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Abstract

The ever increasing number of students who drop out of university remains a challenge
for Higher Education administrators. In response to this, different studies have been
conducted globally in order to identify student retention strategies to fix the problem.
However, the challenge continues to prevail year in and year out. Most of the studies
conducted in South Africa used statistical methods that ignore the temporal nature
of the process of student dropout. This study uses discrete-time survival techniques
to model the occurrence and timing of undergraduate engineering student dropout at
Tshwane University of Technology (TUT). Discrete-time survival analysis techniques
allow for a more appropriate utilisation of the longitudinal nature of institutional data,
where the time dependence of the data, time-varying factors and time-invariant factors
can all be accommodated in the analysis.

The temporal nature of the process of student dropout was analysed for the cohort of
students registered in engineering programmes for the first time in 2010 at Tshwane
University of Technology using discrete-time survival analysis methods. The cohort
was followed for five years from 2010 through 2014, inclusive. Of particular interest
was the incidence of dropout, the determinants of dropout, comparison of the single risk
discrete-time model with a competing risk discrete-time model, as well as testing for
the effects of unobserved heterogeneity. The study used administrative data obtained
from the ITS. The logit model was used to estimate the effects of race, gender, Matric
performance, performance in Matric Mathematics, residence type, English language
status and time on time to dropout with time measured in academic years. A discrete-
time competing risk model in the form of a multinomial logit model was also estimated
to account for the possible correlation between graduation and dropout. A frailty model
assuming a Gaussian distribution for the frailty term was also estimated to account for
unobserved heterogeneity.

The study established that the risk of dropout for nonwhite students is significantly
higher than that of white students. Furthermore, it was found that the effects of
residence type varied with time. For instance, in the first year students with private
based accommodation were more likely to dropout compared to those residing on-
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vi Abstract

campus. On the other hand, in the third year students accommodated in private
residences were less likely to dropout than those residing on-campus. The findings
also indicate that the effect of having English as a first language as opposed to as a
second language on the risk of dropout was only significant in the fourth year such
that first language English students were more at risk of dropout compared to second
language students. The findings also revealed inconsistencies between the estimates
from the single risk and the competing risk model. Moreover, the effect of unobserved
heterogeneity was found to be insignificant.

Recommendations from this study are that discrete-time survival analysis model is
more efficient than traditional methods used for analysis of student dropout and should
therefore be used for analysis of academic outcomes such as dropout. The model
can account for the temporal nature of the process of dropout. Both time-varying
and time-invariant explanatory variables can be included in the model.The effects of
time-invariant explanatory variables that might have time-varying effects can also be
investigated.
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Chapter 1

Orientation of the study

1.1 Introduction and background

This Chapter outlines the background of the study, research problem, the aim of the
study, objectives, significance of the study and the outline of the dissertation.

Student retention has, and remains one of the significant areas of discussion in higher
education (HE) globally (Berge & Huang, 2004). Improving student retention remains
a primary concern for many institutions. Different student retention strategies have
been developed to address this challenge; however, the problems and the challenges
continue to persist within the system. South Africa, like other countries, continues to
experience high dropout rates, and consequently poor retention and graduation rates.
At 15%, the graduation rate for HE in South Africa is reported to be one of the lowest
internationally (Letseka & Breier, 2008).

Studies on HE performance by undergraduate students in South Africa show that
universities of technology (UoTs) (formerly Technikons), tend to experience higher
dropouts than traditional universities (TUs) (Letseka & Breier, 2008). Of the 120,000
undergraduate students enrolled for the first time in 2000, 30% dropped out by the end
of the year (34% for UoTs and 25% for TUs). Dropouts decreased over the subsequent
years, with an overall total of 11% during 2001 (13% for UoTs and 9% for TUs) and
an overall total of 9% in 2002 (11% for UoTs and 7% for TUs). Furthermore, for the
2000 cohort of undergraduate students, 58% had dropped out from UoTs at the end of
2004, compared with 38% at TUs (Kraak, 2008).

The annual Council on Higher Education (CHE) VitalStats: Public Higher Education
reports for the four-year period ending in 2016 indicate that after six years of enrolment,
dropout rates for the 360-credit undergraduate diplomas were persistently high for
engineering fields compared to all other fields (CHE, 2014, 2013, 2012, 2011). The
dropout rates show a declining trend over the years; however, the numbers continue to
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be disturbingly high. A 2011 study based on a 2010 cohort of undergraduate students
at the Vaal University of Technology also revealed a high dropout rate for the Faculty
of Engineering compared to other faculties (vd Walt & Naidu, 2011).

Dropping out of university presents problems for students, families, educators, admin-
istrators and the government. Students leaving university without having completed
their studies may be exposed to various psycho-social problems. Examples include:
dissatisfaction with university experiences, disruptions of life plans, and being jobless
or being engaged in minor jobs to earn much less over a lifetime. Generally, in South
Africa, students who do not complete their tertiary qualification will most likely join
the millions of unemployed and have no prospects for a decent life (Bokaba & Tewari,
2014). Furthermore, leaving a higher education institution (HEI) without graduating
implies a loss in potential earning power and livelihood, lower job prospects, and a
weakened ability to accumulate assets and capital, not to mention personal and emo-
tional consequences.

HEIs are also affected by student dropout because much of the funding provided to
HEIs is based on student enrolments. The South African government pays universities
a subsidy for every student currently enrolled as well as for every graduate, so a failure
to complete a degree results in a loss of revenue for an HEI. The loss of revenue is
further compounded by the loss of tuition fees as a result of dropout. A report by the
then Department of Education (DoE) estimated the cost of the high dropout rates to
the country to be R1.3 billion a year (Letseka, 2009).

The persistent challenge of student retention underscores the need for continued re-
search in this area to develop more accurate predictive models of student dropout.
This study aims to make a case for using discrete-time survival analysis techniques to
model the occurrence and timing of student dropout. A case of engineering students
at Tshwane University of Technology (TUT) is considered.

1.2 Problem statement

Student academic outcomes in HEIs have been widely investigated in South Africa.
However, most of the studies followed a cross sectional approach and ignored the lon-
gitudinal nature of institutional data. In general, most of the models used in these
studies can be classified into the following categories: (i) logistic regression models
(Bokaba & Tewari, 2014; Sartorius & Sartorius, 2013; Zewotir et al., 2011; Eiselen et
al., 2007; Lourens & Smit, 2003), (ii) data mining models (Kirby & Dempster, 2014;
Mashiloane & Mchunu, 2013; Du Plessis & Botha, 2012; Kanakana & Olanrewaju, 2011;
Müller et al., 2007; Van der Merwe & De Beer, 2006) and (iii) various ordinary least
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squares (OLS) models (Van Rooy & Coetzee-Van Rooy, 2015; Van Zyl & Rothmann,
2012). Furthermore, most of the studies focused on important milestones, e.g. gradu-
ation, dropout after first year, passing a specific module/subject, etc. and as such the
outcome variable was formulated as binary. Under this approach, two-time points are
chosen and the probability of success/failure is modelled based on the student’s status
at the end of the specified time. The timing of the event is not included in the analysis,
hence it is not possible to determine when the event occurred. For instance, when
the interest is in dropout it is not possible to determine whether the student left the
institution in the first semester, the first year, second year or the sixth year, within the
two-time points.

Very few studies have analysed the temporal nature of student dropout. Moreover, very
few accounted for the competing nature of graduation and dropout. Among the few is
Visser & Hanslo (2005), who used descriptive survival techniques to analyse attrition
patterns of students at the University of Cape Town (UCT). In one of the first studies
using a competing risks approach, Murray (2014) used a continuous-time competing
risks approach to identify institutional and student specific factors influencing the type
of outcome experienced by undergraduate students when they leave the University of
KwaZulu-Natal (UKZN). The number of extra credit points taken (repeated) by a
student before leaving the university was used to represent the survival time.

Murray (2014) estimated the cumulative incidence function (CIF) for graduation, vol-
untary and involuntary dropout from separate cause-specific hazard regression models.
The results of the study indicate that when involuntary and voluntary dropouts are
treated as competing risks, students with some form of residence-based accommodation
graduated more earlier than those without residence-based accommodation. Having
some form of financial aid and higher Matric point score also contributed to students
to graduate more quickly. On the other hand, when graduation and voluntary dropout
are treated as competing risks, the results indicate that having some form of financial
aid and residence-based accommodation increased the length of time that students
stayed in the system before dropping out involuntarily. Finally, when graduation and
academic exclusion are treated as competing risks, access to some form of financial aid
and residence-based accommodation assists in preventing students from dropping out
voluntarily.

Zewotir et al. (2015) used a competing risk approach to identify factors associated
with successful completion or dropout from a master’s programme at the UKZN. The
study focused on factors associated with the actual number of years it took students to
graduate, while treating dropout as a competing risk; and the number of years it took
students to drop out, while treating graduation as a competing risk. The multinomial
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logit model suggested by Scott & Kennedy (2005) was used to compute the hazard rates
associated with dropout and degree completion for each year. The results show that
50% of the master’s students had either graduated or dropped out within two years of
registration. In terms of financial aid, the results showed that receiving some form of
financial funding appears to reduce the length of time it takes a student to drop out from
a master’s programme. Moreover, receiving some form of financial aid also reduces the
length of time it takes to successfully complete a master’s programme. When looking
at race, the results indicate that race has no significant effect on dropout. However,
for the students who eventually graduated, the results show that time to graduation
was shorter for African students.

Neethling (2015) also used a multinomial logit competing risk model proposed by Scott
& Kennedy (2005) to investigate determinants of both dropout and degree completion
at the UCT. Ndlovu (2015) modelled time to graduation at university using different
survival analysis techniques. Cox regression model was used as well as its discrete-time
extensions. The results showed that in relation to the Cox proportional hazards (PH)
model, the degree of flexibility was less as certain variable effects were satisfied to meet
the assumption of proportionality by stratifying on those variables, i.e. due to the
assumption of proportionality of hazards in Cox regression, the model was fitted with
faculty as a stratification variable and the faculty effect was thus sacrificed. On the
other hand, the discrete-time model enabled the inclusion of faculty as a covariate and
as such the effect of faculty in addition to gender and race could be analysed.

According to Ndlovu (2015), the use of the discrete-time model also provided accrual
probabilities from which a graduation profile could be constructed. The results of
the test for unobserved heterogeneity indicated that unavailability of variables did not
compromise both the Cox regression and the discrete-time model. The study also
showed that the discrete-time mixture competing risks model explained graduation
better than the cure model. The results on the cure models revealed the presence of a
sizable number of students that will eventually not graduate (Ndlovu, 2015).

Weybright, Caldwell, Xie, Wegner & Smith (2017) used discrete-time Cox regression
model to analyse the relationship between substance abuse, leisure experience and
school dropout, controlling for demographic and educational factors that have been
found to be significantly related to dropout. Besides the work done by Ndlovu (2015)
where time to graduation at university was modelled using different survival analysis
techniques including discrete-time mixture model to account for the presence of unob-
served heterogeneity, there is no record of studies that focused on academic outcomes,
specifically student dropout from a competing risks approach utilising techniques that
account for unobserved heterogeneity and/or dependent risks.
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Ishitani (2008) relates the advantages of applying discrete-time survival analysis in
studying student dropout over other techniques. Discrete-time survival analysis is
optimal in that enrolment status information of students from different time points
(including censored observations) can be incorporated; it is suited to estimating the
probability of dropout at different time points; it allows for the examination of prob-
ability of highly skewed binary dependent variables; and both time invariant and time-
varying covariates can be easily incorporated into the model. According to Kim (2014);
Singer & Willett (2003); Yamaguchi (1991), discrete-time survival analysis techniques
are appropriate for tied events such as data recorded in retention studies (month, term,
semester, year), as they can be handled in an unbiased manner. In essence the discrete-
time survival analysis provides an ideal framework, not only for answering descriptive
questions around student dropout, but for modelling the relationship between dropout
and its predictors as well (Singer & Willett, 1993).

The effects of failure to control for unobserved heterogeneity have been studied. It
has been shown that failure to control for unobserved heterogeneity produces biased
estimates in single risk models (Van den Berg, 2001; Lancaster, 1985; Heckman &
Singer, 1984a; Lancaster, 1979) as well as competing risks survival analysis models
(Van den Berg, 2001; Butler et al., 1989). Furthermore, it has been shown that failure
to control for unobserved heterogeneity results in negative duration dependence such
that increasing event hazard probabilities were diminished over time and decreasing
hazard probabilities were accelerated over time (Keiding et al., 1997; Hougaard, 1995;
Trussell & Richards, 1985; Heckman & Singer, 1984b). In the current study, it is not
possible to account for all variables that have been shown to affect dropout. The study
is limited to the variables that are available on the university database, hence the need
to control for unobserved heterogeneity.

1.3 Aim of the Study
The purpose of this study is to analyse the temporal nature of process of engineering
student dropout at TUT using discrete-time survival analysis methods.

1.3.1 Study objectives

The main objectives of the study are to:

• identify determinants of dropout,

• analyse the incidence of dropout,

• compare the risk profile of dropping out among different groups of students,
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• compare the discrete-time single-risk model with the competing-risk model,

• test the effects of unobserved heterogeneity in the single-risk model.

The data used in the study is extracted from the TUT Management Information System.
These data cover all first year students enrolled for undergraduate programmes in the
Faculty of Engineering and the Built Environment at TUT Pretoria West campus,
Gauteng, at the start of the 2010 academic year. These are all three-year programmes
which should be completed within three years. Students are tracked for a period of
five years. According to Blom (2014), tracking cohorts through undergraduate study
in South Africa for the purpose of estimating completion or dropout rates requires a
minimum time frame of four years. The student data from January 2010 until December
2014 was considered.

The data contains detailed transcript data from first year to dropout or graduation,
personal characteristics, measures of their Matric performance and information on
type of accommodation at each point in time. Dropout will be inferred from enrolment
records. For students who are still enrolled and have not achieved the diploma by the
end of the observation period, the duration is marked as censored. Similarly, students
who graduate within the five years are considered censored since they would not have
experienced the outcome of interest.

1.4 Significance of the study
This study aims to improve on the current body of knowledge by analysing the temporal
nature of student dropout using discrete-time survival analysis methods that account
for the effects of unobserved heterogeneity. It further attempts to highlight additional
knowledge gained by including the duration of survival, time-invariant factors and time-
varying factors as a basis for understanding the underlying pattern of student dropout.
Time to dropout is initially estimated as a single event, then the robustness of the
results is tested by estimating a competing risk model with dropout and graduation
jointly estimated. By considering both the discrete-time single risk and competing risk
models, the study allows for investigation of the competing nature between dropout
and graduation. The single risk model is further modelled accounting for unobserved
heterogeneity. This allows for investigation of the effects of unobserved or unmeasured
factors.

The discrete-time single risk as well as the competing risk model for dropout proposed
in this study will help in understanding factors that influence dropout of undergraduate
engineering students at TUT. The models can be generalised to assist in early iden-
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tification of undergraduate engineering students who are more likely to be at risk of
dropping out at TUT and other institutions similar to TUT. Furthermore, the models
can be used to determine when undergraduate engineering students at TUT and other
similar institutions are at the greatest risk of dropping out. Knowing when students
are more likely to be at risk of dropout will assist administrators to develop appropriate
intervention strategies and remedial programs at the identified risk periods, consider-
ing the risk profile. The interventions can be proactive in a prioritised manner taking
into account the limited academic resources.

1.5 Dissertation outline
This dissertation is organised into five chapters. Chapter 2 presents a comprehens-
ive literature review of literature related to student dropout in HE. Chapter 2 also
introduces survival analysis and its applications in HE student academic outcomes.
Special attention is paid to the single risk discrete-time model as well as the compet-
ing risk discrete-time models. The Chapter also includes summary findings on factors
associated with HE academic student outcomes in South Africa. In Chapter 3, the
maximum likelihood estimators for the single risk discrete-time model as well as the
discrete-time competing risk model are presented. The Chapter begins with a presenta-
tion of continuous-time survival analysis functions as a basis for the discrete-time case.
A model that accounts for unobserved heterogeneity in the single risk case, model as-
sessment and diagnostic methods are also outlined. The results of the data analysis
based on the models outlined in Chapter 3 are presented in Chapter 4. A description of
the data used in the study is also presented in Chapter 4. The study closes with a dis-
cussion of the results, conclusions and recommendations in Chapter 5. The limitations
of the study are also presented in Chapter 5.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a literature review of the analysis of the process of student dro-
pout. The chapter starts with a brief review of the definition of dropout along with
a discussion on early theories of the process of student dropout. Techniques used in
previous studies to analyse dropout as well as their advantages and limitations are
also discussed. Emphasis is placed on the origins and development of survival analysis
techniques up to its application in student academic outcomes, and in particular dro-
pout. The chapter concludes with a concise review of factors associated with student
academic outcomes in South Africa.

2.2 Student retention/dropout

Both nationally and internationally, there is no standardised terminology used to de-
scribe and measure student success or academic outcomes across institutions, thus
making the task of explaining and understanding student academic success a complex
exercise (Letseka et al., 2010). Nevertheless, most definitions embrace the idea of per-
sistence to the completion of the student’s enrolled program. According to Hagedorn
(2005), student retention and dropout have been the most common measures used in
educational research to measure academic student outcomes. Increased retention is the
focus of many institutions’ quality measures and improvement efforts (Berge & Huang,
2004).

Student retention/dropout can be measured from multiple viewpoints: namely, insti-
tutional, system, academic discipline and by course (Hagedorn, 2005). Institutional
retention is based on the percentage of students who return to the same institution
year after year until the completion of their studies. This is the most commonly used
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method by universities and colleges to measure their performance (Ashby, 2004). Sys-
tem retention involves tracking students across all HEIs instead of only the institution
they are enrolled in. This means that a student who leaves a particular institution, and
enrols at another institution where he/she completes his/her studies, is considered re-
tained within the system of HE. This measure requires tracking students at a national
or even international level, which can be costly and difficult to implement. When it
comes to academic discipline retention, the focus is on retention within a specific aca-
demic discipline. From this viewpoint, students who enrol in a HEI with a statistics
major and later change to another major, are classified as not retained.

Retention at an individual course level focuses on classes with low levels of student re-
tention within an institution. Measuring retention from this angle poses complications
since one must decide on the number of class sessions sufficient to constitute reten-
tion (Styron Jr, 2010). In general, these viewpoints can sometimes contradict each
other. For example, students who change institutions may still graduate, however,
their departure from the initial institution is in opposition to their goal of retaining
its students until graduation. On the other hand, their departure does not adversely
affect the overall HE system retention goals. Researchers need to be careful to choose
an operational definition of retention that is suitable for the research problem under
investigation (Bean & Metzner, 1985). Given the purpose of the study, the goal is that
of a single institution and student retention is associated with membership at a specific
institution, rather than membership in HEIs in general.

The study focuses on dropout within a specific academic discipline at an institutional
level. The definition provided by Fowler & Luna (2009) and Hagedorn (2005) is adopted
in the study. The authors define retention in HE as students’ continued enrolment
until successful completion of an enrolled program (Fowler & Luna, 2009; Hagedorn,
2005). On the other hand, dropout is typically defined as the opposite of retention
(Hagedorn, 2005). According to Pocock (2012), dropout is the common terminology
used in the literature to describe students who leave a specific HEI without completing
a qualification in their chosen initial degree. This definition has been criticised by
Astin (1975) for being simplistic and for incorrectly defining dropout, as the so-called
dropouts may eventually become non-dropouts by returning to the institution and vice
versa. However, the author concedes that there seems to be no practical way out of
the dilemma as an accurate classification of dropouts versus non-dropouts can only be
attained when all the students have either died without graduating or have graduated.

In order to address this shortcoming, Tinto (1993) distinguished stopout from dropout.
Tinto (1993) defined stopouts as students who, after leaving an HEI, return at a later
time to complete their degrees, while dropouts are students who leave an HEI and do
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not return. It should be noted that studies on student dropout tend to focus on specific
predetermined periods. Furthermore, it is not possible to follow students indefinitely.
Consequently, from an operational point of view, the definitions of dropout and stopout
are guided by the study reference period.

Most students enrolled at TUT come from disadvantaged backgrounds and rely on
bursaries, national student financial aid scheme (NFSAS), and other student loans. It
is, therefore, reasonable to assume that most of the dropouts are due to poor academic
performance resulting in exclusions and loss of funding. The decision to dropout is,
therefore, imposed on the students and hence not voluntary. For the purpose of this
study, no distinction is made between voluntary and involuntary dropout. It is also
important to note that since most students at TUT come from poor communities, it
is reasonable to assume that once they dropout, they have a very small chance of re-
registering for their studies. Dropout is, therefore, treated as permanent. Any student
who ceases to enrol without having attained a diploma is regarded as a dropout. The
outcome variable in the study is inherently dichotomous. Students either dropout from
an engineering major or persist and graduate. Consequently, the focus is on analysis
and prediction of a dichotomous dependent variable.

2.3 Studies on student dropout

Student dropout/retention is one of the most extensively studied topic in HE (Tinto,
2010). Most of the early studies in this area were descriptive in nature (Bean, 1980;
Tinto, 1975). Vincent Tinto was one of the early scholars to introduce student retention
models in response to the shortcomings associated with the descriptive nature of prior
research (Tinto, 1975). He advanced the work by Spady (1970) and formulated the
Student Integration Model to describe the process of interaction between an individual
student and the institution resulting in dropout by different students from colleges.
Tinto (1975) defined student retention as a longitudinal process where the decision to
drop out or persist is being influenced by the students’ pre-enrolment characteristics,
background variables and commitment levels, which are then moderated by their social
and academic integration into the institution.

Tinto’s theory has since emerged as the most significant theoretical viewpoint among
the many theories and frameworks established to describe the process of student dro-
pout (Aljohani, 2016). The model has been tested and adopted in different HE insti-
tutions and environments resulting in more credibility and validity (Aljohani, 2016).
Tinto’s theory has become a basis for many other theories and models, e.g. Bean’s
(1980) Student Attrition Model; Pascarella & Terenzini’s (1980) Student-Faculty In-
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formal Contact Model; Bean & Metzner’s (1985) Non-traditional Undergraduate Stu-
dent Attrition Model; and Cabrera, Nora & Castaneda’s (1993) Student Retention
Integrated Model. When it comes to data analysis, Tinto recommended the use of lon-
gitudinal path analysis to analyse the student dropout process (Pantages & Creedon,
1978). Most of the other theories were tested and validated through structural equa-
tion modelling, path analysis and regression analysis (Hiemstra, Otten & Engels, 2012;
Ishitani & DesJardins, 2002).

The vast body of research on student retention theory has been beneficial in providing
a starting point in terms of investigating independent variables that can be included
in student retention, dropout model specification; as well as in identifying possible
data sources (Bogard, Helbig, Huff & James, 2011). Furthermore, the theoretical
models developed have provided useful tools for development of academic and student
affairs based retention intervention services (Kerby, 2015). However, these studies
do not provide the much-needed instrument to accurately predict retention/dropout
(Delen, 2010). The ability to accurately predict student dropout behaviour to develop
preventative measures is more important than understanding the reasons behind the
behaviour.

Predictive modelling is a frequently used method for which a model is developed to best
predict the probability of an outcome of interest (Geisser, 1993). A predictive model
quantifies the likelihood that an observation within a sample or population experiences
the event or outcome of interest. A probability is attached to each observed unit of
the population or sample. Two approaches are used in statistical modelling. The
first approach assumes that data are generated by a known stochastic process and the
other approach uses algorithmic models and treats the data mechanism as unknown
(Breiman, 2001).

According to Ingersoll, Lee & Peng (2010) and Nisbet, Elder & Miner (2009), classical
or stochastic studies use past information to determine a future state of a system
(often called prediction), whereas the algorithmic approach, also called data mining,
uses past information to construct patterns based not only on input data, but also on
the logical consequences of those data. This process is also called prediction, however, it
contains an element missing in classical techniques, i.e. the ability to provide an orderly
expression of what might be in the future, compared to what was in the past (Nisbet et
al., 2009). Classical methods include techniques such as linear regression, discriminant
function analysis, logistic regression, and analysis of variance. The algorithmic or data
mining paradigm includes techniques such as neural networks and decision trees.

Logistic regression has been the most used classical method for analysis of student
dropout due to the binary nature of student dropout. It is an appropriate analytical
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tool when the interest is to describe and test hypothesis about the relationship between
a binary or dichotomous categorical outcome variable and one or more continuous or
categorical predictor variables (Hosmer & Lemeshow, 2000). Logistic regression has
been shown to be superior to its alternative counterparts, e.g. discriminant function
analysis, log-linear models and linear probability models, mainly based on the fact
that (i) it can accept both continuous and discrete explanatory variables, (ii) it is not
restricted by normality or equal variance/ covariance assumptions for the residuals,
and (iii) it is related to the discriminant function analysis through the Bayes theorem
(Ingersoll et al., 2010; Peng, Stage, St John & So, 2002). According to Dey & Astin
(1993), violations of these assumptions can lead to biased estimates. Furthermore,
linear models were also found to sometimes predict values for dichotomous variables
that have no meaning such as negative probabilities or probabilities that exceed 1
(Pohlman & Leitner, 2003; Agresti, 1990).

The other concern is whether the relationship can be truly linear when dealing with
probabilities as changes in the independent variable are likely to have more impact on
the probability of an event occurring at the middle of the probability range than at the
end of it (Agresti, 1990). The use of logistic regression for analysis of binary outcome
variables in higher education can be traced to the late ‘60s and early ’70s (Cabrera,
1994). As early as 1975, Tinto called for the use of logistic regression to study student
college retention because of the categorical nature of dropout as an outcome variable
(Dey & Astin, 1993). Examples of studies that used logistic regression to analyse
student dropout include: Rohr (2012), Wohlgemuth et al. (2007), Pyke & Sheridan
(1993), Cabrera, Stampen & Hansen (1990), Neumann & Finaly-Neumann (1989) and
Stampen & Cabrera (1986).

Data mining has been another technique used to predict student dropout in HE. Data
mining refers to the extraction or “mining” of knowledge from large amounts of data
(Han, Kamber & Pei, 2006). The application of data mining methods and tools for
analysing data available at institutions of higher learning defined as Educational Data
Mining (EDM), is an emerging new stream of data mining research (Kabakchieva,
2013; Romero & Ventura, 2013). Studies focussing on dropout tend to invoke classific-
ation tasks due to the categorical nature of dropout. Different classification algorithms
have been used to analyse student dropout, e.g. decision trees (Jadrić, Garača &
Čukušić, 2010; Yu, DiGangi, Jannasch-Pennell & Kaprolet, 2010; Dekker, Pechen-
izkiy & Vleeshouwers, 2009; Al-Radaideh, Al-Shawakfa & Al-Najjar, 2006), Logistic
regression (Dekker et al., 2009; Jadrić et al., 2010), Bayesian classifier (Dekker et al.
(2009); Kotsiantis, Pierrakeas & Pintelas (2003)), random forest algorithm (Dekker et
al., 2009); and neural networks (Tan & Shao, 2015; Delen, 2011; Jadrić et al., 2010; Yu
et al., 2010).
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2.4 Shortcomings of previous studies

Most of the studies in the literature used longitudinal data to estimate the probability
of dropout, however, they mostly only looked at two time-points. A set of relevant
explanatory variables associated with dropout is collected at a chosen initial time
point and then collected again after a specified period. The effect of these covariates
on dropout is then estimated. This is done for the general student population and for
specific groups. The timing of dropout is not included in the analysis; and hence these
studies cannot respond to the question of when these dropouts occur (Willett & Singer,
1991). Furthermore, the observations are separated into those that have experienced
the event and those that have not experienced the event within the specified time.

This dichotomised sample can hide knowledge about educational transitions (Willett
& Singer, 1991). It could also potentially remove meaningful differences in event times
by grouping together everyone who has experienced the event and those who have not
by the chosen cut-off time (Willett & Singer, 1991). For example, when the outcome of
interest is graduation, students who graduate in three years are not distinguished from
those who graduate in four years. Using combined periods of time also means that the
results could vary depending on the different time periods combined or the end points
of the research studies (Willett & Singer, 1991).

According to Herrera (2006), many variables vary in their success at predicting dropout,
depending on academic level, i.e. variables which have a significant effect on dropout
at one academic level will not necessarily have the same effect at a different academic
level. The time-varying nature of some key predictors/explanatory variables, the non-
constant level of risk that individuals may experience over time, and various lengths of
exposure to risk among the participants, cannot be addressed by models with one record
(or observation) per participant (Ampaw & Jaeger, 2012). Time-varying variables are
modelled as different variables giving up degrees of freedom in estimation (Ampaw
& Jaeger, 2012). Consequently, these studies produce static models. The process of
student dropout is assumed to be uninform and the dynamic nature of the student
dropout process is ignored (DesJardins, Ahlburg & McCall, 1999). This, for instance,
means that there is no difference in the dropout behaviour of first year students and
senior students.

Logistic regression, structural equation modelling (SEM) and data mining cannot cor-
rectly account for students who have not dropped out by the end of the research period.
It is assumed that these students will never dropout. In general, the methods cannot
account for observations that have not experienced the event of interest by the end of
the study period. This underestimates the probability of dropout and leads to biased
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estimates (Ameri, Fard, Chinnam & Reddy, 2016). In general, these methods are not
suited for analysis of time to event occurrence as they do not account for censoring and
the changes in the risk of dropout over time, and they do not provide details about the
risk of dropout over time.

2.4.1 Censored observations

Willett & Singer (1988) highlighted the challenges of building models of time to event
occurrence as a function of selected predictor variables. In particular, analysis of time
to event dropout is complicated by incomplete data with regards to the value on the
dependent variable, e.g. time to dropout. This means that sometimes it is only known
that the survival time T is larger than some censoring time C. For example, some
students might not leave university during the observation period. For these students,
it would not be possible to determine whether they dropped out or when they had
dropped out. This kind of missing data is referred to as right censoring, also referred
to as Type I censoring (Allison, 2010). This means that the censoring is fixed (under
the control of the investigator) and all the observations have the same censoring time
(Allison, 2010).

Right censoring can also occur when a participant in a study withdraws prematurely.
For example, in trials of a new drug therapy, a patient might experience severe side
effects and therefore stop participating. Participants might also be lost to follow up, i.e.
they might disappear for unknown reasons as in the case of longitudinal studies where
some participants relocate and cannot be traced. This is referred to as random right
censoring, and it is similar to Type I censoring, except that the time of censoring is
itself a random variable, that is, it is not a fixed or pre-specified value (Allison, 2010).
The other type of right censoring is Type II censoring, where a sample is observed
until a pre-specified number of events has occurred (Allison, 2010). A common study
design that results in Type II censoring involves animal experiments where the study
is stopped after k deaths occur, where k is determined to be the minimum number of
event times needed for sufficient statistical power.

Censoring can also be interval based, such that a participant is only known to have ex-
perienced the event of interest within two-time periods, but the exact time is unknown
(Cleves, 2008). In practice, this occurs when participants are evaluated or examined
at fixed time points throughout the follow-up period. Interval censoring is common in
clinical trials and longitudinal studies with regularly timed follow-up assessments. For
example, some clinical outcomes of interest can only be determined by a physician’s
examination: at one assessment, the subject is considered disease-free and at the next
assessment, the subject is diagnosed as having the disease. In such cases, it can be
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difficult, if not impossible, to determine when exactly between the two assessments the
subject developed the disease. Discretely measured survival data can be considered a
special case of interval censored data, when all participants that experience the event
during the observation period are interval censored and the possible intervals of cen-
soring are common to all participants, e.g., all participants are assessed at the same
follow-up times. Both Type I and random right censoring can be reformulated as spe-
cial cases of interval censoring, with left censored individuals experiencing the event in
the interval from zero to the time of first observation; and right censored individuals
experiencing the event in the interval from the time of last observation to infinity.

Observations can also be left censored, i.e. when a participant in the sample has
experienced the event of interest prior to the onset of observation (Hosmer & Lemeshow,
2000). In this case, all that is known about the event timing is that the survival time T
is smaller than C, where C denotes the time until the end of study or loss to follow-up.
For example, this can occur in a study where the event of interest is the age at which
a child learns to accomplish certain tasks in children learning centres. Left censoring
occurs if children can already perform the tasks when they start their study at the
centres. Mathematically, left censoring is also not different from interval censoring
(Cleves, 2008). In both cases, the event occurred at some time when the participant
was not under observation, in this case, prior to the participant being observed, and
hence happened in an interval.

2.4.2 Handling censored observations

The presence of censored observations renders classical statistical techniques inappro-
priate for analysis of time to event studies (Lee & Go, 1997). Different strategies have
been employed to address the challenge posed by censoring. Some studies used classical
statistical techniques like OLS and focused only on observations with uncensored event
times (Baird, 1990; Abedi & Benkin, 1987). However, according to Allison (1982), in
the presence of censored observations, the analysis of data based only on observations
with uncensored event times, results in underestimation of the actual time to event
occurrence. For instance, in a study focusing on time to completion of a doctoral
degree qualification, the median lifetime computed based on only students who have
completed the degree, will be less than the true median due to exclusion of students
who have not yet completed their degrees. Exclusion of censored observations alters
the distribution of time to graduation. The very presence of ungraduated students is
an indication that the true time to graduation is much longer than the one estimated
based on only students who have completed their degrees. In general, the presence of
censored observations is in itself informative. It implies that time to event occurrence
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is actually longer that the specified time period. Ignoring the censored observations
can result in loss of efficiency due to a loss in sample size (Leung, Elashoff & Afifi,
1997) and severe bias (Allison, 2014).

The other option is to impute the missing survival times. According to Leung et al.
(1997), two approaches can be employed in this regard. Firstly, the censored observa-
tions can be assigned the value of the study endpoint time. Singer & Willett (1993)
explain that this kind of imputation changes non-events into events and further assumes
that all these new events occur at the earliest times possible. Secondly, it can be as-
sumed that all censored observations will never experience failure. The two approaches
result in overestimation and underestimation of the survival probabilities respectively,
rendering them both inappropriate.

Another approach assumes that time to event after censoring follows a specific model
for which parameters are estimated to impute the residual time from censoring to
event occurrence (Leung et al., 1997). This approach has been criticised for relying too
heavily on the model assumptions, which are difficult to verify without information on
time to event after censoring (Leung et al., 1997). The challenge of censoring can also
be circumvented by focusing only on event occurrence versus non-occurrence within
a fixed period and ignore survival times. This approach results in dichotomised data
hence suffers the same shortcomings as logistic regression.

2.5 Survival analysis

Survival analysis has been proposed as a distinctive and effective technique for analysis
of HE research data that has an emphasis on longitudinal student outcomes such as
student dropout (Yamaguchi, 1991). It is a branch of statistics that involves modelling
time to event data whilst handling the challenges posed by censoring even-handedly. It
is one of the oldest fields of statistics, going back to the 17th century. The motivation
for this method was initiated in the analysis of clinical trials data with time to death
as the outcome of interest, hence the term “survival analysis” (Fleming & Lin, 2000).
While the terminology survival analysis has commonly been used in the medical field,
in recent years it has come to be known by different names in different areas of study:
event history (sociology); reliability analysis (engineering); failure time analysis (engin-
eering); duration analysis (economics); transition analysis (economics); and survival
analysis (medicine) (Allison, 1982). It has increasingly been applied in many other
fields. For instance, it has been used in socio-economic studies to investigate issues
such as employment/unemployment, inflation, tourism demand, tropical deforestation
and many others (Lee, Lee & Kim, 2017; Barros, Butler & Correia, 2010; Leung, Rigby
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& Young, 2003; Vance & Geoghegan, 2002; Narendranathan & Stewart, 1993; Kiefer,
1988). In finance and the banking industry some of its applications include credit
model development, assessment of possible exit options and the timing of exit of ven-
ture capitalists, investigation of time series dependence in the direction of stock prices
and analysis of hedge funds and commodity trading advisors (Marimo & Chimedza,
2017; Ju, Jeon & Sohn, 2015; Giot & Schwienbacher, 2007; Lunde & Timmermann,
2004; Stepanova & Thomas, 2002; Brown, Goetzmann & Park, 2001).

Li (2014) used survival analysis in industrial engineering to estimate and predict dif-
ferent duration stages of traffic incidents occurring on urban expressways. Survival
analysis has also been used in engineering to predict life expectation and product re-
liability (Pham, Yang & Nguyen, 2012; Meeker, Escobar & Hong, 2009; Mueller et
al., 2007; Hough, Garitta & Gómez, 2006). In marketing, it has been used to ana-
lyse customer behaviour such as adoption of new products (Bilgicer, Jedidi, Lehmann
& Neslin, 2015), customer life-time duration (Meyer-Waarden, 2007) and occurrence
and timing of repeat purchase (Ansell, Harrison & Archibald, 2007; Harrison & Ansell,
2002). In sports, survival analysis has been used to model recurrent sports injuries
(Ullah, Gabbett & Finch, 2014); to model time to first and second goal occurrence in
soccer (Nevo & Ritov, 2013); to compare time to death of Olympic medallist to the
general population (Clarke et al., 2012) and to investigate transitions into and out of
regular sports and exercise participation (Lunn, 2010).

The use of longitudinal data in survival analysis makes it possible to determine at
what time periods the event of interest is most likely to occur, as well as to determine
why some individuals experience the event earlier than others, and to also determine
why some individuals do not experience the event of interest at all during the study
period (Min, Zhang, Long, Anderson & Ohland, 2011; Murtaugh, Burns & Schuster,
1999). Survival analysis makes efficient use of data available from all subjects: those
who experience the event of interest and those who do not during the study period
(censored), and as such, overcomes the difficulty of handling censored observations
(Min et al., 2011; Lesik, 2007; Jonson, 2006). With this approach, the outcome of
interest in retention studies can be reframed from whether an event occurs to when
does it occur. This permits a more appropriate utilisation of longitudinal data and
sample attrition problem encountered in survey studies can be avoided. In retention
studies, longitudinal data analysis enables researchers to follow factors that impact a
student’s decision to stay or drop out of their studies over a period of the study (Willett
& Singer, 1991), and hence allows for the use of the most recent information in the
analysis.

Although survival analysis is one of the oldest fields of statistics, going back to the 17th
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century, its application in student retention studies was only introduced in the late 80s.
In one of the early applications of survival analysis in the field of education, Willett
& Singer (1988) used a data-based example from an investigation of ten-year long
teacher survival patterns for a cohort of teachers who started their profession in 1972
in Michigan to establish a framework for doing good data analysis with proportional
hazards models. In 1991, the authors used the same data set to show what could
be learned about educational transitions by answering the question of whether events
occur by trying to determine when the events occurred (Willett & Singer, 1991). They
also suggested that researchers should examine when an individual was at the greatest
risk of experiencing the event of interest. For instance, rather than asking whether
students drop out before a certain time, they suggested that researchers should focus
on when they are at the greatest risk of dropping out (Willett & Singer, 1991). They
used survival analysis to describe teachers’ career transitions by building statistical
models of risk of event occurrence over time (Willett & Singer, 1991).

Murtaugh et al. (1999) followed in Willett & Singer (1991) footsteps. They demon-
strated the advantages of using survival analysis to analyse student retention data.
Their study also determined some of the factors that affected student retention at Ore-
gon State University. Their results showed that dropout tends to occur in tempos at
the end of each school year with swift declines at the end of the students’ first spring
quarter. DesJardins et al. (1999) also used survival analysis to better investigate the
process of student dropout from university. The models with only time-invariant cov-
ariates were compared to those with time-varying covariates. The results of their study
indicated that the effects of covariate on the probability of the first stopout varies with
time. The addition of timing into the model improved the understanding of dropout.

Ishitani & DesJardins (2002) investigated time to dropout over a period of five years.
Their study showed the time-varying effects of factors associated with student dropout.
For instance, both the time-invariant and the time-varying models showed that students
from lower income families were more likely to dropout than those from more affluent
families, after accounting for other variables. However, this relationship varied over
time, i.e. the estimated coefficients for students from low income families were 0.73 in
the first year, 0.95 in the second year, 1.07 in the third year and 0.78 in the fourth and
fifth years. Among other factors, the results also showed that the effects of scholastic
attitude test (SAT) scores on dropout varied with time, i.e. in the first year, the risk of
dropout for students with SAT scores in the highest quartile was 35% lower than that
of those in the lowest SAT quartile. In the second year, the effect of highest quartile
SAT was not significant. The use of a survival analysis models to analyse the process
of student dropout is now well established (Ameri et al., 2016; Alarcon & Edwards,
2013; Yang et al., 2013; Chen & DesJardins, 2010; Murphy et al., 2010; Bruinsma &
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Jansen, 2009; Lesik, 2007; DesJardins et al., 2002; Murtaugh et al., 1999).

Three features must be correctly defined in survival analysis, i.e. the target event,
starting point, and the time metric. It must be clear what represents the target event
of interest and which transition between states is of interest. The beginning of time is
the point at which all observations in the study are at risk of experiencing the event of
interest. For example, students become at risk of dropping out the date at which they
enrol at university. An event occurs when observations move from their current state
to another. The distance between the beginning of time and event occurrence is called
event time enrolment at university. The time metric in which event time is recorded
needs to also be clearly specified. Time can be recorded in a fine-grained time metric
(thin precise units), e.g. seconds, minutes, hours, days. Examples of such events are
death and injury.

Event times can also be measured in discrete-time points, e.g. months, semester, and
year. Some events occur at truly discrete-time points, while others occur at continuous-
time points, but are recorded in discrete-time points (grouped continuous time obser-
vations) (Scheike & Jensen, 1997). For example, students doing semester courses com-
plete their studies only one time per semester such that their data is only available in
discrete-time points, which is at the end of the semester. On the other hand, a student
may drop out at any point during the semester, but that data is only available at the
end of the semester. The event is consequently recorded in discrete-time points even
though the timing is continuous.

Different survival analysis methods are used depending on the metric for time. Continuous-
time survival analysis techniques are used to analyse survival data recorded on a con-
tinuous scale. In terms of discrete-time survival data, discrete-time survival analysis
methods are recommended for the case where events occur at truly discrete-time points
(Allison, 1982). In the second case where events occur at continuous-time points, but
are recorded in discrete-time points, the time metric can be treated as continuous and
continuous-time survival analysis techniques can be used. Alternatively, discrete-time
survival techniques can be used. Given that both approaches do not affect model spe-
cification and the advantages of using discrete-time techniques, discrete-time models
are recommended (Allison, 1982).

Ishitani (2008) relates the advantages of applying discrete-time survival analysis in
studying student dropout over other techniques. Discrete-time survival analysis is
optimal in that enrolment status information of students from different time points (in-
cluding censored observations) can be incorporated. It is suited to estimating the prob-
ability of dropout at different time points. It allows for the examination of probability
of highly skewed binary dependent variables, and both time-invariant and time-varying
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covariates can be easily incorporated into the model. According to Kim (2014), Singer
& Willett (2003) and Yamaguchi (1991), discrete-time survival analysis techniques are
appropriate for tied events such as dropout, as they can be handled in an unbiased
manner. Discrete-time models are also preferred over continuous-time models since the
magnitude of the baseline hazard rate cannot be estimated through continuous-time
models (Chen & DesJardins, 2010). Additionally, discrete-time models do not require
the proportionality of hazard assumption in the presence of time-varying covariates
(Muthen & Masyn, 2005).

Most survival analysis studies on student academic outcomes followed a discrete-time
approach, e.g. dropout (Min et al., 2011; Gury, 2011; Chen & DesJardins, 2008; Lesik,
2007; DesJardins et al., 1999; Murtaugh et al., 1999; Willett & Singer, 1991), and
graduation (Ampaw & Jaeger, 2012; Aina et al., 2011; Murphy et al., 2010; Bruinsma
& Jansen, 2009; Doyle, 2009). However, some studies treated time as continuous.
For instance, Chimka et al. (2007) investigated engineering college student graduation
patterns using the Cox Proportional Hazards (PH) model. Time to graduation was
treated as continuous and the Breslow (1974) method for handling tied survival times
was used in the estimation of the models. Restaino (2008) analysed the interval between
the first enrolment at university and the first occurrence of non-enrolment. In his study,
the covariates were assumed to be time-invariant, time to dropout was assumed to be
continuous and it was also assumed that there are no ties among the dropout times.

The choice between parametric, non-parametric and semi-parametric techniques is also
important. In most cases, the exact distribution of event times is usually unknown.
Non-parametric models are more reliable is such cases as they have greater flexibility
and protect from the dangers of misspecification. However, the methods are essentially
descriptive, and can only be used when the model involves no covariates. On the other
hand, semi-parametric models allow for inclusion of covariates without making any
assumption about the baseline hazard function, but only assumes parametric form for
the effect of the explanatory variables on the hazard.

Non-parametric and semi-parametric models are the most widely used survival analysis
techniques. This is also true in student retention studies as evidenced by the many
studies using these approaches compared to parametric techniques (Ameri et al., 2016;
Paura & Arhipova, 2014; Min et al., 2011; Gury, 2011; Bowers, 2010; Nicholls et al.,
2010; Reibnegger et al., 2010; Plank et al., 2008; DesJardins, 2003; DesJardins et al.,
1999). Radcliffe et al. (2006) and Ishitani (2003) are among the few researchers that
followed a parametric approach when analysing student retention.



2.5 Survival analysis 21

2.5.1 Discrete-time single risk models

The hazard rate is the ultimate dependent variable in survival analysis (Allison, 1984).
The sample hazard function and the survival function provide a good summary of the
estimated population profile of risk, and they allow us to see whether and when an event
is likely to occur. The timing of dropout can be modelled by estimating the risk or
hazard rate of dropout in each semester over the observation period (Singer & Willett,
2003). Generalised linear models are used as the basis of analysis of hazard probabilities
as a function of covariates for discrete-time survival data. In generalised linear models,
the probability for a categorical outcome is transformed by a link function and modelled
as linear with respect to explanatory variables. The use of an appropriate link function
ensures that the estimated probability lies between 0 and 1. The logit and the probit
link functions are the most commonly used link functions for categorical outcomes (Box-
Steffensmeier & Jones, 2004). However, between the two, the logit link function is more
popular. Its use was proposed by Cox (1972) as the discrete-time model counterpart
to his continuous-time regression model.

The main reason for the popularity of the logit link function over other alternatives
is that the full maximum likelihood estimates for the parameters of the discrete-logit
model can be estimated using the regular logistic machinery available in most statistical
analysis software (Box-Steffensmeier & Jones, 2004). It has been used, for example, in
transportation studies to model the time that transpires until a trip is taken (Hensher
& Mannering, 1994); in mental health to analyse patterns of remission from substance
use disorder (Xie et al., 2003); in policy studies to analyse adoption of policy (Jones
& Branton, 2005); in veterinary medicine to investigate risk factors associated with
fatal injuries of animals (Henley et al., 2006); in banking to analyse risk of default
(De Leonardis & Rocci, 2008) and to predict bankruptcy(Nam, Kim, Park & Lee,
2008); in substance abuse studies to examine the timing of smoking onset during mid
or late adolescence (Hiemstra et al., 2012); to identify factors associated with initiation
to inhalant use among adolescents (Nonnemaker, Crankshaw, Shive, Hussin & Farrelly,
2011); and to investigate the effect of truancy on the initiation of marijuana use (Henry
et al., 2009), in entrepreneurship to measure the risk of closing business and probability
of businesses opening (Yoon & Currid-Halkett, 2015); and to analyse firm survival and
decision to internationalise (Carr, Haggard, Hmieleski & Zahra, 2010).

The discrete-time logit model has also been extensively used to model students out-
comes and in particular, dropout (Alarcon & Edwards, 2013; Bruinsma & Jansen, 2009;
Gury, 2011; Hovdhaugen, 2015; Lassibille & Navarro Gómez, 2008; Ishitani, 2006; Mur-
taugh et al., 1999; Willett & Singer, 1991). Estimates from the logit and probit mod-
els tend to be almost equivalent, while those from the complementary log-log model
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can deviate substantially from those obtained from the probit and logit models (Box-
Steffensmeier & Jones, 2004). This is often the case in data sets where there are
relatively few failures. In general, there are no clear reasons to prefer one link function
over the other. The discrete-time logit model is adopted for this study.

2.5.2 Competing risks models

Simple applications of survival analysis assume that individuals are at risk of only
experiencing one event. However, in many applications, individuals are at risk of ex-
periencing two or more events which affect each other. Single events models do not
account for the possible interdependence between competing outcomes. The outcomes
competing with the main event of interest are treated as censored and censoring is
assumed to be non-informative (random). According to DesJardins (2003), estimat-
ing dropout as a single risk may result in model misspecification since dropout and
graduation may be negatively correlated. Competing risks are related, but mutually
exclusive dependent events. Effectively this means that experiencing one event ex-
cludes someone from the risk of experiencing another event during the period under
observation (Allison, 1984). The observations/units of interest are exposed to different
kinds of risks at the same time interval, but it is assumed that the eventual failure of
an observation results from only one of these risks, which is called “a cause of failure”.

Competing risks models were originally applied in the health, medical and actuarial sci-
ences. Their applications have since broadened to other fields. For instance, Van Praag
(2003) used a competing risks approach to investigate determinants of business survival
and success. The study focused on two types of exits in business, namely: voluntary
exit, attributed to a lack of motivation and willingness to continue in business; and
compulsory exit, attributed to insufficient (financial) opportunity to continue in busi-
ness. A compulsory exit was associated with business failure, whereas a voluntary
exit was associated with business success. Gregory‐Smith, Thompson & Wright (2009)
also used a competing risks framework to model the tenure and type of exit of Chief
Operating Officers (CEOs) from FTSE 350 companies during 1999-2005.

The interest was on the effect of several independent variables such as company per-
formance as measured by total shareholder return, proportion of insiders on the board,
number of directors appointed during the CEO’s tenure, board size on the mode of
exit (retirement, dismissal, or other exits). In the field of political science, de Rouen Jr
& Sobek (2004) applied a competing risks approach to analyse duration of civil wars
and factors associated with civil war outcomes of interest, i.e. government victory,
rebel victory, truce or treaty. The study looked at 92 civil wars in 53 states that
occurred between 1944 and 1997. Shaw (2011) used data from the Survey of Income
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Program Participation to identify factors that influence transitions of individuals from
cohabitation to marriage or being single. A competing risks survival analysis model
was employed in the study. Diermeier & Stevenson (1999) used the model to estimate
cabinet survival time and analyse determinants of government termination resulting in
cabinet dissolution or cabinet replacement.

In general, when modelling competing risks, if the occurrence of a competing event is
not of substantive interest in the study and the competing event may be assumed to be
independent of the occurrence of the primary event of interest, then the observations
associated with the competing non-primary events may be treated as censored. How-
ever, when this is not the case, the competing risk must be accounted for. According to
Allison (2014), failure to distinguish competing events in survival analysis may produce
spurious conclusions.

For example, DesJardins et al. (2002) investigated the impact of student demographic
characteristics, attitudinal variables and financial aid variables on graduation at a
University of Minnesota-Twin Cities campus for students registered for the first time in
the fall semester of 1991. In the study, ability and academic performance were adjusted
for, and graduation rate between different colleges was compared. A competing risk
approach was used to estimate stopout after the first, second, third, fourth, fifth and
sixth year and graduation in the fourth, fifth and sixth year after registration. The
results indicate that when graduation is modelled alone, Latino students were less likely
to graduate compared to white students. However, when graduation and stopout are
modelled jointly, the Latino results are not as nearly strong as modelled independently.
Accounting for the interrelationship between graduation and stopout thus reduces some
of the negative relationship between graduation and being Latino. Cumulative grade
point average (GPA) was also found to decrease graduation chances when modelled
alone. In the competing risk model, GPA was found to be strongly and positively
related to timely graduation.

Ortiz & Dehon (2013) investigated the extent to which socio-economic background
and financial aid influence academic success using the competing risks survival analysis
technique developed. The study focused on students enrolled at a Belgian university
for the first time in the academic years 1997-1998 and 2001-2002. These students were
followed over a twelve-year period. The results indicate that when graduation is treated
as a competing risk, female students have a 25% lower hazard of dropping out versus
staying enrolled. On the other hand, when dropout is treated as a competing risk,
female students have approximately 57% higher chance of graduating from university.
When it comes to nationality, the results show that foreign students are more likely to
experience successive enrolments without getting a degree, whereas Belgian students
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are enrolled, on average, for fewer periods than foreign students.

In a study conducted at the University of KwaZulu-Natal (UKZN) in South Africa,
Murray (2014) used a competing risks approach to identify institutional and student
specific factors influencing the type of outcome experienced by students when they
leave the university. The study focused on the length of time it took students to either
graduate or dropout of their studies. The study involved students enrolled for a degree
at this institution between the years 2004 and 2012. One of the objectives of the study
was to compare the time it takes to graduate with time to voluntary and involuntary
(academic exclusion) dropout. The results of the study indicate that when involuntary
and voluntary dropouts are treated as competing risks, students with some form of
residence-based accommodation graduated more earlier than those without residence-
based accommodation. Having some form of financial aid and higher matric point
score also contributed to students to graduate more quickly. On the other hand, when
graduation and voluntary dropout are treated as competing risks, the results indicate
that having some form of financial aid and residence-based accommodation increased
the length of time that students stayed in the system before dropping out involuntarily.
Finally, when graduation and academic exclusion are treated as competing risks, access
to some form of financial aid and residence-based accommodation assists in preventing
students from dropping out voluntarily.

In a recent study, Zewotir et al. (2015) used a competing risk approach to determine
factors that influence successful completion or dropout from a master’s programme
at the UKZN. Based on a seven-year period beginning in 2004, the study focused on
factors associated with the actual number of years it took students to graduate, while
treating dropout as a competing risk; and the number of years it took students to
drop out, while treating graduation as a competing risk. The results show that 50% of
master’s students had either graduated or dropped out within two years of registration.
In terms of financial aid, the results showed that receiving some form of financial
funding appeared to reduce the length of time it takes a student to dropout from a
master’s programme. Moreover, receiving some form of financial aid also reduces the
length of time it takes to successfully complete a master’s programme. When looking
at race, the results indicate that race has no significant effect on dropout. However,
for the students who eventually graduated, the results show that time to graduation
was shorter for African students.

In the current study, at risk students are followed until the occurrence of either a
graduation or a dropout. Students who graduate are no longer at risk of dropout and
students who dropout are also assumed to be no longer at risk of graduation since
dropout is assumed to be permanent as per the definition adopted in the study.



2.5 Survival analysis 25

2.5.3 Analysis of discrete-time competing risks models

A common approach for analysis of discrete-time competing risks is to model the cause-
specific discrete hazard function. The cause-specific hazard function is the hazard
function for each event type. The discrete-time competing risks cause-specific hazard is
the instantaneous risk of experiencing an event of interest given that no other competing
event has occurred. In the discrete-time case, the cause-specific discrete hazard function
can be modelled through the use of regression models for multi-categorical response
variable (Tutz, 1995). The cause-specific hazard can either be modelled simultaneously
using a multinomial logistic model or separately treating all other competing events as
censored. The two alternatives are discussed below.

When discrete-time competing events are modelled separately, simple survival analysis
modelling approaches such as the Gompertz or Weibull for parametric survival models,
or a semi-parametric model such as Cox PH model can be employed. Time to each
event of interest is separately analysed, treating all the other events as censored. Under
this approach, it is assumed that the competing events are independent conditional on
a set of observed explanatory variables. This process is repeated by replacing the
event of interest with other competing events, resulting in K different models, where K

is the number of competing events. This in essence, is equivalent to the estimation of
single event survival analysis models with random censoring. Since separate modelling
of cause-specific discrete hazard assumes independence of event times, it is important
that this assumption is tested. However, this assumption is impossible to test since the
eventual event times of competing events that did not occur first cannot be observed
(Klein & Moeschberger, 2006). Estimates of the cause-specific hazard rates and effects
of explanatory variables on those hazards may be unreliable when the assumption of
independence is enforced, while the underlying risks are indeed dependent. The results
obtained under such conditions must therefore, be interpreted with caution to avoid
misleading conclusions.

The multinomial logit (MNL) model is the most popular method for analysis of cat-
egorical responses. Consequently, the multinomial logistic regression is the most widely
used method for modelling discrete-time competing risks hazards simultaneously (Tutz
& Schmid, 2016; Scott & Kennedy, 2005). Examples include: Barnett et al. (2009) who
investigated length of stay in hospital; Gibbons et al. (2003) who analysed waiting time
to organ transplant; Moors & Bernhardt (2009) who investigated variables that influ-
ence the inclination of cohabiting couples to change their union from cohabitation to
either marriage, separation or continued cohabitation; de Rouen Jr & Sobek (2004) who
analysed duration of civil wars and factors associated with civil war outcomes of in-
terest, i.e. government victory, rebel victory, truce or treaty; Kimber et al. (2010) who
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examined survival and long term cessation of injection in a cohort of drug users; and
Pennington-Cross (2010) in finance. In terms of student outcomes, Scott & Kennedy
(2005) laid the foundation for its use in analysing dropout and degree attainment. Ortiz
& Dehon (2013) used this method to investigate factors that influence both dropout
and degree completion in lower university levels at a university in Belgium. The ap-
proach was also used by Van Der Haert et al. (2014) to identify determinants of time
to dropout from doctoral studies and time to PhD completion, and many others.

MNL is an extension of the binary logistic model that allows the modelling of effects of
covariates with more than two nominal outcomes. The multiple discrete cause-specific
hazards are related to covariates as an MNL model. In a multinomial competing risks
model, censored observations can be treated as a reference category, and the risks of
each type of outcome of interest relative to the risk of not experiencing an outcome of
interest is estimated simultaneously. For instance, in the case of K competing events,
the MNL model estimates K-1 logit models to obtain parameter estimates on the type
specific or destination specific hazards. Under this approach, the depended variable
is treated as a polytomous qualitative choice variable. The MNL model avoids the
proportionality assumption invoked in Cox PH model. It also allows for direct com-
petition among the competing events. Estimation of parameters is done through the
maximum likelihood method and the parameters are interpretable as logit coefficients.
When all the explanatory variables are categorical, estimation of the MNL model can
be easily performed through log-linear methods (Allison, 1982).

On the downside, the MNL model does not allow for correlations among competing
risks. On the contrary, independence from irrelevant alternatives (IIA) is assumed.
The IIA property allows researchers to estimate the parameters of the MNL model
consistently using subset of alternatives, since elimination of irrelevant alternatives does
not affect the odds of probability of the remaining alternatives. Moreover, unlike the
likelihood function for the continuous-time model, the discrete-time likelihood cannot
be factored into separate components for each of the competing events (Allison, 1982).
This in turn means that the model for event 1 cannot be fitted separately from a model
for event 2. The maximum likelihood estimation must hence be done simultaneously
for all kinds of events (Allison, 1982), meaning that misspecification for event 1 may
affect inferences about the model for event 2, and vice versa.

2.6 Unobserved heterogeneity

In some studies, there may be factors other than the measured covariates that may
have a significant effect on the distribution of survival time. This is often referred
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to as heterogeneity of the observation. In most studies, it is often not possible to
account for all possible explanatory variables. Relevant covariates may be left out
because they are unmeasurable, unobservable, or because the researcher may not be
aware that they affect the outcome variable. It is well known that failure to control
for unobserved heterogeneity in statistical modelling results in inconsistent inference
(Van den Berg, 2001; Trussell & Richards, 1985). The effects of failure to control for
unobserved heterogeneity have been extensively studied for continuous time survival
data. It has been shown that failure to control for unobserved heterogeneity produces
biased estimates in single risk models (Van den Berg, 2001; Heckman & Singer, 1984a;
Lancaster, 1985, 1979) as well as competing risks survival analysis models (Van den
Berg, 2001; Butler et al., 1989).

Vaupel, Manton & Stallard (1979), showed that uncontrolled heterogeneity results in
positively biased longevity prediction estimates and negatively biased differences in
mortality rates between different populations. Furthermore, it has been shown that
failure to control for unobserved heterogeneity resulted in negative duration depend-
ence such that increasing event hazard probabilities were diminished over time and
decreasing hazard probabilities were accelerated over time (Keiding et al., 1997; Hou-
gaard, 1995; Trussell & Richards, 1985; Heckman & Singer, 1984a). Even though most
studies focused on continuous-time survival data, similar results have been reported for
discrete-time survival data (Zhang, 2003; Baker & Melino, 2000; Nicoletti & Rondinelli,
2010).

In the case of student dropout, DesJardins (2003) explained that the hazard rates
observed in the presence of unobserved heterogeneity may be as a result of simple
variation in the risk of dropout across individuals that is related to their varying,
but unobserved characteristics. According to DesJardins (2003), this may happen
when students with a higher likelihood of dropout do so early in their studies and are
subsequently removed from the risks set. For example, since research suggests that poor
social and/or academic integration, lack of motivation, being first-generation student
(FGS) is associated with dropout, students who are likely to remain in the risk set
(remain enrolled) may be more motivated or have strong support system (DesJardins,
2003). These unobserved differences may result in false inferences about the temporal
risk of dropout if not properly adjusted for.

DesJardins (2003) considers the case where motivation is an unobserved factor that
may cause differences in the observed hazard of dropout to illustrate how uncontrolled
heterogeneity may introduce bias in the results. For the purpose of illustration, the
hazard rate of dropout for the motivated and unmotivated students is assumed to
be constant, although not the same. DesJardins (2003) shows that even though the
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likelihood of dropout is constant for each of these two groups, the overall hazard profile
for all students will tend to decline. The decline is attributed to the continuous change
in the proportion of both groups in the risk set, despite the constant hazard rates
for both groups, i.e. high risk (unmotivated) students experience dropout early, such
that as time passes, the risk set disproportionately consists of students who have lower
dropout rates (higher survival rates). Since the risks sets disproportionately consist of
motivated students who have a higher survival rate, hence a lower hazard of dropping
out, the overall hazard of dropout will tend to decline over time.

2.6.1 Frailty model

Frailty models or random effects models are the standard approach used to account
for unobserved heterogeneity that occur because some observations are more fail prone
and hence more frail than other observations in the data (Box-Steffensmeier & Jones,
2004; Flinn & Heckman, 1982). The term frailty was first introduced by Vaupel, Man-
ton & Stallard (1979) to refer to individual differences in longevity. Frailty models
are the survival analysis equivalent to regression models, which account for unobserved
heterogeneity and random effects (Gutierrez, 2002). Single-risk duration models can,
therefore, be extended to account for unobserved heterogeneity by introducing a ran-
dom component or frailty term into the model. The standard approach is to assume
a functional form for the distribution of the frailty term (Heckman & Singer, 1984b).
All observations are assumed to have different frailties which results in a change in
individual hazards so that all observed individuals in the study are subject in principle
to different levels of risks.

The use of the class of positive stable distributions is recommended by Hougaard (2000),
as they have more desirable properties regarding the marginal distribution of the sur-
vivor function. The most widely used are the Gamma and Gaussian distributions (Box-
Steffensmeier & Jones, 2004). However, the Gamma is more popular with continuous-
time models due to analytical convenience Lancaster (1979) and theoretical reasons
Van den Berg (2001). In the case of discrete-time single risk models, the assumption
of a Gaussian distribution may be computationally convenient Hess & Persson (2012).
Based on this assumption, the hazard models can be estimated as binary choice models
with normal random effects using commonly available software packages.

The choice of distribution for the unobserved heterogeneity term has been widely stud-
ied in survival analysis. There is evidence indicating that parametric maximum likeli-
hood estimates are sensitive to the functional form of the assumed distribution of the
unobserved heterogeneity (Hougaard, 2000; Keiding et al., 1997; Heckman & Singer,
1984a; Vaupel et al., 1979). The extent of the asymptomatic bias depends on the dis-
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crepancy between the true distribution of frailty and the assumed distribution. Heck-
man & Singer (1984a) showed through theoretical and empirical examples that the
parametric maximum likelihood estimates are inconsistent if the distribution of the
unobserved heterogeneity is miss-specified.

For the discrete-time case, the findings have been mixed. For instance, Baker & Melino
(2000) found that misspecification of the heterogeneity distribution can result in sub-
stantially biased estimated parameters. Nicoletti & Rondinelli (2010) show that choos-
ing a Gaussian distribution for the frailty term when the true one is discrete or Gamma,
does not affect estimated parameters. They suggest that the bias reported by Baker
& Melino (2000) is as a result of ignoring the normalisation required, i.e. parameters
cannot be taken by their surface value when comparing models such as the probit and
logit as the response function is based on different means and/or variances. The find-
ings of Nicoletti & Rondinelli (2010) are supported by Trussell & Richards (1985). The
heterogeneity distribution is, therefore, assumed to be Gaussian in this study.

Unobserved factors may also introduce stochastic dependence among competing events.
If the unobserved variable has an effect in determining the timing of several events, they
will be correlated. Van den Berg (2001) explain that if the unobserved determinants are
dependent across the risks, then the failure times are dependent given the regressors.
There is enough reason to expect such dependence, specifically if the unit of observation
is an individual whose behaviour may affect all hazard rates. Models that assume that
competing risks are independent, i.e. censoring mechanism is non-informative, are gen-
erally by far the most common approaches to competing risks models (Gordon, 2002).
This assumption is similar to IIA in competing risks. However, this assumption may be
questionable and even unlikely. When the underlying risks are indeed dependent, but
dependence is imposed, the estimated parameters may be inconsistent with artificially
small standard errors (Gordon, 2002). Depended risks can, therefore, be modelled us-
ing frailty or random effects models. The frailty model is the conventional method to
account for dependence among competing events (Gordon, 2002). Hence frailty models
accomplish two tasks by modelling unobserved heterogeneity and accounting for the
dependence structure for clustered or multiple duration times, respectively.

2.6.2 Cured model

One of the assumptions of the Cox’s regression model is that all observations under
study will eventually experience the event of interest, provided that the observation
period is long enough(Sy & Taylor, 2000). This in essence means that if the observation
period is long enough, then the probability of event occurrence will approach one(Tutz
& Schmid, 2016). However, there are cases where some observations do not eventually
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experience the event of interest. This is usually evidenced by a Kaplan-Meier (KM)
curve that eventually levels off into a plateau instead of approaching zero (Price &
Manatunga, 2001). Such observations are referred to as “cured” a term inherited
from clinical trials. The terms split-population and long-term survivors are also used
to describe such observations. Boag (1949), Berkson & Gage (1952) and Haybittle
(1965) are some of the first researchers to address this topic. The associated modelling
techniques have since come to be known as cured models, split-population models or
mixture models. Cured models represent a particular form of heterogeneity in survival
data. They can also be seen as a special case of frailty referred to as binary frailty,
where the population is divided into a proportion who are at risk and those who are
never at risk, with the never at risk group being referred to as long-term survivors
(Wienke, 2010).

In this study, the possibility of having cured observations (students who do not drop
out even if the study period is long enough) is highly unlikely due to student exclusion
policies. Students who remain in the university beyond a certain period without gradu-
ating are likely to be excluded and subsequently classified as dropouts. On the other
hand, if the event of interest was graduation, the possibility of having cured observa-
tions would be higher. In such instances the proportion of cured observations would
be estimated and the survivor function of the observations that would eventually drop
out would be adjusted accordingly, in the event that the proportion is non-ignorable.

2.7 Factors associated with student retention

Research investigating the reasons for student dropout indicates that there is seldom
a single reason for student dropout. Students may have various reasons to drop out of
their study programmes or continue with their studies. The picture is often complex
with student dropout being attributed to a combination of inter-related factors. It is,
therefore, beyond the scope of this section to provide a comprehensive review and a
detailed discussion of all possible factors associated with academic outcomes in HE in
South Africa. The discussion will mainly focus on variables that are available on the
TUT database and some psychological factors even though they are not available (not
measured) for the study. The discussion will further be narrowed to studies conducted
in South Africa so as to focus on those factors that have been found to be significant
in the South African context.

In the absence of a single measure used universally to measure student academic out-
comes/success, different approaches have also been used to analyse students’ academic
success/outcomes in South Africa. Some studies looked at academic success as a con-
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tinuous variable by using student marks as a measure of success (Bokaba & Tewari,
2014; Goodman et al., 2011; Sommer & Dumont, 2011), whereas other studies focused
on perceptions of students and lectures with regards to academic success or failure in
higher education (Steenkamp, Baard & Frick, 2009; Zulu, 2008; Fraser & Killen, 2005).
Some other studies looked at academic outcomes from a binary point of view by fo-
cusing on failure/pass, graduation or dropout or stopout (Baard, Steenkamp, Frick &
Kidd, 2010; Breier, 2010; Letseka, 2009; Lourens & Smit, 2003). Different student the-
ories of attrition have also been tested (Wawrzynski, Heck & Remley, 2012; Strydom,
Mentz & Kuh, 2010; Petersen, Louw & Dumont, 2009). Against this background, the
discussion on factors associated with retention is not limited to studies that formulated
student success as a binary outcome. Instead, all the studies that focus on students’
academic outcomes from different angles in HE in South Africa are reviewed so as to
leverage on the broad knowledge generated from these studies.

Previous studies have highlighted the role of gender as one of the determinants of
students’ academic outcomes. Jacobs (2015) found that gender as a single variable is
a better predictor of first year university success than Grade 12 average marks of first-
time entering undergraduate students, with a prediction value of 29.7%. Zewotir et al.
(2011), on the other hand, found the gender effect on failure rates of first year students
to only be significant for students in the Faculty of Education and Health Sciences.
According to Rooney (2015), being female increases the likelihood of graduation.

Financial support or lack thereof has also been cited as one of the main contributors to
student dropout (Moeketsi & Mgutshini, 2014; Pocock, 2012; Letseka, 2009). In fact,
running out of funding has been ranked as the number one reason for dropping out of
university by Black African student (Letseka & Breier, 2008). According to Murray
(2014), having some form of financial aid increased the length of time to dropout.
Rooney (2015) found that being ineligible for financial aid increased the likelihood of
graduation.

The role played by psychological factors such as motivation (Goodman et al., 2011;
Sommer & Dumont, 2011; Petersen et al., 2009), self-esteem (Seabi, 2011), adjustment
(Petersen et al., 2009) and student engagement in student academic success, have
also been highlighted. Language is also one of the most important factors raised in
discussions on academic success in HE (CHE, 2010). For instance, Rooney (2015) found
that being proficient in English increased the likelihood of graduation. Van Rooy &
Coetzee-Van Rooy (2015) suggest that language measures like Matric language marks
and scores and academic literacy tests used by some universities are good predictors
of academic success at a university.

The relationship between academic success in higher education and Matric performance,
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has also been extensively studied. According to Rooney (2015), good high school grades
increase the likelihood of graduation at university. Breier (2010) found significant
differences between graduates and dropouts when compared on the basis of their Matric
results. Visser & Hanslo (2005); Lourens & Smit (2003); and Maree, Pretorius &
Eiselen (2003) found Grade 12 results to have a significant effect on students’ first year
success. In terms of engineering, Maree et al. (2003) found that students who passed
first year engineering differed significantly from those who failed on study attitude
in mathematics, problem–solving behaviour in mathematics and calculations subtests
scores. Jawitz (1995) found that the Grade 12 physical science mark has the strongest
positive correlation with first year engineering students marks.

The prevalent differences in academic performance between students of different races,
remains one of the challenges facing HE. Various studies suggest that race is a signi-
ficant determinant of academic success at University (Rooney, 2015; Murray, 2014).
The findings by Sampson (2011) indicate that there is a significant strong association
between graduation rates and race, such that African students had the lowest gradu-
ation rate followed by the coloured students, Indians and white students. There is also
evidence to suggest that student accommodation is also one of the key factors that
have a significant effect on students’ academic performance (Murray, 2014; Zewotir et
al., 2011).

In the South African context, students who are the first in their family to attend higher
education (first-generation students), are more likely to be black Africans (Blacks, col-
oured and Indians), consequently most of the challenges faced by this group of students
overlap with those experienced by Black students in HE education. They are vulnerable
to unique transitional and developmental challenges as a result of their disadvantaged
socio-economic and educational background due to inequalities of apartheid (Heymann
& Carolissen, 2011). First-generation students (FGS) are often socially located in ways
which disadvantage or reify their inherited identities. Siyengo (2015) highlighted dif-
ficulties in accessing higher education and financial support as one of the negative
experiences of FGS in HE. The student residence experience, diversity at lecture halls,
institutional culture as well the language of teaching and learning, are some of the
other challenges experienced by this group of students (Siyengo, 2015). It is, however,
acknowledged that not all Black students are FGS, hence the need to look at this factor
separately.
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2.8 Chapter summary
This chapter began by reviewing the definition of student dropout. This was followed by
a discussion on student dropout theories and previous student dropout studies, with an
emphasis on the statistical analysis approaches used in the studies. Literature related to
censoring was also reviewed. Survival analysis models were introduced in more concrete
terms that the introductory discussion in Chapter 1. Progression of one method to
another was outlined, indicating the strength and weaknesses of the techniques used to
model student dropout. Special attention was paid to the discrete-time single risk and
competing risk models as the proposed models for the study. A selection of literature
related to frailty and cured models was also reviewed. The chapter concluded with
a brief discussion of the factors associated with student academic outcomes in HE is
South Africa. A selection of literature related to frailty and cured models was also
reviewed. The chapter concluded with a brief discussion of the factors associated with
student academic outcomes in HE is South Africa.

A selection of factors discussed that are available on the Integrated Tertiary System
(ITS) are used as covariates in the single risk and competing risk discrete-time models
proposed for the study in Chapter 3 provides a detailed outline of the theoretical
background of the discrete-time single risk and competing risk models proposed for
the study. A theoretical background of the frailty model that accounts for unobserved
heterogeneity in the single risk case is also presented in Chapter 3.



Chapter 3

Methodology

3.1 Introduction

This chapter provides a theoretical background of the discrete-time survival analysis
models used in the study. The chapter is subdivided as follows. Section 3.2 outlines
the main functions used in survival analysis both for continuous-time and discrete-time
survival data. The continuous-time functions are presented as a foundation for the
discrete-time case. The discrete-time hazard model is presented in Section 3.3. Section
3.4 discusses the competing risks model. The model used to account for unobserved
heterogeneity in the discrete-time single risk model is presented in Section 3.5. The
chapter concludes with a discussion on model assessment and diagnostics methods in
Section 3.6.

It is assumed that survival time is represented by a non-negative random variable T .
The distribution of the random variable T is generally characterised by three elementary
functions, namely the probability density function (continuous-time case) or probability
mass function (discrete-time case), the survivor function and the hazard function. Any
of the three functions can be uniquely determined if any of them is known as shown
in Section 3.2.3. In this study, survival time is assumed to be discrete. It is also
assumed that the distribution of the survival data is unknown and as such the focus is
on nonparametric discrete-time survival analysis techniques.

We further assume that we have a sample of n independent observations (i = 1,2, . . . ,n).
An observation is observed beginning from some natural starting point t=0. The
appropriate starting point is clear in most cases. For instance, if the event of interest
is student dropout, the obvious starting point is the date of enrolment. Assuming that
there is an observed starting point for each observation, then an observation continues
until time ti, at which point either an event occurs, or the observation is censored. It
is assumed that censoring is independent of the occurrence of events, i.e. observations
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or individuals are not selectively withdrawn from the sample because they are more or
less likely to experience an event (Allison, 1982). The actual survival time of a unit is
the realisation or value of T , which may be denoted as t.

3.2 Basic survival functions

3.2.1 Probability density function and cumulative distribution
function

Continuous-time

Let T be a continuous random variable representing survival times. The possible values
of T have a probability distribution that is characterised by probability density function
(PDF), f (t), and cumulative distribution function (CDF), F(t) (Box-Steffensmeier &
Jones, 2004). The cdf of the random variable T is given by

F(t) =
∫ t

0
f (x)dx = P{T ≤ t}, (3.2.1)

which specifies the probability that the survival time T is less than or equal to some
value t (Box-Steffensmeier & Jones, 2004). On the other hand, the pdf for all points
that F(t) is differentiable is given by

f (t) =
dF(t)
d(t)

= F ′(t).

This in turn implies that

f (t) = lim
∆t→0

F(t +∆t)−F(t)
∆t

, (3.2.2)

giving the unconditional failure rate of event occurrences in an infinitesimally small
differentiable area. This can also be seen by expressing f(t) in terms of probability. By
the definition of the CDF in 3.2.1, the probability density can be written as

f (t) = lim
∆t→0

P(t ≤ T < t +∆t)
∆t

. (3.2.3)

Equation 3.2.3 gives the instantaneous probability that an event will occur (or a unit
will fail) in a negligible small area bounded by t and t +∆t. Equations 3.2.2 and 3.2.3
show that the pdf is an unconditional failure rate. Either F(t) or f (t) can be used
to specify an equivalent distribution. If F(t) is differentiable, then f (t) must exist.
Therefore, either the PDF or CDF can be used to characterise the distribution of
failure times.
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Discrete-time

The notation for discrete-time data suggested by Singer & Willett (1993) is used in
this section as well as the mathematical formulations outlined for survival analysis func-
tions for discrete-time data. In the discrete-time case, events are recorded in discrete
intervals, that is, the continuous time is divided into an infinite set of contiguous time
periods:

(0, t1],(t1, t2], . . . ,(t j−1, t j], [t j,∞).

Let j index time periods such that the jth period begins immediately after time t j−1

and ends and includes time t j. Let T be a discrete random variable that indicates the
time period j when the event of interest occurs for a randomly sampled observation
from the population. Then T = t j can also be expressed as T = j, such that the interval
(0, t1) refers to T = 1 and similarly T = j refers to the interval (t j−1, t j], meaning that
the event occurred in the jth interval. If we further assume that we have i = 1,2, . . . ,n
observations, then T = t j indicates that an event occurred at time t j, where j = 1,2, . . .
and 0 < t1 < t2 < .. . . Implied in the above statement is that t j−1 indicates the duration
of non-occurrence of the event.

For a discrete random variable T , the probability mass function is given by

f (t j) = P
(
T = t j

)
. (3.2.4)

3.2.2 Survivor function

The distribution of T can also be characterised through the survivor function, which
is the complement of the cdf. It gives the probability that the event of interest has
not occurred by duration t. Survival probabilities, therefore, represent the proportion
of the original sample that has not experienced the event of interest by time t while
the survivor function refers to the chronological pattern of these probabilities. The
survivor function cumulates the period-by-period risks of event non-occurrence together
to evaluate the probability that a selected observation will not experience the event of
interest.

Continuous-time

According to Cleves (2008), for a continuous random variable T , the survivor function
is given by

S(t) = P(T > t) =
∫ ∞

t
f (u)du = 1−F(t).

The survival function has the following properties:
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• S(0)=1

• limx→∞ S(t)=0

• S(t) is a monotonic, non-increasing and non-negative function

• Plotting S(t) against t gives the survival curve.

The survival function may be estimated by the Kaplan-Meier (KM) estimator, also
referred to as the Product Limit Estimator. The KM estimator was first introduced
by Kaplan & Meier (1958). It incorporates data from both censored and uncensored
observations. Each observation contributes information, provided that the observation
has not experienced the event of interest. Observations that do experience the event of
interest contribute to the risks set until they experience the event of interest. Similarly,
censored observations contribute to the risk set until the end of the observation period
or are lost to follow-up. The KM estimator of the survivor function is defined as follows:

Ŝ (t) = ∏
t j≤t

[
1−

d j

n j

]
,

where d j is the number of events observed at time j and n j is the number of observations
at risk of experiencing the event at time j. The estimated variance of these estimates
can be obtained through the Greenwood’s formula as follows:

V̂
[
Ŝ (t)

]
= Ŝ2 (t) ∑

t j≤t

[
d j

n j
(
n j −d j

)] .
Discrete-time

In terms of a formal definition, the survival probability for observation i in time period
j denoted by S(ti j) is the probability that an observation i will survive past time period
j (Singer & Willett, 2003), i.e.

S(ti j) = P(Ti > j) = 1−P(Ti ≤ j).

The set of S(ti j) for an observation is the observation’s survival function. When the
observations are not distinguished on the basis of covariates, the subscript i can be
dropped and survival function for a random observation in the population can be
written as S(t j) or S(t). The plot of S(t) against t is a non-increasing step function
which jumps downwards at t1, t2, . . . . The event must not have happened at period j or
any prior time period. The chronological pattern of survival probabilities expressed as
a function of time gives the survivor function. The value of the survivor function at the
beginning of time is 1 as no observation has yet experienced the event of interest. Over
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time, as events occur, the survivor function declines towards 0. When the hazard is high,
the survivor function declines rapidly and when the hazard is low the survivor function
declines slowly. Unlike the hazard function which can increase, decrease or remain
constant between adjacent intervals, the survivor function never increases. During
time periods where no event occurs, the survivor function remains constant.

The sample survivor function can be estimated as

Ŝ(t j) = Ŝ(t j−1)[1− ĥ(t j)]. (3.2.5)

3.2.3 The hazard function

The most common representation of the event time distribution is the hazard function
(also known as the hazard rate or intensity). The hazard function is the most important
element in survival analysis as it shows the risk of event occurrence at each time period
and it also gives an estimate of when an event is likely to occur. Its magnitude in each
time period indicates the risk of the event occurrence in that period. The greater the
hazard, the higher the risk. It gives the rate at which observations fail by t, given that
the observation survived until time t.

Continuous-time

For continuous-time survival data, the hazard function is defined as

h(t) = lim
∆t→0

P(t ≤ T < t +∆t | T ≥ t)
∆t

. (3.2.6)

Equation 3.2.6 is the rate of failure per time unit in the interval [t, t +∆t], conditional
on survival at or beyond time t (Cleves, 2008). The numerator in equation 3.2.6 is the
conditional probability that an event will occur in the interval [t,t+∆t) given that it has
not occurred before, while the denominator is the width of the interval. Dividing one
by the other gives a rate of event occurrence per unit of time. Taking the limit as the
width of the interval approaches zero, we obtain an instantaneous rate of occurrence.
An increase in the hazard rate implies that the likelihood of failure increases as time
passes, whereas a decrease indicates that the likelihood of failure decreases as time
passes.

The rate can also take other forms over time, such as increase and then decrease, or
decrease and then increase. The relationship between the hazard rate and survival
probability can be used to estimate the sample survivor function. Information about
survival can be deduced from the hazards probabilities since for each interval, the
estimated hazard probability provides information not only about event occurrence
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but also about the probability of non-occurrence. The hazard rate, survivor function,
and density and distribution functions are therefore mathematically linked. If any one
of these is specified, the others can be fully determined. In order to demonstrate these
relationships, we take note that 3.2.6 can be expressed as

h(t) = lim
∆t→0

P [(t ≤ T < t +∆t)∩ (T > t)]
P(T > t)∆t

= lim
∆t→0

P(t ≤ T < t +∆t)
∆t

× 1
P(T > t)

= f (t)× 1
S (t)

.

(3.2.7)

This implies that the hazard rate captures the relationship between failure times and
the survival function in the following way:

h(t) =
f (t)
S(t)

,

where
f (t) =

−dS(t)
d(t)

.

In other words, the rate of occurrence of the event at duration t equals the density of
events at t, divided by the probability of surviving to that duration without experien-
cing the event. This means the hazard rate can be equivalently written as

h(t) =
−dS(t)

d(t)

S(t)
,

which is equivalent to

h(t) =
−d logS(t)

d(t)
. (3.2.8)

By intergrating 3.2.8 using S(0)=1, the survival function can be written as

S(t) = e−(
∫ t

0 h(u)du),

which can be expressed as

S(t) = e−(H(t)),

where the term

H(t) =
∫ t

0
h(u)du, (3.2.9)
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is called the cumulative hazard rate. From 3.2.3, H(t) can be written in terms of the
survival function:

H(t) =− log(S(t)),

and the density function can be written in terms of the cummulative hazard rate:

f (t) = h(t)e−H(t).

Discrete-time

For a discrete random variable T , the hazard rate at time t j is defined as the conditional
probability that a randomly selected individual from the population will experience the
event of interest in time period j, given that they have not experienced it in any earlier
time period (Singer & Willett, 1993), i.e.

h(t j) = P
(
T = t j | T ≥ t j

)
. (3.2.10)

Equivalent to the continuous-time hazard, the discrete hazard can be expressed as

h(t j) = P
(
T = t j | T ≥ t j

)
=

P
[(

T = t j
)
∩
(
T ≥ t j

)]
P
(
T ≥ t j

) =
P
(
T = t j

)
P
(
T ≥ t j

)
=

P
(
T = t j

)
P
(
T > t j−1

) = P
(
T = t j | T > t j−1

)
=

f (t j)

S(t j−1)
.

(3.2.11)

We note that since f (t j) = S(t j−1)−S(t j), equation 3.2.11 can be expressed as

h(t j) =
S(t j−1)−S(t j)

S(t j−1)
= 1−

S(t j)

S(t j−1)
.

This relationship is important in obtaining an estimate of the survival function in the
presence of censoring. By rearranging the last equation, we get the following

S(t j) = S(t j−1)[1−h(t j)]. (3.2.12)

We note that

S(t) =
S (t1)
S (t0)

× S (t2)
S (t1)

×·· ·×
S
(
t j
)

S
(
t j−1

) .
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This implies that equation 3.2.12 can be expressed as

S(t) = ∏
t j≤t

S
(
t j
)

S
(
t j−1

) = ∏
t j≤t

[
1−h

(
t j
)]
.

The idea of conditionality is innate in the definition of the hazard. This means that an
observation i can only experience the event of interest in time period j if, and only if
they have not experience it in any earlier period. Conditionality ensures that hazards
represent the probability of event occurrence for those observations that are eligible
to experience the event in that period, i.e. those in the risk set. Observations that
experience the event of interest are removed from the risk set and are ineligible to
experience the event in later periods.

The conditionality also ensures that the hazard probability of observation i in time
period j evaluates their unique risk of event occurrence in that period. Each observation
has a hazard function that describes their true risk of event occurrence over time that is
distinguished to that of other observations on the basis of covariates. We can drop the
subscript i that indexes observations, since we are only describing the distribution of
event occurrence for a random sample of observations from a homogeneous population
among whom we are not yet distinguishing. If we let nevents j denote the number of
observations that experience the event of interest in time period j and natrisk j denote
the number of observations at risk in time period j, then the discrete-time hazard in
time period j can be estimated as:

ĥ j =
nevents j

natrisk j
.

The magnitude of the hazard in each time period, indicates the risk of event occurrence
in that interval. The estimated discrete hazard function can be examined by plotting
its values over time. Instead of plotting the discrete-time hazard functions as a series
of lines joined together as a step function, the discrete-time hazard probabilities are
plotted as a series of points joined together by line segments (Singer & Willett, 2003).
The plots can be used to identify periods of high risk and to characterise the shape of
the hazard function (Singer & Willett, 2003).

The KM estimator can also be used to estimate the cumulative hazard function. The
Nelson-Aalen estimator is another estimator used to estimate cumulative hazard. Com-
pared to the KM estimator, it has better low sample properties (Moeschberger & David,
1971). The Nelson-Aalen estimator is defined as follows:

Ĥ (t) = ∏
t j≤t

[
1−

d j

Yj

]
.



42 Methodology

Median lifetime

It is often of interest to identify the centre of the distribution of event times. In
the absence of censoring, all event times would be known and a sample mean can be
computed. However, in the presence of censoring, the median lifetime can be used as
a measure of centrality. The estimated median lifetime is the value of T for which the
value of the estimated survivor function is 0.5. It is the time period by which 50% of
the sample has experienced the event of interest and 50% has not.

3.3 Discrete-time hazard model

3.3.1 Model estimation

The conditional probabilities at time t j expressed in equation 3.2.10 which can be de-
noted by h j, are the essential parameters of the discrete-hazard model, and as such the
goal of discrete-time survival analysis is to estimate these conditional probabilities and
their dependence on selected covariates (Singer & Willett, 2003). The values of the
conditional probabilities, h j lie between 0 and 1 since they are probabilities. The main
interest is in investigating whether the risk of an event’s occurrence differs systematic-
ally across different types of individuals or observations with their specific covariates.
Different heterogeneities from explanatory variables are therefore, considered in the
hazard model.

In order to introduce observed heterogeneity into the definition of the discrete-time
hazard, we let Xp(p = 1,2,3, . . . ,P) be a set of P covariates, of which each characterises
the members of the population on a specific dimension. Since the values of some cov-
ariates vary with time, the values of these covariates are recorded in each time period.
We let xi j = [x1i j,x2i j, . . . ,xPi j] represent a vector of observation i’s values for each of the
P covariates in time period j. The subscript i is introduced into the definition of the
population discrete-time hazard in 3.2.10 so that hi j represents the conditional probab-
ility that observation i, with associated covariates xi j = [x1i j,x2i j, . . . ,xpi j] experiences
the event of interest in time period j, given that they have not experienced in earlier
time periods, i.e.

hi j = P(Ti = j | Ti ≥ j,X1i j = x1i j,X2i j = x2i j, . . . ,Xpi j = xpi j). (3.3.1)

Equation 3.3.1 indicates that the hazard is a function of each observation’s values on
a vector of covariates. However, the functional form of the dependence is not specified.
The probabilities, hi j are parametised to have a logistic dependence on the covariates
and time periods as proposed by Allison (1982) and Cox (1972).
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The logistic distribution

Let P(yi j = 1)= λi and P(yi j = 0)= 1−λi denote the probability of an event’s occurrence
and non-occurrence, respectively. We further assume that this probability is a function
of covariates, x. According to Box-Steffensmeier & Jones (2004), the logit function has
the following form

log(
λi

1−λi
) = β0 +β1x1i +β2x2i · · ·+βpxpi. (3.3.2)

This function specifies λi in terms of the log-odds ratio of the probability of an event oc-
currence to the probability of a non-occurrence. The logit coefficients, βk , are therefore
interpreted in terms of their relationship to the log-odds of an event occurrence. The
model can be expressed in terms of the odds of event occurrence using the exponential
function, i.e.

λ̂i =
eβ′x

1+ eβ′x
.

This gives the predicted probability of an event occurrence, i.e. λ̂i, where exp(β′x)

represents the exponentiated logit parameters for a given covariate profile. The hazard
rate is used as the independent variable in survival analysis, since it gives the risk of
event occurrence at each time period given that it has not occurred at earlier time
periods.

The logistic parametisation of the sample hazard function, hi j is therefore, given by
the following:

hi j =
1

1+ exp− ((α1D1i j +α2D2i j + · · ·+αJDJi j)+(β1x1i j +β2x2i j + · · ·+βPxPi j))
. (3.3.3)

Equation 3.3.3 can be expressed as

hi j

1−hi j
= exp(α1D1i j+α2D2i j+···+αJDJi j)×exp(β1x1i j+β2x2i j+···+βpxpi j),

where J is the length of the observation period, i.e. the last time period observed for any
observation in the sample and [D1i j,D2i j, . . . ,DJi j] are a series of dummy variables with val-
ues [d1i j,d2i j, . . . ,dJi j] indexing time periods, [α1,α2, . . . ,αJ] are the intercept parameters and
[β1,β2, . . . ,βp] are the slope parameters which describe the effects of the covariates on the
baseline mode (Singer & Willett, 1993). Let ji represent the last period when observation i

was observed (at which point they either experienced the event of interest or was censored).
The time-period dummies are defined the same way for all the observations. For instance,
d1i j = 1 when j = 1, and d1i j = 0 when j takes on any other value (2 through J); d2i j = 1 when
j = 2 and d2i j = 0 otherwise; and so on.
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By taking the log transformation on both sides of the equation we get:

log
(

hi j

1−hi j

)
= (α1D1i j +α2D2i j + · · ·+αJDJi j)+(β1x1i j +β2x2i j + · · ·+βPxPi j) . (3.3.4)

Equation 3.3.4 suggests that the conditional log-odds that the event of interest will occur in
each time period j given that is has not occurred in earlier time periods is a linear function
of constant term α j specific to period j, and of the values of the covariates at period j

multiplied by the appropriate slope parameters. Assuming that we have a random sample
of n(i = 1,2, . . . ,n), the discrete-time hazard model in equation 3.3.4 can be fitted and its
parameters can be estimated. Estimators for the parameters [α1,α2, . . . ,αJ] and [β1,β2, . . . ,βp]

and therefore hi j can be estimated through maximum likelihood estimation. The procedure
is outlined in the next section.

3.3.2 Constructing the likelihood function
To construct the likelihood function we follow the approach outlined by Singer & Willett
(1993). We first assume that each observation in the sample is observed through each suc-
cessive discrete-time periods until it experiences the event of interest or it is censored. Let

yi j =

{
0 if observation i does not experience the event in period j

1 if observation i experience the event of interest in period j.
(3.3.5)

Since we are interested in the occurrence of a single non-repeatable event, the sequence of y

values can only show one of two patterns. Either yi j assume the value of zero in every time
period that is observed during data collection, including the last one, indicating that that
observation did not experience the event of interest during the observation period and was
subsequently censored or it assumes the value of one for the specific time period that is it
experienced the event of interest, and observation is terminated afterwards. Since the event
is not repeated, for an uncensored observation, fewer y values may be required to describe the
event history, they will consist of a series of zeros terminating in the value one. In addition
to describing event occurrence by a sequence of y values, we also define a censoring indicator
δi, where

δi =

{
1 if observation i is censored
0 if observation i is not censored.

(3.3.6)

Since the hazard function is conditional, observations only contribute data at time period j if
they experience the event at that time period or if they have not yet experienced the event of
interest by that time period. If the event of interest does not occur, then the observation is
right-censored and contributes to the data set a vector of zeros. The number of time periods,
can therefore, vary across observations ( j = 1,2, . . . , ji) where ji is the terminal time period
for observation i, that is time period with the last non-missing value for observation i. The
subscript i indicates that the terminal period can vary for each observation. If we assume that
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censoring is random, then the likelihood function for the sampled data consists of two parts,
that is the part for uncensored observations (the probability that an observation experienced
the event of interest in time period ji) and another part for censored observations. The
expressions for each part are derived separately as suggested by Allison (1982).

We first look at the probability that an uncensored observation will experience the target
event in time period ji. This can be written as a product of terms, one per period describing
the conditional probabilities that the event did not occur in periods 1 through ji − 1, but
occurred in period ji, i.e.

P(Ti = ji) = P(Ti = ji | Ti ≥ ji)×P(Ti ̸= ji −1 | Ti ≥ ji −1)× . . .

P(Ti ̸= 2 | T ≥ 2)×P(Ti ̸= 1 | Ti ≥ 1),
(3.3.7)

where the subscripts 1 and 2 index the first and second time periods. We know that

h j = P(T = j | T ≥ j) (3.3.8)

and

P(T > j | T ≥ j) = 1−h j. (3.3.9)

Expressing 3.3.7 in terms of the hazard probability and in terms of the conditional survival
probability in 3.3.9, the probability of failure, f (t), can be written as

P(Ti = ji) = hi ji × (1−hi( ji−1))× (1−hi( ji−2)) · · ·× (1−hi2)× (1−hi1)

= hi ji

ji−1

∏
j=1

(1−hi j).
(3.3.10)

This shows that the probability mass function is equal to the hazard probability multiplied
by the product of the conditional survivor functions. From equation 3.2.7, f (t) = S(t)h(t).
This means that the survivor function must be equal to

Pr{Ti > ji}= (1−hi ji)× (1−hi( ji−1))× (1−hi( ji−2)×·· ·× (1−hi2)× (1−hi1)

=
ji

∏
j=1

(1−hi j).
(3.3.11)

If we assume that the sampled observations are independent (given their x1i j,x2i j, . . . ,xPi j

values), then the likelihood function is simply the product of the probabilities of observing
the sample data, P(Ti = ji) in the case of uncensored observations (δi = 0) and P(Ti > ji) in
the case of censored observations (δi = 1), i.e.
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L =
n

∏
i
[P(Ti = ji)]

1−δi [P(Ti > ji)]
δi . (3.3.12)

Substituting equations 3.3.10 and 3.3.11 into 3.3.12 yields the following

L =
n

∏
i

[
hi ji

ji−1

∏
i=1

(1−hi j)

]1−δi
[

ji

∏
j=1

(1−hi j

]δi

.

Taking the logarithms of equation 3.3.2 gives us the following log-likelihood function

logL =
n

∑
i
(1−δi) log

[
hi ji

(1−hi ji)

]
+

n

∑
i=1

ji

∑
j=1

log(1−hi j) . (3.3.13)

Using the indicator variable yi j defined above, 3.3.13 can be written as

logL =
n

∑
i

[
ji

∑
j=1

yi j log
(

hi j

(1−hi j)

)
+

ji

∑
j=1

log(1−hi j)

]
.

This simplifies to

logL =
n

∑
i

ji

∑
j=1

[
log
(

hi j

(1−hi j)

)yi j

+ log(1−hi j)

]
. (3.3.14)

Taking the antilog of equation 3.3.14 and combining like terms gives us

L =
n

∏
i

ji

∏
j=1

hyi j
i j (1−hi j)

1−yi j . (3.3.15)

Equation 3.3.15 is the likelihood function for the discrete-time hazard. According to Singer
& Willett (1993) and Allison (1982), this likelihood function is equivalent to the likelihood
function for or a sequence of U (U = j1 + j2 + · · ·+ jn) independent Bernoulli trials with para-
meters hi j. The parameters hi j are the probability of the binary observed variables, yi j. The
discrete-time hazard model can therefore be estimated using binary regression models. The
logit link function is used in the study in line with Singer & Willett (1993) to specify how
the hazard rates depend on the explanatory variables.

This equation can be expressed as

hi j

1−hi j
= exp(α1D1i j+α2D2i j+···+αJDJi j)×exp(β1x1i j+β2x2i j+···+βpxpi j) . (3.3.16)

Using the likelihood function derived in equation 3.3.15, we have the following

logL(θ) =
n

∑
i

ji

∑
j=1

yi j log
[

hi j

(1−hi j)

]
+ log(1−hi j), (3.3.17)

where
θ′ = [α1,α2, . . . ,αJ,β1,β2, . . . ,βp]
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and
hi j =

1

exp−(α1D1i j+α2D2i j+···+αJDJi j+β1x1i j+β2x2i j+···+βpxpi j)
.

Creating the person period data set
The steps to create a person period data set are outlined by Singer & Willett (2003). In the
normal person-oriented data set, each observation in the sample has one record of the data.
A record for the ith observation usually contains information about:

• Duration: the length of time an observation was observed, usually recorded as the last
time period, ji,in which an observation was observed.

• Censoring: the value of the censoring indicator δi, which indicates whether an observa-
tion experienced the target event in the last time period in which it was observed or
whether the observation was censored. The censoring indicator δi has a value of 0 if
observation i was not censored in time ji and 1 if it was.

• Selected explanatory variables: observation i’s values on covariates recorded in each
time period j up to, and including, time period ji. For time-invariant covariates, only
a single value is recorded for all periods. However, time-varying covariates may take
on a different value in each time period.

The person-oriented data set needs to be converted into a new person-period data set such
that each observation has multiple records, one for each time period of observation. New
variable musts be created to distinguish the multiple records within an observation. The new
variables are referred to as time indicators. The values of the independent variables must
be recorded such that they are appropriate to each period. An event indicator variable Y ,
is created using the duration and censoring information. In the new person-period data set,
the ith observation has ji records, with the jth of these containing information about the jth
time period:

• The time indicators: the set of dummy variables D1i j,D2i j, . . . ,DJi j assume values that
identify the particular time period to which the record refers to. All the time indicators
take on the value 0, except for the jth dummy, D ji j, which takes the value 1.

• The independent variables: for the jth record, the independent variables contain the
ith observation’s values of the P covariates for the time period j, X1i j,X2i j, . . . ,XPi j.

• The event indicator: the variable Y records values yi j that indicate whether or not the
target event has occurred for observation i at time period j. it takes on the value 1 if
the event of interest has occurred and 0 otherwise.

The original n records of the person-oriented data set become U = ( j1 + j2 + · · ·+ jn) in the
new person-period data set.
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3.3.3 Inclusion of time-varying covariates
The discrete-time survival analysis model adapts naturally to the inclusion of time-varying
predictors (Singer & Willett, 2003). Since the models are fit using a person-period data set,
a time-varying predictor simply takes on its applicable value for each time-varying covariate.
The model in 3.3.16 allows for inclusion of time-varying predictors since each variable has
two subscripts: i indexing the observations and j indexing time periods. For example if we
assume that we have two covariates, X1i which is constant over time and X2i j, the discrete-time
model with a logit link can be expressed as

logit(hi j) = [α1D1i j +α2D2i j + · · ·+αJDJi j]+ [β1X1i +β2X2i j] .

This means that an observation i′s value of the logit hazard in time j depends on their value
of X1 which is constant across all time points and their value of X2 at time period j.

3.4 Discrete-time competing risk model

3.4.1 Introduction
Let time assume values {1, . . . ,k} we also let q = k − 1. If it results from intervals, one
has k underlying intervals [a0,a1), [a1,a2), . . . , [aq−1,aq) [aq,∞), such that it is typically
assumed that a0 = 0 and aq denotes the final follow-up (Tutz & Schmid, 2016). Discrete time
T ∈ {1, . . . ,k} means that T = t is observed if failure occurs within the interval [at−1,at). If
it is inherently discrete, then T is the original observation (Tutz & Schmid, 2016).

3.4.2 Cause-specific discrete hazard function
The single risk discrete-time model represented by equation 3.3.3 can be extended to a MNL
model, which is an extension of the logit model (Tutz & Schmid, 2016). It is essentially a series
of linked logit model. The MNL model estimates m− 1 logit models to obtain parametric
estimates on the cause-specific or destination specific hazards (Tutz & Schmid, 2016).
Let the distinct terminating events be denoted by R ∈ {1, . . . ,m}. Then the cause-specific
discrete hazard function resulting from risk or cause r is given by the conditional probability

λr(t | x) = P(T = t,R = r | T ≥ t,x), (3.4.1)

where x is a vector of covariates and r = 1,2, . . . ,k and t = 1,2, . . . ,q. Time-varying and lagged
covariates can be easly included in 3.4.1, i.e.

λr(t | xt) = P(T = t,R = r | T ≥ t,xt), t = 1,2, . . . , (3.4.2)

where xt may comprise time-constant or possibly lagged time-dependent covariates observed
at time t.
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The overall hazard function is obtained by summing the m (λ1(t | x), . . . ,λm(t | x)) hazard
functions, i.e.

λ(t | x) =
m

∑
r=1

λr(t | x) = P(T = t | T ≥ t,x). (3.4.3)

3.4.3 Survival function

The survival function of an event and the unconditional probability of an event in period ti
have the same form as in the single risk case and are given by:

S (t | x) = P(T > t | x)

=
t

∏
j=1

(1−λ( j | x))
(3.4.4)

and

P(t | x) = λ(t | x)
t

∏
j=1

(1−λ( j | x))

= λ(t | x)S (t −1 | x) .

(3.4.5)

If an individual survives until interval [at−1,at) then there are m+1 possible outcomes, that
is one of the m target events or survival beyond [at−1,at). The corresponding resultant
conditional probabilities are given by

(λ1 (t | x) , . . . ,λm (t | x)) ,1−λ(t | x) ,

where 1−λ(t | x) is the survival probability.
The multi-category models that are used in the modelling of categorical data are the natural
models for the m+1 events. Therefore if an observation reaches interval [at−1,at), a natural
parametric model for the hazards in the MNL model given by

λr (t | x) =
exp
(
β0tr + xT γr

)
1+∑m

s=1 exp( β0ts + xT γs)
, (3.4.6)

where t = 1, . . . ,q and r = 1, . . . ,m. The parameters β01r, . . . ,β0qr are the cause-specific baseline
hazard functions and γr represent the cause specific vector of coefficients. In a multinomial
logit model, conditional survival corresponds to the reference category. It is, therefore, suf-
ficient to specify the conditional probability of the target events 1, . . . ,m. The conditional
probability of survival is given by
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P(T > t | T ≥ t,x) = 1−
m

∑
r=1

λ(t | x)

=
1

1+∑m
s=1 exp( β0ts + xT γs)

.

(3.4.7)

With R∈{1, . . . ,m}, where R= 0 denotes the conditional survival, the conditional probabilities
are given by λ0(t | x) = P(T > t | T ≥ t,x),λ1(t | x) . . . ,λm(t | x), which add up to one.

3.4.4 Model estimation

The steps outlined by Möst, Pößnecker & Tutz (2016) are followed for model estimation. Let
the data be given by (ti,ri,δi,xi), where i = 1, . . . ,n, xi is a vector of explanatory variables,
ti = min(Ti,Ci) is the observed discrete time, which is the minimum of survival time Ti and
censoring time Ci (Möst et al., 2016). It assumed that censoring is random, i.e. Ti and Ci

are independent . We further assume that ri ∈ {1 . . . m} indicates the target event, xi is a
covariate vector and δi is a censoring indicator such that

δi =

{
1 Ti ≤Ci,

0 Ti >Ci.

From the above equation ri = 0 if and only if δi = 0. Implied in this definition of the censoring
indicator is that censoring occurs at the end of the interval. The likelihood contribution of
the ith observation for the model 3.4.6 is given by

Li = P(Ti = ti,Ri = ri)
δiP(Ti > ti)1−δiP(Ci ≥ ti)δiP(Ci = ti)1−δi (3.4.8)

It assumed that censoring is random,i.e. Ti and Ci are independent. We further define an
indicator function δi such that
The conditioning on the vector of covariates xi is omitted for notational simplicity. If we
assume that censoring is random, then the censoring mechanism does not depend on the
parameters that determine the survival time (Kalbfleisch & Prentice, 2002), the factor ci =

P(Ci ≥ ti)δiP(Ci = ti)1−δi can be omitted in the above equation, resulting in the following

Li = P(Ti = ti,Ri = ri)
δi P(Ti > ti)

1−δi

= λri (ti | xi)
δi (1−λ(ti | xi))

1−δi
ti−1

∏
t=1

(1−λ(t | xi)) .
(3.4.9)

We let Rt = {i : t ≤ ti} be the risk set consisting of all observations/individuals who are at risk
in interval [ati−1,ati). For an alternative representation of the likelihood function, we define
the following indicators for the transition to the next period
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Yitr =

{
1, event of type r occurs in the interval [ati−1,ati)

0, no event of type r occurs in the interval [ati−1,ati),
(3.4.10)

and

Yit0 =

{
0, event of type r occurs in the interval [ati−1,ati)

1, no event of type r occurs in the interval [ati−1,ati),
(3.4.11)

where j ∈ Rt and r = 1, . . . ,m. The indicator variable in 3.4.11 can therefore be derived
from 3.4.10 by yit0 = 1 − yit1 − ·· · − yitm. The indicator variables can be gathered in the
vector yT

it = (yit0,yit1, . . . ,yitm) = (1,0, . . . ,0), which denotes the response vector of observations
i, i = 1, . . . ,n and t = 1, . . . , ti. The likelihood function for the ith observation can be written as

Li =
ti

∏
t=1

(
m

∏
r=1

λr (t | xi)
yitr

)
(1−λ(t | xi))

yit0

=
ti

∏
t=1

(
m

∏
r=1

λr (t | xi)
yitr

)(
1−

m

∑
r=1

λr (t | xi)

)yit0

.

(3.4.12)

This means that the likelihood for the ith observation is the same as the likelihood for the ti
obervations yi1, . . . ,yiti of a multinomial response model. Given that an observation survives
until interval [at−1,at), the response is multinomially distributed with yT

jt =(y jt0,y jt1, . . . ,y jtm)∼
M(1,1−λ(t | xi),λ1(t | xi) . . . ,λm(t | xi)). The dummy variable yito = 1− yit1 −·· ·− yitm has the
value 1 if observation i does not experience the event of interest in interval [at−1,at) and
yit0 = 0 if observation i experiences the event of interest in interval [at−1,at). Consequently,
the likelihood is that of the multicategorical model

P(Y it = r | xi) = P(yitr = 1 | xi) =
exp(ηitr)

1+∑m
s=1 exp(ηits)

,

where ηitr = β0tr + x j
T γr. The total log-likelihood is given by

l =
n

∑
i=1

ti

∑
t=1

[
m

∑
r=1

yitr logλr (t | xi)+ yit0 log

(
1−

m

∑
r=1

λr (t | xi)

)]

=
q

∑
t=1

∑
i∈Rt

[
m

∑
r=1

yitr logλr (t | xi)+ yit0 log

(
1−

m

∑
r=1

λr (t | xi)

)]
.

As in the single risk case, the ML estimates may be computed within the framework of mul-
tivariate GLMs after construction of an appropriate design matrix. Let 1t =(0, . . . ,0,1,0, . . . ,0)T

be a vector of length q with 1 in tth position and zeros otherwise and let x̃T
it = (1T

t ,x
T
i ) denote

a design vector that includes the baseline effect for time period t and the covariate vector
xi. With corresponding parameter vectors γ̃T

r = (β01r, . . . ,β0qr,γT
r ) = (βT

0r,γT
r ), we can obtain

for the linear predictors ηitr = βT
0tr + xT

i γT
r the closed form
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ηit = (ηit1, . . . ,ηitm)
T =

(
x̃T

it γ̃1, . . . , x̃T
it γ̃m
)T

.

The matrix of linear predictors for all artificial data points that belong to one real observation
is given in compact form by the following

η j =


ηT

i1
...

ηT
iti


ti×m

= X̃ iΓ̃ =


x̃T

i1
...

x̃T
iti


ti×(q+p)

[
γ̃1| . . . |γ̃m

]
(q+p)×m

.

Then for all the observations we have η = X̃ Γ̃, with ηT = (ηT
1 | . . . |ηT

n ) and X̃T
= (X̃T

1 | . . . |X̃
T
n )

so that estimation and inference is readily available via standard methods for multivariate
GLM.

3.5 Unobserved heterogeneity
Estimation of the distribution of unobserved heterogeneity is done by assuming that the frailty
term follows a Gaussian distribution with zero mean (Hess & Persson, 2012). It is assumed
that that there exists different types of observations or individuals who differ between them
in unobserved attributes, e.g. motivation, which affect dropout and graduation rates.

3.5.1 Single risk model
Unobserved heterogeneity can be accounted for by including random effects into the logit
model. In the discrete time case, an individual specific unobserved random effects term ui j

for the jth time period is introduced in the model to account for unobserved heterogeneity.
From 3.5.1, the discrete time hazard model has a logistic dependence on explanatory variables
and time, i.e.

hi j =
1

1+ exp− (α1D1i j +α2D2i j + · · ·+αJDJi j +β1x1i j +β2x2i j + · · ·+βpxpi j)
.

Inclusion of the ui j gives the following

hi j =
1

1+ exp− (α1D1i j +α2D2i j + · · ·+αJDJi j +β1x1i j +β2x2i j + · · ·+βpxpi j +ui j)
. (3.5.1)

3.6 Model diagnostics
The aim in statistical model developments is to obtain the model that best describes the
central point of the data. In most cases, the results of the fitted model are summarised in
terms of point and interval estimates of practically interpretable measures of the effect of
explanatory variables on dependent variable. Examples of summary measures include, mean
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differences for linear regression, the odds ratio for logistic regression and hazard ratio for
proportional hazards regression. Inferences based on models depend entirely on the fitted
statistical model. A thorough examination of the adequacy of the fitted statistical model
is therefore crucial. It assures us that the inferences made based on the fitted model are
the best and most valid possible. Goodness-of-fit tests are used to formally determine the
adequacy of the fitted model.

3.6.1 Assessing overall goodness-of-fit
In survival analysis the interest is on the effect of explanatory variables on survival. The
interest is in the contribution of predictors, i.e. whether the predictor variables in the model
that account for the heterogeneity in the population are relevant. When maximum likelihood
estimation is used to generate the log-likelihoods, then the log-likelihood (LL) is used to
assess the fit of the model.

Likelihood ratio test
The likelihood ratio (LR) test is used when the interest is in comparing nested models. The
interest is in testing hypothesis of the form:

Ho : Cθ = ξ against Ho : Cθ ̸= ξ, (3.6.1)

where C is a fixed matrix of full rank s ≤ p and ξ is a fixed vector. The vector θ in the linear
hypothesis Cθ = ξ collects all the parameters of the model, i.e. θT = (γ01, . . . ,γoq,γT ) (Cleves,
2008). A common test statistic for linear hypothesis is the likelihood ratio test, which is
based on the comparison between two models, that is, the model without constraints and the
model fitted under the linear constraints. Suppose that θ̂ denotes the maximum likelihood
estimate for the full model in 3.3.16 and θ̃ denotes the maximum likelihood estimate under
the constraint Cθ = ξ. Then the likelihood ratio statistic is given by:

LR =−2
[
l
(
θ̃
)
− l
(
θ̂
)]
, (3.6.2)

which measures the change of the log-likelihood given in 3.3.17 when evaluated as θ̂ and θ̃,
where l

(
θ̃
)

is the sample LL statistic of the current model and l
(
θ̂
)

is the LL of the saturated
model (Cleves, 2008). Under the regularity conditions LR statistic follows asymptotically a
χ2 with s = rk(C) degrees of freedom, such that s = rk(C) denotes the rank of matrix C.

The Wald statistics can be used as an alternative test statistic. It is derived as an approxim-
ation of the LR and it is given by:

w =
(
Ĉθ−ξ

)T [
CF−1 (θ̂)CT ]−1 (

Cθ̂−ξ
)
, (3.6.3)

where F(θ) = E(−∂2l(θ)/∂θ∂θT ) denotes the Fisher information matrix. One advantage of
the Wald statistic is that only the full model has to be fitted to obtain θ (Singer & Willett,
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2003). It is not necessary to fit the constrained model. Another alternative test statistic is
the score statistic which is given by :

u = sT (θ̃)F−1 (θ̃)s
(
θ̃
)
, (3.6.4)

where s(θ) = ∂l(θ)/∂θ = (∂l(θ)/∂β1, . . . ,∂l(θ)/∂βp)
T is the score function evaluated at the fit

of the constrained model.

The deviance statistic
The deviance statistic compares LL for two models: (1) the current model, which is the model
just fit; and (2) a saturated model, which is a more general model that fits the sample data
perfectly (Singer & Willett, 2003). The deviance is defined as

Deviance =−2
[
l
(
θ̃
)
− l
(
θ̂
)]
. (3.6.5)

Since the LL of the saturated model is exactly one, the deviance can be expressed simply as

Deviance =−2l
(
θ̃
)
. (3.6.6)

According to Singer & Willett (2003) and Hosmer & Lemeshow (2000), the smaller the
deviance statistics, the better the fit of a model.

The Akaike information criterion
The Akaike information criterion (AIC) is used to compare the relative goodness-of-fit of
competing non-nested models(Hosmer & Lemeshow, 2000). It measures both how well the
model fits the data, and how complex the model is. It uses the parsimony standard that
says that a model using fewer parameters and explaining the context almost in a same level
is best. It is based on the LL statistic, but instead of using the LL itself, it penalises the
LL according to pre-specified criteria. The AIC penalty is based on the number of model
parameters. This is because addition of parameters, even if they have no effect, increases
the LL statistic, resulting in a decrease in the deviance statistics(Box-Steffensmeier & Jones,
2004). The AIC statistic is defined as:

AIC =−2
[
l
(
θ̃
)
−2p

]
, (3.6.7)

where p is the number of model parameters.

Bayesian information criterion
Bayesian information criterion (BIC) is another model selection criterion based on information
theory, but set within the Bayesian context (Cleves, 2008). It is also used to compare the
relative goodness-of-fit of competing non-nested models. However, unlike the AIC, its penalty
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is not just based on the number of model parameters, but also on the sample size(Cleves,
2008). The BIC statistic is computed as:

BIC =−2
[
l
(
θ̃
)
− p logn

]
, (3.6.8)

where p is the number of model parameters and n is the sample size. The best model is the
one that provides minimum BIC.

3.6.2 Residuals and goodness-of-fit
In Section 3.3.1, maximum likelihood estimation of discrete-time hazard models was based
on the binary representation of transitions between states. However, when the interest is
in analysis of residuals and goodness-of-fit, one should take into account that the original
data consist of n independent observations (ti,δi,xi). The deviances and residuals obtained
from fitting a binary model are not appropriate for discrete-time survival data. This section
presents alternative strategies for the construction of valid residuals for discrete-time survival
data.

Martingale residuals
The martingale residual takes censoring into account and is particularly suited for assessing
the functional forms of predictor effects (Tutz & Schmid, 2016). The martingale residual is
defined by:

mi = δi −
ji

∑
j=1

ĥi j, i = 1, . . . ,n,

where ĥi j = ĥ( j | xi). We also have Ĥ( ji) = ∑ ji
j=1 ĥi j as the cumulative risk of observation i up

to time ji. The idea behind the martingale residual is to compare for each observation the
observed number of events up to ji (measured by δi) with the expected number of events
up to ji (measured by Ĥ( ji)). Using the binary variables representation with (yi1, . . . ,yi ji) =

(0, . . . ,δi), the residuals can be defined as

mi =
ji

∑
j=1

(
yi j − ĥi j

)
, i = 1, . . . ,n.

For a well-fitting model that includes all relevant explanatory variables, the martingale re-
siduals should be random and uncorrelated with the covariate values (Tutz & Schmid, 2016).
To assess the importance of a covariate graphically in a discrete-time survival model, the
residuals can be plotted against the covariate values.

Deviance residuals
The deviance residuals are martingale residuals that have been transformed to be more sym-
metric about zero. They were first introduced by Therneau et al. (1990). Deviance residuals
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of a discrete-time survival model can be used to examine the fit of a model on a case-by-case
manner. The deviance residuals are also usefull for identifying outliers. The deviance resid-
ual for each individual i at time j is calculated via the following formula:For a discrete-time
model, the deviance residuals are given by

r2
D,i =−2

[
δilog

(
P̂(Ti = ji)

)
+(1−δi) log

(
P̂(Ti > ji)

)]
=−2

ji

∑
j=1

yi jlog
(
ĥi j
)
+(1− yi j) log

(
1− ĥi j

)
The deviance residuals are linked to the familiar maximum likelihood based deviance D =

−2
[
logL̂c − logL̂N

]
, such that D = ∑r2

D,i.

3.7 Chapter summary
This Chapter provided a theoretical background for the discrete-time single risk and compet-
ing risk models. A frailty model that accounts for unobserved heterogeneity in the single risk
case was also presented. The distribution of the frailty term was assumed to be Gaussian
following the conclusions from Chapter 2. The process for creating the person period data set
that is required for fitting the discrete-time single risk and competing risk models was also
outlined. The Chapter concluded with a presentation of Goodness-of-fit tests used to assess
the adequacy of the fitted discrete-time models. The results of the fitted models as well as
the different Goodness-of-fit tests are presented in the next Chapter.



Chapter 4

Data Analysis

4.1 Introduction
This chapter presents an analysis of the data used in the study as well as the study findings.
The chapter begins with a description of the data used followed by a presentation of the
study results in line with the study objectives. The purpose of the study was to analyse
the temporal nature of the process of student dropout using discrete-time survival analysis
methods. In order to achieve this purpose, the following main objectives were identified:

• To analyse the incident of dropout. Section 4.2 presents the distribution of each of the
variables used in the study. The descriptive statistics reported for the descriptor and
predictor variables include the mean, standard deviation and percentages. Baseline
survival functions are reported in Section 4.3.1. The probability of dropout in each
year is also reported in Section 4.4.1.

• To identify the determinants of dropout. The results of the single risk model based
on five years are reported in Section 4.4.1. The determinants of dropout identified
through the competing risks model based on Year 3, 4 and 5 data are reported in
Section 4.4.2. The estimated coefficients (log odds of dropout), the standard error as
well as the p-values are reported for both the single and competing risks model.

• To compare the risk profile of dropping out among different groups of students. The
risk of dropout is first compared graphically through survivalr functions presented in
Section 4.3.1. The results of the log-rank test for gender, race, residence type and
language are presented in Section 4.3.3. The risk profile of dropout is further analysed
based on the single and competing risks model estimates.

• To compare the discrete-time single risk model versus the competing risk model. The
results are provided in Section 4.4.3.

• To compare the discrete-time single risk model with unobserved heterogeneity versus
the discrete-time single risk model without unobserved heterogeneity. The results are
provided in Section 4.5.
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4.2 Data description and exploratory data analysis

4.2.1 Data description
The data used for the study was obtained from the Tshwane University of Technology (TUT)
Intergrated Tertiary System (ITS). The data covers 565 students enrolled for the first year
of engineering three year diplomas for the first time in 2010. Students with foreign Matric
as well as students who received conditional exemption were excluded from the study as
the admission point score (APS) could not be computed for these students. Furthermore,
students who did not have Matric mathematics marks were also excluded resulting in a final
data set of 502 students. The race variable was collapsed into two categories (White and
Non-white) due to the small sample size for Indians (8) and Coloureds(3). This was done
to avoid under or over-estimating the regression coefficients. Data was analysed using Stata
version 16 statistical analysis software (?).

The cohort was followed for five years from 2010 through 2014, inclusive. In the study the term
dropout refers to the act of dropping out of an engineering programme before graduation. The
dependent variable is the maximum observation time for each student, i.e., time to dropout,
graduation or the last year of the study, if the student was still enrolled at that time.
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Demographic and academic variables known to be associated with student academic outcomes
that were available on the database were used as explanatory variables. Furthermore, some
variables were only used for descriptive purpose. Some potentially important explanatory
variables could not be obtained from the database, e.g., financial support, school quintile,
first generation student status. The full list of the variables used in the study are presented
in 4.1.

Table 4.1: Variables used in the study.

Variable Description

Gender Male
Female

Race White
Non-white

Residence
On-campus
Off-campus
Private

English language First languange
Second language

APS Used as a measure
of matric performance

Mathematics score Used as a measure
of performance in Mathematics
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4.2.2 Frequency tables and summary statistics
Qualitative descriptive information for the sample of students used in the study is provided
in Table 4.2. A summary of continuous variables is presented in Table 4.3. The frequency
table presented in Table 4.2 shows that Building Science had the highest number of registered
first year engineering students in 2010, i.e. 81 (16.14%). This was followed by Electrical and
Civil engineering with 70 (13.94%) and 67 (13.35%) students respectively. The remaining
programmes, i.e. Metallurgy, Chemical, Surveying, Industrial, Mechanical and Mechatronics
each respectively accounted for 12.15%, 11.35%, 11.35%, 7.97%, 7.57%, and 6.18% of the first
year engineering student population in 2010. In terms of gender, an overwhelming majority
of the 2010 first year engineering population were males (70.52%) with females representing
only 29.48% of the population. The sample is also predominantly non-white, i.e. 77.49%.

Table 4.2: Frequency distribution of qualitative explanatory variables.

Variable Programme Frequency Percent
Building Science 86 16.76
Chemical 57 11.11
Civil 70 13.65
Electrical 71 13.84
Industrial 37 7.21
Mechanical 43 8.38
Mechatronics 32 6.24
Metallurgy 62 12.09

Qualification

Surveying 55 10.72
Female 148 29.48Gender Male 354 70.52
First language 114 22.22English language Second language 399 77.78
On-campus 66 13.15
Off-campus 90 17.93Residence
Private 346 68.92
White 113 22.51Race Non-white 389 77.49

In addition, a large proportion of the sampled students, i.e. 68.92% used private accom-
modation, while 17.93% and 13.15% respectively used off-campus and on-campus University
accommodation. Only 22.22% of the sampled students took English as a first language in
Matric, the remaining 78.78% took English as second language in Matric.
A summary of the quantitative attributes of the sampled population by gender is provided
in Table 4.3. The summary table indicates the average age of both groups was almost equal
at 19.55 years and 20.47 years respectively for females and males. We observe from Table
4.3 that the age of the youngest student in the sample was the same for both gender groups.
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However, we also note that while the youngest female student was 26 years old the oldest
males student was 11 years older at 37 years.

Table 4.3: Summary of quantitative variables by gender.

Variable Gender n Mean Std dev Min Median Max
Age Females 148 19.55 1.42 17 19 26

Males 354 20.47 2.27 17 20 37
APS Females 148 28.42 3.68 21 28 42

Males 354 27.68 3.95 12 28 38
Mathematics score Females 148 4.84 0.99 3 5 7

Males 354 5.07 1.13 2 5 7

In terms of APS, Table 4.3 indicates that the average APS for females (28.42 points) was
slightly higher higher than that of males (27.68 points). On the other hand, the median APS
for both groups was equal at 28 points indicating that 50% of males and females had an
APS less than or equal to 28 points. This suggest that Matric performance does not differ
by gender. We also see from Table 4.3 that the lowest APS, i.e. 12 points was obtained by a
male student while the highest, i.e. 42 points was obtained by a female student.

When we look at Matric Mathematics score, we see that the average score was 4.84 points
for females and 5.07 points for males. Similar to the APS, the median Matric Mathematics
score was equal at 5 points. This indicates that at least 50% of both males and females
achieved 60% or more in Mathematics. The smallest score obtained by a female student was
2 points, while 3 points was the smallest score obtained by a female students. The highest
score obtained by both gender groups was equal at 7 points.
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Table 4.4 depicts a distribution of quantitative variables used in the study by race. We see
that the average age at first time enrollment into an engineering programmes in 2010 was
about 21 years for whites and 20 years for non-whites. The youngest student in the cohort
was non-white and 17 year old. On the other hand, the oldest student was white and 37 years
old .

Table 4.4: Summary of quantitative variables by race.

Variable Race n Mean Std dev Min Median Max
Age White 113 20.70 2.52 19 20 37

Non-white 389 20.06 1.93 17 20 32
APS White 113 28.70 4.09 16 29 37

Non-white 389 27.67 3.80 12 27 42
Mathematics score White 113 4.73 1.13 2 5 7

Non-white 389 5.08 1.07 2 5 7

Table 4.4 further shows that the difference in the average APS between whites and non-whites
was 1 point. We also see that at least 50% of white students obtained 29 APS points or more
while at least 50% of non-white students obtained 27 APS points or more. There seems to
be differences in the minimum and maximum APS points obtained by the two population
groups. Specifically, the lowest APS points of 12 was for a non-white student whereas the
lowest APS points obtained by a white student was 16 points.

The average performance in Matric Mathematics was not different between the two race
groups. For example, the average score for whites was 4.73 points and 5.08 points for non-
whites. The minimum, median and maximum scores for the two groups were equal, i.e. 2
points, 5 points and 7 points respectively.

4.2.3 Incidence of dropout
Table 4.5 provides details on the enrollment status of the 502 students from January 2010
till December 2014. From Table 4.5, we see that from the initial 502 students, 58 (11.55%)
students had dropped out by the end of the first year, while 41 (9.23%) dropped out in the
second year. The dropout rate increased to 15.14% (61) in the third year, decreased to 12.25%
(36) in the fourth year and increased again to 19.07% (33) in the fifth year. Overall, a total
of 160 and 229 students had dropped out by the end of the third and fifth year respectively
, i.e. 31.87% and 45.62%. The dropout rate was the highest in the third (15.14%) and fifth
(19.07%) year and lowest in the second (9.23%) and first (11.55%) year.
Table 4.5 further shows that only 48 students completed their studies by the end of the third
year, i.e. 9.56%. Completion figures improved to 85 in the fourth year and 82 in the fifth
year. Cumulatively, 42.82% (215) of the students completed their studies within five years of
registration.
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Table 4.5: Enrollment status by gender.

Year Gender Enrolled Dropped out Graduated
Count Percent Count Percent Count Percent

2010 Female 148 29.48 12 8.11 0 0.00
Male 354 70.52 46 12.99 0 0.00

Totall 502 100.00 58 11.55 0 0.00
2011 Female 136 30.63 12 8.82 0 0.00

Male 308 69.37 29 9.42 0 0.00
Total 444 100.00 41 9.23 0 0.00
2012 Female 124 30.77 22 17.74 14 11.29

Male 279 69.23 39 13.98 34 12.19
Total 403 100.00 61 15.14 48 11.91
After 3 years Female 46 31.08 14 9.46

Male 114 32.20 34 9.60
Total 160 31.87 48 9.56
2013 Female 88 29.93 8 9.09 21 23.86

Male 206 70.07 28 13.59 64 31.07
Total 294 100.00 36 12.25 85 28.91
2014 Female 59 34.10 14 23.73 26 44.07

Male 114 65.90 19 16.67 56 49.12
Total 173 100.00 33 19.07 82 47.40
After 5 years Female 68 45.95 61 41.22

Male 161 45.48 154 43.50
Total 229 45.62 215 42.83

In terms of gender, the results as shown in Table 4.5 indicate that 12 (8.11%) female students
dropped out in the first year of registration compared to 46 (12.99%) male students. The
dropout rate continued to be low for female students compared to males in the second year
of registration, i.e. 8.82% for females and 9.42% for males. The trend changed in the third,
fourth and fifth year of registration with more females dropping out in comparison to males.
For instance, 17.74% of females dropped out in the third year of registration compared to
13.98% of males, while 13.59% of females dropped in the fourth year in comparison with
9.09% of males. In the fifth year, the dropout rate for females increased to 23.73% compared
to 16.67% for males.

The dropout rate for both groups was the highest in the fifth year, i.e. 23.73% for females
and 16.67% for males. The lowest dropout rate for females was recorded in the first year at
8.11% , while fewer males dropped out in the second year compared to all the other years,
i.e. 9.09%.

Enrollment status of the 502 students was also summarised in terms of race to see if there
are any racial differences emerging. Table 4.6 provides a summary of the dropout rates as
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well as graduation rates by race.

Table 4.6: Enrollment status by race.

Year Race Enrolled Dropped out Graduated
Count Percent Count Percent Count Percent

2010 White 113 22.51 14 12.39 0 0.00
Non-white 389 77.49 44 11.31 0 0.00

Total 502 100.00 58 11.55 0 0.00
2011 White 99 22.30 5 5.05 0 0.00

Non-white 345 77.70 36 10.43 0 0.00
Total 444 100.00 41 9.23 0 0.00
2012 White 94 23.32 7 7.45 21 22.34

Non-white 309 76.68 54 17.48 27 8.74
Total 403 100.00 61 15.14 48 11.91
After 3 years White 26 23.00 21 18.58

Non-white 134 34.45 27 6.94
Total 160 31.87 48 9.56
2013 White 66 22.45 7 10.61 26 39.39

Non-white 228 77.55 29 12.72 59 25.88
Total 294 100.00 36 12.25 85 29.91
2014 White 33 19.07 3 9.09 24 72.73

Non-white 140 80.93 30 16.67 58 41.43
Total 173 100.00 33 19.07 82 47.40
After 5 years White 36 31.86 71 62.28

Non-white 193 49.61 144 37.02
Total 229 45.62 215 42.83

From Table 4.6 we see that in 2010 the dropout rates of white students was higher than that
of non-white students by only one unit, i.e. 12.39% for whites and 11.31% for non-whites.
The picture changes considerably in the second and third years with the white population
group experiencing a significant decline and non-whites experiencing a slight decline followed
by a sharp increase. More specifically, in the second and third year, the dropout rates for
white students declined respectively to 5.05% and 7.45% while that of non-white students
declined to 10.43% in the second year and increased to 17.48% in the third year.

From Table 4.6 we also see that the dropout rate of white students peaked in the first (12.39%)
and fourth (10.61) year, while most non-white students dropped out in the third (17.48%)
and fifth (12.72%) year. The dropout rate for non-white students was the lowest in the second
(10.43%) and first (11.31%) year, while fewer white students dropped in the second (5.05%)
and third (7.45%) year. We also see that 23% of white students had dropped out by the
end of the third year compared to 34.45% of non-white students. Similarly, the dropout rate
after five years for non-white students is considerably higher than that of white students, i.e.
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49.61% versus 31.86%.

4.3 Nonparametric analysis
This section looks at dropout survival probabilities without making assumptions about the
functional form of the survivor functions. Visual techniques are used to compare the dropout
survival rates by gender, race, residence type and English language. The visual results are
further confirmed through the use of formal test of hypothesis for the equality of survivor
functions across the groups. The median survival times for the entire sample of students as
well as per group are also presented.

4.3.1 Survival functions

Gender
Figure 4.1 presents the baseline survival plot by gender. The curves suggest that female
students were likely to survive longer than their male counterparts. However, the difference
in the survival probabilities between the two groups does not seem to be much. For instance,
about 92% of female students survive past the first year compared to 87% of males students.
The survival probability seems to level of by the end of the third year to 0.69 for females and
0.68 for males. The survival probability stepwise declines to 0.48 and 0.49 for females and
males respectively in the fifth year.
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Figure 4.1: Gender baseline survival function

Race
The baseline racial dropout survival probabilities are given as a function of time in Figure 4.2.
The dropout pattern for whites and non-whites seems to be similar for the first three years.
The first year survival probability is about 88% for whites and 89% for non-whites. The
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probability of surviving past the second and third years drops to 0.83 and 0.77 respectively
for whites, and 0.79 and 0.66 respectively for non-whites. More whites survive till the fourth
year in comparison to non-whites. The difference is about 12 percentage points, i.e. 69% for
whites against 57% for non-whites . The difference in survival probabilities between the two
groups increases to about 19% points in the fifth year, such that 63% of whites survive till
the fifth year compared to about 45% of white students.
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Figure 4.2: Race baseline survival function.
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English language
The baseline English language dropout survival probabilities shown in Figure 4.3 indicate that
survival probabilities between the two groups are neck on neck in the first, second and third
year. The proportion of second language students who survive till the fourth and the fifth
year is slightly higher than that of first language students., i.e. about 56% for first language
students and 61% for second language students in the fourth year, and about 42% for first
language students and 49% for second language students in the fifth year. The results suggest
that more second language students survived till the fifth year compared to first language
students.
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Figure 4.3: Language baseline survival function.
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Type of residence
The baseline dropout survival rates by residence type are depicted in Figure 4.4. It is import-
ant to note that survival rates are produced for only the first, second and third years as very
few students (8) remain on University residences after the third year. Most of the sampled
students who survive past the third year use private accommodation. Figure 4.4 suggest that
students residing in both on-campus and off-campus based TUT residences are more likely
to survive the first year compared to those residing in private accommodation. In particular,
we see that 97% of students residing in on-campus based TUT residences survived the first
year compared to 92% of those residing in off-campus based TUT residences and about 87%
of those residing in private accommodation.

This trend continues into the second year with dropout survival rates of 89%, 82% and 78% for
on-campus accommodation based students, off-campus accommodation based students and
private accommodation based students, respectively. The results in 4.4 indicate a shift in the
survival probabilities in the third year. Specifically, the survival rate for those residing in
off-campus based accommodation declines sharply from 82% to about 35%. The probability
of surviving till the third year declines to 0.74 for on-campus based students and 0.68 for
private accommodation.
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Figure 4.4: Type of residence baseline survival function.
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4.3.2 Median survival times
The estimated median lifetime for the entire sample of students and for the specific subgroups
is shown in Table 4.7. As shown in Table 4.7, 50% of the sampled students survived till the
fifth year. Furthermore, the median survival time does not differ by gender and language.
Students residing in on-campus accommodation seem to survive longer than those in private
accommodation and off-campus based accommodation. The missing median survival time for
on-campus based accommodation indicates that the median survival time is more than five
years. We also see that 50% of students residing in private accommodation survive till the
fifth year while the same proportion of those residing in off-campus based accommodation
survived till the third year.

Table 4.7: Estimated median survival times

Variable Category Estimated median survival time

Gender Male 5
Female 5

Race White -
Non-white 5

Accomodation
On-campus -
Off-campus 3
Private 5

English First languange 5
Second language 5

Overall 5
- Missing
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4.3.3 Testing equality of survivor functions
The log-rank test was performed to confirm the graphical results observed in the comparison
of dropout survival rates by gender, race, residencee type and English language. The results
of the test for each of the variables are presented in Table4.8. The results indicate that
the dropout survival probability does not differ significantly by gender, residence type and
English language. The results for the comparison on the basis of race indicate that there is
a significant difference between survival curves for race.

Table 4.8: Log-rank test for equality of survivor functions.

Variable
Dropout

χ2 DF p-value
Gender 0.14 1 0.706
Race 6.37 1 0.012 *

English 0.50 1 0.459
Accomodation type 3.91 2 0.142
* p<0.05

4.4 Model results

4.4.1 Single risk model
The plots of the estimated hazard and survival probabilities provides information on the
timing of dropout, however, they do not give an indication of which students are more at
risk of dropping out. In this section the single risk discrete-time hazard model is fitted using
logistic regression to determine the effects of covariates on student dropout. This allows
for prediction of the risk of dropout based on a set of explanatory variables. We first fit
a model that looks at the main effect of time. The model is fitted by including only time
point intercepts for the years 1 to 5. Starting the analysis with an initial time-only hazard
model provides direct information on the shape of the entire student sample hazard function.
The section continues with investigation of effects of explanatory variables on the hazard
probabilities by adding explanatory variables to the initial model.

Stepwise regression procedures are not used for variable selection, but rather inclusion of
explanatory variables in the model is driven by theory as recommended by (Mills, 2011). A
general specification of time using a separate dummy variable for each time period is employed
as we only have a few discrete time points, i.e. 5 points and a few explanatory variables. The
use of dummy variables representation for the time periods in the model is recommended for
studies with few discrete-time points as it does not place any constraint on the shape of the
baseline model and it simplifies interpretation of coefficients (Singer & Willett, 2003).
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Baseline hazard model
The estimates of the coefficients β, the corresponding estimated standard errors (SE), and
the p-values of the time effects obtained from the baseline single risk model are presented in
Table 4.9.

Table 4.9: Baseline profile of dropout risk over time.

Variable Year β SE p-value

Period

1 -2.03 0.14 0.000***
2 -2.29 0.16 0.000***
3 -1.72 0.14 0.000***
4 -1.97 0.18 0.000***
5 -1.44 0.19 0.000***

*** p<0.001

The results from Table 4.9 indicate that, assuming that the sampled students are homo-
geneous, i.e. they are not distinguished by values of any explanatory variables, the risk of
dropping out in the first year is estimated as almost 12%. To obtain this value we note that
from Equation 3.3.16 in section 3.3.1 the conditional probability or the hazard of dropout for
each year can be obtained as

ĥ j =
1

1+ e−(αl)
.

This implies that the hazard of dropout in the first year is given by

ĥ j =
1

1+ e−(−2.04) = 0.12.

Similarly, the risk of dropping out is approximately 9% in the second year, 15% in the third
year and 12% in the fourth year. The risk increases to about 19% in the fifth year. The
hazard of dropout plotted as a function of time is depicted in Figure 4.5.
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Figure 4.5: Discrete-time hazard function for dropout.

Single risk full model
The second and final model fitted under the single risk specification is the discrete-time logit
model adjusting for all covariates. Gender and race are treated as time-invariant and their
effects are also assumed to be time-invariant. Residence type is included as a time-varying
covariate since students may change their residence type yearly. All the variables that are
related to Matric, i.e. APS and language are allowed to interact with time so as to determine
whether their effects on dropout vary with time as suggested by literature, even though they
are time-invariant. Table 4.10 shows the estimates of the coefficients (β), the corresponding
estimated standard errors (SE), and the p-values of the covariate effects obtained from the
single risk model.

The results as depicted in Table 4.10 indicate that race has a significant effect on dropout.
In particular, we see that the odds of dropout of non-white students is 1.86 times more than
that of white-students. The results further show that the effect of gender on dropout is not
significant. In terms of language, the results indicate that language affects the risk of dropout
significantly only in the fourth year. Specifically, the odds of dropout in the fourth year is
2.32 times higher for students with English as a first language in Matric in comparison to
those with English as a second language.
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Table 4.10: Maximum likelihood estimates: single risk model.

Variable Reference group Year β SE p-value

Gender
Male 0.15 0.17 0.304

Race
Non-white 0.62 0.21 0.004**

English

First language

1 -0.24 0.34 0.713
2 -0.13 0.40 0.750
3 -0.42 0.38 0.264
4 0.84 0.39 0.032*
5 0.39 0.53 0.455

Residence

Off-campus
1 1.01 0.82 0.219
2 0.36 0.65 0.577
3 1.88 0.73 0.010*

Private
1 1.73 0.74 0.019*
2 0.17 0.51 0.743
3 -0.20 0.58 0.731

APS
1 0.00 0.05 0.949
2 -0.04 0.05 0.485
3 -0.06 0.05 0.217
4 0.03 0.06 0.559
5 0.06 0.06 0.338

Mathematics score
1 -0.26 0.16 0.114
2 -0.29 0.19 0.129
3 -0.08 0.16 0.608
4 0.28 0.22 0.559
5 -0.42 0.23 0.069

Period

Year 1

2 2.31 1.84 0.208
3 2.74 1.79 0.125
4 -2.26 1.83 0.300
5 1.11 1.28 0.578

* p<0.05
** p<0.01
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The results further show that the effect of residence type on dropout is significant only in
the first and third years. In the first year, students with private based accommodation are
5.64 times more likely to dropout compared to those residing on campus. However, in the
third year the odds of dropout is 6.55 times higher for students residing in off-campus based
accommodation compared to on-campus based students. From the results in Table4.10, we
also see that the effect of APS on dropout is not significant. Matric Mathematics score also
does not have a significant effect on the risk of dropout. Furthermore, the results indicate
that when the risk of dropout in the second, third, fourth and fifth year is compared to the
risk in the first year, the differences are insignificant.
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4.4.2 Competing risk model
In this section dropout and graduation are jointly estimated so as to account for the possible
inter correlation between dropout and graduation. The model is estimated for the third,
fourth and fifth years since completion only occurs from the third year. The results obtained
when dropout is treated as a competing risk are not presented as the focus of the study is on
dropout.

Table 4.11: Maximum likelihood estimates: competing risks model

Variable Reference group Year β SE p-value

Gender
Male -0.24 0.23 0.917

Race
Non-white 0.39 0.30 0.206

English

First language 3 -0.49 0.38 0.194
4 1.35 0.42 0.001**
5 0.39 0.60 0.518

Mathematics
3 -0.34 0.16 0.811
4 0.37 0.22 0.102
5 -0.43 0.26 0.090

APS score
3 -0.73 0.05 0.122
4 0.03 0.06 0.566
5 0.09 0.07 0.240

Period
Year 3 4 -5.50 1.88 0.003**

5 -1.66 2.11 0.432
** p<0.01
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The competing risk model results are presented in Table 4.11 in terms of the estimated β
coefficients, the corresponding estimated standard errors (SE), and the p-values. The results
indicate that when graduation is treated as a competing risk, only language and year of study
have a significant effect on dropout. For language, we see that the odds of dropout in the
fourth year is 3.9 times more for students with English as a first language students compared
to second language students. In terms of year of study, the results show that the odds of
dropout in the third year is 0.41% less than in the fourth year.
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4.4.3 Comparison of single risk and competing risk models
The results of both the single risk discrete-time model formulation and the discrete-time com-
peting risks formulation are presented in Table 4.12 in terms of the estimated β coefficients,
the corresponding estimated standard errors (SE), and the p-values. The single risk model
results presented are for the model fitted using data for only the third, fourth and fifth years
to allow for comparison with the competing risk model fitted when graduation is treated as
a competing event. The general pattern of the estimated effects of most of the explanatory
variables in the two specifications is similar. However, some of the effects are slightly more
pronounced in the competing risk case. For instance the effect of gender on dropout in any
year (third, fourth or fifth) are insignificant in both models. APS and mathematics score also
do not have a significant effect on dropout in the third, fourth and fifth year in both models.

Table 4.12: Model comparison: single risk versus competing risk.

Variable Reference group Year
Single risk Competing risk

β SE p-value β SE p-value
Gender

Male -0.05 0.23 0.820 -0.24 0.23 0.917
Race

Non-white 0.62 0.30 0.040* 0.39 0.31 0.206
English

First language
3 -0.42 0.38 0.265 -0.49 0.38 0.194
4 0.85 0.34 0.029* 1.35 0.42 0.001**
5 0.42 0.53 0.423 0.38 0.60 0.518

Mathematics
3 -0.06 0.16 0.697 -0.38 0.16 0.811
4 0.30 0.22 0.165 0.37 0.22 0.102
5 -0.60 0.23 0.090 -0.43 0.26 0.090

APS
3 -0.65 0.05 0.183 -0.73 0.05 0.122
4 0.30 0.57 0.614 0.03 0.06 0.566
5 -0.39 0.23 0.390 0.09 0.07 0.240

Period
Year 3 4 -4.99 2.20 0.024* -5.5 1.88 0.003**

5 -1.60 2.02 0.428 -1.66 2.11 0.432
* p<0.05
** p<0.01

Similarly, in both models, language has a significant effect on dropout only in the fourth year.
However, the results are highly significant in the competing risk model compared to the single
risk specification. Furthermore, the risk of dropout of second language English student in the
fourth year is 3.9 times higher compared to first language students in the single risk model,
while it is 2.4 times higher in the competing risk model.
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The racial effect on dropout differs in the two models. The effect in the competing risk case
is not significant while it is significant in the single risk case where by the risk of dropout is
higher for non-white students compared to white students.

The likelihood of dropout in the third year compared to the fifth year is also significant in
both models with the competing risk estimates being highly significant compared to the single
risk case. We also see that the risk of dropout is 0.68% lower in the third year compared to
the fourth year in the single risk specification while it is 0.41% lower in the competing risk
case.

The overall results indicate inconsistencies between the two models for the gender effect.

4.5 Unobserved heterogeneity
The discrete-time single risk model was fitted with unobserved heterogeneity by including a
frailty term in the logit model. The frailty term in the model was assumed to have a Gaussian
distribution with mean zero. The results of the Likelihood ratio test are depicted in Table
4.13. The σ coefficient reported in Table 4.13 is the standard deviation of the heterogeneity
variance. The ρ is the proportion of the total variance contributed by the panel-level variance
component. The model chi-square statistic indicate that the regressions are not significant
at standard levels. The likelihood ratio tests for ρ indicates a statistically insignificant frailty.
The result suggest that the effects of unobserved heterogeneity are insignificant.

Table 4.13: Model comparison: single risk with general time
specification versus single risk with linear time specification.

ρ σ χ2 p-value

0.34 1.29 1.02 0.156
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4.6 Model adequacy
The discrete-time single risk model fitted based on the general specification of time using in-
dicator variables (general specification) was compared with the model based on time specified
as a continuous linear variable to check the fit of the model. The results in Table 4.14 show
that the model using indicator variables for fits better. This is based on a BIC of -12178.73
versus -11983.34 and the deviance of 1803 versus 1770.

Table 4.14: Model comparison: single risk with general time
specification versus single risk with linear time specification..

Model Bayesian information criterion Deviance
General time specification -11983.43 1770
Linear time specification -12178.73 1803



Chapter 5

Discussion and conclusions

5.1 Introduction
This chapter presents a summary of the study findings presented in the previous chapter.
The conclusions drawn from the findings, the study recommendations as well as limitations
are also presented. The purpose of the study the study was to analyse the temporal nature
of the student dropout process using discrete-time survival analysis methods. In particular,
the main objectives of the study were to: (1) analyse the incidence of dropout, (2) identify
determinants of dropout, (2) compare the risk profile of dropout among different groups of
students, (4) compare the discrete-time hazard single-risk model with the competing-risk
model; and (5) to test the effects of unobserved heterogeneity. The findings of the study are
discussed in accordance with the research objectives.

5.2 Incidence of dropout
The results of the study show that 11.55% of the 502 student who registered in 2010 had
dropped out by the end of the first year. The dropout rate at the end of the third year was
about 32% and 47% by the end of the fifth year. The first year dropout rate is lower than the
national dropout rate of 30% reported by Letseka & Breier (2008) for all programmes. The
rate is also much lower than the 27% reported for engineering diplomas by Pocock (2012).
Overall, dropout was found to be the highest in the third and fifth years, i.e., 15.18% and
19,15% respectively. These, results deviate from the findings from previous studies which
indicate that dropout is the highest in the first year.

When looking at the cumulative dropout rate within three years of registration, the dropout
rate reported in the study, i.e. 31.87% is lower than the national average of 40% reflected
in the 2015 Vital Statistic Public Higher Education for the 2010 cohort of students (CHE,
2015). Similarly, the cumulative five year dropout rate of 47.40% is also lower than the
national average of 56% (CHE, 2015).

In terms of graduation, the results indicate that only 9.56% of the cohort completed their
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studies within three years, while 42.82% completed their studies within five years. The
graduation rate of 9.56% after three years of registration for this cohort is higher than that
reported for other UoTs studies. For instance, the CHE 2015 Vital Statistic Public Higher
Education report based on the 2010 cohort, reported a graduation rate of 5% within three
years of registration CHE (2015). While the five year cumulative graduation rate of 42.8% is
slightly lower that the 44% reported by the CHE 2015 Vital Statistic Public Higher Education
report CHE (2015), it is much higher than the national figure of 17% reported by Scott et
al. (2007) for UoT engineering students. Estimates from the discrete-time single-risk model
indicate that the risk of dropout in the first year of registration does not differ significantly
to that of subsequent years.

5.3 Determinants of dropout

5.3.1 Gender
In South Africa, females account for a larger share of higher education enrollments than males
(CHE, 2010). This is attributed to the fact that fewer females repeat a grade or dropout of
school, resulting in more females reaching and passing Matric than males (van Broekhuizen
& Spaull, 2017). For instance, in 2018, for every 100 females in Matric there we only 80
males (Spaull & Makaluza, 2019). A study that looked at the 2008 NSC cohort indicate
that even though roughly the same number of boys and girls started school in 1997 (49%
girls, 51% boys), more females reached Matric than males (van Broekhuizen & Spaull, 2017).
According to (Spaull & Makaluza, 2019), females outperform males on average in all subjects
and all grades, as well as in the school-leaving exam, i.e. Matric. However, males perform
better than females in Mathematics and Physical Science in Matric (Spaull & Makaluza,
2019). This is to a certain extent a function of the higher dropout rates for males in high
school, leaving a stronger cohort of males to write Matric (Spaull & Makaluza, 2019). When
looking at higher levels of performance, i.e. 60% + males performed better in Mathematics
and Physical Science (Spaull & Makaluza, 2019).

However, very few females enroll in engineering programmes (Mangara, 2019). According to
Francis (2009) females constitute 53% of students in HE, but tend to cluster in certain fields,
specifically Health Sciences and Humanities. The results of the current study show that only
22% of the sampled students were females. This distribution is in line with the distribution
at other institutions (Sutherland, 2018; Francis, 2009). When looking at the effect of gender
on the risk of dropout, the results of the study indicate that males are 1.15 times more likely
to dropout than females. However, this effect is insignificant. The results also show that the
percentage of students who had dropped out within three years of registration was almost
equal for both genders, i.e., 31.08% for females and 32.20% for of males. These results are also
supported by the survival curves for the two groups which showed inconsiderable differences
in the survival probability as well as the log-rank test which estimated the median survival
time of 5 years for both groups.
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These results do not deviate much from the findings of other engineering studies. For instance,
Zewotir et al. (2011) found that being female rather than male had no significant effect in
failure rates as well as dropout rates of first year engineering students. Francis (2009) also
found no significant association between gender and dropout rates of engineering students.
However, deviations are observed when the results are compared with findings from the
broader HE space.

Bhorat et al. (2012) found that females generally perform better than males in terms of HE
throughput and retention. This findings are supported by CHE (2012), which indicate that
the course success rates for female students between 2007 and 2012 were consistently between
4 and 5 percentage points higher than they were for males. van Broekhuizen et al. (2016) also
found notable gender differences in four year completion rates of the Western Cape Education
Department 2006 first-time entering undergraduate cohort. In particular, the results show
that four year completion rates where significantly higher for females compared to males, i.e.
more than half (52%) of females in the cohort completed an undergraduate qualification by
the end of 2009 (van Broekhuizen et al., 2016). In terms of dropout, van Broekhuizen et al.
(2016) found that dropout rates within the first three years of registration were marginally
lower for females than males.

5.3.2 Language

English is the medium of instruction at most HEIs in South African. Students are therefore,
required to study in English. However, most university entrants to South African HEIs
institutions are English 2nd language speakers. This is true for the current study where
only 22% of the sampled students had English as a first language in Matric. According
to Pretorius (2002), many second language students have serious reading comprehension
challenges. This in turn means that they have restricted and ineffective access to the rich
sources of declarative knowledge provided by print-based material in the learning context
(Pretorius, 2002). Language proficiency is regarded as a skill required in academic training,
as it can either open the door of academic development, or serve as a barrier(Schaap &
Luwes, 2013). According to a CHE report, academic language and language of instruction
remain one of the most important barriers to success in HE (CHE, 2010). Vilakazi (2002),
asserts that the mastery of the language in which a subject is taught is the prerequisite to
the mastery of the subject matter.

Results from studies looking at the relationship between language and success in HE are
varied. For instance, Rooney (2015) found that being proficient in English increased the
likelihood of graduation. According to Maree (2015), learners taught in their mother tongue
consistently outperform those who are not. Moodley (2014) found that learners with English
as a first language in Matric are more likely better prepared to deal with the language
requirements they will face in HEIs where English is the language of learning and teaching.
Moreover, the language proficiency of Matriculants with English as a second language cannot
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be regarded as equivalent to the language proficiency of students with English as a first
language (Moodley, 2014). Wedekind (2013) found that academic success in the language
used for learning at a learner’s school is a reliable predictor of academic success in the same
language at a HEI. A 2013 TUT study looking at first first year engineering students found
that Matric performance in English was to a lesser extent a reliable predictor of success in
engineering programmes (Louw, Hofman & Van Wyk, 2013).

On the other hand, some findings suggest that effect of Matric English scores on performance
in HE is insignificant. For instance, Venkatas, Rampersad & Mashige (2014), found a weak
correlation between Matric English scores and performance in first year optometry modules.
In terms of engineering Cliff & Hanslo (2010), found that performance in English on its
own is not significantly associated with academic performance for engineering students. The
results of the current study differ from the finding of other studies in the sense that they
indicate that the effect of language proficiency on the risk of dropout varies with time. In
particular, although not significant, the results show that having English as a first language
reduced the risk of dropout in the first, second and third year of registration. In the fourth
year and fifth year of registration, students with English as first language were more likely to
dropout compared to second language students. The effect in the fourth year was found to
be significant. The risk of dropout for English first language students was found to be 2.31
times higher than that of second language students. The survivor function show that about
61% of English second language students survived till the fourth year compared to 56% of
first language students. The insignificant results could be partly attributed to the fact that
first year as well as second and third year engineering modules, although taught in English
require other specific understanding of concepts and terminologies.

It should be noted that the study looked at whether English was taken as a first language or
a second language. Actual performance in the language was not considered. It can be argued
that there could be students who took English as an additional language but performed better
than first language students. This would largely be students from good performing schools
albeit they are based in disadvantaged communities. Scores from language assessments test
would perhaps provide a more reliable measure of proficiency as compared to the first language
variable.

Further analysis of the results showed that 83.78% of the 111 students with English as a
first language were non-white (results not shown). This suggest that this group was largely
made up of non-white students from privileged backgrounds whose parents can afford access
to better resourced schools. One can argue that this group would be more likely to dropout
compared to their underprivileged counterparts as their privilege affords them access to other
opportunities. Dropout for these students would not necessarily be linked to financial reasons.
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5.3.3 Matric performance

South African HEIs rely considerably on marks obtained from standardised based school-
leaving examinations. Marks obtained from these certificates are treated as indicators of
learner’s current knowledge as well as their ability to succeed in the HE. The marks are
treated as trustworthy signals of ability when comparing students against each other across
time, owing to the fact that the school-leaving exams are quality controlled and standardised
nationally.

Research on the predictive value of Matric performance for future academic performance
points to inconsistencies in the results. Some reports indicate that Matric results have a
good predictive value for certain groups of students such as those who received quality high
school education and whose first language is English (Essack et al., 2012). Other studies have
reported racial Kirby (2013); Foxcroft (2006) and gender Foxcroft (2006) discrepancies. For
example, UCT’s Alternative Admissions Research Project found that for a cohort of white
engineering students, performance in Matric explained significant amounts of variation in
academic performance at the end of first year engineering studies. However, performance in
Matric explained a much smaller percent of variation in first year academic performance of
the cohort of black engineering students enrolled in the same class as the white students.

In other studies,Cliff & Hanslo (2010) found that a weighted APS is significantly associated
with academic performance for engineering. On the other hand, (Marnewick, 2012) found no
correlation between first year university performance for information technology (IT) students
and learners’ Matric results. The study by Venkatas et al. (2014) also supports these findings.

The results of the current study show that Matric performance has no significant effect on
dropout rate in each year of the five years of the study period. A separate analysis for each
gender and race group produced similar results. The effects of Matric performance, albeit
insignificant was found to vary with time. For instance, in the first year, a unit increase in
APS score was associated with an increase in the dropout risk. However, in the second and
third years, a unit increase in APS was associated with a decrease in the risk of dropout.
Similarly, a unit increase in APS in the fourth and fifth years was associated with an increase
the dropout risk.

5.3.4 Mathematics score

Mathematics is regarded as an essential prerequisite for engineering sciences. It is a vital
course in the engineering curriculum. Many aspects of engineering activity require formulat-
ing a problem correctly and finding an appropriate method to solve the problem (Steenkamp
& Muyengwa, 2018). The need for engineering students to think mathematically and to use
mathematics to describe and analyse different aspects of the real world they seek to engineer
is widely acknowledged. A study at the University of Pretoria indicate that first year students
lack a basic understanding of fundamental mathematical concepts (Steyn et al., 2008).
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According to Uysal (2012), inadequate skills in basic mathematics cause problems for students
majoring in engineering. Most engineering faculties in South Africa, require a relatively high
Mathematics mark and put significant weight on the Mathematics mark as a requirement for
admission. TUT requires a pass of NCS Mathematics of at least level 4, and do not admit
students who have studied mathematical literacy. At TUT, twenty out of the twenty four
subjects in the engineering national diploma are mathematical in nature and use mathem-
atical concepts extensively. One would expect a strong correlation between performance in
Matric Mathematics and student performance and consequently dropout.

The results of the study indicate that the effect of Matric Mathematics mark on dropout is
not significant in any year. However, the effect was found to be time-varying in the sense
that an increase in Mathematics score resulted in a decrease in the risk of dropout in the first,
second, third and fifth years of study, and it resulted in an increase in the risk of dropout
in the fourth year. The median Mathematics score for the sample was 5 points indicating
that at least 50% of the students obtained a score of 5 points or more. Further analysis
through a frequency distribution of Mathematics scores indicate that only 33.47% of the
students obtained a score below 6 points. This suggest that the cohort consisted mainly of
high performers in Mathematics making the group homogeneous with regards to Mathematics
scores.

The results of the study are similar to the one reported by (Schaap & Luwes, 2013). Schaap
& Luwes (2013) found the correlation between Matric Mathematics score and academic per-
formance in first, second, third and fourth year of university not significant. Schoer et al.
(2010) also found Mathematics results in the 2009 NSC examinations to be a not reliable
predictor of performance in commerce-related university programmes. However, the results
differ to the findings of a study at the North West University which found a significant cor-
relation between NSC Matric Mathematics and Physical sciences mark and performance in
the first year of engineering studies (Hattingh, 2011). They also differ with those from an
Engineering TUT study which found Matric Mathematics score to be a reliable predictor of
success in engineering programmes (Louw et al., 2013).

5.3.5 Accommodation

Studies indicate that students residing in on-campus based accommodation have better aca-
demic outcomes as they are more likely to have more time to study. According to Pillay
& Ngcobo (2010), accommodation issues was one of the stress factors making progression
through to the next year in HE difficult. Zewotir et al. (2011) found that the probability of
failure of the first-year engineering students residing in not residence based accommodation is
1.49 times higher than would be the case for someone residing in residence based accommoda-
tion. However, in terms of dropout rates, Zewotir et al. (2011) found no significant differences
by type of residence. Bengesai & Paideya (2018), analysed the relationship between timely
graduation and academic and institutional factors for the 2009, 2010 and 2011 cohorts of



86 Discussion and conclusions

engineering students at UKZN. The results indicate that staying in a university residence
was negatively associated with graduation Bengesai & Paideya (2018).

The results of the current study show that type of residence has a time-varying significant
effect on the risk of drop out in the first and third years. In Year 1, it was found that stu-
dents with private based accommodation are 5.64 times likely to dropout compared to those
residing on campus. However, the opposite was observed in the third year where students
residing in private based accommodation are 0.82 less likely to dropout in comparison to those
residing on-campus. In terms of those residing off campus, the results indicate that they were
6.55 times more likely to dropout compared to those residing in university on-campus based
accommodation. It is important to note that TUT has a strict performance-based accom-
modation policy where readmission in the following year is based on academic performance in
the preceding year. This results in many students losing their place in University based resid-
ences yearly and moving to private based accommodation. Consequently, very few students
remain in university based accommodation in year four and year five.

5.3.6 Race
There is a general believe that the continuing racial imbalance in the quality of schooling
and in educational outcomes is an important factor behind different success rates for black
and white students in HE, and in Engineering in particular. There is strong evidence to
suggest that the effect of race on academic outcomes is significant. Bengesai & Paideya
(2018), found that African students registered in engineering degrees in 2009, 2010 and 2011
were less likely to graduate in record time compared to the “other” racial groups, where
other included, Indian, White and Coloureds. The findings by Sampson (2011) indicate
that there is a significant strong association between graduation rates and race, such that
African students had the lowest graduation rate followed by the Coloured, Indians and white
students. It should be noted that the racial categorisation differs with the one used in the
current study where the White population group is a standalone category whereas Coloureds
and Indians have been grouped with Blacks. Rooney (2015); Murray (2014) also found race
to be a significant determinant of academic success in HE. The findings by Zewotir et al.
(2011) also support these results. These results are in line with the findings of the current
study which show that non-white students are 1.86 times more likely to dropout compared
to white students.

5.4 Model comparison
Comparison of the discrete-time single risk model with the discrete-time competing risk model
results revealed inconsistencies between the two models. For instance, the effect of race on
the risk of dropout differs in the two models. The effect in the competing risk case is not
significant, while it is significant in the single risk case such that the risk of dropout is higher
for non-white students compared to white students.
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Language has a significant effect on dropout in both models, however, the results are highly
significant in the competing risk model compared to the single risk specification. It is also
important to note that the risk of dropout of first language English students compared to
second language students in the fourth year is 3.9 times higher in the single risk model and
2.4 times higher in the competing risk case.

The effect of gender, APS and Mathematics score are insignificant in both models.

When the discrete-time single risk model without unobserved heterogeneity is compared with
the one with unobserved heterogeneity, the results show that the effect of unobserved hetero-
geneity is not significant.

5.5 Conclusion
The results of the study show the kind of additional insights gained by using discrete-time
survival analysis methods to analyse student dropout in comparison to traditional methods
like logistic regression. For instance, not only were we able to estimate the risk of dropout
in each year, but we were also able to identify the periods of high risk. It was found that the
risk was the highest in the fifth year. The inclusion of time-varying variables, in this case
residence type, allowed us not to incorrectly treat it as constant, but to rather analyse its
effect on the risk of dropout in each year of the five years of the study based on its changing
values. The effect was not only found to be significant in some years and insignificant in
others, but the effect was also found to differ between the years. The use of a discrete-time
model also allowed us to test the effects of APS and Mathematics score on the risk of dropout
over the five years. The assumption was that the effect would be more pronounced in the
first year of study and then diminish over time. In both cases the effect was found not to be
significant in all years, suggesting that the effect is not significant and is constant over time.

The use of the discrete-time competing risk model allowed us to account for the possible
correlation between dropout and graduation. Furthermore, inclusion of a random term in
the discrete-time model allowed us to test the effects of unobserved heterogeneity.

Recommendations from this study are that discrete-time survival analysis model is more
efficient than traditional methods in analysis of the student dropout process and should
therefore be used for analysis of academic outcomes such a dropout. The model can account
for the temporal nature of the process of dropout. Both time-varying and time-invariant
explanatory variables can be included in the model. The effects of time-invariant explanatory
variables that might have time-varying effects can also be investigated.

Given the significant effects of race, and type of residence on the risk of dropout, more atten-
tion needs to be paid on these variables. More research is needed to unpack underlying issues
associated with these variables. The high dropout risk for English first language students
compared to second language students in the fourth year needs to be further investigated as
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second language students are expected to be more at risk compared to first language students.
For this cohort, dropout was not found to be the highest in the first year as suggested by
previous research, however, it was found to be the highest in the fifth year. This can possibly
be linked to student exclusion rules, which have a bearing on how long a student can linger on
in the system without graduating. According to TUT policy, students who failed in passing
more than 50% of the prescribed subjects for a particular year of study are excluded. The
exclusion can be appealed, the appeals are dealt through on a case-by-case case. The high
dropout rate may also be linked to challenges with work integrated learning (WIL) program
placement. Further research is needed to understand the role played by WIL in the student
retention issues.

The main limitation of this study is based on the use of secondary data. Model estimation
is thus limited to the variables that are available on the database. Information on financial
support and first generation (FG) status of students was not available on the database even
though their effects on academic outcomes, particularly dropout are known (Rooney, 2015; Si-
yengo, 2015; Moeketsi & Mgutshini, 2014; Murray, 2014; Pocock, 2012; Letseka, 2009). Other
variables that measure non-cognitive skills that are known to be important for success in HE
such as motivation Sikhwari (2014); Fraser & Killen (2005), self-discipline Fraser & Killen
(2005) and engagement Schreiber & Yu (2016); Strydom et al. (2010) were also not avail-
able. The other limitation is that censoring is assumed to be random, i.e., non-informative in
discrete-time models. However, for students who stay long in the system without graduating
or dropping out, this assumption, may or may not be violated due to exclusion rules.
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