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Abstract 

Sperrylite (PtAs2), platarsite (PtAsS) and palladoarsenide (Pd2As) are platinum group 

minerals (PGMs) predominantly found in the Platreef Bushveld Complex in South Africa, 

which is one of the leading countries with highest percentages of platinum group minerals. In 

this study the density functional theory (DFT), embodied in the Vienna Ab-initio Simulation 

Package (VASP) code, was employed to investigate the structural, thermodynamically, elastic, 

mechanical, vibrational, electronic and surface properties of cubic PtAs2 and PtAsS, and 

monoclinic Pd2As mineral structures. The PtAsS was investigated from both virtual crystal 

approximations (VCA) solid solution within the Cambridge Serial Total Energy Package 

(CASTEP) code and the VASP cluster expansion (CE) approach. The cluster expansion phase 

stability was employed to generate new stable system of PtAsS model and from the cluster 

expansion binary ground state diagram we found a greater stability at 50/50 percentage (x = 

0.5) of PtAsS where As and S atoms were equally distributed with formation of S-As dimer 

bond at the centre. The calculated lattice parameters were well reproduced and agreed with the 

available experimental data. The binary ground state diagram also showed that all structures 

have negative heats of formation (∆Hf), hence they were thermodynamically stable (miscible 

constituents). The calculated heats of formation predicted that PtAs2 was more stable than the 

PtAsS and the order of stability for cubic structures decreased as: PtAs2 > PtAsS (VCA) > 

PtAsS (CE). 

The elastic constants indicated mechanically stability for all structures and the phonon 

dispersion curves showed no soft modes for PtAs2, PtAsS (CE) and Pd2As, suggesting stability. 

Moreover, the elastic instability (negative Cij) was observed in the PtAsS (VCA) structure. We 

also observed that the Pd2As and PtAsS (CE) were ductile, while PtAs2 and PtAsS (VCA) were 

brittle. The calculated Young modulus indicated that PtAs2 was much stiffer compared to 

PtAsS models. This suggested that PtAs2 was mechanically stronger among all the cubic 

structures. The PtAs2 was a dominant covalently bonded compound whereas PtAsS and Pd2As 

were predicted as ionic bonded.  

The computed Bader charges for the bulk and surface PtAs2, PtAsS (CE) and Pd2As and 

Mulliken atomic charges for PtAsS (VCA) showed different behaviour. The Pt and Pd species 

showed negative charges, while As species showed a positive charge for PtAs2 and Pd2As. The 

PtAsS (CE) showed a negative charge for Pt and S species, while the PtAsS (VCA) showed a 

negative and a positive charges for Pt and As/S species. The calculated total density of states 
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(TDOS) for the bulk PtAsS and Pd2As showed a metallic behaviour since there was no band 

gap at the Fermi energy (EF). The PtAs2 model was observed as a semiconductor with a band 

gap of 0.104 eV. From the DOS, PtAs2 was found the most stable since it had less contribution 

of DOS at the EF, while PtAsS and Pd2As structures showed least stability due to highest DOS 

at the EF.  

The understanding of the aspects of surface stability and preferred surface cleavage were 

investigated starting from surface terminations and then slab thickness for (100), (110) and 

(111) surfaces of all mineral structures. We found that (100) surface was the most stable, 

displaying the lowest positive surface energy for all the PtAs2, PtAsS and Pd2As minerals and 

was considered as the working surface. The order of surface stability decreased as: (100) > 

(111) > (110) for PtAs2 and PtAsS (VCA and CE) mineral systems and (100) > (110) > (111) 

for Pd2As system. Interestingly we found that the surface energies of the PtAsS (VCA) were 

smaller than for PtAsS (CE), which indicated that the VCA was more stable than the CE. The 

(100) surface was the most dominant on the surface morphology as expressed by the 

morphologies for all the mineral structures. Analysis of the DOS of the most stable (100) 

surface for PtAs2, PtAsS and Pd2As, we found that sperrylite and palladoarsenide showed a 

metallic behaviour since there was no band gap observed at the EF, while PtAsS surface 

structures showed a semiconductor behaviour due to presence of band gaps of 0.142 eV and 

0.551 eV for PtAsS (CE) and PtAsS (VCA), respectively. The PtAsS (VCA) was found the 

most stable, while Pd2As was found the least stable. In addition, the intermediate stability was 

found for PtAsS (CE) and PtAs2 surface structures. These findings gave more insights on the 

stability of these minerals which may be applicable to their recovery. 
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CHAPTER 1 

1. Introduction 

In this dissertation, we reported the structural, elastic, mechanical, vibrational, electronic 

and surface properties of sperrylite (PtAs2), platarsite (PtAsS) and palladoarsenide (Pd2As) 

structures. In this introductory chapter, we review briefly from literature the previous 

theoretical and experimental studies and related methods that were used to study the platinum 

group minerals (PGM). Furthermore, the flotation process necessary for minerals separation 

were discussed. The structural properties of the sperrylite (PtAs2), platarsite (PtAsS) and 

palladoarsenide (Pd2As) minerals were reviewed, the rationale and objectives of this study were 

stated and finally, the outline of the study was given. 

1.1 General background 

The mineralogy of the ore and their stability plays an important role in understanding the 

floatability of the minerals. Platinum is usually found in different mineralogy and this is 

dependent on the geological area. There are two main minerals (sulphides and arsenides) that 

usually host the valuable minerals such as platinum (Pt) and palladium (Pd). The sulphide 

minerals have been found amiable to flotation, while the arsenides were indicated as hard to 

float, thus there is a need to find better way to float the arsenide minerals in order to increase 

their recovery. The greatest challenges associated with mineral processing industry are 

separating the valuable platinum group minerals (PGMs) from the worthless rock or other 

material (gangue ore) [1]. Majority of the world’s supply of platinum and palladium are within 

the four layered igneous intrusion such as Bushveld complex in South Africa, the Stillwater 

complex in USA, the Great Dyke in Zimbabwe and the Noril’sk-Talnakh complex in Russia 

[2]. In South Africa most PGMs are mined in Mogalakwena mine and Ivanplants Platreef mine 

in Mokopane of Limpopo province. The sperrylite, platarsite and palladoarsenide are mostly 

found in the Platreef Bushveld complex in South Africa, which is one of the leading countries 

with highest percentage of PGMs [2]. More than 75% of platinum and 35% of palladium in the 

world are produced in South Africa and they have originated in the ore bodies [3]. The primary 

platinum ores are mined from Merensky reef, Upper Group 2 (UG2) reef and Platreef [4], with 
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the Platreef containing the most complex ores, while the UG2 is complex due to the chromite 

in the reef. The platinum industry is challenging because Pt is extremely rare in the earth’s 

crust and the average value of PGMs deposits tend to be clustered at around an average of 75 

percent in the world’s, with the largest reserves in the Bushveld region of South Africa with 

the concentration of PGEs reaching as high as 1-2 ppm [5]. The PGMs are extracted from ores 

but, because of their high value, they are also recovered from industrial residues of variable 

composition. Most interestingly, the development of new technology for the extraction, 

recovery and separation of the PGMs is therefore of special interest. 

The PGMs are the most important source of platinum and palladium [6], with platinum   

extremely resistant to physical and chemical degradation and has exceptional catalytic 

properties. These properties have led to extensive utilization of jewellery, high temperature 

industrial and automobile markets. The PGEs are present as discrete in PGMs attached to the 

sulphides and arsenides or in solid solution [7]. In addition, the sulphur and arsenide mixed 

system platarsite as one of the platinum bearing mineral, possesses properties that makes it 

relevant in the extraction of platinum and is of great importance to the mining industry [8]. The 

platarsite mineral is associated with other sulphide minerals and valuable metals such as 

copper, silver and gold. Most importantly, the reactions that occur at the surfaces of PtAsS 

mineral play an important role in the release of S, As and Pt during oxidation.  

1.2 Literature review 

The oxidation of minerals is important in order to understand their behaviour during 

flotation; in particular platarsite which is easily oxidized at a low pH, similar to arsenopyrite 

[9]. The oxidation begins by physisorption of oxygen on the mineral surfaces forming a 

complex and the chemisorption forming peroxides. This process has been previously reported 

to depress sulphide minerals [10]. Furthermore, it has been indicated that the atmospheric 

oxidation of minerals either by weathering or aging involves physical and chemical adsorption 

of oxygen on the surface and this forms various peroxides and hydroxides [11]. As such, 

oxidation of PGMs, in particular arsenides minerals surface is of outstanding practical 

importance and requires theoretical fundamental understanding of surface chemistry during 

mineral flotation. 

PGMs are found in conjunction with a large number of base metal sulphides (BMS), 

including pentlandite (Fe,Ni)9S8 [12], which has been found to contain up to 12.1 wt % of Pd 

[13]. The complex mineralogy of PGMs and their various associations makes broad spectrum 
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recovery of PGMs challenging. The sperrylite is the most common PGM, which tends to be 

poorly recovered by flotation process. The adsorption of collectors can be promoted by low to 

moderate levels of oxidation. Previous studies have laid foundation in understanding the 

flotation behaviour of arsenides minerals [14]. 

Control of the chemistry occurring within the flotation process can allow enhanced recovery 

of a particular mineral over others. This is achieved by the addition of collector ligands, which 

are small organic molecules that adsorb preferentially on the surfaces of targeted minerals and 

modulate their surface hydrophobicity by presenting a chain aliphatic tail into solution, which 

in turn promotes mineral attachment to air bubble and improves recovery [1].  The OH– and 

H2O molecules are studied as they are both present in the flotation system at elevated pH as 

surface adsorption competitors for collector ligands. 

Although there is limited work on the PGMs recovery from computational methods, a similar 

structure of pyrite (FeS2) has been extensively investigated. This has been used to test a wide 

range of collectors that could be possibly used for the PGMs. Previously Hung et al. 

investigated the pyrite structure and laid a foundation on the surface cleavage and terminations 

of pyrite surfaces [15, 16]. Then later the adsorption of xanthate collectors were investigated 

on pyrite surface and gave useful findings on collector adsorption [15]. Later on Chen et al. 

also investigated the comparison adsorption of xanthate, dithiophosphate and dithiocarbamate 

on pyrite and galena [17]. Waterson et al. used computational method to investigate the binding 

dithio ligands on sperrylite, pentlandite and platinum surfaces [1].These investigation have 

shown that computational methods offer an effect tool to investigate collector adsorptions on 

mineral surfaces and design of collectors with less amount of time.  

In this study a computational simulation method was used to study the stability 

configurations of a bulk PtAs2, PtAsS and Pd2As and their surfaces. These will mainly be 

determined from structural, thermodynamic, elastic, mechanical, vibrational, electronic and 

surface stability (surface energies) of PtAs2, PtAsS and Pd2As. 

1.2.1 Flotation process 

The flotation of arsenides minerals ore remains a challenge due to the arsenides being hard 

to float, while those of sulphides are amiable to flotation. This is due to the formation of 

platinum and palladium hydroxide on the surfaces which create a barrier for collector 

attachment during flotation. Wang et al. reported, that platinum arsenides and sulphides are 

associated with pentlandite [18]. Froth flotation is one of the processes used to separate 



 
 

4 
 

valuable minerals from the gangue waste materials. This is a physicochemical process designed 

to separate one or more finely ground mineral particles from a complex mixture according to 

their wettability. It is widely used in industry to separate higher value minerals from the vast 

excess of gangue minerals [19, 20]. It has been reported that the hydrophobic character of a 

variety of base-metal sulphides were examined in the presence of ligands such as potassium 

ethyl xanthate [21]. It was also used in the PGM mining applied to the raw mineral ore feed 

after crushing and grinding processes. The flotation method is used in several processing 

industries and historically this was firstly used in the mining industries [22, 23]. This method 

is one of the most versatile and flexible of all mineral separation processes due to the fact that 

reasonable outcomes are fairly easy to obtain. However, the flotation processes are complex 

and thus a better understanding of these processes may lead to higher yields and less damage 

to the environment. An outstanding performance is achieved by a frequent monitoring of the 

process and the understanding of the mineral ore. Some of the variables that affect the operation 

and control of a flotation process are chemical components such as collectors, frothers, 

activators, depressants and pH modifiers together with the operation components such as 

mineralogy, particle size, pulp density and temperature [24]. 

Firstly, the chemical components affecting the flotation process are collectors. The 

collectors are small organic molecules designed to adsorb on the surface of the targeted 

minerals. They create a hydrophobic mineral and promote their attachment to the air bubbles. 

Collectors can be considered in terms of ionic and non-ionic.  Ionic collectors are weak acids, 

bases and salts consisting of a charged head group attached to a hydrocarbon with short chain. 

The charged head group adsorbs on the target mineral surface and presents the hydrophobic 

tail into solution. Non-ionic collectors contain molecules with head groups that are uncharged. 

The second chemical component are the frothers. These are compound which stabilizes in the 

dispersion of the air bubbles in the mixture of flotation [19] and helps in the formation of a 

stable surface froth. The other chemical component includes the modifiers such as pH control 

agents, activators and depressants. Modifiers are used to modify the chemistry of flotation pulp 

which do not collect minerals or support the froth phases. The pH control agents are used to 

maintain the optimum pH window for the particular flotation application under use. The range 

of pH for most flotation applications is between pH 7-11 because of instability of many species 

at lower pH. The second modifiers are activators which enhances the ability of a collector to 

adsorb onto a mineral surface. Lastly, the depressants, this attaches to the unwanted material 

and renders them hydrophilic and thus depresses to the tailings. 
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For froth flotation to be carried out, a number of steps have to be performed. Firstly, the 

grinding of the ore to fine enough material so that valuable mineral particles become liberated 

from the waste rock and the size range suitable to be floated are between 10 - 200 microns. 

Secondly, mixing the grinded ore with water to create a slurry, however; the ratio of water to 

solids is very important [25]. Thirdly, the conditions must be made favourable for the desired 

mineral particles to adhere to air bubbles; this is done by stage-adding of collectors. The 

collector should attach through its polar sulphur atoms to only valuable mineral particles so 

that water is repelled and air bubbles can become attached upon collision [24]. Lastly, a rising 

current must be created, this is done by blowing air into the flotation cell which creates air 

bubbles that acts like 'hot-air balloons' providing the necessary buoyancy to carry selected 

minerals to the pulp surface [24]. After all these results in formation of a mineralized froth on 

the surface of the ore pulp which is skimmed off from the flotation cell or vessel. A typical 

flotation cell and the processes that occur in it are presented in Figure 1.1. 

 

Figure 1.1: Schematic diagram of flotation cell [26]. 

The polar (ionic) sulphur atoms on the non-polar (hydrophobic) hydrocarbon thiol collector 

interact with the metals on the surface; surrounding the metals in a vertical orientation with the 

tails of the collectors being hydrophobic. This causes the mineral to adhere to the air bubble 

which causes the mineral to move to the pulp surface [25]. In order to understand the physical 

and chemical properties of the platinum and palladium mineral surfaces, it is necessary to know 

the properties of the bulk material; the former is merely a breach of the translational symmetry 

of the latter. 
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1.3  Structural properties 

Generally, a mineral is a solid, naturally occurring inorganic substances with a defined 

crystal structure which has been formed as a results of a geological processes [27]. In addition, 

a mineral species is defined mainly on the basis of its chemical composition and 

crystallographic properties. If a mineral is found with composition or crystallographic 

properties different from any existing mineral species, a possibility is that it may be a new 

mineral species [28]. Platinum is the most abundant element constituting the PGMs, mainly in 

the sulphides and arsenides minerals. Furthermore, palladium is known to be the succeeding 

most dominant PGE [29]. In the next section we give a brief discussion on platinum group 

minerals namely, sperrylite, platarsite and palladoarsenide in terms of their crystal system. 

1.3.1 Sperrylite (PtAs2) 

Sperrylite (PtAs2) crystalizes in the isometric system with the pyrite-type group structure. 

Interestingly, PtAs2 is the most common Pt bearing mineral in the world [13]. Sperrylite 

possess a space group of Pa-3 (#205) with lattice parameter of a = 5.967 Å [30]. Since PtAs2, 

FeS2 and CoAsS have the same total number of valence electrons per formula unit, one would 

expect the formation of a semiconductor gap in PtAs2 as it was observed in FeS2 and CoAsS 

minerals [31]. PtAs2 is commonly associated with base metal sulphides minerals, which are 

believed to have crystallized from magmatic sulphide melts [32]. Those includes pyrrhotite, 

pentlandite and chalcopyrite. However, sperrylite is thought to have formed by crystallization 

from a sulphide melt or by exsolution from sulphide minerals. Furthermore, the sperrylite is 

also formed by crystallization from silicate magma, where it is associated with oxide and 

silicate minerals [32]. 

There is only one kind of metal atom in the PtAs2 structure, that is Pt atom, which occupies 

four octahedral sites M(O) within the arsenic framework [33]. Note that the parameters in Table 

B1.1of the appendix B are for the un-relaxed PtAs2 structure. Sperrylite is formed by contact 

metamorphism and the grains are mostly anhedral but few euhedral grains could be 

encountered [34]. The grains are surrounded by later veins of pyrite. The bulk structure of 

PtAs2 consist of 12 atoms. The As1 forming a dimer are 4-coordinated and As2 which are 

linked arsenic are 3-coordinated (Figure 1.2). 
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Figure 1.2: The crystal structure of sperrylite (PtAs2). 
 

1.3.2 Platarsite (PtAsS) 

Platarsite (PtAsS) is an isometric diploidal gray mineral and is metallic. The mineral exist 

in nature and it is studied in different types of structures, the binary phase being the stable 

PtAsS as solid solution (PtAs2-xSx where x = 0-1%) which requires that arsenides and sulphurs 

occupies the same lattice position in the structure and the other phase of PtAsS is random atom 

configuration where As and S are evenly distributed in the crystal structure lattice. The crystal 

structure of PtAsS is also cubic with a space group of Pa-3 (#205) with lattice parameters a = 

5.428 Å [35], a hardness of 7.5 and a specific gravity of 8.0. For PtAsS mineral structure, there 

is also one kind of metal atom (Pt), which occupies one octahedral site M(O) and the tetrahedral 

site M(T) is occupied by the sulphur and arsenic atoms [33] as shown in Table B1.2 and B1.3 

of the appendix B.  

 

 

 

 

 

 

 

 

 

 

Figure 1.3: The crystal structures: (a) platarsite (CE) and (b) platarsite (VCA). 

(b) (a) 
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The As1 and S1 that forms a dimer are 4-coordinated and linked arsenic and sulphur are 3-

coordinated as shown in Figure 1.3. The bulk structure of PtAsS (CE and VCA) consist of 12 

atoms. The crystal structures of platarsite (CE and VCA) are shown above in Figure 1.3.  

1.3.3 Palladoarsenide (Pd2As) 

Palladoarsenide (Pd2As) is a monoclinic structure which usually in association occurs with 

chalcopyrite and occurs in the form of long, veinlet-like vermiform and irregular deposits [36]. 

The crystal structure of Pd2As has been refined in a space group of P-62m (#189) [37], where 

a = b = 6.650 Å and c = 3.583 Å. Refer to Table B1.4 of the appendix B, there are two kinds 

of metal atoms in the structure, which occupy three octahedral site M(O), and three of the 

tetrahedral sites M(T), within the arsenic framework [33]. The M(O) are coordinated to the 

face-capping arsenic, while the M(T) are coordinated to the linked and face-capping arsenic. 

The As(f) are 8-coordinated while the As(l) are 2-coordinated. Table B1.4 of the appendix B 

shows the un-relaxed parameters of Pd2As mineral. 

 

 

Figure 1.4: The crystal structure of palladoarsenide (Pd2As) mineral. 
 

 

1.4 Rationale, Aim and Objectives 

1.4.1 Rationale 

The project focused on the platinum group minerals, namely the sperrylite (PtAs2), platarsite 

(PtAsS) and palladoarsenide (Pd2As). The PGMs are predominantly found in the Platreef 

Bushveld Complex, and the most common are Pt and Pd which are found in the form of PtAs2, 
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PtAsS and Pd2As minerals. The stability from solid solution approach and cluster expansion 

approach for the PtAsS system were investigated using computational DFT method.  

The recent computational approaches and algorithms that have been developed provide 

alternative means to investigate the complex mineral surfaces at low cost and efficiency. These 

methods allow for investigation of flotation processes such as hydroxide adsorption, hydration 

and interaction of collectors on surfaces which are limited in literature computationally. The 

experimental techniques can be costly and presents a number of challenges in securing the 

desired reagents and running a large number of time-consuming and expensive tests. However, 

computational modelling is an attractive option to screen potential collector molecules using 

minimal time and resources prior to beginning full laboratory testing. Hence the study will 

generate structural, thermodynamic, elastic, mechanical, vibrational, electronic and surface 

stability of PtAs2, PtAsS and Pd2As. 

We introduce cluster system and cluster expansion formalism by reviewing applications of 

cluster expansion in computational material science. The stability will be conducted through 

heats of formation, elastic constants, phonon dispersion curves and density of states. In 

addition, an approach to surface calculations that includes generalized surface terminations, 

surface slab construction and surface energy convergence with respect to slab thickness were 

investigated. Along with describing slab creation and convergence, supercell calculations were 

reviewed and discussed. The surface properties will be investigated which will give better 

reactive properties of these mineral surfaces and to better understand the surface reaction for 

flotation and extraction that experiments might not easily accomplish. The PtAsS compound 

will be obtained through transformation from PtAs2 to solid solution approach and cluster 

expansion approach. The surface stability was investigated from the surface energies on 

different surface slab and termination. These are significant to distinguish the preference of 

surface cleavage for possible maximum recovery. 

1.4.2 Aim and Objectives 

The aim of the study is to investigate the stability of PtAs2, PtAsS and Pd2As minerals and 

their surfaces. 

The objectives of the study are to: 

i. determine the suitable cut-off energy and k-point mesh parameters for sperrylite, 

platarsite and palladoarsenide minerals, 
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ii. perform the full geometry optimisation of the bulk and surface structures, 

iii. investigate the solid solution structure using virtual crystal approximation (VCA), on 

PtAs2-xSx where x =0 -1.0%,  

iv. generate new stable system using cluster expansion for PtAsS, 

v. determine the PtAs2, PtAsS and Pd2As bulk structures stability from: lattice constants, 

heats of formation, elastic constants, phonon dispersions and density of states, 

vi. cleave the low index surfaces at different terminations and vary slab thickness, 

vii. determine the most stable surface termination that is less reactive from surface energy 

(working surface), 

viii. calculate electronic properties for the stable surfaces (working surface). 

1.5 Outline of the dissertation 

The dissertation gives the study of the structural, thermodynamic, elastic, mechanical, 

vibrational, electronic and surface properties of sperrylite (PtAs2), platarsite (PtAsS) and 

palladoarsenide (Pd2As) minerals, using ab-initio DFT method. In addition, the PtAsS cluster 

expansion was investigated for generation of new stable PtAsS system. The dissertation is 

divided into six chapters:  

Chapter 1 presented the general background based on the theory. The literature review, 

flotation process, the structural properties, rationale, the aim and objectives of this work are 

stated. 

Chapter 2 deals with the methods that have been used in the current study: DFT, plane-wave 

(PW) and projector-augmented-wave (PAW) pseudopotential methods, Vienna Ab-initio 

Simulation Package (VASP) code and Cambridge Serial Total Energy Package (CASTEP) 

code. Firstly, the chapter introduces various first principle techniques. Secondly, the DFT for 

calculating geometry optimization is described. Thirdly, approximation method such as LDA 

and GGA are described. Fourthly, the UNiversal CLuster Expansion (UNCLE), the plane-wave 

pseudopotential codes, VASP and CASTEP, surface preparations and energy calculations are 

presented. Lastly, theoretical background of calculated properties: heats of formation, 

elasticity, phonon dispersion curves and density of states. In addition, the charge population 

analysis and the cleaving of different surface terminations are described. 
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Chapter 3 is concerned with the discussion of the results of the bulk PtAs2, PtAsS and Pd2As 

systems. Firstly, cut-off energy and the number of k-points (convergence test) and then 

computational method details used. Secondly, the cluster expansion simulation using UNCLE 

code and structural properties (lattice parameters) and thermodynamic properties (heats of 

formation). Thirdly, elastic and mechanical properties (elastic constants and modulus. Lastly, 

the vibrational properties (phonon dispersions). 

Chapter 4 is concerned with the discussion of the surface modelling. Firstly, construction of 

the PtAs2, PtAsS and Pd2As mineral surface and surface k-point convergence. Secondly, 

surface computational method details and cleaving of the (100), (110) and (111) low Miller 

index planes and relaxations of different surface terminations are discussed. Thirdly, slab 

thickness determination and various layers are analysed and the analysis of working surfaces 

are discussed. Lastly, electronic properties (density of states) and the Bader charges are 

discussed. 

Chapter 5 gives the summary and conclusion. 

Lastly the bibliography which helps give insight to the analysis of the work is listed and 

papers presented in conferences are given in Appendices. 
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CHAPTER 2 

2. Methodology 

This chapter gives details of the methods of calculations employed in this study. 

Computational simulations investigates different structural, elastic, mechanical, vibrational, 

electronic and surface properties of materials theoretically. The approach has been used in solid 

state physics, chemistry and materials science, to predict the real situation by presenting 

physical systems as models of different systems. All calculations will be carried out using first 

principle quantum mechanical density functional theory (DFT) [38] to study structural, elastic, 

mechanical, vibrational, electronic and surface properties and model the structures of PtAs2, 

PtAsS (CE and VCA) and Pd2As. The theory solves Schrödinger equation and applies the 

plane-wave (PW) and projector-augmented-wave (PAW) pseudopotential methods. The plane-

wave and projector augmented wave pseudopotentials are necessary for performing full 

geometry optimisation of the structures. 

In the next section we discuss the quantum mechanical DFT for describing the many-body 

problem by approximation methods.  

2.1 Density functional theory (DFT) 

Density functional theory (DFT) is a computational quantum mechanical modelling method 

used to investigate the electronic structure of many-body systems, in particular atoms, 

molecules and condensed phases [39]. DFT can also be an approach for describing the ground 

state properties of metals, semiconductors, and insulators. DFT has become the most 

commonly used method of calculating accurately the physical properties of vast range 

materials. Within the DFT, the properties of a many electron system can be determined using 

functional, i.e. function of another function, which in this case is the spatially dependent 

electron density. These theory has been very popular for calculations since the 1970s [40]. It is 

used for calculations in solid state physics. 

Although DFT has its theoretical backgrounds in the Thomas-Fermi model, the theoretical 

basis were confirmed by the two Hohenberg-Kohn (H-K) theorems [41]. The first H-K theorem 

demonstrates that the ground state properties of a many-electron system are uniquely 

determined by an electron density that depends on only three spatial coordinates. This gives 
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the possibility for reducing the many-body problem of N electrons with 3N spatial coordinates 

to 3 spatial coordinates, through the use of functionals of the electron density. This theorem 

can be extended to the time-independent domain to develop time-dependent density functional 

theory, which can be used to describe excited states [41]. The first Hohenberg-Kohn theorem 

demonstrates that the density of any system determines all ground-state properties of the 

system, that is: 

                                                      E =  E[ρ],                                                                                 2.1 

where E is the ground state energy and ρ is the ground-state density of the system. 

The second H-K theorem shows that there exists a variational principle for the above energy 

density functional E[ρ]. If ρ' is not the ground state density of the above system, then: 

                                                      E [ρ’]  >  E[ρ],                                                                    2.2 

The second H-K theorem defines energy functional for the system and proves that the correct 

ground-state electron density minimizes this energy functional. Within the framework of Kohn-

Sham (K-S) DFT, the intractable many-body problem of interacting electrons in static 

potentials is reduced to a tractable problem of non-interacting electrons moving in an effective 

potential [42]. The effective potential includes the external potential and the effects of the 

Coulomb interactions between the electrons, that is the exchange and correlation interactions. 

Modelling the latter two interactions is impossible within K-S DFT. The LDA is based upon 

exact energy for a uniform electron gas, which can be obtained from the Thomas-Fermi model, 

and from fits to the correlation energy for a uniform electron gas. Non-interacting systems are 

relatively easy to solve as the wave function can be represented as a Slater determinant of 

orbitals [43]. 

The Kohn-Sham total energy functional for a set of doubly occupied electronic states can 

be written as: 

     E = {ψi} = 2∑ (
−ℏ

2m
)∇2ψid

3ri + ∫ Vion(r)n(r)d
3r +

e2

2
∫
n(r)n(r′)

|r−r′|
d3rd3r′ +

                            Exc[n(r)] + Eion({RI}),                                                                                           2.3   

 

and Eion is the Coulomb energy associated with interactions among the ions at positions {RI}, 

Vion is the static total electron-ion potential, ρ(r) is the electronic density given by: 

                                                         ρ(r) = 2 ∑ |ψi(r)|
2

i ,                                                       2.4   
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where EXC [n(r)] is the exchange-correlation functional. It is necessary to determine the set of 

wave functions ψi that minimizes the Kohn-Sham energy functional. These are given by the 

self-consistent solutions to the Kohn-Sham equations:  

                                             [
−ℏ

2m
∇2 + Vion(r) + VH(r) + Vxc(r)]ψi(r) = εiψi(r),           2.5     

  and ψi is the wave function of electronic state i, εi is the Kohn-Sham Eigen value and VH is 

the Hartree potential of the electrons [44]. The exchange-correlation as a function of the 

electron spin (up and down) density n(r) must be approximated within K-S DFT [41]. The 

ground state energy of the system can be written as:   

                                                              E0 =  minρ → N (F[ρ]  + ∫  ρ(r⃗) VNe dr⃗ ),                           2.6 

where F[ρ] is the universal function that contains the contributions of the kinetic energy, 

classical coulomb interaction and non-classical portion: 

                                              F [ρ] =  T [ρ] +  J [ρ] +  Encl [ρ]                                           2.7                                          

J [ρ] is known, then the expressions T[ρ] and Encl [ρ] has to be found. Thomas-Fermi model 

provides an example of density functional theory. Then its performance is bad because of the 

poor approximation of kinetic energy. Kohn and Sham suggested to calculate the kinetic energy 

of the non-interacting system with the same density as the interacting [42] one using the 

equation below: 

     TS =  −
1

2
 ⟨∑ 〈ψi〉N

i |∇2|ψi⟩    and    ρs (r⃗) =  ∑ ∑ |ψi (r⃗, s)|s
N
i 2 ρ(r⃗)         2.8 

Hence, ψi is the non-interacting orbitals of the system. TS is not equal to the system of the true 

kinetic energy. According to Kohn and Sham, the separation of the functional F[ρ] was 

introduced: 

                                             F [ρ]  =  Ts [ρ]  +  J [ρ]  +  Exc [ρ],                                       2.9 

Exc is the exchange correlation energy, which can be defined by, 

                                                  Exc [ρ] =  (T [ρ] −  TS [ρ]) + (Eee [ρ] +  J [ρ])          2.10 

2.1.1 Local density approximation 

The local density approximation (LDA) is the basis of all approximate exchange-correlation 

functionals. The functional only depend on the local density at a given point, while the GGA 

depends on the local density and its gradient [45]. Within the LDA, electrons move on a 
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positive background charge distribution. The center of this model contain uniform electron gas. 

The LDA well describe the ground state properties (lattice constants and bulk moduli, etc.). 

The Hohenberg-Kohn theorem provides some motivation for using approximate methods to 

describe the exchange-correlation energy as a function of the electron density. LDA is the 

simplest exchange-correlation used for describing the energy of electronic system [44]. 

According to Dirac, the exchange functional was introduced to the slater exchange. The central 

idea of LDA is the assumption that we can write EXC in the following form of: 

                         E  [ρ] XC
LDA = ∫ρ(r⃗)εxc(ρ(r⃗)) dr⃗                                          2.11 

Hence,   εxcρ(r⃗)) is the exchange-correlation energy per particle of a uniform electron gas 

of density  ρ(r⃗) and the probability ρ(r⃗) weights with the energy per particle showing an 

electron at the position. The quantity εxcρ(r⃗))  can be further split into exchange and the 

contributions of correlations: 

                                                        εxcρ(r⃗))  = εxcρ(r⃗)) + εc ρ(r⃗))                                        2.12  

 The local density approximation is a first-principle approach in the sense that the quantum 

mechanical problem is solved without any arbitrary or system dependent parameters [46]. The 

LDA assumes that the exchange-correlation energy functional is purely local. 

2.1.2 Generalized gradient approximations 

The GGA Modify K-S energy partitioning to obtain a non-local Hamiltonian but it is still 

local [47]. The first logic step to go the LDA is by supplementing the density with the gradient 

of charge density information, ∇ ρ(r⃗) to account for non-homogeneity of true electron density. 

Then the exchange-correlation energy termed generalized gradient approximation can be 

written as: 

                                                 E  [ρα,ρβ] XC
GGA = ∫ f(ρα,ρβ, ∇ρα, ∇ρβ)dr⃗    2.13  

Hybrid functional was successfully introduced by Alex Becke in 1993 as to improve the results 

within the exchange functional GGA: 

                                                            E  XC
hyb

=  αE  X
KS + (1 −α)E   ,XC

GGA                                                   2.14  

where E  X
KS  is the exchange calculated with the wave function KS, E  XC

GGA is an appropriate 

GGA, and α is a fitting parameter [48]. The exchange-correlation energy for the generalized 
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gradient approximation improves upon the local spin density approximations (LSDA) 

description of solids and atoms. It improve total energies and structural energy differences and 

it expands and weakens the bonds [47]. The functions of GGA are accurate and give very good 

results for molecular geometries and ground-state energies and are expressed in terms of 

Perdew-Wang, they are potentially more accurate than the GGA functional and meta-GGA 

functions [49]. Hybrid Meta GGA, hybrid and double functional are other important DFT 

functionals. GGA-PBE is one of the important exchange-correlation functional for calculating 

solids [50]. 

2.1.3 Projector augmented wave method 

This work employs the projector augmented wave (PAW) method within the framework of 

DFT as implemented in the CASTEP and VASP codes that has been shown to yield reliable 

results for the structural, electronic and surface properties of various solids. The PAW method 

is successful and has been used effectively; and in many ways functions like pseudopotentials. 

The method has a strong relationship with the ultrasoft pseudopotentials, but it also allows the 

full wave functions including the core electron wave functions to be calculated. In this method, 

the full wavefunctions are transformed onto auxiliary wavefunctions. The auxiliary functions 

can be expanded relatively easily in a plane wave basis, while the full wavefunctions are 

augmented with atomic wavefunctions. It assumes the frozen-core approximation but is 

significantly more transferable than pseudopotentials [44]. 

2.2 Plane-wave pseudo potential method 

The plane-wave pseudopotential technique is a good method used to calculate with accuracy 

the variational self-consistent solution to the density functional theory. It is applicable in large 

systems that are subjected to 3D periodic boundary conditions. In this method the wave 

function is expanded in terms of plane-wave basis and giving a good pseudopotential 

representation of the ions in the crystal. 

2.2.1 Plane-wave basis 

The use of plane wave basis set offers a number of advantages, including the simplicity of 

the basis function in which there is no preconceptions considering the form of the solution, the 

absence of basis set superposition errors and the ability to efficiently calculate the forces on 

the atoms [51]. It requires the expansion of electronic wave function of the system. The plane-
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wave pseudopotential method is a reliable tool to study the properties of material. A good 

description of a plane-wave basis method is by use of Bloch’s theorem [52] which simply 

allows electronic wave functions to be expanded in terms of the plane wave. The expression of 

electronic wave functions for periodic solids and the problem such as atoms and surfaces 

according to Bloch’s theorem can be as follows: 

                                                       ψ𝑖(r) = e
[ik.r]Fi(r)                                                           2.15   

This allows us to expand the crystal wave functions in terms of plane waves Fi(r), written as: 

Fi(r) =∑Ci,Ge
[iG.r]

G⃗

,                                                      2.16 

where G is the reciprocal lattice vectors of the periodic cell. Then each electronic wave function 

can be written as follows: 

ψki(r) =∑Ci,K+G e
[i(k+g).r]

G

,                                       2.17 

where Ci,K+G are the coefficients of plane waves and depend entirely on the specific kinetic 

energy, 

(
ℏ2

2m
) |K + Gc|

2.                                                              2.18 

The parameter above controls the convergence of expansion by selecting the cut-off of the 

kinetic energy. The plane-wave basis set is restricted to a sphere in reciprocal space shown in 

terms of energy cut-off, Ecut and for all values of G, the kinetic energies are less than or equal 

to a particular cut-off energy as follows: 

(
ℏ2

2m
) |K + Gc|

2 ≤ Ecut                                                 2.19 

Energy cut-off is chosen by increasing its magnitude until the total energy is converged to 

require accuracy [53]. When the plane wave number is increased, one can describe more rapidly 

varying features and an infinitely large number of basis set could simply be achieved. Finite 

bases set are obtained when finite cut-off energy is introduced to the discrete plane-wave basis 

set. To avoid errors in the computation of the total energy; cut-off energy should be increased 

until the calculated energy has converged. Denser set of k-points must be used to reduce errors 

and ensure good convergence. 
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2.2.2 Pseudopotential method 

The pseudopotential method is an effective potential method constructed to replace the 

atomic all-electron potential such that core states are eliminated and the valence electrons 

described by pseudo-wave function. The important feature of valence electron moving through 

a crystal including a relativistic effects are described weak pseudopotential that replace the 

electron core and the attractive coulomb potential inside the ionic core [54]. The pseudo-

valence electron and the pseudo-ion cores replaces the original solid. The pseudo electron have 

a weaker potential inside the core region but experiences same potential outside the core region 

as the original electron. The ionic potential (Z/r), valence wave function (ψv), the 

corresponding pseudopotential Vpseudo and pseudo wave function (ψpseudo) are shown 

indicated in Figure 2.1 [44]. The utilization of the pseudopotential approximation method had 

an advantage, since it allows the electronic wave function to expand using a smaller number of 

a plane-wave basis states. 

 

Figure 2.1: Schematic illustration of a wave in the coulomb all-electron potential of the 

nucleus (blue dashes lines) and the pseudopotential (red solid lines). The pseudo-wave 

function, the real and the potentials match the radius rc above [44]. 

 

Although Bloch’s theorem states that the electronic wave function can be expanded using a 

discrete set of plane waves, a plane-wave basis set is usually very poorly suited to expanding 

electronic wave functions because a very large number of plane waves are needed to expand 

the tightly bound core orbitals and to follow the rapid oscillations of the wave function and the 
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valence electrons in the core region. It is well known that most physical properties of solids are 

dependent on the valence electrons to a much greater extent than on the core electrons. 

The pseudopotential approximations exploits this by removing the core electrons and by 

replacing them and the strong ionic potential by a weaker pseudopotential that acts on a set of 

pseudo wave functions. An ionic potential, valence wave function and the corresponding 

pseudopotential and pseudo wave function are illustrated schematically in Figure 2.1. The 

valence wave functions oscillate rapidly in the region occupied by the core electrons due to the 

strong ionic potential in this region. These oscillations maintain the orthogonality between the 

core wave functions and the valence wave functions, which is required by the exclusion 

principle. The pseudopotential is constructed ideally, so that its scattering properties or phase 

shifts for the pseudo wave functions are identical to the scattering properties of the ion and the 

core electrons for the valence wave functions, but in such a way that the pseudo wave functions 

have no radial nodes in the core region. 

In the core region, the total phase shift produced by the ion and the core electrons will be 

greater by π, for each node that the valence functions had in the core region, than the phase 

shift produced by the ion and the valence electrons. Outside the core region, the two potentials 

are identical and the scattering from the two potentials is indistinguishable. The phase shift 

produced by the ion core is different for each angular momentum component of the valence 

wave function, and so the scattering from the pseudopotential must be angular momentum 

dependent. 

The most general form of pseudopotential is: 

VNL =∑|lm >

lm

Vi < lm|                                              2.20 

where |lm> and  the <lm| are the spherical harmonics and Vi is the pseudopotential for 

angular momentum l, acting on the electronic wave function with this operator decomposes the 

wave function into spherical harmonics, each of which is then multiplied by the relevant 

pseudopotential Vi. Local pseudopotential uses the same potential for all the components of 

angular momentum.  

The plane-wave calculation uses the ultrasoft pseudopotential introduced by Vanderbilt [55] 

and the norm-conserving pseudopotentials. The pseudo-wave functions are allowed to be soft 

within the core region in this scheme. In this report we use the ultrasoft pseudopotential (USP) 

for the total energy calculations with in the CASTEP code [56] and norm-conserving non-local 

pseudopotentials using VASP code [57]. 
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The final building block in terms of plane wave basis sets is atomic pseudopotentials. 

However, chemical bonding occurs from the overlap of the outer valence electrons between 

atoms. Core electrons (those which are not actively involved in bonding) are chemically inert, 

however as they are electrons in their own right they require modelling. In fact, due to their 

relative proximity to the nucleus, core electrons are actually more expensive to model than 

valence electrons as their kinetic energies are much higher, and so they require a higher kinetic 

energy cut-off. The solution to this problem is to remove electrons altogether and replace them 

with a potential which stimulates their effect on the valence electrons. The pseudopotential 

must recreate an all-electron model beyond a particular cut-off distance (rcut, the distance cut-

off from the atomic core defining the core/valence divide), but within that radius the 

pseudopotential has smooth, continuous character in contrast to the rapidly oscillating character 

of an all-electron basis set. Similarly the periodic potential, V, (felt only by the core electrons 

within rcut) experiences an exponential decay approaching the nucleus. This is costly to model 

and so is replaced by a smooth function. These concepts are depicted in Figure 2.1. This work 

makes an extensive use of ultrasoft pseudopotentials as proposed by Vanderbilt [55]. These 

pseudopotentials adopt a large value for rcut, thus leaving fewer, lower energy electrons in the 

valence region to be modelled by plane waves which thus have the benefit of requiring a much 

lower kinetic energy cut-off than older (e.g. low rcut norm-conserving pseudopotentials [58]). 

The one electron Schrodinger equation is replaced by pseudopotential equation as follows: 

                                                 
P2

2m
+ Vpseudo(r)ψpseudo(r) = εψpseudo(r),                         2.21 

where ψpseudo(r) is the pseudo wave function and Vpseudo(r) is the exact pseudopotential as 

presented in Figure 2.1. 

2.2.3 Ultrasoft Pseudopotential 

Ultrasoft pseudopotential (USP) covers a wide range of atoms including the transition 

metals. In 1990, Vanderbilt developed a pseudopotential known as ultrasoft pseudopotential. 

Many of the modern pseudopotential calculations uses the generalisation of the Kleinman-

Bylander [55]. The approach is a radical departure from norm-conserving pseudopotentials, 

since ultrasoft pseudopotential attain much smoother pseudo wavefunctions. In this approach, 

the pseudo wavefunctions are required to be equal to all electron wavefunctions outside the 

radius, as with the norm-conserving pseudopotentials, but inside the radius are allowed to be 

as soft as possible. Again the norm conserving constraint is removed, but this also introduces 



 
 

21 
 

some complications. However, the ultrasoft pseudopotential still be able to reduce the plane 

cut-off needed in calculations, particularly since large values of radius can be used in their 

scheme. 

The complications that results are two-fold. First of all, since the pseudo wavefunctions are 

equal to all-electron wavefunctions (and have the same norm) in the interstitial, but have a 

different norm inside the topological complexity they are necessarily not normalised. Secondly, 

the pseudo charge density is not obtained by computing ∑𝜑∗𝜑 as with norm-conserving 

pseudopotential, this will lead to the incorrect total charge. A third, but less important 

complications is that, by relating the norm-conservation, the resulting pseudopotentials can 

become less transferrable.  However, Vanderbilt pseudopotentials were proposed for use in 

large scale calculations, for which the costs of generating pseudopotentials is negligible as 

compared to the cost of the calculations [55]. The electron density is subdivided into a smooth 

part that extends throughout the unit cell and a hard part localised in the core region. The 

ultrasoft pseudopotential have advantage over the norm-conserving pseudopotential.                                                                                                                                                                                          

2.3 K-points sampling 

Electronic states are allowed at asset of k-points determined by the boundary conditions that 

apply to the bulk solid. The density of allowed k-points is proportional to the volume of the 

solid. The infinite numbers of electrons in the solid are accounted for by an infinite number of 

k-points and only a finite number of electronic states are occupied at each k-point. 

The Bloch theorem changes the problem of calculating an infinite number of electronic 

wavefunctions to one of calculating a finite number of k-points. The occupied states at each k-

point contribute to the electronic potential in the bulk solid so that in principle an infinite 

number of calculations are needed to compute this potential. Furthermore, the electronic 

wavefunctions at k-points that are very close are identical. Hence it is possible to represent the 

electronic wavefunctions over a region of k space by the wavefunctions at a single k-point. In 

this case the electronic states at only a finite number of k-points are required to calculate the 

electronic potential and hence determine the total energy of the solid. 

Methods have been devised for obtaining very accurate approximations to the electronic 

potential from a filled electronic band by calculating the electronic wavefunctions at special 

sets of k-points. The two most common methods are those of Chadi and Cohen [59] and 

Monkhorst and Pack [60]. Using these methods, the electronic potential and the total energy of 

an insulator can be obtained by calculating the electronic states at a very small number of k-
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points. A denser set of k-points are required to calculate the electronic potential and the total 

energy of a metallic system in order to define the Fermi surface precisely. 

However, the computational costs of performing a very dense sampling of k space increase 

linearly with the number of k-points in the Brillouin zone (BZ). Density functional codes 

approximate these k space integrals with a finite sampling of k-points. Special k-points 

schemes have been developed to use the fewest possible k-points for a given accuracy, thereby 

reducing the computational cost. The most commonly used scheme is that of Monkhorst and 

Pack [60]. 

2.4 Virtual crystal approximation approach 

The virtual crystal approximation (VCA) approach is a tractable way of studying 

configurationally disordered systems and the potentials which represents atoms of two or more 

elements that are averaged into a composite atomic potential. In addition, this approach deals 

with disorder in first principle calculations implemented within CASTEP code. This approach 

has the advantage that a single configuration with smaller unit cell represents the disordered 

system. Due to the different local environment of the virtual atom, some properties may not be 

reproduced [61]. The material properties of solid-solutions and alloys have been widely studied 

in both computational and experimental approach. Specifically, ferroelectric ceramics 

correspond to a typical material class for which most of the realistic applications are 

implemented by solid solutions.  

However, there exists two ways such as the supercell and virtual crystal approximation 

approach with regard to the advantages and shortcomings to treat such material systems within 

first principle methods. The former can give more correct results but requires much of 

computational resources compared with the latter. It is genuine that the effectiveness of the 

calculation is connected with the reality that the supercell may hold many unit cells compared 

with the primitive unit cell of the VCA method. In the year 2000, several modern VCA 

approaches were developed within their own advantages and shortcomings. Moreover, the 

main two issues are considered; capability of treating the heterovalent atoms and accuracy of 

the calculation. VCA method originated from tight binding methods by replacing atoms with 

effective atoms and choosing the parameterization to return alloy properties. The advantage is 

the simplicity but it is not sufficiently accurate in some cases. 
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2.4.1 Ramer and Rapper VCA approach 

The reason of the incorrectness is mixing of only the potentials. Ramer and rapper developed 

more accurate VCA approaches through performing the averaging at the level of atomic 

calculation, where the averaging of eigenvalues of valence orbitals [61], Coulomb nuclear 

potentials, core charge densities and wave functions are performed.  

2.4.2 Bellaiche and Vanderbilt VCA approach 

 The weighted averaging method of Bellaiche and Vanderbilt [62] gives another capability 

to realize effective virtual crystal approximation approach. The basic ideas of the viable VCA 

implementation for the DFT methods can be expressed as: 

                                           𝑉𝑒𝑥𝑡(𝑟, 𝑟
′) =  ∑ ∑ 𝜔′∞𝑖 𝑣𝑝𝑠

𝛼  ( 𝑟 − 𝑅𝐼𝛼 .𝑟
′
− 𝑅𝐼𝛼),                        2.22 

where, the total external potential Vext is the sum of the non-local potentials of each atomic 

species, α, taken with the weights, ω, of the components atoms in the mixture atom. 

Interestingly, this approach can be used to study any composition in a solid solution [62]. Its 

advantages are the ability to treat heterovalent systems and to apply all kinds of first principles 

pseudo potentials. Furthermore, this method can be considered also as a kind of simple mixing 

of the pseudopotentials in norm-conserving type, though the additional averaging process is 

performed in the case of the ultrasoft pseudopotential. 

2.5 UNiversal CLuster-Expansion 

In order to minimize the sensitivity of the cluster expansion (CE) to the user choices, and to 

make cluster expansion applicable beyond simple bulk binary systems, a new program package 

under the name UNiversal CLuster Expansion (UNCLE) [63] has been developed by the group 

of S. Muller, at the Technical University of Harburg-Hamburg. In addition, cluster expansion 

is a method that describes the energy of a system as a function of occupation variables for a 

lattice position [64]. The UNCLE code is able to perform a complete CE fit using a genetic 

algorithm. It also predict the ground states of systems containing up to three and more elements. 

The cluster expansion method constructs an Ising-like Hamiltonian for the energies of different 

atomic configurations. Moreover, structures with negative heats of formation (∆Hf) are 

thermodynamically stable (miscible constituents), while all structures with positive ∆Hf are 

thermodynamically unstable (miscibility gap), they need phase separation. The energy of the 
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structures close to the ground state line are most accurate and ground state structures can be 

efficiently and reliably identified. In this study, the cluster expansion technique was 

investigated for the system platarsite (PtAsS) to generate new stable systems. 

2.5.1 Miscible constituents 

A system has miscible constituents, if all structures have negative Δ𝐻f and all the ordered 

structures are thermodynamically stable. However, structures with energies close to the ground 

states, that is those with the lowest Δ𝐻f at a given concentration, are the most important ones 

and the cluster expansion should be most accurate for those structures. To accomplish this, the 

structures predicted by the cluster expansion to be more favourable and are not yet part of the 

training set is added to the training set. This is done until no new structures are predicted by 

the cluster expansion to be more favourable (with a lower Δ𝐻f) than those already included in 

the training set. At this point the cluster expansion has converged. From all structures 

considered by the cluster expansion the thermodynamically stable ones have been identified. 

2.5.2 Miscibility gap 

If the system has miscibility gap, there are no stable ordered structures that exist apart from 

the two pure phases and all structures are of equal importance to the cluster expansion. 

Therefore, the selection process of structures to be added to the training set has to improve the 

quality of the cluster expansion for all structures considered, irrespective of their formation 

energies Δ𝐻f. To determine how good (or bad) the energies of the structures are predicted by 

the cluster expansion the stochastic nature of the genetic algorithm is used. CE approach was 

performed using the PtAs2 as our initial starting point and the sulphur atom was added at the 

same position as arsenic atom. The energy of all considered structures are then predicted by 

these multiple 𝐽’s and a standard deviation of the predicted energies is evaluated. Structures 

with the highest standard deviation are those whose description by the cluster expansion is the 

worst. However, these are added iteratively to the training set. 

2.6 Plane-wave pseudo potential codes 

In this dissertation we have employed two plane wave pseudopotential codes i.e. VASP and 

CASTEP codes. The VASP code has been used to determine the equilibrium lattice parameters, 

the phonon dispersion, the elastic constants, the heats of formation and the density of states for 

PtAs2, PtAsS (crystal structure and cluster expansion) and Pd2As structures. The same code 
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was used to determine the surface properties for all the systems. In addition, CASTEP code 

was used to investigate the same properties for the PtAsS solid solution structure since VASP 

code cannot handle disordered systems. All the results computed will be presented in the next 

chapters. 

2.6.1 VASP implementation 

The Vienna Ab-initio Simulation Package (VASP) [57] is a leading electronic structure code 

for solids, surfaces and interfaces. VASP also performs ab-initio quantum mechanical 

molecular dynamics (MD) using Vanderbilt pseudopotentials or projector augmented wave 

(PAW) method and a plane wave basis set. The interaction between ions and electrons is 

described using ultrasoft Vanderbilt pseudopotentials (US-PP) or the projector augmented 

wave method [65]. The methodology behind this is DFT, but the codes allows the use of post-

DFT corrections such as the hybrid functionals mixed with DFT and Hartree-Fock exchange, 

many-body perturbation theory and dynamical electronic correlations within the random phase 

approximation [66].  

The techniques also allow a considerable reduction of the necessary number of plane waves 

per one atom for transition metals and the elements in the first row. Forces and stresses can be 

easily calculated with VASP and used to relax atoms into their instantaneous ground state. The 

PAW method, developed by Blöchl [65], is a very powerful tool for performing electronic 

structure calculations within the framework of density functional theory [41, 42], combining 

some of the best features of pseudopotential and all-electron approaches. VASP uses efficient 

matrix diagonalization schemes and an efficient Pulay/Broyden charge density mixing, these 

techniques avoid all problems occurring in the original Car-Parinello method, based on the 

simultaneous integration of electronic and ionic equations of motion. 

The structural relaxation, structural properties, elastic and mechanical properties, 

vibrational properties, electronic properties and surface properties for the PtAs2, PtAsS (CE) 

and Pd2As bulk structures were calculated self consistently using DFT within GGA functional. 

The electronic wave functions were expanded in a plane-wave basis set with periodic boundary 

conditions.  

2.6.2 CASTEP implementation 

The Cambridge Serial Total Energy Package (CASTEP) [56] is a first principles quantum 

mechanical code that explores the properties of crystals and surfaces. Within density functional 
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formalism it can be used to simulate wide range of materials that include surfaces, crystalline 

solids, molecules, liquids and amorphous materials. The CASTEP code was originally 

developed by Payne and Co-workers in the late 1980’s and early 1990’s [44]. The code became 

widely used for electronic structure calculations. In addition, the new CASTEP code has been 

designed for parallel computers, allowing much larger problems to be approached. 

The code is capable of calculating the physical properties of materials including: 

calculations of total energies, forces, stresses and elastic constants; electronic structures: 

electronic charge densities, orbitals, electrostatic potentials, band structures, total and partial 

density of states, Mulliken population analysis and optical properties; geometry optimisation: 

optimisation of atomic position and unit cell parameters, either constrained or unconstrained 

and under external pressure and stresses; transition states: the LST/QST methods are utilized 

when finding transition states and exchange correlation: the well-known LDA and GGA 

functionals are included (such as PW91, PBE and RPBE functionals), furthermore non-local 

functionals such as the weighted density approximation (WDA), Hartree-Fock and screened 

exchange are also available and many other physical properties of materials. 

 Ab-initio quantum-mechanical density functional theory [38] calculations were performed 

to investigate the stability of the structural, thermodynamic, elastic, mechanical and electronic 

properties of PtAsS (VCA) structure. However, the program is capable of performing the 

single-point energy calculations as well as the geometry optimization calculations.  

2.9 Theoretical background of calculated properties 

2.9.1 Heats of formation 

The heat of formation (∆Hf) is defined as the heat released or absorbed during the formation 

of a pure substance from its element. ∆Hf provide a fundamental understanding on stabilities 

of compound phase diagram construction. The standard enthalpy of formation or standard heat 

of formation of a compound is the change in enthalpy that accompanies the formation of a mole 

of a substance in its standard state from its composite elements in their standard states. The 

equilibrium total energies of the discharge products arsenic and sulphur are calculated using 

CASTEP and VASP. The heats of formation will be used for predicting the stability trend of 

PtAs2, PtAsS and Pd2As structures. They will be calculated as follows: 

                                         ∆H𝑓(𝑃𝑡𝐴𝑠𝑆) =
1

𝑁
[𝐸𝑃𝑡𝐴𝑠𝑆 − (𝐸𝑃𝑡 + 𝐸𝐴𝑠 + 𝐸𝑆)]                       2.23 
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                                         ∆H𝑓(𝑃𝑡𝐴𝑠2) =
1

𝑁
[𝐸𝑃𝑡𝐴𝑠2 − (𝐸𝑃𝑡 + 2𝐸𝐴𝑠)]                                2.24 

 

where, N is the total number of atoms in the unit cell, 𝐸𝑃𝑡𝐴𝑠𝑆 and 𝐸𝑃𝑡𝐴𝑠2 are the total energy of 

the system and 𝐸𝑃𝑡, 𝐸𝐴𝑠 and 𝐸𝑆 are the elemental individual total energies of platinum, arsenic 

and sulphur, respectively.  The same will be done for Pd2As structure. The heats of formation 

results will be discussed in the chapter 3. 

2.9.2 Elasticity 

The elastic constants (Cij) consist of some of the paramount information that can be easily 

obtained from the ground state total energy calculations from the viewpoint of material physics. 

A given crystal structure cannot exist in a stable or metastable phase unless its elastic constants 

obey certain relationships. However, elastic constants contain some of the vital information 

regarding the strength of the materials against an extremely applied strain and act as stability 

criteria to study mechanical stability structural transformation [67, 68]. Elastic properties are 

more important in understanding solid state physical, chemical and mechanical properties. 

They relate to diverse fundamentals solid state properties including, equation of states, 

interatomic potentials, phonon spectra and lattice constants.  

Interestingly, elastic constants of a material describes its response to the external applied 

strain required to maintain a deformation and provides useful information of the strength of 

material characterised by the bulk modulus (B), Young’s modulus (E), isotropic shear modulus 

(G), tetragonal shear modulus (C’), Poisson’s ratio (v) and shear anisotropy factor (A). All 

elastic constants can be determined by direct computation since first principle calculations that 

uses periodic boundary conditions assumes the occurrence of a single crystal. The elastic 

constants calculations were inaugurated by Born [69]. The criteria of Born stability are a set of 

condition on the Cij that are related to the second order change in the internal energy of a crystal 

under formation. Furthermore, it was later revealed that the ranges of Born stability are 

sensitive to choice of coordinates [70]. 

Born conditions were found effective only for unstressed system and not effective for the 

stressed system [71]. Barron and Klein indicated that the normal definition of the elastic 

constants derived from Helmholtz free energy cannot be directly applied to the study of the 

stress-strain relationship of a stressed system [72]. However, the elastic constants cannot be 

used as stability criteria for a stressed system as demonstrated by Wang and Co-workers [71]. 
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They suggested using the elastic stiffness coefficients as stability criteria for isotropic stress. 

For anisotropic stress, they obtained a more general form from path-dependent finite 

displacements. The stability criteria is framed in terms of elastic stiffness coefficients which 

govern the proper relations of stress and strain at finite strain by considering both the internal 

and the external work done during the deformation process [73]. This is an indication that the 

stability analysis can predominantly be determined by an appropriate generalization of the 

zero-stress elastic constants which valid for arbitrary stress. 

Bulk modulus [74] is one of the important parameters that characterise the physical property 

of a material system, since it also measures the degree of stiffness or the energy required to 

produce a given volume deformation. Shear modulus [75] describes the resistance to shape 

change caused by shearing force and the Young’s modulus reflects the resistance of materials 

against uniaxial tensions [76]. The bulk modulus depicts the bonding characters in the material 

and it is used as an indicator for the strength and hardness of materials [77]. In addition, Pugh 

introduced the ratio of bulk to shear modulus (B/G) of a material. The ratio express that the 

shear and bulk moduli signifies the resistance to deformation of plastic and a resistance to 

fracture. A high B/G value is associated with ductility, whereas a low B/G value represents 

brittleness. The value separating brittleness and ductility is 1.75 [78]. 

2.9.2.1 Definition of elastic constants 

To determine elastic constants of a crystal, a deformation of the unit cell is created by 

changing the Bravais lattice vectors R = (a, b, c) of the undisturbed unit cell R′ = (a’, b’, c’) 

using a strain matrix e 

                         𝑅′ = 𝑅
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                                                                2.25                   

                                                                                                           

The deformation leads to a change of the total energy of the crystal 

                                            𝑈 =
𝐸𝑡𝑜𝑡   −  𝐸0

𝑉0
=
1

2
∑∑𝐶𝑖𝑗𝑒𝑖𝑒𝑗

6

𝑗=1

6

𝑖=1

                                                   2.26 

where E0 is the total energy of the unstrained lattice, V0 is the volume of the undistorted cell 

and the Cij are the elements of the elastic constant matrix with a notation that follows standard 
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convention. Both i and j run from 1 to 6 in the sequence {xx, yy, zz, yz, xz, xy}. The tensor of 

elasticity has 36 elements, the elastic constants, but maximally 21 of these are independent. 

2.9.2.2 Calculations of elastic constants 

The simplest case by far is the cubic system where there are only three independent 

constants, C11, C12 and C44. We use this case to illustrate the manner in which the stiffness 

matrix elements may be determined from strain fields of the form (2.25). If the applied strain 

is exx = e with all other ei equal to zero, the energy change 𝑈 = 𝐶11𝑒
2/ 2is. This allows a unique 

determination of C11. If 𝑒𝑦𝑧 = 𝑒𝑧𝑦 = 𝑒/2, with all other strain components zero, then  𝑈 =

𝐶44𝑒
2/ 2 and we have an independent determination of C44. The bulk modulus, B, is the 

response to a uniform compression so applying the strain field 𝑒𝑥𝑥 = 𝑒𝑦𝑦 = 𝑒𝑧𝑧 = 𝑒 allows the 

computation of B  via the relation 𝑈 = 𝐵𝑒2/ 2. Similarly, the shear modulus can be calculated 

by using the strain field 𝑒𝑧𝑧 = 𝑒; 𝑒𝑥𝑥 = 𝑒𝑦𝑦 = −𝑒/2, whereupon 𝑈 = 3𝐶′𝑒2/2. Finally, the 

off-diagonal stiffness matrix element C12 can be calculated using one or other of the relations. 

 

                                                                𝐵 =
1

2
(𝐶11 + 2𝐶12)                                                                   2.27 

 

                                                                𝐶′ =
1

2
(𝐶11 − 𝐶12)                                                                     2.28 

Using both of these relations provides a useful independent check on the accuracy of the 

computation. A symmetry-general formulation of the calculation of elastic constants from total 

energy calculations is given by Le Page and Saxe [79]. 

2.9.2.3 Elastic constant stability conditions 

The elastic properties of single crystals are described by the elements Cij of the elasticity 

tensor. For each material, both stress and strain have three tensile and three shear components, 

giving six components in total. According to the theory of elasticity, a 6 x 6 symmetry matrix 

with 36 elements is thus needed to describe the relationship between stress and strain. The 

structural symmetry of crystal makes some of the matrix elements equal and others fixed at 

zero. 

For the cubic, tetragonal, orthorhombic and monoclinic crystals, there are three (C11, C12, 

C44), six (C11, C12, C13, C33, C44, C66), nine (C11, C22, C33, C12, C13, C23, C44, C55, C66) and thirteen 

(C11, C22, C33, C12, C13, C23, C44, C55, C66, C15, C25, C35, C46) independent elastic constants. 

Applying two kinds of strains (ε1 and ε4) can give stresses relating to these three elastic 
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coefficients, yielding an efficient method for obtaining elastic constants for the cubic system. 

This method has been successfully used to study the elastic properties of a range of materials 

including metallic systems [80]. The mechanical stability criteria of cubic systems as outlined 

elsewhere [81] and are given as follows: 

                                    𝐶44 > 0, 𝐶11 > |𝐶12| and 𝐶11 + 2𝐶12 > 0,                                      2.29 

C11, C12 and C44 are the only three independent elastic constants. Based on these three 

independent single crystal elastic constants of a cubic crystal, the elastic moduli are determined 

using the following expressions: 

                                         𝐵 = (
𝐶11 + 2𝐶12

3
) , 𝐶′ =

𝐶11 − 𝐶12
2

, 𝐴 =
2𝐶44

𝐶11 − 𝐶12
,                         2.30 

where B is the bulk modulus, C′ tetragonal shear modulus and anisotropic factor A. It is 

acknowledged that the bulk modulus B is a measure of resistance to volume changed by applied 

pressure, whereas the elastic anisotropy A has an important implication in engineering science 

since it is highly correlated with the possibility of inducing micro-cracks in materials [82]. If 

the material is completely isotropic, the value of A will be 1, while values smaller or larger 

than 1 measure the degree of elastic anisotropy. The positive C′ indicates the mechanical 

stability of the crystal, otherwise unstable. The corresponding mechanical stability criteria for 

tetragonal crystal read as 

                        (𝐶11 − 𝐶12) > 0, (𝐶11 + 𝐶33 − 2𝐶13) > 0, (2𝐶11 + 𝐶33 + 2𝐶12 + 4𝐶13) > 0, 

                                             𝐶11 > 0, 𝐶33 > 0, 𝐶44 > 0, 𝐶66 > 0,                                              2.31 

While the requirement for mechanical stability in an orthorhombic crystal leads to the 

following restrictions on the elastic constants [83]: 

                          𝐶11 + 𝐶12 + 𝐶33 + 2𝐶12 + 2𝐶13 + 2𝐶23 > 0, 𝐶22 + 𝐶33 − 2𝐶13 > 0, 

                                            𝐶11 > 0, 𝐶22 > 0, 𝐶33 > 0 𝐶44 > 0, 𝐶55 > 0, 𝐶66 > 0,             2.32 

A monoclinic phase is considered stable if the following mechanical stability criteria are 

satisfied. On the other hand, the Born mechanical stability criteria for monoclinic system [84] 

is given by: 

         [𝐶11 + 𝐶22 + 𝐶33 + 2(𝐶12 + 𝐶13 + 𝐶23)] > 0, (𝐶33𝐶55 − 𝐶35
2 ) > 0, (𝐶44𝐶66 − 𝐶46

2 ) > 0, 
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            (𝐶22 + 𝐶33 − 2𝐶23) > 0, [𝐶22(𝐶33𝐶55 − 𝐶35
2 ) + 2𝐶23𝐶25𝐶35 − 𝐶23

2 𝐶55 − 𝐶25
2 𝐶33] > 0,  

{2[𝐶15𝐶25(𝐶33𝐶12 − 𝐶13𝐶23) + 𝐶15𝐶35(𝐶22𝐶13 − 𝐶12𝐶23) + 𝐶25𝐶35(𝐶11𝐶23 − 𝐶12𝐶13)] −

[𝐶15
2 (𝐶22𝐶33 − 𝐶23

2 ) + 𝐶25
2 (𝐶11𝐶33 − 𝐶13

2 ) + 𝐶35
2 (𝐶11𝐶22 − 𝐶12

2 )] + 𝑔𝐶55} > 0,                  2.33   

                   𝑔 = 𝐶11(𝐶22𝐶33 − 𝐶11𝐶23
2 − 𝐶22𝐶13

2 − 𝐶33𝐶12
2 + 2𝐶12𝐶13𝐶23, [85] 

The calculated elastic constants for monoclinic phase allow us to obtain their macroscopic 

mechanical parameters, namely isotropic bulk (B) and shear moduli (G) in the Voigt (V) 

approximation. The Young’s modulus and a Poisson’s ratio of a crystal can be given from the 

following equations: 

                                              𝐸 =
9𝐵𝐺

3𝐵 + 𝐺
, 𝑣 =

1

2
[
𝐵𝑥 − (2/3)𝐺𝑥
𝐵𝑋 − (1/3)𝐺𝑥

]                                         2.34 

 

                                            𝛥𝑃 =
𝐶33
𝐶11

, 𝛥𝑆1 =
𝐶11 − 𝐶13
2𝐶44

, 𝛥𝑆2 =
2𝐶44

𝐶11 − 𝐶12
                2.35 

                               

               𝐵𝑉 =
1

9
(𝐶11 + 𝐶22 + 𝐶33) +

2

9
(𝐶12 + 𝐶23 + 𝐶13)        

    𝐺𝑉 =
1

15
(𝐶11 + 𝐶22 + 𝐶33) −

1

15
(𝐶12 + 𝐶23 + 𝐶13) +

1

5
(𝐶44 + 𝐶55 + 𝐶66)                    2.36 

      
1

𝐵𝑅
= (𝑆11 + 𝑆22 + 𝑆33) + 2(𝑆12 + 𝑆23 + 𝑆13)    

    
1

𝐺𝑅
=
4

15
(𝑆11 + 𝑆22 + 𝑆33) −

4

15
(𝑆12 + 𝑆23 + 𝑆13) +

1

5
(𝑆44 + 𝑆55 + 𝑆66)    

Where BV, BR, GV and GR are Voigt bulk modulus, Reuss bulk modulus, Voigt shear modulus 

and Reuss shear modulus respectively. However Sij is the elastic compliance constants and can 

be obtained from elastic constants. 

The Hill approach is approximated as the average of the Voigt and Reuss. The bulk modulus 

and shear modulus of materials with Voigt-Reuss-Hill approximation [86] can be expressed as: 

                                         𝐵𝐻 =
1

2
(𝐵𝑅 + 𝐵𝑉) and 𝐺𝐻 =

1

2
(𝐺𝑅 + 𝐺𝑉)                                           2.37 

For an elastically isotropic monoclinic crystal, the three anisotropy ratios (A1, A2 and A3) 

must be simultaneously equal to unity [87]. Many low-symmetry crystals exhibits a high degree 
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of elastic anisotropy [88]. The shear anisotropic factors in different crystallographic planes 

provide a measure of the degree of elastic anisotropy of atomic bonding in different planes. 

The shear anisotropic factors for non-cubic phases are given by: 

                                                             𝐴1 = 
4𝐶44

𝐶11 + 𝐶33 − 2𝐶13
,                                                   2.38      

                                                             𝐴2 = 
4𝐶55

𝐶22 + 𝐶33 − 2𝐶23
,                                                   2.39      

                                                             𝐴3 = 
4𝐶66

𝐶11 + 𝐶22 − 2𝐶12
,                                                   2.40      

for the (100), (010) and (001) planes respectively. The elastic anisotropy A has an important 

implication in engineering science since it is highly correlated with the possibility of inducing 

microcracks in materials [89]. If the material is completely isotropic, the value of A will be 

equal to unity, whereas values smaller or larger than 1 measure the degree of elastic anisotropy. 

The Young’s modulus E is defined as the ratio between stress and strain and is used to 

provide a measure of the stiffness of the solid, i.e. the larger the value of E, the stiffer the 

material. Poisson’s ratio (v) refers to the ratio of transverse contraction strain to longitudinal 

extension strain during stretching, thus reflecting the stability of the crystal against shear. 

Hence, the higher the Poisson’s ratio is, the better ductility the crystalline metal has at low 

temperatures. However, it is acknowledged that the bulk modulus B is a measure of resistance 

to volume changed by applied pressure. Thus the macroscopically measurable quantities 

obtained for materials are the shear modulus, which represents the isotropic response for 

shearing, Young’s modulus corresponding to the stress-strain ratio in the case of tensile forces, 

bulk modulus, Poisson’s ratio and the anisotropy constant. These are all important for 

technological and engineering applications. 

2.9.3 Phonon dispersion curves 

The phonon dispersion curves are defined as the k wave vector dependence of the 

frequencies (k, j) of the normal modes for all branches of and selected directions in the crystal. 

They have an essential role in several physical properties of condensed matter physics and 

these include mechanical stability, electrical conductivity and thermal conductivity. These 

properties indicate an excited state in the quantum mechanical quantization of the vibration 

modes of the elastic structures of interacting particles. The phonon dispersion behaviour 
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branches reflects specific features of the crystal structure and the interatomic interactions. 

However, these gives the most comprehensive and detailed information about the dynamical 

properties of a crystals.  

The phonon vibrations frequencies are calculated as follows [90, 91]: 

                                                  = 𝑣𝑠𝑞                                                                                        2.41 

where 𝑣𝑠 is the speed and q is the wave-vector of the lattice vibrations. 

In crystal where there are two or more types of atoms, two types of modes of vibrations are 

displayed i.e. optical and acoustic modes. Optical phonons arise from the vibration out of phase 

between neighbouring atoms within the unit cell, whereas acoustic phonons gives rise to in 

phase vibrations. In addition, the acoustic modes have zero frequencies at q = 0 (the center of 

the Brillouin zone (), while the optical modes have non-zero. The acoustic and optical modes 

split into longitudinal and transverse modes. They are abbreviated as longitudinal acoustic 

(LA), transverse acoustic (TA), longitudinal optical (LO) and transverse optical (TO). 

A linear relationship between frequency and long wavelengths phonon wave-vector is 

displayed in the acoustic mode. Positive vibrational frequencies indicate stability of the system, 

while negative vibrational frequencies (soft modes) shows mechanical instability.  

2.9.4 Density of states 

The density of states (DOS) of a system describes the number of states per interval of energy 

at each energy level that are available. The DOS indicates how densely packed quantum states 

are in a system. Integration of DOS over a range of energy yields a number of states; 

N(E) = ∫ g(E)dE                                                         2.42
∆E

E

 

where N (E) denotes the carrier density and g(E)dE represents the number of states between E 

and dE. The density of states permits integration to be done with respect to the electron energy 

instead of the integration over the Brillouin zone. It is often used for quick visual analysis of 

the electronic structure. Characteristics such as the width of the valence band, the energy gap 

in insulators and the number of intensity of the main features are helpful in interpreting 

experimental spectroscopic data. The most accurate methods used are based on linear or 

quadratic interpolations of band energies between the reference points in the Brillouin zone. 

The most popular and reliable technique is based on the tetrahedron interpolation. The most 
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popular and reliable technique is based on the tetrahedron interpolation. However, it is not well 

suited to the Monkhorst-Pack grid of special points [60]. VASP code uses a simplified linear 

interpolation scheme. The method is based on linear interpolation in parallelepipeds formed by 

the points of the Monkhorst-Pack set, which is followed by the histogram sampling of the 

resultant set of band energies. 

In the study of complex minerals there can be a formation of pseudo gap in the electronic 

density of states at the Fermi energy (EF) and the relation of this feature to the stability of the 

particular structure. Pierce et al. [92] and Matsuda et al. [93] have suggested the role of pseudo 

gap in the structural stability by the experimental observation of very high resistivity in 

structurally well-ordered stable quasicrystals. Several contexts have proposed the direct 

relations between the formation of a pseudo gap and stability of the structure [93]. Literature 

reveals that densities of states are also essential in determining the stability trend of structures 

with same composition with respect to the EF. The theory suggests that the element with highest 

density of states around the EF is considered the least stable, while the element with the lowest 

density of states is the most stable [94, 95]. Moreover, the element with greater contribution at 

the EF is the most active or reactive element. 

2.10 Charge population analysis 

The properties of chemicals and materials are often described in terms of charge transfer 

between atoms and the presence of ionic charges or electric multipoles on atoms or molecules. 

Theoretical calculations producing estimates of the electronic charge distribution in the system 

can, in principle, provide this type of information but it is not clear how to extract it. However, 

the atomic charges in molecules or solids are not observables and therefore not defined by 

quantum mechanical theory. The output of quantum mechanical calculations is a continuous 

electronic charge density and it is not clear how one should partition electrons amongst 

fragments of the system such as atoms or molecules. 

Many different schemes have been proposed, some are based on electronic orbitals (such as 

Mulliken Population Analysis) and others based on only the charge density such as Bader’s 

atoms in molecules method. The Mulliken analysis is the most commonly used orbital based 

method. It can be applied when basis functions centered on atoms are used in the calculation 

of the electronic wave functions of the system. The charge associated with the basis functions 

centered on a particular atom is then assigned to that atom. This can be a fast and useful way 

of determining partial charges on atoms but it has the major drawback that the analysis is 
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sensitive to the choice of basis set. A different approach is to focus on the charge density that 

has been proposed by Bader [96].  

The space is then divided into regions by surfaces that run through minima in the charge 

density. More precisely, at a point on a dividing surface the gradient of the electron density has 

no component normal to the surface. The regions bounded by such dividing surfaces are 

referred as Bader regions. Because this analysis is based solely on the charge density, it is rather 

insensitive to the basis set used in the electron wave function calculation and can be used to 

analyse plane wave based calculations as well as calculations using atomic basis functions. In 

addition, a common complaint about Bader analysis is the computational effort and complexity 

of the algorithms that have been developed [97, 98]. A commonly used implementations [96, 

99, 100] involve finding the critical points of the charge density where ∆ρ = 0, followed by the 

construction of the zero-flux surfaces which intersect these points and then integration of the 

electronic density within each region. Several refinements have been made since the initial 

implementation of the method [96, 97, 101]. Most recently Malcolm and Popelier [102] have 

used dynamic grid techniques introduced by Silvi and co-workers [103, 104] in order to 

effectively treat complicated bonding topology. The current implementations of Bader’s 

analysis are based upon a grid of charge density values where only steepest ascent trajectories 

confined to the grid points are used to identify the Bader regions [105, 106, 107]. 

2.11 Cleaving of surfaces 

The modelling of mineral surfaces is a process of exposing surface which is similar to 

liberation of particles experimentally during ore or mineral grinding. The surface modelling 

was achieved by generating two dimensional slabs of a mineral within a three dimensional unit 

cell [108]. This was done by cleaving the mineral bulk along the low Miller index plane to 

generate a bulk-termination surface which extends indefinitely in two dimensions whilst 

simultaneously extending a vacuum layer along the third dimension, as presented in Figure 2.2. 

Moreover, this emulated the crushing of the rock ore, where different surfaces are exposed. In 

principle, different minerals prefers to cleave or break a certain planes which are 

thermodynamically stable, in particular those with interplanar spacing and larger bonds [108]. 

Gibbs [109] developed the concept that the equilibrium structure of a crystal will possess 

the minimum possible excess energy for a given volume, and as volume and surface area are 

inseparably linked, the crystal face with the lowest surface energy will predominate. However, 
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finding the surface structure with the lowest surface energy for each metal or mineral under 

study offers the best chance of defining a broadly representative working surface. 

Consideration must be given to the large number of both Miller index planes and, within 

each plane, all possible bulk terminations that exist. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: A simplified representation of the surface cleavage methodology for PtAs2. 

 

Due to the periodic boundaries, and as indicated in Figure 2.2, both top and bottom faces of 

the mineral slab are bulk termination and hence exposed surfaces. The geometry of the top 

surface is determined by which Miller index plane and surface terminations is chosen. The 

bottom surface is determined by the slab depth. Slab depth is an important factor when 

modelling surfaces in this way, as shallow slabs may be a poor mimic of a solid-state interface 

system [108]. However, the principal concern is that the slab depth is sufficient such that both 

surfaces act as if above an effectively infinite amount of the bulk solid (i.e. the surfaces do not 

interact with one another through the solid). Ideally to achieve this a large slab depth would be 

used but the computational cost of modelling very deep slabs was avoided. 

The initial trial in surfaces cleavage was to obtain the most preferred surfaces termination 

that possesses no dipole. If a surface termination possesses a dipole it may be corrected by 

reconstruction. There are different types of surfaces as discussed by Tasker [1] as shown in 

Figure 2.3. It is shown that Type I surface has a repeat unit cell where all the anions and cations 

in the same plane are in stoichiometric ratio. Type II surface has a stacking sequence of charged 

Surface unit cell Bulk 

Miller index cleavage plane 

Slab/s 

Vacuum 

Bulk 

Surface 

Bulk unit cell 
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planes, but the repeat unit consists of several planes, which when considered together have no 

dipole moment perpendicular to the surface. Type III surface are made up of a stack of 

alternately charged planes and produce a dipole moment perpendicular to the surface if cut 

between any planes. In nature these surfaces are stabilized by defects and/or adsorbed species. 

To be able to simulate Type III the dipole needs to be removed, hence the reconstructed Type 

III surface. 

 

Figure 2.3: Representation of the different types of surfaces. 
 

The geometry of the top termination surface was determined by which miller index plane 

and surface termination was chosen, the bottom termination surface was determined by the slab 

depth. The bottom termination of the slab must be symmetric to the top termination for a stable 

surface slab. It is clear that the most stable surface with no dipole are stoichiometric (must be 

bulk equivalent) and symmetric (both top and bottom must be mirror image). 

The stability of the surface terminations and slab thickness can be measured computationally 

by calculating the surface energy, a measure of the excess energy per unit area induced by 

cleaving a bulk model, where a small, positive number indicates a stable surface as shown in 

Equation 2.4.3. 

                                                    Esurface = (
1

2A
) [Eslab − n(Ebulk)],                                2.4.3 

where E(slab) is the energy of the surface, E(bulk)/atom is the energy of the bulk per total number 

of atoms in the bulk and n(slab) is the number of atoms of the surface and A is the surface area. 
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This formula is used in order to account for the number of atoms in the surface and normalize 

it to the bulk.  

Lastly, in order to reduce the search for most stable surfaces to a computationally tractable 

problem, whilst also ensuring that the most likely surfaces were surveyed, only the bulk 

terminations on the three low miller index (100), (110) and (111) were considered unless 

literature suggested otherwise. 
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CHAPTER 3 

3. Structural, thermodynamic, mechanical and 

vibrational properties of PtAs2, PtAsS and Pd2As 

bulk structures 

In this chapter, we discussed DFT results for the bulk structures PtAs2, PtAsS and Pd2As. 

For each mineral studied, a single point energy calculation was performed, followed by a 

geometry optimization of all the structures. We firstly discuss the Universal CLuster Expansion 

of Pt-As-S system and a detailed description on PtAsS virtual crystal approximation (VCA) 

approach. Secondly, we discuss the convergence test variation of the total energy cut-off and 

the k-points sampling. Thirdly, the structural and thermodynamic properties such as lattice 

parameters and heats of formation will be evaluated and discussed. Furthermore, the 

equilibrium cell volume together with the heats of formation will be correlated. We also 

investigate the elastic, mechanical and vibrational properties of PtAs2, PtAsS (CE) and Pd2As 

minerals using VASP code. The elastic and mechanical properties of PtAsS (VCA) were 

investigated using CASTEP code. Lastly, we have evaluated the elastic and mechanical 

properties and discussed the phonon dispersion curves along high symmetry directions within 

the first Brillouin zone direction and partial phonon density of states. 

3.1 Cluster expansion approach and binary ground state 

diagram of Pt-As-S model 

For the cluster expansion method we started by searching for the ground state of the PtAsS 

system of the DFT energy formation. Our initial starting point was PtAs2, where the sulphur 

atoms were added at the same position as arsenic atoms. The X, Y and Z parameters were also 

fitted to be equivalent for both As and S atoms. The binary ground state diagram (Figure 3.1) 

showed that all structures have negative heats of formation (∆Hf), hence they are 

thermodynamically stable (miscible constituents). Moreover, the cluster expansion showed a 

greater stability at 50/50 (x = 0.5) percentage, where arsenic and sulphur atoms are equally 

distributed in the structure with formed S-As dimer bond at the centre. We found that all 

structures between PtS2 and PtAs2, i.e. phases of PtAsS are more stable than PtS2 and PtAs2 
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and it was therefore conceivable that a number of phases can form. Moreover, some 

stoichiometries have multiple DFT inputs and only three stable structures of PtS2, PtAsS and 

PtAs2 were shown in Figure 3.1. When no new ground states structures were found by the 

cluster expansion, the system was considered to have converged. The final DFT ground state 

line, CE predictions and DFT input are shown in Figure 3.1. 

 

Figure 3.1: The cluster expansion binary ground state diagram obtained in determining the 

lowest ground states of Pt-As-S system. 
 

The two structures, PtAs2 and sulphur (Figure 3.2) were used to generate the stable PtAsS 

phases from the cluster expansion method as shown by the binary ground state diagram in 

Figure 3.1 and the obtained model for PtAsS is shown in Figure 3.2(c). 

 

                                        + 
 

   

  

Figure 3.2: Cluster expansion approach on sperrylite with addition of sulphur atom at the 

same position of arsenic atom: (a) representing PtAs2 model, (b) sulphur atom and (c) 

representing PtAsS model. 
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The cluster expansion model of the Pt-As-S sites remains inactive since the occupancy was 

unchanged (default). According to the ground state enthalpies of formation as derived by 

density functional theory and cluster expansion, the predicted structure shows formation 

enthalpies which are near the ground state line. However, Table B1.5 presented in appendix B 

showed 102 stable structures generated by cluster expansion. The system has successfully 

converged since there are no new structures on the last iteration after running for only 20 

iterations (Table 3.1). 

The actual structures and predicted values might be different in our calculation because of 

the stochastic process involved (see Table B1.5 in appendix B). However, the values on the 

second column gave the concentration of PtS2 on the first line, PtAsS from line 2 to line 101 

and PtAs2 on the last line (line 102). The third column shows the vacancy of all the generated 

stable structures. The energy difference (4th column, D(E_DFT, E_CE)) compares the DFT 

input energy (3rd column, E_DFT) with the predicted energy (5th column, E_CE). Interestingly, 

the heat of formations for DFT (6th column, DHf_DFT) and the predicted values (7th column, 

DHf_CE) were negative and thus this indicated that structures with arsenic and sulphur 

vacancies are energetically favourable than pure PtAsS model. 

Table 3.1: The progress of iterative procedure listing stable structures consisting of many pure 

phases. 

 

 

 

 

 

 

 

 

 

 

 

  

Considering Table 3.1, the values will differ in the calculation due to stochastic process 

involved in the CE. From the last line (20th iteration), we can discern that the final cluster 

expansion contains 102 structures in the training set and has a Cross Validation Score (CVS) 

of 1.2 meV/pos which is very good for the system. The following column stayed empty 

indicating that the optimized scheme never switched to the miscibility gap mode. Hence, the 

system have stable structures. 
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Table 3.2: The thermodynamic stable structures that summarizes the ground state line. 

 

 

In Table 3.2 we show the pure phases (Ce1 and Ce22) that possessed the Pa-3 space group, 

while the mixed phase of PtAsS (Pt4As4S4) has P2_13 and P3 space group. We have considered 

the PtAsS (Pt4As4S4) phase with P3 space group as it had a CVS of 1.2 meV/pos and thus 

preferred phases. Besides the pure phases Ce1 and Ce22, a total of two stable structures are 

shown to exist on the convex ground state line within the studied concentration range. This 

revealed that the structure of PtAsS model is quite complex with various stable compounds 

existing at different arsenic and sulphur concentrations. 

3.2 Virtual crystal approximation approach PtAsS bulk 

model 

The virtual crystal approximation within the CASTEP code is a tractable way of studying 

configurationally disordered systems. Our initial starting point was sperrylite whereby we have 

added the sulphur atom and mixed at the same lattice position of arsenic with both atoms having 

the same composition of 50% each. In this case two atoms that are sulphur and arsenic occupied 

the same lattice position as shown in Figure 3.3. The probabilistic occupations of each lattice 

site were selected as: 50% of As, 50% of S.  

 

 

 

 

 

 

 

  

Figure 3.3: Virtual crystal approximation approach showing: (a) sperrylite bulk model and (b) 

PtAsS (VCA) model. 
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3.3 Convergence of the cut-off energy and k-points 

sampling 

The cut-off energy and the k-points mesh are necessary as they determine the number of 

plane-waves required to perform the calculations. The accurate ground state total energy of 

PtAs2, PtAsS and Pd2As models were obtained by performing the convergence test on the cut-

off energy with respect to the k-points mesh. 

3.3.1 Cut-off energy variations 

We employed the projector-augmented-wave plane-wave pseudopotential methods within 

the VASP code [57] for PtAs2, PtAsS (CE) and Pd2As models and CASTEP code [56] for 

PtAsS (VCA).  

 

Figure 3.4: Total energy against kinetic energy cut-off: (a) cubic PtAs2, (b) cubic PtAsS 

(CE), (c) cubic PtAsS (VCA) and (d) monoclinic Pd2As structures. 

Before any properties of a system are calculated, the cut-off energy must be varied in order to 

ensure good accuracy of the total energy. Structural optimization energy calculations were 

performed at different cut-off energy within the GGA-PBE [50] until a constant minimum 

energy is reached to within 0.01 eV/Å. The cut-off energy for the PtAs2 PtAsS and Pd2As 

(a) (b) 

(d) (c) 
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models were fully determined from a plot of a total energy against cut-off energy as shown in 

Figure 3.4. The plot showed almost zero slope starting from 450 eV for PtAs2 and PtAsS, 

indicating that the variation of the total energy cut-off was negligible at these points (Figure 

3.4a, Figure 3.4b and Figure 3.4c). The PtAs2 and PtAsS (CE) curve smooths out from 450 eV 

with no additional drop. There does appear to be a small slope from 550 - 600 eV for PtAsS 

(VCA) as shown in Figure 3.4c. We considered the zero slopes between 450 and 550 eV to 

avoid computational costs. Furthermore, for the Pd2As system, same zero slope was noted from 

400 eV (Figure 3.4d). Thus the cut-off energy of 500 eV for PtAs2 and PtAsS and 450 eV for 

Pd2As were considered sufficient to converge the total energy of the bulk models. 

3.3.2 k-points sampling 

The number of k-points to be used in the plane-wave pseudopotentials must also be varied 

in addition to the cut-off energy. Several methods have been suggested for special sampling of 

k-points in the Brillouin zone [50, 60, 110, 111]. This method helps in k-points sampling in the 

Brillouin zone and ensure accuracy of the total energy.  

 

Figure 3.5: Total energy against k-points mesh: (a) cubic PtAs2, (b) cubic PtAsS (CE), (c) 

cubic PtAsS (VCA) and (d) monoclinic Pd2As structures. 
 

(a) 

(c) 

(b) 

(d) 
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The Monkhorst-Pack scheme [60] was employed to select the optimal set of k-points such that 

the greatest possible accuracy is achieved from the number of k-points used. Different number 

of k-points were varied from 2x2x2 to 11x11x11 for cubic PtAs2 and PtAsS structures (Figure 

3.5a, Figure 3.5b and Figure 3.5c) and from 2x2x4 to 11x11x22 for monoclinic Pd2As structure 

(Figure 3.5d) until the total energy change is negligible and converged to within 1.0 meV. A 

k-point grid of 6x6x6 for the bulk PtAs2 and PtAsS was chosen, while for Pd2As model, a k-

point mesh of 7x7x14 were used at fixed 500 eV and 450 eV cut-off energy, respectively (as 

found in section 3.3.1). 

3.4 Structural and thermodynamics properties 

In this section we investigated the structural properties such as lattice constants, heats of 

formation and cell volume for PtAs2, PtAsS and Pd2As structures. These properties play an 

important role in determining the structural stability of the system. They were determined by 

performing geometry optimization on the structure, allowing the cell volume and lattice to 

change. Furthermore, this was done also to allow the system to reach the ground state before 

any properties can be calculated. The equilibrium lattice constants were determined from the 

relaxed structures. Moreover, the experimental results of the lattice constants were also listed. 

In the next section we present, the lattice constants, cell volume and heats of formation of all 

the studied structures. 

3.4.1 Bulk structure optimization 

We have employed the VASP and CASTEP DFT codes using the plane-wave with PBE 

[50] exchange-correlation functional. The plane-wave basis set with an energy cut-off of 500 

eV was set, which demonstrated convergence to within 0.2 meV/atom for both codes. The 

projector augmented wave pseudopotentials [65] were used and the electron configurations 

considered are: [Xe]4f145d96s1 for Pt, [Kr]4d10 for Pd, [Ar]3d104s24p3 for As and [Ne]3s23p4 

for S atom. The smearing used was first order Methfessel-Paxton with a width of 0.2 eV and 

k-point grid of 6x6x6 for the bulk were generated using the Monkhorst-Pack [60] scheme. The 

size of the k-point grid used were not greater than 0.05 Å-1. The convergence tolerances for 

force, ionic displacement and energy were 0.05 eVÅ-1, 0.001 Å and 0.01 meV/atom, 

respectively. 



 
 

46 
 

 

Figure 3.6: The relaxed bulk structures: (a) PtAs2, (b) PtAsS (CE), (c) PtAsS (VCA) and (d) 

Pd2As models. 

 

Table 3.3 displayed the calculated lattice parameters with experimental values for 

comparisons and their cell volume. We found that, the computed and experimental lattice 

parameters yielded an acceptable agreement between them. The full structural relaxation was 

performed for PtAs2 and PtAsS structures. The experimental study of the lattice parameters 

were reported for comparison. Our calculations result gave lattice structural parameters of a = 

b = c = 6.061 Å, whereas the experimental parameter were a = b = c = 5.970 Å [112]. This 

showed good agreement between calculated and experimental lattice parameters values. The 

calculated lattice parameters were observed larger than the experimental lattice parameters as 

shown in Table 3.3. The equilibrium cell volume of 18.552 Å3/atom was also calculated for 

sperrylite. The bulk structural properties of PtAsS (CE) model gave the most stable at 50/50 % 

of arsenic and sulphur. The calculated bulk parameters were found as a = b = c = 6.024 Å and 

experimental value of a = b = c = 5.790 Å [35], which also showed good agreement. However, 

the larger value suggested that GGA-PBE overestimated the lattice parameters. The optimized 

lattice parameters for PtAsS (VCA) bulk structure were calculated to be a = b = c = 5.895 Å 

and the experimental value was a = b = c = 5.790 Å [35]. This gave a good agreement between 

(b) (a) 

(c) (d) 
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the calculated and the experimental values, which shows that the VCA is able to predict the 

lattice form of PtAsS than the cluster expansion. In addition, the structures were found to have 

an equilibrium cell volume of 18.219 Å3/atom for PtAsS (CE) and 17.076 Å3/atom for PtAsS 

(VCA).  

 

Table 3.3: The equilibrium calculated and experimental lattice parameters and cell 

volumes for PtAs2, PtAsS (CE), PtAsS (VCA) and Pd2As structures. 
 
 

 

Structure 

Lattice Parameters (Å)  

Volume (Å3)/atom Calculated Experimental 

PtAs2 a = 6.061 a = 5.970 [112] 18.552 

PtAsS (CE) a = 6.024 a = 5.790 [35] 18.219 

PtAsS (VCA) a = 5.895 a = 5.790 [35] 17.076 

Pd2As 

a = 6.737 

c = 3.664 

a = 6.620 [113] 

c = 3.600 [113] 
16.004 

 

The full structural relaxation of Pd2As was also performed. The experimental lattice 

parameters were also reported for comparison. Our calculations results gave lattice parameters 

of a = b = 6.737 Å and c = 3.664 Å, whereas the experimental lattice parameters were found to 

be a = b = 6.620 Å and c = 3.600 Å. This showed that there is a good agreement between the 

calculated and experimental lattice parameters, which suggested that computational density 

functional theory was able to predict the lattice parameters of Pd2As. The calculations predicted 

an equilibrium cell volume of 16.004 Å3/atom. Figure 3.6 presented the bulk structures of 

PtAs2, PtAsS (CE), PtAsS (VCA) and Pd2As. 

3.4.2 Heats of formation 

The heats of formation (∆Hf), which is the enthalpy change when one mole of a compound 

is formed from the elements in their stable states are extremely important in determining 

structural stabilities of different crystal structures. The lower the heat of formation the more 

stable is the structure. Furthermore, the heats of formation were calculated by subtracting the 

elemental total energies from that of the compound. For example, PtAsS can be calculated as: 

                                ∆H𝑓(𝑃𝑡𝐴𝑠𝑆) =
1

𝑁
[𝐸𝑃𝑡𝐴𝑠𝑆 − (𝐸𝑃𝑡 + 𝐸𝐴𝑠 + 𝐸𝑆)]                                   3.1 

where, N is the total number of atoms in the unit cell, E is the total energy of the system 

PtAsS. 𝐸𝑃𝑡, 𝐸𝐴𝑠 and 𝐸𝑆 are the elemental total energies of platinum, arsenic and sulphur, 

respectively. The same was performed for PtAs2 and Pd2As bulk structures. 
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Table 3.4: The calculated heats of formation (∆Hf) for PtAs2, PtAsS 

(CE), PtAsS (VCA) and Pd2As structures. 

 

Structure Heats of formation 

∆Hf (eV/atom) 

Calculated 

PtAs2 –4.751 

PtAsS (CE) –1.286 

PtAsS (VCA) –2.161 

Pd2As –4.041 

The calculations were performed using optimized lattice constants in the framework of 

VASP code for PtAs2, PtAsS (CE) and Pd2As structures. The CASTEP code was used for the 

solid solution PtAsS (VCA) structure. We observed that the heats of formation calculations 

divulge that all structures have negative heats of formation. We found that PtAs2 gave the 

lowest heat of formation energy (most negative) of –4.751 eV/atom. Most interestingly, PtAsS 

(CE) was less stable than PtAsS (VCA). This have shown that the binary phase solid solution 

is more stable than the cluster expansion. The heats of formation values suggested that PtAs2 

structure was the most stable i.e. energetically favourable than PtAsS. The PtAsS (VCA) and 

Pd2As structures were intermediately metastable. The stability trends for these cubic systems 

are summarized as follows: PtAs2 > PtAsS (VCA) > PtAsS (CE) as shown in Table 3.4. 

3.5 Elastic properties 

 The calculations of elasticity are paramount for gaining insights into mechanical stability 

and elastic properties of materials. The elastic constants and moduli of sperrylite (PtAs2), 

platarsite (PtAsS) and palladoarsenide (Pd2As) structures were investigated, in order to obtain 

the relationship between the transformation behaviour and elastic constants. The elastic 

constants, the bulk modulus (B), tetragonal shear modulus (C'), isotropic shear modulus (G) 

and Young’s modulus (E) were calculated and are all shown in Table 3.5 for PtAs2 and PtAsS, 

Table 3.6 and 3.7 for Pd2As. Furthermore, the anisotropic factor (A), Poisson’s ratio (v), the 

bulk to shear (B/G) and the Cauchy pressure C12 – C44 were calculated. 

A cubic crystal has only three independent elastic constants (C11, C12 and C44). The 

mechanical stability criteria of a cubic system are given as follows [114]: C
11

 > 0, C
12

 > 0, C
11

 

– C
12 

> 0, C
44

 > 0, C
11

+ 2C
12 

> 0 and C
11

 > Bulk > C
12

. On the other hand, the Born mechanical 

stability criteria for monoclinic system [84] are given by: 

    [𝐶11 + 𝐶22 + 𝐶33 + 2(𝐶12 + 𝐶13 + 𝐶23)] > 0, (𝐶33𝐶55 − 𝐶35
2 ) > 0, (𝐶44𝐶66 − 𝐶46

2 ) > 0, 
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       (𝐶22 + 𝐶33 − 2𝐶23) > 0, [𝐶22(𝐶33𝐶55 − 𝐶35
2 ) + 2𝐶23𝐶25𝐶35 − 𝐶23

2 𝐶55 − 𝐶25
2 𝐶33] > 0, 

{2[𝐶15𝐶25(𝐶33𝐶12 − 𝐶13𝐶23) + 𝐶15𝐶35(𝐶22𝐶13 − 𝐶12𝐶23) + 𝐶25𝐶35(𝐶11𝐶23 − 𝐶12𝐶13)] −

[𝐶15
2 (𝐶22𝐶33 − 𝐶23

2 ) + 𝐶25
2 (𝐶11𝐶33 − 𝐶13

2 ) + 𝐶35
2 (𝐶11𝐶22 − 𝐶12

2 )] + 𝑔𝐶55} > 0,                    3.2      

                        𝑔 = 𝐶11(𝐶22𝐶33 − 𝐶11𝐶23
2 − 𝐶22𝐶13

2 − 𝐶33𝐶12
2 + 2𝐶12𝐶13𝐶23,  [85] 

 

Table 3.5: The elastic constants, bulk modulus (B), tetragonal shear modulus (C’), isotropic 

shear modulus (G), Young’s modulus (E), anisotropic factor (A), Poisson’s ratio (v), bulk to 

shear modulus (B/G) and Cauchy pressure (C12 – C44) of PtAs2, PtAsS (CE) and PtAsS (VCA) 

structures. 

 

Moduli PtAs2 

(GPa) 

PtAsS (CE) 

(GPa) 

PtAsS (VCA) 

(GPa) 

 

C11 

 

299.52 

 

193.30 

 

29.27 

 

C12 

 

52.92 

 

89.35 

 

156.44 

 

C44 

 

69.56 

 

40.51 

 

–75.76 

 

B 

 

135.12 

 

124.00 

 

114.05 

 

C' 
 

123.30  

 

51.98 

 

–63.59 

 

G 

 

87.65  

 

44.76 

 

–70.63 

 

E 

 

216.15 

 

119.87 

 

–266.99 

 

A 

 

0.39 

 

0.78 

 

1.19 

 

V 

 

0.23 

 

0.34 

 

0.89 

 

B/G 

 

1.54 

 

2.77 

 

–1.61 

 

C12 – C44  

 

–16.64 

 

48.84 

 

232.20 
 

 

Table 3.6: The calculated elastic constants Cij (in GPa) of Pd2As monoclinic structure. 

 

Phases 

(GPa) 

 

C11 

 

C12 

 

C13 

 

C15 

 

C22 

 

C23 

 

C25 

 

C33 

 

C35 

 

C44 

 

C46 

 

C55 

 

C66 

Pd2As  

191.50 

 

137.56 

 

124.87 

 

0.00 

 

191.50 

 

124.87 

 

0.00 

 

147.93 

 

0.00 

 

24.52 

 

0.00 

 

24.52 

 

26.97 

 

The cubic systems PtAs2 and PtAsS (CE) were found mechanically stable since their values 

of C11, C12 and C44 were all positive and greater than zero. The Pd2As structure was 

mechanically stable as well since all the mechanical stability criteria for a monoclinic structure 

were satisfied. Furthermore, C11, C22, C33, C12, C13, C23, C44, C55 and C66 for Pd2As were found 

to be positive, while C15, C25, C35 and C46 for Pd2As possess values of 0, suggesting stability. 
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The PtAsS (VCA) structure did not satisfy the necessary conditions of a cubic structure, since 

C11 was much less than C12. In addition, C44 and C' were negative and this suggested instability. 

From the calculated elastic constants, the mechanical parameters that is the bulk, shear, 

Young’s modulus and Poisson’s ratio were determined using the Voigt- Reuss- Hill [86]. The 

modulus are used to describe the elastic behaviour of materials, and were found higher for 

PtAs2, PtAsS (CE) and Pd2As structures. In addition, the PtAsS (VCA) showed negative values 

of shear and Young’s modulus. 
 

Table 3.7: Summarized the bulk (B), shear (G) and Young’s modulus (E), Poisson’s ratio (v), 

Cauchy pressure (C12 – C44) and the shear anisotropic factors (A1, A2 and A3) of the monoclinic 

Pd2As. 

 

Phases 

(GPa) 

 

B 

 

G 

 

E 

 

B/G 

 

v 

 

C12 – C44 

 

A1 

 

A2 

 

A3 

Pd2As  

142.26 

 

24.56 

 

69.66 

 

5.79 

 

0.42 

 

113.04 

 

1.09 

 

1.09 

 

1.00 

 

Pugh introduced the ratio of bulk to shear modulus (B/G) of a material, which expresses that 

the shear and bulk moduli signifies the resistance to deformation of plastic and a resistance to 

fracture [78]. A higher B/G value than 1.75 is associated with ductility, whereas a lower value 

represented brittleness [78]. Our results showed that the B/G ratio for PtAs2, PtAsS (CE), solid 

solution PtAsS (VCA) and Pd2As are 1.54, 2.77, –1.61 and 5.79, respectively. This showed 

that the PtAsS (CE) and Pd2As were all ductile because of the highest values of B/G, with the 

Pd2As structure being more ductile. The PtAsS (VCA) and PtAs2 were brittle since they had a 

low B/G values.  

As it can be seen from the Table 3.5 and 3.7, for all the examined system the values of the 

bulk modulus B were found greater than the isotropic shear modulus G. This implied that the 

parameter limiting the mechanical stability of these structures was the shear modulus. In the 

cubic system, the bulk modulus and shear modulus predicted that the PtAs2 was the hardest 

material, since it had the highest values. In addition, the monoclinic Pd2As had the superior 

bulk modulus indicating that it was the hardest material but having less value of shear modulus. 

The stiffness level of a material was described by the resistance force against distortion (i.e. 

stress to strain) using the Young’s modulus, i.e. if the value of E is larger, the material is 

considered to be stiffer. The calculated Young’s modulus indicated that PtAs2 was much stiffer, 

since it had the largest value of elastic constant (Table 3.5). This suggested that PtAs2 structure 

was mechanically stronger as compared to the cubic PtAsS (CE) and PtAsS (VCA) structures. 
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Another important parameter that correlates with the possibility of the microcracks 

appearance in material is the elastic anisotropy of crystals [115]. To evaluate the chemical and 

physical characteristics, it is important to calculate the elastic anisotropy of the crystals. There 

are various ways to represent elastic anisotropy of a crystal, such as using the calculated values 

of the elastic constants Cij. A measure of the degree of anisotropy in the bonding between atoms 

in different planes can be identified by calculating the shear anisotropic factors [116, 117]. 

However, crystals with isotropic elastic properties of A = 1, or greater or smaller than the unity, 

measures the degree of elastic anisotropy. From the Table 3.5, we showed the calculated 

anisotropic ratio for PtAs2 and PtAsS structures. Table 3.7 showed the calculated shear 

anisotropic factor (A1, A2 and A3) values of Pd2As model. These indicated that the structures 

PtAsS (VCA) and Pd2As were isotropic elastically since their values are equal or greater than 

1. The PtAsS (CE) has a value of 0.78 which is less than 1. The mineral PtAs2 has the lowest 

anisotropic factor of 0.39 indicating that its properties are not elastically isotropic. 

The types of bonding in a solid can be predicted by knowing the sign of a Cauchy pressure 

(C12 – C44). The sign of Cauchy pressure also provides information about the bond sorting. The 

dominant covalently bonded compounds are negative whereas the dominant ionic bonded 

compounds are positive [74]. The sperrylite showed covalently bonded compound since the 

Cauchy pressure (C12 – C44 < 0) was negative. On the other hand, PtAsS structures and Pd2As 

predicted an ionic bonds because the Cauchy pressure (C12 – C44 > 0) were positive. The bond 

sorting can also be found from the value of a Poisson’s ratio. For a covalently bonded 

compounds, the value of the Poisson’s ratio is lower than 0.25, while the typical ionic 

compounds, it is nearly 0.25 or higher [118]. The large Poisson’s ratio indicate good plasticity. 

The calculations showed Poisson’s ratio values of v = 0.89, 0.42, 0.34 and 0.23 for the cubic 

PtAsS (VCA), monoclinic Pd2As, cubic PtAsS (CE) and PtAs2, respectively (see Table 3.5 and 

3.7). The values of the Poisson’s ratio suggested that PtAsS (VCA), Pd2As and PtAsS (CE) 

structures exhibit ionic bonds, but it is noticeable that the poisson’s ratio of PtAs2 phase was 

0.23 which indicated a dominant covalent bond. And these results were consistent with the 

results predicted by the Cauchy pressure sign. 

3.6 Vibrational properties of PtAs2, PtAsS and Pd2As 

structures 

The vibrational stabilities were carried out using ab-initio PHONON code [119]. The 

vibrational properties of PtAs2, PtAsS (CE) and Pd2As structures with respect to the phonon 



 
 

52 
 

dispersion and phonon densities of states were analysed. Figure 3.7 displayed the phonon 

dispersion curve and the phonon partial density of states (PPDOS) for PtAs2. We observed that 

there are positive frequencies in all the Brillouin zone directions. The phonon partial density 

of states showed that platinum (Pt) and arsenic (As) were responsible for positive frequencies 

(Figure 3.7(b) and 3.7(c)). The acoustic and optical band emanated from the Pt and As atoms 

contribution. The lower band of acoustic branches were due to the contribution of Pt atom 

along the x, y and z components, while the upper optical branches were due to As atom mainly 

along x, y and z directions. In addition, the PtAs2 structure was stable since no soft modes were 

observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: (a) Phonon dispersion for PtAs2, (b) phonon partial density of states for platinum 

contribution and (c) arsenic contribution. Pt and As contributions towards the vibrations along 

x, y and z components, respectively. 
 

In Figure 3.8 we showed the phonon dispersion curve of PtAsS (CE), plotted along with the 

phonon partial density of states depicting the contributions of each atom. However, the phonon 

dispersion curve and the PPDOS indicated that there were no negative vibrations in all the 

Brillouin zone directions. The PPDOS showed that the lower bands of the acoustic mode 

emanated from Pt atoms and the upper optical bands emanated from As and S atoms as shown 

in Figure 3.8(b), 3.8(c) and 3.8(d). The Pt atoms vibrations in the x, y and z components 

dominated the acoustic mode, while the As and S atoms vibrations in the x, y and z components 

dominated the optical modes. Thus the PtAsS (CE) structure was stable since no soft modes 

were observed. 

(a) (b) (c) 
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Figure 3.8: (a) Phonon dispersion for PtAsS (CE), (b) phonon partial density of states for platinum 

contribution, (c) arsenic contribution and (d) sulphur contribution. Pt, As and S contributions 

towards the vibrations along x, y and z components, respectively. 
 

In Figure 3.9 we showed that the phonon dispersion curve and the PPDOS for the Pd2As 

had positive frequencies in all the Brillouin zone directions. The phonon partial density of states 

showed that the palladium (Pd) and arsenic (As) atoms were responsible for positive 

frequencies. The As atoms vibrations in the x, y and z components dominated the optical mode 

and the Pd atoms vibrations in the x, y and z components dominated the acoustic mode (Figure 

3.9(b) and 3.9(c)). Thus, the Pd2As structure was stable since no phonon soft modes were 

observed in all the Brillouin zone directions. 

 

Figure 3.9: (a) Phonon dispersion for Pd2As, (b) phonon partial density of states for palladium 

contribution and (c) arsenic contribution. Pd and As contributions towards the vibration along 

x, y and z components, respectively. 
 

(a) (b) (c) 

(d) (a) (c) (b) 
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3.7 Summary 

In this chapter we have determined the cut-off energy suitable to converge the total energy 

of the systems to be 500 eV for the bulk PtAs2, PtAsS and 450 eV for the bulk Pd2As. The 

number of k-points mesh of 6x6x6 for (PtAs2 and PtAsS) and 7x7x14 for Pd2As were sufficient 

to converge the bulk structures. We performed the geometry optimization for all the structures 

to compare their structural properties. The lattice parameters for these systems were allowed 

to vary, thereby minimizing the structures to their stable form. In addition, the cluster expansion 

was performed to generate new stable structures for PtAsS structure. The binary ground state 

diagram showed that all structures had negative heats of formations (∆Hf), hence they were 

thermodynamically stable (miscible constituents). Moreover, the cluster expansion showed a 

greater stability at 50/50 percentage (x = 0.5), where As and S atoms are equally distributed in 

the structure with S-As dimer bond formed at the centre. The probabilistic occupations of each 

lattice site were selected as: 50% by As, 50% by S for PtAsS (VCA) model. However, in this 

case two atoms (i.e. S and As) occupied the same lattice position. 

It was found that the lattice parameters for the cubic PtAs2 and PtAsS (CE) were slightly 

larger, which showed that the GGA-PBE overestimated the lattice parameters. However, for 

PtAsS (VCA) and Pd2As, there was a good agreement between the calculated lattice parameters 

and experimental values. This showed that for PtAsS (VCA) and Pd2As structures, the DFT 

was able to predict the lattice parameters. The heats of formation divulge that all the structures 

have negative heats of formation. In addition, heats of formation values suggested that the 

PtAsS (VCA) structure was the most stable i.e. energetically favourable than PtAsS (CE).  

We evaluated and discussed the elastic constants, the phonon dispersion curves, phonon 

partial density of states, the density of states and atomic charges for all the structures. The 

elastic constants for the cubic structures, PtAs2 and PtAsS and monoclinic structure Pd2As, the 

bulk modulus (B), tetragonal shear modulus (C'), isotropic shear modulus (G) and Young’s 

modulus (E) were calculated. Furthermore, the anisotropic factor (A), Poisson’s ratio (v), the 

bulk to shear (B/G) and the Cauchy pressure (C12 – C44) were also calculated. The cubic systems 

PtAs2 and PtAsS (CE) were mechanically stable since their values of C11, C12 and C44 were all 

positive and greater than zero. In addition, Pd2As structure was mechanically stable since all 

the mechanical stability criteria for a monoclinic structure were satisfied. The PtAsS (VCA) 

did not satisfy the necessary conditions of a cubic structure, since C11 was much lesser than C12 

and C44 and C' being negative. Our results showed that the PtAsS (CE) and Pd2As structures 

were all ductile because of the high values of B/G whereas the PtAsS (VCA) and PtAs2 were 
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brittle since they had a low B/G values. The calculated Young’s modulus indicated that PtAs2 

was much stiffer than PtAsS structures, since it had the highest value of elastic constant. This 

suggested that PtAs2 structure was mechanically stronger among the PtAsS structures. We 

observed that the PtAs2 was a dominant covalently bonded compound since the Cauchy 

pressure (C12 – C44 < 0) was negative. On the other hand, the PtAsS structures and Pd2As 

predicted that the ionic bonds were dominant because the Cauchy pressure (C12 – C44 > 0) were 

positive. This was also confirmed from the Poisson’s ratio values, which showed that the PtAsS 

(CE), PtAsS (VCA) and Pd2As structures exhibited ionic bonds, but it was noticeable that the 

Poisson’s ratio of PtAs2 phase was 0.23, which indicated a dominant covalent bonds. 

The phonon dispersion curve and the phonon partial density of states (PPDOS) for PtAs2, 

PtAsS (CE) and Pd2As had no negative frequencies (soft modes) along the gamma direction, 

this suggested stability.  
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CHAPTER 4 

4. Surface modelling of PtAs2, PtAsS and Pd2As 

In this chapter we discussed the DFT results of the surface model relaxation and their surface 

properties for PtAs2, PtAsS and Pd2As models. Firstly, the k-point variation for the surfaces 

were performed. Secondly, the computational details are then given for the surfaces. We 

determined the stable surface termination and vary the slab thickness for the surfaces. The 

supercell surfaces are then constructed and the most stable surfaces for all the models were 

used to calculate the equilibrium morphologies. We also compared the three low index 

surfaces, ((100), (110) and (111)) for surface stability. The bulk systems and working surfaces 

are analysed and their electronic structures were presented. Lastly, we discussed the density of 

states (DOS) and Bader analysis for PtAs2, PtAsS and Pd2As structures 

4.1 Surface k-point convergence 

In a plane-wave DFT surface calculations, a number of parameters have an effect on the 

overall accuracy of the calculation. The convergence of the total energy was assessed with 

respect to the number of k-points used to sample the Brillouin zone. We presented a set of rules 

regarding the choice of k-point grid, integration method to achieve numerical convergence of 

surface energies at minimal computational costs. The basis transformed surface slab calculation 

proposed in this work calculated surface energies using 4x4x1 k-point mesh for PtAs2, PtAsS 

and 5x3x1 k-point mesh for Pd2As surfaces (Figure 4.1). 

 

Figure 4.1: Total energy against k-points mesh (a) cubic PtAs2 and PtAsS surfaces (b) 

monoclinic Pd2As surface structures. 
 

(a) (b) 
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4.2 Surface computational methods 

We have employed the VASP and CASTEP DFT codes using the plane-wave with 

generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE) [50] exchange-

correlation functional. The plane-wave basis set with an energy cut-off of 450 and 500 eV for 

PtAs2, PtAsS and Pd2As were set, which demonstrated convergence to within 0.2 meV/atom. 

The projector augmented wave (PAW) pseudopotentials for the electron-ion interaction [65] 

were employed and the electron configurations considered are: [Xe]4f145d96s1 for Pt, [Kr]4d10 

for Pd, [Ar]3d104s24p3 for As and [Ne]3s23p4 for S atom. Most importantly, for all the geometry 

optimization of the surfaces, a k-point grid of 4x4x1 for PtAs2 and PtAsS and 5x3x1 for Pd2As 

surface structures were generated using the Monkhorst-Pack scheme [60]. The size of the k-

point grid used for mineral represents a k-point sampling spacing 0.25 Å-1. The convergence 

tolerances for force, ionic displacement and energy were 0.02 eVÅ-1, 0.015 Å and 0.01 

meV/atom, respectively. The vacuum height for all surface models in this chapter was set to 

20.00 Å in order to avoid the interaction of the long adsorbate with the upper repeating slab 

model. Throughout this work model total energies (in J/m2) will be quoted to 3 decimal places 

to allow for future in-depth model comparison and optimisation by other researchers. 

To ensure that the results of the calculations accurately represents an isolated surface, the 

vacuum regions must be wide enough. This is because the faces of adjacent crystal slabs do not 

interact across the vacuum region, and the crystal slab must be thick enough so that the two 

surfaces of each crystal do not interact through the bulk crystal. However, it is important to test 

the convergence of a vacuum width and slab thickness. As a compromise between computation 

efficiency and accuracy, (100), (110) and (111) surfaces are considered. 

In the next section we investigated different surface termination and surface layers since the 

thickness of a surface slab is crucial during adsorption. We have constructed different 

terminations, slab thickness and layers for sperrylite, platarsite and palladoarsenide structures. 

Their surface energies were calculated and considered the most stable surface with the lowest 

positive surface energy (less reactive). The surface terminations for all structures were fully 

prepared using Material Studio software and considering all mixed and pure metal 

terminations. 
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4.3 Sperrylite (PtAs2) 

4.3.1 Surface terminations 

We tested the different surface terminations for PtAs2 model and we considered the most 

stable termination with the lowest positive surface energy (less reactive) as this has an effect 

during adsorption. This was because a very reactive surface may not give a thermodynamically 

behaviour of the mineral surface. In addition, we cleaved the mineral along the low-miller 

index planes (100), (110) and (111).  

We generated the total of 11 different surface terminations on PtAs2 mineral, 3 for (100) 

and (110) and  5 for (111) surface as shown in Figure 4.2. The un-relaxed surfaces are shown 

in Figure 4.2, Term.1 is Pt-terminated, Term.2 and Term.3 are As-terminated. Term.2 was 

found the most stable since it had the lowest positive surface energy of 1.171 J/m2. For (110) 

surface, the Term.1 is a Pt and As mix termination, while Term.2 and Term.3 are As-

terminated. The Term.2 was found having the lowest surface energy (2.501 J/m2), which 

suggested stability (see Table 4.1). The (111) surface terminations are shown in Figure 4.2, the 

Term.1 is Pt-terminated, while Term.2, 3, 4 and 5 are As-terminated. The Term.3 for (111) 

surface was observed the most stable surface termination (less reactive) since it had lowest 

positive surface energy (1.662 J/m2). It is clear from Table 4.1 that the (100) surface display 

the lowest surface energy amongst all the surfaces which indicated that it is the most stable 

surface. The dominant phase of the (100) PtAs2 surface had been previously observed from 

crystal morphologies, computationally [108, 120]. 

 

 

 

Figure 4.2: Shows 11 different surface terminations along the three low MI planes (100), 

(110) and (111) for PtAs2. 

(100)- Surface 

(111)- Surface 

(110)- Surface 

Term.1 Term.2 Term.3 Term.4 Term.5 

Term.1 Term.2 Term.3 

Term.1 Term.2 Term.3 
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Table 4.1: Different terminations, number of atoms, number of layers, total energy and 

surface energy for (100), (111) and (110) PtAs2 surfaces. 
(100) surface 

Terminations 

slab 

Number of 

atoms on slab 

Number of 

layers 

Total energy 

(slab) (eV) 

Surface energy (J/m2)  

Unrelaxed 

Term.1 12 6 –61.5319 1.397 

Term.2 12 6 –62.5371 1.171 

Term.3 12 6 –61.5319 1.397 

(111) surface 

Term.1 12 5 –50.9329 1.891 

Term.2 12 5 –52.4572 1.719 

Term.3 12 5 –52.9793 1.662 

Term.4 12 5 –52.4572 1.719 

Term.5 12 5 –50.9329 1.891 

(110) surface 

Term.1 12 5 –51.7407 2.546 

Term.2 12 5 –52.0229 2.501 

Term.3 12 5 –51.7407 2.546 

 

4.3.2 Slab thickness determination  

We have investigated different surface layers and slab thickness within the low-Miller index 

plane (100), (110) and (111). For (100) surface, we started from six layers (6L) increasing by 

3 layers at a time, where 6L, 9L, 12L and 15L were varied for this surface as presented in 

Figure 4.4, which also present the un-relaxed surface slabs. The (110) surface had started from 

seven layers (7L) whereby increasing by 2 layers, thus, 7L, 9L, 11L, 13L and 15L were 

obtained. Lastly, the (111) surface were varied starting from ten layers (10L) increasing by 5 

layers, therefore having 10L, 15L and 20L. Table 4.2 shows the surface energies of (100), (111) 

and (110) PtAs2 surfaces. We observed that the surface energies increased with increasing slab 

thickness. The slab depth (number of layers) and the surface energies of the three low MI planes 

(100), (110) and (111) are shown in Table 4.2 and the plot of total energy against slab depth is 

shown in Figure 4.3.  
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Table 4.2: Surface layers convergence of (100), (111), and (110) surface slab, number of atoms 

per slab, total energy (eV) and surface energies (J/m2) for PtAs2. 
Surface slab Number of atoms 

on slab 

Number of 

layers 

Total energy 

(slab) (eV) 

Surface energy (J/m2)   

Unrelaxed 

(100) 

12 6L –59.5371 1.846 

18 9L –87.6849 3.134 

24 

30 

12L 

15L 

–109.2913 

–150.6426 

5.895 

4.211 

(111) 

24 10L –103.3057 3.619 

36 15L –155.5796 5.361 

48 20L –208.4783 7.030 

(110) 

18 7L –76.8826 3.935 

24 9L –103.2465 5.130 

30 11L –129.4995 6.342 

36 

42 

13L 

15L 

–155.9845 

–182.4699 

7.518 

8.692 

Previously, Boettger [121] reported that the surface energies will diverge for increasing slab 

depths unless the energy of the bulk is exactly equals the difference in total energies between 

a slab of depth N and a slab of depth N-1.This is the total energy gain by adding extra layer is 

equivalent to the energy of the bulk, normalised for the number of atoms gained per layer. The 

total energy of the bulk which was calculated to be –67.7415 eV never matches the energy 

difference in Table 4.2. This imply that there is an increasing linear divergence of the surface 

energies. The (100) surface had the lowest surface energy amongst all the surfaces, thus most 

stable. For all surfaces, the fifteen layers (15L) slab thickness were considered as thick enough 

for adsorption. All the number of atoms on the slabs, number of layers, total energies and 

surface energies for each of these three surfaces are presented in Table 4.2. 

 

Figure 4.3: Slab depth vs total energy plot for PtAs2. (a) The most stable (100), (b) the least 

stable (110) and (c) the (111) the moderate stable surfaces. 
 

(a) (b) (c) 
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Figure 4.4: The un-relaxed structures of surface layers convergence for PtAs2 along the low 

MI plane (100), (110) and (111). 

 

Table 4.3: Supercell optimization of (100), (111), and (110) surface layers convergence, number 

of atoms per slab, total energy (eV) and surface energies (J/m2) for PtAs2 system. 
Surface slab Number of 

atoms on slab 

Number of 

layers 

Total energy 

(slab) (eV) 

Surface energy (J/m2)   

Relaxed 

(100) 120 15 –659.2347 1.045 

(111) 144 15 –764.7684 1.367 

(110) 168 15 –912.3929 1.453 

(100)- Surface 

(111)- Surface 

(110)- Surface 

9Layers 

6Layers 

12Layers 

7Layers 

9Layers 

11Layers 

13Layers 

15Layers 

10Layers 

15Layers 

20Layers 

15Layers 
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Figure 4.5: The un-relaxed and relaxed supercell structures of surface layers convergence 

for PtAs2, (a) (100), (b) (110) and (c) (111) surface.  

The 15L slab was used to create a 2x2 supercell structures for all the studied surfaces. The 

supercell surfaces were relaxed allowing the only the atomic position to relax. Furthermore, 

the relaxation was performed with the bottom 3 slab for (100) and (110) surfaces fixed to the 

bulk coordination, while for (111) the bottom slab (5L) was frozen. The (100) surface had the 

lowest surface energy amongst all the surfaces, thus more stable and considered working 

surface. Table 4.3 shows the supercell surface results after optimization. The order of surface 

stability followed as: (100) > (111) > (110) for PtAs2 structure. Figure 4.5(a), 4.5(b) and 4.5(c) 

showed all the un-relaxed and relaxed supercell structures for (100), (110) and (111) surfaces. 

4.3.3 Analysis of the working surfaces 

A thorough appreciation of the mineral surface is required in order to understand the 

collector binding environment. The exposed sperrylite working surface consists of ridges of As 

atoms, with Pt atoms inhabiting the clefts between ridges, as shown in Figure 4.6. Most 

importantly, when considering the binding of bridging ligands such as xanthates, which can 

(a) 

(c) 

(b) 
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interact with two surface metals simultaneously is the distance between the metal sites. In the 

sperrylite working surface, the surface inter-platinum distance is 4.289 Å as shown in Figure 

4.6. Considering the As lone pairs, it is unlikely that bridging ligands can interact with two Pt 

atoms in different clefts simultaneously, due to the implicit high steric strain. Similar surfaces 

has been reported by Waterson et al. [108]. 

   

Figure 4.6: Top-view (left) and side view (Right) of the top three layers (3L) on 2x2 supercell 

working surface of (100) sperrylite surface. Showing raised As ridges and Pt atoms 

inhabiting the clefts between ridges (Right), with the resulting bond distances (Left). 
 

4.4 Platarsite (PtAsS) cluster expansion 

4.4.1 Surface terminations 

Different surface terminations of PtAsS (CE) structure were fully discussed. We cleaved the 

minerals along the three low MI planes (100), (110) and (111). Cleaving along the low MI 

planes and generated one model apiece for each possible terminations produces the total of 11 

different surface terminations on PtAsS (CE) mineral, 3 for (100) and (110) surface and 5 for 

(111) surface as shown in Figure 4.7.  
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Figure 4.7: Shows 11 different surface terminations along the three low MI planes (100), 

(110) and (111) for PtAsS (CE) structure. 
 

For (100) surface, Term.1 is Pt-terminated while, Term.2 and Term.3 are As/S mix 

termination. Term.2 showed the most stability since it has the lowest positive surface energy 

of 0.580 J/m2. For (110) surface, Term.1 is Pt/As/S mix termination while, Term.2 and Term.3 

are S-terminated. The Term.2 was found having the lowest surface energy (0.925 J/m2) which 

suggested stability (see Table 4.4).  

Table 4.4: Different terminations, number of atoms, number of layers, total energy and 

surface energy for (100), (111) and (110) surfaces for the structure PtAsS (CE). 
(100) surface 

Terminations 

slab 

Number of 

atoms on slab 

Number of 

layers 

Total energy 

(slab) (eV) 

Surface energy (J/m2)   

Unrelaxed 

Term.1 12 6 –56.0186 1.716 

Term.2 

Term.3 

12 

12 

6 

6 

–61.1344 

–56.0185 

0.580 

1.716 

(111) surface 

Term.1 12 5 –51.5871 1.349 

Term.2 

Term.3 

Term.4 

Term.5 

12 

12 

12 

12 

5 

5 

5 

5 

–55.9460 

–54.8489 

–53.8922 

–51.9825 

0.865 

0.987 

1.094 

1.306 

(110) surface 

Term.1 12 5 –57.3738 0.999 

Term.2 

Term.3 

12 

12 

5 

5 

–57.8528 

–57.3738 

0.925 

0.999 

The (111) surface terminations as shown in Figure 4.7, displayed that the Term.1 is Pt-

terminated, while Term.2, Term.4 are As-terminated, with Term.3 and Term.5 being S-

terminated. The Term.2 for (111) surface was found the most stable surface termination, since 

it had the lowest positive surface energy value of 0.865 J/m2. The (100) surface displayed the 

lowest surface energy amongst all the surfaces which indicated that it is the most stable surface. 

(100)- Surface 

(110)- Surface 

(111)- Surface 

Term.2 Term.1 Term.3 

Term.2 Term.1 Term.3 Term.5 Term.4 

Term.2 Term.3 Term.1 
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The dominant phase of the stable (100), (111) and (110) PtAsS (CE) surfaces had been 

previously studied from crystal morphologies, computationally [120]. 

4.4.2 Slab thickness determination 

We investigated different surface layers and slab thickness within the (100), (110) and (111) 

surfaces in a similar manner as for sperrylite. The trends for the total energy against slab 

thickness are shown Figure 4.8. We observed that as the slab thickness increased, the surface 

energy also increased. Also for this case the total energy of the bulk calculated as –63.7475 eV 

did not quite match the energy difference in Table 4.5. This imply that there is an increasing 

linear convergence of the calculated surface energies. The (100) surface had the lowest surface 

energy amongst the three surfaces, thus most stable. For all the surfaces, the 15L slab thickness 

were considered as thick enough for adsorption. For PtAsS (CE) model, the number of atoms 

on the slabs, number of layers, total energies and surface energies for each of these three 

surfaces are shown in Table 4.5. 

Table 4.5: Surface layers convergence of (100), (111) and (110) surface, number of atoms per 

slab, total energy (eV) and surface energies (J/m2) for PtAsS (CE) structure. 
Surface slab Number of atoms 

on slab 

Number of 

layers 

Total energy 
(slab) (eV) 

Surface energy (J/m2)   

Unrelaxed 

 12 6L –61.1344 0.580 

(100) 18 9L –93.7097 0.425 

 24 

30 

12L 

15L 

–125.9202 

–157.9261 

0.349 

0.319 

 24 10L –119.0567 0.936 

(111) 36 15L –183.5603 0.852 

 48 20L –247.7453 0.804 

 18 7L –88.9442 1.048 

 24 9L –122.3363 0.809 

(110) 30 11L –153.2204 0.965 

 
36 

42 

13L 

15L 

–186.5579 

–217.3293 

0.735 

0.908 

A 2x2 supercell for the PtAsS (CE) surface was required to permit ligand interactions, 

otherwise inter-ligand steric interactions may begin to have a significant effect. To this end, 

the work proceeded with the 15-layers (100), (110) and (111) surfaces. The supercell surfaces 

were relaxed allowing the atomic position to relax. Further relaxation was performed with the 

bottom 3 slabs for (100) and (110) fixed to the bulk coordination, while for (111) the bottom 

slab was frozen.  
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Figure 4.8: Slab depth vs total energy plot for PtAsS (CE). The most stable (100), (b) the 

least stable (110) and (c) the moderate stable (111) surfaces. 

 
Table 4.6: Supercell optimization of (100), (111), and (110) surface layers convergence, number 

of atoms per slab, total energy (eV) and surface energies (J/m2) for PtAsS (CE). 
Surface slab Number of 

atoms on slab 

Number of 

layers 

Total energy 

(slab) (eV) 

Surface energy (J/m2)   

Relaxed 

(100) 120 15 –631.7399 0.559 

(111) 144 15 –734.2505 0.998 

(110) 168 15 –869.2976 1.149 

 

 

Figure 4.9: The un-relaxed and relaxed supercell structures of surface layers convergence 

for PtAsS (CE), (a) (100), (b) (110) and (c) (111) surface. 

The (100) surface had the lowest surface energy amongst all the surfaces, thus more stable. 

Table 4.6 shows the supercell surface results after surface optimization. The order of surface 

(a) (b) (c) 

(a) (b) 

(c) 
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stability followed as: (100) > (111) > (110) for PtAsS (CE) model. All the un-relaxed and 

relaxed supercell PtAsS (CE) structures for (100), (110) and (111) surfaces are shown in Figure 

4.9(a), 4.9(b) and 4.9(c), respectively. 

4.4.3 Analysis of the working surfaces 

A thorough appreciation of the mineral surface is required in order to understand the 

collector binding environment. Similar to the sperrylite, the exposed platarsite (CE) working 

surface consisted of ridges of S and As atoms, with Pt atoms inhabiting the clefts between 

ridges, as presented in Figure 4.10. Furthermore, considering the binding of bridging ligands, 

which can interact with two surface metals simultaneously regarded is the distance between the 

metal sites. For the PtAsS (CE) working surface, the surface inter-platinum distance is 4.311 

Å as shown in Figure 4.10. As such, the As and S lone pairs may cause unlikely bridging of 

the ligands on the two Pt atoms in different clefts simultaneously, due to the implicit high steric 

strain. 

  

Figure 4.10: Top-view (left) and side view (Right) of the top three layers (3L) on 2x2 

supercell working surface of (100) PtAsS (CE) surface. Showing raised As and S ridges and 

Pt atoms inhabiting the clefts between ridges (Right), with the resulting bond distances 

(Left). 
 

4.5 Platarsite (PtAsS) VCA 

4.5.1 Surface terminations 

In this section we discussed the different surface terminations and slab thickness for PtAsS 

(VCA) model, which are similar to the sperrylite and platarsite (CE). We have tested different 

surface terminations and considered the most stable termination with the lowest positive 

surface energy (less reactive). In addition, we cleaved the minerals along the low-miller index 
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planes (100), (110) and (111). The total of 11 different surface terminations on PtAsS (VCA) 

were generated, 3 for (100) and (110) surface and 5 for (111) surface. It is clear from Table 4.7 

that the (100) surface display the lowest surface energy amongst all the surfaces which 

indicated that it was the most stable surface. 

Table 4.7: Different terminations, number of atoms, number of layers, total energy and 

surface energy for (100), (111) and (110) surfaces for PtAsS (VCA). 
(100) surface 

Terminations 

slab 

Number of 

atoms on slab 

Number of 

layers 

Total energy 

(slab) (eV) 

Surface energy (J/m2)   

Unrelaxed 

Term.1 12 6 –51.5566 1.452 

Term.2 12 6 –57.2345 0.167 

Term.3 12 6 –51.5566 1.452 

(111) surface 

Term.1 12 5 –48.2910 1.096 

Term.2 12 5 –51.9092 0.686 

Term.3 12 5 –52.5021 0.618 

Term.4 12 5 –51.9092 0.686 

Term.5 12 5 –48.2911 1.096 

(110) surface 

Term.1 12 5 –53.3247 0.743 

Term.2 12 5 –53.2670 0.751 

Term.3 12 5 –53.3247 0.743 

4.5.2 Slab thickness determination 

The PtAsS (VCA) surfaces for different slab thickness were carried out for all the low-

Miller index (100), (110) and (111) in a similar manner as the sperrylite and platarsite (CE) 

structures. We observed that as the slab thickness increased, the surface energy increased as 

displayed by the total energy against slab thickness in Figure 4.11.  

 

Figure 4.11: Slab depth vs total energy plot for PtAsS (VCA). (a) The most stable (100), (b) 

the least stable (110) and (c) the moderate stable (111) surfaces. 

 

The total energy of the bulk which was calculated to be –57.9682 eV matched the energy 

difference and this implies the increasing of linear convergence of the surface energies. The (100) 

surface had the lowest surface energy amongst the three surfaces, thus most stable and it is a 

working surface.  

(a) (b) (c) 
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Table 4.8: Surface layers convergence of (100), (111) and (110) surfaces, number of atoms per 

slab, total energy (eV) and surface energies (J/m2) for PtAsS (VCA) mineral. 

Surface slab Number of atoms 

on slab 

Number of 

layers 

Total energy (slab) 
(eV) 

Surface energy (J/m2)   

Unrelaxed 

(100) 

12 6L –57.2345 0.167 

18 9L –86.2706 0.154 

24 

30 

12L 

15L 

–115.2644 

–144.1509 

0.152 

0.175 

(111) 

24 10L –111.8121 0.466 

36 15L –169.9296 0.450 

48 20L –227.7447 0.466 

(110) 

18 7L –83.2285 0.596 

24 9L –112.2228 0.596 

30 11L –141.1908 0.596 

36 

42 

13L 

15L 

–170.1228 

–199.1089 

0.606 

0.606 

For all surfaces, the 15L slab thicknesses were considered as thick enough for adsorption. All 

the number of atoms on the slabs, number of layers, total energies and surface energies for each 

of these three surfaces are presented in Table 4.8. The fifteen layer (15L) slab was used to 

create 2x2 supercell structures. The supercell surfaces were relaxed allowing only the atomic 

position to relax.  

 

Figure 4.12: The un-relaxed and relaxed supercell structures of surface layers convergence 

for PtAsS (VCA), (a) (100), (b) (110) and (c) (111) surface. 

(a) (b) 

(c) 
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Further relaxation was performed with the bottom 3 slabs for (100) and (110) fixed to the bulk 

coordination, while for (111) the bottom slab was frozen. The (100) surface had the lowest 

surface energy amongst all the surfaces, thus more stable. Table 4.9 shows the supercell surface 

results after relaxation. The order of surface stability followed as: (100) > (111) > (110) for 

PtAsS (VCA) mineral. The un-relaxed and relaxed supercell structures for PtAsS (VCA) (100), 

(110) and (111) surfaces are shown (Figure 4.12(a), 4.12(b) and 4.12(c), respectively. 

Table 4.9: Supercell optimization of (100), (111), and (110) surface layers convergence, number 

of atoms per slab, total energy (eV) and surface energies (J/m2) for PtAsS (VCA) mineral. 
Surface slab Number of 

atoms on slab 

Number of 

layers 

Total energy 

(slab) (eV) 

Surface energy (J/m2)   

Relaxed 

(100) 120 15 –576.9868 0.213 

(111) 144 15 –688.6159 0.236 

(110) 168 15 –801.6499 0.457 

 

4.5.3 Analysis of the working surfaces 

The PtAsS (VCA) working surface also consisted of ridges of As/S atoms, with Pt atoms 

inhabiting the clefts between ridges, as shown in Figure 4.13. Considering the binding of 

bridging ligands, which can interact with two surface metals simultaneously we found that the 

inter-platinum distance is 4.280 Å. The bridging ligands can interact with Pt atoms in different 

clefts simultaneously when considering the As/S lone pairs due to the implicit high steric stain. 

  

Figure 4.13: Top-view (left) and side view (Right) of the top three layers (3L) on 2x2 

supercell working surface of (100) PtAsS (VCA) surface. Showing raised As/S ridges and 

Pt atoms inhabiting the clefts between ridges (Right), with the resulting bond distances 

(Left). 



 
 

71 
 

4.6 Determination of working surfaces for platarsite 

(PtAsS) 

Table 4.10 shows the bulk and surface coordination and surface energies for the three low 

Miller index of the PtAsS model i.e. CE and VCA. Comparison of surface energies revealed 

that the PtAsS (VCA) model gave the lowest surface energies, suggesting that it was more 

stable than the PtAsS (CE) model. 

Table 4.10: Bulk and surface coordination, supercell optimization of (100), (111) and (110) 

surfaces showing number of atoms per slab and surface energies (J/m2) for PtAsS systems. 

Coordination Surface energies (J/m2) 

Models #atoms Pt As S As/S PtAsS (CE) PtAsS (VCA) 

Bulk 12 6 4 4 4 – – 

(100) 120 5 3 3 3 0.559 0.213 

(111) 144 6, 5 3 2 3, 2 0.998 0.236 

(110) 168 4 3, 2 3, 2 3, 2 1.149 0.457 

The coordination for various atoms changed after cleaving the surface. The Pt atom for the 

bulk PtAsS was 6-coordinated and after surface cleavage it reduced to 5-coordination for (100) 

surface and reduced to 6 and 5-coordination for (111) and to 4-coordination for (110) surface. 

For the As and S atoms, the bulk structure was 4-coordinated, while the (100) and (111) 

surfaces reduced to 3 and 2-coordination, and for (110) reduced to 3, 2-coordinated for all 

PtAsS.  

4.7 Palladoarsenide (Pd2As) 

4.7.1 Surface terminations 

We have cleaved the mineral along the low-miller index planes (100), (110) and (111) and 

different surface terminations were tested for Pd2As model and we considered the most stable 

surface termination with the lowest positive surface energy (less reactive). The surface 

terminations for Pd2As structure were prepared by considering all mixed and pure metal 

terminations. We generated the total of 18 different surface terminations for Pd2As mineral, 

that is 7 for (100), 5 for (110) surface and 6 for (111) surface as shown in Figure 4.14. The case 

of (100) surface, showed that the Term.1 is Pd/As mix terminated, while Term.2,4,5,7 are Pd-

terminated and Term.3 and Term.6 are As-terminated. The Term.1 displayed the lowest 

positive surface energy of 0.833 J/m2 thus most stability. For (110) surface, Term.1 is As-

terminated, while Term.2,3,4 and 5 are Pd-terminated. The Term.4 was found having the lowest 

surface energy of 1.019 J/m2, which suggested stability as presented in Table 4.11. Considering 
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the (111) surface terminations as shown in Figure 4.14, Term.1 and Term.3 are Pd/As mix 

terminated, while  Term.2 is As-terminated and Term.4,5 and 6 are Pd-terminated. Term.1 for 

(111) surface was observed the most stable surface termination (less reactive) since it had the 

lowest positive surface energy of 0.891 J/m2. 
 

 

 

  

 

 

  

 

Figure 4.14: Shows 18 different surface terminations along the three low MI planes (100), (110) and 

(111) for Pd2As model. 

 

Table 4.11: Different terminations, number of atoms, number of layers, total energy and 

surface energy for (100), (111) and (110) surfaces for Pd2As. 
(100) surface 

Terminations 

slab 

Number of 

atoms on slab 

Number of 

layers 

Total energy 

(slab) (eV) 

Surface energy (J/m2)   

Unrelaxed 

Term.1 9 7 –45.8641 0.833 

Term.2 

Term.3 

Term.4 

Term.5 

Term.6 

Term.7 

9 

9 

9 

9 

9 

9 

7 

7 

7 

7 

7 

7 

–45.2482 

–45.0574 

–45.8625 

–45.0574 

–45.2483 

–45.8640 

1.038 

1.102 

0.833 

1.102 

1.038 

0.833 

(111) surface 

Term.1 9 5 –41.9887 0.891 

Term.2 9 5 –38.8707 1.328 

Term.3 

Term.4 

Term.5 

Term.6 

9 

9 

9 

9 

5 

5 

5 

5 

–37.9993 

–38.6185 

–39.7694 

–40.3219 

1.452 

1.365 

1.203 

1.125 

(110) surface 

Term.1 9 5 –42.6202 1.110 

Term.2 

Term.3 

Term.4 

Term.5 

9 

9 

9 

9 

5 

5 

5 

5 

–42.8164 

–42.6035 

–43.0849 

–42.4706 

1.072 

1.110 

1.019 

1.139 

 

(100)- Surface 

Term.2 Term.1 Term.3 

(110)- Surface 

Term.1 Term.2 Term.3 Term.4 Term.5 Term.6 

(111)- Surface 

Term.4 

Term.2 Term.1   Term.4 Term.5 Term.6 Term.7 Term.3 

Term.5 
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The Pd2As was found to have most surface terminations slabs, having dipole. We observed 

that only the (100) surface (Term.4) and (110) surface (Term.3) had Type 1 and Type 2 

combined to give a zero net charge on the surface. Figure 4.15 show the Term.4 for (100) 

surface and Term.3 for (110 surface) on how the charges cancel and as such these were 

considered as the working surface terminations. The (111) surface had all the terminations 

surface slab having dipole. Thus, all surface with dipole require reconstruction. 

\  

Figure 4.15: Shows surface terminations Type 1 and Type 2 along (100) and (110) surfaces 

for Pd2As model. 

 

4.7.2 Slab thickness determination 

The Pd2As different surface slab thickness were carried out for all the low-Miller index 

(100), (110) and (111). For (100) surface, we started from seven layers (7L) and increase by 7 

layers, where 7L, 14L, 21L and 28L were varied as shown in Figure 4.16, (un-relaxed). The 

(110) surface were varied starting from ten layers (10L), whereby increasing by 5 layers, thus 

10L, 15L and 20L for (110) surface as shown in Figure 4.16. Lastly, the (111) surface were 

varied starting from five layers (5L) increasing by 5 layers, therefore having 5L, 10L, 15L and 

20L (Figure 4.16). Table 4.12 shows the surface energies for (100), (111) and (110) Pd2As 

surfaces. We observed that the surface energies increased as the slab thickness increased. The 

total energy against slab thicknesses are shown in Figure 4.17 as depicted in Table 4.12. The 

total energy of the bulk was calculated to be –48.3383 eV, which matched the energy difference 

of the first layers. However, the increasing of linear convergence of the surface energies were 

noted and the number of optimized 2x2 supercell working surfaces with increasing layers were 

calculated. The (100) surface had the lowest surface energy amongst the three low Miller index, 

thus most stable and it is considered a working surface. The 21L slab thickness for (100) surface 

and 15L slab thickness for (110) and (111) surface were considered as thick enough for 

adsorption.  

 

Term.4 

Term.3 

(100)- Surface (110)- Surface 

+2 

+2 

+2 

+2 

+2 
+2 

+2 
+2 

–4 

–4 

–4 +4 

–4 
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Figure 4.16: The un-relaxed structures of surface layers convergence for Pd2As along the low 

MI plane (100), (110) and (111). 

 

 

Figure 4.17: Slab depth vs total energy plot for Pd2As. (a) The most stable (100), (b) the 

moderate stable (110) and (c) the least stable (111) surfaces. 

 

28Layers 

21Layers 

14Layers 

7Layers 

15Layers 

10Layers 

20Layers 

5Layers 

(100)- Surface 

(111)- Surface 

(110)- Surface 

15Layers 

10Layers 

20Layers 

(a) (b) (c) 



 
 

75 
 

Table 4.12: Surface layer convergence of (100), (111) and (110) surfaces, number of atoms 

per slab, total energy (eV) and surface energies (J/m2) for Pd2As system. 
Surface slab Number of 

atoms on slab 

Number of 

layers 

Total energy 

(slab) (eV) 

Surface energy (J/m2)   

Unrelaxed 

(100) 

9 7L –45.8625 0.832 

18 14L –94.3861 0.771 

27 

36 

21L 

28L 

–142.8463 

–191.2873 

0.729 

0.694 

(111) 

18 5L –88.5347 1.142 

27 10L –136.9446 1.142 

36 

45 

15L 

20L 

–185.3089 

–233.7017 

1.129 

1.129 

(110) 

18 10L –91.2006 1.062 

27 15L –139.4895 1.072 

36 20L –187.7882 1.079 

 The twenty one layer (21) slab for (100) surface and the fifteen layer (15L) slab for (110) and 

(111) surface were used to create 2x2 supercell structures. The supercell surfaces were relaxed 

allowing the atomic position to relax. Further relaxation were performed with the bottom 2 

slabs fixed to the bulk coordination and the top slab was allowed to relax for (100) surface.  

 

Figure 4.18: The un-relaxed and relaxed supercell structures of surface layers convergence 

for Pd2As, (a) (100), (b) (111) and (c) (110) surface. 

The slabs for (100) surface are not identical due to stacking configuration [108]. For (110) 

surface, the relaxation was performed with the bottom 3 slabs fixed to the bulk coordination, 

(c) 

(b) (a) 
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while for (111) the bottom slab (5L) was frozen. Table 4.13 shows the supercell surface results 

after relaxation. The order of surface stability followed as: (100) > (110) > (111) for Pd2As 

model. The (100) surface had the lowest surface energy amongst all the surfaces, thus more 

stable and it was considered a working surface. Moreover, the un-relaxed and relaxed supercell 

structures for the model Pd2As (100), (110) and (111) surfaces are shown on the Figure 4.18(a), 

4.18(b) and 4.18(c), respectively. 

 

Table 4.13: Supercell optimization of (100), (111) and (110) surface layers convergence, number 

of atoms per slab, total energy (eV) and surface energies (J/m2) for Pd2As system. 
Surface slab Number of 

atoms on slab 

Number of 

layers 

Total energy 

(slab) (eV) 

Surface energy (J/m2) 

Relaxed 

(100) 108 21 –583.0595 1.128 

(111) 

(110) 

144 

108 

15 

15 

–745.6482 

–563.6283 

1.743 

1.594 
 

4.7.3 Analysis of the working surfaces 

Also for the Pd2As a thorough appreciation of the mineral surface was required in order to 

understand the collector binding environment. The palladoarsenide working surface consisted 

of ridges of As atoms, with Pd atoms inhabiting the clefts between ridges, as shown in Figure 

4.19. When considering the binding of bridging ligands, which can interact with two surface 

metals simultaneously regarded is the distance between the metal sites. For Pd2As working 

surface, the surface inter-palladium distance was 3.655 Å and the distance for the Pd between 

the cleft was 3.133 Å as shown in Figure 4.19. As such the As lone pairs, causes unlikely 

bridging of the ligands on the two Pd atoms in different clefts simultaneously, due to the 

implicit high steric strain.  

Table 4.14 shows the bulk and surface coordination and surface energy of (100) surface of 

Pd2As. The coordination for various atoms changed after cleaving the surface. The Pd atom for 

the bulk Pd2As was 4 and 5-coordinated and after surface cleavage it reduced to 3-coordination 

for (100) surface. For the As atom, the bulk structure was 9-coordinated, while the (100) surface 

reduced to 6-coordination. The Pd-Pd atoms for the bulk structure and (100) surface were 2-

coordinated. 
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Table 4.14: Bulk and surface coordination, supercell optimization of (100) surface showing 

number of atoms per slab and surface energies (J/m2) for Pd2As system. 

Model #atoms 
Coordination Surface energy 

Pd As Pd–Pd (J.m–2) 

Pd2As 
Bulk 9 4,5 9 2 – 

(100) 108 3 6 2 1.128 

 

 

 

Figure 4.19: Top-view (left) and side view (Right) of the top three layers (3L) on 2x2 

supercell working surface of (100) palladoarsenide surface. Showing raised As ridges and 

Pd atoms inhabiting the clefts between ridges (Right), with the resulting bond distances 

(Left). 
 

4.8 Surface morphologies of PtAs2, PtAsS and Pd2As 

surface structures 

The morphology of PtAs2, PtAsS and Pd2As structures from crystal structure can be 

predicted by using calculated surface energies within METADISE code [122]. The calculated 

thermodynamically equilibrium morphologies of the relaxed (100), (110) and (111) PtAs2, 

PtAsS and Pd2As surfaces are presented in Figure 4.20. Our results indicated that (100) surface 

was the most dominant surface as expressed by the calculated surface morphologies, followed 

by (111) and (110) surface for PtAs2 and PtAsS (VCA) models. For Pd2As, the (100) surface 

was the dominant surface as expressed by surface morphologies, followed by (110) and lastly, 

the (111) surface. We observed that for PtAsS (CE), only the (100) surface appeared on the 

morphology, suggesting that the PtAsS mineral may not cleave along the (110) and (111) 

surfaces. However, for PtAsS (VCA), the (100) and (111) surfaces appeared on the 

morphology, suggesting that the PtAsS (VCA) model may not cleave along the (110) surface. 

However, in this case the (110) and (111) were also exposed largely, suggesting that these 

planes may cleave during mineral crushing. 
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Figure 4.20: The calculated equilibrium surface morphologies: (a) PtAs2, (b) PtAsS (CE), 

(c) PtAsS (VCA) and (d) Pd2As surface structures. 
 

4.9 Electronic structures of the bulk and clean (100) surface 

for PtAs2, PtAsS and Pd2As systems 

In this section we discussed the density of states (DOS) of the bulk structures and the most 

stable (100) surface of PtAs2, PtAsS and Pd2As. The atomic charges from Bader analysis for 

all the structures are discussed. These are important for depicting the nature of bonding 

behaviour of the bulk and surface. The plots showed both the total density of states (TDOS) 

and partial density of states (PDOS) of platinum, palladium, arsenic and sulphur atoms in their 

respective structures. 

4.9.1 Total density of states for PtAs2, PtAsS and Pd2As structures 

In order to correlate the structural and mechanical stability of PtAs2, PtAsS and Pd2As 

systems, we compare their total density of states plots in the Figure 4.21 below. From the 

literature, it is reported that the density of states of structures of the same composition can show 

the stability trend with respect to their behaviour at the Fermi level [95] . The structure with 

the lowest and highest DOS at the Fermi energy is considered the most and least stable, 

respectively [94, 95]. A sharp peak was noted for the PtAsS (VCA) near the Fermi energy. 

PtAs2 
PtAsS (CE) PtAsS (VCA) 

(a) (b) (c) (d) 

Pd2As 
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Figure 4.21: Comparison of the total density of states for PtAs2, PtAsS and Pd2As structures. 

 

Most importantly, it was clear that PtAs2 structure had the lower states at the EF. This 

indicated that PtAs2 was the most stable structure. However, the PtAsS (CE) displayed the 

highest number of states at the EF which confirms that it was the least stable structure. The 

PtAsS (VCA) and Pd2As structures were intermediately stable. Interestingly, our density of 

states analyses were consistent with the stability trend as predicted by the heats of formation. 

The predicted phase stability trend using DOS is as follows: PtAs2 > Pd2As > PtAsS (VCA) > 

PtAsS (CE). 

4.9.2 Density of states and Bader analysis 

Figure 4.22(a) displayed the DOS for PtAs2 and we found that the Pt 5d-orbital had little 

(almost zero states) contribution at the Fermi energy (EF) and low states at the conduction band 

(CB), with a highest states sharp peak at the valence band (VB). The As 4p-orbitals were 

observed to have little contribution at the EF. Moreover, the arsenic 4s-orbitals dominated more 

at and below –10.0 eV, while the p-orbital contributes significantly at around –6.0 eV and 

above. Note that we observed two character of the As atoms designated as As1 and As2 atoms. 

The total density of states (TDOS) showed a pseudo gap forming a band gap of 0.104 eV at the 

EF. In addition, the system was suggested to be a semiconductor. Thus, PtAs2 was more stable 

because the elements Pt and As have the lowest density of states at the EF. 
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Figure 4.22(b) shows the TDOS and the PDOS of the top Pt and As on PtAs2 (100) surface. 

We observed that the TDOS display a metallic behaviour with no band gap, which changed 

from the semiconductor band gap on the bulk structure.  Interestingly, we observed that the EF 

fell deep into the pseudo gap suggesting stability. We found that the Pt (Pt1 and Pt2) 5d-orbital 

have a significant contribution at the EF and at the conduction band with a highest state sharp 

peak at the valence band. The As (As1 and As2) 4p-orbital were observed to have a contribution 

at the EF. The arsenic s-orbital dominated at around –10.0 eV, while the p-orbital contributed 

significantly at around –2.0 eV. These observations suggested that both Pt and As are equally 

active on the surface and may both interact strongly with adsorbate. 

 

Figure 4.22: TDOS and PDOS of the bulk structure and top most platinum and arsenic atoms: 

(a) Bulk PtAs2 and (b) PtAs2 (100) surface.  

In a case of the PtAsS (CE) structure (Figure 4.23(a)), the Pt 5d-orbital showed a greater 

contribution at the Fermi energy and at the conduction band, with a highest states sharp peak 

at the valence band. The As 4p-orbitals had greater contribution at the EF, but lower than those 

of S 3p-orbital. Moreover, the arsenic s-orbital dominated more below –10.0 eV, while the p-

orbital contributes significantly at around 3.0 eV, with a sharp peak at the conduction band. 

The sulphur 3s-orbital dominated more at around –15.0 eV, while the 3p-orbital contributes 

significantly at around –2.0 eV as shown in Figure 4.5(b). The system showed a metallic 

(a) 

(b) 
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behaviour because of the absence of band gap, which showed the nature of platarsite. Thus, 

PtAsS (CE) was less stable since it had the highest density of states at the EF.  

The TDOS and PDOS of the top Pt, As and S atoms on PtAsS (CE) are shown in Figure 

4.23(b). The TDOS displayed similar behaviour as that of PtAsS (VCA) in particular at the EF, 

where the EF almost fell deep into the pseudo gap. We found that the Pt (Pt1 and Pt2) 5d-orbital 

have a significant contribution at the EF and the valence band and the character of the sharp 

broad peak is similar to that of PtAsS (VCA). The As and S p-orbital had little contribution at 

the EF and we noted that behaviour of the S 3p-orbital is similar to that observed on PtAsS 

(VCA), which indicated that the S 3p-orbital dominated more than As 4p-orbital between –1.0 

and –6.0 eV. We observed that the As 4s-orbital dominated more at –11.0 eV, while the S 3s-

orbital contributed significantly at around –14.0 eV, with a sharp peak at the valence band. This 

also explains the contribution of the s-orbital peaks below –10.0 eV on PtAsS (VCA). This 

indicated that both VCA and CE gave similar character of platarsite. 

  

Figure 4.23: TDOS and PDOS of the bulk structure and top most platinum, arsenic and 

sulphur atoms on (a) PtAsS (CE) and (b) PtAsS (CE) (100) surface. 

 

(a) (b) 
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Figure 4.24: TDOS and PDOS of the bulk structure and top most platinum, arsenic and sulphur 

atoms on (a) PtAsS (VCA) and (b) PtAsS (VCA) (100) surface. 
 

The TDOS for the PtAsS (VCA) was metallic, since there was no band gap observed at the 

EF (Figure 4.24(a). The Pt 5d-orbital showed a greater contribution at the Fermi energy and at 

the conduction band, with a highest state sharp peak at the valence band. The As 4p-orbitals 

and S 3p-orbitals (As/S 4p-3p hybrid) were observed to have greater contribution at the EF, 

moreover, the arsenic and sulphur s-orbitals dominated more below –10.0 eV, while the p-

orbital contributed significantly below 10.0 eV.  

The PtAsS (VCA) DOS in Figure 4.24(b), we noted that the EF shifts into the pseudo gap 

for the (100) surface suggesting stability, which was not the case for the bulk. The TDOS 

showed a metallic behaviour since there was no band gap observed at the EF. We found that 

the Pt 5d-orbital had a greater contribution at the EF and at the conduction band with a highest 

state sharp peak at the valence band. The As/S p-orbital were observed to have a contribution 

at the EF. It has been observed that for As/S PDOS, the s-orbital increased in states at the 

conduction band. This indicated that there was electron loss from the s-orbital to the p-orbital. 

The As/S s-orbitals dominated more below –10.0 eV and above 0.0 eV, while the p-orbital 

contributed significantly below 5.0 eV. 

 

(a) 
(b) 
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Figure 4.25: TDOS and PDOS of the bulk structure and top most palladium and arsenic atoms 

on (a) Pd2As and (b) Pd2As (100) surface. 

 

The total density of states (TDOS) for Pd2As showed a metallic behaviour since there was 

no band gap observed at the EF (Figure 4.25(a)). The Pd2As bulk structure has four sites 

occupied by Pd and two sites occupied by As atoms, these were found to display different DOS 

character. We found that the Pd 4d-orbital have much contribution at the EF than the As. We 

observed that between –2.0 eV and –5.0 eV the Pd had the greater contribution while the As 

had almost zero states. Furthermore, we observed that Pd1 and Pd4 have similar PDOS 

(a) 

(b) 
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behaviour. The As 4p-orbitals were observed to have little contribution at the EF. Moreover, 

the arsenic (As1) and (As2) 4s-orbitals dominates more at around –13.0 eV, while the 4p-

orbital contributed significantly at around –6.0 eV (Figure 4.6(b)). Moreover, the states were 

low at the EF with the EF cutting the peak at its highest point. 

Figure 4.25(b) display the DOS for Pd2As (100) surface and we found that the TDOS 

showed a metallic behaviour since there was no band gap observed at the EF. The PDOS 

showed two Pd atoms and one As atom character. We observed that the palladium (Pd1 and 

Pd2) 4d-orbital atoms have greater contribution between –1.0 and –5.0 eV with a sharp broad 

peak and very little contribution at the EF. The As 4p-orbital had low states at the EF, with As 

4s-orbital being very low. The arsenic 4s-orbital dominated at around –12.0 eV, while the 4p-

orbital contributed significantly at around –5.0 eV, with a sharp peak at the valence band. 

Table 4.15: The calculated Bader analyses for the bulk and relaxed (100) surface of PtAs2, 

PtAsS (CE) and Pd2As. 

  Bader Charge (|e–|) 

Model Atom Bulk (100) Surfaces 

PtAs2 
Pt –0.46 –0.45 

As1 +0.21 +0.12 

As2 +0.25 +0.12 

 

PtAsS-CE 

Pt1 
–0.12 

–0.19 

Pt2 –0.08 

As1 +0.58 +0.45 

S1 –0.46 –0.40 

Pd2As 

Pd1 –0.02 –0.13 

Pd2 –0.10 –0.10 

Pd3 –0.09 – 

Pd4 –0.01 – 

As1 +0.10 +0.11 

As2 +0.12 – 

Table 4.15 summarizes the Bader charges of (100) surface of PtAs2, PtAsS (CE) and Pd2As 

in comparison with the Bader charges of the bulk structures. Note that the PtAsS (VCA) model 

could not produce population charges due to the complexity of the virtual As/S atoms mixed 

and occupying the same lattice position. The focus was more on the charges of the top two 

layers atoms. The charges for Pt, Pd and S atoms adopted negative charges, while the As atoms 

adopted positive charges for PtAs2, PtAsS (CE) and Pd2As models. We noted that the bulk 

PtAs2 structure possess a charge of –0.46|e–| on Pt atom and positive charges of +0.21|e–| and 

+0.25|e–| on As atoms and for PtAs2 (100) surface, the Pt and As atoms adopted –0.45|e–| and 

+0.12|e–| charges, respectively. In comparison of PtAs2 bulk structure with (100) surface, we 

noted that Pt atom lost 0.01|e–| charge, while As atom gained charges and both As1 and As2 and 

adopted same charges on the surface. The Bader charges for PtAsS (CE) were –0.12|e–|, +0.58|e–
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| and –0.46|e–| for Pt, As and S atoms, respectively. For PtAsS (CE) (100) surface, we noted 

charges of –0.19|e–|, –0.08|e–|, +0.45|e–| and –0.40|e–| for Pt1, Pt2, As1 and S1 atoms, 

respectively. This indicated that the Pt atom resulted in two different character, where Pt1 gained 

0.07|e–|, while Pt2 lost 0.04|e–|, with the As atom gaining 0.13|e–| and S atom losing 0.06|e–| 

charges. Furthermore, Pd2As bulk structure adopted charges of –0.02|e–|, –0.10|e–|, –0.09|e–| and 

–0.01|e–| for Pd1, Pd2, Pd3 and Pd4 atoms, while As1 and As2 atoms adopted charges of 

+0.10|e–| and +0.12|e–|, respectively. Since the Pd1 and Pd4 had similar PDOS character, we 

noted that their Bader charges were almost equal. The Pd2As (100) surface was found to possess 

–0.13|e–|, –0.10|e–| and +0.11|e–| charges for Pd1, Pd2 and As1 atoms, respectively. This showed 

that Pd1 gained 0.11|e–|, while Pd2 remained unchanged, with the As1 atom losing only 0.01|e–

| charge. All the charges showed different behaviour for PtAs2, PtAsS and Pd2As structures. 

Since the surface cleavage resulted in change of the coordination, thus the charges of the surface 

atoms changed.  

These are complimented by the density of states, where we observed a decrease in Pt d-orbital 

states at the valence band for PtAs2 (100) surface, which suggested electron loss. The PtAs2 As 

p-orbital states on the bulk were low at the EF and we noted an increase in states at the EF for 

PtAs2 (100) surface, this indicated electron gain. The case of PtAsS (VCA) showed two character 

of Pt atoms on the Bader charges, but the Pt d-orbital PDOS were the same, as such the difference 

on charges was due to the coordination of the Pt atoms on the surface. We noted that Pt1 is 

coordinated to two S atoms in layer 1, two As atoms in layer 3 and one As atom in the first layer 

of slab 2, while Pt2 is coordinated to two As atom in layer 1, two S atoms in layer 3 and one S 

atom in the first layer of slab 2. As such this indicated that Pt1 is coordinated to three As atoms, 

while Pt2 is coordinated to three S atoms on the PtAsS (VCA) (100) surface. Since we noted that 

S atoms gain charges, while As atoms loses charges, this suggested that Pt1 gain charges from 

As atoms, while Pt2 lost charges to S atoms. This is the reason the PDOS could not clear show 

the difference on Pt and as well on the As and S atoms PDOS. However, we noted that the s-

orbital on As atom was reduced at the EF to zero states on the PtAsS (VCA) (100) surface, while 

it dominated the EF on the PtAsS (VCA) bulk. This suggested greater electron loss from s-orbital 

to the As atom. Comparison of the Pd2As bulk and (100) surface, it was observed that Pd1, Pd2 

and As1 reduced states at the EF. However, since Pd2 did not change in Bader charges, we noted 

that the splitting peaks were merged into a broad splitting peak. Interestingly, we noted that the 

s-orbital on As1 atom was reduced to zero states on the surface compared to the bulk, suggesting 

that the 0.01|e–| charge was depleted from the s-orbital.  
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4.10 Summary 

In this chapter we have cleaved the PtAs2, PtAsS and Pd2As surface and performed surface 

structural relaxations. The results obtained were achieved by the use of sufficient number of 

plane-waves. The cut-off energy suitable to converge the total energy of the surface systems 

were found to be 450 for PtAs2, PtAsS and 500 eV for Pd2As. We also employed k-points for 

all the geometry optimization of the surfaces, the 4x4x1 for PtAs2, PtAsS and 5x3x1 k-point 

mesh for Pd2As surfaces were used. The three low-Miller index (100), (110) and (111) surfaces 

were considered and cleaved from the relaxed bulk structures. Different surface termination 

and surface layers were investigated and considered the termination and slab thickness that is 

favorable with the lowest surface energy. The Term.2 for (100) and (110) surface and Term.3 

for (111) were the most stable surface terminations for PtAs2. For PtAsS (CE) model, the 

Term.2 for all the (100), (111) and (110) surfaces were found the most stable. The PtAsS 

(VCA) showed that Term.2 for (100) and Term.3 for (111) and Term.1 for (110) surface were 

found the most stable. Lastly, the Term.1 for (100) and (111) and Term.4 for (110) surface 

indicated that they were the most stable terminations for Pd2As model. The fifteen layer (15L) 

slab and twenty one layer (21L) slab were chosen for the three low Miller index planes for all 

surface structures and used to create 2x2 supercell structures.  From the data, it was readily 

apparent that the (100) surface was the most stable (working) surface for all the minerals. The 

order of surface stability followed as: (100) > (111) > (110) for PtAsS and PtAs2 structures. In 

addition, Pd2As structure showed the surface stability order as: (100) > (110) > (111).  

The density of states for PtAs2 showed that the system was a semiconductor with a band gap 

of 0.104 eV. The total density of states showed a metallic behaviour for PtAsS (CE), PtAsS 

(VCA) and Pd2As since there was no band gap observed and there were states at the EF. Most 

importantly, it was clear that PtAs2 had lower number of states at the EF as compared to the 

PtAsS and Pd2As structures. This indicated that PtAs2 was the most stable structure. The Pt, Pd 

and S atoms showed negative Bader charges, while As atom showed a positive charge for 

PtAs2, PtAsS (CE) and Pd2As.  

The density of states for (100) surface of PtAs2, PtAsS (CE), PtAsS (VCA) and Pd2As 

showed a metallic behaviour since no band gap was observed at the EF. The surface structure, 

PtAsS (CE) was found the most stable because of the lowest density of states contribution at 

the EF and although it had similar character to that of VCA. The Bader charges indicated that 

the cleavage of the surfaces results in change in atomic charges, either gain or lose which is as a 

result of change of the coordination. 
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CHAPTER 5 

Summary and conclusions 

The dissertation gave an overall perspective of the structural, thermodynamic, elastic, 

mechanical, vibrational, electronic and surface properties of PtAs2, PtAsS and Pd2As minerals 

structures using density functional theory VASP and CASTEP codes. The results were 

achieved by the use of sufficient number of plane-waves. We have determined the cut-off 

energy suitable to converge the total energy of the systems to be 500 eV for the bulk PtAs2, 

PtAsS and 450 eV for the bulk Pd2As. The number of k-points of 6x6x6 for PtAs2 and PtAsS 

and 7x7x14 for Pd2As were found sufficient to converge the bulk structures. The geometry 

optimizations for all the structures were performed to compare their structural properties. The 

lattice parameters for these systems were allowed to vary, thereby minimizing the structures to 

their stable form. We found that the lattice parameters were in good agreement with the 

experimental lattice parameters which was acceptable for density functional theory. The binary 

ground state diagram for the cluster expansion showed that all structures have negative heats 

of formation, hence they were thermodynamically stable (miscible constituents). Moreover, the 

cluster expansion showed a greater stability at 50/50 (x = 0.5) percentage, where As and S 

atoms were equally distributed in the structure with a S–As dimer bond formed at the centre. 

The heats of formation divulged that all the structures had negative heats of formation. In 

addition, the heats of formation values suggested that the PtAs2 structure was the most stable 

(i.e. energetically favourable). The PtAsS (CE) was found the least stable, while the PtAsS 

(VCA) and Pd2As structures were intermediately metastable.  

The elastic constants for the cubic structures, PtAs2 and PtAsS (VCA ad CE) and a 

monoclinic structure Pd2As and the bulk modulus (B), tetragonal shear modulus (C'), isotropic 

shear modulus (G) and Young’s modulus (E) were calculated. In addition, the anisotropic factor 

(A), Poisson’s ratio (v), the bulk to shear (B/G) and the Cauchy pressures C12 – C44 were also 

calculated. The cubic systems PtAs2 and PtAsS (CE) were mechanically stable since their 

values of C11, C12 and C44 were all positive and greater than zero. The cubic stability conditions 

were also satisfied. However, the PtAsS (VCA) structure did not satisfy the necessary 

conditions of a cubic structure, since C11 was much lesser than C12 and C44 and C' being 

negative, which suggested instability. Furthermore, the Pd2As structure was mechanically 

stable since all the mechanical stability criteria for a monoclinic structure were satisfied. A ratio 



 
 

88 
 

of bulk to shear was introduced, where a high B/G value of greater than 1.75 is associated with 

ductility, while a lower value represented brittleness. Our results showed that the structures 

PtAsS (CE) and Pd2As were all ductile due to high values of B/G, whereas the PtAsS (VCA) 

and PtAs2 were brittle since they had a lower B/G values than 1.75. The calculated Young’s 

modulus indicated that PtAs2 was much stiffer, since it had the largest value of elastic constant. 

This suggested that PtAs2 structure was mechanically stronger compared to the PtAsS 

structures. The types of bonding in a solid were predicted from the sign of a Cauchy pressure 

(C12 – C44). The PtAs2 was dominantly covalent bonded compound since the Cauchy pressure 

(C12 – C44 < 0) was negative, while the PtAsS structures and Pd2As were ionic bonded because 

the Cauchy pressure (C12 – C44 > 0) were positive. Moreover, this was also determined from 

the bond sorting using Poisson’s ratio, where a covalently bonded compounds has a Poisson’s 

ratio value lower than 0.25, while the typical ionic compounds is nearly 0.25 or higher. The 

Poisson’s ratio values for PtAsS (VCA), Pd2As and PtAsS (CE) structures exhibited ionic 

bonding. However, it was noticeable that the Poisson’s ratio of PtAs2 phase was 0.23 which 

indicated a dominant covalent bonding.  

The phonon dispersion curves and the phonon partial density of states (PPDOS) for PtAs2, 

PtAsS (CE) and Pd2As had no negative frequencies (soft modes) along the gamma direction, 

which suggested vibrational stability. The density of states for PtAs2 bulk structure showed that 

the system was a semiconductor with a band gap of 0.104 eV. The total density of states showed 

a metallic behaviour for PtAsS (CE), PtAsS (VCA) and Pd2As structures since there was no 

band gap observed at the EF. Most importantly, it was clear that PtAs2 had lower number of 

states at the EF as compared to PtAsS structures. This indicated that PtAs2 was the most stable 

structure. The Pt and Pd species showed negative Bader charges, while As species showed a 

positive charge on both PtAs2 and Pd2As structures. The PtAsS (CE) showed a negative charge 

for Pt and S species and a positive charge for As species, while the PtAsS (VCA) structure 

showed a negative and positive Mulliken populations atomic charges for Pt and As/S species. 

The As atom gained charges from the top layers of Pt and again from the sub layers of Pt atoms, 

while the Pt top layer atoms lost charges. The charge loss and gain for all atoms on the surface 

were very small, thus there would be no change in oxidation states. 

For surface study, we have employed the same cut-off energy as for the bulk structures and 

determined the suitable k-points of the surfaces as 4x4x1 for PtAs2, PtAsS and 5x3x1 k-point 

mesh for Pd2As surfaces. The three low-miller index (100), (111) and (110) were considered 

and cleaved from the relaxed bulk structures. Different surface layers were investigated and 

considered the slab thickness that was favorable with the lowest surface energy. The Term.2 
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for (100) and (110) and Term.3 for (111) were the most stable surface terminations for PtAs2 

and PtAsS (CE). The case of PtAsS (VCA) mineral showed that the Term.2 for (100) and the 

Term.3 for (111) and Term.1 for (110) surface were the most stable terminations. However, 

the Term.2 for (110) surface was considered due to the non-dipole within the structure. The 

Pd2As showed that Term.1 for (100) and (111) and Term.4 for (110) surface were the most 

stable terminations. The fifteen layer slab and twenty one layer slab were chosen for the three 

low Miller index planes for all the structures and were used to create 2x2 supercell structures 

and their surface energies order in stability decreases as: (100) > (111) > (110) for PtAs2 and 

PtAsS (VCA and CE), while for Pd2As decreases as (100) > (110) > (111). From the data, it is 

readily apparent that the (100) surface was the most stable surface for all the minerals PtAs2, 

PtAsS (VCA and CE) and Pd2As structures. The calculated thermodynamically equilibrium 

morphologies of the relaxed surface structures indicated that the (100) surface was the most 

dominant surface for all the surface structures. 

The density of states for (100) surface of PtAs2 and Pd2As structures showed a metallic 

behaviour since no band gap was observed at the EF, while PtAsS structures showed a 

semiconductor behaviour with an indirect band gaps of 0.142 eV for PtAsS (CE) and 0.551 eV 

for PtAsS (VCA). This showed a transformation change from bulk (metallic) to surface 

(semiconductor) for PtAsS (CE and VCA), which could be explored for its flotation behaviour 

compared to the other minerals. We have found that the PtAsS (VCA) was the most stable 

because of the lowest DOS contribution at the EF. These findings gave more insights on the 

stability of these minerals and their surface stabilities which demonstrated the preferred plane 

cleavage of these minerals and may be applicable in their recovery.                                                                                                                                                                            

Recommendation and future work  

In this dissertation an investigation of structural, thermodynamic, elastic, mechanical, 

vibrational, electronic and surface stabilities of sperrylite (PtAs2), platarsite (PtAsS) and 

palladoarsenide (Pd2As) has been undertaken using density functional theory on which further 

research would be beneficial.  

The areas where information is lacking were highlighted in the literature review. Whilst 

some of these were addressed by the research in this dissertation, others remain. In particular, 

the design of novel collector reagents that plays a role in rendering these minerals hydrophobic 

and thus improving the floatability of these slow floating arsenide minerals. Furthermore, the 

reactivity chemistry of the collectors with the surfaces of these systems, that would describe 
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their recovery during flotation. The future studies could investigate and compare the nitrogen 

and oxygen based collectors into finding the best binding ligands that will ultimately promote 

recovery separation of these minerals from the gangue minerals. In addition the experimental 

micro-floatation and calorimetry approach would be beneficial in attaining the actual outcomes 

of those collectors that would have predicted strong binding onto the surface. Although the 

oxidation and hydration have been investigated previously, particularly for PtAs2, it would be 

beneficial to explore these for the other structures (i.e. PtAsS and Pd2As). In addition the 

investigation of water-collector adsorption on the surfaces would be paramount in attempting 

to emulate the actual flotation process.     

There are areas for further research that have been highlighted by the studies undertaken for 

this dissertation. These include the further exploring of the surface reconstruction of dipole 

unstable surfaces and introduction of impurities onto the surface. These impose questions of 

how realistic are those surfaces stabilities and would these reconstructed surfaces exhibit the 

thermodynamically stable surface models that would determine the experimental cleavage of 

these minerals during crushing/grinding?. How would the impurities substitution in the bulk 

structures affect or improve the structures in their stabilities?. These would help to confirm and 

possibly identify the behaviour of the bulk and surfaces that are contaminated and thus establish 

what could be possible cause to flotation decrease of the arsenide minerals. Furthermore, 

describe how the reconstructed surface interacts with collectors.  

This study has investigated the stability of PtAs2, PtAsS and Pd2As from heats of formations, 

mechanical, density of states, phonon dispersion curves and surface stability that are directly 

important in describing and predicting the stability of structures. This has demonstrated the 

importance of such approach where their stabilities have been established and proposed stable 

and less reactive (100) surfaces have been identified for all structures. Similar approaches have 

been employed previously and it has been pointed out that these may be implemented in other 

studies in order to predict, particularly the preferred surface cleavage of minerals that require 

fundamental insights that will be translated to their reactivity and giving direction into 

experimental tests for surface-ligands.  

The computational approach employed in this research to establish and demonstrate the bulk 

and structural stability of PtAs2, PtAsS and Pd2As that predicts their formation and cleavages 

that are paramount for the recovery of the minerals. This may be usefully applied to other 

systems and has laid a foundation in describing preferred surface cleavages and determining 

the lowest ground states of PtAsS system from CE and VCA. Some indication of how reliable 

the prediction of these stabilities properties are based on the outcomes of each property, for 
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example the heats of formation gave the same prediction as those from density of states and 

vibrational stabilities indicated similar behaviour from mechanical stabilities.  
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Appendix A: Explanation data of the project  

Project                                   – Computational modelling studies of PtAs2, PtAsS and Pd2As 

minerals and their stability done from structural, 

thermodynamic, elastic, mechanical, vibrational, electronic and 

surface properties. 

DFT (VASP)                          – Density functional theory method implemented in Vienna Ab-

initio Simulation Package (VASP) code used to study all the 

properties for PtAs2, PtAsS (CE) and Pd2As structures. 

DFT (CASTEP)                       – Density functional theory method implemented in Cambridge 

Serial Total Energy Package (CASTEP) code used to study all 

the properties for PtAsS (VCA) structure. 

Bulk structures                       – PtAs2, PtAsS and Pd2As bulk structures were used to study and 

investigate structural, thermodynamic, elastic, mechanical, 

vibrational, electronic and surface properties. 

                                                – The cluster expansion used to investigate and generate new 

stable PtAsS systems. The bulk structures PtAs2, PtAsS and 

Pd2As were used to study the low Miller index (100), (110) and 

(111). 

Low Miller index surfaces   – The investigation of the studied surfaces are done from testing 

different terminations, convergence of surface layers and slabs 

and creation of supercell structures. Their electronic structures 

were presented for all the three surfaces. 
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Appendix B: Tables 

Table B1.1 – B1.4 shows the atomic position (X, Y, Z) for the systems PtAs2, PtAsS (CE), 

PtAsS (VCA) and Pd2As. Table B1.5 showed 102 stable structures generated by cluster 

expansion. 

Table B1.1: The atomic positions (Wyckoff notation) in sperrylite (PtAs2) crystal structure 

[66]. 
Property Value 

Formula PtAs2 

Z 4 

Unit cell length (a=b=c) 5.967 Å 

Cell angles (α=β=γ) 90˚ 

Space-group Pa-3 (#205) 

Atoms Position X Y Z 

Pt1 

As1 

(4a) 

(8c) 

0.000 

0.383 

0.000 

0.383 

0.000 

0.383 

Pt1 denote the octahedral M(O) and As1 denote the arsenic forming dimer. 
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Table B1.2: The atomic positions (Wyckoff notation) in platarsite (PtAsS) CE structure [66]. 
Property Value 

Formula PtAsS 

Z 4 

Unit cell length (a=b=c) 5.428 Å 

Cell angles (α=β=γ) 90˚ 

Space-group Pa-3 (#205) 

Atoms Position X Y Z 

Pt1 (1a) 0.000 0.000 0.000 

Pt2 

Pt3 

Pt4 

As1 

As2 

As3 

As4 

S1 

S2 

S3 

S4 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

0.500 

0.000 

0.500 

0.385 

0.115 

0.385 

0.115 

0.615 

0.885 

0.615 

0.885 

0.000 

0.500 

0.500 

0.385 

0.615 

0.115 

0.885 

0.885 

0.115 

0.615 

0.385 

0.500 

0.500 

0.500 

0.385 

0.885 

0.885 

0.385 

0.115 

0.615 

0.615 

0.115 
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Table B1.3: The atomic positions (Wyckoff notation) in platarsite (PtAsS) VCA structure 

[66]. 
Property Value 

Formula PtAsS 

Z 4 

Unit cell length (a=b=c) 5.428 Å 

Cell angles (α=β=γ) 90˚ 

Space-group Pa-3 (#205) 

Atoms Position X Y Z 

Pt1 (1a) 0.000 0.000 0.000 

Pt2 

Pt3 

Pt4 

As1/S1 

As2/S2 

As3/S3 

As4/S4 

As5/S5 

As6/S6 

As7/S7 

As8/S8 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

(1a) 

0.500 

0.000 

0.500 

0.385 

0.115 

0.385 

0.115 

0.615 

0.885 

0.615 

0.885 

0.000 

0.500 

0.500 

0.385 

0.615 

0.115  

0.885 

0.885 

0.115 

0.615 

0.385 

0.500 

0.500 

0.500 

0.385 

0.885 

0.885 

0.385 

0.115 

0.615 

0.615 

0.115 

Pt1, Pt2, Pt3 and Pt4 denote the octahedral M(O) and tetrahedral M(T), respectively and As1/S1, As2/S2, 

As3/S3, As4/S4 As5/S5, As6/S6, As7/S7 and As8/S8 denote the dimers and linked arsenic/sulphurs, 

respectively. 
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Table B1.4: The atomic positions (Wyckoff notation) in palladoarsenide (Pd2As) 

crystal structure [66]. 
Property Value 

Formula Pd2As 

Z 3 

Unit cell length (a=b)  (c) 6.650 and 3.583 Å 

Cell angles (α=β)  (γ) 90˚ and 120˚ 

Space-group P-62m (#189) 

Atoms Position X Y Z 

Pd1 (3g) 0.257 0.000 0.500 

Pd2 

As1 

As2 

(3f) 

(2d) 

(1a) 

0.595 

0.333 

0.000 

0.000 

0.667 

0.000 

0.000 

0.500 

0.000 

Pd1 denote the octahedral M(O), Pd2 denote tetrahedral M(T), respectively and As1 denote the face- 

capping As(f), As2 denote linked As(l) arsenic, respectively. 
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Table B1.5: The ground state enthalpies of formation as derived by DFT and CE in eV/atom at the 

final iteration for Pt-As-S system. 
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Appendix C: Papers presented at conferences  

1. University of Limpopo Faculty of Science and Agriculture (FSA) post-graduate 

research day held at Fusion Boutique in Polokwane (2018) “Investigation of the 

structural, elastic, mechanical and electronic properties of PtAs2, PtAsS and Pd2As 

minerals”. 

2. Centre for High Performance Computing (CHPC) conference held at Century City 

Hotel in Cape Town (2018) “Ab-initio study of the structural, mechanical and electronic 

properties of PtAs2, PtAsS and Pd2As minerals”. 

3. South African Institute of Physics (SAIP) conference held at Protea Hotel Ranch Resort 

(2019) “Ab-initio studies of sperrylite, platarsite and palladoarsenide phase stability and 

surfaces”. 

4. University of Limpopo Faculty of Science and Agriculture (FSA) post-graduate 

research day held at Protea Hotel Ranch Resort (2019) “First-principle study of 

hydroxide and new novel collector adsorptions on sperrylite (100) surface”. 

 

 

 

 


