limpopo 

Province. 

1.3.2. Objective of the Study 

The study focused on the following specific objectives: 

i.) To understand the temporal trend of RTAs and RTDs. 

ii.) To compare generalized linear models to zero-inflated models.  

iii.) To identify and estimate the effect of each factor contributing to RTDs. 

1.4. RESEARCH METHODOLOGY 

1.4.1. Data Source 

The study was based on secondary data on RTAs obtained from the Limpopo 

Province Department of Roads and Transport. The study comprised of 18,029 RTAs 

that occurred and were recorded in the Limpopo Province during the period January 

2009 to December 2015. The data consisted of the number of people killed, seriously 

injured and slightly injured, as well as information on where and when the accident 

occurred, the vehicle type and the cause of the accident. 

1.4.2. Data Analysis 

Descriptive statistical analyses, including line graphs, bar charts and cross 

tabulations, were used in the analysis to summarise the dataset. The study proposes 

alternative models to the standard Poisson regression model. Competing count 

models were fitted to road accident data to come up with better models for predicting 

road fatalities.    

1.5. SIGNIFICANCE OF THE STUDY 

The issue of road accidents is a public health problem both internationally and locally. 

Although there has been a great deal of research done on this subject, the research 

is old, was mostly done for international markets, and does not really use prediction 

models to determine the effect of each contributing factor. For such a contemporary 

issue, more recent research is necessary in order to contribute to the body of 

knowledge on road safety and to help the Department of Roads and Transport in 

Limpopo assess the progress made towards reducing the number of RTAs and RTDs 
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in the province. The research was not meant to be conclusive, but it was an attempt 

to serve as a building block for future research to be done on the subject. 

1.6.  CONCLUSION 

Road accidents are a subset of non-natural causes of deaths in South Africa. The 

study attempts to determine the factors that contribute to RTDs in the province of 

Limpopo. Chapter 2 focus on the literature on risk factors associated with, and 

techniques used to analyse data on, road accidents. Chapter 3 describes the 

methodology used in this study. The model results are presented and discussed in 

Chapter 4 and Chapter 5. Finally, in Chapter 6 I will present a summary of the study 

and give recommendations. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1. INTRODUCTION  

This chapter will provide a review of various relevant literature, both national and 

international, closely related to the topic. The review begins by exploring the literature 

focusing on the risk factors that contribute to road traffic accidents (RTAs), road traffic 

deaths (RTDs), and road traffic injuries (RTIs). Finally, the literature about 

methodology is also reviewed. 

2.2.  RISK FACTORS  

Many researchers have studied the causes and effects of vehicular accidents in 

South Africa, and elsewhere, and made a number of recommendations. The study of 

the cause of road accidents by Vogel and Bester (2005), classified factors 

contributing to RTAs as human factors, factors of environmental conditions and 

factors of the vehicle. Factors in the human factors category were negligence, excess 

speed, dangerous overtaking, pedestrians in the road and inconsiderate driving 

behaviour. Factors in the vehicle factors category had mostly to do with defective 

brakes and tyres. Rush-hour traffic and inadequate facilities for pedestrians were 

factors included in the environmental factors category. It was found that the highest 

number of road accidents recorded were as a result of human factors. 

A study carried out by Li and Bai (2008) further classified RTA data into the following 

categories: driver at fault, time, accident environmental conditions, road conditions, 

accident scene information and other contributing factors. The main variables in the 

driver at fault category were age and gender. The variables in the time category where 

time, day, month and year. Variables within the accident environment conditions 

category were lightning, weather and road surface. Variables within road conditions 

category were surface type, lane number, road class, speed limit, area information, 

road character and road special features. The main variables in the accident scene 

information category were accident location, number of cars involved in the collision, 

vehicle maneuverer before accidents, accident type, vehicle type, traffic control 

device, driver and pedestrians.  

The study conducted by Bener et al. (2013) investigated the gender- and age-related 

differences in driver behaviour in Qatar. The study was based on face to face 
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interviews and found that the majority of the male and female drivers were young 

drivers in the age group 30-39 years. In this study the Student t-test was used to test 

for significance differences between mean age values of male and female drivers. A 

significant difference was found in the mean age of male and female drivers. Drivers 

between the ages of 25 and 44 often caused more RTAs and accidents among male 

drivers were more common than among female drivers (Li and Bai, 2008). 

A cross-sectional study conducted by Burgut et al. (2010), undertaken from February 

to June 2009, explored RTA patterns among drivers in Qatar and investigated the 

contributing factors. Face to face interviews were conducted using a questionnaire 

covering sociodemographic information, driving history, type of vehicle, driver 

behaviour, details of crashes and accident pattern. Fisher exact and Chi-square tests 

were used to test differences in the proportions of categorical variables between; 

marital status, educational level, on holiday and drivers who did or did not have 

accidents. No significant difference was found between high and low household 

income. The frequency of RTAs among drivers who were married was higher than 

those who were not married and the accidents among drivers with a university degree 

were more common during non-holidays than during holidays. In contrast, single 

drivers were involved in more accidents than married drivers in the study by Al-

Matawah and Jadaan (2010). 

Burgut et al’s study has shown that drivers with more driving experience (over 5 

years) were more frequently involved in RTAs, followed by drivers with 1-3 years of 

experience (Burgut et al., 2010). This contradicted Al-Matawah and Jadaan’s (2010) 

study which found that the more experienced the driver, the less involved they were 

in accidents.  

A study conducted by Agbonkhes et al. (2013) in Nigeria, investigated possible 

causes of RTA in Nigeria with the aim of recommending general preventive action. 

Despite increased enforcement, speeding was found to be leading cause of accidents 

in Nigeria. In New Zealand in 2012, the Minister reported that speeding contributed 

to 68 fatal accidents, 307 severe injury accidents and 1, 049 minor injury accidents 

(Ministry of Transport, 2013). The Minister also reported that these accidents resulted 

in 85 deaths, with a total social cost of approximately NZ$637 million. 
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A 1% increase in speed is approximately associated with a 2% increase in the injury 

accident rate, a 3% increase in the severe accident rate and a 4% increase in the 

fatal accident rate (Aarts and Van Schagen 2006). A study by Li and Bai (2008) 

showed that a 51-60 mph (82-97 km/h) speed zone had the highest proportion of both 

fatal and injury accidents.  

Seatbelts are very important in preventing deaths from road traffic accidents, and the 

study by Ogundele et al. (2013) showed a significantly increased risk of death among 

road accident victims who did not wear seatbelts. Using seatbelts can reduce the 

likelihood that drivers and front passengers will be killed. There is a higher proportion 

of seatbelt use in female drivers than in male drivers and drivers not involved in 

accidents (Burgut et al.,2010; Afukaar et al., 2010; Clarke et al.,2010). Seatbelt use 

is 33.2% among users of private cars, 9.0% for taxis, 8.3% for minibus, 13.1% for 

large buses and 9.7% for trucks (Afukaar et al., 2010). About 85% of fatalities involved 

people who were not wearing seatbelt and travelling who were in the front passenger 

seat (Clarke et al.,2010).  

A study on the importance of visual perception for safe driving was conducted by 

Maffioletti et al. (2009). In the study they found that about 59.13% of accidents are 

associated with poor eyesight. Drivers for whom the eyesight deficiency is corrected 

with the eyeglass are likely to be involved in less severe accidents (Zhu and 

Srinivasan, 2011). Most adult drivers aged 65 and above presenting with eye 

conditions, such as cataracts, are at more risk of being involved in an accident than 

younger drivers with no cataracts (Desapriya et al., 2010).  

The Zhu and Srinivasan (2011) study set out to determine the factors affecting the 

severity of overall injury resulting from RTAs. In this study, RTAs were found to be 

less severe on weekdays than on weekends. 

However, these findings were inconsistent with findings in a previous study by Li and 

Bai (2008). This study found that, over a weekend, Sunday frequently recorded the 

lowest number of injury accidents. These inconsistent results may be as a result of 

cultural activity differences taking place on weekends and weekdays. 

Generally, the highest number of road accidents and death were observed during the 

month of December and lowest observed in January and February (Lehohla, 2009). 

However, a recent study by Ishtiaque (2013) showed that most accidents occurred 
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during the heavy rainy season months of July to September. Weather seasonality 

differs from region to region, and this might be one of the reasons why there is 

inconsistent results between these two studies.  

A high proportion of road accidents and deaths occur during the night, between 6 pm 

and 6 am, with peak times from 12 pm to 6 pm (Goswami and Sonowal, 2009; Zhu 

and Srinivasan, 2011). Some accidents at night are caused by the lack of street lights, 

particularly during night time driving on the undivided 2-lane, 2-way rural highways 

(Ishtiaque, 2013). This could lead to a difficulty in distinguishing the lane separation 

which might cause an accident. The probability of fatality is estimated to rise when 

dull lighting conditions are present (Lemp et al., 2011). Multi-vehicle accidents 

commonly occur during the daytime off-peak hours (Li and Bai, 2008). 

A study by Cantillo et al. (2016) investigated the factors affecting urban road 

accidents. A combined GIS-Empirical Bayesian approach was used this study and it 

was found that the geometry of the road plays an important role in the frequency of 

road accidents as well as in the level of accident severity. More accidents commonly 

occurred in roads with two-way traffic, as opposed to single-way roads. The study 

also found that risk decreases with the width of the road. Moreover, studies have 

found a link between road accident frequency and risk factors, such as: road segment 

length, width, number of ramps and bridges, horizontal and vertical curves and 

shoulder width (Anastasopoulos and Mannering, 2009).   

A study conducted by Jung et al. (2010) in south eastern Wisconsin assessed the 

effects of rainfall on the severity of single-vehicle accidents, taking into account 

weather-related factors, such as estimated rainfall intensity for 15 minutes before 

accident occurrence, water film depth, temperature, wind speed/direction, stopping 

sight distance and car following distance at the time of the crash. This study found 

that rainfall intensity, wind speed, and horizontal or vertical curve, were all linked to 

an increasing the likelihood of accident severity in rainy weather.  

Distracted driving is a comportment dangerous to drivers and passengers. A report 

by the National Highway Traffic Safety Administration (NHTSA) (2013) revealed that 

10% of fatal accidents in 2011 were reported as distraction-affected crashes. 

Additionally, 12% of the drivers involved in these accidents were using a cell phone 

at the time of the crash. The use of mobile phones reduces situation awareness and 
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increases unsafe behaviour, putting pedestrians at greater risk of accidents and crime 

victimization (Nasar et al., 2008; Zhu and Srinivasan 2011; Agbonkhese et al., 2013). 

People who use their cell phone while driving, are four times more likely to be involved 

in an accident (WHO, 2011).  

Driving while under the influence of alcohol and drugs increases the risk of a RTAs 

and the chances of causing death or serious injury on roads (Burgut et al., 2010; 

Romana et al., 2014). South Africa has national laws to combat drunken driving. 

However, more drunken driving-related deaths occur in this country than in anywhere 

else in the world. South Africa has four out of ten in its ability to implement these laws 

(WHO, 2015). Approximately 60% to 70% of South African drivers and pedestrians 

killed in road accidents were found to have a concentration blood alcohol (BA) above 

0.08g (WHO, 2015). 

A study undertaken by Al-Matawah and Jadaan (2010), involved creating a model of 

accident prediction related to the frequency of accidents in Kuwait. This study found 

that the more aggressive the driving, the greater the number of road accidents. 

Furthermore, drivers who think that enforcement is ineffective experience more road 

accidents than drivers who perceive enforcement as effective. 

A study carried out by Agbonkhese et al. (2013), examined the problems associated 

with road accidents in Nigeria and found that vehicle factors alone had the greatest 

influence on the frequency of accidents resulting in fatalities or serious injury. Vehicle 

parts, such as: tyres, engines, braking system, side mirrors, wipers, the horn and light 

systems, were also found to be the main contributing factors to RTAs in the country. 

A South African study showed that the most common defects in minibus taxis were 

found with braking systems, such as brake pads identified as being cheap imports 

(Govender and Allopi, 2007). 

2.3  METHODOLOGY 

A study conducted Lemp et al. (2011) examined the impact of vehicle, occupant, 

driver and environmental characteristics on accident severity for those involved in 

truck crashes. In this study, the ordered probit model was used to model road fatalities 

and it was found that the likelihood of fatalities and serious injury was estimated to 

increase with the number of truck trailers, but fall with the total length of the truck and 

the gross weight of the vehicle. 
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Anowar et al. (2012) compared two different models, the traditional ordered logit 

model, the latent segmentation based ordered logit model, with two segments and 

with three segments. They deployed two goodness of fit Bayessian information 

criterion (BIC) and Ben-Akiwa and Lerman’s adjusted likelihood ratio (BL) test, to 

compare the goodness of fit of three models. The latent segmentation based ordered 

logit model with two segments was found to outperform other models in identifying 

the factors that influence injury severity of highway vehicle occupants involved in 

accidents. 

The study by Lemp et al. (2011) examined the impact of environmental factors, and 

drivers and vehicle factors on the severity of injury resulting from large truck crashes 

by running two regression models namely the ordered probit (OP) model and the 

heteroskedastic ordered probit (HETOP) model. The study found that the HOP model 

performed significantly better than the OP.  

In order to better understand the injury severity distributions of accidents on highway 

segments, and the effect that traffic, highway and weather characteristics have on 

these distributions, the mixed (random) logit model was used by Milton, et al. (2008) 

to model road accidents on a highway. The authors found that weather effects, such 

as snowfall, are best modelled as random parameters, while roadway characteristics, 

such as the number of horizontal curves, number of grade breaks per mile and 

pavement friction, are best modelled as fixed parameters. However, the disadvantage 

of using mixed effect methods is that the results may not be easily transferable to 

other datasets (Lord and Mannering, 2010). 

Stepwise logistic regression analysis was applied by Çelik and Senger (2014) in the 

case of the Kars Province in Turkey to analyse data and investigate critical factors 

that contributed significantly to fatal versus non-fatal traffic accidents. They found that 

the stepwise logistic regression model fitted the RTA data in the Kars Province well.  

A study by Jung et al. (2010) compared two predicting models, the ordinal logistic 

regression model and the sequential logistic regression model, to predict accident 

severity, that is, a polychotomous response. In the study the data was divided into 

forward format from lowest injury severity to the highest injury severity, and the 

backward format, reversing the sequence. The study found that the backward format 
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sequential logistic regression model outperformed the logistic regression model in 

predicting accident severity.    

The multiple linear regression model was used by Gupta et al. (2017) to try to identify 

factors that contributed to the cause of accidents, and also to develop an accident 

prediction model for the road segment. The number of accidents was treated as 

outcome variable in the model, while the predictor variables were road width, segment 

length of the road, traffic volume, pedestrian volume and the number of passageways. 

The results of the study found that the risk of being involved in an accident increased 

as the traffic volume, pedestrian volume, carriage-way width, segment length and 

number of passageways.  

When investigating the impact of traffic congestion on the frequency of road accidents 

in England, Poisson-lognormal, Poisson-gamma and Poisson-lognormal with 

conditional autoregressive prior models were used to account for the effect of both 

heterogeneity and spatial correlation (Wang et al. 2009). The results of the study 

showed that there was no link between traffic congestion and road accidents. 

Applying linear regression to count data leads to inconsistent standard errors and 

may produce negative predictions for the dependent variable (Al-Matawah and 

Jadaan, 2010; Ayati and Abbasi, 2014). Therefore, the Poisson regression model is 

one of the most widely used statistical models for the analysis of count data.  

One of the advantages of Poisson regression over a standard linear regression model 

is that this model includes a skew and restriction of predicted values to non-negative 

integer values (Ayati and Abbasi, 2014). In most count data sets seen in practice, the 

Poisson regression model tends to fit the data poorly, as indicated by the deviance. 

This may be because of the restriction that the conditional variance of the dependent 

variable is equal to the conditional mean. 

In the case when the Poisson model assumption is violated, Ayati and Abbasi (2014) 

and Oppong (2014) suggest that an alternative approach is to apply the negative 

binomial regression model as this model relaxes the assumption of equality of the 

conditional mean and conditional variance by adding a gamma distributed error term. 

Anastasopoulos and Mannering (2009), using accident data from rural interstate 

highways in Indiana collected over a 5-year period (1995-1999), explored the use of 

random parameter count models as a methodological alternative in analysing 
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accident frequencies in order to gain new insights into the ways that factors 

significantly influence accident frequency. They found that the random parameter 

negative binomial model resulted in the best statistical fit (relative to the random and 

fixed parameter Poisson models). 

Aderson's study (2009), investigated road accident hotspots using data collected by 

the Metropolitan Police in the United Kingdom over a 4-year period from 1999 to 2003. 

Geographical information system (GIS) and kernel density estimation (KDE) 

information were used in this study to model road accidents. The study found that 

KDE with K-means clustering can be used to identify accident hotspot locations and 

to predict the impact of the road on the fragmentation of the landscape. However, a 

study by Thakali et al. (2015) found that the Gaussian process regression method 

outperformed the KDE method in its ability to detect hotspots. These inconsistent 

results may be a result of the fact that the Gaussian process regression method 

allows for interpolated cells to exceed the boundaries of the sample range. 

Analysing potential factors that affect the odds of having fatalities in a vehicle collision 

in Namibia over 3 years (2007-2009), analysis of variance (ANOVA) and the binary 

logistic regression model were used by Nangombe (2012) to test whether there was 

any difference in the average number of fatalities between the years and also to 

calculate the odds of fatalities occurring, respectively. The study found that there was 

no significant difference in the number of fatalities over the years. The study also 

found that road users were 1.83 times more likely to die on Sundays than on Fridays 

and 1.96 times more likely to die when weather conditions were unknown than when 

weather conditions were clear.  

A study by Zong et al. (2013), compared two modelling techniques, namely, the 

Bayesian neural network and the regression models, by employing them in the 

analysis of accident severity. Mean absolute percentage error (MAPE) and the hit 

ratio were used to compare the goodness of fit of these two models. The study found 

that, based on the goodness of fit, the Bayesian neural network outperformed the 

regression model in modelling road accident severity. However, the Bayesian neural 

network model has a disadvantage in that may not have interpretable parameters and 

complex estimation processes (Lord and Mannering, 2010). 
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Several RTA-prediction models have been developed and assessed for their 

predictive ability using different models. Imran and Nasir (2015), determined the trend 

of road accidents in Pakistan form January 2002-2003 to December 2011-2012. They 

deployed a set of eleven curve fitting models, namely: linear, quadratic, cubic, 

logarithmic, inverse, exponential growth model, logistic curve and compound models, 

for predicting RTAs. The cubic model was found to be the appropriate or convincing 

model for predicting the annual road accident rate for the total number of accidents, 

fatal accidents, non-fatal accidents, killed, injured people and the number of vehicles 

involved. 

To understand the pattern of road accidents, the autoregressive integrated moving 

average (ARIMA) model was used by Sanusi el at. (2016) to determine patterns of 

RTAs cases along Nigeria’s motorway between 1960 and 2013. The ARIMA model 

was developed and found to perform well in predicting minor cases, serious cases, 

fatal cases and total cases. Additionally, it was shown that RTA cases were on the 

increase in Nigeria. However, a study by Quddus (2008) found that real-valued time 

series models, such as the ARIMA model, and structured time series models may be 

inappropriate when modelling non-negative integer-valued data, such as road 

accidents. This is mainly because of the normality assumption of errors in the ARIMA 

model being violated (Quddus, 2008; Junus and Ismail, 2014)   

Road accident models developed in one country might not be suitable for other 

countries (Mohanty and Gupta, 2016). This makes traffic accident analysis and 

modelling a task suitable for data mining and machine learning approaches that 

develop models based on actual real-world data (Kromer et al., 2014).  

Ogwueleka et al. (2014), used neural network (NN) model for analysing historical data 

in Nigeria in order to predict future trends. Input variables were selected by examining 

the strength of the correlation between the annual number of accidents and related 

variables. The model was found to be a potentially powerful tool for analysing and 

forecasting the number of accidents. 

A joint probability model was developed by Pei et al. (2011) to evaluate the effect of 

explanatory factors on accident occurrence and accident severity at signalized 

intersections in Hong Kong. Twelve neutral independent variables were selected 

using correlation analysis. The Markov chain Monte Carlo (MCMC) approach full 
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Bayesian method was applied to estimate the effect of explanatory factors and the 

deviance information criterion (DIC) and Chi-square test statistics were used to 

evaluate statistical fit. The authors found that the negative binomial logistic model is 

superior to the negative binomial truncated Poisson model in analysing accident 

occurrence. 

The generalized Pareto model was deployed for modelling the number of road 

accidents in Spain between 2003 and 2007, and the discrete Lomax distribution 

model was applied in order to model number of fatalities (Prieto et al., 2014). Both 

models were found to outperform the negative binomial model. 

The study by Ma et al. (2014), provided an alternative method to analyse the accident 

risk. The datasets from various sources were first integrated under a GIS platform 

and then fitted to a quasi-Poisson regression model because of its advantage over 

the traditional Poisson and negative binomial regression models, since this model 

does not require a predefined distributional from of the responses and hence may 

produce more mature and accurate results. The results showed that the model is 

appropriate for dealing with over-dispersed count data and several key explanatory 

variables were found to have a significant impact on the estimation of the Accident 

Hazard Index (AHI). 

A study by Pollak et al. (2014), compared four predicting models, namely, the 

Poisson, the negative binomial, the zero-inflated Poisson and the zero-inflated 

negative binomial models, and found that the most significant model was negative 

binomial for modelling RTAs. The models were improved by using the empirical 

Bayes method, which increased the accuracy of the assessment by considering 

historical data and correcting the biases. 

Prasetijo and Musa (2016) used accident data from south of Peninsular Malaysia 

collected over 5-year period from 2010 to 2014, and fitted the Poisson regression 

model with excess zero outcomes on the response variable. The study found that a 

generalized linear modelling (GLM) technique, such as the Poisson regression model 

and the negative binomial model, were insignificant in explaining and handling over-

dispersion due to the high number of zeros. This suggests that zero-inflated models 

can be deployed to cater for excess zero outcomes on the response variable. 
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The goodness of fit of a statistical model describes how well it fits into a set of 

observations. Its indices summarize the discrepancy between the observed values 

and the values expected under a statistical model. The goodness of fit, such as: the 

Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Ben-

Akiwa and Lerman’s adjusted likelihood ratio test (BL), Chi-squared test, Kolmogorov-

Smirnov test (KS) and the deviance information criterion (DIC) can used to assess a 

model’s goodness of fit (Pei et al., 2011; Anowar et al., 2012; Pollak et al., 2014, 

Prieto et at., 2014). 

To estimate the parameters of the generalized linear and zero-inflated models, the 

Markov chain Monte Carlo (MCMC), the maximum likelihood estimation (MLE) and 

the expectation maximization (EM) algorithms are commonly used methods to 

estimate model parameters (Anastasopouos and Mannering,2009; Pei et al., 2011). 

2.4.  CONCLUSION 

The literature on risk factors and models for modelling road accidents and their 

severity has been considered in this chapter. The study shows the importance of 

modelling to understanding the factors that contribute to road accidents and their 

severity. The literature guides the author to assume that models of road traffic 

developed in one country may not be suitable for application in other countries or in 

provinces within a country, thus demonstrating a need to understand the pattern of 

road accidents and associated risk factors, and the need to develop a model for the 

province of Limpopo, South Africa.  
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CHAPTER 3: METHODOLOGY 

 

This chapter focusses on the different approaches which I will employ to model road 

traffic accident (RTA) data in the Limpopo province. I discuss the statistical 

methodologies used to carry out the analysis of data gathered in this study. 

3.1. GENERALIZED LINEAR MODELS 

McCullagh and Nelder (1989) developed generalized linear models (GLMs) as flexible 

generalizations of the ordinary linear model that allow for response variables that have 

error distribution other than a normal distribution. The GLM approach has the following 

two advantages: 

i). it gives a general framework for the commonly used statistical models. 

ii). one general algorithm can be used for estimation, inference and assessing 

model adequacy for all the models. 

GLMs have the following three components: 

i). Random component: This refers to the probability distribution of the response 

variable (𝑌) that belongs to the exponential family with density function of the 

form: 

ln(𝑓(𝑦; 𝜃, 𝜙)) =
𝑦𝜃 + 𝑏(𝜃)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙). 

(1) 

It can be shown that the conditional mean and the variance of 𝑌 are given by: 

Ε(𝑌|𝑋) = 𝜇 = 𝑏′(𝜃) and  𝑉𝑎𝑟(𝑌|𝑋) = 𝜎2 = 𝑏′′(𝜃)𝑎(𝜙). 

ii). Systematic component: This component specifies the explanatory variables 

(𝑋1, 𝑋2, ⋯ , 𝑋𝑘) in the model, more specifically, their linear combination: 

𝛼 + 𝛽1𝑋1 + ⋯ + 𝛽𝑘𝑋𝑘, 
(2) 

where 𝛽 is the vector of regression coefficients and 𝑋𝑖 are the explanatory 

variables. 

iii). Link function: This component specifies the link between random and 

systematic components: 
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𝑔(𝜇)  = 𝛼 + 𝛽1𝑋1 + ⋯ + 𝛽𝑘𝑋𝑘, 
(3) 

where 𝑔(𝜇) is a known link function which is a one to one continuous differentiable 

function and monotonic. The link function, 𝑔(∙), connects the stochastic and 

systematic components.  

The simplest link function is 𝑔(𝜇) = 𝜇. This models the mean directly and is called the 

identity link. It specifies a linear model for the mean response: 

𝜇 = 𝛼 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘. 
(4) 

This is the form of ordinary regression models for continuous responses.  

Another link function is 𝑔(𝜇) = log(𝜇). This models the log of the mean and is called 

the log link. The log link function applies to positive numbers, so the log link function 

is appropriate when 𝜇 cannot be negative, such as count data. It specifies a linear 

model for the mean response: 

log(𝜇) = 𝛼 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘. 
(5) 

The link function 𝑔(𝜇) = log (
𝜇

1−𝜇
) models the log of the odds. It is appropriate when 

𝜇 is between 0 and 1, such as a probability. This is called the logit link. 

If the link function is 𝑔(𝜇) = 𝜃 we say we have a canonical link, which transforms the 

mean to the natural parameter. The link function that uses the natural parameter as 

𝑔(𝜇) in the GLMs is called the canonical link. 

In summary, GLMs extend the general linear models in two ways. Firstly, it allows for 

stochastic components following distributions other than the normal distribution.  

Secondly it links functions other than the identity function. The Poisson, negative 

binomial, logistic regression models are special cases of the GLM framework. 

3.2. LOGISTIC REGRESSION MODEL 

The logistic regression model is one of the special cases of the GLM framework for 

binary data. This is the most important model for categorical response data. Let 𝑌 be 

a random variable that takes either 0 or 1, defined below as follows: 
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𝑃(𝑌 = 1) = 𝜋.   

 𝑃(𝑌 = 0) = (1 − 𝜋).  

This likelihood of 𝑌 = 𝑦 is given as follows: 

𝑃(𝑌 = 𝑦) = 𝜋𝑦(1 − 𝜋)1−𝑦   = exp (𝑦 log (
𝜋

1 − 𝜋
) + log(1 − 𝜋)) 

 

Bernoulli distribution is one of the exponential family represented as: 

𝜃 = log (
𝜋

1 − 𝜋
),  

𝑏(𝜃) = − log(1 − 𝜋)  

𝑎(𝜙) = 1,  

𝑐(𝑦; 𝜙) = 𝑦  

The random component for the outcome (success, failure) has a binomial distribution. 

The link function for logistic regression model uses the logit link function of 𝜋 defined 

as: 

𝜋(𝑥) =
𝑒𝒙𝒊

′𝜷

1 + 𝑒𝒙𝒊
′𝜷

 

(6) 

where parameter  𝜷 represent the rate of increase or decrease of the curve. 

When 𝜷 > 0, both 𝜋(𝑥) and 𝒙 increase. When 𝜷 < 0, 𝜋(𝑥) decreases as 𝒙 increases. 

When 𝜷 = 0, 𝑌 is independent of 𝒙. The 𝜋 is restricted to the 0-1 range, the logit can 

be any real number. The linear predictor (𝛼 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘) form the systematic 

component of a GLM. 

3.3. POISSON DISTRIBUTION 

Many discrete response variables have counts as possible outcomes. Counts also 

occur in summarising categorical variables with contingency tables. The simplest 

GLM for count data assumes a Poisson distribution for the random component. The 

Poisson distribution is a discrete probability distribution mainly used to model the 

number of events that occur randomly within a given time interval. Let 𝑌 denote a 

count and 𝜇 = Ε(𝑌). The Poisson probability mass function for 𝑌 is defined as follows: 



20 
 

𝑓(𝑦; 𝜇) =
𝑒−𝜇𝜇𝑦

𝑦!
,           𝑦 ≥ 0 

 

where 𝑦 is number of events in a given interval and 𝜇(> 0). Taking logarithm, we get 

log(𝑓(𝑦; 𝜇)) = log (
𝑒−𝜇𝜇𝑦

𝑦!
) 

 

= log 𝑒−𝜇 + log 𝜇𝑦 − log 𝑦!  

 = −𝜇 + 𝑦 log 𝜇 − log 𝑦!  

    =
𝑦 log 𝜇 − 𝜇

1
− log 𝑦!. 

 

Matching the generic functions and parameters in equation 1: 

𝜃 = log 𝜇,  

𝑏(𝜃) = 𝜇  

𝑎(𝜙) = 1,  

𝑐(𝑦; 𝜙) = log 𝑦!  

Thus, the canonical parameter for the Poisson distribution can be written as 𝜇 = 𝑒𝜃, 

where 𝜃 is the canonical parameter for the exponential family and log 𝜇 is the 

canonical parameter for the Poisson distribution.  

Second differencing function 𝑏(𝜃) given as: 

𝑏′′(𝜃) = 𝑒𝜃 = 𝜇 
 

The Poisson distribution has only a single parameter, 𝜇(> 0), that is, the rate 

parameter, which is both the mean and variance, so it is described as equi-dispersed 

given as follows: 

Ε(𝑌) = 𝑉𝑎𝑟(𝑌) = 𝜇.  

This shows that an effect on the mean will also affect the variance. 

3.4. POISSON REGRESSION MODEL 

The Poisson regression model is derived from the Poisson distribution by 

parameterizing the relationship between the mean parameter 𝜇(> 0) and the linear 

predictors, given by: 
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𝜇 = 𝒙𝒊
′𝜷,                𝑖 = 1, ⋯ , 𝑛. 

 

To ensure that 𝜇 > 0, the standard assumption is to use the natural logarithm on the 

mean because it is a strictly monotonically increasing function defined as: 

log(𝜇) = 𝑔(𝜇𝑖), 
 

where 𝑔(𝜇) is the canonical link function. We consider the GLM with link log function 

resulting in a log-linear relationship between the mean parameter 𝜇 and the linear 

predictor 𝒙𝒊
′𝜷 defined as: 

log(𝜇) = 𝒙𝒊
′𝜷, (7) 

where the regression coefficient 𝜷 represents the effect of a one unit change in the 

predictor on the log of the mean. 

Taking the logarithm in equation (7), we obtain: 

𝜇 = exp(𝒙𝒊
′𝜷).  

The Poisson regression model assumes that variance [𝑉𝑎𝑟(𝑌) = 𝜇)] is equal to the 

mean [Ε(𝑌) = 𝜇], thus the dispersion is fixed at 𝜙 = 1. This assumption in most count 

data seems to be violated in practice.  

3.5. NEGATIVE BINOMIAL REGRESSION MODEL 

The phenomenon of the data having greater variability than expected for GLM is 

called over-dispersion. This may be because some of the relevant explanatory 

variables are not in the model, or this may be due to unobserved heterogeneity. An 

alternative approach to model an over-dispersed dataset is to use models that are 

less restrictive, such as the negative binomial regression model.  

The negative binomial model is another distribution that concentrates on the 

nonnegative integers. Suppose the distribution of a random variable 𝑌 follows the 

Poisson with the parameter 𝜃𝜇 (𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃𝜇)). Where 𝜃 has a gamma distribution 

with parameters (𝜃~Γ(𝛼, 𝛽)). The corresponding probability density function in the 

shape rate parametrization is defined as: 
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𝑓(𝑥; 𝛼, 𝛽) =
𝛽𝛼𝑥𝛼−1𝑒−𝛽𝑥

Γ(𝛼)
. 

 

We assign parameters 𝛼 = 𝛽 = 𝜎2 with Ε(𝜃) = 1 and 𝑉𝑎𝑟(𝜃) = 𝛼 and where 𝜇 is a 

deterministic function of 𝑥. The probability mass function of the negative binomial 

distribution is given by: 

𝑃(𝑌 = 𝑦) =
Γ(𝛼−1 + 𝑦)

Γ(𝛼−1)Γ(𝑦 + 1)
(

𝛼−1

𝛼−1 + 𝜇
)

1
𝛼

(
𝜇

𝜇 + 𝛼−1
)

𝑦

 

 

(8) 

The negative binomial belongs to an exponential family. Equation (8) can 

exponentially be represented as 

𝑃(𝑌 = 𝑦) =
𝛤(𝛼−1 + 𝑦)

𝛤(𝛼−1)𝛤(𝑦 + 1)
𝑒𝑥𝑝 (

1

𝛼
𝑙𝑛 (

𝛼−1

𝛼−1 + 𝜇
) + 𝑦 𝑙𝑛 (

𝜇

𝜇 + 𝛼−1
)) 

 

 

where 𝜇 > 0 is the mean of 𝑌, 𝛼 is the shape parameter and Γ(∙) is the gamma 

function. The negative binomial distribution has mean Ε(𝑌) = 𝜇 and 

variance 𝑉𝑎𝑟(𝑌) = 𝜇 + 𝛼𝜇. If 𝛼 = 0 we obtain Poisson variance. If 𝛼 > 0 and 𝜇 > 0, 

therefore, the variance will exceed the mean. 

Let 𝜇 depend on the explanatory variables through a log-linear model. Then, the 

negative binomial regression model is given by: 

𝜇 = exp(𝒙𝒊
′𝜷).  

3.7. ZERO-INFLATED MODEL 

In practice many count data exhibit zero inflation, therefore the Poisson regression 

model may not be adequate. One of the extensions is use of the zero-inflated 

regression model. This model provides one method to explain the excess zeros by 

modelling the data as a mixture of two separate data generation processes. The first 

process is a constant distribution that can generate only zero counts, called the 

structural zeros, and the second process is a Poisson distribution that generates both 

zero and non-zero counts, called sample zeros (Ridout et al., 1998; Erdman et al., 

2008). There are two types of zeros observed in count data, the zeros coming from a 

Poisson distribution having probability of occurrence 1 − 𝜔 and the zeros coming from 



23 
 

a zero generating distribution having probability 𝜔, which is called the zero-inflation 

probability Equation Lambert (1992). 

The mass function of the two-component mixture distribution is given by: 

𝑃(𝑌 = 𝑦) = {
𝜔 + (1 − 𝜔)𝑔(0|𝜇)       for  𝑦 = 0

(1 − 𝜔)𝑔(𝑦|𝜇)      for  𝑦 > 0
 , 

(9) 

where 0 ≤ 𝜔 ≤ 1, 𝜆 ≥ 0 and 𝑦 is the observed count dataset. The 𝜔 is the probability 

of being a structural zero (i.e. belonging to the first components). The term 𝑔(𝑦|𝜇) is 

the probability mass function for belonging to the second component and typically 

chosen to be either from a Poisson or a negative binomial. 

3.7.1. Zero-inflated Poisson Model  

The probability mass function of 𝑌 can be written as follows: 

𝑃(𝑌 = 0) = 𝜔 + (1 − 𝜔)𝑒−𝜇, (10) 

𝑃(𝑌 = 𝑦) = (1 − 𝜔)
𝑒−𝜇𝜇𝑦

𝑦!
,     𝑦 = 1,2, ⋯ 

(11) 

where the outcome variable 𝑌 has any non-negative integer value, 𝜇 is the expected 

Poisson count for the individual and 𝜔 is the of being a structural zero. 

The mean and variance are defined below as: 

Ε(𝑌) = (1 − 𝜔)𝜇. 

𝑉𝑎𝑟(𝑌) = (1 − 𝜔)𝜇(1 + 𝜔𝜇). 

 

It can be observed that Equation (11) reduces to the Poisson regression model 

when 𝜔 = 0, and also when  𝜔 > 0, 𝑃(𝑌 = 0) >  𝑒−𝜇, which indicates zero-inflation. 

3.7.2. Zero-inflated Negative Binomial model  

The probability mass function of 𝑌𝑖 can be written as follows: 

𝑃(𝑌 = 0) = 𝜔 + (1 − 𝜔) (
𝜃

𝜃 + 𝜇
)

𝜃

, 
(12) 

𝑃(𝑌 = 𝑦) = (1 − 𝜔)
Γ(𝜃 + 𝑦)

𝑦! Γ(𝜃)
(

𝜇

𝜃 + 𝜇
)

𝑦

(
𝜃

𝜃 + 𝜇
)

𝜃

,   𝑦 =  1,2, ⋯  
(13) 
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where the outcome variable 𝑌 has any non-negative integer value, 𝜇 is the expected 

Poisson count for the individual, 𝜃 overdispersion parameter and 𝜔 is the of being a 

structural zero. 

The mean and variance are defined below: 

Ε(𝑌) = (1 − 𝜔)𝜇. 

𝑉𝑎𝑟(𝑌) = (1 − 𝜔)𝜇(1 + (𝜔 + 𝜃)𝜇). 

 

Again, it can be observed that Equation (13) reduces to the negative binomial 

regression model when 𝜔 = 0, and also when  𝜔 > 0, 𝑃(𝑌 = 0) >  (
𝜃

𝜃+𝜇
)

𝜃

 , which 

indicates zero inflation. 

Lambert (1992) suggested that the logit link function can be used to model the 

probability of being structural zeros 𝜔 and the canonical log link function can be used 

to model the Poisson mean 𝜇, defined as follows: 

log(𝜇) = 𝑿𝜷     and  

log (
𝜔

1 − 𝜔
) = 𝒁𝜸,  

where 𝑋 and 𝑍 are vectors of covariates, 𝛽 and 𝛾 are 𝑝 × 1 and 𝑞 × 1 vectors of 

regression coefficients. The logit link function enables us to determine the effect of 

the intercept and each covariate on the structural zeros.  

3.8. PARAMETER ESTIMATION 

3.8.1. Logistic Regression Model 

In the logistic model we have the following expression for the likelihood: 

𝐿(𝛽0, 𝛽) = ∏ [(𝜋(𝑥𝑖))
𝑦𝑖

(1 − 𝜋(𝑥𝑖))
1−𝑦𝑖

] .

𝑛

𝑖=1

 
 

The log-likelihood turns product into sums: 
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ℓ(𝛽0, 𝛽)  = ∑(𝑦𝑖 log(𝜋(𝑥𝑖)) + (1 − 𝑦𝑖) log(1 − 𝜋(𝑥𝑖)))

𝑛

𝑖=1

 

                = ∑ log(1 − 𝜋(𝑥𝑖))

𝑛

𝑖=1

+ ∑ 𝑦𝑖 log (
𝜋(𝑥𝑖)

1 − 𝜋(𝑥𝑖)
)

𝑛

𝑖=1

 

      = ∑ log(1 − 𝜋(𝑥𝑖))

𝑛

𝑖=1

+ ∑ 𝑦𝑖(𝛽0 + 𝛽𝑥𝑖)

𝑛

𝑖=1

 

              = ∑ log(1 + 𝑒𝛽0+𝛽𝑥𝑖)

𝑛

𝑖=1

+ ∑ 𝑦𝑖(𝛽0 + 𝛽𝑥𝑖)

𝑛

𝑖=1

. 

 

To find the maximum likelihood estimates we differentiate the log-likelihood with 

respect to the parameters, set the derivatives equal to zero and solve: 

𝜕ℓ

𝜕𝛽
= − ∑

𝑥𝑖𝑒
𝛽0+𝛽𝑥𝑖

1 + 𝑒𝛽0+𝛽𝑥𝑖
+ ∑ 𝑦𝑖𝑥𝑖

𝑛

𝑖=1

𝑛

𝑖=1

. 
(15) 

We can equate Equation (15) to zero, we cannot solve exactly. We can, however, 

approximately solve it numerically. 

3.8.2. Poisson Regression Model 

In the Poisson model we have the following expression for the likelihood: 

𝐿(𝜇; 𝑦) = ∏
𝑒−𝜇𝜇𝑦𝑖

𝑦𝑖!

𝑛

𝑖=1

. 
(16) 

The log-likelihood of equation (16): 

𝑙(𝜇; 𝑦) = ∑[𝑦𝑖 log(𝜇) − 𝜇 − log(𝑦𝑖)]

𝑛

𝑖=1

 
(17) 

Substitute 𝜇 = 𝑒𝒙𝒊
′𝜷 in equation (17): 

𝑙(𝜇; 𝑦) = ∑[𝑦𝑖(𝒙𝒊
′𝜷) − 𝑒𝒙𝒊

′𝜷 − 𝑙𝑜𝑔(𝑦𝑖)].

𝑛

𝑖=1

 
(18) 

Taking the derivative with respect to 𝜷 we get: 
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𝜕𝑙(𝜇; 𝑦)

𝜕𝛽
= ∑(𝑦𝑖𝒙𝒊

′ − 𝒙𝒊
′𝑒𝒙𝒊

′𝜷)

𝑛

𝑖=1

 

𝜕𝑙(𝜇; 𝑦)

𝜕𝛽
= ∑ 𝒙𝒊

′(𝑦𝑖 − 𝑒𝒙𝒊
′𝜷)

𝑛

𝑖=1

. 

 

To get the maximum likelihood estimator, we have to solve the estimating equations 

given by 

∑ 𝒙𝒊
′

𝑛

𝑖=1

(𝑦𝑖 − 𝑒𝒙𝒊
′𝜷) = 0. 

 

This does not have a closed form solution and, because of this, numerical methods, 

such Newton-Raphson method, are used to get the estimator of 𝜷. The linear 

predictor is then given by 𝜇̂ = 𝑒𝒙𝒊
′𝜷. 

3.8.3. Negative Binomial Model  

The likelihood function for the negative-binomial model is defined as follows: 

𝐿(𝜇, 𝛼) = ∏
Γ(𝛼−1 + 𝑦𝑖)

Γ(𝛼−1)Γ(𝑦𝑖 + 1)
(

𝛼−1

𝛼−1 + 𝜇
)

1
𝛼

(
𝜇

𝜇 + 𝛼−1
)

𝑦𝑖

.

𝑛

𝑖=1

 

 

Calculating the log-likelihood function: 

ℓ(𝜇, 𝛼) = ∑ {𝑦𝑖 log 𝜇 + 𝛼−1log 𝛼−1 − (𝛼−1 + 𝑦𝑖) log(𝛼−1 + 𝜇) + log
Γ(𝛼−1+𝑦𝑖)

Γ(𝛼−1)
−𝑛

𝑖=1

log 𝑦𝑖!}  

= ∑{𝑦𝑖 log 𝜇 + 𝛼−1log 𝛼−1 − (𝛼−1 + 𝑦𝑖) log(𝛼−1 + 𝜇) + 𝑑𝑙𝑔(𝑦𝑖, 𝛼−1) − log 𝑦𝑖!}.

𝑛

𝑖=1

 

 

The link function for the negative-binomial is given as: 

𝜇 = 𝑒𝒙𝒊
′𝜷.  

To find the maximum we take the derivatives with respect to 𝜷 and 𝛼: 
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𝜕ℓ(𝜇, 𝛼)

𝜕𝛽𝑗
= ∑ {

𝑦𝑖

𝜇
−

𝛼−1 + 𝑦𝑖

𝛼−1 + 𝜇
}

𝑛

𝑖=1

𝜕𝜇

𝜕𝛽𝑗
 

                          = ∑ {
(𝑦𝑖 − 𝜇)

𝜇 (1 +
𝜇

𝛼−1)

1

𝜇
𝑥𝑖}

𝑛

𝑖=1

= 0 

𝜕ℓ(𝜇, 𝛼)

𝜕𝛼−1
= ∑ {𝑑𝑑𝑔(𝑦𝑖, 𝛼−1) − log(𝜇 + 𝛼−1) −

𝛼−1 + 𝑦𝑖

𝛼−1 + 𝜇
+ log 𝛼−1 + 1} = 0

𝑛

𝑖=1

 

 

This is in a closed form, the Newton’s iterative technique method is used to maximize 

the parameters 𝜷 and 𝛼. 

3.8.4. Restricted Maximum Likelihood Estimation  

The expectation maximization (EM) algorithm was introduced by Dempster et al. 

(1977). EM is a convenient tool to use in statistical estimation problems if we 

encounter missing or hidden data. It is a very general iterative method for parameter 

estimation by maximum likelihood estimation in statistical models (Borman, 2004; 

Chang and Kim, 2007). In order to estimate 𝜃, it is typical to introduce the complete 

log-likelihood function defined as: 

ℓ(𝜃; 𝑌, 𝑍) = log 𝑃(𝑌, 𝑍|𝜃).  

where 𝑍 denotes a set of missing or unobserved values and 𝑌 represent observed 

data. We want to estimate parameters 𝜃 in a model. The EM consists of two main 

steps: 

1) Expectation (E) step: Determine the conditional expected value of the log-

likelihood function defines as: 

𝑄𝑛 = Ε𝑍|𝑌,𝜃𝑛
[log 𝑃(𝑌, 𝑍|𝜃)]. (19) 

2) Maximization (M) step: Maximize 𝑄𝑛 obtained in equation (18) with respect 

to 𝜃. This is defined as: 

𝜃𝑛+1 =
𝑎𝑟𝑔𝑚𝑎𝑥

𝜃
(Ε𝑍|𝑌,𝜃𝑛

[log 𝑃(𝑌, 𝑍|𝜃)]).  
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3.8.4.1. Zero-inflated Poisson Model 

Let us denote 𝑃(𝑦𝑗; 0) =
exp{0}0

𝑦𝑗

𝑦𝑗!
, and 𝑃(𝑦𝑗; 𝜇) =

exp{𝜇}𝜇
𝑦𝑗

𝑦𝑗!
. Then 𝑃(𝑦𝑗; 0) = 1 if 𝑦𝑗 = 0 

and 𝑃(𝑦𝑗; 𝜇) = 0 otherwise. Therefore, the likelihood function of the zero-inflated 

Poisson model is given by: 

ℓ = ∏ 𝑝𝑃(𝑦𝑗; 0)

𝑛

𝑗=1

+ (1 − 𝑝)𝑃(𝑦𝑗; 𝜇). 
 

Estimation of this model would be trivial if it was known to which process each 

observation belongs (Ugarte et al., 2004). We consider the labels of the data as 

unobserved or latent variables. In this case, the result of a Bernoulli trial is used to 

determine which of the two processes generate an observation. This can be 

expressed as: 

𝑓(𝑧; 𝑝) = [𝜔𝑃(𝑦𝑗; 0)]
1−𝑧𝑗

[(1 − 𝜔)𝑃(𝑦𝑗; 𝜇)]
𝑧𝑗

. (20) 

Therefore, the likelihood function of equation (20) is given as: 

ℓ𝑐 = ∏[𝜔𝑃(𝑦𝑗; 0)]
1−𝑧𝑗

[(1 − 𝜔)𝑃(𝑦𝑗; 𝜇)]
𝑧𝑗

,

𝑛

𝑗=1

 
 

where 𝑧𝑗𝜖{0,1}. 

The log-likelihood is then: 

ℓ𝑐 = ∑ 𝑧𝑗 ln(1 − 𝜔) + (1 − 𝑧𝑗)

𝑛

𝑗=1

ln 𝜔 + 𝑧𝑗 ln 𝑃(𝑦𝑗 , 𝜇). 
 

Maximum likelihood estimates for 𝜇 and 𝜔 can be estimated via the EM algorithm. In 

the E-step, using above Equation, the conditional expected value of the log-

likelihood function is obtained as follows: 

𝑄𝑗 = Ε𝑧𝑗|𝑦𝑗
=

(1 − 𝜔)
exp{𝜇}𝜇𝑦𝑗

𝑦𝑗! .

𝜔
exp{0}0𝑦𝑗

𝑦𝑗! + (1 − 𝜔)
exp{𝜇}𝜇𝑦𝑗

𝑦𝑗! .
, 

 

where 𝑦𝑗 > 0, then 𝑃(𝑦𝑗 , 0) = 0 and 𝑄𝑗 = 1. 

The M-step, we maximize 𝑄𝑗 with respect to 𝜇 and 𝜔, leading to: 
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𝜇̂ =
∑ 𝑄𝑗𝑦𝑗

𝑛
𝑗=1

∑ 𝑄𝑗𝑛
𝑗=1

. 

𝜔̂ = 1 −
∑ 𝑄𝑗𝑛

𝑗=1

𝑛
, 

 

where 𝜇 = 𝜇0 and  𝜔 =  𝜔0 are initial values and both steps, E-step and M-steps are 

repeated until convergence is achieved. 

3.8.4.2. Zero-inflated Negative Binomial Model  

The log-likelihood function for the ZINB regression model (assuming 𝜃 = 1) is given 

by: 

Let us denote 𝑃(𝑦𝑗; 0) =
1

1+0
= 1, and 𝑃(𝑦𝑗; 𝜇) = (

𝜇

1+𝜇
)

𝑦𝑖

(
1

1+𝜇
). Then 𝑃(𝑦𝑗; 0) = 1 if 

𝑦𝑗 = 0 and 𝑃(𝑦𝑗; 𝜇) = 0 otherwise. Therefore, the likelihood function of the zero-

inflated Poisson model is given by: 

ℓ = ∏ 𝑝𝑃(𝑦𝑗; 0)

𝑛

𝑗=1

+ (1 − 𝑝)𝑃(𝑦𝑗; 𝜇). 
 

We consider the labels of the data as unobserved or latent variables. In this case, the 

result of a Bernoulli trial is used to determine which of the two processes generate an 

observation. This can be expressed as: 

𝑓(𝑧; 𝑝) = [ 𝜔𝑃(𝑦𝑗; 0)]
1−𝑧𝑗

[(1 −  𝜔)𝑃(𝑦𝑗; 𝜇)]
𝑧𝑗

. (21) 

Therefore, the likelihood function of equation (21) is given as: 

ℓ𝑐 = ∏[ 𝜔𝑃(𝑦𝑗; 0)]
1−𝑧𝑗

[(1 −  𝜔)𝑃(𝑦𝑗; 𝜇)]
𝑧𝑗

,

𝑛

𝑗=1

 
 

where 𝑧𝑗𝜖{0,1}. 

The log-likelihood for the ZINB is given by 

ℓ𝑐 = ∑ 𝑧𝑗 ln(1 −  𝜔) + (1 − 𝑧𝑗)

𝑛

𝑗=1

ln  𝜔 + 𝑧𝑗 ln 𝑃(𝑦𝑗 , 𝜇). 
 

Maximum likelihood estimates for 𝜇 and 𝑝 can be estimated via the EM algorithm. In 

the E-step, using the above Equation, the conditional expected value of the log-

likelihood function is obtained as follows: 
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𝑄𝑗 = Ε𝑧𝑗|𝑦𝑗
=

(1 −  𝜔) (
𝜇

1 + 𝜇
)

𝑦𝑖

(
1

1 + 𝜇
) .

 𝜔 + (1 −  𝜔) (
𝜇

1 + 𝜇)
𝑦𝑖

(
1

1 + 𝜇) .
, 

 

where 𝑦𝑗 > 0, then 𝑃(𝑦𝑗 , 0) = 0 and 𝑄𝑗 = 1. 

The M-step maximizes: 

Ε𝑧𝑗|𝑦𝑗
= ∑ 𝑧𝑗 ln(1 −  𝜔) + (1 − 𝑧𝑗)

𝑛

𝑗=1

ln  𝜔 + 𝑧𝑗 log ((
𝜇

1 + 𝜇
)

𝑦

(
1

1 + 𝜇
)) , 

 

with respect to 𝜇 and 𝜔, leading to: 

𝜇̂ =
∑ 𝑄𝑗𝑦𝑗

𝑛
𝑗=1

∑ 𝑄𝑗𝑛
𝑗=1

, 

𝜔̂ = 1 −
∑ 𝑄𝑗𝑛

𝑗=1

𝑛
, 

 

where 𝜇 = 𝜇0 and 𝜔 = 𝜔0 are initial values and both steps, the E-step and the M-

step, are repeated until convergence is achieved. 

3.9. TESTING HYPOTHESES  

Testing for two alternative models; one model is saturated and the other model is 

unsaturated. We test for: 

𝐻0 ∶ 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑣𝑠.  𝐻1 ∶  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑡𝑟𝑢𝑒  

3.9.1. Wald Test  

The test statistic uses the large sample distribution of the maximum likelihood given 

as follows: 

max 𝐿 (𝛽, 𝑦) = 𝐿(𝛽̂, 𝑦),  

where 𝛽̂ is multivariate normal denoted as follows: 

𝛽̂~𝑁𝑝(𝛽, 𝐼(𝛽)−1),  

where 𝐼(𝛽) is the information matrix, defined as follows: 
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𝐼(𝛽) =
(𝑋′𝑊𝑋)

𝜙
. 

 

The multivariate normal with mean 𝛽 and variance covariance matrix (𝑋′𝑊𝑋)−1𝜙, 

where 𝑋 is the model matrix and 𝑊 is the diagonal matrix of estimation weights. 

The test statistic is given as: 

𝑊𝑝 = (𝛽̂ − 𝛽0)
𝑇

[𝐶𝑜𝑣(𝛽̂)]
−1

(𝛽̂ − 𝛽0). (22) 

The asymptotic multivariate normal distribution for 𝛽̂ implies an asymptotic Chi-

squared distribution for 𝑊𝑝 with the rank of 𝐶𝑜𝑣(𝛽̂) as a degree of freedom. Under the 

null hypothesis, Equation (22), the Wald statistic 𝑊𝑝 converges in distribution to a Chi-

square distribution with 𝑘 degrees of freedom. 

3.9.2. Likelihood Ratio Test  

The basic idea is to compare the maximized likelihoods of the two models. Let 𝐿1 be 

the likelihood of the data with all the parameters unrestricted and maximum likelihood 

estimates substituted for these parameters. The maximum likelihood of 𝐿1 is given 

as: 

max 𝐿1 (𝜃, 𝑦) = 𝐿1(𝜃𝑚𝑜𝑑𝑒𝑙1, 𝑦),  

where 𝜃𝑚𝑜𝑑𝑒𝑙1 denotes the maximum likelihood estimator of 𝜃 under model 1. 

Let 𝐿0 be the maximum value of the likelihood when the parameters are restricted 

(and reduced in number) based on the assumption. Maximum likelihood of 𝐿0 is given 

as below: 

max 𝐿0 (𝜃, 𝑦) = 𝐿0(𝜃𝑚𝑜𝑑𝑒𝑙0, 𝑦),  

where 𝜃 denote the maximum likelihood estimator of 𝜃 under model 2. 

The likelihood ratio is defined as follows: 

𝜆 =
𝐿0(𝜃𝑚𝑜𝑑𝑒𝑙0, 𝑦),

𝐿1(𝜃𝑚𝑜𝑑𝑒𝑙1, 𝑦),
. 

 

This ratio is always between 0 (likelihoods are non-negative) and 1 (the likelihood of 

the smaller model cannot exceed that of the larger model because it is nested on it) 
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and the less likely the assumption is, the smaller  𝜆 will be. Values close to 1 indicate 

that the smaller model is almost as good as the larger model, making the data just as 

likely. Values close to 0 indicate that the smaller model is not acceptable, compared 

to the larger model, because it would make the observed data very unlikely. 

Under certain regularity conditions, multiplying the log-likelihood ratio log (𝜆) by −2, 

given bellow: 

−2 log(𝜆) = −2 log (
𝐿0(𝜃𝑚𝑜𝑑𝑒𝑙0, 𝑦)

𝐿1(𝜃𝑚𝑜𝑑𝑒𝑙1, 𝑦)
) 

                          =  −2 log (𝐿0(𝜃𝑚𝑜𝑑𝑒𝑙0, 𝑦)) + 2 log (𝐿0(𝜃𝑚𝑜𝑑𝑒𝑙1, 𝑦)). 

 

In large samples, the log of the probability ratio has a Chi-square distribution with 

degrees of freedom equal to the difference between the two models in the number of 

parameters. The likelihood ratio test computes 𝑋2 and rejects the assumption if 𝑋2 is 

larger than a Chi-Square percentile 100(1 − 𝛼) with 𝑘 degrees of freedom. 

3.9.3. Score Test 

The score function has an asymptotic normal distribution with mean 0 and variance 

covariance matrix equal to the information matrix, so that: 

𝑈(𝛽)~𝑁(0, 𝐼(𝛽)).  

The quadratic form: 

𝑄 = 𝑈(𝛽0)′𝐼−1(𝛽0)𝑈(𝛽0),  

has approximately a Chi-squared distribution with 𝑘 degrees of freedom. The 

information matrix may be evaluated at the hypothesized value 𝛽0 or at the maximum 

likelihood estimator of 𝛽. Under the null hypothesis, both versions of the test are 

asymptotically equivalent. One advantage of using 𝛽0 is that calculation of the 

maximum likelihood estimation may be bypassed. 

3.10. GOODNESS OF FIT STATISTICS 

After fitting the models, we want to choose the model which best represents the data. 

The model fit reflects whether the appropriate link function and structural model have 

been specified.   
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3.10.1. Deviance  

Deviance is a measure of the discrepancy between observed and fitted values. It 

provides the summary of the adequacy of the fitted model. The goodness of fit of the 

GLM can be based on the deviance statistic, which is given by: 

𝐷(𝑦; 𝜇̂) = 2 ∑ {𝑦𝑖 log (
𝑦𝑖

𝜇̂
) − (𝑦𝑖 − 𝜇̂)} , (23) 

where 𝑦𝑖 is observations and 𝜇̂𝑖 is the fitted model mean for 𝑖-th observation. The right 

hand side of Equation (23) is the sum of differences between observed and fitted 

values. The deviance statistic has an approximate Chi-square distribution with 𝑛 − 𝑝 

degrees of freedom, where 𝑛 is the number of observations and 𝑝 the number of 

parameters. If our model fits the data well, the Deviance to degree of freedom ratio 

should be about one. 

3.10.2. Pearson’s Chi-squared Statistic 

The Pearson’s Chi-squared is one of the alternative measures of the goodness of fit, 

denoted as follows: 

𝜒2 = ∑
(𝑦𝑖 − 𝜇̂)2

𝜇̂
. 

 

The sum is the squared difference between the observed and fitted values 𝑦𝑖 and 𝜇̂, 

divided by the variance of the observed value 𝜇̂. 

3.10.3. Akaike Information Criterion (AIC) 

AIC is the measure that is used to describe the trade-off between the accuracy and 

the complexity of the mode. It is also a valid procedure to use to compare non-nested 

models. AIC is defined as: 

𝐴𝐼𝐶 = −2 log 𝐿 + 2𝑝,  

where 𝐿 is the maximized value of the likelihood function for the estimated model and 

𝑝 is the number of parameters in the statistical model. The AIC penalizes models with 

large numbers of parameters and selects the model with fewer parameters that best 

represents the data. The lower the AIC, the better the model. 
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3.10.4. Bayesian Information Criterion (BIC) 

The BIC is closely related to the AIC. It is known as the Schwarz Criterion, after 

Gideon Scharz. It is normally used for comparing models. It incorporates both 

estimation uncertainty and parameter uncertainty. The BIC is defined as follows: 

𝐵𝐼𝐶 = 2 log 𝑃(𝐷|𝑀, 𝜃) − 𝑑 × log(𝑛),  

where 𝐷 is observed data, 𝑀 is the model, 𝜃 is the MLE, 𝑑 number of free parameters 

and 𝐷 number of data points. 

The BIC assumes that one of the models is the true model and that one is trying to 

find the model most likely to be true in the Bayesian sense. It attempts to mitigate the 

risk of over-fitting by introducing the penalty term 𝑑 ∗ log(𝑛), which grows with the 

number of parameters. The BIC is an asymptotic result derived from the assumption 

that the data distribution is an exponential family. A lower BIC score signals a better 

model. 

3.10.5. Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test is used to verify that a sample comes from a population 

with some known distribution and also that two populations have the same 

distribution. It is defined by: 

𝐻0 ∶ 𝑇ℎ𝑒 𝑑𝑎𝑡𝑎 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

                          𝐻𝑎 ∶ 𝑇ℎ𝑒 𝑑𝑎𝑡𝑎 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

 

The Kolmogorov-Smirnov test statistic is defined as: 

𝐷 =
max

1 ≤ 1 ≤ 𝑁
(𝐹(𝑌𝑖) −

𝑖 − 1

𝑁
,

𝑖

𝑁
− 𝐹(𝑌𝑖)), 

 

where 𝐹 is the theoretical cumulative distribution of the distribution being tested. 

The hypothesis regarding the distributional form is rejected if the test statistic 𝐷 is 

greater than the critical value. 

3.10.6. Vuong Test 

The Vuong test is mostly used to compare two non-nested models. It is based on 

Kullback-Leibler information criterion defined by: 
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𝐾𝐿𝐼𝐶 = 𝐸[ln ℎ(𝑌𝑖|𝑋𝑖) − 𝐸(ln 𝑓(𝑌𝑖|𝑋𝑖|𝛽))], 
 

where ℎ(𝑌𝑖|𝑋𝑖) is the conditional density of 𝑌𝑖 given 𝑋𝑖 and 𝑓(𝑌𝑖|𝑋𝑖|𝛽) is the model with 

parameter 𝛽. The model which minimizes the 𝐾𝐿𝐼𝐶 is the one that is closest to the 

true model. 

Considering two models 𝑈𝛽 = 𝑓(𝑌𝑖|𝑋𝑖|𝛽) and 𝑈𝜃 = 𝑓(𝑌𝑖|𝑋𝑖|𝜃). The null hypothesis of 

the test is: 

𝐻0: 𝐸 (log
𝑈𝛽

𝑈𝜃
) = 0, 

 

which indicates that two models are equally close to the specification. The alternative 

hypothesis is defined by: 

𝐻𝑎: 𝐸 (log
𝑈𝛽

𝑈𝜃
) > 0,      𝑚𝑜𝑑𝑒𝑙 𝑈𝛽 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟 

𝐻𝑏: 𝐸 (log
𝑈𝛽

𝑈𝜃
) < 0       𝑚𝑜𝑑𝑒𝑙 𝑈𝜃 𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟.  

 

3.11. K-MEANS CLUSTERING 

The K-means clustering is a popular method for cluster analysis in data mining. It 

partitions 𝑛 observations into 𝐾 clusters in which each observation belongs to the 

cluster with the nearest mean. Given a set of observations (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), where each 

observation is a d- dimensional real vector, 𝐾-means clustering aims to partition the 

observation into 𝐾 (≤ 𝑛) sets in order to minimize the within-cluster sum of squares. 

It is defined by the following steps: 

min
𝜇

 min
𝐶

 ∑ ∑|𝑥 − 𝜇𝑖|
2

𝑥𝜖𝐶𝑖

𝐾

𝑖=1

. 

Step 1: 

Fix 𝜇, optimize 𝐶 

 min
𝐶

 ∑ ∑|𝑥 − 𝜇𝑖|
2

𝑥𝜖𝐶𝑖

𝐾

𝑖=1

=
 min

𝐶
 ∑|𝑥 − 𝜇𝑖|

2

𝑛

𝑖=1

 

Step 2: 
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Fix 𝐶, optimize 𝜇 

 min
𝜇

 ∑ ∑|𝑥 − 𝜇𝑖|2

𝑥𝜖𝐶𝑖

𝐾

𝑖=1

 

take the partial derivatives of 𝜇𝑖 and set to zero, we get 

𝜇𝑖 =
1

|𝐶𝑖|
∑ 𝑥

𝑥𝜖𝐶𝑖

. 

The K-means algorithm is a heuristic that requires initial means. 

3.12. CHAPTER SUMMARY 

In chapter 3 the research methodology to be adopted in this study has been reviewed. 

In the next chapter the data used in the study will be described, analysed and 

interpreted. 
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CHAPTER 4: EXPLORATORY DATA ANALYSIS 

 

4.1. INTRODUCTION 

In this chapter we perform exploratory data analysis of the road traffic accidents 

(RTAs) data in order to identify distributional properties associated with road 

accidents and associated deaths. We look at yearly total number of RTAs and road 

traffic deaths (RTDs). We then look at how RTAs and RTDs are distributed monthly, 

day of the week, hourly, vehicle type, vehicle involved and per district, and categorise 

contributing factors. 

4.2. EXPLORATORY ANALYSIS 

4.2.1. The Yearly Distribution of RTAs and RTDs 

The data that was used is the daily RTA data in the Limpopo Province from January 

2009 to December 2015. It was found that 18,029 RTAs occurred in the province over 

the 7-year period. Table 1 below shows the distribution of yearly RTAs and RTDs.  

Table 1: The yearly distribution of RTAs and RTDs recorded from 2009 to 2015. 

Year 
No of 

deaths 
% 

 
%∆ 

No of 
accidents 

% 
 

%∆ 
 Rate of 

death per 
accident 

2009 759 15.35% - 2416 13.40% - 0.3141 
2010 790 15.98% 4.08% 2240 12.42% -7.28% 0.3527 
2011 680 13.75% -13.92% 2540 14.09% 13.39% 0.2677 
2012 511 10.34% -24.85% 2409 13.36% -5.16% 0.2121 
2013 556 11.25% 8.81% 2545 14.12% 5.65% 0.2185 
2014 799 16.16% 43.71% 3047 16.90% 19.72% 0.2622 
2015 849 17.17% 6.26% 2832 15.71% -7.06% 0.2998 
Total 4944   18029   0.2742 

 

It can be seen from the table that 4,944 lives were lost between 2009 and 2015. It 

can also be seen that 2015 recorded the highest number of deaths, accounting for 

about 17% of all deaths; while in 2012 the least number of deaths were recorded, that 

is, 10% of all deaths recorded during the period under review. In 2014, the highest 

number of accidents were recorded, with approximately 17% of all accidents 

occurring in that year. The least number of accidents were recorded in 2010. The 

highest death rate per road accident was recorded in 2010, while 2012 recorded the 

lowest death rate. 
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Figure 3 below is a map indicating the district municipalities in Limpopo and shows 

the percentage contribution to RTDs per district. It can be seen that the Capricorn 

district recorded the highest number of deaths, followed by the Waterberg and 

Vhembe districts. Mopani and Greater Sekhukhune recorded the least number of 

deaths.  

 

Figure 3: The Road Traffic Deaths distribution per district. 

Figure 4 depicts a map of the Limpopo municipal districts and shows the percentage 

contrition to RTAs per district. It can be seen that the Capricorn district recorded the 

highest number of accidents, followed by the Mopani and Vhembe districts. 

Waterberg and Greater Sekhukhune recorded the least number of cases. 
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Figure 4: The Road Traffic Accidents distribution per district. 

Table 2: The yearly distribution of deaths percentage contribution per district. 

District 2009 2010 2011 2012 2013 2014 2015 % Total 

Capricorn 35% 28% 23% 28% 26% 19% 23% 26% 

Mopani 13% 15% 14% 16% 13% 20% 18% 16% 

Sekhukhune 9% 14% 12% 12% 15% 19% 16% 14% 

Vhembe 20% 20% 21% 27% 23% 21% 23% 21% 

Waterberg 23% 23% 30% 17% 23% 21% 20% 23% 

 

The Capricorn district recorded the highest number of deaths during the years under 

review, with the exception of 2011 and 2014. The Sekhukhune district recorded the 

lowest number of deaths during the period under review, as depicted in Table 2. The 

Capricorn district recorded the highest number of accidents during the period under 

review, except for 2012. The Sekhukhune district recorded the lowest number of 

accidents during this period, as shown in Table 3. Overall, the Capricorn district 

recorded highest number of deaths and accidents between the years 2009 and 2015.   
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Table 3: The yearly distribution of accidents percentage contribution per district 

 District 2009 2010 2011 2012 2013 2014 2015 % Total 

Capricorn 48% 46% 36% 29% 28% 28% 31% 35% 

Mopani 15% 18% 19% 20% 25% 26% 25% 21% 

Sekhukhune 6% 8% 8% 8% 9% 8% 9% 8% 

Vhembe 6% 7% 20% 31% 25% 23% 20% 19% 

Waterberg 25% 21% 17% 12% 13% 15% 15% 17% 

 

Table 4: Number of vehicles involved in accidents. 

Vehicle Involved No of Accidents % No of Deaths % 
Rate of death 
per accident 

1 12302 68% 3187 65% 0.2591 
2 5525 31% 1645 33% 0.2977 
3 or more 202 1% 112 2% 0.5545 

Total 18029 100% 4944 100%  

 

Table 4 shows the number of vehicles involved in road accidents. It can be seen from 

this table that, in approximately 68% of accidents, only one vehicle was involved. 

Road accidents involving one vehicle accounted for approximately 65%of the total 

number of deaths. The deaths rate increased significantly when more vehicles are 

involved in an accident.  

4.2.2. The Monthly Distribution of RTAs and RTDs  

I investigated how RTAs and RTDs were distributed on a monthly basis and the rate 

of deaths per accidents within that month. The month of December recorded that the 

highest number of accidents and deaths, as illustrated in Table 5. This month alone 

accounted for approximately 14% of all the RTAs and 17% of all RTDs recorded 

during the period under review. The month of January recorded the lowest number of 

RTAs and RTDs during this period. If there were 100 accidents in December, there is 

a risk that such incidents will account for more than a quarter of all deaths reported. 

If 100 accidents occurred in July, there is a chance that 31 deaths would result.   
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Table 5: Monthly distribution of Road Traffic Accidents and Road Traffic Deaths from January 2009 to 

December 2015. 

Month No of deaths % No of accidents % 
 Rate of death 
per accident 

January 289 5.85% 1127 6.25% 0.2564 

February 321 6.49% 1143 6.34% 0.2808 

March 369 7.46% 1362 7.55% 0.2709 

April 441 8.92% 1700 9.43% 0.2594 

May 357 7.22% 1397 7.75% 0.2556 

June 385 7.79% 1307 7.25% 0.2946 

July 443 8.96% 1447 8.03% 0.3062 

August 351 7.10% 1554 8.62% 0.2259 

September 379 7.67% 1620 8.99% 0.2340 

October 347 7.02% 1447 8.03% 0.2398 

November 433 8.76% 1463 8.11% 0.2960 

December 829 16.77% 2462 13.66% 0.3367 

 

Table 6: Monthly distribution of Road Traffic Injuries from January 2009 to December 2015. 

Month Minor Injury Serious Injury Death Total % Casualty 

January 1734 949 289 2972 32% 

February 1492 1075 321 2888 37% 

March 1973 1175 369 3517 33% 

April 2200 1411 441 4052 35% 

May 1752 1147 357 3256 35% 

June 1762 1183 385 3330 36% 

July 1828 1295 443 3566 36% 

August 1948 1232 351 3531 35% 

September 2096 1329 379 3804 35% 

October 1745 1165 347 3257 36% 

November 1929 1220 433 3582 34% 

December 3118 1823 829 5770 32% 

Total 23577 15004 4944 43525  
% 54% 34% 11% 100%  
Average 1965 1250 412 3627  

 

Table 6 shows the monthly variation in the (RTI) between 2009 and 2015. It can be 

seen from this table that all the months during this period recorded at least a 32% 

casualty rate (
𝑠𝑒𝑟𝑖𝑜𝑢𝑠 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠

𝑑𝑒𝑎𝑡ℎ𝑠+𝑠𝑒𝑟𝑖𝑜𝑢𝑠 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠+𝑚𝑖𝑛𝑜𝑟 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠
). In other words, any accident in any 

of the month had more than a 32% chance of resulting in the loss of life. On average, 

approximately 281 (1,965/7 years of study period) persons sustained minor injuries 

in RTAs per month, while approximately 178 persons (1,250/7 years of study period) 
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persons sustained serious injuries and approximately 59 lives (412/7 years of study 

period) were lost per month.  

4.2.3. The Distribution of RTAs and RTDs by Day of Week 

When there are more cars on the road, such as on a particular day of the week or 

over a weekend, a person’s chances of being involved in a road accident increases. 

Table 7 below shows the death rate per accident distributed per day of week recorded 

during the seven-year study period. 

Table 7: Total number of Road Traffic Accidents and deaths by day of week 

Day of week No of Deaths % No of Accidents % 
%Rate of Death per 

Accident 
Sun 1054 21% 3328 18% 32.7% 
Mon 470 10%  1805 10% 26.0% 
Tue 382 8% 1692 9% 22.6% 
Wed 336 7% 1625 9% 20.1% 
Thu 554 11% 1873 11% 29.6% 
Fri 862 17% 3221 18% 26.8% 
Sat 1286 26% 4485 25% 28.7% 

Total  4944 100% 18029 100% 27.4% 

 

The highest number of accidents and deaths were recorded on Saturday, with 25% 

of all accidents and 26% of all deaths being recorded on this day. The lowest number 

of accidents and deaths were recorded on Wednesday, followed by Tuesday. 

 

Figure 5: Road Traffic Injuries distributed by day of week. 
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Figure 5 illustrates road injuries in the Province that occurred during the period under 

review. Saturday recorded the highest number of serious and minor injuries with 27% 

of all serious injuries and 26% of all minor injuries recorded on this day. The lowest 

number for serious and minor injuries were recorded on Wednesday. 

 

Figure 6: Hourly distribution of Road Traffic Accidents and Road Traffic Deaths, 2009-2015. 

The hourly distribution of RTAs and RTDs during the period under review is presented 

by Figure 6. It can be seen from this figure that highest number of RTAs occurred 

during rush hour, between 5 pm to 8 pm. The highest number of people lost their lives 

during that time (5 pm to 8 pm) and also in the morning between 5 am and 7 am.  

4.2.4. Distribution of RTAs and RTDs 

According to the literature, road accidents occur as the result of one or more of the 

following factors: human factors, vehicle factors and road and environment factors. 

Human factors are described as factors directly attributable to the operator of the 

vehicle or to people involved in an accident. Human factors include the following: 

speeding, traffic violation, alcohol, drugs, negligence, driver error and fatigue. Road 

and environment factors refer to all aspects of road design, weather conditions, road 

conditions, traffic signs and lights. Vehicle factors refer to vehicle condition, 

maintenance and mechanical faults in the vehicle. These classifications aim to assist 

in the conceptualization of the problem. 
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Figure 7: Categorised contributing factors. 

The three factors that contribute to road accidents and deaths are represented by 

Figure 7. It can be seen in the Figure 7 that human factors contributed to the highest 

number of deaths during the period under review, with 89% of all deaths said to be 

as a result of human factors, with speeding and pedestrian carelessness being the 

primary contributors. The number of deaths as a result of human factors was followed 

by vehicle condition factors, accounting for 9% of deaths during the period under 

review, with tyre bursts being the primary contributor as shown in Table 8. It can also 

be seen in Figure 7 that that road and environment condition factors resulted in the 

lowest number of deaths, at 2%, with animals on the roadway being the highest 

contributor. Human factors accounted for 84% of the total number of accidents, while 

vehicle and road and environment conditions both accounted for 8% of the total 

number of accidents.  

An analysis of the data found that human factors accounted for the highest number 

of serious and minor injuries, followed by vehicle condition factors. Road and 

environment condition factors accounted for the lowest number of serious and minor 

injuries between January 2009 and December 2015. 

4.3. CHAPTER SUMMARY 

Descriptive statistics analyses was conducted in this chapter 4, the data was 

summarised as bar charts, cross tabulations and line graphs.  
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Table 8: Contributing factors to road accidents deaths and injuries in the Limpopo Province. 

 Contributing Factors 
 Deaths Serious Injuries Minor Injuries 

Number Percent Number Percent Number Percent 
Environmental Condition 107 2% 661 4% 1355 8% 
Animal in roadway 73 1% 486 3% 1099 7% 
Deposit on road 6 0% 42 0% 19 0% 
Multi vehicle pile up 1 0% 7 0% 4 0% 
Defective road surface 2 0% 23 0% 42 0% 
Potholes 6 0% 22 0% 22 0% 
Rain 6 0% 49 0% 100 1% 
Road layout 0 0% 1 0% 7 0% 
Slippery Road 4 0% 17 0% 31 0% 
Parked vehicle 9 0% 14 0% 31 0% 
Human Action 4404 89% 12441 82% 13824 83% 
Change lane 10 0% 92 1% 71 0% 
Road marking 98 2% 553 4% 675 4% 
Crossing the road unsafe 0 0% 0 0% 3 0% 
Cyclist in roadway 28 1% 29 0% 59 0% 
Disobeyed stop sign 2 0% 17 0% 24 0% 
Driving into an obstacle 0 0% 1 0% 10 0% 
Entering the road unsafe 21 0% 142 1% 151 1% 
Entering the road unsafe  3 0% 48 0% 57 0% 
Following too close 165 3% 1055 7% 2133 13% 
Head On 28 1% 72 0% 58 0% 
Head rear end 4 0% 7 0% 16 0% 
Overtaking 436 9% 1372 9% 911 5% 
Overturned 0 0% 0 0% 1 0% 
Reckless driving 332 7% 1483 10% 1797 11% 
Sideswipe 0 0% 18 0% 32 0% 
Speeding 1655 33% 5358 36% 4931 30% 
Concentration 0 0% 0 0% 2 0% 
Driver distraction 8 0% 16 0% 22 0% 
Drunken driving 79 2% 342 2% 297 2% 
Fatigue 260 5% 515 3% 463 3% 
Lost control 68 1% 243 2% 215 1% 
Passenger fell 27 1% 16 0% 27 0% 
Pedestrian careless 1082 22% 785 5% 1603 10% 
Vehicle Condition 433 9% 1892 13% 1445 9% 
Brakes failure 50 1% 188 1% 219 1% 
Defective lights  11 0% 68 0% 42 0% 
Mechanically fault 6 0% 40 0% 44 0% 
Overloaded or poorly 
loaded 

0 0% 3 0% 3 0% 

Overloaded   22 0% 36 0% 52 0% 
Tyre burst 337 7% 1550 10% 1026 6% 
Vehicle burned 7 0% 7 0% 58 0% 
Visor or widescreen dirty 0 0% 0 0% 1 0% 
Overall Total 4944 100% 14994 100% 16624 100% 
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CHAPTER 5: MODEL FITTING 

 

In this chapter, will first fit the logistic regression model to occurrence of death due to 

accidents. We then present the models and extensions of the Poisson and the 

negative binomial regression models. Model diagnosis will also be conducted in each 

section and the model goodness of fit will be measured. R statistical software version 

3.5.2 (Venables and Smith, 2003) was used to fit the models. 

5.1.  LOGISTIC REGRESSION MODEL 

5.1.1.  Model Fitting  

I fitted a logistic regression model to occurrence of death, given that an accident had 

occurred, as a function of vehicle type, time of day, region, holiday, day of week, road 

type and categorised contributing factors. The K-means clustering was used to group 

time by hour intervals. The model goodness of fit is based on the Akaike information 

criterion (AIC). In Table 9, I fitted the logistic regression model to each of the 

explanatory variables and calculated the AIC values as a way of coming up with the 

optimal model. 

Table 9: Logistic regression models with one and all combined explanatory variables 

Models AIC 

1. logit (π(𝑑𝑒𝑎𝑡ℎ𝑠)) = 𝛼2 + 𝛽𝑘 ∗ 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑡𝑦𝑝𝑒,       𝑘 = 1,2, ⋯ ,6 17248 
2. logit (π(𝑑𝑒𝑎𝑡ℎ𝑠)) = 𝛼2 + 𝛽𝑘 ∗ 𝐷𝑎𝑦 𝑜𝑓 𝑊𝑒𝑒𝑘,    𝑘 = 1,2, ⋯ ,7 16438 
3. logit(π(𝑑𝑒𝑎𝑡ℎ𝑠)) = 𝛼2 + 𝛽 ∗ 𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑠 16433 
4. logit(π(𝑑𝑒𝑎𝑡ℎ𝑠)) = 𝛼2 + 𝛽𝑘 ∗ 𝐻𝑜𝑢𝑟 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙,    𝑘 = 1,2,3 16484 
5. logit(π(𝑑𝑒𝑎𝑡ℎ𝑠)) = 𝛼2 + 𝛽𝑘 ∗ 𝑅𝑜𝑎𝑑 𝑇𝑦𝑝𝑒,    𝑘 = 1,2, ⋯ ,5 16469 
6. logit(π(𝑑𝑒𝑎𝑡ℎ𝑠)) = 𝛼2 + 𝛽𝑘 ∗ 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟𝑠,    𝑘 = 1,2, ⋯ ,6 16721 
7. logit(π(𝑑𝑒𝑎𝑡ℎ𝑠)) = 𝛼2 + 𝛽𝑘 ∗ 𝑅𝑒𝑔𝑖𝑜𝑛,    𝑘 = 1,2, ⋯ ,5 16761 
8. logit(π(𝑑𝑒𝑎𝑡ℎ𝑠))

= 𝛼2

+ 𝛽(𝑣𝑒ℎ𝑖𝑐𝑙𝑒 + 𝐷𝑎𝑦 𝑜𝑓 𝑊𝑒𝑒𝑘 + 𝐻𝑜𝑙𝑖𝑑𝑎𝑦𝑠 + 𝐻𝑜𝑢𝑟 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
+  𝑅𝑜𝑎𝑑 𝑇𝑦𝑝𝑒 + 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟𝑠) 

16449 

 

Table 9 shows that the model with all the combined variables that had the smallest 

AIC value of 16449. The coefficient estimates of the selected logistic regression 

model (Model 8) with only significant variables being selected by the bidirectional 

elimination stepwise regression method based on the AIC is shown in Table 10. 
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Table 10: Parameter estimates for logistic regression model, using maximum likelihood estimation. 

Variables 
    CI 

Coefficient (𝜷)   SE P-value Exp(𝜷) 2.5 97.5 

Intercept -1.1285 0.0987 0.00*** 0.3235 0.2662 0.3920 

Holiday 0.1590 0.0594 0.007** 1.1723 1.0426 1.3162 

Day of week  

Friday 0.1457 0.0673 0.0305* 1.1568 1.0137 1.3202 

Monday 0.1481 0.0790 0.0610 1.1596 0.9925 1.3534 

Tuesday 0.3748 0.6873 0.0684 1.4547 0.4535 1.0280 

Saturday 0.1851 0.0627 0.003** 1.2034 1.0645 1.3612 

Sunday 0.2856 0.0663 0.00*** 1.3305 1.1685 1.5156 

Thursday 0.2056 0.0766 0.007** 1.2283 1.0565 1.426 

Road types 

National road 0.1503 0.0531 0.005** 1.1622 1.0469 1.2894 

Others 0.3202 0.0571 0.00*** 1.3774 1.2308 1.5398 

Provincial road -0.2866 0.1112 0.009** 0.7507 0.6013 0.9302 

District 

Capricorn -0.5526 0.0490 0.00*** 0.5754 0.5226 0.6333 

Sekhukhune 0.5579 0.0674 0.00*** 0.5781 0.5155 0.6479 

Mopani -0.5478 0.0583 0.00*** 1.7470 1.5302 1.9932 

Time interval 

00-05 0.2730 0.0555 0.00*** 1.3139 1.1777 1.4645 

06-13 -0.2077 0.0466 0.00*** 0.8123 0.7411 0.8898 

Contributing factors 

Human Actions 0.5069 0.0763 0.00*** 1.6601 1.4319 1.9320 

Environment Conditions -1.1310 0.1411 0.00*** 0.3226 0.2433 0.4233 

Vehicle types 

Sedan -0.5606 0.0347 0.00*** 0.5708 0.5330 0.6108 

LDV -0.6150 0.0402 0.00*** 0.5406 0.4993 0.5847 

Combi -0.3678 0.0562 0.00*** 0.6922 0.6193 0.7722 

Truck -0.1766 0.0537 0.001** 0.8380 0.7536 0.9304 
Significant Codes 

0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ 0.1 ‘.’ 

This is the fitted logistic regression  

𝑥′𝛽 = −1.13 + 0.16 ∗ 𝐻𝑜𝑙𝑖𝑑𝑎𝑦 + 0.15 ∗ (𝐹𝑟𝑖𝑑𝑎𝑦 + 𝑀𝑜𝑛𝑑𝑎𝑦) + 0.38 ∗ 𝑇𝑢𝑒𝑠𝑑𝑎𝑦 + 0.18

∗ 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 + 0.29 ∗ 𝑆𝑢𝑛𝑑𝑎𝑦 + 0.21 ∗ 𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 + 0.15

∗ 𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑎𝑑𝑠 + 0.32 ∗ 𝑜𝑡ℎ𝑒𝑟 𝑟𝑜𝑎𝑑𝑠 − 0.29 ∗ 𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑖𝑎𝑙 𝑟𝑜𝑎𝑑𝑠

− 0.55 ∗ 𝐶𝑎𝑝𝑟𝑖𝑐𝑜𝑟𝑛 + 0.56 ∗ 𝑆𝑒𝑘ℎ𝑢𝑘ℎ𝑢𝑛𝑒 − 0.55 ∗ 𝑀𝑜𝑝𝑎𝑛𝑖 + 0.27

∗ 𝑇𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [00 − 05] − 0.21 ∗ 𝑇𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [06 − 13] + 0.51

∗ ℎ𝑢𝑚𝑎𝑛 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 − 1.13 ∗ 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 − 0.56 ∗ 𝑠𝑒𝑑𝑎𝑛

− 0.62 ∗ 𝐿𝐷𝑉 − 0.37 ∗ 𝑐𝑜𝑚𝑏𝑖 − 0.18 ∗ 𝑡𝑟𝑢𝑐𝑘 
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𝜋 =
𝑒𝑥′𝛽

1 + 𝑒𝑥′𝛽
 

The logistic regression coefficients of the exponential can be interpreted as follows. 

The odds are conditional on the occurrence of accidents: 

 The odds of death occurring during holidays is 1.17 times the odds of death 

occurring during non-holidays.  

 The odds of death occurring on a Sunday is 1.33 times the odds of death 

occurring on a Wednesday.  

 The odds of death occurring on other roads is 1.38 times the odds of death 

occurring on districts roads.  

5.1.2.  Model Diagnostics  

After fitting a regression model, it is important to determine whether there are any 

assumption violations of the logistic regression model. Therefore, I performed 

appropriate model diagnostics. The model diagnosis involved a graphical plot of the 

residual against the predicted, and the observed against the expected.   

 

Figure 8: Logistic regression model diagnostic, expected against predicted. 
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In the observed against the predicted plots, the points seem to fall along a straight 

line, indicating that there is a good relationship between the predicted and the 

observed values. In the residuals against the predicted plot, it can be seen that the 

red dashed lines look straight and horizontal, suggesting that the residuals are spread 

equally along the ranges of the predictors. 

The receiver operating characteristic (ROC) curve plot is generated by plotting 

sensitivity (probability of correctly detecting a death) against specificity (probability of 

correctly detecting a non-death), as shown in Figure 9. The diagonal line, from (0, 0) 

to (1, 1), is indicative of an independent variable that discriminates no difference of 

sensitivity against specificity. The area under the ROC curve illustrates the likelihood 

that the proposed model will determine deaths with higher probability than non-

deaths. A model with no discrimination will have no area under the curve, which would 

produce a straight line.  

Figure 9: ROC curve for logistic regression model. 

The area under the ROC curve for the model had a value of 0.68 above the diagonal 

line, suggesting that the logistic regression model would be considered to be fair at 
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separating road deaths from non-deaths. After undertaking all the diagnostics, I can 

safely conclude that the logistic regression model represents a better fitting model in 

predicting the probability of the occurrence of death given that an accident has 

occurred. 

5.2. POISSON REGRESSION MODEL 

The data used is the daily RTAs data gathered from January 2009 to December 2015. 

It was found, as depicted in Table 11, which the majority of deaths occurred during 

holidays when compared to non-holidays, with the highest number of deaths recorded 

on a Saturday, as a result of human actions on national roads. 

Table 11: Frequency of death distributed by holidays and no-holidays  

Variables 

Non-Holiday Holiday 

N(%) N(%) 
Day of week   

Sunday 978 (23%) 76 (12%) 

Monday 411 (10%) 59 (9 

Tuesday 339 (8%) 43 (7%) 

Wednesday 283 (7%) 53 (8%) 

Thursday 438 (10%) 116 (18%) 

Friday 699 (16%) 163 (25%) 

Saturday 1148 (27%) 138 (21%) 

Contributing Factors   

Environment Conditions 101 (2%) 6 (0.93%) 

Human Actions 3815 (89%) 589 (90.90%) 

Vehicle Conditions 380 (9%) 53 (8.17%) 

Road Types   

District Road 390 (9%) 61 (9%) 

National Road 1119 (26%) 169 (26%) 

Others Road 612 (14%) 113 (18%) 

Provincial Road 104 (3%) 31 (5%) 

Regional Road 2071 (48%) 274 (42%) 

 

The patterns of road deaths differ depending on whether or not it was a holiday. 

Again, it was found that both the explanatory variables and the response variable 

(number of deaths) have an effect on the variable holiday. Therefore, the data was 

split into two: deaths that occurred during holidays and those that occurred during 

non-holidays. Holidays were New Year's Day, Human Rights Day, Good Friday, 

Family Day, Freedom Day, Labour Day, Public Day, Youth Day, National Women’s 

Day, Heritage Day, Day of Reconciliation, Christmas Day and Day of Good Will. 
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Using Chi-square test statistics to test for independence between the number of 

deaths and the explanatory variables, only variables: region, type of vehicle, yearly 

quarters, categorised contributing factors, day of week and types of road were found 

to be statistically associated with the reported number of deaths (see Table 22(A)). 

These variables are used to fit the standard regression model for Poisson. 

5.2.1. Deaths During Holidays 

The standard Poisson regression model coefficient estimates for death during 

holidays is displayed in the table below. 

Table 12: Coefficient estimates for the standard Poisson model for deaths during the holidays. 

Variables 
  C.I  

Estimate Std. Error 2.5% 97.5% P-value 

Intercept -3.3907 0.4422 -4.3655 -2.6037 <0.0001 *** 

Sunday -0.2250 0.1395 -0.5034 0.0443 0.1067  

Monday -0.4755 0.1530 -0.7829 -0.1817 0.0018 ** 

Tuesday -0.4436 0.1723 -0.7932 -0.1158 0.0100 * 

Wednesday -0.0229 0.1591 -0.3436 0.2815 0.8852  

Thursday 0.1915 0.1217 -0.0490 0.4289 0.1158  

Saturday 0.0207 0.1165 -0.2085 0.2486 0.8586  

Human Actions 2.0878 0.4114 1.3737 3.0153 <0.0001 *** 

Vehicle Conditions 1.8445 0.4326 1.0768 2.8030 <0.0001 *** 

National road 0.0957 0.1533 -0.1991 0.4031 0.5323  

Others road 0.1974 0.1607 -0.1135 0.5179 0.2193  

Provincial road -0.1794 0.2226 -0.6275 0.2487 0.4204  

Regional road -0.0278 0.1435 -0.3016 0.2619 0.8462  

Sedan -0.2636 0.0553 -0.3736 -0.1567 <0.0001 *** 

LDV -0.1740 0.0675 -0.3082 -0.0433 0.0099 ** 

Combi 0.1639 0.0735 0.0165 0.3049 0.0257 * 

Bus 0.1103 0.1885 -0.2866 0.4560 0.5585  

Motorcycle 0.6740 0.2382 0.1731 1.1123 0.0046 ** 

Likelihood 

Log-likelihood -1403.338 Model df 19 

Significant Codes 

0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ 0.1 ‘.’ 

 

When modelling of death occurring due to accidents, the number of accidents was 

treated as an offset variable in the model. It can be observed that not all the predictors 

in the model were highly statistically significant. In the table above, highly statistically 

significant variables at the 0.001 significant level are indicated with three asterisks, 

two asterisks indicate highly statistically significant at the 0.01 significant level, while 
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one asterisk indicates statistical significance at the 0.05 significant level and a full-

stop it shows statistical significant at the 0.1 significant level. 

The regression coefficients are interpreted as any other unstandardized coefficients 

from a standard Poisson regression model. The regression coefficient associated with 

the human actions factor is 2.09, meaning that for each one-unit increase in the 

number of accidents due to human actions, log mean death increases by 2.09 units. 

The mean deaths that occurred on a Monday is 0.62 (𝑒−0.48 = 0.62) times less than 

the mean deaths that occurred on a Friday.  

Testing for model goodness of fit based on the Chi-square test with residual deviance 

1833.4 and 1720 degrees of freedom, the p-value was 0.028, less than the 0.05 

significance level, and, therefore, the null hypothesis cannot be accepted and one 

must conclude that the standard Poisson regression model, as a whole, does not fit 

the data significantly better than baseline model with interception alone. The standard 

Poisson regression model diagnostic is shown in Figure 10. The plots compare two 

distributions, the observed and the fitted distribution using their quartiles. 

 

Figure 10: Standard Poisson model diagnostic, observed against predicted values.  
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The standard Poisson regression model diagnostic is shown in Figure 10. It can be 

observed that the red dashed lines are not straight and horizontal at y-values of 25%, 

50% and 75% quartiles. This suggests that there is no agreement between the 

expected and the observed values. 

To examine over-dispersion in our model, we used a non-parametric over-dispersion 

test from the R package, called DHARMa (Harting, 2016), to test for over-dispersion 

or under-dispersion. 

Table 13: Testing for over-dispersion or under-dispersion in the model. 

Parameter Estimate Z-value P-value 
Dispersion 1.7942 3.9559 <0.0001 

 

The test statistic and p-values, respectively, are shown in Table 13, testing the null 

hypothesis that the true dispersion is equal to one. It was found that the p-value is 

less than the 0.05, and the null hypothesis is rejected, leading to the conclusion that 

the dispersion parameter is not equal to 1, instead it is greater than one, suggesting 

over-dispersion relative to the standard Poisson regression model. This implies that 

the conditional variance is greater than the conditional mean. This suggest that the 

model is mis-specified and that the explanatory variables may not well explain the 

number of deaths.  

One common cause for over-dispersion is zero inflation. This is a phenomenon found 

in data where there are more zeros than expected. To factor this phenomenon in, we 

first tested for zero inflation using testZeroInflation function in R software. This 

function compares the observed number of zeros to the zeros expected from 

simulations. The ratio of observed against expected was found to be 1.0596, with a 

p-value less than 0.0001. I, therefore, reject the null hypothesis stating that the 

expected zeros and observed zeros are equal and conclude that the data poses zero 

inflation. 

5.2.2. Death During Non-Holidays 

When modelling of deaths occurring due to accidents, the number of accidents was 

treated as an offset variable in the mode. Based on the Chi-square test with residual 

deviance 13812 and 13475 degrees of freedom, the p-value was found to be less 

than 0.05. We, therefore, failed to reject the null hypothesis and conclude that the 
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standard Poisson regression model, as a whole, does not fit significantly better than 

a model with only the intercept. The standard Poisson regression model coefficient 

estimates for death during non-holidays is displayed in the table below. 

Table 14: Coefficient estimates for standard Poisson model for death during non-holidays. 

Variables  
 

 C.I  

Estimate Std. Error 2.5% 97.5% P-value 

Intercept -2.7908 0.1209 -3.0327 2.5583 <0.0001 *** 

Sunday 0.2326 0.0496 0.1355 0.3301 <0.0001 *** 

Monday -0.0085 0.0623 -0.1314 0.1131 0.8914  

Tuesday -0.2039 0.0664 -0.3351 -0.0746 0.0021 ** 

Wednesday -0.3429 0.0706 -0.4827 -0.2058 <0.0001 *** 

Thursday 0.0215 0.0610 -0.0986 0.1407 0.7235  

Saturday 0.1334 0.0482 0.0392 0.2283 0.0056 ** 

Human Actions 1.2882 0.1011 1.0958 1.4929 <0.0001 *** 

Vehicle Conditions 1.0692 0.1126 0.8528 1.2948 <0.0001 *** 

National road 0.2869 0.0594 0.1713 0.4045 <0.0001 *** 

Others road 0.1806 0.0652 0.0532 0.3091 0.0056 ** 

Provincial road -0.5026 0.1107 -0.7245 -0.2898 <0.0001 *** 

Regional road 0.0377 0.0558 -0.0704 0.1486 0.4988  

Sedan -0.2020 0.0219 -0.2453 -0.1591 <0.0001 *** 

LDV -0.2624 0.0259 -0.3135 -0.2118 <0.0001 *** 

Combi 0.1760 0.0305 0.1156 0.2355 <0.0001 *** 

Bus 0.6354 0.0627 0.5101 0.7560 <0.0001 *** 

Motorcycle 0.1262 0.1153 -0.1089 0.3437 0.2738  

Likelihood 

Log-likelihood -10193.67 Model df 19 

Significant Codes 

0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ 0.1 ‘.’ 

 

The regression coefficient associated with Sunday is 0.23, meaning that for each one-

unit increase in the number of accidents on Sunday, the mean death increases by 

0.23 units. The mean deaths involving busses is 1.90 (𝑒0.64 = 1.90) times greater than 

other vehicle types.  
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Figure 11: Standard Poisson model diagnostic for deaths occurred during non-holidays. 

Figure 11 displays the plot of observed against expected distribution of the number 

of deaths occurred during non-holidays. Based on the Kolmogorov-Smirnov test 

statistics with a p-value of 0.000, I reject the null hypothesis and conclude that the 

data follows the Poisson distribution. This suggests that the standard Poisson 

regression model does not fit the dataset. Again, it can be observed from the quantile 

plot that medians for observed and expected are not the same.  

Table 15: Testing for over-dispersion or under-dispersion in the model for deaths occurred during 

holidays. 

 Parameter Estimate Z-value P-value 
Dispersion 1.7942 3.9559 <0.0001 

 

The dispersion parameter is greater than one, suggesting over-dispersion relative to 

the standard Poisson regression model. Testing for zero inflation, it was found that 

the ratio of the observed against the expected is 1.1196 with a p-value 0.0000. I reject 

the null hypothesis stating that the expected zeros and observed zeros are equal. 

This suggests that the data poses excess of zeros.  
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5.3. MODEL EXTENSION TO MODEL POISSON 

The data, an alternative approach is to use the negative binomial (NB), the zero 

inflated Poisson (ZIP) and the zero inflated negative binomial (ZINB) regression 

models. These models can be considered as an extension of the standard Poisson 

regression model, and considered as flexible regression models that addresses 

excess zeros and provide flexibility in data dispersion modelling. Tables 19 and 20 

show the regression coefficient estimates for the competing count models. 

5.3.1. Negative Binomial Regression Model 

A limitation of the standard Poisson regression model is the equality of its mean and 

variance. It was observed in the data from the period under review that the conditional 

variance is larger than the conditional mean. This renders the assumption of a 

standard Poisson regression model for the error process untenable. Under the 

circumstances a reasonable alternative is the NB regression model. This model 

allows the variance to differ from the mean. The regression coefficients for the two 

models during holidays and non-holidays, the NB and the standard Poisson 

regression model are very close. However, the standard errors are larger for the NB 

regression model. The coefficients for the NB model can be interpreted in the same 

way as was done previously for the Poisson model. 

Comparison of standard regression models Poisson and NB based on AIC and BIC 

values showed that the NB model had the smallest AIC and BIC values than those 

for the standard Poisson regression model, indicating that the NB regression model 

fits the data significantly better than the standard Poisson regression model. 
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Table 16: Regression coefficient estimates for death during holidays. 

Variables  
 ZIP ZINB 

NB Count Logistic Count Logistic 

Coefficients  

Intercept -3.4692 -2.9185 -0.8615 -2.5600 -2.190 

Sunday -0.1725 -0.1618 -0.0157 -0.1665 -0.0956 

Monday -0.5024 -0.3427 0.3247 -0.4081 0. 4502 

Tuesday -0.3748 -0.0880 0.6786 -0.2665 0.5993 

Wednesday 0.0019 -0.0141 -0.0787 0.0685 0.5446 

Thursday 0.1767 0.0193 -0.5831 0.0463 -2.366 

Saturday 0.0688 0.2784 0.5259 0.2334 0.8944 

Human Actions 2.1214 1.4116 -1.4701 0.9882 8.153 

Vehicle Conditions 1.8577 1.3547 -0.9731 - - 

National road 0.1118 0.7517 2.2041 0.5663 1.267 

Others road 0.2116 0.1982 -0.2158 0.2239 0.9347 

Provincial road -0.1464 0.7652 2.6131 0.6244 1.331 

Regional road -0.0019 0.4119 1.5574 0.1618 1.105 

Sedan -0.2648 -0.1200 -0.0108 -0.1940 -0.0849 

LDV -0.1834 0.1223 0.4262 0.0246 0.8666 

Combi 0.1967 0.2229 -0.1887 0.3778 0.6099 

Bus 0.0335 -0.1740 -1.5302 0.0438 -1.083 

Motorcycle 0.7571 0.2976 16.661 0.5641 -2.444 

Standard Errors 

Intercept 0.4774 1.1851 2.5405 0.3020 <0.0001 

Sunday 0.1717 0.2003 0.4511 0.1931 0.8247 

Monday 0.1877 0.2499 0.5423 0.2255 0.9151 

Tuesday 0.2057 0.2477 0.4738 0.2463 0.8797 

Wednesday 0.2012 0.2274 0.5580 0.2271 0.9539 

Thursday 0.1613 0.1737 0.5304 0.1876 3.466 

Saturday 0.1487 0.1686 0.3730 0.1709 0.6992 

Human Actions 0.4300 1.0843 1.6963 0.1771 - 

Vehicle Conditions 0.4604 1.0873 1.7120 - - 

National road 0.1949 0.2439 1.2209 0.2295 2.319 

Others road 0.2047 0.2380 1.4015 0.1926  

Provincial road 0.2753 0.3227 1.2413 0.3564 2.319 

Regional road 0.1802 0.2390 1.2736 0.1824 2.319 

Sedan 0.0723 0.0665 0.1483 0.0822 0.2263 

LDV 0.0865 0.0943 0.2024 0.1059 0.3858 

Combi 0.1015 0.1120 0.2326 0.1534 0.5304 

Bus 0.2764 0.2535 0.9182 0.2668 1.466 

Motorcycle 0.3434 0.2495 2871.2 0.3273 1.068 

Likelihood 

Log-likelihood -1316.369 -1329.164 -1327.987 

Model df 20 38 20 
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Table 17: Regression coefficient estimates for death during non-holidays. 

Variables  
 ZIP ZINB 

NB Count Logistic Count Logistic 

Coefficients  

Intercept -2.8270 -0.2523 2.994 -1.2045 3.2609 

Sunday 0.2405 0.2700 0.0691 0.2497 0.1344 

Monday -0.0066 -0.1560 -0.3139 -0.0743 -0.9271 

Tuesday -0.1927 -0.1728 0.0217 -0.2066 -0.4149 

Wednesday -0.3166 -0.2329 0.1643 -0.3323 -0.3956 

Thursday 0.0049 0.0094 0.0071 -0.0123 -0.4374 

Saturday 0.1494 0.1729 0.0648 0.1544 0.0826 

Human Actions 1.2928 -0.3619 -2.3680 -0.2561 -19.121 

Vehicle Conditions 1.0609 0.1416 -1.1870 0.1794 -1.6595 

National road 0.2807 0.3774 0.1784 0.3029 0.3411 

Others road 0.1731 -0.0721 -0.5678 0.1486 -0.6380 

Provincial road -0.4998 -0.9952 -1.5820 -0.4858 0.1100 

Regional road 0.0391 -0.0509 -0.2222 0.0236 -0.4135 

Sedan -0.1958 -0.1865 -0.2509 -0.2011 -0.6939 

LDV -0.2537 -0.1913 -0.0984 -0.2672 -0.7275 

Combi 0.2025 0.1003 -0.3410 0.1458 -1.3340 

Bus 0.6250 0.7132 0.1078 0.6551 0.2965 

Motorcycle 0.2145 -0.5775 -1.4780 0.0987 -13.451 

Standard Errors 

Intercept 0.1399 0.1987 0.2808 0.2404 0.6385 

Sunday 0.0651 0.0766 0.1426 0.0662 0.3362 

Monday 0.0803 0.1014 0.2075 0.0824 0.4322 

Tuesday 0.0833 0.1110 0.2052 0.0852 0.4458 

Wednesday 0.0867 0.1207 0.2107 0.0889 0.4639 

Thursday 0.0790 0.0972 0.1846 0.0804 0.4238 

Saturday 0.0627 0.0764 0.1433 0.0637 0.3409 

Human Actions 0.1107 0.1562 0.1835 0.2204 876.45 

Vehicle Conditions 0.1275 0.1688 0.2015 0.2427 0.3451 

National road 0.0768 0.0996 0.1760 0.0777 0.4826 

Others road 0.0838 0.1107 0.2143 0.0841 0.5610 

Provincial road 0.1333 0.1830 0.7495 0.1333 1.2137 

Regional road 0.0709 0.0968 0.1750 0.0714 0.4593 

Sedan 0.0299 0.0296 0.0556 0.0297 0.2655 

LDV 0.0342 0.0402 0.0739 0.0346 0.2818 

Combi 0.0428 0.0454 0.0920 0.0441 0.3209 

Bus 0.0977 0.0819 0.1685 0.0981 0.5999 

Motorcycle 0.1636 0.1183 1.0770 0.1613 161.52 

Likelihood 

Log-likelihood -9354.226 -9643.509 -9285.377 

Model df 20 38 39 
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5.3.2. Zero-inflated Regression Model 

Using testZeroInfation function in R software, the data showed that it contains excess 

of zeros, thus limiting description using the standard Poisson regression model. Zero-

inflated regression models have been used to better describe a random variable 

containing excess of zeros. The results from the zero-inflated models are shown in 

Table 16 and 17. All complete models are shown in the Appendix. Each zero-inflated 

model has two sets of regression coefficients, count regression model and logistic 

regression model.  

The regression coefficient for the count part can be interpreted as in the same way 

as the standard Poisson regression model. The coefficient of regression can be 

interpreted as the expected number of deaths during holidays on provincial roads, 

which is 2.16 (𝑒0.77 = 2.16) times greater than the expected number of deaths on 

district roads during the holidays. The regression coefficients for the logistic 

regression can be transformed and interpreted as the odd ratios. The interpretation 

of the coefficient can be expressed as the odds of getting excessive zeros given that 

an accident has occurred on a provincial road over the odds of getting excessive 

zeros given that an accident has occurred on a district road is 0.36, while holding 

other variables in the model constant. 

5.4. MODEL COMPARISON 

5.4.1. Competing Count Models for Holidays 

I looked at model diagnostics for the competitive models. A plot of residuals against 

predicted values is shown in Figure 12. There should be no relationship or pattern 

between the residual and the predicted values, so the red dashed line should be 

horizontal and close to zero. 
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Figure 12: Predicted values against residual plot with LOWESS line. 

Graphically examining the fit across all four of the models, the ZIP and ZINB 

regression models show that there is no relationship between the residuals and the 

predicted values since the red dashed line is straight, horizontal and close to zero. 

This favours the ZIP and ZINB regression models over the other two models.  

Figure 13 shows a comparison of actual and predicted values total number of deaths. 

The actuals versus the predicted plots clearly show that there is little agreement 

between the actual and predicted values for the standard Poisson regression model. 

The model over-predicts and underpredicts all the count frequencies. The NB and 

ZINB seem to be doing a better job in predicting the actuals than other two models. 
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Figure 13: Comparison of actuals and predicted deaths frequency. 

Comparing the four count models, the expected number of zero counts based on the 

ZIP regression model is closer to the observed zeros than for the other three models 

shown in Table 18. However, the AIC and BIC values for the NB regression model is 

smaller than those for the other three models, indicating that the NB regression model 

fits the data somewhat better than the other models do. 

Table 18: The observed zero counts compared to the expected number of zeros. 
 

Observed PR NB ZIP ZINB 

Zero Counts 1299 1226 1224 1301 1316 
AIC  2844.677 2672.737 2734.327 2693.68 
BIC  2948.437 2781.959 2941.848 2895.74 

 

5.4.2. Competing Count Models for Non-Holidays 

A plot of residuals against predicted values is shown in Figure 14. 
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Figure 14: Predicted against residual plot with LOWESS line, death during non-holidays 

Examining fit across all four of the models, the zero-inflated models represent a better 

performance than the other two generalized linear models framework do, since the 

zero-inflated models show that there was no agreement between the residuals and 

the predicted values. Figure 15 compares the actual and predicted values, the NB 

and ZINB regression models seem to be doing a better job of capturing the death 

count, as the standard Poisson and the ZIP regression models over-predict and 

under-predict all the count frequencies 
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Figure 15: Comparison of actuals and predicted deaths frequency, death during non-holidays. 

Comparing the four death count models during non-holidays, the expected number 

of zero counts based on the ZIP regression model is closer to the observed zeros 

than in the other three models. However, the AIC and BIC values for the NB 

regression models are smaller than those for the other three models, indicating that 

the NB regression model fits the data somewhat better than the other models do. 

Table 19: The observed zero counts compared to the expected number of zeros for non-holidays. 
 

Observed PR NB ZIP ZINB 

Zero Counts 10591 9961 9945 10564 10670 
AIC  20425.33 18748.45 19363.02 18648.75 
BIC  20568.03 18898.66 19648.41 18941.66 
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5.5. FINAL COUNT MODELS 

5.5.1. Deaths During Holidays 

Table 20: The Negative Binomial regression coefficient estimates using Maximum Likelihood Estimate. 

 Variables  

  C.I for exp (𝜷)  

𝜷 Exp(𝜷) 2.5% 97.5% P-value 

Count       

Intercept -3.4692 0.0311 0.0111 0.0740 <0.0001*** 

Sunday -0.1725 0.8414 0.5980 1.1783 0.3148 

Monday -0.5024 0.6050 0.4174 0.8688 0.0074** 

Tuesday -0.3748 0.6873 0.4535 1.0280 0.0684. 

Wednesday 0.0019 1.0019 0.6714 1.4844 0.9921 

Thursday 0.1767 1.1932 0.8710 1.6335 0.2735 

Saturday 0.0688 1.0712 0.7978 1.4380 0.6433 

Human Actions 2.1214 8.3430 3.9342 21.572 <0.0001*** 

Vehicle Conditions 1.8577 6.4091 2.8147 17.336 <0.0001*** 

National road 0.1118 1.1183 0.7641 1.6461 0.5661 

Others road 0.2116 1.2357 0.8305 1.8477 0.3013 

Provincial road -0.1464 0.8637 0.4986 1.4808 0.5948 

Regional road -0.0019 0.9980 0.7037 1.4272 0.9913 

Sedan -0.2648 0.7673 0.6659 0.8834 0.0002*** 

LDV -0.1834 0.8323 0.6997 0.9889 0.0341* 

Combi 0.1967 1.2174 0.9892 1.4993 0.0526. 

Bus 0.0335 1.0340 0.6112 1.7500 0.9034 

Motorcycle 0.7571 2.1322 1.0709 4.2826 0.0274* 

Significant Codes 

0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ 0.1 ‘.’ 

 

This is the fitted NB regression model  

log(𝑑𝑒𝑎𝑡ℎ) = −3.47 ∗ 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 − 0.17 ∗ 𝑆𝑢𝑛𝑑𝑎𝑦 − 0.50 ∗ 𝑀𝑜𝑛𝑑𝑎𝑦 − 0.38 ∗ 𝑇𝑢𝑒𝑠𝑑𝑎𝑦

+ 0.00 ∗ 𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦 + 0.18 ∗ 𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 + 0.07 ∗ 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 + 2.12

∗ ℎ𝑢𝑚𝑎𝑛 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + 1.86 ∗ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 + 0.11 ∗ 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑎𝑑𝑠

+ 0.21 ∗ 𝑜𝑡ℎ𝑒𝑟 𝑟𝑜𝑎𝑑𝑠 − 0.15 ∗ 𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑖𝑎𝑙 𝑅𝑜𝑎𝑑𝑠 − 0.00

∗ 𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑅𝑜𝑎𝑑𝑠 − 0.27 ∗ 𝑠𝑒𝑑𝑎𝑛 − 0.18 ∗ 𝐿𝐷𝑉 + 0.20 ∗ 𝑐𝑜𝑚𝑏𝑖 + 0.03

∗ 𝑏𝑢𝑠 + 0.76 ∗ 𝑚𝑜𝑡𝑜𝑟𝑐𝑦𝑐𝑙𝑒. 

The regression model represents only explanatory variables that were found to be 

statistically significant at 0.05 significant level. The model coefficients are can be 

interpreted as any other unstandardized coefficients. The coefficient associated with 

Monday is -0.50. The negative sign indicate that the expected log number of death 

occurred on Monday is smaller than for those that occurred on Friday. The expected 
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log death for aaccidents attributed to human actions is 2.12 higher than when the 

accidents cannot be attributed to human actions. 

5.5.2. Deaths During Non-Holidays 

Table 21: The ZINB regression coefficient estimates using restricted maximum likelihood estimate. 

Variables  

  C.I for exp (𝜷)  

𝜷 Exp(𝜷) 2.5% 97.5% P-value 

 Count Model 

Intercept -1.2045 0.2998 0.1871 0.4803 <0.0001*** 

Sunday 0.2497 1.2836 1.1273 1.4617 0.0001*** 

Monday -0.0743 0.9283 0.7899 1.0911 0.3671 

Tuesday -0.2066 0.8133 0.6881 0.9613 0.0154* 

Wednesday -0.3323 0.7172 0.6024 0.8538 0.0001*** 

Thursday -0.0123 0.9877 0.8437 1.1563 0.8779 

Saturday 0.1544 1.1670 1.0299 1.3224 0.0154* 

Human Actions -0.2561 0.7740 0.5025 1.1923 0.2452 

Vehicle Conditions 0.1794 1.1965 0.7436 1.9254 0.4596 

National road 0.3029 1.3538 1.1624 1.5767 <0.0001*** 

Others road 0.1486 1.1603 0.9839 1.3682 0.0771. 

Provincial road -0.4858 0.6151 0.4737 0.7989 0.0002*** 

Regional road 0.0236 1.0239 0.8901 1.1777 0.7406 

Sedan -0.2011 0.8177 0.7714 0.8668 <0.0001*** 

LDV -0.2672 0.7654 0.7152 0.8192 <0.0001*** 

Combi 0.1458 1.1570 1.0610 1.2616 0.0009*** 

Bus 0.6551 1.9254 1.5884 2.3340 <0.0001*** 

Motorcycle 0.0987 1.1038 0.8046 1.5142 0.5402 

 Logistic Model 

Intercept 3.2609 26.073 7.4584 9.1145 <0.0001*** 

Sunday 0.1344 1.1438 0.5917 2.2111 0.6893 

Monday -0.9271 3.9566 0.1695 0.9230 0.0319* 

Tuesday -0.4149 0.6603 0.2756 1.5821 0.3519 

Wednesday -0.3956 0.6732 0.2711 1.6714 0.3937 

Thursday -0.4374 0.6457 0.2813 1.4817 0.3020 

Saturday 0.0826 1.0861 0.5567 2.1189 0.8085 

Human Actions -19.121 <0.0001 0.0000 INF 0.9825 

Vehicle Conditions -1.6595 0.1902 0.0967 0.3741 <0.0001*** 

National road 0.3411 1.4065 0.5461 3.6223 0.4796 

Others road -0.6380 0.5283 0.1759 1.5867 0.2554 

Provincial road 0.1100 1.1163 0.1034 1.2048 0.9277 

Regional road -0.4135 0.6613 0.2687 1.6271 0.3680 

Sedan -0.6939 0.4996 0.2968 0.8407 0.0089** 

LDV -0.7275 0.4830 0.2780 0.8394 0.0098** 

Combi -1.3340 0.2633 0.1404 0.4940 <0.0001*** 

Bus 0.2965 1.3451 0.4150 4.3594 0.6211 

Motorcycle -13.451 <0.0001 <0.0001 4.4345 0.9336 

Significant code 0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ 0.1 ‘.’ 
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This is the fitted ZINB regression model  

log(𝑑𝑒𝑎𝑡ℎ) = −1.21 ∗ 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 0.25 ∗ 𝑆𝑢𝑛𝑑𝑎𝑦 − 0.07 ∗ 𝑀𝑜𝑛𝑑𝑎𝑦 − 0.21 ∗ 𝑇𝑢𝑒𝑠𝑑𝑎𝑦

− 0.33 ∗ 𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦 − 0.01 ∗ 𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 + 0.15 ∗ 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 − 0.26

∗ ℎ𝑢𝑚𝑎𝑛 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 + 0.18 ∗ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 + 0.30 ∗ 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑎𝑑𝑠

+ 0.15 ∗ 𝑜𝑡ℎ𝑒𝑟 𝑟𝑜𝑎𝑑𝑠 − 0.49 ∗ 𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑖𝑎𝑙 𝑟𝑜𝑎𝑑𝑠 + 0.02

∗ 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑎𝑑𝑠 − 0.20 ∗ 𝑠𝑒𝑑𝑎𝑛 − 0.26 ∗ 𝐿𝐷𝑉 + 0.15 ∗ 𝑐𝑜𝑚𝑏𝑖 + 0.66

∗ 𝑏𝑢𝑠 + 0.10 ∗ 𝑚𝑜𝑡𝑜𝑟𝑐𝑦𝑐𝑙𝑒. 

The regression model represents only explanatory variables that were statistically 

significant at 0.05 significant level. The model coefficients can be interpreted as the 

expected log number of death that occurred on Sunday is 0.25 times greater than the 

death that occurred on Friday. The expected log number of death that occurred on 

Tuesday is 0.21 times less than the expected log number of deaths that occurred on 

Friday.  

The logistic model part of this fitted model: 

𝜋 = 3.26 ∗ 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 0.13 ∗ 𝑆𝑢𝑛𝑑𝑎𝑦 − 0.93 ∗ 𝑀𝑜𝑛𝑑𝑎𝑦 − 0.42 ∗ 𝑇𝑢𝑒𝑠𝑑𝑎𝑦 − 0.40

∗ 𝑊𝑒𝑑𝑛𝑒𝑠𝑑𝑎𝑦 − 0.45 ∗ 𝑇ℎ𝑢𝑟𝑠𝑑𝑎𝑦 + 0.08 ∗ 𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 − 19.12

∗ ℎ𝑢𝑚𝑎𝑛 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 − 10.66 ∗ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 + 0.34 ∗ 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑎𝑑𝑠

− 0.64 ∗ 𝑜𝑡ℎ𝑒𝑟 𝑟𝑜𝑎𝑑𝑠 + 0.11 ∗ 𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑖𝑎𝑙 𝑟𝑜𝑎𝑑𝑠 − 0.41

∗ 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑎𝑑𝑠 − 0.69 ∗ 𝑠𝑒𝑑𝑎𝑛 − 0.73 ∗ 𝐿𝐷𝑉 − 1.33 ∗ 𝑐𝑜𝑚𝑏𝑖 + 0.30

∗ 𝑏𝑢𝑠 − 13.45 ∗ 𝑚𝑜𝑡𝑜𝑟𝑐𝑦𝑐𝑙𝑒. 

𝑙𝑜𝑔𝑖𝑡(𝜔) =
𝜋

1 + 𝜋
. 

The log odds of being an excessive zero would decrease by 0.92 for every additional 

accident on Monday as compared to Friday. The more accidents on Monday the less 

likely that zero would be due to no death. The log odds of being an excessive zero 

would decrease by 1.66 for every additional accident caused by vehicle conditions, 

indicating that the higher the number of accidents caused by vehicle conditions, the 

higher the likelihood of death from the accidents.  
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The results from the NB and ZINB regression models are summarised in Tables 20 

and 21. Holiday’s road accidents caused by human actions and vehicle conditions on 

Monday, driving in sedan, LDV vehicle types and motorcycles have a significantly 

positive effect on road deaths. On the other hand, the factors Sunday, Tuesday, 

Wednesday, Saturday, national roads, provincial roads, sedan, LDV, combi and bus 

have a significantly positive effect on road deaths during non-holidays, whilst Monday, 

Thursday, human actions, vehicle conditions, other roads, regional roads and 

motorcycle have significantly negative effect on road deaths.  
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CHAPTER 6: DISCUSSION AND CONCLUSION 

 

6.1. INTRODUCTION  

This chapter covers the discussion, conclusion, recommendation, further research 

area and study limitations. The purpose of this study was to analyse road deaths in 

the Limpopo province in order to determine the factors causing death due to road 

accidents. The final step was to compare the generalized linear models (GLM) with 

the zero-inflated models.  

6.2. MAIN FINDINGS  

The study examined factors that contribute to deaths due to road accidents between 

2009 and 2015. There were 18,029 RTAs recorded during this study period under 

review, resulting in 4,944 deaths. The year 2015 recorded the highest number of 

incidents or cases. Most accidents and deaths took place in December. This could 

be due to the Christmas season, where the roads are busier as a result of making 

last minutes trips to the shops or going on long trips. This month, most people in the 

country are on leave and schools are closed, resulting in a lot of traffic congestion. 

More accidents occur on Saturdays (25%), while 18% of all car accidents occur 

between 5 p.m. and 8 p.m. on Sunday. Nearly half (43%) of all accidents occur on 

weekends. This could be due to the fact that, on weekends, more people go to church, 

attend weddings and engage in many other activities. Tuesday and Wednesday are 

the safest days to drive, accounting for only 9% respectively of all accidents.  

Most deaths (26%) due to road accidents occur on Saturday, while 21% of all deaths 

occur on Sundays between 5 pm and 8 pm and, again, between 5 am and 7 am. 

Nearly half (47%) of all road deaths occur on weekends. Wednesday is the safest 

day to drive, accounting for only 7% of all deaths due to road accidents. 

More than 82% of all RTAs, RTDs and RTIs in the Province occur as results of human 

actions, such as speeding, pedestrian carelessness or recklessness, following too 

close to the vehicle in front, reckless driving, contravention of traffic signs, fatigue and 

drunken driving. 
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6.3. LOGISTIC REGRESSION MODEL FINDINGS 

Of the 33 variables that were considered for fitting to the model, 20 variables were 

significant in predicting the occurrence of death given the fact that an accident has 

occurred. Among the explanatory variables that were significant, it was found that the 

variables Friday, Monday, Saturday, Sunday and Thursday were significant 

predictors of road deaths.  

Our study detected that human actions and environment conditions were important 

explanatory variables that can be used in predicting the likelihood of death. These 

results were similar to the results of previous studies (Siskind, et al., 2011; Zhang, et 

al., 2013). The study by Siskind et al., (2011), found that human actions, such as 

speed, were considered by police to be a contributing factor in 18% of fatal accidents, 

compared to 10% in non-fatal accidents. This study further shows that vehicle type, 

such as sedan, LDV, combi and truck, was found to be significant in predicting the 

odds of death occurring as a result of an accident. 

The model showed a strong relationship between the observed and predicted values, 

and the residuals were equally spread along the range of predictors. The area under 

the curve (AUC) value was 68%, indicating that our model has the ability to predict 

the probability of death given the fact that an accident has occurred. The model was 

considered to be valid since our AUC is above 50%. 

6.4. COMPETING COUNT MODELS FINDINGS 

The standard Poisson regression model was found to be over-dispersed and zero-

inflated. An alternative approach to deal with this over-dispersion and zero-inflated 

was to use the negative binomial (NB) and zero-inflated models. Fitting four 

competing count models to aggregated data by day, the study found that the NB 

model performed better than the three other models did in modelling the number of 

deaths that occurred during the holidays. The model showed no relationship between 

the residual and the predicted values and the excess of zeros were better captured 

by the zero-inflated Poisson (ZIP) model than by the NB model.  

The aggregated death data for non-holidays contained an excess of zeros, thus 

limiting description using the standard Poisson and NB regression models. The zero-

inflated models were used to better describe such a random variable containing 

excess of zeros. Based on the AIC and BIC criterion to select the best model, the 
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zero-inflated negative binomial (ZINB) model had the smallest values when compared 

to the values for ZIP model. Again, the ZINB model diagnosis showed no relationship 

between the predicted and residual values. The model captured the zero counts 

better than standard Poisson and NB regression models. These results were similar 

to those in a previous study by Prasetijo and Musa (2016). 

Among the explanatory variables, it was found that the variables Monday, human 

actions, vehicle conditions, sedan, LDV and motorcycle were significant predictors of 

RTDs during holidays. On the other hand, during non-holidays the variables weekend, 

Tuesday, Wednesday, national road, provincial road, sedan, LDV, combi and bus 

were found to be significant predictors of RTDs. 

The study succeeded in addressing all the objectives that it set out to address. From 

both the literature review as well as the study, it is clear that the variables human 

actions, vehicle type, road type and day of week are the main determinants of RTDs 

in the Limpopo province. 

6.5. CONCLUSION  

Generalized linear modelling (GLM) techniques, such as the standard Poisson 

regression model and NB model, did little to explain and handle zero excesses, thus, 

zero-inflated models, such as ZINB, were found to be effective in catering for, and 

explaining, excess zeros.  

6.6.  RECOMMENDATION  

 Government investment in the maintenance of district and rural roads should 

be recommended, as most roads have potholes and road signs are no longer 

visible.   

 During festive seasons, such as December and over weekends, it is 

recommended that the government provide more manpower for law 

enforcement.  

 Finally, it is recommended that the Limpopo Province Department of Road and 

Transport consider adding colour of the vehicle, gender, age, alcohol 

concentration, car roadworthiness and the wearing of seatbelts by the driver 

when capturing incident information. Literature national wide showed that 

these are some of determinants for RTAs.    
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6.7. AREAS FOR FURTHER RESEARCH 

The study could be extended to other parts of the Province and designed to 

investigate variables such as colour of the vehicle, gender of the driver, age of the 

driver, alcohol concentration, marital status, educational level and car 

roadworthiness, as determinants of RTDs within the South African context.  

6.8. STRENGTH AND LIMITATIONS  

The present study has both strengths and limitations. Among the limitations I 

acknowledge the fact that the study only included data from Limpopo and the data 

from other provinces should be collected and analysed. This limits the external validity 

of the study in that results cannot be generalized to include the whole of South Africa. 

Due to the fact that data analysis involved the use of secondary data, there was no 

control over what data were collected, or how the data were collected or managed.  
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APPENDIX 

 

Table 22(A): Chi-square test to test for association of variables 

Variables Chi-square Df P-value 

Week of Day 125.50 90 0.0080 

Contributing Factors 2204.50 75 <0.0001 

Road Types 132.82 60 <0.0001 

Vehicle types     

Sedan 229.67 75 <0.0001 

Motorcycle 58.258 30 0.0015 

Truck 168.38 45 <0.0001 

Bus 244.34 30 <0.0001 

Combi 120.51 45 <0.0001 

LDV 108.77 60 0.0001 

Hour Intervals 30.163 30 0.4573 

Season 67.45 45 0.0167 

 

Table 23(A): Negatibve binomial model for deaths during the holidays. 

Variables Estimate Std. Error Z-value P-value 

Intercept -3.4692 0.4774 -7.266 <0.0001 *** 

Sunday -0.1725 0.1717 -1.005 0.3148  

Monday -0.5024 0.1877 -2.677 0.0074 ** 

Tuesday -0.3748 0.2057 -1.822 0.0684 . 

Wednesday 0.0019 0.2012 0.010 0.9921  

Thursday 0.1767 0.1613 1.095 0.2735  

Saturday 0.0688 0.1487 0.463 0.6433  

Human Actions 2.1214 0.4300 4.932 <0.0001 *** 
Vehicle Conditions 1.8577 0.4604 4.035 <0.0001 *** 

National road 0.1118 0.1949 0.574 0.5661  

Others road 0.2116 0.2047 1.034 0.3013  

Provincial road -0.1464 0.2753 -0.532 0.5948  

Regional road -0.0019 0.1802 -0.011 0.9913  

Sedan -0.2648 0.0723 -3.661 0.0002 *** 

LDV -0.1834 0.0865 -2.119 0.0341 * 

Combi 0.1967 0.1015 1.938 0.0526 . 

Bus 0.0335 0.2764 0.121 0.9034  

Motorcycle 0.7571 0.3434 2.205 0.0274 * 

Goodness of Fit 

Residual deviance 1163.8 Model df 1720 
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Table 24 (A): Zero inflated Poisson model for deaths during the holidays. 

Variables Estimate Std. Error Z-value P-value 

Intercept -2.9185 1.1851 -2.463 0.0137 * 

Sunday -0.1618 0.2003 -0.808 0.4189  

Monday -0.3427 0.2499 -1.371 0.1703  

Tuesday -0.0880 0.2477 -0.355 0.7224  

Wednesday -0.0141 0.2274 -0.062 0.9504  

Thursday 0.0193 0.1737 0.112 0.9111  

Saturday 0.2784 0.1686 1.651 0.0988 . 

Human Actions 1.4116 1.0843 1.302 0.1929  

Vehicle Conditions 1.3547 1.0873 1.246 0.2127  

National road 0.7517 0.2439 3.082 0.0020 ** 

Others road 0.1982 0.2380 0.833 0.4048  

Provincial road 0.7652 0.3227 2.371 0.0177 * 

Regional road 0.4119 0.2390 1.723 0.0849 . 

Sedan -0.1200 0.0665 -1.805 0.0710 . 

LDV 0.1223 0.0943 1.296 0.1949  

Combi 0.2229 0.1120 1.990 0.0466 * 

Bus -0.1740 0.2535 -0.686 0.4924  

Motorcycle 0.2976 0.2495 1.193 0.2328  

Variables Estimate Std. Error Z-value P-value 

Intercept -0.8615 2.5405 -0.339 0.7345  

Sunday -0.0157 0.4511 -0.035 0.9721  
Monday 0.3247 0.5423 0.599 0.5493  

Tuesday 0.6786 0.4738 1.432 0.1521  

Wednesday -0.0787 0.5580 -0.141 0.8878  

Thursday -0.5831 0.5304 -1.099 0.2717  

Saturday 0.5259 0.3730 1.410 0.1585  

Human Actions -1.4701 1.6963 -0.867 0.3861  

Vehicle Conditions -0.9731 1.7120 -0.568 0.5698  

National road 2.2041 1.2209 1.805 0.0710 . 

Others road -0.2158 1.4015 -0.154 0.8776  

Provincial road 2.6131 1.2413 2.105 0.0353 * 

Regional road 1.5574 1.2736 1.223 0.2214  

Sedan -0.0108 0.1483 -0.073 0.9420  

LDV 0.4262 0.2024 2.106 0.0352 * 

Combi -0.1887 0.2326 -0.811 0.4173  

Bus -1.5302 0.9182 -1.667 0.0956 . 

Motorcycle 16.661 2871.2 -0.006 0.9954  

Likelihood 

Residual deviance -1329 Model df 38 
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Table 25 (A): Zero inflated negative binomial  model for deaths during the holidays. 

Variables Estimate Std. Error Z-value P-value 

Intercept -2.5600 0.3020 -6.411 <0.0001 *** 

Sunday -0.1665 0.1931 -1.226 0.2202  

Monday -0.4081 0.2255 -3.428 0.0006 *** 

Tuesday -0.2665 0.2463 -1.654 0.0981 . 

Wednesday 0.0685 0.2271 0.433 0.6652  

Thursday 0.0463 0.1876 1.022 0.3067  

Saturday 0.2334 0.1709 0.702 0.4827  

Human Actions 0.9882 0.1771 5.300 <0.0001 *** 

Vehicle Conditions - - - -  

National road 0.5663 0.2295 2.142 0.0322 * 

Others road 0.2239 0.1926 0.576 0.5645  

Provincial road 0.6244 0.3564 -0.100 0.9201  

Regional road 0.1618 0.1824 0.020 0.9838  

Sedan -0.1940 0.0822 -3.976 <0.0001 *** 

LDV 0.0246 0.1059 -2.741 0.0061 ** 

Combi 0.3778 0.1534 0.318 0.7506  

Bus 0.0438 0.2668 0.005 0.9963  

Motorcycle 0.5641 0.3273 2.084 0.0371 * 

Variables Estimate Std. Error Z-value P-value 

Intercept -2.190 <0.0001 0.000 1.000  

Sunday -0.0956 0.8247 -0.221   0.825  
Monday 0. 4502 0.9151 -0.014 0.989  

Tuesday 0.5993 0.8797 -0.222 0.824  

Wednesday 0.5446 0.9539    

Thursday -2.366 3.466 -0.381 0.703  

Saturday 0.8944 0.6992 0.512 0.609  

Human Actions - - - -  

Vehicle Conditions - - - -  

National road 1.267 2.319 0.397 0.691  

Others road 0.9347  0.000 1.000  

Provincial road 1.331 2.319 0.000 1.000  

Regional road 1.105 2.319 0.000 1.000  

Sedan -0.0849 0.2263 -1.007 0.314  

LDV 0.8666 0.3858 -0.974 0.330  

Combi 0.6099 0.5304 -0.004 0.996  

Bus -1.083 1.466 -1.206 0.228  

Motorcycle -2.444 1.068 0.391 0.696  

Likelihood 

Residual deviance -1315 Model df 37 
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Table 26 (A): Negative binomial model for deaths during the non-holidays. 

Variables Estimate Std. Error Z-value P-value 

Intercept -2.8270 0.1399 -20.204   

Sunday 0.2405 0.0651 3.692 0.0002 *** 

Monday -0.0066 0.0803 -0.083 0.9341  

Tuesday -0.1927 0.0833 -2.312 0.0207 * 

Wednesday -0.3166 0.0867 -3.651 0.0002 *** 

Thursday 0.0049 0.0790 0.063 0.9498  

Saturday 0.1494 0.0627 2.382 0.0172 * 

Human Actions 1.2928 0.1107 11.670 <0.0001 *** 

Vehicle Conditions 1.0609 0.1275 8.320 <0.0001 *** 

National road 0.2807 0.0768 3.653 0.0002 *** 

Others road 0.1731 0.0838 2.066 0.0388 * 

Provincial road -0.4998 0.1333 -3.748 0.0001 *** 

Regional road 0.0391 0.0709 0.552 0.5806  

Sedan -0.1958 0.0299 -6.539 <0.0001 *** 

LDV -0.2537 0.0342 -7.401 <0.0001 *** 

Combi 0.2025 0.0428 4.731 <0.0001 *** 

Bus 0.6250 0.0977 6.393 <0.0001 *** 

Motorcycle 0.2145 0.1636 1.311 0.1898  

Likelihood 

Residual deviance -9354.226 Model df 20 
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Table 27 (A): Zero inflated Poisson model for deaths during the non- holidays. 

Variables Estimate Std. Error Z-value P-value 

Intercept -0.2523 0.1987 -1.270 0.2041  

Sunday 0.2700 0.0766 3.524 0.0004 *** 

Monday -0.1560 0.1014 -1.538 0.1239  

Tuesday -0.1728 0.1110 -1.556 0.1196  

Wednesday -0.2329 0.1207 -1.930 0.0536 . 

Thursday 0.0094 0.0972 0.097 0.9224  

Saturday 0.1729 0.0764 2.261 0.0237 * 

Human Actions -0.3619 0.1562 -2.316 0.0205 * 

Vehicle Conditions 0.1416 0.1688 0.839 0.4013  

National road 0.3774 0.0996 3.786 0.0001 *** 

Others road -0.0721 0.1107 -0.652 0.5146  

Provincial road -0.9952 0.1830 -5.437 <0.0001 *** 

Regional road -0.0509 0.0968 -0.527 0.5984  

Sedan -0.1865 0.0296 -6.284 <0.0001 *** 

LDV -0.1913 0.0402 -4.755 <0.0001 *** 

Combi 0.1003 0.0454 2.209 0.0271 * 

Bus 0.7132 0.0819 8.701 <0.0001 *** 

Motorcycle -0.5775 0.1987 -4.879 <0.0001 *** 

Variables Estimate Std. Error Z-value P-value 

Intercept 2.994 0.2808 10.666 <0.0001 *** 

Sunday 0.0691 0.1426 0.485 0.6276  
Monday -0.3139 0.2075 -1.513 0.1304  

Tuesday 0.0217 0.2052 0.106 0.9157  

Wednesday 0.1643 0.2107 0.780 0.4356  

Thursday 0.0071 0.1846 0.039 0.9692  

Saturday 0.0648 0.1433 0.453 0.6507  

Human Actions -2.3680 0.1835 -12.905 <0.0001 *** 

Vehicle Conditions -1.1870 0.2015 -5.890 <0.0001 *** 

National road 0.1784 0.1760 1.013 0.3110  

Others road -0.5678 0.2143 -2.650 0.0080 ** 

Provincial road -1.5820 0.7495 -2.111 0.0347 * 

Regional road -0.2222 0.1750 -1.270 0.2040  

Sedan -0.2509 0.0556 -4.508 <0.0001 *** 

LDV -0.0984 0.0739 -1.332 0.1829  

Combi -0.3410 0.0920 -3.706 0.0002 *** 

Bus 0.1078 0.1685 0.640 0.5224  

Motorcycle -1.4780 1.0770 -0.014 0.9890  

Likelihood 

Residual deviance -9644 Model df 38 
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Table 28 (A): Zero inflated negative binomial model for deaths during the non-holidays. 

Variables Estimate Std. Error Z-value P-value 

Intercept -1.2045 0.2404 -5.010 <0.0001 *** 

Sunday 0.2497 0.0662 3.769 0.0001  

Monday -0.0743 0.0824 -0.902 0.3671  

Tuesday -0.2066 0.0852 -2.422 0.0154 * 

Wednesday -0.3323 0.0889 -3.735 0.0001 *** 

Thursday -0.0123 0.0804 -0.154 0.8779  

Saturday 0.1544 0.0637 2.422 0.0154 *** 

Human Actions -0.2561 0.2204 1.162 0.2452  

Vehicle Conditions 0.1794 0.2427 0.739 0.4596  

National road 0.3029 0.0777 3.895 <0.0001 *** 

Others road 0.1486 0.0841 1.768 0.0771 . 

Provincial road -0.4858 0.1333 -3.643 0.0002 *** 

Regional road 0.0236 0.0714 0.331 0.7406  

Sedan -0.2011 0.0297 -6.759 <0.0001 *** 

LDV -0.2672 0.0346 -7.720 <0.0001 *** 

Combi 0.1458 0.0441 3.302 0.0009 *** 

Bus 0.6551 0.0981 6.674 <0.0001 *** 

Motorcycle 0.0987 0.1613 0.612 0.5402  

Variables Estimate Std. Error Z-value P-value 

Intercept 3.2609 0.6385 5.107 <0.0001 *** 

Sunday 0.1344 0.3362 0.400 0.6893  
Monday -0.9271 0.4322 -2.145 0.0319 * 

Tuesday -0.4149 0.4458 -0.931 0.3519  

Wednesday -0.3956 0.4639 -0.853 0.3937  

Thursday -0.4374 0.4238 -1.032 0.3020  

Saturday 0.0826 0.3409 0.242 0.8085  

Human Actions -19.121 876.45 -0.022 0.9825  

Vehicle Conditions -1.6595 0.3451 -4.808 <0.0001 *** 

National road 0.3411 0.4826 0.707 0.4796  

Others road -0.6380 0.5610 -1.137 0.2554  

Provincial road 0.1100 1.2137 0.091 0.9277  

Regional road -0.4135 0.4593 -0.900 0.3680  

Sedan -0.6939 0.2655 -2.613 0.0089  

LDV -0.7275 0.2818 -2.581 0.0098  

Combi -1.3340 0.3209 -4.157   

Bus 0.2965 0.5999 0.494 0.6211  

Motorcycle -13.451 161.52 -0.083 0.9336  

Likelihood 

Residual deviance -9285 Model df 39 

 


