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Abstract

In spatial statistics, several methods have been developed to measure the extent

of local and global spatial dependence (clustering) in measured data across

areas in a region of research interest. These methods are now routinely implemented

in most Geographical Information Systems (GIS) and statistical computer packages.

However, spatial statistics for measuring joint spatial dependence of multiple

spatial measurement and outcome data have not been well developed. A naive

analysis would simply apply univariate spatial dependence methods to each

data separately. Though this is simple and straightforward, it ignores possible

relationships between multiple spatial data because they may be measuring

the same phenomena. Limited work has been done on extending the Moran’s

index, a commonly used and applied univariate measure of spatial clustering,

to bivariate Moran’s index in order to assess spatial dependence for two spatial

data. The overall aim of this PhD was to develop multivariate spatial clustering

methods for multiple spatial data, especially in the health sciences. Our proposed

multivariate spatial clustering statistic is based on the fundamental theory

regarding canonical correlations. We firstly reviewed and applied univariate

and bivariate Moran’s indexes to spatial analyses of multiple non-communicable

diseases and related risk factors in South Africa. Then we derived our proposed

multivariate spatial clustering method, which was evaluated by simulation

studies and applied to a spatial analysis of multiple non-communicable diseases

and related risk factors in South Africa. Simulation studies showed that our

proposed multivariate spatial statistic was able to identify correctly clusters of

areas with high risks as well as clusters with low risk.
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Chapter 1

Introduction

1.1 Background

In spatial statistics, spatial clustering statistical methods have long been used

to group spatial objects into groups called clusters, so that objects in one cluster

have similar characteristics compared to objects in other clusters. Most of the

development in spatial clustering methods have focused on one areal health

data (outcome), and the most widely used measure is the Moran’s I index

of spatial autocorrelation (Moran, 1950). Both local and global indexes are

widely available and implemented in many geographic information system

(GIS) software (Anselin, 1995; Anselin et al., 2002; Waller & Gotway, 2004).

The univariate Moran’s I has recently been expanded to cases where there are

two spatially measured health data (Lee, 2001; Anselin et al., 2002).

Wartenberg (1985) was the first to derive a multivariate spatial measure

using principal component and factor analysis. Anselin et al. (2002) extended

the ideas of Wartenberg (1985) to develop a bivariate spatial association measure
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for both Moran’s I local and global indexes. Alternative constructions of both

the univariate and bivariate Moran’s indexes have been developed (Lee, 2001,

2004; Chen, 2013, 2015). However, because of access to interrelated multiple

geographic health data, there has been a need to develop spatial clustering

statistical measures. For example, in studying the spatial epidemiology of

cardiovascular diseases (CVDs) and risk factors, there has empirical evidence

pointing to spatial co-recurrence in these (Ford & Highfield, 2016; Kandala

et al., 2013). In such situation, one can analyse each cardiovascular or risk

factor separately using standard clustering statistics. However, such analyses

have less power and could mean estimates not efficient. A multivariate measure

of clustering for all the studied CVDs and risk factors are more appropriate as

this would give a more powerful test of significance compared to individual

analysis of the CVD conditions and their risk factors. In addition, estimating

joint clustering of two or more CVDs may provide more evidence for an integrated

intervention approach that targets all the modelled CVDs and risk factors

instead of targeting only one CVD. Research work in this area of joint clustering

is not well-developed, and to be best of our knowledge it is nonexistence for

spatial epidemiology and public health where most of the health data measured

are multivariate. This PhD is set in this context to develop multivariate spatial

clustering methods and apply them to CVD-related conditions in South Africa.

1.2 Overview of cardiovascular diseases

Cardiovascular diseases data are going to be used in the applications of the

autocorrelation methods that are going to be applied in this study. Thus, it is

important to understand the epidemiology of the diseases so as to appreciate

why we are using them as interrelated diseases. This section will first look at

the increasing problem of cardiovascular diseases in the world and how it can



Introduction 3

negatively impact a country’s development. This is followed by a subsection of

risk factors of CVDs and then a subsection outlining why CVDs are spatial and

has a tendency of clustering geographically.

1.2.1 The problem of cardiovascular diseases

The epidemic of non-communicable diseases (NCDs) that claim the majority

of deaths in the world is led by CVDs. Cardiovascular diseases are comprised

of a group of diseases relating to the heart or blood vessels. The biggest CVD

killers in the world are cerebrovascular disease and ischaemic heart disease.

Cerebrovascular disease (CVA) is a grouping of different conditions and diseases

involving the blood vessels connecting to the brain. When these blood vessels

are damaged or malformations accrue inside this may lead to the brain being

damaged as it is deprived of oxygen and nutrients. The most common manifestation

of CVA is a stroke. Ischaemic heart disease (IHD) or coronery heart disease

occurs when disorders in the blood vessels of the heart result in the deprivation

of oxygen and nutrients to the heart. The most common manifestation of IHD

is a heart attack.

Global mortality attributed to NCDs has become so grave in recent times

that NCDs have been included as one of the 17 sustainable development goal

(SDG) targets where premature mortality (between 30-70 years of age) attributed

to the diseases have to be reduced by one third by the year 2030 (WHO, 2015).

It was estimated in 2013 that about a third of global deaths can be attributed

to CVDs, while IHD, stroke and heart failure contribute about 80% of all CVD

deaths (GBD Collaborators, 2017; Noubiap et al., 2015). Recent studies have

shown that the proportion of people dying from CVDs in the world is increasing,

with WHO (2018) reporting that NCDs killed 41 million (71%) of the 57 million

deaths in 2016, and most of these deaths (44% or 17.9 million) were attributed

to CVDs. The 2016 NCD mortality of 41 million deaths represents a 16%



Introduction 4

growth on 2006 deaths (Gaziano, 2007; WHO, 2018).

The increase in the NCD epidemic is being fuelled by marked rises in prevalence

in the low and middle income countries (GBD Collaborators, 2017). Non-communicable

diseases were generally regarded as a problem of European countries but of

late low and middle income countries, particularly African countries, have

recorded increases in prevalence, while Europe and and the Western countries

have recorded decreases in NCD prevalence (Peer et al., 2012; Wesonga et al.,

2016; Yaya et al., 2018). Currently Africa is the region with the highest prevalence

of hypertension (46%) in the world and, in 2016, IHD claimed the highest

number of NCD deaths (511916, 5.8% of all deaths) on the continent, followed

by stroke (373485, 4.2% of all deaths, with South Africa being the worst hit

country in the region (GBD Collaborators, 2017).

In South Africa, about 69% of deaths due to NCDs occur before age 70 years

in men compared to 54% in women (WHO, 2018). With more men economically

active than women, the burden of NCDs, especially cardiovascular diseases

(CVDs) and their related risk factors, has had a negative social and economic

impact that affects the productive population. Absenteeism and deaths have

cost companies lots of money in terms of productivity hours lost and replacement

costs when recruiting new staff, while families lose out when a breadwinner is

deceased. The country reportedly spends a quarter of its total public health

service costs on trying to contain CVDs or 3% of its gross domestic product

(Pestana et al., 1996). It has also been reported that the cost of containing

obesity and related CVDs in low- and middle-income countries is about 8%

of their total public health service costs (Gaziano, 2007). Thus, a reduction

in the prevalence of CVDs and related risk factors will not only reduce CVD

mortality, but save companies and countries money, while at the same time

boosting productivity and improvements in the quality of life.
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1.2.2 Risk and environmental factors for cardiovascular

diseases

Several studies in Africa have found high prevalence of risk factors of CVDs

among the adult population (Alberts et al., 2005; Matsha et al., 2012; Neupane

et al., 2016; Njelekela et al., 2009; Olawuyi & Adeoye, 2018; Peer et al., 2012;

Wesonga et al., 2016; Yaya et al., 2018).

The high prevalence of the risk factors of CVDs in Africa has been attributed to

the nutritional transition taking place in Africa. In this transition, improved

health systems means a reduction in communicable (infectious) diseases that

are now giving way to increased NCDs as more people indulge in health-damaging

lifestyles. Such lifestyles are exemplified by physical inactivity, smoking, heavy

episodic alcohol (binge) drinking, low fruit intake, low vegetable intake, high

salt intake and high intake of unhealthy meals. These are referred to as

modifiable behavioural risk factors of CVDs and they usually give rise to modifiable

biological or metabolic risk factors of CVDs. Modifiable metabolic risk factors

include, among others, diabetes, raised blood pressure, raised plasma triglycerides

or high cholesterol, and overweight or obesity (Alberti et al., 2005; Pelzom

et al., 2017). A collection of these related modifiable biological risk factors of

CVDs is referred to as metabolic syndrome (Alberti et al., 2005). Metabolic

syndrome (MetS) have the advantage that they are measurable and easily

detectable in low-resourced settings compared to behavioural risk factors. As

such, they tend to give a more accurate assessment of future cardiovascular

related problems or mortality. Increased levels of MetS are indicative of future

cardiovascular-related problems or mortality.

Factors associated with the presence of MetS and behavioural risk factors

are known. Foremost among them are socio-economic and demographic factors

such as gender, age, ethnicity, educational level, employment status, area or

location of residence and wealthy or poverty status. Thus, primary prevention
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of CVDs that occurs at individual level mainly focuses on maintaining a healthy

lifestyle. But an individual’s healthy lifestyle, or lack of it, cannot be detached

from the social, physical and geopolitical environment existing in their spheres

of existence (van Rheenen, 2015). Hence a person’s healthy lifestyle is a product

of the community he or she lives in. Communities cannot be at the same level

of nutritional or epidemiological transition as investments in healthy systems

are bound to differ by region, so the intensity of the determinants of CVDs and

their risk factors tends to differ between communities. The higher the intensity

of the determinants, the higher the likelihood of the presence of the CVDs

and their risk factors in the population of that community. Thus, a suitable

prevention strategy must aim to reduce the average level or intensity of the

determinants of CVDs in the population or in the community (van Rheenen,

2015).

1.2.3 Spatial clustering of cardiovascular diseases

A community-based approach to assumes that the level of CVDs is dependent

on the distribution of the communities and the different intensities of the

determinants within those communities (van Rheenen, 2015). Different communities

are located in different regions, and evidence is such that CVD outcomes cluster

geographically (Ford & Highfield, 2016). Additionally, CVDs share the same

lifestyle risk factors, hence they tend to cluster together (Tsai et al., 2009).

Bradshaw et al. (1995) noted that the different lifestyles led by urban and rural

persons, as well as contrasting cultures, genetic make-up and social classes

of the population of South Africa, justifies doing analysis of the geographic

distribution of CVDs.
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1.2.4 Spatial epidemiology of cardiovascular diseases in

South Africa

South Africa has one of the highest burdens of cardiovascular diseases in the

region (Bradshaw et al., 2006; Cappuccio & Miller, 2016). This has been fuelled

by rapid urbanisation and changes in lifestyle (which are more sedentary), and

high salt and fat and sugar diet dependency (Manning et al., 1974; Steyn et al.,

2006). Prior to 1996, the country was reported to had spent a quarter of its

budget (or 3% of its gross domestic product) in trying to contain CVDs (Pestana

et al., 1996). However, resources allocated to containing CVDs are constrained

with a high emphasis placed on alleviating the problem of HIV/AIDs and other

infectious diseases (Schutte, 2018). South Africa is a signatory to the World

Health Organization’s (WHO) Sustainable Development Goal (SDG) number

3 (WHO, 2013) that tasks Governments to proactively monitor, prevent and

control NCDs. South African National Department of Health (NDoH) strategies

aimed at reducing NCD morbidity, mortality and associated risk factors, have

identified CVDs as a priority (NDoH, 2013).

Cardiovascular diseases and their risk factors are known to cluster geographically,

depending on levels of deprivation (Ford & Highfield, 2016). In South Africa,

the previously disadvantaged or deprived communities are exhibiting higher

prevalence levels of metabolic syndrome, i.e., a collection of risk factors for

CVDs and diabetes (Alberti et al., 2005) than the advantaged communities,

putting areas populated by the majority Blacks at high risk of mortality due

to CVDs. This is attributed to, among other factors, a nutritional transition

taking place in the country. It is fundamental to understand and monitor the

changing spatial patterns of CVDs, and identify cluster areas of high mortality

risk of NCDs if the SDG target is to be met. It is the objective of this study to

assess joint clusters of CVDs in South Africa.
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Investigation of the spatial variation and clustering of mortality in South

Africa is not new. Descriptive risk maps have been used to describe the geographic

variation of NCD mortality (Bradshaw et al., 1995, 2006; Groenewald et al.,

2014), while univariate spatial autocorrelation measures have been used to

determine the presence of spatial heterogeneity or variation in an area and to

detect clusters of HIV/AIDS mortality (Tanser et al., 2009), infant mortality

(Sartorius et al., 2011) and all-cause mortality (Sartorius et al., 2010).

Univariate global indicators of spatial autocorrelation (GISA) are used to

detect spatial heterogeneity or variation of cause-specific mortality for an area.

They test the extent to which neighbours are similar or different in the region

of study. One can use them to detect the presence of clusters, but they do not

reveal the actual clusters (Waller & Gotway, 2004). Actual clusters are detected

using local indices of spatial autocorrelation (LISA). Using univariate LISA to

identify clusters entails investigating if high mortality risk of a single disease

in a given area extends to neighbouring areas. Areas of high mortality risk that

extend to nearby areas form a cluster known as “hot-spots ”, while areas of low

mortality risk that extend to nearby areas form “cold-spots ” for the disease in

question (Anselin et al., 2002; Waller & Gotway, 2004).

Joint mapping of multiple disease outcomes has also been done in South

Africa using the shared-spatial component method to establish ecological associations

between HIV/AIDS and syphilis (Manda et al., 2012), as well as multiple CVDs

(Kandala et al., 2014). The methods only permit, whether or not multiple

diseases spatially co-exist, the measurement of one disease but do not measure

the extent to which one disease in an area affect the burden of related diseases

in adjacent areas. Sometimes, when dealing with interrelated diseases like

CVDs, it is important to determine how they influence each other spatially.

Univariate spatial autocorrelations only allow the measurement of spatial correlations
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of a disease in an area with itself in the adjacent areas. However, multivariate

spatial autocorrelation techniques could be invaluable in providing useful insight

into the spatial dependency of two or more interrelated disease outcomes.

1.3 Research Problem

Advancements in technology such as in Geographical Information Systems

(GIS) and other computer software for data collection and storage has meant

that geographically indexed data of interrelated health outcomes that were not

readily available before are now ubiquitous. Nonetheless, methods of spatial

autocorrelation that can handle multiple health outcomes are lacking. Bivariate

measures have been developed for measuring the spatial association between

two spatial data outcomes. However, spatial data with more than two outcomes

are commonly collected in many different research studies. Thus, there may be

a need to have a single measure that represents their joint spatial autocorrelation.

We are not aware of such a spatial clustering statistics that has been developed

for a general number of spatial data outcomes.

The development of multivariate spatial autocorrelation measures would

permit applied researchers and users of spatial maps to show joint clusters

for more than two interrelated spatial data outcomes. In public health, for

example, such a display could support policies on integrated intervention approaches

for two or more health outcomes.

1.4 Study aims and objectives

The primary aim is to develop multivariate spatial autocorrelation measures

for interrelated spatial outcome data and then apply the derived measures

to an analysis of multiple cardiovascular conditions, namely CVA, IHD,HHD
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and related risk factors in South Africa. These will be achieved through the

following objectives:

Objective I: Review of bivariate spatial clustering methods and applying to

cardiovascular diseases and associated risk factors in South Africa.

Objective II: Derivation and validation of multivariate spatial autocorrelation

measure.

Objective III: A comparison of estimated clustering patterns in CVDs and

risk factors in South Africa between univariate and multivariate spatial

clustering methods.

1.5 Overview of thesis

This Chapter has given the background of the study, the burden of CVDs in

South Africa, the research problem, the aim and objectives of the study. The

next three chapters review and apply the currently available univariate and

bivariate spatial autocorrelation measures. An illustration of the application

of the spatial autocorrelation methods is done in Chapter 4, where applications

are done to assess co-clustering of age-standardised incidence ratios and mortality

rates of cardiovascular data and its risk factors. In the first illustration, particular

attention is given to the following four cardiovascular diseases and their risk

factors: stroke, heart attack, high blood cholesterol, hypertension and tobacco

smoking. The second illustration involves application of Empirical Bayes approach

in smoothing cardiovascular mortality rates and Poisson regression modelling

in estimating mortality rates adjusted for age, race and poverty. Recently

developed bivariate spatial autocorrelation by Lee (2001) and variants of the

Moran’s index were then used to identify pairwise co-clusters of Empirical

Bayes smoothed rates and the Poisson regression adjusted mortality rates of
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cerebrovascular heart disease, ischaemic heart disease, hypertensive heart disease

and diabetes. Chapters 5 and 6 provides a new multivariate spatial autocorrelation

measure, based on canonical correlation analysis, that extends the analyses of

the Moran’s index of spatial autocorrelation to three or more health outcomes.

A summary and conclusion are given in Chapter 7 with a discussion on the

future direction of the study.



Chapter 2

Review of spatial autocorrelation

methods

2.1 Introduction

This Chapter describes the foundation and theory of statistical spatial clustering

measures. The univariate and bivariate Moran’s indexes and a recently developed

alternative construct of the Moran’s index of spatial association are described.

Spatial autocorrelation is the correlation of a geo-referenced variable to

itself geographically. If there is geographical interdependence between geo-referenced

observed values then this data is said to exhibit spatial autocorrelation. When

there are random spatial patterns then the data shows no spatial autocorrelation.

Spatial autocorrelation measures the degree to which one area is similar or

dissimilar to its geographically contiguous areas. Spatial autocorrelation, like

Pearson’s autocorrelation function, can be positive or negative. Positive spatial
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autocorrelation occurs when geographically contiguous areas are similar while

negative spatial autocorrelation occurs when the geographically contiguous

areas are not similar.

Moran (1950) was one of the early pioneers of “spatial correlation” which

Cliff & Ord (1969) later referred to as “spatial autocorrelation.” Cliff & Ord

(1969) were the first to develop a framework for testing spatial autocorrelation

in a given region under the null hypothesis of spatial randomness. The measures

that are used to test the extent of spatial autocorrelation are divided into global

and local measures of spatial autocorrelation Anselin (1995). Global measures

look at the spatial autocorrelation for the whole area under study while the

local measures look at spatial autocorrelations at local neighbourhoods. These

measures will be looked at in the subsequent subsections.

2.2 Spatial autocorrelation methods

In this section we review spatial autocorrelation methods but before that we

will define the notion of spatial weights which is important in the calculation

of spatial autocorrelations.

2.2.1 Spatial weights

Analysing spatial autocorrelation requires one to quantify location. Knowledge

of the neighbourhood structure of the regions under study is important for

one to be able to quantify location in order to analyse spatial effects. Spatial

effects here refer to geographical dependence and geographical heterogeneity.

The neighbourhood structure is represented as a proximity matrix known as

a spatial weight matrix, W . A spatial weight matrix, W = {wij}ni,j=1, is an

n × n matrix that defines the closeness or connectedness of two areas Ai and

Aj in space, where {wij is the ijth element of the weight matrix. Spatial weight
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matrices can either be contiguity (neighbourhood) or distance based. A contiguity

structure shows how one area is located in relation to others, whereas distance

based structures show the relative spatial distance of one area from the others.

In contiguity structures one would expect neighbours to have more spatial

dependence than those that are far away. In distance based neighbourhood

structures, spatial dependency is expected to decline as the distance between

areas increases. Areas that are far from each other should exhibit spatial

heterogeneity (dissimilar relationships), while those that are close should show

similar relationships (Kosfeld, 2010).

The spatial contiguity matrices are the simplest there are in terms of neighbourhood

structure definition and their contiguity based spatial weights are defined as

follows:

wij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if i and j are close or connected or neighbours

0 otherwise.

where areas Ai and Aj are said to be neighbours or connected if either (1)

they share a border (rook contiguity/simple contiguity); or (2) they share a

corner (bishop contiguity); or (3) they share either a border or a corner (queen

contiguity) (Kosfeld, 2010). When neighbours are adjacent, as is the case when

they share a boundary, then the weight matrix is referred to as first-order

adjacency matrix. Elements in the diagonals of the weight matrix are zeros

since an area is not considered to be its own neighbour.

The definition of neighbourhood can be expanded to higher-order adjacency

matrices in which we incorporate the neighbours of a neighbour. This brings

about the concept of second-order neighbours, then third-order neighbours,

etcetera. In general a kth-order adjacency weight matrix is defined as follows:
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wij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ωk if i and j are kth-order neighbours and k = 1,2, ..., n

0 otherwise.

where the corresponding weight of each order can be written in vector form:

ω = (ω1, ω2, ..., ωn). Weights are assigned to the neighbours such that the nearest

neighbours have higher weights while the furthest neighbours have the lowest

weights. The limitations of adjacency weight matrices is that they do not take

into consideration differences in the sizes of the different areas. Alternatively,

one can define the weight matrix based on distance.

The simplest of the distance-based spatial matrix, like the contiguity matrices,

is also a binary connectivity matrix defined such that two areas Ai and Aj are

neighbours if the distance between them, dij , is less than a specified distance,

say δ , beyond which autocorrelation is not expected (Kosfeld, 2010). This

structure is called the cross hatched or distance band contiguity. There are

many ways of measuring distance but the most commonly used distance is the

Euclidean distance between centroids of the areas (Waller & Gotway, 2004;

Kosfeld, 2010). Similarly defined is the k-Nearest Neighbour contiguity, where

area Aj is one of the k areas close to Ai (Waller & Gotway, 2004; Kosfeld, 2010).

Functional distance based spatial weight matrices have also been formulated.

One such example is that based on the power function, wij = dαij, where α is the

power parameter. When α is equal to negative 1 we have an inverse distance

and when it is equal to 2 we have a quadratic inverse distance which is also

known as the gravity model. The distance between two areas Ai and Aj , dij, can

be measured from the centroid of the areas or from major cities or any points

so chosen to be representative of the areas (Waller & Gotway, 2004; Kosfeld,

2010).
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Functional distance based spatial weight matrices can be based on the inverse

and exponential functions. The spatial weight matrix based on the inverse

matrix is derived using Equation 2.1,

wij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d−αij if i ≠ j

0 otherwise,
(2.1)

while that based on exponential function is given by Equation 2.2,

wij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e−α
dij
d̄ if i ≠ j

0 otherwise,
(2.2)

where dij is the distance between the centroid of area i and that of area j,

while d̄ is the average of all the distances between the areas under study. There

are other forms of spatial contiguity not discussed here but one can see Waller

& Gotway (2004) or Kosfeld (2010) for further reading.

There are times when some areas have or are suspected to have more neighbours

than others. This can occur with irregular polygons where certain areas may

be smaller or bigger in size than others and thus have more neighbours than

others. One may want to adjust for this fact by creating proportional weights

for the number of neighbours for an area (Waller & Gotway, 2004; Kosfeld,

2010). This is achieved through the creation of a row-standardised weight

matrix (Kosfeld, 2010) whose entries will be given by:

wstd
ij =

wij

∑n
j=1wij

This standardisation is appropriate for this study in which irregularly shaped

municipalities of South Africa are considered as the unit of analysis. In most

instances the spatial weight matrix, W = [wij]n×n, is standardised to make it a

unitary matrix such that ∑n
i=1∑n

j=1wij = 1. Standardisation also leads to easier
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interpretation of results.

The spatial weight matrix, W = [wij], is assumed to be unitary with the

following three properties:

• It is symmetric. i.e., wij = wji or W =WT ;

• Its diagonal elements are all zeros, ie., wij = 0 for all i; and

• It must satisfy the normalisation condition, i.e., ∑n
i=1∑n

j=1wij = 1.

Chen (2013) provided two ways in which a contiguity weights matrix with

zero diagonal elements, V = [vij]n×n, can be made a unitary spatial weights

matrix:

1. wij = vij
∑n

i ∑n
j vij

, or

2. w∗ij =
n⋅vij

∑n
i ∑n

j vij
.

2.2.2 Univariate spatial autocorrelation

2.2.3 Global indexes of spatial autocorrelation

Global indexes of spatial autocorrelation (GISA) are used to determine the

extent to which neighbours are similar in the study region. GISA can only

detect the presence of clusters, but do not identify where the clusters are located

(Waller & Gotway, 2004). There are a number of Global tests such as the

quadrat method, the nearest neighbour method, Geary’s C and the global Moran

I test (Waller & Gotway, 2004). The most popular of the GISA is the global

Moran I statistic Griffith (1987). It is this method which is at the centre of this

PhD study and is discussed next.
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Global Moran index

The global univariate Moran I statistic measures the extent of the linear relation

between the observed geo-referenced data x = {x1, x2, ..., xn} and their corresponding

spatial lags (a weighted average of neighbouring values). The global Moran’s I

using the standardised spatial weights is given by:

I = ∑
n
i=1∑n

j=1wij ⋅ (xi − x̄) ⋅ (xj − x̄)
∑n

i=1(xi − x̄)2
= ∑

n
i=1(xi − x̄)∑n

j=1wij ⋅ (xj − x̄)
∑n

i=1(xi − x̄)2
, (2.3)

where wij is the ijth element of the spatial weight matrix, which is a measure

of the spatial proximity between municipalities i and j. This may also be

written as

I = n

∑n
i=1∑n

j=1wij

∑n
i=1∑n

j=1wijzizj

∑n
i=1 z2i

, (2.4)

which can be expressed in matrix or quadratic form as follows:

I = zTWz, (2.5)

where zT = [zi] = [(xi− x̄)/σx] is a vector of the standardised z-score values of

the xi’s, W = [wij] is the spatial weight matrix and σx is the standard deviation

of the xi’s.

In order to test if the null hypothesis of spatial randomness or no spatial

autocorrelation is significant, one can assume that sampling is from areas

whose spatial process realisations are normally distributed with constant mean

and constant variance for each area. Otherwise, a randomisation approach is

implemented.



Review of univariate spatial autocorrelation methods 16

2.2.4 Local indexes of spatial autocorrelation

Having established the presence of an underlying pattern or spatial clustering

in the data using GISA such as the Moran’s I discussed in the previous section,

one may be interested in detecting clusters that gave rise to a significant GISA.

This is done using local indicators of spatial autocorrelation (LISA). Furthermore,

one can also identify outliers using LISA. “Hot-spots ” and “cold-spots ” are

associated with positive spatial autocorrelation. When the sign of local spatial

autocorrelations negates that of global spatial autocorrelation then that area

is an outlier. For instance, when the global statistics are saying that there is

positive spatial autocorrelation, then local areas with negative spatial autocorrelations

will be spatial outliers. Although there are various LISA such as the Getis G

statistic (Ord & Getis, 1995), this PhD study only consider the most widely

used local Moran’s I. The local Moran’s I statistic is given by:

Ii =
n(xi − x̄)∑n

j=1wij ⋅ (xj − x̄)
∑n

j=1(xj − x̄)2
. (2.6)

Equation 2.6, just as with the global Moran’s I, can be rewritten as a function

of the standardised z-scores as:

Ii = zi ⋅
n

∑
j=1

wijzj, i ≠ j. (2.7)

The local Moran’s I can be written in matrix notation as:

Ii = zTWiz, (2.8)

where ∑n
i=1 Ii = I and Wi is a global spatial weight matrix whose entries are

zero with the exception of the entries in the ith row.
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2.3 Linear regression-based Moran’s index

Chen (2013) developed a regression approach to univariate Moran’s index with

the objective of making it simpler to implement and interpret. This was achieved

by taking into consideration certain relationships and assumptions that will be

outlined in the subsequent paragraphs.

Firstly, it was shown that

zTz =
n

∑
i=1

z2i = n, (2.9)

since the norm or length of z is given by:

∥z∥ =
¿
ÁÁÀ n

∑
i=1

z2i =
¿
ÁÁÀ n

∑
i=1
(xi − x̄

σx

)2 =
¿
ÁÁÀ n

σ2
x

⋅ 1
n

n

∑
i=1
(xi − x̄)2 =

√
n

σ2
x

⋅ 1
n
⋅ σ2

x =
√
n. (2.10)

Chen (2013) adopted the unitary weight matrix approach which will also be

applied in this study.

An ideal spatial weight matrix (ISWM), M∗, was derived by pre-multiplying

both sides of Equation 2.5 by z to obtain

zI = zzTWz. (2.11)

Since I is a scalar Equation 2.11 can be rewritten as

M∗z = zzTWz = Iz, (2.12)



Review of univariate spatial autocorrelation methods 18

where

M∗ = zzTW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1∑n
j=1w1jzj z1∑n

j=1w2jzj ⋅ ⋅ ⋅ z1∑n
j=1wnjzj

z2∑n
j=1w1jzj z2∑n

j=1w2jzj ⋅ ⋅ ⋅ z2∑n
j=1wnjzj

⋮ ⋮ ⋱ ⋮
zn∑n

j=1w1jzj zn∑n
j=1w2jzj ⋅ ⋅ ⋅ zn∑n

j=1wnjzj,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.13)

is the ISWM. The diagonal of M∗ consists of the Moran’s I based local

indicators of spatial autocorrelation, Ii. Additionally, the trace of M∗ gives

the global Moran’s I, i.e., Tr(M∗) = ∑n
i=1 Ii = I. Chen (2013) defined f∗ =M∗z so

that

f∗ =M∗z = zzTWz = Iz. (2.14)

It follows that the Moran’s index is the gradient obtained when f∗ is regressed

on z. This way of calculating the Moran’s index is simple to apply and easy to

discern.

Using the fact that the maximum eigenvalue of the matrix zzT was its

dimension, n, Chen (2013) showed that

f =Mz = zzTWz = nWz (2.15)

where M, the so called Real Spatial Weight Matrix (RSWM).

Note that Mz is approximately close to M∗z when the spatial autocorrelation

is high but significantly different when otherwise (Chen, 2013). On the one

hand, the relationship between f∗ and z is a regression line fit whose gradient

is an estimate of the Moran’s index, as alluded earlier. On the other hand, the

relationship between f and z is the actual observed spatial pattern. Thus, a

graph of f∗ on z with coordinates (zi, f∗i ) will give points following a straight

line while a graph of f on z with coordinates (zi, fi) will have points showing
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an irregular pattern. The gradient of a fitted line to either of these two plots

will give an estimate of the univariate Moran’s index. The plots described in

this paragraph represent the revised Moran’s I scatter-plot by Chen (2013).

In order to assess the adequacy of the Moran’s index derived using Chen

(2013), a diagnostic check of the residuals needs to be performed. The residuals

of the spatial autocorrelations,ef , in the formulation by Chen (2013) is given by

ef = f − f∗ =Mz −M∗z, (2.16)

and the standard error, sf , of the residuals is defined by Chen (2013) as

sf =
√

1

n
eTf ef . (2.17)

The diagnostic check of the residuals is two-fold. First, we check if the

residuals follow a normal distribution, failing of which an adjustment must be

done to the weights matrix, otherwise a new weights function has to be chosen.

Second, the standard error of the residuals could have an upper-bound of 0.15,

i.e., sf < 0.15 (Chen, 2013).

2.3.1 Framework for significance testing

Lee (2004) provided a framework for significance testing of indicators of spatial

association measures which is based on the permutation tests of Mantel (1967).

The number of possible permutations as in the Mantel (1967) proposal can be

prohibitively large even in this age of high speed computers leading researchers

consider sampling from the permutations (Kosfeld, 2010). In Monte Carlo

simulation method locations are randomly reordered for all the cases. A permutation

of the randomly reordered locations is randomly selected and the locations are

assigned to the cases. Assuming that the locations are not related to the cases

then all the possible permutations have an equal chance of being selected.
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In this framework an observed indicator of spatial association measure,

Γ(obs) , say, is determined for the health outcome of interest. Sampling of

the permutations is repeated many times, say for l = 1,2, .., L permutations,

and each time a corresponding test statistic {Γ(l) ∶ l = 1,2, ...L} is calculated

using the spatial autocorrelation measure. The number of permutations will

depend on the number of cases and the significance level of the test. While

a large value of l is required for the empirical distribution to give a good

approximation of the null distribution it is recommended that a minimum

sample of 99 permutations for a 5% significance test level and a minimum

of 999 samples for a 1% significance test level (Waller & Gotway, 2004). A

proportion of Γ(l)‘s that are greater than the observed Γ(obs) statistic is determined

and a p − value is calculated as p − value = P (Γ(l) > Γ(obs)). High p − values
suggest that there is no evidence of spatial clustering in the data. This is the

same framework that has been used in the significance testing of the original

Moran’s index.

2.4 Summary of the chapter

In this chapter the relevant literature pertaining to univariate spatial autocorrelation

measures has been presented. First, the widely used Moran’s index was presented.

Then the an alternative construct of the Moran’s index of spatial autocorrelation

measure based on a regression approach was reviewed. In this linear regression

based approach, Chen (2013) intention is to present the Moran’s index in way

that is easy to appreciate and interpret while simultaneously seeking to give

a basis for the choice of the spatial weight matrix for use in the analysis.

The approach suggested using the regression standard errors as a basis for

determining the spatial weight to use. A suitable spatial weight matrix would

give a regression standard error of less than 0.15 (Chen, 2013). The approach

by Chen (2013) provides an innovative way of displaying the scatter plots and
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deriving the Moran’s index.

The Moran’s index has been widely applied in spatial epidemiology, but

linear regression based approach by Chen (2013) is yet to be extensively applied

to real life problems. These two methods, i.e. the traditional way and the Chen

way, will be applied to two sets of CVD data in South Africa in the next chapter.



Chapter 3

Application of univariate spatial

autocorrelation methods to

cardiovascular diseases in South

Africa

3.1 Introduction

This Chapter presents applications of the univariate Moran’s index and the

linear regression approach to the Moran’s described in Chapter 2 to real life

data. An application of the univariate spatial autocorrelation measures is done

to two different South African health outcomes datasets recorded at municipality

level. The first illustration is done on self-reported prevalence of two CVDs

stroke and heart attack, and three risk factors of interest namely raised blood

pressure, raised cholesterol and smoking. A second illustration was in detecting
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individual clustering of mortality attributed to cerebrovascular, ischaemic hypertensive

heart diseases and diabetes in South Africa.

The data used are recorded at local municipal level. There are 52 district

municipalities and 234 local municipalities in South Africa (2011 boundaries).

These municipalities are in the form of irregular polygons. Municipalities were

then considered to be fixed and countable areal units. Thus, areal data spatial

autocorrelation measures were considered for analysis.

3.2 Application to cardiovascular prevalence data

3.2.1 Data

Secondary data collected as part of the South African Demographic and Health

Survey in 2016 (SADHS 2016) were used. The SADHS 2016’s adult health

module recorded information that included, among others, self-reported prevalence

of two CVDs stroke and heart attack, the three risk factors of interest raised

blood pressure, raised cholesterol and smoking for both male and female adults

aged 15 years and older. A total of 12 717 adults were targeted for this adult

health module, but only 10 336 responded. In this application, we used district

for the spatial analysis.

Figure 3.1 shows the map of the 52 districts of South Africa and the number

of the sampled adults, which ranged from 23 to 544 per district, with an average

of 203 subjects. Due to the sample design, Central Karoo, which has a very

sparse population was not included in the sample, and hence excluded from

the analyses. For the purposes of our study, the data were stratified by gender

(male and female) and age (15-39 years (young adults) and 40-64 years (adults).

A cut off point of 40 years was used as it has been observed that the burden of

CVDs increased significantly after the age of 40 years (Petoumenos et al., 2014).
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Figure 3.1: The South African map showing the district names and sample sizes
drawn from each district in the 2016 SADHS.

3.2.2 Variable definitions

The CVD variables considered in this study were stroke and heart attack and

are defined below.

• Stroke: A dichotomous variable in which a person who self-reported to

have been diagnosed with stroke is assigned a value 1 and zero otherwise.

• Heart attack : A dichotomous variable in which a person who self-reported

to have been diagnosed with heart attack is assigned a value 1 and zero

otherwise.
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Three risk factors of CVDs considered in this study are smoking, hypertension

and high blood cholesterol. These are defined below.

• Smoking: A dichotomous variable in which a respondent who stated that

he/she smokes daily or occasionally is assigned a value 1 and zero otherwise.

• High blood cholesterol (HBC): A dichotomous variable in which a person

who self-reported to have been diagnosed with high cholesterol is a success

and is assigned a value 1 and zero otherwise.

• Hypertension : This was defined as a systolic BP measurement of at

least 140 mmHg or diastolic BP measurement of at least 90 mmHg or

self-report of hypertension diagnosis as hypertensive or on hypertension

medication.

3.2.3 Descriptive statistics of the variables

A total of 9 154 participants aged between 15 and 64 years were sampled, of

which about 5 337 (58%) were females, and 5 848 (64%) were aged between 15

and 39 years. Table 3.1 shows summary statistics of the prevalence of variables

used in the analysis by districts. The summary statistics were derived for all

the data combined, gender, age groups and by both age-gender. District level

prevalence rates range from 0% to 100% across the CVDs and related risk

factors. On average, the prevalence of reported heart attack (2.4%) is twice

the prevalence of strokes (1.2%). Heart attack prevalence rates are higher for

females (2.8%) than among males (1.8%).

An average of 22% of those sampled described themselves as daily or regular

smokers. The higher proportion of the smokers are among males (39%) than

females (10%). Hypertension has a very high national prevalence of 34%,

which is higher among women (36%) than men (31%). The prevalence of the
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CVDs and their risk factors are increasing with an increase in age, as would

be expected.

Table 3.1: Summary statistics of the prevalence of CVDs and related risk factors
across the districts.

Sub-Group CVD or Risk Factor Minimum First Quartile Median Mean Third Quartile Max Sample size
All Stroke 0.0% 0.0% 1.1% 1.2% 1.6% 9.1% 9,154

Heart attack 0.0% 1.1% 2.2% 2.4% 3.5% 9.1%
Smoking 0.0% 15.8% 20.8% 21.9% 25.0% 53.2%
HBC 0.0% 0.7% 1.5% 2.2% 3.0% 9.1%
Hypertension 9.5% 27.6% 32.9% 34.3% 41.2% 65.4%

Male Stroke 0.0% 0.0% 0.0% 1.1% 1.2% 20.0% 3,817
Heart attack 0.0% 0.0% 1.1% 1.8% 2.2% 20.0%
Smoking 0.0% 31.8% 37.8% 39.0% 46.1% 81.8%
HBC 0.0% 0.0% 0.7% 1.8% 2.9% 20.0%
Hypertension 0.0% 22.4% 29.6% 31.2% 40.8% 80.0%

Female Stroke 0.0% 0.0% 1.3% 1.3% 2.2% 5.4% 5,337
Heart attack 0.0% 1.1% 2.6% 2.8% 4.1% 10.7%
Smoking 0.0% 1.7% 4.8% 9.9% 12.3% 41.7%
HBC 0.0% 0.2% 1.6% 2.4% 2.9% 12.5%
Hypertension 15.4% 29.9% 35.7% 36.3% 41.6% 66.7%

15-39 Stroke 0.0% 0.0% 0.0% 0.5% 0.8% 2.9% 5,848
Heart attack 0.0% 0.0% 0.3% 0.9% 1.4% 4.6%
Smoke 0.0% 14.4% 19.6% 20.1% 23.4% 46.6%
HBC 0.0% 0.0% 0.0% 0.6% 0.8% 5.7%
Hypertension 0.0% 15.3% 20.8% 21.0% 27.6% 40.9%

40-64 Stroke 0.0% 0.0% 1.5% 2.2% 3.5% 10.0% 3,306
Heart attack 0.0% 0.6% 4.5% 4.5% 6.5% 14.1%
Smoking 0.0% 15.7% 21.8% 23.4% 29.6% 66.7%
HBC 0.0% 1.3% 3.3% 4.6% 5.7% 19.1%
Hypertension 25.0% 47.2% 56.8% 55.5% 63.9% 92.3%

Male 15-39 Stroke 0.0% 0.0% 0.0% 0.1% 0.0% 2.0% 2,574
Heart attack 0.0% 0.0% 0.0% 0.7% 1.3% 5.6%
Smoking 0.0% 27.4% 35.7% 35.4% 44.5% 66.7%
HBC 0.0% 0.0% 0.0% 0.4% 0.0% 5.9%
Hypertension 0.0% 15.2% 21.2% 22.2% 29.7% 50.0%

Female 15-39 Stroke 0.0% 0.0% 0.0% 0.7% 1.3% 4.4% 3,274
Heart attack 0.0% 0.0% 0.0% 1.1% 1.9% 7.3%
Smoking 0.0% 1.2% 3.9% 8.0% 7.9% 40.5%
HBC 0.0% 0.0% 0.0% 0.8% 1.1% 10.3%
Hypertension 0.0% 15.2% 20.9% 19.8% 25.4% 37.7%

Male 40-64 Stroke 0.0% 0.0% 1.2% 2.1% 2.5% 25.0% 1,243
Heart attack 0.0% 0.0% 0.0% 3.3% 5.9% 25.0%
Smoking 0.0% 35.0% 42.9% 45.2% 52.1% 100.0%
HBC 0.0% 0.0% 0.0% 3.7% 5.7% 25.0%
Hypertension 0.0% 36.5% 50.0% 46.9% 61.3% 100.0%

Female 40-64 Stroke 0.0% 0.0% 1.2% 2.1% 4.7% 8.3% 2,063
Heart attack 0.0% 0.0% 4.9% 5.1% 7.6% 18.8%
Smoking 0.0% 0.8% 6.9% 11.5% 17.1% 46.2%
HBC 0.0% 0.0% 3.1% 4.9% 5.3% 27.8%
Hypertension 33.3% 52.1% 61.4% 60.3% 67.6% 100.0%

Key: CVD, cardiovascular disease; HBC, high blood cholesterol.

3.2.4 Variables correlations

The correlations between district level prevalence data were assessed using

Pearson correlation coefficient and the results are shown in Table A.1 (Appendix
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A). Correlation is important in measuring point-to-point association between

datasets and captures the relationship of the health outcomes within a district.

The correlations were assessed for overall sample, by age, gender and age-gender.

When all the data is used, it was observed (results shown in Table A1) that

there is a strong association (±0.5 to ±1) between stroke and heart attack (0.85);

stroke and HBC (0.82); heart attack and HBC (0.71); smoking and HBC (0.55);

smoking and hypertension (0.73); and HBC and hypertension (0.53). Removing

the effects of gender, there is a weak association between the CVDs and their

risk factors for females, but strong positive association for males for stroke and

heart attack (0.81); stroke and HBC (0.66); heart attack and HBC (0.64).

Generally, the correlations, with a few exceptions, reduce with each further

division: gender or age and then age-gender. It is further observed that the

direct association between HBC and the two CVD outcomes of stroke and heart

attack are more pronounced in the ages 40-60 years than in the 15-40 year age

group. Similarly, in a district with higher proportion of individuals smoking,

there are also a relatively higher proportion of stroke (especially in ages 40-64

years). However, the direct association between hypertension and the CVD

outcomes did not show similar trends, with relatively small correlations between

them.

3.2.5 Age-gender stratified clustering analysis

Maps of raw prevalence rates

The distribution of the prevalence of the CVDs and their risk factors over

different districts of South Africa shed more light on the similarities or dissimilarities

in their spatial variation across the country. Figure 3.2 shows the quintile

maps of the raw prevalence rates for the CVDs and their risk factors over

different districts of South Africa. Central Karoo has undefined values and is
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Figure 3.2: Maps of prevalence rates of the CVDs and their related risk factors across
the district for the sample age group 15-64 years.

shown as neighbourless. The darker the colour, the higher the raw prevalence

in the district. Stroke (see Figure 3.2 A) and smoking have black colours

dotted across the country. High values of heart attack in Figure 3.2 B are

concentrated in the centre of the country, stretching from the north to the

south. Hypertension (Figure 3.2 C) has a belt of high prevalence values stretching

from the west coast to the south coast of the country. The high rates for high

blood cholesterol stretch from the central districts of the country all the way to

the west. It is in these high value areas that high risk clusters for each given

CVD or risk factor are expected to form.

Figure A.1 in Appendix A shows the maps of prevalence rates by gender,

although there are some overlap in terms of common districts of high values.
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It is observed that the geographic distributions differ by gender and also differ

from the distribution when all the data are used. For example, the high rates of

HBC in Figure A.1 C cover some districts in the middle of the country and some

in the south-western part of the country, but the high rates for males in Figure

A.1 G cover a few districts in the south western part of the country. Similarly,

females have a different spatial distribution for HBC as shown in Figure A.1

H, but almost similar when all genders are combined. The distribution of

the CVDs and their risk factors also differs by age as shown in Figure A.2

(Appendix A). It was further revealed that the spatial distribution of the CVDs

changes for different age-gender combinations as shown in Figure A.3 and

Figure A.4.

Clustering using data for different age-gender combinations

The global univariate spatial autocorrelation indexes for the prevalence of CVDs

and identified risk factors for all participants, and also split by age or gender

were calculated and are shown in Table 3.2. In the case of all participants,

there is evidence of spatial clustering at 5% significance level with the exception

of heart attack (Moran’s I=-0.013). Stroke spatial clustering is significant for

the male (0.136) and 40-60 years (0.150) categories. There is no evidence of

spatial clustering in the data of smoking for males and HBC for age group

15-39 years olds.

Figure 3.3 shows the clusters for CVDs and their risk factors that exhibit

significant spatial dependents at district level in South Africa, for all participants

and for the different genders. The key shows “hot-spots ” (High-High) in the

black colour and “cold-spots ” (Low-Low) in the light grey colour. Smoking

spatial clustering is well pronounced in the with “hot-spots ” clusters in western

part of the country (Figures 3.3 B, F and J). In Figures 3.3 D, H and L, it can

be observed that the “hot-spot ” cluster of hypertension are in the central part

of the country.
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Table 3.2: Global univariate spatial autocorrelation Moran’s I values for the CVDs
and their risk factors for all participants split by age and gender.

Stroke Heart attack Smoking HBC Hypertension
Male 0.136** -0.044† 0.142† 0,239** 0.150**
Female -0.171† 0.018† 0.787** 0.246** 0.351**
15-39 years -0.033† 0.074† 0.294** 0.012† 0.282**
40-64 years 0.150** -0.057† 0.600** 0.299** 0.317**
All 0.203** -0.013† 0.662** 0.503** 0.329**

Key: HBC, high blood cholesterol; †, insignificant at 5% level; **, significant at
5% level.

Figure 3.3: Univariate spatial clusters of CVDs and their risk factors with significant
association for all participants, males and females using raw rates.

Generally stroke and HBC have “hot-spots ” clusters found in the south

western part of the country and comprises of City of Cape Town, Cape Winelands,
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Overberg and Eden Districts. Clustering of stroke for males and females were

found not significant and it can be seen in Figures 3.3 E and I that the data

is generally randomly distributed with no clusters present. There are clear

differences in spatial clustering by gender for example for HBC “hot-spots ”

clusters for males (Figure 3.3 G) are in the southern most part of the country

but those for females (Figure 3.3 K) are in the western part of the country.

Similarly, it was observed in Figure A5 (Appendix A) that spatial clustering

is also dependent on age groups. We also approached the analyses using observed

prevalence data within each age-gender groupings, namely males aged 15-39

years; females aged 15-39 years; males aged 40-64 years; and females aged

40-64 years (the results are not presented here).

It has been shown in this section that the spatial clusters vary when different

age-gender combinations are analysed using raw prevalence of the two cardiovascular

diseases and the three associated risk factors. While spatial analysis employing

age-gender combinations is a novel way of analysing age-gender effects on

spatial co-clustering it is also fraught with some inherent problems. Key among

them is the fact that the sample sizes reduced when stratified by age and

gender. This makes the conclusions possibly less reliable, especially when we

simultaneously stratify by both age and gender, and we get average sample

sizes of order 20 participants, with some districts having one observation. This

can be seen in Table 3.3. The use of standardised incidence ratios, in this

case, is preferable. The approach has an advantage that it does not reduce

the sample sizes, and consequently, does not reduce power of testing, while

simultaneously accounting for the effects of age and gender.
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Table 3.3: Effects of age-gender stratification on the sample size used in the analyses.

Sub-Group Mean Std Error Median Minimum Maximum Range Sample size
All 203 20 185 23 544 544 10,336
All (15-64 years) 179 18 157 11 503 492 9,154
Male (15-64 years) 75 8 58 5 252 247 3,817
Female (15-64 years) 105 10 89 6 288 282 5,337
Male 15-39 50 5 42 1 159 158 2,574
Female 15-39 64 6 55 1 193 192 3,275
Male 40-64 24 3 20 1 93 92 1,243
Female 40-64 40 4 36 3 125 122 2,063

3.2.6 Age-gender standardised spatial clustering analysis

In the previous section, our analyses used the raw prevalence of the two cardiovascular

diseases and the three associated risk factors for the whole sample. However,

the estimated level of spatial clustering may be misleading because of confounders

such as age and gender that have an important effect on CVDs and their

risk factors. We even calculated the age-gender adjusted prevalence; however,

the district age-gender specific prevalence would be less reliable and unstable

because of smaller districts samples and observed cases, which resulted in huge

amount of random error (see Table 3.3). On the other hand, age-gender specific

prevalence calculated from the overall adult sample should be much more

stable because of the larger sample size. In this section, we used the age-gender

specific prevalence obtained from whole SADHS adults (15-64 years) to estimate

the expected number of CVD and risk factor cases based on the age-gender

distribution of each district to obtain standardised incidence ratios (SIRs).

The SIR is simply a ratio of observed number of cases of a condition divided

by expected number of cases. We use SIRs here for the main spatial autocorrelation

analyses. Figure 3.4 shows the standardised incidence ratios by district. The

quantile map has four categories: lower quartile is hollow; second quartile is

light grey; third quartile is dark grey; and upper quartile is black. One district

was not sampled in the South African Demographic and Health Survey of 2016,

and it is indicated by “neighbourless” in the legend. The darker the area, the
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higher the SIRs.

Figure 3.4: Maps of the district standardised incidence rates of the CVDs and their
related risk factors.

Lower rates of all the two CVDs and three risk factors were seen in the more

rural upper north-eastern part of the country, while higher rates of smoking

and high blood cholesterol were observed in the more south-western parts.

All of the five CVD measures were relatively high in the urban areas of the

western part of the country, even though stroke and heart attack showed an

even fluctuation. Higher rates of hypertension were more concentrated in

middle part of the country along the south-north belt.

The calculated values of univariate global Moran’s I values for the SIRs

of CVDs and identified risk factors are presented in Table 3.4. The SIRs for
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heart attack do not show any spatial patterns with non-significant univariate

Moran’s index. However, stroke (at 10%) and the three risk factors of smoking,

HBC and hypertension, are exhibiting spatial significance at 5% significance

level.

Table 3.4: Global univariate spatial autocorrelation association for the age-sex
standardised incidence rates of CVDs and identified risk factors for all participants.

Stroke Heart Attack Smoking HBC Hypertension
Moran’s I 0.128* -0.015† 0.606** 0.355** 0.236†

Key: HBC, high blood cholesterol; †, insignificant at 5% level; **, significant at
5% level ; *, significant at 10% level..

We also estimated univariate local indicators of spatial autocorrelations

(LISA) for the five CVDs and risk factors. These are shown in Figure 3.5.

Clusters of a high prevalence of smoking in districts that are surrounded by

districts with high prevalence of smoking are in Figure 3.5 E. They form the

largest “hot-spots ” cluster stretching from the north through the central districts

up to the south-western districts of the country. Ten districts constitute this

“hot-spots ” cluster. These are Cacadu (Eastern Cape Province), Namakwa

(Northern Cape), Pixley ka Same (Northern Cape), ZF Mgcawu (Northern Cape),

Frances Baard (Northern Cape), City of Cape Town (Western Cape), West

Coast (Western Cape), Overberg (Western Cape), Cape Winelands (Western

Cape) and Eden District (Western Cape).

There are some “cold-spots ” clusters of smoking that are comprised of Zululand,

Uthungulu, Umkhanyakhude (all in KwaZulu-Natal Province), Capricorn and

Mopani District (in Limpopo Province). These “cold-spots ” are generally clustered

around rural districts. Hypertension has “hot-spots ” cluster that is made up

of 7 districts, namely Xhariep, Lejweleputswa, Mangaung (all in Free State

Province), Pixley ka Seme, ZF Mgcawu, Frances Baard, and Dr. Ruth Segomotsi

District (North West). The “cold-spots ” are comprised of Capricorn, Vhembe,
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Mopani (Limpopo) and Johannesburg District in Gauteng Province.

The “hot-spots ” clusters of stroke and HBC in Figure 3.5 A and D, respectively,

are concentrated in the Western Cape Province. They both share the “hot-spots ”

districts of City of Cape Town, Eden, Overberg and Cape Winelands. In addition,

the “hot-spots ” cluster of HBC includes West Coast District. The global univariate

Moran’s index for heart attack was not significant but we included the LISA

map shown in Figure 3.5 B. It shows a significant “hot-spot ” of one district

called Gert Sibande in Mpumalanga and a “cold-spot ” in Umgugundlovu in

KwaZulu Natal.

Figure 3.5: Univariate LISA Maps of the district standardised incidence rates of the
CVDs and their related risk factors.

The second largest “hot-spots ” cluster is that of hypertension (Figure 3.5
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C), which stretches from the central districts of the country up to the north

western districts of the country and is made up of seven districts. These

districts are: Xhariep, Lejweleputswa, Mangaung (all in Free State Province),

Pixley ka Seme, ZF Mgcawu, Frances Baard, and Dr. Ruth Segomotsi District

(in North West). The “cold-spots ” are comprised of Capricorn, Vhembe, Mopani

(in Limpopo) and Johannesburg District in Gauteng Province. The “hot-spots ”

clusters of stroke and HBC in Figures 3.5 A and D, respectively, are concentrated

in the Western Cape Province. They both share the “hot-spots ” districts of

City of Cape Town, Eden, Overberg and Cape Winelands. In addition, the

“hot-spots ” cluster of HBC includes West Coast District.

3.3 Application to cardiovascular mortality rates

3.3.1 Data

Causes of death (COD) data from South Africa’s vital registration system were

used in this section. The data are collected using the death notification forms

(DNFs). Medical personnel and other approved certifying authorities are allowed

to complete the DNFs. Information collected is kept by the South African

Department of Home Affairs, who in turn allow Stats SA to collate the COD

data for onward distribution to the public. Stats SA uses revision number ten

of the International Statistical Classification of Diseases and Related Health

Problems [ICD-10] to code and classify the COD data as stipulated by the

World Health Organization (2004). The quality of the data used is discussed

by Joubert et al. (2013), but there have been vast improvements over the years

as regional analysis has been made possible with plausible results (Day et al.,

2014; Groenewald et al., 2014).

This section only considers ICD-10 defined broad groups of COD data due
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to three leading CVDs causing mortality in South Africa, and DBT which is a

well-known biomarker for CVDs. The data are for the years 2001 and 2011. In

terms of nomenclature, CVAzy, IHDzy and HHDzy will represent mortality due

to cerebrovascular, ischaemic and hypertensive heart conditions in the year zy,

respectively. Here zy takes values 01 and 11, representing the years 2001 and

2011, respectively.

Table 3.5 shows the distribution of deaths in South Africa for the years 2001

and 2011 by the age groups 0-29, 30-70 and 71 years and over. Overall, the total

deaths due to HHD increased the most from 10769 in 2001 to 15609 deaths in

2011, an increase of 44.9%. It can also be seen that DBT increased by almost

the same percentage (44.2%) from 14568 deaths in 2001 to 21056 deaths. CVA

deaths increased by 14.6% (from 22590 to 25983), while IHD increased by only

2.1% (from 11779 to 12023) over the same period. In the age group 30-70 years,

Table 3.5 shows that there has been a slight decrease in the number of deaths

for CVA (-0.4%) and IHD (-5.8%) between 2001 and 2011, while HHD increased

by about 22.3%. It is in this 30-70-year age group that premature mortality

needs to be reduced and analysis will be done for this age group.

Table 3.5: Distribution of number of deaths across age groups by year, South Africa.

Year Age Group CVA HHD IHD DBT
Number Percentage Number Percentage Number Percentage Number Percentage

2011 0-29 485 1,90% 148 0,90% 165 1,40% 271 1,29%
30-70 12196 47,10% 7180 46,00% 6183 51,40% 12063 57,29%

71+ 11946 46,10% 7561 48,40% 5248 43,60% 7736 36,74%
Missing 1266 4,90% 720 4,60% 427 3,60% 986 4,68%

Total 25893 100,00% 15609 100,00% 12023 100,00% 21056 100,00%
2001 0-29 593 2,60% 159 1,50% 129 1,10% 250 1,71%

30-70 12241 54,20% 5873 54,50% 6564 55,70% 9185 62,92%
71+ 9756 43,20% 4735 44,00% 5074 43,10% 5145 35,25%

Missing 0 0,00% 2 0,00% 12 0,10% 17 0,12%
Total 22590 100,00% 10769 100,00% 11779 100,00% 14597 100,00%

Key: DBT, Diabetes; CVA,Cerebrovascular heart disease; HHD, Hypertensive
heart disease; IHD, Ischaemic heart disease.

The data quality issues associated with DNF data are well known. Problems
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associated with these data include, among others, garbage codes, misclassification

and incompleteness of death registration (Joubert et al., 2013; Pillay-van Wyk

et al., 2011). Adjustments have to be made to these data to minimise bias that

may be attributed to these quality issues.

Correcting the rate of mortality usually involves using the age or sex-specific

death rates of standard population to which the mortality rates of interest are

adjusted (Birnbaum et al., 2011). There are two problems with this approach.

Firstly, the choice of standard to use is usually arbitrary and subjective (Birnbaum

et al., 2011). Secondly, the standardised mortality rates assume that the characteristics

of small and large areas are the same and the resulting estimates have been

criticised for not being representative enough of the geographic distribution

of rates (Clayton & Kaldor, 1987; Sarndal, 1984). Thus, alternative techniques

have been sought to estimate rates at a local level for compromised data. These

techniques are briefly described in the next sub-section.

3.3.2 Estimation of mortality rates

The EB approach and the Poisson regression model were considered for estimating

the mortality rates at municipal level. In the EB approach, the number of

observed deaths in municipality i and due to disease j, Oij is allowed to follow

a Poisson distribution with both the mean and variance equal to the product

of Pi, the population at risk in municipality i and πij the unknown underlying

risk of mortality due to disease j in municipality i. It follows that the observed

deaths are conditioned on the varying underlying risk of mortality, and we

write:

Oij ∣πij ∼ Poisson(πijPi) (3.1)
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Additionally, the mortality risk, πij, is allowed to follow a Gamma distribution

with shape parameter α and scale parameter ϕ. That is

πij ∼ Gamma(α,ϕ) (3.2)

where E(πij) = α
ϕ and V ar(πij) = α

ϕ2 . According to Bayes theorem, the following

proportionality holds:

Pr(πij ∣Oij) ∝ Pr(Oij ∣πij) × Pr(πij) (3.3)

and, importantly, the conditional posterior also follows a Gamma distribution

with shape parameter α +Oij and scale parameter Pi + ϕ. It follows that

πij ∣Oij ∼ Gamma(α +Oij, Pi + ϕ) (3.4)

Since E(πij ∣Oij) = Oij+α
Pi+ϕ , it can be deduced that the raw rates, π̂ij = Oij

Pi
can be

adjusted using posterior distribution, Pr(πij ∣Oij) if α and ϕ can be derived from

the prior distribution, Pr(πij). In-fact, it can be shown that the EB estimate

of the underlying mortality is the expected value of the distribution of the

conditional posterior:

π̂ij
EB = E(πij ∣Oij) =

Oij + α
Pi + ϕ

(3.5)

where the parameters α and ϕ are determined from the observed data.

In the Poisson regression approach, the expected mean of Oij(= πijPi), denoted

by µij (the expected number of deaths in municipality i dying a premature

death (between 30-70 year) for a given disease, j), is modelled as

µij = log(πijPi) = log(Pi)+α+β1(page)+β2(prace)+β3(poverty)(πij ∣Oij) =
Oij + α
Pi + ϕ

+εij
(3.6)

where page is the proportion of the age group 30-70 that are aged 50 to 70
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in the population of municipality i, prace, is the proportion of a given race in

municipality i for the given age group, and poverty, is the level of poverty in

municipality i measured by the official South African multidimensional poverty

index obtained from the 2001 and 2011 census data (Statistics South Africa,

2014).

A descriptive summary of the raw, smoothed and adjusted rates for the age

group 30-70 years of interest to this study, is given in Table 3.6. Generally, we

have mean rates of the same order for all the three rates. The major difference

in the rates, however, is found in the ranges, where observed raw rates have

the highest range in all instances owing to very high maximum values. Further

investigations revealed that the municipalities with the smallest populations

are also the ones with the highest (as well as smallest) mortality rates. The raw

rates are sensitive to small population counts, resulting in instability. This is

a well-documented problem when using raw mortality rates. Empirical Bayes

rates are known to alleviate this problem (Leyland & Davies, 2005; Marshall,

1991). Adjusting for covariates also managed to alleviate the problem by reducing

the maximum values and increasing the minimum values of the observed rates.

3.3.3 Spatial autocorrelation analysis

The quantile maps of raw, smoothed and adjusted mortality rates at municipal

level for each of the four disease conditions studied in South Africa for the years

2001 and 2011, are shown in Figures 3.6 and 3.7, respectively. Municipalities

in the upper quantile indicate areas that experienced high rates of mortality,

while those in the lower quantile indicate areas with low rates of mortality. The

higher the quantile, the darker the colour (ranging from quantile 1 with white

colour to quantile 4 with black colour). It follows that areas with the darker

shade indicate areas of higher mortality than those of a relatively lighter shade.

Generally, the quantile maps reveal some form of clustering. Consider
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Table 3.6: Descriptive statistics of raw, EB smoothed and adjusted mortality rates
across municipalities for CVA, IHD, HHD and DBT, South Africa.

Model Mean SD Minimum Maximum
CVA 2001

Adj 86,37 18,96 41,26 157,10
EB 85,96 47,25 3,02 296,56
RR 88,75 59,63 0,00 389,89

CVA 2011
Adj 72,90 17,33 37,08 151,76
EB 76,24 48,18 7,20 377,59
RR 79,66 60,55 0,00 477,90

IHD 2001
Adj 48,81 33,25 6,63 147,98
EB 43,11 37,79 1,49 362,80
RR 44,65 45,24 0,00 407,68

IHD 2011
Adj 37,48 20,76 10,71 116,24
EB 34,31 28,91 2,09 259,34
RR 36,32 38,41 0,00 309,69

HHD 2001
Adj 43,56 183,69 12,96 149,08
EB 38,68 27,52 1,77 226,84
RR 38,69 33,72 0,00 244,37

HHD 2011
Adj 44,36 17,34 12,32 129,73
EB 44,01 29,33 5,37 164,24
RR 45,89 36,51 0,00 180,63

DBT 2001
Adj 64,72 18,04 21,70 122,78
EB 53,06 39,04 2,32 403,50
RR 51,66 46,52 0,00 457,39

DBT 2011
Adj 71,78 17,76 29,68 132,86
EB 66,49 43,99 7,73 353,56
RR 67,06 53,37 0,00 405,13

Key: SD = Standard deviation.

Figures 3.6 A-C to see the effects of smoothing and adjustment for covariates.

The quantile map of the observed raw rate (CVA01-RR) in Figure 3.6 A and the

smoothed rate (CVA01-EB) in Figure 3.6 B are almost similar in terms of their
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Figure 3.6: Quantile maps showing the distribution of raw, smoothed and adjusted
mortality rates for the year 2001.

spatial distributions. There is not much difference between the distribution

of mortality rates before and after smoothing. It seems that the effects of

stabilising the crude rates with the EB approach has not, based on the evidence

of the quantile maps, improved the ability to discern areas of higher mortality

risk.

Adjusting for covariates, as the case of CVA01-Adj in Figure 3.6 C, results

in a more defined cluster in the south-west part of the country when compared

with raw and smoothed rates in Figures 3.6 A-B. This is the general pattern

with all the other disease conditions, with dark colours more noticeable for

adjusted rates than for raw and smoothed rates, and are mostly concentrated

in the western part of the country. Only HHD clustering seems to stretch
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Figure 3.7: Quantile maps showing the distribution of raw, smoothed and adjusted
mortality rates for the year 2011.

from the middle of the country towards the eastern part of the country. The

spatial patterns exhibited in Figure 3.6 for the year 2001 are similar to the

spatial patterns exhibited by the corresponding mortality rates in Figure 3.7

for the year 2011. In the next section the statistical significance tests of spatial

autocorrelations were done and discerned clusters mapped.

Univariate global spatial autocorrelation

The choropleth maps in Figures 3.6 and 3.7 of the geographical variations

for both crude and smoothed rates has shown evidence of clustering in CVD

outcomes. In order to formally investigate spatial association, we measured

the association in a formal way by using univariate clustering statistic. Table
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3.7 presents the derived values for each CVD for the whole of South Africa for

the years 2001 and 2011. For comparison purposes, the derivations were done

using raw, smoothed and adjusted rates.

The univariate Moran’s I test in Table 3.7 confirms that the distribution

of the four conditions IHD, CVA, DBT and IHD varies geographically, when

adjusted rates are used (p-value < 0.05). Both raw and smoothed rates failed to

detect clusters of DBT, while the raw rate further failed to detect any significant

clustering for CVA01 (p-value >0.05). The geographic variation based on adjusted

rate, is significant for both the years 2001 and 2011. In all the cases, the

calculated statistics for Moran’s I are all positive and significant across the

years. This means that the likelihood of the spatial patterns generated by

mortality due to each of the three CVDs being due to random chance is negligibly

small (less than 5%). Thus, one can conclude that the probability is high that

municipalities that are nearer to each other tend to have comparable baseline

mortality rates than the distant municipalities. In other words, there is some

form of clustering exhibited by all three CVDs at the 5% significance level. This

is a reflection of what is seen in the quantile maps in Figures 3.7 and 3.8.

Table 3.7 also shows the spatial autocorrelation statistic calculated for the

residuals of the smoothed and adjusted rates for each of the CVDs for the years

2001 and 2011. The statistical autocorrelation of the residuals, based on the

Moran’s index, were found to be insignificant for some of the fitted models for

adjusted rates (CVA11, IHD11 and HHD11) and the smoothed rates (CVA01,

HHD01, CVA11 and IHD11). This statistical autocorretion analysis of the

residuals is not a criterion for diagnostic checks for generalised linear models

or EB approach but it would be preferable if residual spatial autocorrelations

were not significant. This is because the presence of spatial autocorrelations

in the residuals suggests that the model is not adequately specified. That
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Table 3.7: Univariate global Moran’s spatial autocorrelations for the model residuals,
raw, smoothed and adjusted mortality rates due to CVA, IHD, DBT and HHD in 2001
and 2011.

Model Moran’s I (Estimates) p-value Moran’s I (Residuals) p-value
CVA 2001

Adj 0,422 <0,001 0,038 †
EB 0,021 <0,001 0,068 <0,05
RR 0,029 †

CVA 2011
Adj 0,297 <0,001 0,109 <0,05
EB 0,078 <0,05 0,121 <0,05
RR 0,088 <0,05

IHD 2001
Adj 0,849 <0,001 -0,003 †
EB 0,108 <0,001 0,318 <0,05
RR 0,251 <0,001

IHD 2011
Adj 0,821 <0,001 0,149 <0,05
EB 0,093 <0,001 0,150 <0,05
RR 0,176 <0,05

HHD 2001
Adj 0,445 <0,001 0,066 †
EB 0,144 <0,001 0,045 †
RR 0,218 <0,001

HHD 2011
Adj 0,329 <0,001 0,112 <0,05
EB 0,135 <0,001 0,054 †
RR 0,101 <0,05

DBT 2001
Adj 0,684 <0,001 0,063 †
EB 0,005 † 0,003 †
RR 0,006 †

DBT 2011
Adj 0,316 <0,001 0,064 †
EB 0,038 † 0,003 †
RR 0,030 †

Key: † = Insignificant p-values.

is to say there may exist some unmeasured covariates not specified in the

model that may help in explaining the variation of mortality rates across the
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municipalities. Introducing spatial random effects or an eigenvector spatial

filter (Griffith & Chun, 2014) did not remove the residual spatial autocorrelations,

so the original specified Poisson regression model with covariates only was

returned using the rule of parsimony. In the next section we looked at the

LISA maps for all rates for visual comparison purposes only, irrespective of

whether they are significant or not.

Univariate “hot-spot ” analysis

The local indicators of autocorrelation based on Moran’s I were used to determine

the actual clusters at municipal level. The resulting univariate LISA maps for

raw, smoothed and adjusted rates for CVA, IHD, DBT and HHD are shown

in Figures 3.8 and 3.9 for the years 2001 and 2011, respectively. “Hot-spots ”,

which are municipalities of high mortality incidences that are surrounded by

municipalities with high mortality incidences, are indicated by a “High-High ”

(H-H) key on the map, while the “cold-spots ”, which are municipalities of low

mortality incidences that are surrounded by municipalities with low mortality

incidences, are indicated by a “Low-Low ” (L-L) key. In addition, there are

outliers indicated by “High-Low ” (H-L), which are municipalities of high mortality

incidences that are surrounded by municipalities with low mortality incidences,

and “Low-High ” (L-H), which are municipalities of low mortality incidences

that are surrounded by municipalities with high mortality incidences. Municipalities

whose clustering is not significant are denoted by “Not Significant” (N-S) key

and have a white shade. The “hot-spots ” are of major concern as they represent

clusters of high risk of mortality due to the CVDs and have a black shade in

the map.

Adjusted rates in Figure 3.8 have noticeable and well defined clusters as

compared to raw and smoothed rates. Generally, clusters are found in the
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Figure 3.8: Univariate Moran’s I LISA maps showing the distribution of clusters of
raw, smoothed and adjusted mortality rates for the year 2001.

south west part of the country, except for HHD which has clusters in the south

and north-east part of the country. The clusters for CVA and DBT seem to

have reduced in size over the ten-year period under review. In Figure 3.8 C,

for example, CVA01 LISA derived clusters comprise of 31 municipalities, but

these have been more than halved to 16 municipalities in 2011 (see Figure 3.9

C). The disappearance or movement of the cluster from the south-east maybe

due to intervention programmes aimed at alleviating the problem in the area.

However, further investigation may help to explain what is truly happening,

especially with DBT whose data suggest that mortality due to this disease has

increased over the ten-year period under review.

The adjusted rates based clusters for IHD (see Figure 3.8 F and Figure 3.9
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Figure 3.9: Univariate Moran’s I LISA maps showing the distribution of clusters of
raw, smoothed and adjusted mortality rates for the year 2011.

F) and HHD (see Figure 3.8 I and Figure 3.9 I) have not changed much over

the period. This shows that the spatial dynamics of IHD and HHD are stable

over the period under study, with IHD “hot-spots ” located in the centre and

spanning all the way to the south-west coast of the country. The LISA analysis

for HHD (Figure 3.8 I and Figure 3.9 I) reveal two clusters in the south and

north-east part of the country for both the years 2001 and 2011.
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3.4 Application using a linear regression-based

Moran’s index

3.4.1 Analysis using distance based spatial weights

Choice of spatial weights to use

Chen (2013) proposed the use of distance based matrix, namely exponential

matrix and inverse based matrix. The choice of the weight matrix is not obvious

with both weight matrices dependent on the value of α. Usually α takes values

1 or 2. Application was done to the South African mortality rate data due to

ischaemic heart condition for the year 2011 derived in section 3.3.2 based on

the Poisson model. These data have been shown in section 3.3.3 to have a

significant spatial pattern using the traditional Moran’s I index.

Table 3.8: The results of Chen’s regression approach to Moran’s index when applied
to mortality rates due to ischaemic heart conditions in South Africa: 2011.

Exponential weights Inverse weights
α Moran’s I P-value sf Moran’s I P-value sf
1.00 0.012 <0,001 0.082 0.016 0.022 0.126
2.00 0.021 <0,05 0.136 0.040 0.106 0.328

In Table 3.8, the data for the adjusted rates of mortality due to ischaemic

heart diseases for the year 2011 were analysed to determine the which spatial

weight to use when α is allowed to take values 1 or 2. The idea is to get an index

which is statistically significant and at the same time with a low standard

error. The Moran’s index in Table 3.8 increases with an increase in the α

values. There is evidence for spatial clustering for the negative exponential

were weights for α = 1 and α = 2 and for the inverse function based spatial

weights only α = 1. These spatial weights corresponding to the significant

Moran’s indexes were used in the analyses for the remainder of this subsection.
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Diagnostic checks

Having determined the spatial weights matrices to use, Chen (2013) requires

that the residuals of the regression model, ef , used to estimate the Moran’s

index follow a normal distribution. The residuals of the model were analysed

for diagnostics checks using a histogram and Q-Q plots. Figure 3.10 shows

the histogram and the corresponding Q-Q normal plots to determine if the

residuals of the regression model used to determine Moran’s I based on the

spatial weights derived from a negative exponential function with α = 1 (Figure

3.10 a), α = 1 (Figure 3.10 b) and from an inverse power function with α = 1

(Figure 3.10 c).

The residual plots shown in Figure 3.10 c, based on the inverse power

function, seem to suggest that the distribution of the residuals follow an approximate

normal distribution with almost all plotted points lying on the straight line of

the Q-Q plots. It can be seen that the histogram of the residuals in Figure 3.10

c is almost symmetrical about the zero-mean. From this visual illustration one

can assume with some high level of confidence that the residuals based on the

inverse power function spatial weights follow a normal distribution. On the

other hand, it can be seen in the histograms of Figure 3.10 a-b that those data

are positively skewed and do not exhibit normality. In addition, the points

on the Q-Q plot are generally not lying on the straight line with the plotted

points curving away from the straight line at the ends of the line. Thus, the

residual plots in Figure 2.10 a-b, based on the negative exponential functions,

seem to suggest that the distributions of the residuals do not follow a normal

distribution.

Statistical tests for the deviation from normality such as the Anderson-Darling

test and the Shapiro-Wilk’s W, may also be used to complement the visual

illustrations. In this study, the Shapiro-Wilk’s statistical test for normality was
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(a) Based on the negative exponential
function, α = 1.
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(c) Based on the inverse power function,
α = 1.

Figure 3.10: Comparison of histogram and normal Q-Q plots of the residuals of the
Moran’s regression model using Poisson based ischaemic mortality adjusted rates in
South Africa, 2011.

conducted, as graphical assessment alone would not be sufficient. The results

for the statistical tests for normality are shown in Table 3.9. The test confirm

that the residuals based on the inverse power function with α = 1 are indeed

normal with a Shapiro-Wilk’s W value of 0.99 and a corresponding p-value os

0.102 which is greater than 0.05. This is in line with the visual assessment in
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Figure 3.10.

Table 3.9: The Shapiro-Wilk’s W test of normality on the residuals of ischaemic heart
disease adjusted mortality rates for negative exponential and inverse power function
weight matrices.

Spatial weights matrix Shapiro W P-value
Exponential (alpha=1) 0.922 <0.001
Exponential (alpha=2) 0.949 <0.001
Inverse ( alpha=1) 0.990 0.105

Using Table 3.9 and Figure 3.10 it has been deduced that the appropriate

spatial weight matrix to use with the adjusted ischaemic mortality rates da ta

is that one based on the inverse power function with α value of 1. In the next

section we use the regression approximation of the Moran’s index using Chen’s

approach to determine local clusters for the three spatial weight matrices,

irrespective of whether the residuals were normal or not, and then compare

the results.

Cluster analysis

Two vectors, f∗ and f , defined in Equation 2.14 and Equation 2.15, respectively,

are central to Chen (2013)’s new regression approach in determining the global

Moran’s index and the corresponding local clusters from a scatter plot. This

is because the line obtained by plotting f∗ values against z values represent

the spatial autocorrelation trend whose gradient provides the Moran’s index.

On the other hand, the relationship between f and z forms the autocorrelation

pattern or scatter points on a two-dimensional plot. A superimposition of the

two plots gives a revised scatter plot for the Moran’s index, similar to the one

done for the original Moran’s index (Anselin, 1995).

The f∗’s were regressed on the z-scores to obtain the Moran’s index for our

data. The revised Moran’s scatter plots of the data are illustrated in Figure
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(a) Based on the negative exponential function,
α = 1.
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(b) Based on the negative exponential function,
α = 2.
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(c) Based on the inverse power function, α = 1.

Figure 3.11: The scatter plots of the Moran’s index using Poisson based ischaemic
mortality adjusted rates in South Africa, 2011.

3.11. On the vertical-axis are values of f and f∗ while on the horizontal-axis

we have values of z. The solid line comprises of the fitted values of the couple

(z, f∗), while the plotted scatter points comprise of the observed values of the
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pair (z, f ). The gradient of the fitted line provides the value of the Moran’s

index which is shown at the top right corner of the plot.

The scatter plots in Figure 3.11 can be used to determine the spatial autocorrelation

patterns at South Africa’s municipality level. This is because the quadrants in

which the scatter points (z, f ) are located gives an indication of the nature of

the local spatial autocorrelation. Scatter points in the first quadrant of the

plots (top right) have a “high-high” correlation at local level. In the second

quadrant we have the “low-high” spatial correlation, third quadrant we have

“low-low” correlation and the forth quadrant we have the “high-low” correlation

at local level. Each (z, f ) coordinate point represent a municipality and the

nature of correlation was determined from these scatter points for each municipality

in South Africa.

The ideal spatial weight matrix, M∗, was calculated using Equation 2.13.

Elements of the diagonals of M∗ provided the Moran’s I based local indicators

of spatial autocorrelation, Ii, for each municipality. An R code was developed

to test the significance of these local Moran’s index of spatial autocorrelation

for each municipality. Appendix A.1 gives the R code used in the analyses

of this section. Tables A2-A4 in Appendix A gives a summary of the cluster

classifications due to the different weight matrices used.

The resulting univariate LISA cluster maps are shown in Figure 3.12. Three

following categories with their usual meaning were plotted: “Not Significant”;

“High-High”; and “Low-Low”. The plots are almost similar with “hot spots”

clusters in the south west part of the country while “cold spots” were in the

north east and south east of the country. The exponential based weight matrices

produced more “cold spots” than the inverse based spatial weight matrix.
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(A) Ischaemic: Inverse (Alpha=1) (B) Ischaemic: Exponential (Alpha=1) (C) Ischaemic: Exponential (Alpha=2)

Legend

Not Significant High-High Low-Low

Figure 3.12: The univariate local Moran’s spatial clusters for ishaemic mortality rates
based on Chen’s regression approach, for the inverse and exponential spatial weights.

Concordance and inconsistency analysis

The objective of the concordance analysis was to to reveal any similarities

in the diagonals or elements that are closer to diagonals in the classification

contingency tables of 3 by 3 quantiles presented in Table 3.10. Each classification

table shows the results of clustering using the local indicators of spatial autocorrelation.

Cells in the diagonals represent the number of clusters that are common to

both cluster maps due to their respective spatial weights. Off-diagonal celss

represent clusters that are not common to the maps by the spatial weights

under consideration.

In Table 3.10 a, 193 out of 194 municipalities classified as insignificant

when inverse and exponential spatial weights both with α = 1 are used. The
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Table 3.10: Classification Tables for cluster categories.

Exponential, α = 1
Insignificant High-High Low-Low

In
ve

rs
e
α
=
1

Insignificant 193 2 14
High-High 1 17 0

Low-Low 0 0 7

(a) Inverse, α = 1 vs. Exponential, α = 1.

Exponential, α = 2
Insignificant High-High Low-Low

In
ve

rs
e
α
=
1

Insignificant 197 2 10
High-High 0 18 0

Low-Low 0 0 7

(b) Inverse, α = 1 vs. Exponential, α = 2

Exponential α = 2
Insignificant High-High Low-Low

E
xp

on
en

ti
al

α
=
1

Insignificant 193 1 0
High-High 0 19 0

Low-Low 4 0 17

(c) Exponential, α = 1 vs. Exponential, α = 2.

cluster map by the inverse spatial weight matrix had 18 municipalities forming

“High-High” “hot spot” clusters, with 17 and all 18 of those municipalities

identical to that for maps derived from exponential spatial weights with α = 1
and α = 2, respectively. There is just a difference in clusters by one or two

municipalities. The main difference is with the “Low-Low” municipalities.

Fourteen out of 21 “cold spot” municipalities for the cluster map of exponential

weight matrix with α = 1 were classified as “Insignificant” for the cluster map

of the inverse weight matrix with α = 1. Ten municipalities that were classified

as “Low-Low” for the exponential weight matrix with α = 2 were classified as

“Insignificant” for the cluster map of the inverse weight matrix with α = 1.
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The cluster maps of based on the two exponential spatial weights are almost

identical.The observer agreement charts for the 3 by 3 contingency tables in

Table 3.10 are shown in Figure 3.13.

Exponential1

In
ve

rs
e1

NS

N
S

H−H

H
−

H

L−L

L−
L

194 19 21

209

18

7

(a) Inverse α = 1 vs. Exponential, α = 1.

Exponential2

In
ve

rs
e1

NS

N
S

H−H

H
−

H

L−L

L−
L

197 20 17

209

18

7

(b) Inverse α = 1 vs. Exponential, α = 2.

Exponential2

E
xp

on
en

tia
l1

NS

N
S

H−H
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−

H

L−L

L−
L

197 20 17

194

19

21

(c) Exponential α = 1 vs. Exponential, α = 2.

Figure 3.13: The agreement charts for comparing ischaemic heart disease mortality
LISA cluster map categories by three spatial weight matrices.

There concordance exhibited by the agreement charts in Figure 3.13 is very

high because the shade of the rectangles within the unit square are predominantly

dark and the rectangles are almost filled up with the dark shade. In the charts,

NS stands for “Not significant”, HH stands for “High-High” and “L-L” stands

for “Low-Low”. It is observe in both Figures 3.13 a-b that inverse spatial weight
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matrix has a bias towards detecting “High-High” clusters than the exponential

weight matrices. This is because the bulk of the rectangles for “High-High”

are over the diagonal line in the two charts. The diagonal line is the line of no

bias. The inconsistencies are shown by the white triangles for “NS” and “L-L”

above the diagonal line of bias in Figures 3.13 a-b. We also note that there is

hardly any ‘drift’ bias between the cluster maps of exponential spatial weights

because diagonal line of no bias bisects the rectangles in Figure 3.13 c.

Table 3.11: The concordance strength Bangdiwala test statistics.

Bangdiwala Weighted Bangdiwala
Inverse (α = 1) vs. Exponential (α = 1) 0.916 0.928
Inverse (α = 1) vs. Exponential (α = 2) 0.941 0.948
Exponential (α = 1) vs. Exponential (α = 2) 0.973 0.977

Table 3.11 shows the Bangdiwala agreement strength statistics for the concordance

analysis in Figure 3.13. Figure 3.13 c has a Bangdiwala’s B-statistic of 0.977,

which happens to be highest. It is not a surprise that it is highest as the we

would expect similar results from two spatial weights that are both based on

the negative exponential function. A Bangdiwala’s B-statistic of 0.977 indicates

that 97.7% of the 234 municipalities clusters of ischaemic mortality in the same

categories from the two exponential based spatial weights. The Bangdiwala’s

B-statistic for Figure 3.13a was the lowest at 0.928, yet reflects an almost

perfect concordance of 92.8% for the local clusters due to the inverse based

spatial weight and the exponential spatial weight with α = 1. Munoz & Bangdiwala

(1997) provides the interpretation for the Bangdiwala’s B-statistic as follows:

Poor level of agreement (0.000 - 0.200); Weak level of agreement (0.201 - 0.400);

Moderate level of agreement (0.401 - 0.600); Good level of agreement (0.601 -

0.800); and Excellent level of agreement (0.801 or greater). Thus the level of

agreements in our analyses are generally at excellent levels.
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3.4.2 Sensitivity Analysis

The choice of α to use with the negative exponential function or inverse power

function based spatial weights is usually 1 or 2. However, the models derived

using these α values may not be significant or the residuals violate the assumption

of normality. If this is the case, then other values of α need to be explored.

Sensitivity analysis was conducted to establish the effect of changing the spatial

weights matrix, by adjusting α on the significance test (p-value) and on sf

values. While Chen (2013) recommended that sf be less than 0.15 we only used

this as a guideline. This analysis was done on two variables that are known to

exhibit global spatial autocorrelation, namely, cerebrovascular mortality rates

and ischaemic mortality rates for the years 2007 and 2011 combined. Two

random variables that do not exhibit spatial autocorrelation patterns were also

considered. The results are shown in Table 3.12.

Table 3.12: Sensitivity Analysis of the effect of changing the inverse spatial weights
matrix on the p-value in significance testing of Moran’s index and sf when applying
Chen’s regression approach.

Ischaemic Cerebrovascular Random variable 1 Random variable 2
Alpha MI p-value sf MI p-value sf MI p-value sf MI p-value sf
0.01 -0.003 0.999 0.002 -0.004 0.999 0.001 -0.004 0.664 0.000 -0.004 0.852 0.001
0.02 -0.002 0.999 0.004 -0.004 0.999 0.002 -0.004 0.643 0.001 -0.004 0.717 0.001
0.04 0.001 0.999 0.008 -0.003 0.999 0.003 -0.004 0.624 0.001 -0.004 0.723 0.002
0.06 0.004 0.701 0.011 -0.003 0.999 0.005 -0.004 0.604 0.002 -0.004 0.709 0.003
0.08 0.007 <0.001 0.015 -0.002 0.999 0.007 -0.004 0.630 0.003 -0.004 0.629 0.004
0.10 0.010 <0.001 0.019 -0.002 0.999 0.009 -0.004 0.675 0.004 -0.004 0.675 0.006
0.20 0.025 <0.001 0.038 0.001 0.996 0.018 -0.004 0.641 0.008 -0.004 0.664 0.011
0.40 0.055 <0.001 0.075 0.007 0.046 0.036 -0.004 0.666 0.017 -0.004 0.558 0.023
0.60 0.086 <0.001 0.112 0.014 <0.001 0.057 -0.003 0.694 0.029 -0.005 0.451 0.036
0.80 0.120 <0.001 0.149 0.022 0.001 0.080 0.003 0.737 0.064 -0.007 0.379 0.051
1.00 0.154 <0.001 0.187 0.032 <0.001 0.109 -0.003 0.762 0.081 0.009 0.265 0.068
1.20 0.189 <0.001 0.225 0.044 <0.001 0.145 -0.003 0.812 0.088 -0.013 0.202 0.089
1.50 0.241 <0.001 0.286 0.066 <0.001 0.219 -0.004 0.818 0.132 -0.021 0.123 0.129
2.00 0.314 <0.001 0.394 0.111 <0.001 0.414 -0.010 0.732 0.229 -0.043 0.090 0.230
3.00 0.381 <0.001 0.636 0.233 0.004 1.142 -0.038 0.551 0.475 -0.101 0.138 0.552
4.00 0.372 <0.001 1.044 0.408 0.008 2.397 -0.060 0.591 0.788 -0.143 0.257 0.997
5.00 0.344 <0.001 1.752 0.633 0.004 4.179 -0.056 0.741 1.220 -0.154 0.438 1.539

In Table 3.12 it is observed that the sf and Moran’s index values increase

with changes in alpha. Ischaemic and Cerebrovascular mortality are known

to be spatially autocorrelated based on the original Moran’s index. The Monte
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Carlo simulation test confirms this with p-values<0.05 except at low values

of alpha (α ≤ 0.06 for ischaemic mortality and α ≤ 0.20 for cerebrovascular

mortality). Ischaemic mortality is more spatially autocorrelated than cerebrovascular

mortality which explains why spatial autocorrelation for the former is detected

at lower alpha values than the latter. At higher values of alpha spatial autocorrelation

is easily detected. Generally, the Monte Carlo simulation test is robust to

changes in the α values (with the exception at very low levels that are not

normally used). Usually alpha values of 1 or 2 are used in spatial analysis.

In the case of randomly generated data, Table 3.12 shows that the data

are not significant (p − value > 0.05) at all alpha values which is what we were

expecting. It shows once again that the Monte Carlo simulation test is robust

to changes in the α values. This is despite sf values of lower than 0.15 for

alpha values less than or equal to 1.50. It is clear from this analysis that

it is not sufficient to base spatial autocorrelation conclusions on sf being less

than 0.15 alone. A balance has to be found between the p-values and sf values

in obtaining an optimal α value for given data. In the case of South African

mortality data such a balance is achieved with an alpha value of close to 1 or

just using α = 1 in the inverse spatial weights matrix. Further studies, beyond

the scope of this study, are needed to find the exact optimal α value should it

be necessary, otherwise an approximate value should suffice.

3.4.3 Analysis using contiguity spatial weights

The analyses in this section are as per the formulations in Chen (2013) where

distance based weight matrices were used. This does not mean contiguity

based weight matrices cannot be applied. It will be interesting to see how

the queen’s spatial weight matrix will fare with the new method and if it can

give similar results as the original Moran’s index. In this subsection we give a

brief of the results when Chen’s regression approach is used with the queen’s
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contiguity weight matrix.

Table 3.13: Comparison of the global univariate Moran’s index of spatial
autocorrelation between Chen’s approach and the original approach using a Queen
weight matrix.

Condition Anselin Chen
Ischaemic 0.821** 0.752**

Cerebrovascular 0.297** 0.218**
Diabetes 0.316** 0.269**

Hypertension 0.329** 0.258**

An application was made to the Poisson adjusted cardiovascular mortality

2011 data; for ischaemic heart disease, cerebrovascular heart disease, hypertensive

heart disease and diabetes. The distance based spatial weights of the inverse

and exponential decay functions did not give significant Moran’s indexes when

used with Chen’s index for diabetes, cerebrovascular and hypertensive mortality.

But when the queen contiguity weight matrix was used the results of the global

univariate Moran’s indexes are shown in Table 3.13. Both methods were able

to detect the presence of spatial clustering in all four rates of mortality. The

local indicators of spatial autocorrelation using the Chen’s regression approach

was done and the cluster maps are shown in Figure 3.14.

Local indicators of spatial autocorrelation cluster maps observed when using

the original Moran’s index are shown in Figure 3.15 for comparison purposes.

It can be seen in Figure 3.15 B and D that the clusters of cerebrovascular

and hypertensive mortality are similar to the clusters in Figure 3.14 B and D,

respectively. The clusters of ischaemic and diabetes mortality in Figure 3.14 A

and C, respectively span across more municipalities than those in Figure 3.15

A and C, though “hot spots” clusters in all instances are located in the south

western part of the country.

It is not possible to do a direct comparison between the clusters of Chen’s
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(A) Ischaemic (B) Cerebrovascular

(C) Diabetes (D) Hypertensive

Legend

Not Significant High-High Low-Low

Figure 3.14: The univariate local Moran’s spatial clusters for ishaemic mortality rates
based on Chen’s regression approach, for the Queen’s spatial weights.

approach and those of the original method because the cluster categories differ

as seen in the legends of Figures 3.14 and 2.15. However, the cluster map

of ischaemic mortality rates in Fig 2.15 A has similarities with cluster maps

based on distance based weight matrices in Figure 3.12. A concordance test

between the cluster map of Fig 2.14 A and that of the inverse weight matrix

with α = 1 in Figure 3.12 A gives Bangdiwala statistic of 0.874, which suggest

a high level of agreement.
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(A) Ischaemic (B) Cerebrovascular

(C) Diabetes (D) Hypertensive

Legend

Not Significant High-High Low-Low Low-High

High-Low

Figure 3.15: The univariate local Moran’s spatial clusters for ishaemic mortality rates
based on the original Moran’s index, for the Queen’s spatial weights.

3.5 Summary of the chapter

In this chapter the Moran’s index and an alternative construct of the Moran’s

index based on linear regression were applied to two sets of CVD data in

South Africa. A comparison of the results of Chen’s regression approach was

done between the spatial autocorrelation based on the inverse power distance

function (with α = 1) and that based on a negative exponential distance function

(with α = 1; 2). An R software programme was developed to determine global

and local spatial clusters as well as ascertain their spatial significance. This is

an innovative action which supplies research on the test of Chen’s regression

approach to Moran’s I.
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The first application was to cardiovascular prevalence data from SADHS of

2016. In this study we found significantly positive univariate spatial clustering

for stroke (Moran’s index = 0.128), smoking (0.606) hypertension (0.236) and

high blood cholesterol (0.385). The second application of the chapter concerns

the quantification of univariate spatial autocorrelations for CVD-related mortality

in South Africa using the Moran’s I. The study used mortality attributable to

diabetes, cerebrovascular, ischaemic heart failure and hypertension captured

by the country’s Department of Home Affairs for the years 2001 and 2011.

Univariate spatial clustering measures were derived using observed, empirical

Bayes smoothed and empirical Bayes smoothed rates adjusted for age, race

and poverty. Significant clustering was found in all the data except for diabetes

which was only significant after adjusting for covariates using Poisson regression

to estimate mortality rates. Clusters of CVD mortality were generally more

pronounced in the south-west part of the country.

The Chen’s Moran’s indexes of spatial autocorrelation were found to be

significant for the spatial weights based on the inverse power distance function

with α = 1 and that based on a negative exponential distance function α = 1 and

α = 2. Only the residuals of the Moran’s index based on the inverse power

distance function with α = 1 were normal. However, the local spatial clusters

for all three spatial weight structures were similar indicating “hot-spots” of

ischaemic mortality in the south western municipalities of the country. Sensitivity

analysis to ascertain the effect of changing α in the inverse spatial weights

matrix on ability to detect spatial autocorrelation showed that, on one hand,

Monte Carlo simulation for the significance testing of the Moran’s index was

generally robust to changes in α. On the other hand, sf values were found to

increase with an increase in α with sf < 0.15 in cases where data were known

not to be spatially autocorrelated. The requirement that standard errors be

less than 0.15 may not suffice. Instead the coefficient of variation may be used.



Application of univariate spatial autocorrelation methods 64

But dividing sf by the mean of f ’s will make the coefficient of variation very

big since the mean of f ’s will almost always be close or equal to zero.



Chapter 4

Review and application of

bivariate spatial clustering

methods.

4.1 Introduction

This chapter presents a review and an application of the bivariate spatial

autocorrelation measures to two different South African health outcomes datasets

recorded at municipality level that were discussed in Chapter 3. First, the

original bivariate Moran’s index is applied to prevalence rates of cardiovascular

conditions and their risk factors. Then an application is made to cardiovascular

mortality rates data using all three bivariate spatial autocorrelation measures,

namely, Moran’s I, Lee’s L and Dray’s H. Smoothing techniques and adjustments

were made to the data before analysis in Chapter 3 as a way of mitigating

against biases inherent in the data recorded at small areas.
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Bivariate spatial autocorrelation was used to detect spatial co-clustering in

two ways. Firstly, in both applications, it was used to test if the existence of

high risk of one cardiovascular condition outcome in an area gives rise to a

high risk outcome on nearby areas for a related disease or risk factor. The

hypothesis being tested here is that interrelated health outcomes co-cluster.

Identifying co-clusters of CVDs is important if a unified approach is to be

employed in the prioritisation, prevention of the spread, diagnosis and cure

of the related diseases.

Secondly, bivariate spatial autocorrelation was used to test if the spatial

patterns of a CVD mortality differ between two time points. It is important to

do this second test in order to establish if the spatial dynamics of a disease are

changing with time. If the spatial dynamics of a disease are stable, it is much

easier to predict the spatial patterns of the disease over time for planning and

monitoring purposes.

4.1.1 Bivariate spatial autocorrelation measures

Bivariate spatial association measures were used in this PhD study to test

spatial dependence between two diseases as well as to test if there is a difference

in the spatial distribution of a disease over two time points. The bivariate

methods applied in this study are variants of the formulation by Wartenberg

(1985) and were derived using the popular Moran’s I univariate spatial autocorrelation

measure to detect clustering for one disease. The method suggested by Wartenberg

(1985) for extending Moran’s I to multivariate spatial analysis involves the

derivation of a matrix of bivariate spatial autocorrelations. This matrix is, in

turn, analysed using spatial principal component analysis, resulting in a set of

spatial factors that represent the total spatial pattern. While it is preferable
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to use the row-sum standardised weights in the formulation of Wartenberg

(1985), it was found to be problematic as it leads to an asymmetric matrix of

bivariate spatial association measures to be diagonalised, which is complex to

solve, as finding eigenvalues of such a matrix is difficult (Lee, 2001).

Lee (2001) gave conditions that must be satisfied by a bivariate spatial

autocorrelation measure to be used for diagonalisation: a bivariate spatial

autocorrelation measure must be a function of the respective individual univariate

spatial autocorrelations and the “point to point” correlation of some sort between

the two variables as measured by Pearson’s correlation coefficient. Lee (2001)

used the idea of a first order spatial lag (the weighted mean values for the

immediate neighbours j of an area i) given by Lxi = x̃i = ∑n
j=1wijxj, to show

that the Moran’s I in Equation 2.3 in Chapter 2, when applied with a row-sum

standardised matrix, can be rewritten as:

IX =
∑n

i=1(x̃i − x̄)(xi − x̄)√
∑n

i=1(xi − x̄)2
√
∑n

i=1(xi − x̄)2
. (4.1)

The Pearson’s correlation between variable X and its spatial lag X̃ is given

by

rX,X̃ =
∑n

i=1(xi − x̄)(x̃i − ¯̃x)√
∑n

i=1(xi − x̄)2
√
∑n

i=1(x̃i − ¯̃x)2
. (4.2)

Dividing Equation 4.1 by Equation 4.2 and making the Moran’s index the

subject of the formular leads to:

IX =
¿
ÁÁÀ∑n

i=1(x̃i − ¯̃x)2
∑n

i=1(xi − x̄)2
⋅ rX,X̃ . (4.3)

When the dispersion ratios in Equation 4.3 are further decomposed the

following factorisation is realised:
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IX =
¿
ÁÁÀ∑

n
i=1(x̃i − x̄)2
∑n

i=1(xi − x̄)2
⋅
¿
ÁÁÀ∑n

i=1(x̃i − ¯̃x)2
∑n

i=1(x̃i − x̄)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≅1

⋅rX,X̃ ≅
√
SSSX ⋅ rX,X̃ , (4.4)

where SSSX is a spatial smoothing scalar for variable X. This implies

that the Moran’s I is a product of a spatial smoothing scalar, SSSX , and the

correlation of a variable and its spatial lag, and can be written as IX = IX,X̃ .

Deductively, the bivariate Moran’s I between two variables X and Y was shown

to be

IX,Y =
∑n

i=1(xi − x̄)(ỹi − ȳ)√
∑n

i=1(xi − x̄)2
√
∑n

i=1(yi − ȳ)2
≅
√
SSSY ⋅ rX,Ỹ , (4.5)

Equation 4.5 is a product of a spatial smoothing scalar (SSS) of a variable

and the correlation of the variable and the spatial lag of the other variable.

Clearly, the bivariate Moran’s I does not satisfy the conditions set out by Lee

(2001) as it is a function of only one univariate spatial association measure

and a “point to point” association of two variables. Thus, Lee (2001) concluded

that Wartenberg (1985) formulations are inadequate and should not be used

in multivariate analysis. Lee (2001) went on to derive a bivariate spatial

autocorrelation measure for use as a basis for multivariate spatial analysis:

LX,Y =
n

∑n
i=1(∑n

j=1 vij)2
⋅ ∑

n
i=1[(∑n

j=1 vij(xj − x̄))(∑n
j=1 vij(yj − ȳ))]√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2

=
√
SSSX ⋅

√
SSSY ⋅ rX̃,Ỹ

=
√
BSSSX ⋅ rX̃,Ỹ

,

(4.6)

where BSSS denotes the bivariate spatial smoothing scalar and [vij]n×n is a

row-standardised weight matrix. Equation 4.6 by Lee (2001), known as Lee’s

L, is not only in line with his conditions for a bivariate spatial autocorrelation

measure, but also produces a symmetric bivariate spatial autocorrelation matrix
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to be used for deriving total multivariate spatial autocorrelations. The Pearson’s

correlation part of Lee’s derivation, rX̃,Ỹ , is between the spatial lags of the two

variables that will be considered. Additionally, Lee (2001) showed that if one

puts X=Y , then

LX,X =
√
SSSX ⋅

√
SSSX ⋅ rX̃,X̃

±
=1

= SSSX = SX . (4.7)

Equation 4.7 is often referred to as Lee’s S and can be used to measure

univariate spatial autocorrelation just like univariate Moran’s I (Lee, 2001).

Despite the criticism of the ideas of Wartenberg (1985), the approach has

remained popular, with Anselin et al. (2002) expanding the formulation to

visual analysis of bivariate Moran’s I spatial association measure. This expansion

was done for both global and local indexes using a standardised weight matrix

W. The Moran’s bivariate measure does not meet the conditions set out by Lee

(2001) as noted earlier. In order to overcome this difficulty, Dray et al. (2008)

cautioned that instead of using W in his formulations, Lee (2001) should have

used W+WT

2 as originally suggested by de Jong et al. (1984). Dray et al. (2008)

then proceeded to use the transformation by de Jong et al. (1984) to develop a

bivariate spatial association measure:

HX,Y =
1

2
[
√
SSSX ⋅ rX,Ỹ +

√
SSSY ⋅ rY,X̃] . (4.8)

The bivariate spatial association measure in Equation 4.8 is not only symmetric,

but satisfies the conditions of Lee (2001). In addition, the measure is a function

of the correlation of one variable and the lag of the second variable, thus

indirectly connecting it to the regression formulations by Anselin et al. (2002).
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4.2 Application to cardiovascular prevalence data

Co-clustering using raw data for all participants

The global bivariate spatial autocorrelation indexes for the association between

the prevalence of CVDs and identified risk factors for all participants, irrespective

of gender or age, were calculated and are shown in Table 4.1. In the diagonal

are global univariate Moran’s index values for detecting global spatial clustering

that were calculated in Chapter 3. All, except heart attack, are exhibiting

presence of spatial clustering at 5% significance level. Additionally, the following

exhibit spatial dependency: stroke and smoking; stroke and HBC; smoking and

HBC; smoking and hypertension. Although the distribution of heart attack

did not show any spatial patterns, we still tested its dependency on the other

variables and was found to be spatially dependent on smoking at 5% significance

level.

Table 4.1: Global bivariate spatial autocorrelation association between the prevalence
of CVDs and identified risk factors for all participants.

Stroke Heart attack Smoking HBC Hypertension
Stroke 0.203** 0.031† 0.267** 0.305** -0.011†

Heart attack -0.013† 0.181** 0.108† 0.017†

Smoking 0.662** 0.426** 0.243**
HBC 0.503** -0.002†

Hypertension 0.329**
Key: HBC, high blood cholesterol;†, insignificant at 5% level; **, significant at
5% level.

Figure 4.1 shows the clusters for CVDs and their risk factors that exhibit

significant spatial dependents at district level in South Africa, disregarding

age and gender. The key shows “hot-spots ” (High-High) in the black colour and

“cold-spots ” (Low-Low) in the light grey colour. It can be observed in Figures

4.1 E-F that the joint “hot-spot ” cluster of stroke and its risk factors of smoking

and HBC, when all data is used, is found in the south western part of the

country and comprises of City of Cape Town, Cape Winelands, Overberg and
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Eden Districts. Smoking and HBC have a joint “hot-spot ” cluster comprising of

the same four districts (Figure 4.1 G). This probably explains why the region is

a “hot-spot ” for stroke. The biggest joint “hot-spot ” cluster is for smoking and

hypertension, which spans a wider area from the south east, across the central

part, to the north east part of the country (Figure 4.1 H). This cluster comprises

of nine districts: Cape Winelands; Overberg; Eden; Cacadu; Lejweleputswa;

Pixley ka Seme; Z F Mjcawu; Frances Baard; and Central Karoo.

Figure 4.1: Univariate and joint spatial clusters of CVDs and their risk factors with
significant association for all participants using raw rates.

4.2.1 Age-gender standardised joint spatial clustering analysis

In the previous section, our analyses used the raw prevalence of the two cardiovascular

diseases and the three associated risk factors for the whole sample. As discussed
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in chapter, analysing spatial clustering using raw prevalence may be misleading

due to confounding effects of covariates such as age and gender. It was then

recommended to make use of standardised incidence ratios (SIR). We use SIRs

here for the main bivariate spatial autocorrelation analyses.

The calculated values of univariate and bivariate measures of spatial clustering

are presented in Table 4.2, where the diagonal values are the univariate global

Moran’s I values for the SIRs of CVDs and identified risk factors as calculated

in Chapter 2. The off-diagonals (or upper triangle) are the global bivariate

spatial autocorrelation indexes for the association between the SIRs of CVDs

and identified risk factors for all participants.

Table 4.2: Global univariate and bivariate spatial autocorrelation association between
the age-sex standardised incidence rates of CVDs and identified risk factors for all
participants.

Stroke Heart Attack Smoking HBC Hypertension
Stroke 0,128* -0,019† 0,218** 0,184** -0,075†

Heart Attack -0,015† -0,099† -0,021† -0,008†

Smoking 0,606*** 0,366*** 0,149†

HBC 0,355*** -0,077†

Hypertension 0,236**
Key: HBC, high blood cholesterol; †, insignificant at 5% level; **, significant at
5% level; *, significant at 10% level..

The SIRs for heart attack do not show any spatial patterns with non-significant

univariate Moran’s index. However, stroke (at 10%) and the three risk factors

of smoking, HBC and hypertension, are exhibiting spatial significance at 5%

significance level. It can also be seen that there is no evidence of spatial

dependence between heart attack and all the three risk factors of CVDs at

5% significance level. Evidence is such that stroke is significantly spatially

associated with smoking and HBC. In addition, there is also high spatial dependence

between smoking and HBC (p-value less than 0.001).
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The bivariate local indicators of spatial autocorrelations (LISA) for the five

CVDs and risk factors were estimated and Figure 4.2 shows local joint cluster

for different pairwise CVD and risk factors. Joint stroke-smoking “hot-spots ”

district clusters (comprising West Coast, City of Cape Town, Cape Winelands,

Overberg and Eden) were found in the south western part of the country.

Similar joint “hot-spots ” clusters were found for stroke and HBC, and for smoking

and HBC (Figure 4.2 B-C). Joint “hot-spots ” clusters of smoking and HBC

are also concentrated in the Western Cape Province and is comprised of West

Coast, City of Cape Town, Cape Winelands, Overberg and Eden districts.

Figure 4.2: Joint Spatial Clusters of CVDs and their risk factors with significant
association for all participants, adjusted for the national age-sex distribution of the
sample.

The following “cold-spots ” were observed for significant associations: stroke
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and smoking, in Bojanala (in rural North West Province); stroke and HBC, in

Sedibeng, West Rand (in urban and rural Gauteng Province), and Lejweleputswa

(in rural Free State Province); and smoking and HBC, in Alfred Nzo and Joe

Gqabi (in rural Eastern Cape Province), and Zululand and UThungulu (rural

KZN Province). There were bivariate associations that were not significant:

heart attack and stroke; heart attack and HBC; heart attack and hypertension;

heart attack and smoking; smoking and hypertension; and HBC and hypertension.

4.3 Application to cardiovascular mortality rates

4.3.1 Bivariate association of individual CVD maps over

time

It was shown in Chapter 2 that the geographical variation of mortality due to

each CVD is significant over the years and the univariate clusters have been

identified. What has not been shown, however, is whether or not the variation

in the distribution of each CVD risk is the same over the years. In this section,

bivariate spatial autocorrelation measures are used to determine if there is

a difference in spatial distribution of mortality risk due to each of the CVDs

between the two time points. This will shed some light on whether or not the

geographical distribution of individual CVDs is changing over time.

The stability of spatial dynamics in the distribution of a disease is important

if there is to be some semblance of predictability. This may be helpful when

deciding the course of action to be taken when faced with an epidemic as

intervention programmes are conceived. Changing spatial dynamics in the

distribution of the disease may make it quite complex to contain the disease.

Generally, one would not expect spatial dynamics of CVDs to change much

within a short period of time as the factors and habits contributing to the
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emergence of these diseases take time to control. Thus, one would expect the

bivariate spatial dependency of the distribution of each CVD over two time

periods to be significantly positive.

The dependence of CVD rates in space for each of the conditions studied was

tested for two different periods using bivariate Lee’s L, Moran’s I and Dray’s

H. The analysis was conducted on each CVD for the following comparative

periods: 2001 versus 2011. Results are provided in Table 4.3.

Table 4.3: Bivariate global spatial autocorrelations measuring spatial dependence
of individual CVD rates for raw, smoothed and adjusted mortality rates between the
years 2001 and 2011.

Association (X-Y) Lee 2001 (LX,Y ) Anselin 2002 (IX,Y ) Dray 2008 (HX,Y )
X Y RR EB Adj RR EB Adj RR EB Adj

CVA01 CVA11 0.115** 0.125** 0,222*** 0.060** 0,075** 0,179*** 0.065** 0,075** 0,185***
IHD01 IHD11 0.250*** 0,259*** 0,811*** 0.239** 0,243** 0,819*** 0.254*** 0,252*** 0,821***
DBT01 DBT11 0,065† 0,076** 0,367*** 0,065** 0,079** 0,359*** 0,058** 0,071** 0,379***
HHD01 HHD11 0.084** 0,097** 0,331*** 0.082** 0,094** 0,322*** 0.084** 0,085** 0,325***

Key: *** = p-values <0,001; **= p-values < 0,05; † = Insignificant p-values.

Generally, the three indicators of bivariate spatial autocorrelation show

that there is significant spatial dependency on how each disease is spatially

distributed between the two time periods. It can, thus, be concluded that the

spatial distribution of the risk of mortality due to each CVD has not significantly

changed over the course of the ten-year period under review. Note that the

bivariate Moran’s I and Dray’s H show similar results. This is not surprising

as the methods are based on the same derivation. The bivariate LISA analyses

of the combinations in Table 4.3 derived from the raw, smoothed and adjusted

rates are presented in Figure 4.3.

In Figure 4.3 F, as an example, observed “hot-spots ” are areas of high

mortality of IHD in 2001 whose neighbourhood in 2011 also exhibits high

mortality of IHD to form a co-cluster of high mortality for the two-time points
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Figure 4.3: The raw, smoothed and adjusted mortality rates based Bivariate Moran’s
I LISA maps between same CVDs for the year 2001 and 2011.

in the south-western part of the country. The CVA and HHD co-clusters are

similar and are found in the south and north-east part of the country.

4.3.2 Bivariate spatial association between two CVDs at a

point in time

We also looked at determining spatial dependency between two different CVDs

at a cross-section. One can hypothesise that CVDs should co-cluster or show

spatial dependency at a point in time as they share risk factors. Table 4.4

presents the bivariate association measure values calculated for the possible

combinations of the three CVDs for the years 2001 and 2011 to determine
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spatial dependence based on raw, smoothed and adjusted rates data.

Table 4.4: Bivariate global spatial autocorrelations measuring spatial dependence
of individual CVD rates between two time periods for raw, smoothed and adjusted
mortality rates between the years 2001 and 2011.

Association (X-Y) Lee 2001 (LX,Y ) Anselin 2002 (IX,Y ) Dray 2008 (HX,Y )
X Y RR EB Adj RR EB Adj RR EB Adj

CVA01 IHD01 0.159† 0,165** 0,338*** 0.014† -0000† 0,344*** 0,018† 0,003† 0,359***
CVA11 IHD11 0.173† 0.166† -0,084† 0.067** 0.051† -0,105† 0.066** 0.048† -0,113†
CVA01 HHD01 0.046† 0.046† 0,295*** -0.070** -0.075** 0,279*** -0,066† -0,073† 0,281***
CVA11 HHD11 0.135† 0.139† 0,350*** 0.017† 0.012† 0,294*** 0,011† 0.007† 0,274***
CVA01 DBT01 0.154† 0.176† 0,436*** -0.040† -0.037† 0,432*** -0.033† -0.032† 0,442***
CVA11 DBT11 0.187† 0.196† 0,269*** 0.009† -0.042† 0,196*** 0.007† 0.013† 0,196***
DBT01 IHD01 0.192† 0,203** 0,713*** 0.002† 0.003† 0,719*** 0.002† 0.002† 0,725***
DBT11 IHD11 0.108† 0.117† 0,302*** 0.008† 0.014† 0,289*** 0.009† 0.015† 0,312***
HHD01 IHD01 -0.035† -0.018† -0.116† -0.100** -0.100** -0.121† -0,107** -0.095† -0.128†
HHD11 IHD11 0.105† 0.097† -0.089† 0.034† 0.018† -0.110† 0,033† 0.018† -0.110†
HHD01 DBT01 0.042† 0.044† 0,065† -0.069** -0.067† 0.057† -0,069† -0.069** 0,058†
HHD11 DBT11 0.131† 0.134† 0,263*** -0,012† -0,012† 0,203*** -0,011† -0,012† 0,205***

Key: *** = p-values <0,001; **= p-values < 0,05; † = Insignificant p-values.

The bivariate Moran’s I and Dray’s H once again showed similar results.

All three methods generally agree, based on the raw and smoothed rates, that

there is no evidence of spatial dependence between all the associations tested.

However, adjusted rates based tests revealed significant spatial dependence

between the following maps: CVA01 and IHD01; CVA01 and HHD01; and

CVA11 and HHD11. Importantly, DBT was found to have a significant association

with all the three CVDs. This is in line with expectation as DBT is a well-known

biomarker for CVDs. The other associations were either insignificant or their

association was purely random with a negative Moran’s index. The significant

joint local “hot-spots ” of the CVD associations, based on adjusted rate data, are

shown in Figure 4.4.

Focusing on the most recent 2011 data, it can be seen that the “hot-spots ”

of DBT and the three CVDs in Figures 3.4 F-H are located in the south west

part of the country. The joint clusters of CVA and HHD for the year 2011 are

in the south and north-west of the country. The joint clusters of CVA-DBT
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Figure 4.4: The significant adjusted mortality rates based Bivariate Moran’s I LISA
map between two CVDs at a point in time, 2001 and 2011.

and IHD-DBT have reduced in size over the period under review. This may be

attributable to intervention programmes. However, joint clusters of HHD and

DBT that were not in existence in 2001, have formed over the period under

review as both the deaths and crude national rates attributable to the two

diseases have increased over the period as was shown in Tables 2.5 and 2.6.

4.4 Chapter summary

In this chapter we set out to apply bivariate spatial autocorrelation measures

to cardiovascular health outcomes. The first application was to cardiovascular

prevalence data from SADHS of 2016. In this study we found significantly
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positive univariate spatial clustering for stroke (Moran; s Index = 0.128), smoking

(0.606) hypertension (0.236) and high blood cholesterol (0.385). Smoking and

high blood cholesterol (0.366), smoking and stroke (0.218) and stroke and high

blood cholesterol (0.184) were the only bivariate outcomes with significant bivariate

clustering. There was a joint stroke-smoking local “hot spots” cluster among

four districts in the urban western part of the country (City of Cape Town;

Cape Winelands; Overberg and Eden) and a joint “cold spots” cluster in the

rural north-western part of the country. Similar joint “hot spots” clustering

was found for stroke and high blood cholesterol, which also had “cold spots”

cluster in the rural east-central part of the country. Smoking and high blood

cholesterol had a “hot spots” cluster among five districts in the urban western

part of the country (City of Cape Town; Cape Winelands; Overberg; Eden, and

West Coast) and “cold spots” around the rural districts in east-southern parts

of the country.

The second application of the chapter concerns the derivation and quantification

of bivariate spatial autocorrelations for CVD-related mortality in South Africa

using the three spatial autocorrelation methods of Moran, Lee and Dray. The

study used mortality attributable to diabetes, cerebrovascular, ischaemic heart

failure and hypertension captured by the country’s Department of Home Affairs

for the years 2001 and 2011. Both univariate and pairwise spatial clustering

measures were derived using observed, empirical Bayes smoothed and empirical

Bayes smoothed rates adjusted for age, race and poverty. Cerebrovascular

and ischaemic heart co-clustering was significant for the year 2011. Dray’s

H and the Moran’s I gave identical results. All three methods generally had

similar results. Data of adjusted rates revealed significant spatial dependence

between the following mortality rates: CVA01 and IHD01; CVA01 and HHD01;

and CVA11 and HHD11. Importantly, DBT was found to have a significant

association with all the three CVDs. This is in line with expectation as DBT is a
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well-known biomarker for CVDs. Cerebrovascular and hypertension co-clustering

was not significant and so were hypertension and ischaemic heart co-clustering.

Co-clusters of cerebrovascular-ischaemic heart disease are the most profound

and are located in the south-west part of the country. It was successfully

demonstrated that bivariate spatial autocorrelations can be derived for spatially

dependent mortality rates as exemplified by mortality rates attributed to the

three cardiovascular conditions.



Chapter 5

The proposed measure of

statistical multivariate spatial

autocorrelation

5.1 Introduction

This chapter presents a new multivariate spatial autocorrelation statistic for

detecting joint “hot-spots” for more than two outcomes that are spatially related.

The proposed new multivariate spatial clustering method is based on canonical

correlation. There were more than two cardiovascular-related health outcome

data that were analysed in chapters 3 and 4. Unfortunately, we could not

analyse all of them simultaneously as the available spatial autocorrelation

methods can only cater for up to only two health outcomes. More data for

related health outcomes that are geographically referenced are becoming readily

available. This calls for need to develop multivariate spatial autocorrelation
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methods that caters for more than two health outcomes. Thus, the bivariate

methods of Chapters 4 need to be extended to analyses of at least three related

health outcomes, as more than two cardiovascular health outcomes were related.

Wartenberg (1985) proposed the use of principal component analysis to extend

bivariate Cross Moran I to multivariate spatial autocorrelation. The diagonalisation

method he proposed for the extension is complicated and not easy to apply. As

a result, the proposal by Wartenberg (1985) has not been popular. Studies

have been undertaken to develop and apply methods that employ regression

analysis to determine and interpret spatial autocorrelation measures which

are easily understood by most researchers (Anselin, 1995; Smouse et al., 1986;

Chen, 2013). But current methods which employs regression approach have

not gone beyond bivariate spatial autocorrelation analysis (Anselin, 1995; Lee,

2001; Dray et al., 2008; Chen, 2015). This chapter proposes an extension of the

Moran’s index of spatial autocorrelation to measures of multivariate spatial

autocorrelation that cater for more than two variables.

Research has previously been undertaken in which principal component

analysis (Jombart et al., 2008; Montano & Jombart, 2017) and cross-correlations

Eckardt & Mateu (2021) has been used to develop techniques to analyse areal

data. The problem with these techniques is that they can only measure partial

or semi-partial spatial autocorrelations. This is opposed to the traditional

Moran’s index which measures a direct simple correlation. Thus there is a need

for the development of a multivariate method that can make use of a direct

simple correlation between multiple variables as opposed to partial correlations.

There are three members of the family correlations that may be considered

in the process of developing a multivariate spatial autocorrelation measure.

Firstly, one may consider the Pearson’s product moment correlation coefficient.
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It is easy to apply, hence the most popular of the family of correlations. The

univariate and bivariate measures of spatial autocorrelation indexes are derived

from the Pearson’s product moment correlation coefficient (Mantel, 1967; Anselin,

1995; Lee, 2001; Anselin et al., 2002). It is used for pairwise analysis, and

for this reason we cannot employ it to analyse more than two outcomes when

considering multivariate associations. The extension of Moran’s index to multivariate

analysis requires higher order correlation methods. Secondly, one may consider

a higher correlation method, namely, multiple linear regression analysis. This

is the approach used in the calculation of Mantel tests and the partial Mantel

test (Smouse et al., 1986; Legendre, 2000). Although it is a higher order correlation

method, it cannot be applied here as it measures partial correlations between

the dependent variable and each of the independent variables involved. Besides

that, the partial Mantel test is basically a bivariate spatial autocorrelation

measure in which co-variates are being controlled for one of the variables involved

(Legendre, 2000). Lastly, one may consider the canonical correlation coefficient,

which is the most generalised form of the members of the family of correlation

analysis (Clark, 1975). It is a higher order correlation method that assesses

correlations across sets of data. Hence it is an ideal approach when considering

multivariate associations. It is the aim of this chapter to extend the Moran’s

index of spatial autocorrelation to measures of multivariate spatial autocorrelation

using canonical correlation analysis.
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5.2 Methods

5.2.1 Standardised coefficients for simple linear regression

equations

Linear regression coefficients can either be unstandardised or standardised.

The standardisation of regression coefficients is necessitated by the need to

compare the importance of predictor variables when predicting the criterion

variable. Most often than not, predictor variables are measured in different

metric units (metres, units, proportions, etc.), and are referred to as metric

variables. The realised “metric coefficients” or unstandardised coefficients of a

regression model depends on the units used to measure the predictor variables.

Thus, when the units of the predictor variables are different, then the values of

the calculated metric coefficients have no real meaning and are not comparable.

The solution to this problem is to standardise both the criterion and predictor

variables and make them “metric free”.

Standardised coefficients may be useful in comparing the importance of

predictor variables in determining a criterion variable, but are generally not

recommended in prediction analysis. In order to predict the criterion variables,

one needs to employ the metric coefficients. A way is available to calculate the

unstandardised coefficients from the standardised coefficients using relationships

with variances, covariances and correlations. The simple regression equation

of a criterion variable Ỹ versus the prediction variable Y is given by

Ỹ = a + bY, (5.1)

while the equation when the variables are standardised such that they have

mean zero and variance 1, is given by:
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Ỹs = βYs, (5.2)

where a is a regression constant, while the unstandardised and standardised

coefficients are represented by b and β, respectively. Note that the regression

constant is zero when standardised variables are used, as shown in Equation

5.2. Also note that the standardised coefficient of Y is simply the correlation

between Y and Ỹs. That is:

ρyỹ = β. (5.3)

It can be shown that the relationship between the unstandardised and standardised

coefficients of Y is given by:

b = β × SD(Ỹ)
SD(Y) or

b = ρyỹ ×
SD(Ỹ)
SD(Y) .

(5.4)

The formula in Equation 5.4 shows that one can easily determine the metric

coefficients from the standardised coefficients. The converse is also true. Thus,

if any of the coefficients is known, there is no need to run a new regression

equation to determine the other. We can simply apply Equation 5.4.

5.2.2 The Moran’s index as linear regression and the notion

of a multivariate Moran’s index

Anselin (1995) has shown that the Moran’s index can be obtained from a linear

regression equation between values of a disease outcome in an area, say y1,

and the spatial-lagged values ỹ1 formed by averaging all the observations in

neighbouring areas. The univariate Moran’s index, Iy1, will be the slope in the
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regression equation

ỹ1 = a + Iy1y1 + ε, (5.5)

where a is a regression constant and ε is the error term. In other words,

it measures the influence of the outcomes of one disease in an area on the

prevalence of the same disease in the neighbourhood of a given area. When y1

is standardised, then

ỹs1 = ρy1,ỹ1ys1 + ε, (5.6)

where ρy1,ỹ1 is the correlation between y1 and ỹ1, while ỹs1 represents the standardised

values of ỹ1. This is because the regression coefficient, resulting from regressing

two standardised variables on each other, is just the simple correlation coefficient

between them. Thus, the univariate Moran’s index, Iy1, can be obtained from

the regression coefficient of Equation 5.6 using the following formula:

Iy1 = ρy1,ỹ1
SD(ỹ1)
SD(y1)

. (5.7)

The result in Equation 5.6 is obtained using Equation 5.4. It can also

be established from the spatial smoothing scalar derivations of Lee (2001).

These derivations are important in determining the relationship between the

correlation and the bivariate Moran’s index and are, therefore, discussed here.

Suppose y1, y2, ..., yn are the realisations of a geo-referenced variable Y . Define

a spatial weight matrix as an n × n proximity matrix whose elements {wij}ni,j=1
define the ”strength” of the neighbourhood relationship between two areas i

and j. The global Moran’s I using the standardised spatial weights, wij, is

given by:

I = ∑
n
i=1∑n

j=1wij ⋅ (yi − ȳ) ⋅ (yj − ȳ)
∑n

i=1(yi − ȳ)2
= ∑

n
i=1(yi − ȳ)∑n

j=1wij ⋅ (yj − ȳ)
∑n

i=1(yi − ȳ)2
.

Let ỹi = ∑n
j=1wijyj be the spatial lag of observation yi in area i. Using this
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spatial lag, Lee (2001)) rewrote the Moran’s I for variable Y as

Iy =
∑n

i=1(ỹi − ȳ)(yi − ȳ)√
∑n

i=1(yi − ȳ)2
√
∑n

i=1(yi − ȳ)2
, (5.8)

and the Pearson’s correlation between variable Y and its spatial lag Ỹ as:

ry,ỹ =
∑n

i=1(yi − ȳ)(ỹi − ¯̃y)√
∑n

i=1(yi − ȳ)2
√
∑n

i=1(ỹi − ¯̃y)2
. (5.9)

Equations 5.8 and 5.9 were combined and gave the following factorisation

of the global Moran’s index:

Iy =
¿
ÁÁÀ∑n

i=1(ỹi − ¯̃y)2
∑n

i=1(yi − ȳ)2
⋅ ry,ỹ. (5.10)

The ratios of variances in Equation 5.10 were further decomposed to give

Iy =
¿
ÁÁÀ∑

n
i=1(ỹi − ȳ)2
∑n

i=1(yi − ȳ)2
⋅
¿
ÁÁÀ∑n

i=1(ỹi − ¯̃y)2
∑n

i=1(ỹi − ȳ)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≅1

⋅ry,ỹ ≅
√
SSSy ⋅ ry,ỹ, (5.11)

where SSSy is a smoothing scalar and Iy can be written as Iy,ỹ. It follows

that

Iy,ỹ =
¿
ÁÁÀ∑

n
i=1(ỹi − ȳ)2
∑n

i=1(yi − ȳ)2
⋅ ry,ỹ =

SD(ỹ)
SD(y) ⋅ ry,ỹ. (5.12)

Equation 5.12 is equivalent to Equation 5.7. Based on Equation 5.8, it

can be shown that the bivariate Moran’s index between two geo-referenced

variables Y1 and Y2 is defined as

Iy1,y2 =
∑n

i=1(y2i − ȳ2)(ỹ1i − ȳ1)√
∑n

i=1(y2i − ȳ2)2
√
∑n

i=1(y1i − ȳ1)2
≅
√
SSSy1 ⋅ ry2,ỹ1 , (5.13)

where the spatial smoothing scalar SSSy1 is given by
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SSSy1 =
∑n

i=1(ỹ1i − ȳ1)2
∑n

i=1(y1i − ȳ1)2
. (5.14)

It follows that the bivariate Moran’s index can be written as

Iy1,y2 =
SD(ỹ1)
SD(y1)

× rỹ1,y2 . (5.15)

Based on Equation 5.15, bivariate Moran’s index can be obtained from a

linear regression equation between values y2 of a disease outcome in an area

and the spatial-lagged values of another spatially dependent disease ỹ1. The

bivariate Moran’s index, Iy1,y2, will be the slope in the regression equation

ỹ1 = Iy1,y2y2 + ε, (5.16)

where a is a regression constant and ε is the error term. It measures the

influence of the outcomes of one disease in an area on the prevalence of another

related disease in the neighbourhood of that area. When both ỹ1 and y2 are

standardised, then

ỹs1 = ρy2,ỹ1ys2 + ε, (5.17)

where ρy2,ỹ1 is the correlation between y2 and ỹ1, while ỹs1 and y2 represent

the standardised values of the spatial lagged values of ỹ1 and that of y2, respectively.

The bivariate Moran’s index, Iy1,y2, can be calculated from the regression

coefficient in Equation 5.9 as follows:

Iy1,y2 = ρy2,ỹ1
SD(ỹ1)
SD(y1)

. (5.18)

In both the univariate and bivariate Moran’s indexes the assumption is that

the prevalence of a disease in an area is influenced by either the outcome of that

disease or another single disease in the neighbourhood, but nothing else. But it

is possible that we can have three or more spatially dependent variables acting
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on each other. In the case of three disease outcomes, say y1, y2 and y3, we may

be interested in determining the influence of both y2 and y3 disease outcomes

on the prevalence of y1. This influence can be measured by determining the

slope of the following regression equation

ỹ1 = Iy1,vv + ε, (5.19)

where v = w1y1 + w2y2 is the weighted average of the two disease outcomes

occurring in the neighbouring areas. When y1, y2 and y3 are all standardised,

then we have

ỹs1 = ρỹ1,vvs + ε, (5.20)

where ρỹ1,v is the correlation between ỹ1 and v, while vs represents the

weighted average of standardised y2 and y3. If one can establish the correlation

ρỹ1,v, then Iy1,v can easily be calculated, through induction, by the following

formula:

Iy1,v = ρỹ1,v
SD(ỹ1)
SD(y1)

. (5.21)

Thus, if we know the correlation ρỹ1,v then we should be able to calculate

the multivariate Moran’s index, Iy1,v, using Equation 5.13.

5.2.3 Canonical correlation analysis

The canonical correlation analysis (CCA) was used to extend the global Moran’s

index. In CCA we have two random variables, Ỹ and Y, that are correlated,

but not necessarily in the same space. The two random variables are assumed

to have a joint normal multivariate distribution. The objective of CCA is to

find pairs of random scalars (u, v) that represent each instance of (Ỹ, Y) by
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preserving the correlation between Ỹ and Y as much as possible. The scalars

are linear transformations of Ỹ and Y and are of the form: u = aT Ỹ and

v = bTY, where b and a are coefficient matrices. Preserving the correlation

between Ỹ and Y as much as possible is akin to maximising the correlation

between u and v.

Suppose Ỹ = [Ỹ1, Ỹ2, ..., Ỹp]
T

is a p×1 random variable consisting of sub-vectors

Ỹ1, Ỹ2, ..., Ỹp and Y = [Y1, Y2, ..., Yq]T is a q × 1 be random variable consisting of

sub-vectors Y1, Y2, ..., Yq, where p ≤ q. Canonical variates are linear combinations

of the variables in either Ỹ or Y and are defined as:

ui = aT
i Ỹ

vi = bT
i Y.

(5.22)

The ith canonical correlation is the one determined between corresponding

canonical variates ui and vi. Each step of canonical correlation analysis involves

maximising the correlation between the two canonical variates, that is maximise

corr(ui,vi) = Ci =
aTΣyỹb√

aTΣỹỹa
√
bTΣyyb

, (5.23)

where i = 1,2, ..., k; k ⩽ min(p, q); Σỹỹ and Σyy are the covariance of Ỹ and Y,

respectively and Σỹy is covariance between Ỹ and Y. Ultimately, this maximisation

problem is reduced to the following standard eigenvalue problem:

Σ−1ỹỹΣỹyΣ
−1
yyΣyỹb = λb. (5.24)

Σ−1yyΣyỹΣ
−1
ỹỹΣỹya = λa. (5.25)

This standard eigenvalue problem can then be solved using the following
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characteristic equations:

∣Σ−1ỹỹΣyỹΣ
−1
yyΣỹy − λI∣ = 0, (5.26)

∣Σ−1yyΣỹyΣ
−1
ỹỹΣỹy − λI∣ = 0, (5.27)

where λ = C2
i or Ci =

√
λ. It means the canonical correlations are obtained by

taking the square roots of the eigenvalues of either Equation 5.18 or Equation

5.19. It can be inferred from these equations that a and b are eigenvectors that

correspond to an eigenvalue λ in the equations 5.16 and 5.17, respectively.

5.2.4 Significance tests for canonical correlation

The statistical significance test of the canonical correlation between two canonical

variate pairs, (Ui, Vi), can be done using the Wilk’s lambda (Everitt & Rencher,

1996). The Wilks’ lambda is a generalised equivalent of the R-Squared in the

context of the multivariate analysis, but its interpretation is the reverse of

the R-Squared (Everitt & Rencher, 1996). Low values (close to zero) of the

Wilks’ lambda statistic indicate high correlation, while high values (close to

one) are an indication of low correlation. The null hypothesis to be tested is

H0 ∶ C1 = C2 = C3 = ... = Ck = 0 versus the alternative hypothesis that states that

at least one of the canonical correlations is not equal to zero.

The F statistic is estimated to determine the statistical significance of C2
i ,

and is given by

F = 1 − λ
1
t
1

λ
1
t
1

× DF1

DF2
FDF1, DF2, α, (5.28)

where λ1 = ∏k
i=1(1 − r2i );k =min(p, q);DF1 = pq;DF2 = wt − 1

2pq + 1;
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W = n − 1
2(p + q + 3);and t =

√
p2q2−4
p2+q2−5 . Here n is the sample size, p is the number

of criterion variables in the Ỹ set and q is the number of independent variables

in the Y set and r2i = C2
i are the squared canonical correlations.

5.2.5 Multiple regression equivalence of canonical correlation

One of the major drawbacks of canonical correlation is the difficulty associated

with interpreting its results. As a result, regression equivalences have been

formulated to provide more information. This section presents a generelisation

of the regression formulation originated by Johansson & Sheth (1974). Consider

Ỹ as containing p sets of criterion (outcome) or dependent variables, and Y

as comprised of q sets of explanatory (independent) variables or predictors.

Additionally, suppose that the sets of variables in both Ỹ and Y are standardised

with zero mean and variance equal to 1. The canonical variates ui and vi are a

linear combination of standardised variables, hence they also have zero mean.

In addition, they have an imposed variance of 1. It, therefore, follows that they

are also standardised with mean zero and variance 1. It is well known that the

regression coefficient resulting from regressing two standardised variables on

each other is just the simple correlation coefficient between them (Johansson

& Sheth, 1974). Thus, ui = Civi where Ci is the ith canonical correlation. It

follows that the correlations of the canonical variates above may be rewritten

as a system of linear equations as follows:

a11Ỹ1 + a21Ỹ2 + ... + ap1Ỹp = C1 (b11Y1 + b21Y2 + ... + bq1Yq) + ϵ1

a12Ỹ1 + a22Ỹ2 + ... + ap2Ỹp = C2 (b12Y1 + b22Y2 + ... + bq2Yq) + ϵ2

⋮

a1kỸ1 + a2kỸ2 + ... + apkỸp = Ck (b1kY1 + b2kY2 + ... + bqkYq) + ϵk.

(5.29)

Now if we define the matrices A, B, C , Y , Y and ϵ are defined as
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AT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a11 a21 ... ap1

a12 a22 ... ap2

⋮ ⋮ ⋮ ⋮
a1k a2k ... apk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, BT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b11 b21 ... bq1

b12 b22 ... bq2

⋮ ⋮ ⋮ ⋮
b1k b2k ... bqk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C1 0 ... 0

0 C2 ... 0

⋮ ⋮ ⋱ ⋮
0 0 ... Ck

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

YT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ỹ1

Ỹ2

⋮
Ỹk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, YT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Y1

Y2

⋮
Yk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, and ϵT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ϵ1

ϵ2

⋮
ϵk.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.30)

then the system of linear equations in Equation 5.29 can be written in

matrix form as

ỸA =YBC + ϵ, (5.31)

Then Equation 5.32 can be written as a system of linear equations as follows:

Ỹ1 = (a11C1b11 + a12C2b12 + ... + a1kCkb1k)Y1 + (a11C1b21 + a12C2b22 + ... + a1kCkb2k)Y2 + ...

+ (a11C1bq1 + a12C2bq2 + ... + a1kCkbqk)Yq + e1

Ỹ2 = (a21C1b11 + a22C2b12 + ... + a2kCkb1k)Y1 + (a21C1b21 + a22C2b22 + ... + a2kCkb2k)Y2 + ...

+ (a21C1bq1 + a22C2bq2 + ... + a2kCkbqk)Yq + e2

⋮ = ⋮

Ỹp = (ap1C1b11 + ap2C2b12 + ... + apkCkb1k)Y1 + (ap1C1b21 + ap2C2b22 + ... + apkCkb2k)Y2 + ...

+ (ap1C1bq1 + ap2C2bq2 + ... + apkCkbqk)Yq + ek,

(5.32)

where ei = ∑n
j=1 aijϵj. The coefficients of the independent variables in Equation

5.34, which are in the form of summed products, measure the weight each Yi
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contributes to the canonical variates and the associated canonical root. Due

to the fact that the Yi’s and the Ỹi’s are standardised, it follows that these

coefficients are equivalent to the standardised beta coefficients of multivariate

linear regression (Johansson & Sheth, 1974). The criterion variables, Ỹi’s,

in this system of linear equations, may also be written as a function of the

canonical variates composed of the predictor variables, Yi’s, as follows:

Ỹ1 = a11C1 (b11Y1 + b21Y2 + ... + bq1Yq) + a12C2 (b12Y1 + b22Y2 + ... + bq2Yq) + ...

+ a1kCk (b1kY1 + b2kY2 + ... + bqkYq) + e1

Ỹ2 = a21C1 (b11Y1 + b21Y2 + ... + bq1Yq) + a22C2 (b12Y1 + b22Y2 + ... + bq2Yq) + ...

+ a2kCk (b1kY1 + b2kY2 + ... + bqkYq) + e2

⋮ = ⋮

Ỹp = ap1C1 (b11Y1 + b21Y2 + ... + bq1Yq) + ap2C2 (b12Y1 + b22Y2 + ... + bq2Yq) + ...

+ apkCk (b1kY1 + b2kY2 + ... + bqkYq) + ek,

(5.33)

which is similar to say

Ỹ1 = (a11C1)v1 + (a12C2)v2 + ... + (a1kCk)vk + e1

Ỹ2 = (a21C1)v1 + (a22C2)v2 + ... + (a2kCk)vk + e2

⋮ = ⋮

Ỹp = (ap1C1)v1 + (ap2C2)v2 + ... + (apkCk)vk + ek.

(5.34)

The coefficients of the canonical variates involving the predictor variables

in Equation 5.36 measure the partial correlation between the Ỹi’s and each of

the canonical variates vi. This is as a result of both the Ỹi’s and the vi’s being

standardised with mean zero and variance of 1. Additionally, Johansson &

Sheth (1974) notes that these partial correlations are actually simple correlations

of first order between the Ỹi’s and the vi’s since each vi is orthogonal to the
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canonical variate preceding it. Thus, Equation 5.36 can be written in terms of

correlations, as follows:

Ỹ1 = (ρy1,v1)v1 + (ρy1,v2)v2 + ... + (ρy1,vk)vk + e1

Ỹ2 = (ρy2,v1)v1 + (ρy2,v2)v2 + ... + (ρy2,vk)vk + e2

⋮ = ⋮

Ỹp = (ρyp,v1)v1 + (ρyp,v2)v2 + ... + (ρyp,vk)vk + ek.

(5.35)

5.2.6 Using CCA to extend Moran’s index to multivariate

case

Case 1: Univariate Moran’s index

In the univariate Moran’s index case, consider the predictor matrix Y to contain

one variable Y1, while the criterion matrix has only one variable Ỹ = Ỹ1, the

lag values of Y1. In this case, the canonical correlation problem reduces to a

regression equation between Y1 and Ỹ1. Since both Y1 and Ỹ1 are standardised,

then the standardised regression equation is given by:

Ỹ1 = ρy1,ỹ1Y1, (5.36)

where ρy1,ỹ1 is a standardised coefficient. The Moran’s index will be the

unstandardised coefficient of Equation 5.38 and is given by:

Iy1 =
SD(Ỹ1)
SD(Y1)

× ρy1,ỹ1 . (5.37)

Case 2: Bivariate Moran’s index

The bivariate Moran’s index case considers the predictor matrix Y = Y2, while

the criterion matrix has only one variable Ỹ = Ỹ1, the lag values of Y1. In

this case the canonical correlation problem reduces to a regression equation



The proposed measure of statistical multivariate spatial autocorrelation 96

between Y2 and Ỹ1. Since both Y2 and Ỹ1 are standardised, then the standardised

regression equation is given by:

Ỹ1 = ρy2,ỹ1Y2, (5.38)

where ρy2,ỹ1 is a standardised coefficient. The bivariate Moran’s index will

be the unstandardised coefficient of Equation 5.40, and is given by:

Iy1,y2 =
SD(Ỹ1)
SD(Y1)

× ρy2,ỹ1 . (5.39)

Case 3: Extension to mutivariate Moran’s index

Consider the equation, for example,

Yi = (ρyi,v1)v1 + (ρyi,v2)v2 + ... + (ρyi,vk)vk + ei. (5.40)

Pre-multiplying Equation 5.42 by vT1 and using the fact that vTi vj = 0 ∀i ≠ j
due to orthogonality, we get:

vT1 Yi = vT1 (ρyi,v1)v1 + vT1 ei. (5.41)

Since

vT1 Yi = vT1 (ρyi,v1v1 + ei) , (5.42)

it follows that:

Yi = (ρỹi,v1)v1 + ei. (5.43)
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The first canonical is the most important and contributes the most variation

in the predictor variable and can be considered for analysis. Since both Yi and

v1 are standardised, then the multivariate Moran’s index will be the unstandardised

coefficient of Equation 5.45, and is given by:

Iyi,v1 =
SD(Ỹi)
SD(Yi)

× ρỹi,v1 . (5.44)

5.2.7 Multivariate LISA clusters

Having determined the multivariate global spatial autocorrelation the next

step is to determine the multivariate LISA map. At this stage we will be having

two variables: Yi and the derived first canonical variate v1. The bivariate LISA

approach was then applied to these two variables (Yi and v1.) to determine the

multivariate spatial clusters.

5.3 Hypothetical example

For illustrative purposes, hypothetical spatial data were generated on a spatial

space comprising of 61 hexagons. This is along the same lines as the experiment

by Lee (2001) who generated spatial data from 37 hexagons. A variable Y1 was

generated as a spatial random normal variable using a variance-covariance

structure based on the Euclidean distance between the centroids of the hexagons.

A variable Y2 which is positively correlated to Y1 (r = 0.564), was derived as a

normal variable conditional on Y1. Another variable, Y3, was also derived as a

normal variable conditional on both Y1 and Y2, with a positive correlation of r =

0.550 between Y1 and Y3. Values of 5, 3 and 1 were then assigned to the upper

third, second third, and lower third of the corresponding quantile map for each

respective variable. The variables Y1, Y2 and Y3 are spatially dependent on each

other. Each of these variables can be used as a criterion variable and the other

two as predictor variables to establish positive spatial association for the three
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variables. Two spatially dispersed variables, Y4 and Y5 were also generated so

that they both have negative correlation with Y1. These two variables were

employed to establish joint negative association between them and variables

Y1, Y2 and Y3. The spatial distribution of the variables Y1, Y2, Y3, Y4 and Y5 is

shown in Figure 5.1.

 

Y2, I = 0.346 Y3, I = 0.431 

Y1, I = 0.506 

Y4, I = -0.2873 Y5, I = -0.2363 

r = -0.068 r = -0.321 

r = 0.550 r = 0.564 

Figure 5.1: Hypothetical spatial data.

5.3.1 Verification of univariate and bivariate spatial

autocorrelation results

In this section we show that the results of the new canonical approach give the

same results as the original univariate and bivariate Moran’s I. For univariate

analysis using the canonical approach the criterion variable,Ỹ = [Ỹ1]T , is a 1×1
random variable consisting of only one sub-vector Ỹ1 the spatial lag variable,
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and the predictor variable Y = [Y1]T is a 1 × 1 random variable consisting of

one sub-vectors Y1, where p = q = 1. Similarly, in the case of bivariate analysis

using the canonical approach the criterion variable,Ỹ = [Ỹ1]T , is a 1×1 random

variable consisting of only one sub-vector Y1 the spatial-lagged variable of the

criterion variable, and the predictor variable Y = [Y2]T is a 1×1 random variable

consisting of one sub-vectors Y2, where p = q = 1. The univariate analysis

was done for the five variables Y1, Y2, Y3, Y4 and Y5 based on Equation 5.7

using the R code given in Appendix B.1. Note that in this analysis a11 = 1

and the canonical correlation is simply equal to the correlation between the

criterion and predictor variables. Table 5.1 provides the analyses results and a

comparison with results of the original univariate Moran’s index.

Table 5.1: Univariate Moran’s index using the canonical approach.

Variable Univariate Moran’s I Correlation Standard deviations SD ratio New approach Moran’s I
SD1 SD2 SD1/SD2 MMI

Y1 0.5059** 0.7021 1.1615 1.6121 0.7205 0.5059**
Y2 0.3455** 0.4992 1.1157 1.6121 0.6920 0.3454**
Y3 0.4313** 0.6378 1.1234 1.6615 0.6762 0.4313**
Y4 -0.2873** -0.7500 0.6683 1.7449 0.3830 -0.2873**
Y5 -0.2363** -0.4274 0.9922 1.6681 0.5528 -0.2363**

Key: SD1, Standard deviation of spatial-lagged values of unstandardised
criterion variable; SD2, Standard deviation of unstandardised criterion
variable; MMI, Multivariate Moran’s index.

Table 5.1 gives the variables whose spatial patterns are to be determined,

the original univariate Moran’s index, the standard deviation of the spatial-lagged

values (SD1) of the variable and the standard deviation of the variable itself

(SD2), the ratio of SD1 to SD2 (SD ratio) and the Moran’s I from the canonical

correlation approach (MMI). The canonical approach confirms the results of

the original Moran’s I. There is evidence of spatial clustering as indicated

by significant positive Moran’s I values for Y1, Y2 and Y3, while Y4 and Y5 are

significantly spatially dispersed with significant negative MMI values. The
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univariate clusters of Y1, Y2 and Y3 are shown in Figures 5.2 A, B and C,

respectively. Clusters are found in the western part of the polygon for all the

three variables.

Figure 5.2: Univariate and bivariate LISA clusters for the hypothetical data.

Bivariate analysis was done to determine the pairwise association of the five

variables Y1, Y2, Y3, Y4 and Y5 based on Equation 5.41 using the same R code

given in Appendix B.1. Table 5.2 provides the analysis results. The results are

identical for the original Moran’s I and the new canonical correlation approach.

There is evidence of significant positive spatial association between the

following: Y1 and Y2; Y1 and Y3; Y2 and Y3; and Y4 and Y5. The bivariate joint

clusters for Y1 and Y2, Y1 and Y3, and Y2 and Y3 are shown in Figures 5.2 D,

E and F, respectively. The joint clusters in Figure 5.2 D-F and the univariate
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Table 5.2: Bivariate spatial autocorrelation derived from the original Moran’s index
and the new multivariate approach.

Association Bivariate Moran’s I Correlation Standard deviations SD ratio New approach Moran’s I
SD1 SD2 SD1/SD2 MMI

Y1 - Y2 0.4524** 0.6279 1.1615 1.6151 0.7205 0.4524**
Y1 - Y3 0.4546** 0.6309 1.1615 1.6151 0.7205 0.4546**
Y1 - Y4 -0.0686 -0.0953 1.1615 1.6151 0.7205 -0.0686
Y1 - Y5 -0.1272** -0.1765 1.1615 1.6151 0.7205 -0.1272**
Y2 - Y3 0.4695** 0.6784 1.1157 1.6116 0.6920 0.4695**
Y2 - Y4 -0.1214** -0.1754 1.1157 1.6116 0.6920 -0.1214**
Y2 - Y5 -0.1579** -0.2281 1.1157 1.6116 0.6920 -0.1579**
Y3 - Y4 -0.0478 -0.0709 1.1234 1.6615 0.6762 -0.0480
Y3 - Y5 -0.1533** -0.2267 1.1234 1.6615 0.6762 -0.1533**
Y4 - Y5 0.1714** 0.4475 0.6683 1.7449 0.3830 0.1714**

clusters in Figures A-C, are found in the western parts of the hexagon.

5.3.2 Multivariate spatial autocorrelation analysis

In this section, we extend the univariate and bivariate Moran’s analysis to

multivariate (three or more variables) analysis using the canonical approach.

The criterion vector Y = [Ỹi, Ỹic]T is a 2×1 random variable consisting of sub-vectors

Ỹi and Ỹic with the latter being a variable derived conditional on the distribution

of the former. Assume that Z1 and Z2 are two independent standard normal

random variables and define

Ỹi = Z1 (5.45)

Ỹic = rZ1 +Z2

√
1 − r2 (5.46)

where r is the specified correlation between variables Ỹi and Ỹic. Then, Ỹi

and Ỹic are assumed to be bivariate normal. These two standardised variables

constituted the criterion vector in the analysis for each given criterion variable

Yi, where i takes values 1, 2 and 3. Using Ỹi and Ỹic ensures that the two

criterion variables are positively spatially associated and both variables will

have similar associations with the predictor variables.
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The predictor variable given by Y = [Yj, Yl]T is a 2 × 1 random variable

consisting of standardised sub-vectors Yj and Yl where p = q = 2. The indexes

j and l take values 1, 2, 3, 4 and 5, with i ≠ j ≠ l. Only positively associated

variables are to be used as predictor variables. Negatively associated variables

were also used to determine if the multivariate method can detect spatial

dispersion. Table 5.3 shows the canonical correlation analysis for different

combinations of the hypothetical data. An r = 0.6 was used to determine

the conditional variable to be included as a second criterion variable as per

Equation 5.48.

Table 5.3: Summary results for the canonical correlation analysis for the hypothetical
spatial data.

Y1 Y2 Y3
Canonical

Variate Pair
Canonical

correlation
Wilks

Lambda F DF1 DF2 P-value

Y1 Y2 Y3 u1v1 0.7443 0.4349 14.7119 4 114 <0.001

u2v2 0.1563 0.9756 1.4522 1 58 0.2331

Y2 Y1 Y3 u1v1 0.7543 0.4219 15.3766 4 114 <0.001

u2v2 0.1449 0.9790 1.2441 1 58 0.2698

Y3 Y1 Y2 u1v1 0.7515 0.4352 14.7029 4 114 <0.001

u2v2 0.0112 0.9999 0.0007 1 58 0.9325

Y1 Y4 Y5 u1v1 0.2242 0.9497 0.7445 4 114 0.5636

u2v2 0.0029 0.9999 0.0005 1 58 0.9827

Y2 Y4 Y5 u1v1 0.3142 0.9012 1.5212 4 114 0.2006

u2v2 0.0107 0.9999 0.0066 1 58 0.9356

Y3 Y4 Y5 u1v1 0.2579 0.9331 1.0036 4 114 0.4088

u2v2 0.0190 0.9996 0.0209 1 58 0.8856

The Wilks Lambda test was used to determine the significance of the canonical

correlations for each canonical variate pair. It can be seen in Table 5.3 that the

correlation of the first canonical pair (u1v1) is statistically significant for the

combinations involving the three variables that have positive bivariate spatial

association, namely, Y1, Y2 and Y3, while the second canonical pairs (u2v2) are

not significant for all the combinations considered in Table 5.3. When Y1, Y2

and Y3 are each analysed with Y4 and Y5, both the first and second canonical
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variate pairs are not statistically significant. We then used Equation 5.45 to

determine the multivariate spatial autocorrelation.

Table 5.4 shows the multivariate Moran’s index calculated for an arbitrarily

specified r value of 0.6 using the R code in Appendix B.2. Indications in Table

5.4 are that the variables Y1, Y2 and Y3 have a shared spatial cluster among

them with significant positive MMI values for the spatial association for the

following: Y1 and Y2 − Y3; Y2 and Y1 − Y3; and Y3 and Y1 − Y2.

Table 5.4: Multivariate spatial autocorrelation analysis of the hypothetical spatial
data, r = 0.6.

r = 0.6
Criterion variable Predictor variables ρy1,v1 Standard deviations Multivariate Moran’s I

SD1 SD2 SD ratio MMI
Y1 Y2 Y3 0.6163 1.1615 1.6121 0.7205 0.4440**
Y2 Y1 Y3 0.6311 1.1157 1.6121 0.6920 0.4367**
Y3 Y1 Y2 0.7023 1.1234 1.6615 0.6762 0.4748**
Y1 Y4 Y5 -0.1688 1.1615 1.6121 0.7205 -0.1216INS

Y2 Y4 Y5 -0.2740 1.1157 1.6121 0.6920 -0.1896**
Y3 Y4 Y5 -0.2026 1.1234 1.6615 0.6762 -0.1370INS

The choice of correlation, r, to use in deriving the conditional variable to

employ as one of the criterion variables may have an influence on the technique’s

ability to detect spatial heterogeneity or homogeneity. Thus, the study investigated

the effects different values of r will have on MMI and its significance. Shown in

Tables B.1-B.5 of Appendix B are results obtained when r takes values 0.3, 0.5,

0.7 and 0.9. It can be seen that the correlation between y1 and v1 decreases with

increases in r and so does the values of MMI, in turn. While the significance of

higher values of MMI (>0.20) remains unchanged between the interval 0.0 to

1.0 for r, the significance of smaller absolute MMI values that are between 0.20

and 0.15 are likely to change within the given interval. In order to maximise

detection of spatial heterogeneity, it is recommended to use a small r value, say

between 0.1 and 0.6.
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5.4 Chapter summary

A new multivariate spatial autocorrelation measure for detecting joint “hot-spots”

for more than two outcomes that are spatially related has been developed and

is based on canonical correlation. Using hypothetical data it was shown that

the proposed statistics performed very well in detecting joint clusters.



Chapter 6

Simulation Study and

Application of the Proposed

Multivariate Spatial Clustering

Statistics

6.1 Introduction

This chapter presents a simulation study to assess the performance of the

method in detecting multivariate spatial autocorrelation local clusters as well

as an application to cardiovascular mortality. A Monte Carlo simulation was

conducted by randomising the simulated sub-vector Ỹic in the set of dependent

variables as described in Equation 5.48 of the previous chapter. The local

spatial clusters created by the randomised data were then compared with the

local clusters prior to randomisation using agreement analysis by Bangdiwala
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& Shankar (2013) as originally demonstrated in Chien et al. (2018).

An application to real life data is also made to the mortality rates data

adjusted for covariates using Poisson regression as described in Chapter 3.

The data used are mortality rates due to diabetes; and three cardiovascular

conditions of ischaemic, cerebrovascular and hypertensive heart conditions in

South Africa for the years 2001 and 2011.

6.2 Simulation study

In this study we hypothesised three spatially related variables X1,X2 and Y1

such that they form a specified number of joint clusters. Different hypothetical

data sets were chosen such that they form joint clusters of sizes 2,4,10,12, 18

and 20. Let X = [X1,X2]T be a 2 × 1 set of “explanatory” random variables and

Y = [Ỹ1, Ỹ2]
T

be a 2 × 1 set of “response variables” where Ỹ1 is the spatial lag of

Y1 and p = q = 2. In this case Ỹ2 is derived as

Ỹ2 = rỸ1 +Z
√
1 − r2 (6.1)

where r is a specified correlation between Ỹ1 and Ỹ2, while Z is a standard

normal variable independent of Ỹ1. It follows that Ỹ1 and Ỹ2 can be assumed to

be bivariate normal.

An illustration is shown here for the hypothetical spatial data forming joint

clusters of size 20 which are shown in Figures 6.1 A-C. In this case Y 1 is used

to derive Y while X1 and X2 form the X set of variables. Each hexagonal

tessellation is comprised of 217 hexagon cells. Note that the assignment of

values in Figure 6.1 B was done such that there are only 20 high values (assigned

5) and low values (assigned 1). In addition, the 20 cells of high values are made
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to coincide with the high value cells of the variables in Figures 6.1 A and C. This

was done to ensure that the joint “hot-spots” involving X2 will be located in the

cells of high values for X2.

Figure 6.1: Unique value based spatial distribution of the hypothetical data.

The univariate LISA maps are shown in Figures 6.2 A-C for the spatial data

of Y 1, X1 and X2, respectively. Figures 6.2 D-F show the bivariate LISA maps

between Y 1 and X1, Y 1 and X2 and between X1 and X2, respectively. It can

be seen that the bivariate LISA patterns of X2 and each of Y 1 and X1 have

joint “hot-spots” of 20 cells similar to the univariate LISA “hot-spots” patterns

for X2 in Figure 6.2 C.

The multivariate LISA map for the three variables are shown in Figure 6.3.

It can be observed that the joint “hot-spots” for the three variables are the 20
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Figure 6.2: Univariate and bivariate LISA spatial patterns of the hypothetical data.

“hot-spots” similar to the univariate LISA “hot-spots” patterns for X2 in Figure

6.2 C. Thus, this multivariate spatial autocorrelation method is able to detect

clusters attributed to three spatially related data.

Having established the ability of the method to detect multivariate spatial

autocorrelation joint clusters we set out to determine if this can be done consistently

through simulation. Categories cluster maps were compared with those obtained

from simulated data after randomisation of the Ỹ2 variable.

An example of the agreement table for the data with 20 “hot-spots” clusters

and one simulation data is shown in Table 6.1. It can be observed that both the

original data and the simulated data obtained the same cells of “High-High”

“hot-spots”, but there are 12 cells categorised to be “Low-Low” by the original

data which were classified to be “Not Significant” by the simulated data. This
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Figure 6.3: Multivariate LISA map for Y1, X1 and X2 using the hypothetical data with
20 “hot-spots” clusters.

Table 6.1: Agreement table of the categories of multivariate joint clusters and
simulated data when joint clusters equals to 20.

High-High High - Low Low-High Low-Low Not Significant
High-High 20 0 0 0 0
High - Low 0 0 0 0 0
Low-High 0 0 44 0 2
Low-Low 0 0 0 34 12
Not Significant 0 0 1 16 88

agreement analysis had a weighted Bangdiwala statistic of 0.956. It shows that

there is an excellent level of agreement between the multivariate LISA maps

of the original and the simulated data as suggested by the interpretations in

Munoz & Bangdiwala (1997).

Additionally, the simulation was done by changing the size of the joint

clusters. This was done by specifying joint clusters of size 2, 4, 10, 12, 18

and 20. A total of 100 simulations were done for each set of hypothetical
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data by randomising Ỹ2 variable and summary statistics calculated for the 100

weighted Bangdiwala statistics. The results are shown in Table 6.2.

Table 6.2: Simulation results

Number of “hot-spots” Minimum Median Mean Maximum
2 0.6653 0.7392 0.7419 0.8319
4 0.6532 0.7341 0.7335 0.8351

10 0.6632 0.7342 0.7348 0.8400
12 0.6455 0.7251 0.7453 0.9860
18 0.6592 0.9464 0.9373 0.9860
20 0.9202 0.9507 0.9490 0.9861

It can be seen in Table 6.2 that the mean level of agreement generally

increases as the number of “hot-spots” increases. The mean agreement level

ranges from 0.7335 (for 4 “hot-spots”) to 0.9490 (for 20 “hot-spots”). In the case

of data for two “hot-spots”, the global joint clustering was not significant, but

still the level of agreement can be described as good.

6.3 Application to cardiovascular mortality

The new multivariate Moran’s index is hereby applied to Poisson regression

estimated mortality rates data of Chapter 3. Diabetes and hypertensive heart

diseases are known to be risk factors for other cardiovascular conditions. In

this section, we illustrate the use of the new method by investigating how the

average prevalence of both diabetes and hypertension mortality in a municipality

may influence the prevalence of cerebrovascular mortality and ischaemic mortality

in the neighbouring municipalities in South Africa. Table 6.3 reproduces the

bivariate associations for the adjusted rates of the hypertensive heart disease

(HHD), diabetes (DBT), ischaemic heart disease (IHD) and cerebrovascular

heart disease (CVA) obtained using the original Moran’s index in Chapter 3.

Cerebrovascular mortality is significantly spatially associated with both
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Table 6.3: Bivariate spatial autocorrelation derived from the original Moran’s index
for Poisson regression adjusted cardiovascular mortality rates.

Association (X-Y) Moran’s index Significance
X Y I Yes or No

CVA01 HHD01 0,279 Yes
CVA01 DBT01 0,432 Yes
CVA11 HHD11 0,294 Yes
CVA11 DBT11 0,196 Yes
IHD01 HHD01 -0.121 No
IHD01 DBT01 0,719 Yes
IHD11 HHD11 -0.110 No
IHD11 DBT11 0,289 Yes

HHD and DBT for the years 2001 and 2011. But, the bivariate spatial association

between ischaemic heart disease mortality rates and hypertensive heart disease

is not significant with the Moran’s index value of -0.121 and -0.110 for the

years 2001 and 2011, respectively. So the extension to multivariate spatial

association involving three variables will only be applied to the association

between CVA, HHD and DBT. Two variable sets were used in this analysis.

Firstly, the outcome criterion variable set, Y = [Ỹ1, Ỹ1c]T is a 2 × 1 random

variable consisting of the spatial-lagged values of CVA, Ỹ1, and Ỹ1c is a sub-vector

derived conditional on the distribution of spatial-lagged values of CVA with

r = 0.4. Secondly, the independent variable set Y = [Y2, Y3]T , comprising of HHD

and DBT adjusted mortality rates. Since each variable set is comprised of two

sub-vectors, it implies that p = q = k = 2. Therefore, two canonical correlations

were estimated to describe the interrelationship between the two variable sets.

The summary results for the canonical correlation analysis are shown in Table

6.2.

Table 6.4 shows that only the first canonical correlation, C1 = ρu1,v1, is statistically

significant, for both the 2001 and 2011 data. So in both years, the regression

equation reduces to: Ỹ1 = a11C1v1 + e1 = ρY1,v1v1 + e1. The estimates for a11 were

estimated and found to be 0.9614307 and 1.042656 for the years 2001 and 2011,
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Table 6.4: Summary results for the canonical correlation analysis.

Y1 Y2 Y3
Canonical

Variate Pair
Canonical

Correlation
Wilks

Lambda F DF1 DF2 P-value

CVA01 HHD01 DBT01 u1v1 -0.6796 0.5381 41.7745 4 460 <0.001

u2v2 -0.0023 0.9999 0.0013 1 231 0.972

CVA11 HHD11 DBT11 u1v1 0.4372 0.8085 12.8930 4 460 <0.001

u2v2 0.0204 0.9996 0.0964 1 231 0.756

respectively. Then the correlation between Y1 and v1, ρY1,v1, were calculated

to be 0.9614307 × −0.6796 = −0.6534 and 1.042656 × 0.4372 = 0.4559 for the years

2001 and 2011, respectively. Table 6.5 shows the remainder of the calculations

estimating the multivariate Moran’s indexes for the two periods under study.

Table 6.5: Summary results for the multivariate Moran’s index estimation procedure
for cardiovascular mortality in South Africa.

Y1 Y2 Y3 ρY1,v1 SD(Ỹ1) SD(Y1) SD(Ỹ1)
SD(Y1) MMI P-value

CVA01 HHD01 DBT01 -0.6534 12.6083 18.9554 0.6652 -0.4346 <0.001
CVA11 HHD11 DBT11 0.4559 10.8782 17.3337 0.6267 0.2861 <0.001

It can be seen in Table 6.5 that the multivariate Moran’s indexes are highly

statistically significant, with p-value less than 0.001, for both the data from

2001 (MMI=-0.4346) and 2011 (MMI=0.2861). There is evidence of positive

multivariate spatial association between cerebrovascular mortality and the

combined mortality rates due to hypertensive heart disease and diabetes for

the year 2011 but not for the year 2001 which shows spatial dispersion (negative

MMI). If we consider Y1 and v1 as two variables, we can determine the LISA

clusters using the bivariate Moran’s index used in Chapter 4. The LISA maps

for the univariate, bivariate and multivariate approach for the year 2001 are

shown in Figure 6.4.

As was shown in Chapter 3, the univariate Moran’s indexes for CVA01

(I = 0.422), HHD01 (I = 0.445) and DBT (I = 0.684) are positive and statistically
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Figure 6.4: Univariate and bivariate LISA clusters for the hypothetical data.

significant. A mapping of the univariate LISA maps shows that DBT01 (Figure

6.4 A)and HHD01 (Figure 6.4 C) have only two “hot-spots” and a few “cold-spots”

municipalities in common. The “cold-spots” of HHD01 in Figure 6.4 C are

found in the western part of the country where the “hot-spots” municipalities

for DBT01 are found in Figure 6.4 A. Some of the “hot-spots” for HHD01 are in

the north-east of he country where we have “cold-spots” for diabetes. This helps

to explain why the test for bivariate spatial dependency between CVA01 and

DBT01 (I = 0.057) is not spatially significant in Table 6.3. There is significant

positive bivariate spatial dependency between CVA01 and DBT01 and between

CVA01 and HHD01 with the joint clusters are shown in Figures 6.4 D and E,

respectively. However, there is a negative spatial association between CVA01

and weighted average of HHD01 and DBT01 (I = −0.452). This evidence of joint

multivariate spatial dispersion is due to the differences in spatial distribution
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displayed by HHD01 and DBT01. Note that the bivariate Moran’s index (I =
−0.452) between Y1 and v1 is similar, if not identical, to MMI (−0.434) derived

using the canonical approach. Discrepancies are due to random fluctuations

since the canonical correlation between the canonical pair u1v1 is not statistically

significant.

Figure 6.5: Univariate and bivariate LISA clusters for the hypothetical data.

The main difference between the results of the spatial data of 2001 and 2011

is that the spatial dependency between HHD and DBT is significant in the later

year and not in the former year. A comparison of Figures 6.4 A-C and Figures

6.5 A-C shows that “cold-spots” of HHD mortality in the western part of the

country and the “hot-spots” in the north-eastern part of the country has been

disappearing over the 10 year period under review. The “hot-spots” clusters of

DBT have also been reducing in the western part of the country and moving
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closer to the boundary of Lesotho (hollow patch on the map), while the DBT

“cold-spots” have also reduced greatly on the eastern side of he country. There

are more similar spatial patterns in the south and eastern part of the country

for HHD11 and DBT11. This helps to explain why the bivariate dependency

between the two is statistically significant. The bivariate spatial associations

for all three possible combinations involving CVA11, HHD11 and DBT11 were

statistically significant and the co-clusters are shown in Figures 6.5 D-F. It

is clear that the circled joint “hot-spot” clusters are common to the individual

univariate “hot-spot” clusters circled in Figures 6.4 A-C.

There is evidence that municipalities with low or high average mortality

rates of HHD and DBT are surrounded by municipalities with low or high

mortality rates due to cerebrovascular heart diseases for the year 2011, when

Y1 is regressed against v1 with a significant bivariate Moran’s index of 0.274.The

bivariate Moran’s index of 0.274 for Y1 and v1 is similar to the one obtained

using the CCA approach (MMI=0.286), the difference being due to random

fluctuations since the canonical correlation between the canonical pair u1v1

is not statistically significant. The multivariate joint clusters were validated

using simulation approach described in Section 4.4 by randomising Ỹ1c. A mean

Bangdiwala weighted B-statistic of 99.87% shows that the method consistently

detects the multivariate joint clusters with an excellent level of agreement.

6.4 Chapter summary

Simulation studies were done to determine the ability of the proposed multivariate

spatial autocorrelation measure in detecting joint “hot-spots” for more than

two outcomes that are spatially related. These studies were done for clusters

of size two up to size 20. Simulation studies showed the proposed statistics

performed very well in detecting joint clusters with agreement ranging from
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73% for clusters of size 2 to 95% for clusters of size 20. It was shown that the

level of agreement increased the more pronounced the spatial patterns.

The proposed method was applied to the spatial analysis of the possibly

related mortality rates due to diabetes; and three cardiovascular conditions of

ischaemic, cerebrovascular and hypertensive heart conditions in South Africa.

There was significant multivariate spatial association between cerebrovascular

and both hypertensive and diabetes.



Chapter 7

Discussion and conclusions

7.1 Introduction

The overall purpose of this study was to develop a single measure of multivariate

spatial autocorrelation measures for detecting joint clustering for interrelated

health outcomes and their risk factors. To achieve the objectives of the study

spatial autocorrelation statistics were applied alongside other statistical methods

for improving small area estimation of rates of health outcomes of cardiovascular

conditions and their associated risk factors. This discussion will blend the

findings of the thesis in such a way that it brings out the underlying concepts

that led to the attainment of the main aim of this PhD study.

In this chapter, the discussion will begin with a summary of the main findings

of the thesis. This will then be followed by limitations of the study and the

contributions being made by this study towards the body of spatial statistics

knowledge. Lastly, the direction of future studies will be presented before some

concluding remarks are made.
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7.2 Summary of the findings

A review of the spatial autocorrelation methods that are currently in use done

in Chapters 2 and 4 showed that they can only analyse a maximum of two

health outcomes simultaneously. The proposal by Wartenberg (1985) of extending

the Moran’s index beyond two variables is complex to the extent of making it

practically impossible to implement. It has meant that the Moran’s index has

been restricted to analysis of not more than two variables. This is a gap in

the literature of spatial statistics that this PhD study set to fill by developing

a multivariate spatial autocorrelation measure that will cater for more than

two health outcomes. Before developing the new measure, we investigated the

feasibility of using the bivariate spatial autocorrelation methods in determining

pairwise spatial associations and co-clustering patterns of CVD-related health

outcomes in South Africa. This was done in Chapter 4.

The first application of bivariate spatial autocorrelation method in Chapter

4 was done to two cardiovascular diseases namely stroke and heart attack and

three cardiovascular risk factors, namely tobacco smoking, hypertension and

high blood cholesterol in South Africa. Globally, there was evidence of spatial

dependency between stroke and smoking; stroke and high blood cholesterol;

and between smoking and high blood cholesterol. This revealed that there

is a tendency of nearby districts to have high or low joint stroke-smoking,

stroke-high blood cholesterol and smoking-high blood cholesterol indexes of

spatial autocorrelation. The study established joint local high-high clusters of

stroke-smoking; stroke-high blood cholesterol; and smoking-high blood cholesterol

in the urban districts in the western part of the country (City of Cape Town;

Cape Winelands; Overberg and Eden). However, the same bivariate outcomes

exhibited low-low clusters in rural north-western and east-southern parts of
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the country, respectively.

Thus, this study suggests that spatial clustering of CVDs and risk factors

differ according to urbanisation or rurality locations, with urban districts having

high-high district clusters and rural areas having low-low district clusters of

CVDs and the risk factors. Differentials in urban and rural clustering of CVDs

or their risk factors, based on the values of the rates, have been reported

elsewhere (Penney et al., 2014; Fabiyi & Garuba, 2015; Paquet et al., 2016;

Rajabi et al., 2010).

In the more developed countries, for example, Sweden (Rajabi et al., 2010)

and Canada (Penney et al., 2014), the “high-high” clustering areas, of CVD or

their risk factors were found in rural areas while “low-low” clustering areas

were found in urban areas. Thus, the process is more diffusing in rural areas

in the western world, suggesting that risk factors such as physical inactivity,

unhealthy dietary patterns and excessive alcohol drinking and smoking are

yet under control or mitigated. The same processes could be driving high-high

clustering in urban South Africa. For example, urban residents in South Africa

take high fat and sugar content diets that are low in carbohydrates and fibres,

while rural populations follow a traditional diet which is high in carbohydrates

and fibre content, but low in fats and sugars (Steyn et al., 2006).

Over the years, a transition from rural to urban life has seen the urban

majority transiting to an urban life and diets (Manning et al., 1974; Steyn et al.,

2006). Evidence has shown that a higher proportion of urban Black population

with low economic status are heavily depended on fast food (Van Zyl et al.,

2010). Thus, dietary patterns and lifestyles may help to explain the disparities

in the spatial co-clusters of CVDs and their risk factors across the districts

in South Africa. There is a need for modification of the dietary patterns of
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the urban population in order to have adequate nutrient intake to prevent

increased incidence of CVDs and their risk factors.

The presence of spatial clustering in CVDs and their risk factors has also

been found in different countries such as Nigeria (Fabiyi & Garuba, 2015),

Sweden (Rajabi et al., 2010), France and Australia [(Paquet et al., 2016), and

the USA (Ford & Highfield, 2016). However, our modeling approach has allowed

us to measure co-clustering of CVDs and risk factors. We have found that

stroke, high blood cholesterol and smoking, co-cluster in space, which supports

the notion that stroke, tobacco smoking and blood cholesterol are positively

associated (Cappuccio & Miller, 2016; Ahmed et al., 2019; Steyn et al., 2006).

Similar findings have been found in Ghana, where it was shown that raised

cholesterol and smoking were associated with tobacco use (Vuvor et al., 2016).

Our findings are generally in agreement with earlier studies in South Africa

that have used spatial statistics methods to analyse CVDs and their risk factors.

For example, Kandala et al. (2013), using a Bayesian geo-additive mixed model,

found high levels of hypertension prevalence in north-central-western parts

of the country and low prevalence in the north-eastern part of the country.

Wandai et al. (2019) also found significantly above average prevalence of hypertension

in the districts of the north-central-western parts of the country, as also revealed

by this study.

In the second application in chapter 4, an examination of bivariate spatial

pairwise co-clusters of cardiovascular mortality at local municipality level was

done using Empirical Bayesian spatial and Poisson regression models. Cause of

death data for the year 2001 and 2011 were used for this study. Mortality rates

due to cerebrovascular heart disease, ischaemic heart disease, hypertensive

heart disease and diabetes were analysed for the years 2001 and 2011. There

were four objectives in this study. The first objective was to show how the
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Empirical Bayesian approach and the Poisson regression approach may be

applied to give reliable estimates of cardiovascular mortality rates. The second

objective was to determine local municipalities of high and low CVD mortality

risk as well as spatial dependence between two CVD mortality rates. In the

case of the Poisson regression approach, the model further furnishes us with

possible risk factors for CVD mortality that are measured at local municipality-level.

The third objective was to detect bivariate spatial dependence between CVD

rates for a given CVD at two time points (2001 and 2011). For a given period,

the hypothesis being tested was that high risk of mortality of one CVD in a

given municipality is associated with high risk of mortality of a related disease

in the neighbouring municipalities. In other words, the hypothesis being tested

here is that interrelated diseases co-cluster. At two-time points, the hypothesis

being tested is that the high risk of mortality of a given CVD in the year 2001 in

a given municipality is associated with high risk of mortality of the same CVD

in the neighbouring municipalities of the given municipality in the year 2011.

The co-clusters obtained were visually compared with those obtained using

raw-rates. The fourth objective was to compare the results of three bivariate

spatial autocorrelation methods in terms of detection of CVD mortality spatial

clusters. These methods are the established bivariate Moran’s index, the recently

developed Lee’s index and a variant of the Moran’s index.

The three bivariate spatial autocorrelation techniques of the original Moran’s

I, the recently developed Lee’s L and the Moran’s I variant by Dray gave

almost similar results in this study. These methods can be used to complement

each other. After adjusting for known municipal-level covariates of age, race

and poverty, the Poisson regression approach managed to detect co-clustering

where the Empirical Bayes smoothed rates and raw rates could not. The

bivariate analyses for CVDs between two time-points were significant for all

four health outcomes under study. This showed the spatial distribution of
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mortality risk attributed to the mortality rates of cerebrovascular heart disease,

ischaemic heart disease, hypertensive heart disease and diabetes have been

stable over the years with minimal changes. In terms of intervention, it becomes

easier to formulate programmes where there are minimal changes in identified

clusters over time. Bivariate analysis of two CVD mortality rates in a given

year showed that there was significant co-clustering between diabetes and the

three CVDs. These clusters are located in the south west part of the country.

Co-clustering was also significant between cerebrovascular heart disease and

hypertensive heart disease. The joint clusters of cerebrovascular heart disease

and hypertensive heart disease for the year 2011 are in the south and north

west parts of the country. There was no evidence of co-clustering between

ischaemic heart disease and both cerebrovascular heart disease and hypertensive

heart disease for the 2011 data.

In Chapter 3, we explored the use of the recently developed alternative

approach to Moran’s I univariate spatial autocorrelation by Chen (2013). In the

empirical analysis, the study is also devoted to checking the normal distribution

of the residuals. Data for mortality rates due to cerebrovascular heart disease

adjusted using the Poisson regression model were used. Improvements on

the work done by Chen (2013) included a randomised statistical significance

test that was developed and implemented in R programme. This enabled both

the detection of clusters at national level and LISA cluster maps at municipal

level. In addition, concordance and inconsistency of the LISA cluster maps was

assessed among three different spatial weights constructs in South Africa. The

three spatial weights based on the inverse power distance function with α = 1
and that based on a negative exponential distance function α = 1 and α = 2 were

chosen as they had significant new global Moran’s index.

The results of the LISA maps show that all three spatial weight constructs
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displayed elevated cerebrovascular heart disease mortality risk in the south-western

part of the country. The three spatial weight matrices may be different and the

residuals of the exponential weight matrices were not normally distributed,

but the three methods’ “hot-spot” and “cold-spot” clustering are comparatively

congruous based on Bangdiwala’s B-statistic. This suggests that the outputs

based on each of the three spatial weights would provide for similar policy

making based on the identification of “hot-spot” and “cold-spot” clustering municipalities.

Similar results were also visually observed when the original Moran’s index

was used. So the three spatial weight constructs would give similar guidelines

on interventions and policy.

In Chapter 5, we were concerned with developing a multivariate spatial

autocorrelation extension of the Moran’s Index using the canonical correlation

approach. The application of canonical correlation analysis to make inferences

about multivariate spatial autocorrelation from at least three variables, has

been demonstrated in order to underline the possible usefulness of this new

procedural approach to exploratory spatial analysis. Having decided on the

criterion variable, one can derive a variable conditional on the criterion variable

to form a criterion variable set of two sub-vectors. The independent variable

set is chosen such that it is comprised of at least two variables that have a

positive bivariate spatial association with the criterion variable, and between

themselves.

Canonical correlation analysis is then used to develop a simple linear regression

between the criterion variable and the weighted average of the sub-vector in

the independent variable set based on the first canonical variate associated

with the independent variable set. Canonical analysis would have established

the significance of the first canonical correlation for the first canonical variate

pair. The first canonical is always the highest and most important while the
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second canonical is usually small. In the case of the South African cardiovascular

data, it was shown to be not significant. In cases where the second canonical

correlation is significant, but way smaller than the first canonical correlation,

one can make the simplifying assumption that the weighted average of the

sub-vectors in the independent variable set based on the second canonical

variate do not disturb the spatial autocorrelation between the criterion variable

and the weighted average of the sub-vectors in the independent variable set

based on the first canonical variate patterns. But this will need further investigation.

The new method was applied to some hypothetical spatial data in Chapter

5 and real-life cardiovascular mortality data in Chapter 6, and the results

show the potential utility of the method in detecting the presence of spatial

autocorrelation patterns. In the case of the univariate and bivariate spatial

autocorrelations, the results derived by using the multiple regression equivalent

of canonical correlation are identical to those obtained using the original univariate

and bivariate Moran’s spatial autocorrelation approaches. This, unlike the

regression approach by Chen (2013) which has different Moran’s index values

from the original method, validates the new method for the univariate and

bivariate cases. The new method was validated in Chapter 6 via a simulation

study and agreement analysis. The level of agreement was good to excellent

in terms of the a set of given spatially correlated data in comparison with the

simulated data

There is no known multivariate Moran’s index that caters for more than

two variables. A multivariate regression analysis could have been used for

three or more variables, but this will only give coefficients that are partial

correlations in which there is a blind “control” for other “relevant” variables

(Blalock, 1961; Legendre, 1993, 2000). But in the use of the multiple regression

equivalent of the canonical correlation procedure, a direct correlation between
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the criterion variable and a linear combination of the “relevant” variables is

estimated which can then be used to derive a multivariate Moran’s index.

This has the advantage of determining the spatial correlations of all “relevant”

variables simultaneously instead of focusing on one variable at a time, as is in

the univariate case, or just two variables at a time , as is in the bivariate case.

7.3 Limitations

Most of the limitations have already been discussed in full in the different

chapters, but here, we highlight some before giving future direction of study.

In Chapter 3, age-gender standardised mortality ratios were used to try to

control for the two confounders. By using age-sex standardised incidence rates,

our study removed the effects of age and gender. However, we still find pockets

of high risks of CVDs and their risk factors, a finding that suggests other risk

factors could be affecting the spatial variations in CVD incidence rates. It

shows that differences in observed clustering that we have observed, even after

accounting for differences in age and gender distribution across the districts,

could be due to differences in other factors, but more data would be needed

for more informed analysis. Chapter 3 introduces a method that can be used

to address this problem. This was done through the introduction of a Poisson

regression approach that adjusts for area-level covariates to estimate the mortality

rates. However, covariates to explain the CVD mortality rate patterns are

limited and more data will be needed.

The data on high blood cholesterol, smoking, stroke and heart attack described

in Chapter 3 were self-reported. Newell et al. (1999) noted that inaccurate

self-reporting could result in the misclassification or overestimation or underestimation

of the incidence or prevalence of disease outcomes and their risk. Biomarkers
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can be used to redress the problem but unfortunately, there were not available.

Without supporting data for validation, the results of the present study need to

be treated with caution. However, self-reported values and directly measured

values tend to be highly correlated even in the presence of bias (Celis-Morales

et al., 2012; Thomas et al., 2016). It is our conviction that, even in the presence

of bias in the self-reported values, the spatial autocorrelation patterns obtained

in this study would not change much when measured values were to be used.

Our analyses were done at the municipal or district level, which is the

level at which primary health is provided in South Africa. Aggregation of the

results has the effect of introducing ecological fallacy and large geographical

units of analysis may mask some information of interest (Newell et al., 1999).

Results and efficiency may be improved by having smaller units of analysis

(Newell et al., 1999). According to Paquet et al. (2016), when conducting spatial

epidemiology, the administrative unit to use in the analysis goes beyond just

the size of the unit of analysis and will need to be studied for each given

setting. Our study excludes adults older than 64 years old. This was done to

focus on the spatial patterns attributable to the productive age group of 15-64

years which overlaps with the age range in which premature mortality occurs

(less than 70 years). However, it is hereby acknowledged that this limits the

ability to evaluate patterns in the age groups that are at the highest risk of

cardiovascular disease (65 years and greater).

In developing the multivariate spatial Moran’s index in Chapter 5, writing

the system of equations as in Equation 5.37 has the added advantage of seeing

the consequence of excluding any pair of the canonical variates (ui,vi) from the

analysis. It is clear that one consequence is the reduction in the explanation

of the dependent variables Ỹ (Johansson & Sheth, 1974). It is then desirable

for at least the second canonical pair to be statistically not significant for the
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MMI to have more accurate meaning. The second canonical correlations for the

data used in this study were all not statistically significant but this may not all

ways be the case. So an investigation into the effects of statistically significant

second canonical pair on MMI results will need to be investigated.

The new multivariate spatial autocorrelation method is subject to certain

practical limitations such as linearity assumptions, differences in level of measurement

(solved with standardisation of variables), choice of spatial weights and sample

size. But the same limitations also apply to the univariate and bivariate Moran’s

indexes of spatial autocorrelation as well as the multivariate spatial autocorrelations

based on partial autocorrelations such as the Mantel test (Legendre, 2000).

The distribution properties of the new multivariate Moran’s index has not

yet been ascertained. This will provide equations for the distribution properties

such as the mean and variance for the new multivariate spatial association

measure, MMI. Such distribution properties can be used to evaluate simulations

done using this new approach. Lee (2004) has provided a method that can be

used as a basis for future development of the properties.

7.4 Strength

The strength of our study has been the novel application of multivariate spatial

autocorrelation modeling approach to measure clustering and local co-clusters

of CVDs and their risk factors. Studies by Fabiyi & Garuba (2015), Penney

et al. (2014), Rajabi et al. (2010) and Paquet et al. (2016) employed univariate

spatial clustering methods. Their approaches could be limited as CVDs and

risk factors tend to co-occur at both individual and ecological levels (Ford &

Highfield, 2016; Penney et al., 2014). Kandala et al. (2013), noted that CVDs

and their risk factors have similar aetiology such that analysing them independently
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would be less efficient. In addition, estimating joint “hot-spot ” and low cluster

of districts for two or more CVDs will provide more evidence for an integrated

intervention approach that targets all the modelled diseases, instead of targeting

only one CVD.

Additionally, by using age-sex standardised incidence rates, our study removed

the effects of age and gender, two of the major determinants of health. However,

we still find pockets of high risks of CVDs and their risk factors, a finding

that suggests other risk factors, could be affecting the spatial variations in

CVD incidence rates. As alluded to in Mena et al. (2018) and Elmadfa &

Meyer (2010), accessibility to health services, socio-economic factors, level of

urbanity, educational level, food composition and intake of nutrients, water

quality, temperature and other environmental factors could also impact on

geographical variations in CVDs and risk factors. Thus, differences in observed

clustering that we have observed, even after accounting for differences in age

and gender distribution across the districts, could be due to differences in these

other factors, but more data would be needed to confirm this assertion.

7.5 Contribution to knowledge

In this thesis a review was made of the relevant literature pertaining to the

Moran’s spatial autocorrelation measure. This review revealed that there is

a lack of multivariate spatial autocorrelation that extent the Moran’s index to

analyse more than two variables. Thus, this study fills that gap in literature

by extending the Moran’s index to cater for more than two health outcomes.
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7.6 Future direction

The direction to be taken in any future work will be guided by the limitations

discussed in the subsection above. More co-variates explaining the health

outcomes will need to be measured and incorporated in future analyses to

improve results. Excluding higher canonical pairs from the multivariate Moran’s

index lessens the explanation on the outcome variable by the predictor variables.

An investigation on the extent of the reduction of the explanation ought to

be instituted and quantified. In addition, the distribution properties of the

new multivariate Moran’s index are unknown. They need to be developed and

be used to evaluate the approach in future research, using Lee (2004) as a

basis. A comparative analysis with other multivariate techniques developed

for areal data by Jombart et al. (2008), Montano & Jombart (2017) and Eckardt

& Mateu (2021) will need to be instituted. Despite some of the limitations

inherent in the method, we are convinced that if this method is to be used and

interpreted properly, it should demonstrate to be a powerful and useful tool

in the theoretical advancement of spatial autocorrelations, particularly where

multiple variables and complex spatial associations are involved.

7.7 Conclusion

Using novel spatial clustering statistical techniques, the study has identified

joint spatial association and locations of similar rates of CVDs and their risk

factors among adults in South Africa. Even though the findings of the study

are mostly confirmatory, they are nonetheless important in supporting the

identification of priority areas for public health interventions. The finding that

districts tend to co-cluster in the urban areas and have higher rates of CVDs

and risk factors than district that co-cluster in rural areas suggest that there

are more contagious and spatial diffusion processes among interdependent

districts in urban districts than in the rural areas. Urbanisation or rurality of
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locations need to be considered when intervention initiatives are implemented.

Evidence of co-clustering may point to having an integrated intervention programme

targeting several CVDs and associated risk factors simultaneously, mainly in

these urban districts and might be more effective and less costly.
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Appendix A

Appendix A for Chapter 3

Table A.1: Correlation analysis between CVDs and their risk factors for the whole
sample, by age, gender and age-gender combinations.

(A) Overall Sample
Stroke Heart attack Smoking HBC Hypertension

Stroke 1.00 0.85 0.47 0.82 0.41
Heart attack 1.00 0.38 0.71 0.41
Smoking 1.00 0.55 0.73
HBC 1.00 0.53
Hypertension 1.00

(B) Male (C) Female
Stroke Heart attack Smoking HBC Hypertension Stroke Heart attack Smoking HBC Hypertension

Stroke 1.00 0.81 0.15 0.66 0.45 Stroke 1.00 0.22 0.00 0.29 0.04
Heart attack 1.00 0.14 0.64 0.50 Heart attack -0.06 0.24 0.16
Smoke 1.00 0.16 0.61 Smoking 0.12 0.03
HBC 1.00 0.55 HBC 0.40
Hypertension 1.00 Hypertension 1.00

(D) 15-39 years (E) 40-64 years
Stroke Heart attack Smoking HBC Hypertension Stroke Heart attack Smoking HBC Hypertension

Stroke 1.00 0.10 0.14 -0.03 -0.04 Stroke 1.00 0.61 0.40 0.68 0.01
Heart attack 1.00 0.09 -0.11 0.05 Heart attack 1.00 0.25 0.49 0.14
Smoking 1.00 0.46 0.73 Smoking 1.00 0.41 0.32
HBC 1.00 0.50 HBC 1.00 0.11
Hypertension 1.00 Hypertension 1.00

(F) Males aged 15-39 years (G) Females aged 15-39 years
Stroke Heart attack Smoking HBC Hypertension Stroke Heart attack Smoking HBC Hypertension

Stroke 1.00 0.36 0.05 0.03 0.08 Stroke 1.00 -0.01 -0.05 0.00 -0.18
Heart attack 1.00 0.08 -0.03 -0.02 Heart attack 1.00 -0.03 0.00 0.14
Smoking 1.00 0.30 0.63 Smoking 1.00 0.10 0.53
HBC 1.00 0.54 HBC 1.00 0.26
Hypertension 1.00 Hypertension 1.00

(H) Males aged 40-64 years (I) Females aged 40-64 years
Stroke Heart attack Smoking HBC Hypertension Stroke Heart attack Smoking HBC Hypertension

Stroke 1.00 0.45 0.24 0.48 0.08 Stroke 1.00 0.53 0.10 0.81 0.12
Heart attack 1.00 0.16 0.49 0.35 Heart attack 1.00 -0.02 0.50 0.03
Smoking 1.00 0.22 0.08 Smoking 1.00 0.14 -0.11
HBC 1.00 0.17 HBC 1.00 0.28
Hypertension 1.00 Hypertension 1.00

Key: CVD, cardiovascular disease; HBC, high blood cholesterol.
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Figure A.1: Quantile maps of prevalence rates of the CVDs and their related risk
factors by gender.

http://m.technologijos.lt/cat/7994/article/S-18917
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Figure A.2: Quantile maps of prevalence rates of the CVDs and their related risk
factors by age.

http://m.technologijos.lt/cat/7994/article/S-18917
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Figure A.3: Quantile maps of prevalence rates of the CVDs and their related risk
factors by gender for ages 15-39 years.

http://m.technologijos.lt/cat/7994/article/S-18917
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Figure A.4: Quantile maps of prevalence rates of the CVDs and their related risk
factors by gender for ages 40-64 years.

http://m.technologijos.lt/cat/7994/article/S-18917
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Figure A.5: Univariate spatial clusters of CVDs and their risk factors by age groups.
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A.1 R CODE FOR CHEN’S REGRESSION APPROACH

library(foreign)

#Create Weight Matrix from distance Matrix

wgts1<-read.csv("SA_dist_matrix.csv")

n<-dim(wgts1)[1]

tmp<-matrix(rbinom(n * n, 1, 1), ncol = n, nrow = n)

tmp<-as.matrix(tmp)

#Calculate an inverse power function weight matrix

wgts2<-tmp/wgts1

colnames(wgts2)<-1:n

rownames(wgts2)<-1:n

#Use the power alpha by changing value

alpha<-1.0

wgts3<-wgts2ˆ(alpha)

## Make all diagonal elements zero

diag(wgts3)<-0

# Add all elements in the weights matrix

sum_wgts<-sum(wgts3)

#Divide all elements in the weights matrix by the totals

wgts<-(1/sum_wgts)*(wgts3)

#Check if sum equals 1

sum(wgts)

library(maptools) #Contains the overlay command ## Data management

SAshp <- readShapePoly("SAshpCVD(Bin,Poi).shp",

proj4string=CRS("+proj=longlat +datum=WGS84"))

#data
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x <- SAshp$Poi_IHD11

y<-x-mean(x)

s<-sqrt(sum(yˆ2)/n)

z <- (y)/(s)

z<-as.matrix(z)

#The Ideal Spatial Weight Matrix (ISWM)- M_Star is given by

M_Star<-z%*%t(z)%*%(wgts)

# Calculate the Diagonal matrix to give LISA:

A<-diag(M_Star)

Local_MI<-as.matrix(A)

## Calculate the Moran’s I’

I = Global_MI=sum(A)

# Permutations for Moran’s I

nsims <-999

W=wgts

Local_moran <- function(x, W){

n = nrow(W)

z <- (x - mean(x, na.rm=T))/sd(x, na.rm=T)

z<-as.matrix(z)

M_Star<-z%*%t(z)%*%(W)

A<-diag(M_Star)

local_moran<-as.matrix(A)

list(local_moran = local_moran)

}

Local_mor<-as.matrix(Local_moran(x, W))

local_sims = matrix(NA, nrow = n, ncol=nsims)

nsims <-999
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for(i in 1:nsims){

x2<-sample(x)

local_sims[[i]] <-Local_moran(x2, W)

}

D<-as.matrix(local_sims)

D2<-lapply(D, na.omit)

#Combine lists into a dataframe:use a plyr function:

library(plyr)

df <- ldply(D2, data.frame)

# create matrix with elements

y <- matrix(df$local_moran, nrow=234, ncol=nsims )

y<-as.matrix(y)

Loc_I.count <- vector(mode="numeric", length=s)

for (i in 1:234){

Loc_I.count [i]<- sum(abs(y[i,]) >as.numeric(Local_MI[i]))

}

Loc_I.count

p_value <- Loc_I.count/(nsims+1)

#Calculate f*:

f_Star=M_Star%*%z

#The Real Spatial Weight Matrix (RSWM)- M is given by

M<-n*(wgts)

#Calculate f:

f<-M%*%z

#Calculate the error terms e_f
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e_f<-(f-f_Star)

library(nortest)

#ad.test(e_f)

shapiro.test(e_f)

#Calculate z_Star

z_Star<- (1/Global_MI)*f

#Calculate the error terms e_z

e_z<-(z-z_Star)

##Put all the variables in one file

dat<-as.data.frame(SAshp$MN_CODE)

dat$Poi_IHD11 <-SAshp$Poi_IHD11

dat$z_score <-z

dat$f <-f

dat$f_Star <-f_Star

dat$z_Star <-z_Star

dat$LISA <-A

dat$P_value <-as.vector(p_value)

library(dplyr)

dat<- dat %>%

mutate(Level1 = if_else(z > 0, ’H’, ’L’))

dat<- dat %>%

mutate(Level2 = if_else(f > 0, ’H’, ’L’))

#unite function from tidyr

require(tidyverse)

dat <- dat %>% mutate(
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Type = paste(Level1, Level2, sep = "-")

)

dat<- dat %>%

mutate(Significant = if_else(P_value > 0.05, ’No’, ’Yes’))

#Remove columns by setting them to NULL

dat$Level1 <- NULL

dat$Level2 <- NULL

## DIAGNOSTIC CHECKS OF THE RESIDUALS

# Calculate standard error between f and f_Star, s_f:

s_f<-sqrt((1/n)*t(e_f)%*%(e_f))

# Calculate standard error between z and z_Star, s_z:

s_z<-sqrt((1/n)*t(e_z)%*%(e_z))

# Histogram of standardised residuals:

b<-e_f-mean(e_f)

se<-sqrt(sum(bˆ2)/n)

z_e <- (e_f-mean(e_f))/(se)

z_e<-as.matrix(z_e)

#x11(width = 12, height = 7, pointsize = 12)

x11()

par(mfrow=c(1,2))

library(rcompanion)

plotNormalHistogram(z_e,xlab="Residuals")
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qqnorm(z_e,ylab="Sample Quantiles",main="")

qqline(z_e,col="red")

#Scatter plot

a<-max(dat$f_Star)

b<-max(dat$f)

c<-max(a,b)+1

a1<-min(dat$f_Star)

b1<-min(dat$f)

c1<-min(a1,b1)-1

a2<-max(dat$z_score)+1

b2<-min(dat$z_score)-1

x11()

library(rcompanion)

# Fit a regression line in which the intercept has been

# forced to be zero and display the line on the scattter

mC <- lm(dat$f_Star ˜dat$z_score)

plot(dat$z_score,dat$f_Star,xlim=range(c(b2,a2)),ylim=range(c(c1,c)), pch=17 ,xlab="z-scores",

ylab="f*/f values",col="red",cex.lab=0.75,lwd=2,las=1)

points(dat$z_score,dat$f,col="blue",pch=1)

abline(coef = coef(mC),col = "black",pch=4)

abline(v=0,col="black",lty=2)

abline(h=0,col="black",lty=2)

lm_coef <- round(coef(mC), 4) # extract coefficients

mtext(bquote(Index == .(lm_coef[2])),

adj=1, padj=0) # display equation

# Add a legend

legend("topright",
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legend = c("f*", "f"),

col = c("red","blue"),

pch = c(17,1),

bty = "n",

pt.cex = 2,

cex = 1.2,

text.col = "black",

horiz = F ,

inset = c(0.1, 0.1))

#sf values

s_f
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Table A.2: Classification of spatial autocorrelation based on inverse power spatial weight, α = 1.

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Matzikama 80.99 2.10 0.05 0.03 3.39 0.0005 0.0130 H-H Yes

Cederberg 74.93 1.81 0.03 0.03 1.94 0.0002 0.0390 H-H Yes

Bergrivier 77.52 1.93 -0.22 0.03 -13.69 -0.0018 0.9990 H-L No

Saldanha Bay 61.7 1.17 -0.10 0.02 -6.12 -0.0005 0.9990 H-L No

Swartland 68.23 1.48 -0.15 0.02 -9.38 -0.0009 0.9990 H-L No

Witzenberg 57.4 0.96 0.06 0.02 3.93 0.0003 0.1980 H-H No

Drakenstein 63.95 1.28 -0.11 0.02 -7.18 -0.0006 0.9990 H-L No

Stellenbosch 58.22 1.00 0.12 0.02 7.51 0.0005 0.0300 H-H Yes

Breede Valley 62.13 1.19 0.09 0.02 5.77 0.0005 0.0240 H-H Yes

Langeberg 70.48 1.59 -0.12 0.03 -7.63 -0.0008 0.9990 H-L No

Swellendam 78.05 1.96 0.08 0.03 4.71 0.0006 0.0300 H-H Yes

Theewaterskloof 59.33 1.06 0.17 0.02 10.91 0.0008 0.0190 H-H Yes

Overstrand 58.59 1.02 -0.06 0.02 -3.61 -0.0002 0.9990 H-L No

Cape Agulhas 83.21 2.21 0.06 0.04 3.63 0.0005 0.0240 H-H Yes

Kannaland 90.67 2.57 0.07 0.04 4.27 0.0007 0.0360 H-H Yes

Hessequa 92.48 2.66 -0.02 0.04 -1.35 -0.0002 0.9990 H-L No

Continued on next page
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Mossel Bay 64.27 1.29 -0.09 0.02 -5.74 -0.0005 0.9990 H-L No

George 60.08 1.09 0.10 0.02 6.27 0.0005 0.0260 H-H Yes

Oudtshoorn 83.16 2.21 0.06 0.04 3.63 0.0005 0.0460 H-H Yes

Bitou 54.09 0.80 0.11 0.01 6.96 0.0004 0.0470 H-H Yes

Knysna 66.87 1.42 0.07 0.02 4.09 0.0004 0.1090 H-H No

Laingsburg 85.9 2.34 -0.08 0.04 -5.01 -0.0008 0.9990 H-L No

Prince Albert 87.8 2.43 -0.11 0.04 -6.72 -0.0011 0.9990 H-L No

Beaufort West 73.75 1.75 -0.07 0.03 -4.50 -0.0005 0.9990 H-L No

City of Cape Town 49.53 0.58 -0.20 0.01 -12.66 -0.0005 0.9990 H-L No

Buffalo City 32.58 -0.24 -0.15 0.00 -9.68 0.0002 0.2480 L-L No

Camdeboo 66.47 1.40 -0.04 0.02 -2.49 -0.0002 0.9990 H-L No

Blue Crane Route 41.26 0.18 -0.12 0.00 -7.53 -0.0001 0.9990 H-L No

Ikwezi 56.07 0.90 -0.02 0.01 -1.00 -0.0001 0.9990 H-L No

Makana 29.58 -0.38 -0.05 -0.01 -3.01 0.0001 0.5860 L-L No

Ndlambe 39.07 0.08 0.14 0.00 8.86 0.0000 0.6970 H-H No

Sundays River Valley 30.49 -0.34 -0.12 -0.01 -7.66 0.0002 0.3000 L-L No

Baviaans 80.05 2.06 -0.05 0.03 -3.39 -0.0005 0.9990 H-L No

Continued on next page
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Kouga 63.85 1.27 -0.15 0.02 -9.10 -0.0008 0.9990 H-L No

Kou-Kamma 56.07 0.90 -0.10 0.01 -6.32 -0.0004 0.9990 H-L No

Mbhashe 13.5 -1.16 -0.13 -0.02 -8.10 0.0006 0.0780 L-L No

Mnquma 17.15 -0.98 -0.07 -0.02 -4.36 0.0003 0.1650 L-L No

Great Kei 32.62 -0.24 0.07 0.00 4.36 -0.0001 0.9990 L-H No

Amahlathi 31.81 -0.27 -0.08 0.00 -5.15 0.0001 0.5480 L-L No

Ngqushwa 32.55 -0.24 -0.11 0.00 -6.74 0.0001 0.5680 L-L No

Nkonkobe 32.34 -0.25 -0.14 0.00 -8.55 0.0001 0.4430 L-L No

Nxuba 41.98 0.22 0.04 0.00 2.26 0.0000 0.6190 H-H No

Inxuba Yethemba 42.41 0.24 -0.16 0.00 -10.05 -0.0002 0.9990 H-L No

Tsolwana 34.11 -0.16 0.04 0.00 2.36 0.0000 0.9990 L-H No

Inkwanca 26.59 -0.53 -0.07 -0.01 -4.09 0.0001 0.3890 L-L No

Lukanji 31.15 -0.31 -0.23 -0.01 -14.59 0.0003 0.2480 L-L No

Intsika Yethu 18.02 -0.94 -0.31 -0.02 -19.22 0.0012 0.0590 L-L No

Emalahleni 40.57 0.15 -0.16 0.00 -10.23 -0.0001 0.9990 H-L No

Engcobo 13.14 -1.18 0.04 -0.02 2.21 -0.0002 0.9990 L-H No

Sakhisizwe 30.95 -0.32 0.02 -0.01 1.07 0.0000 0.9990 L-H No

Continued on next page
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Elundini 16.85 -1.00 0.05 -0.02 3.40 -0.0002 0.9990 L-H No

Senqu 30.39 -0.34 0.26 -0.01 16.37 -0.0004 0.9990 L-H No

Maletswai 31.88 -0.27 -0.10 0.00 -6.23 0.0001 0.4250 L-L No

Gariep 32.78 -0.23 0.08 0.00 4.83 -0.0001 0.9990 L-H No

Ngquza Hill 11.72 -1.24 -0.06 -0.02 -3.64 0.0003 0.1290 L-L No

Port St Johns 12.29 -1.22 -0.14 -0.02 -9.01 0.0007 0.0440 L-L Yes

Nyandeni 14.69 -1.10 -0.11 -0.02 -6.61 0.0005 0.0610 L-L No

Mhlontlo 16.16 -1.03 -0.01 -0.02 -0.86 0.0001 0.5580 L-L No

King Sabata Dalindyebo 27.01 -0.51 -0.11 -0.01 -6.80 0.0002 0.2130 L-L No

Matatiele 16.25 -1.03 -0.11 -0.02 -6.91 0.0005 0.0830 L-L No

Umzimvubu 12.67 -1.20 0.12 -0.02 7.49 -0.0006 0.9990 L-H No

Mbizana 14.73 -1.10 0.14 -0.02 8.58 -0.0006 0.9990 L-H No

Ntabankulu 12.52 -1.21 -0.26 -0.02 -16.35 0.0013 0.0400 L-L Yes

Nelson Mandela Bay 38.57 0.05 -0.21 0.00 -12.97 0.0000 0.9990 H-L No

Joe Morolong 37.17 -0.02 0.13 0.00 8.34 0.0000 0.9990 L-H No

Ga-Segonyana 29.88 -0.37 -0.17 -0.01 -10.84 0.0003 0.2330 L-L No

Gamagara 35.76 -0.08 -0.13 0.00 -8.22 0.0000 0.7550 L-L No

Continued on next page
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Richtersveld 73.65 1.75 -0.25 0.03 -15.65 -0.0019 0.9990 H-L No

Nama Khoi 92.06 2.64 -0.26 0.04 -16.44 -0.0029 0.9990 H-L No

Kamiesberg 95.46 2.80 -0.03 0.05 -1.64 -0.0003 0.9990 H-L No

Hantam 93.57 2.71 -0.02 0.04 -1.52 -0.0003 0.9990 H-L No

Karoo Hoogland 91.17 2.59 0.04 0.04 2.71 0.0005 0.0340 H-H Yes

Khâi-Ma 66.83 1.42 -0.01 0.02 -0.46 0.0000 0.9990 H-L No

Ubuntu 82.98 2.20 -0.16 0.04 -9.95 -0.0015 0.9990 H-L No

Umsobomvu 46.11 0.42 -0.01 0.01 -0.36 0.0000 0.9990 H-L No

Emthanjeni 58.7 1.02 0.08 0.02 4.91 0.0003 0.0130 H-H Yes

Kareeberg 116.24 3.80 0.04 0.06 2.25 0.0006 0.0030 H-H Yes

Renosterberg 73.52 1.74 0.06 0.03 3.87 0.0005 0.0660 H-H No

Thembelihle 91.45 2.61 0.05 0.04 3.38 0.0006 0.0070 H-H Yes

Siyathemba 72.5 1.69 0.08 0.03 5.14 0.0006 0.0060 H-H Yes

Siyancuma 69.15 1.53 -0.02 0.02 -1.28 -0.0001 0.9990 H-L No

Mier 109.13 3.46 -0.08 0.06 -5.16 -0.0012 0.9990 H-L No

Kai !Garib 56.91 0.94 0.08 0.02 5.05 0.0003 0.0220 H-H Yes

//Khara Hais 62.65 1.22 -0.08 0.02 -4.74 -0.0004 0.9990 H-L No

Continued on next page
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

!Kheis 98.76 2.96 0.08 0.05 5.01 0.0010 0.0180 H-H Yes

Tsantsabane 48.82 0.55 -0.05 0.01 -2.87 -0.0001 0.9990 H-L No

Kgatelopele 42 0.22 0.13 0.00 8.18 0.0001 0.3360 H-H No

Sol Plaatjie 36.52 -0.05 0.09 0.00 5.50 0.0000 0.9990 L-H No

Dikgatlong 47.44 0.48 -0.14 0.01 -9.06 -0.0003 0.9990 H-L No

Magareng 36.68 -0.04 -0.26 0.00 -16.29 0.0000 0.8190 L-L No

Phokwane 34.81 -0.13 0.13 0.00 8.24 -0.0001 0.9990 L-H No

Letsemeng 33.4 -0.20 0.18 0.00 11.39 -0.0002 0.9990 L-H No

Kopanong 33.34 -0.20 -0.12 0.00 -7.79 0.0001 0.4470 L-L No

Mohokare 30.29 -0.35 -0.08 -0.01 -4.86 0.0001 0.4350 L-L No

Naledi 24.63 -0.62 -0.10 -0.01 -6.30 0.0003 0.2630 L-L No

Masilonyana 23.89 -0.66 -0.03 -0.01 -1.82 0.0001 0.3570 L-L No

Tokologo 32.84 -0.22 -0.02 0.00 -1.33 0.0000 0.8720 L-L No

Tswelopele 24.53 -0.63 -0.03 -0.01 -1.57 0.0001 0.4270 L-L No

Matjhabeng 25.2 -0.59 0.10 -0.01 6.49 -0.0003 0.9990 L-H No

Nala 24.72 -0.62 -0.01 -0.01 -0.49 0.0000 0.8460 L-L No

Setsoto 29.42 -0.39 0.00 -0.01 -0.25 0.0000 0.9220 L-L No

Continued on next page
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Dihlabeng 30.66 -0.33 -0.14 -0.01 -8.66 0.0002 0.2220 L-L No

Nketoana 30.67 -0.33 -0.03 -0.01 -2.08 0.0000 0.6720 L-L No

Maluti a Phofung 27.15 -0.50 0.06 -0.01 3.43 -0.0001 0.9990 L-H No

Phumelela 30.58 -0.33 -0.08 -0.01 -4.74 0.0001 0.3930 L-L No

Mantsopa 25.35 -0.59 -0.10 -0.01 -6.00 0.0002 0.2570 L-L No

Moqhaka 26.5 -0.53 0.02 -0.01 1.29 0.0000 0.9990 L-H No

Ngwathe 27.47 -0.48 -0.15 -0.01 -9.67 0.0003 0.1280 L-L No

Metsimaholo 25.54 -0.58 -0.06 -0.01 -3.76 0.0001 0.3360 L-L No

Mafube 30.24 -0.35 -0.25 -0.01 -15.61 0.0004 0.2240 L-L No

Mangaung 26.05 -0.55 -0.09 -0.01 -5.50 0.0002 0.1610 L-L No

Umzumbe 15.61 -1.06 -0.10 -0.02 -6.24 0.0004 0.0460 L-L Yes

UMuziwabantu 33.18 -0.21 -0.28 0.00 -17.68 0.0002 0.3500 L-L No

Ezingoleni 28.26 -0.45 -0.05 -0.01 -3.31 0.0001 0.4170 L-L No

Hibiscus Coast 34.65 -0.14 -0.09 0.00 -5.44 0.0001 0.6140 L-L No

Emnambithi/Ladysmith 28.81 -0.42 -0.12 -0.01 -7.34 0.0002 0.1460 L-L No

Newcastle 24.07 -0.65 -0.13 -0.01 -8.03 0.0004 0.1120 L-L No

Emadlangeni 15.6 -1.06 -0.11 -0.02 -6.58 0.0005 0.0490 L-L Yes

Continued on next page
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Dannhauser 29.41 -0.39 0.12 -0.01 7.33 -0.0002 0.9990 L-H No

Abaqulusi 28.17 -0.45 0.02 -0.01 1.35 0.0000 0.9990 L-H No

uMhlathuze 22.62 -0.72 -0.21 -0.01 -13.37 0.0007 0.0840 L-L No

Nkandla 15.78 -1.05 -0.08 -0.02 -4.81 0.0003 0.1060 L-L No

Maphumulo 16.25 -1.03 -0.05 -0.02 -3.25 0.0002 0.3440 L-L No

Vulamehlo 12.67 -1.20 -0.09 -0.02 -5.90 0.0005 0.1110 L-L No

Umdoni 37.85 0.02 -0.23 0.00 -14.71 0.0000 0.9990 H-L No

uMshwathi 28.72 -0.42 -0.07 -0.01 -4.36 0.0001 0.4190 L-L No

uMngeni 30.01 -0.36 -0.07 -0.01 -4.58 0.0001 0.5600 L-L No

Mpofana 27.88 -0.46 0.04 -0.01 2.43 -0.0001 0.9990 L-H No

Impendle 31.3 -0.30 -0.22 -0.01 -14.01 0.0003 0.3510 L-L No

The Msunduzi 26.84 -0.51 -0.11 -0.01 -7.18 0.0003 0.1470 L-L No

Mkhambathini 27.99 -0.46 0.05 -0.01 3.29 -0.0001 0.9990 L-H No

Richmond 26.77 -0.52 -0.03 -0.01 -2.03 0.0001 0.5450 L-L No

Indaka 34.83 -0.13 -0.04 0.00 -2.37 0.0000 0.8180 L-L No

Umtshezi 35.13 -0.11 0.01 0.00 0.44 0.0000 0.9990 L-H No

Okhahlamba 34.14 -0.16 -0.05 0.00 -3.42 0.0000 0.6320 L-L No

Continued on next page
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Imbabazane 33.4 -0.20 -0.08 0.00 -4.98 0.0001 0.5940 L-L No

Endumeni 32.24 -0.25 -0.07 0.00 -4.23 0.0001 0.5580 L-L No

Nqutu 33.98 -0.17 -0.12 0.00 -7.73 0.0001 0.4630 L-L No

Msinga 12.2 -1.22 0.03 -0.02 2.13 -0.0002 0.9990 L-H No

Umvoti 35.03 -0.12 0.01 0.00 0.63 0.0000 0.9990 L-H No

eDumbe 27.73 -0.47 0.12 -0.01 7.49 -0.0002 0.9990 L-H No

UPhongolo 26.58 -0.53 -0.20 -0.01 -12.55 0.0004 0.1770 L-L No

Nongoma 27.91 -0.46 -0.17 -0.01 -10.41 0.0003 0.2120 L-L No

Ulundi 27.14 -0.50 -0.09 -0.01 -5.74 0.0002 0.1960 L-L No

Umhlabuyalingana 10.71 -1.29 -0.23 -0.02 -14.71 0.0013 0.0260 L-L Yes

Jozini 13.45 -1.16 -0.13 -0.02 -8.07 0.0006 0.0820 L-L No

The Big 5 False Bay 31.89 -0.27 -0.05 0.00 -3.25 0.0001 0.4670 L-L No

Hlabisa 33.76 -0.18 -0.07 0.00 -4.51 0.0001 0.5100 L-L No

Mtubatuba 26.33 -0.54 -0.09 -0.01 -5.83 0.0002 0.1800 L-L No

Mfolozi 25.87 -0.56 -0.08 -0.01 -4.99 0.0002 0.1700 L-L No

Ntambanana 33.56 -0.19 -0.05 0.00 -2.95 0.0000 0.6790 L-L No

uMlalazi 28.78 -0.42 0.09 -0.01 5.90 -0.0002 0.9990 L-H No

Continued on next page
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Mthonjaneni 32.11 -0.26 0.03 0.00 1.83 0.0000 0.9990 L-H No

Mandeni 25.4 -0.58 -0.24 -0.01 -15.09 0.0006 0.1210 L-L No

KwaDukuza 32.28 -0.25 0.06 0.00 3.92 -0.0001 0.9990 L-H No

Ndwedwe 15.83 -1.05 -0.13 -0.02 -8.23 0.0006 0.0820 L-L No

Ingwe 15.15 -1.08 0.10 -0.02 6.45 -0.0005 0.9990 L-H No

Kwa Sani 29.74 -0.37 -0.16 -0.01 -9.80 0.0002 0.2720 L-L No

Greater Kokstad 27 -0.51 -0.13 -0.01 -8.30 0.0003 0.1500 L-L No

Ubuhlebezwe 15.41 -1.07 -0.24 -0.02 -14.83 0.0011 0.0350 L-L Yes

Umzimkhulu 15.21 -1.08 -0.13 -0.02 -8.16 0.0006 0.0240 L-L Yes

eThekwini 36.43 -0.05 -0.08 0.00 -5.28 0.0000 0.7870 L-L No

Moretele 28.65 -0.43 0.07 -0.01 4.44 -0.0001 0.9990 L-H No

Madibeng 28.96 -0.41 -0.13 -0.01 -8.43 0.0002 0.2500 L-L No

Rustenburg 26.81 -0.52 -0.18 -0.01 -11.22 0.0004 0.1630 L-L No

Kgetlengrivier 35.04 -0.12 -0.18 0.00 -11.21 0.0001 0.6010 L-L No

Moses Kotane 28.4 -0.44 -0.26 -0.01 -16.14 0.0005 0.1700 L-L No

Ratlou 36.24 -0.06 0.08 0.00 4.79 0.0000 0.9990 L-H No

Tswaing 30.82 -0.32 -0.06 -0.01 -3.44 0.0001 0.6220 L-L No

Continued on next page
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Mafikeng 26.88 -0.51 -0.16 -0.01 -9.80 0.0003 0.1350 L-L No

Ditsobotla 30.71 -0.33 0.13 -0.01 8.35 -0.0002 0.9990 L-H No

Ramotshere Moiloa 30.36 -0.34 0.13 -0.01 7.83 -0.0002 0.9990 L-H No

Naledi 37.62 0.01 -0.07 0.00 -4.40 0.0000 0.9990 H-L No

Mamusa 30.03 -0.36 -0.15 -0.01 -9.63 0.0002 0.1650 L-L No

Greater Taung 36.28 -0.06 -0.15 0.00 -9.51 0.0000 0.7070 L-L No

Lekwa-Teemane 28.14 -0.45 -0.08 -0.01 -5.27 0.0002 0.3250 L-L No

Kagisano/Molopo 35.12 -0.11 -0.11 0.00 -7.01 0.0001 0.7160 L-L No

Ventersdorp 30.51 -0.34 0.13 -0.01 8.03 -0.0002 0.9990 L-H No

Tlokwe City Council 32.02 -0.26 0.00 0.00 0.15 0.0000 0.9990 L-H No

City of Matlosana 27.57 -0.48 -0.02 -0.01 -1.38 0.0000 0.7940 L-L No

Maquassi Hills 30.98 -0.31 -0.02 -0.01 -1.45 0.0000 0.6680 L-L No

Emfuleni 25.88 -0.56 0.02 -0.01 1.15 0.0000 0.9990 L-H No

Midvaal 47.88 0.50 -0.24 0.01 -14.86 -0.0005 0.9990 H-L No

Lesedi 28.62 -0.43 0.05 -0.01 3.29 -0.0001 0.9990 L-H No

Mogale City 34.84 -0.13 0.03 0.00 1.75 0.0000 0.9990 L-H No

Randfontein 32.42 -0.24 0.03 0.00 1.72 0.0000 0.9990 L-H No
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Westonaria 30.53 -0.34 0.13 -0.01 8.22 -0.0002 0.9990 L-H No

Merafong City 28.44 -0.44 -0.02 -0.01 -1.53 0.0000 0.6450 L-L No

Ekurhuleni 32.07 -0.26 -0.14 0.00 -8.62 0.0002 0.2150 L-L No

City of Johannesburg 26.57 -0.53 0.03 -0.01 2.05 -0.0001 0.9990 L-H No

City of Tshwane 28.07 -0.46 0.08 -0.01 5.15 -0.0002 0.9990 L-H No

Albert Luthuli 27.93 -0.46 -0.01 -0.01 -0.72 0.0000 0.7590 L-L No

Msukaligwa 29.78 -0.37 0.17 -0.01 10.55 -0.0003 0.9990 L-H No

Mkhondo 32.73 -0.23 -0.09 0.00 -5.86 0.0001 0.5200 L-L No

Pixley Ka Seme 31.17 -0.31 0.08 -0.01 4.98 -0.0001 0.9990 L-H No

Lekwa 26.63 -0.52 0.15 -0.01 9.61 -0.0003 0.9990 L-H No

Dipaleseng 30.01 -0.36 0.14 -0.01 8.63 -0.0002 0.9990 L-H No

Govan Mbeki 26.53 -0.53 -0.11 -0.01 -6.60 0.0002 0.1860 L-L No

Victor Khanye 32.5 -0.24 -0.03 0.00 -1.73 0.0000 0.6850 L-L No

Emalahleni 31.7 -0.28 -0.11 0.00 -6.93 0.0001 0.3830 L-L No

Steve Tshwete 29.34 -0.39 -0.19 -0.01 -12.00 0.0003 0.2880 L-L No

Emakhazeni 30.72 -0.33 0.14 -0.01 8.90 -0.0002 0.9990 L-H No

Thembisile 21.38 -0.78 0.03 -0.01 1.61 -0.0001 0.9990 L-H No
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Dr JS Moroka 23.42 -0.68 -0.03 -0.01 -2.13 0.0001 0.4990 L-L No

Thaba Chweu 31.43 -0.29 -0.09 -0.01 -5.65 0.0001 0.3780 L-L No

Mbombela 27.51 -0.48 -0.07 -0.01 -4.13 0.0001 0.4210 L-L No

Umjindi 28.74 -0.42 -0.07 -0.01 -4.10 0.0001 0.3250 L-L No

Nkomazi 24.09 -0.65 0.05 -0.01 3.13 -0.0001 0.9990 L-H No

Bushbuckridge 25.31 -0.59 0.13 -0.01 8.19 -0.0003 0.9990 L-H No

Greater Giyani 26.11 -0.55 -0.02 -0.01 -1.47 0.0001 0.5700 L-L No

Greater Letaba 27.17 -0.50 -0.09 -0.01 -5.71 0.0002 0.2100 L-L No

Greater Tzaneen 26.62 -0.53 -0.20 -0.01 -12.58 0.0004 0.1800 L-L No

Ba-Phalaborwa 26.84 -0.51 0.10 -0.01 6.49 -0.0002 0.9990 L-H No

Maruleng 27 -0.51 -0.20 -0.01 -12.37 0.0004 0.1200 L-L No

Mutale 13.6 -1.15 -0.23 -0.02 -14.25 0.0011 0.0610 L-L No

Thulamela 25.77 -0.57 -0.04 -0.01 -2.30 0.0001 0.4120 L-L No

Musina 22.81 -0.71 -0.20 -0.01 -12.71 0.0006 0.0960 L-L No

Makhado 27.12 -0.50 -0.09 -0.01 -5.70 0.0002 0.2220 L-L No

Blouberg 28.47 -0.44 -0.28 -0.01 -17.40 0.0005 0.1510 L-L No

Aganang 32.07 -0.26 -0.20 0.00 -12.79 0.0002 0.3910 L-L No
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Table A.2 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Molemole 23.04 -0.70 -0.24 -0.01 -14.88 0.0007 0.0650 L-L No

Polokwane 27.37 -0.49 0.04 -0.01 2.41 -0.0001 0.9990 L-H No

Lepele-Nkumpi 28.29 -0.44 -0.17 -0.01 -10.87 0.0003 0.2320 L-L No

Thabazimbi 27.99 -0.46 -0.26 -0.01 -16.56 0.0005 0.1550 L-L No

Lephalale 21.92 -0.75 -0.24 -0.01 -15.04 0.0008 0.0790 L-L No

Mookgopong 25.06 -0.60 -0.19 -0.01 -11.61 0.0005 0.1380 L-L No

Modimolle 23.56 -0.67 -0.14 -0.01 -8.50 0.0004 0.1540 L-L No

Bela-Bela 25.93 -0.56 -0.29 -0.01 -18.03 0.0007 0.1030 L-L No

Mogalakwena 28.89 -0.42 -0.08 -0.01 -5.29 0.0001 0.3290 L-L No

Ephraim Mogale 27.95 -0.46 0.00 -0.01 0.28 0.0000 0.9990 L-H No

Elias Motsoaledi 28.63 -0.43 -0.02 -0.01 -1.33 0.0000 0.7750 L-L No

Makhuduthamaga 28.84 -0.42 -0.29 -0.01 -18.48 0.0005 0.1980 L-L No

Fetakgomo 27.93 -0.46 -0.07 -0.01 -4.30 0.0001 0.5850 L-L No

Greater Tubatse 24.69 -0.62 0.16 -0.01 9.82 -0.0004 0.9990 L-H No
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Table A.3: Classification of spatial autocorrelation based on negative exponential spatial weight, α = 1.

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Matzikama 80.99 2.101 0.051 0.024 4.386 0.0005 0.006 H-H Yes

Cederberg 74.93 1.808 0.034 0.021 2.942 0.0003 0.032 H-H Yes

Bergrivier 77.52 1.933 -0.140 0.023 -12.035 -0.0012 0.999 H-L No

Saldanha Bay 61.7 1.169 -0.084 0.014 -7.163 -0.0004 0.999 H-L No

Swartland 68.23 1.484 -0.119 0.017 -10.172 -0.0008 0.999 H-L No

Witzenberg 57.4 0.962 -0.002 0.011 -0.183 0.0000 0.999 H-L No

Drakenstein 63.95 1.278 -0.093 0.015 -8.007 -0.0005 0.999 H-L No

Stellenbosch 58.22 1.001 0.076 0.012 6.547 0.0003 0.035 H-H Yes

Breede Valley 62.13 1.190 0.082 0.014 6.997 0.0004 0.014 H-H Yes

Langeberg 70.48 1.593 -0.088 0.019 -7.574 -0.0006 0.999 H-L No

Swellendam 78.05 1.959 0.088 0.023 7.552 0.0007 0.004 H-H Yes

Theewaterskloof 59.33 1.055 0.081 0.012 6.926 0.0004 0.027 H-H Yes

Overstrand 58.59 1.019 -0.071 0.012 -6.092 -0.0003 0.999 H-L No

Cape Agulhas 83.21 2.208 0.033 0.026 2.804 0.0003 0.041 H-H Yes

Kannaland 90.67 2.568 0.084 0.030 7.238 0.0009 0.001 H-H Yes

Hessequa 92.48 2.655 -0.018 0.031 -1.555 -0.0002 0.999 H-L No

Continued on next page



D
isc

ussio
n

a
n

d
c

o
n

c
lu

sio
n

s
171

Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Mossel Bay 64.27 1.293 -0.099 0.015 -8.499 -0.0005 0.999 H-L No

George 60.08 1.091 0.063 0.013 5.432 0.0003 0.044 H-H Yes

Oudtshoorn 83.16 2.205 0.080 0.026 6.876 0.0008 0.002 H-H Yes

Bitou 54.09 0.802 0.100 0.009 8.577 0.0003 0.021 H-H Yes

Knysna 66.87 1.419 0.088 0.017 7.511 0.0005 0.010 H-H Yes

Laingsburg 85.9 2.338 -0.100 0.027 -8.544 -0.0010 0.999 H-L No

Prince Albert 87.8 2.430 -0.080 0.028 -6.877 -0.0008 0.999 H-L No

Beaufort West 73.75 1.751 -0.096 0.020 -8.267 -0.0007 0.999 H-L No

City of Cape Town 49.53 0.582 -0.127 0.007 -10.853 -0.0003 0.999 H-L No

Buffalo City 32.58 -0.237 -0.097 -0.003 -8.339 0.0001 0.220 L-L No

Camdeboo 66.47 1.399 -0.014 0.016 -1.222 -0.0001 0.999 H-L No

Blue Crane Route 41.26 0.182 -0.098 0.002 -8.430 -0.0001 0.999 H-L No

Ikwezi 56.07 0.897 -0.055 0.010 -4.758 -0.0002 0.999 H-L No

Makana 29.58 -0.382 -0.078 -0.004 -6.653 0.0001 0.195 L-L No

Ndlambe 39.07 0.077 0.106 0.001 9.061 0.0000 0.567 H-H No

Sundays River Valley 30.49 -0.338 -0.115 -0.004 -9.902 0.0002 0.130 L-L No

Baviaans 80.05 2.055 -0.102 0.024 -8.789 -0.0009 0.999 H-L No

Continued on next page
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Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Kouga 63.85 1.273 -0.104 0.015 -8.900 -0.0006 0.999 H-L No

Kou-Kamma 56.07 0.897 -0.065 0.010 -5.610 -0.0003 0.999 H-L No

Mbhashe 13.5 -1.158 -0.109 -0.014 -9.335 0.0005 0.009 L-L Yes

Mnquma 17.15 -0.982 -0.089 -0.011 -7.669 0.0004 0.036 L-L Yes

Great Kei 32.62 -0.235 -0.006 -0.003 -0.479 0.0000 0.879 L-L No

Amahlathi 31.81 -0.274 -0.092 -0.003 -7.868 0.0001 0.241 L-L No

Ngqushwa 32.55 -0.238 -0.079 -0.003 -6.748 0.0001 0.285 L-L No

Nkonkobe 32.34 -0.248 -0.117 -0.003 -10.028 0.0001 0.173 L-L No

Nxuba 41.98 0.217 0.046 0.003 3.972 0.0000 0.410 H-H No

Inxuba Yethemba 42.41 0.238 -0.125 0.003 -10.735 -0.0001 0.999 H-L No

Tsolwana 34.11 -0.163 -0.027 -0.002 -2.332 0.0000 0.716 L-L No

Inkwanca 26.59 -0.526 -0.082 -0.006 -6.998 0.0002 0.118 L-L No

Lukanji 31.15 -0.306 -0.116 -0.004 -9.985 0.0002 0.153 L-L No

Intsika Yethu 18.02 -0.940 -0.091 -0.011 -7.772 0.0004 0.026 L-L Yes

Emalahleni 40.57 0.149 -0.089 0.002 -7.671 -0.0001 0.999 H-L No

Engcobo 13.14 -1.176 0.020 -0.014 1.706 -0.0001 0.999 L-H No

Sakhisizwe 30.95 -0.316 0.024 -0.004 2.076 0.0000 0.999 L-H No

Continued on next page
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Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Elundini 16.85 -0.996 0.015 -0.012 1.260 -0.0001 0.999 L-H No

Senqu 30.39 -0.343 0.100 -0.004 8.597 -0.0001 0.999 L-H No

Maletswai 31.88 -0.271 -0.097 -0.003 -8.359 0.0001 0.205 L-L No

Gariep 32.78 -0.227 -0.003 -0.003 -0.263 0.0000 0.930 L-L No

Ngquza Hill 11.72 -1.244 -0.066 -0.015 -5.697 0.0004 0.033 L-L Yes

Port St Johns 12.29 -1.216 -0.083 -0.014 -7.143 0.0004 0.031 L-L Yes

Nyandeni 14.69 -1.100 -0.070 -0.013 -6.007 0.0003 0.049 L-L Yes

Mhlontlo 16.16 -1.029 -0.004 -0.012 -0.353 0.0000 0.668 L-L No

King Sabata Dalindyebo 27.01 -0.506 -0.087 -0.006 -7.442 0.0002 0.103 L-L No

Matatiele 16.25 -1.025 -0.075 -0.012 -6.393 0.0003 0.054 L-L No

Umzimvubu 12.67 -1.198 0.113 -0.014 9.689 -0.0006 0.999 L-H No

Mbizana 14.73 -1.099 0.112 -0.013 9.638 -0.0005 0.999 L-H No

Ntabankulu 12.52 -1.205 -0.088 -0.014 -7.530 0.0005 0.021 L-L Yes

Nelson Mandela Bay 38.57 0.052 -0.120 0.001 -10.326 0.0000 0.999 H-L No

Joe Morolong 37.17 -0.015 0.070 0.000 6.041 0.0000 0.999 L-H No

Ga-Segonyana 29.88 -0.367 -0.112 -0.004 -9.566 0.0002 0.117 L-L No

Gamagara 35.76 -0.083 -0.111 -0.001 -9.503 0.0000 0.519 L-L No

Continued on next page
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Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Richtersveld 73.65 1.746 -0.140 0.020 -11.993 -0.0010 0.999 H-L No

Nama Khoi 92.06 2.635 -0.135 0.031 -11.567 -0.0015 0.999 H-L No

Kamiesberg 95.46 2.799 -0.019 0.033 -1.648 -0.0002 0.999 H-L No

Hantam 93.57 2.708 -0.037 0.032 -3.143 -0.0004 0.999 H-L No

Karoo Hoogland 91.17 2.592 0.019 0.030 1.602 0.0002 0.059 H-H No

Khâi-Ma 66.83 1.417 0.002 0.017 0.151 0.0000 0.763 H-H No

Ubuntu 82.98 2.197 -0.131 0.026 -11.212 -0.0012 0.999 H-L No

Umsobomvu 46.11 0.416 -0.009 0.005 -0.757 0.0000 0.999 H-L No

Emthanjeni 58.7 1.024 0.069 0.012 5.918 0.0003 0.020 H-H Yes

Kareeberg 116.24 3.803 0.060 0.044 5.111 0.0010 0.000 H-H Yes

Renosterberg 73.52 1.740 0.088 0.020 7.591 0.0007 0.004 H-H Yes

Thembelihle 91.45 2.605 0.057 0.030 4.903 0.0006 0.001 H-H Yes

Siyathemba 72.5 1.691 0.088 0.020 7.524 0.0006 0.001 H-H Yes

Siyancuma 69.15 1.529 -0.001 0.018 -0.073 0.0000 0.999 H-L No

Mier 109.13 3.459 -0.087 0.040 -7.500 -0.0013 0.999 H-L No

Kai !Garib 56.91 0.938 0.080 0.011 6.902 0.0003 0.018 H-H Yes

//Khara Hais 62.65 1.215 -0.054 0.014 -4.606 -0.0003 0.999 H-L No

Continued on next page
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Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

!Kheis 98.76 2.959 0.066 0.034 5.693 0.0008 0.000 H-H Yes

Tsantsabane 48.82 0.547 -0.017 0.006 -1.433 0.0000 0.999 H-L No

Kgatelopele 42 0.218 0.079 0.003 6.782 0.0001 0.272 H-H No

Sol Plaatjie 36.52 -0.047 0.068 -0.001 5.836 0.0000 0.999 L-H No

Dikgatlong 47.44 0.481 -0.109 0.006 -9.320 -0.0002 0.999 H-L No

Magareng 36.68 -0.039 -0.124 0.000 -10.620 0.0000 0.723 L-L No

Phokwane 34.81 -0.129 0.110 -0.002 9.393 -0.0001 0.999 L-H No

Letsemeng 33.4 -0.197 0.110 -0.002 9.457 -0.0001 0.999 L-H No

Kopanong 33.34 -0.200 -0.105 -0.002 -8.983 0.0001 0.251 L-L No

Mohokare 30.29 -0.347 -0.032 -0.004 -2.772 0.0000 0.381 L-L No

Naledi 24.63 -0.621 -0.079 -0.007 -6.795 0.0002 0.096 L-L No

Masilonyana 23.89 -0.656 -0.052 -0.008 -4.488 0.0001 0.131 L-L No

Tokologo 32.84 -0.224 -0.087 -0.003 -7.492 0.0001 0.320 L-L No

Tswelopele 24.53 -0.626 -0.002 -0.007 -0.158 0.0000 0.880 L-L No

Matjhabeng 25.2 -0.593 0.015 -0.007 1.297 0.0000 0.999 L-H No

Nala 24.72 -0.616 -0.061 -0.007 -5.263 0.0002 0.140 L-L No

Setsoto 29.42 -0.390 -0.034 -0.005 -2.926 0.0001 0.373 L-L No

Continued on next page
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Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Dihlabeng 30.66 -0.329 -0.099 -0.004 -8.454 0.0001 0.151 L-L No

Nketoana 30.67 -0.329 -0.014 -0.004 -1.216 0.0000 0.632 L-L No

Maluti a Phofung 27.15 -0.499 0.039 -0.006 3.323 -0.0001 0.999 L-H No

Phumelela 30.58 -0.333 -0.069 -0.004 -5.879 0.0001 0.269 L-L No

Mantsopa 25.35 -0.586 -0.084 -0.007 -7.198 0.0002 0.102 L-L No

Moqhaka 26.5 -0.530 -0.012 -0.006 -0.987 0.0000 0.610 L-L No

Ngwathe 27.47 -0.483 -0.106 -0.006 -9.131 0.0002 0.071 L-L No

Metsimaholo 25.54 -0.577 -0.029 -0.007 -2.529 0.0001 0.267 L-L No

Mafube 30.24 -0.350 -0.122 -0.004 -10.430 0.0002 0.123 L-L No

Mangaung 26.05 -0.552 -0.042 -0.006 -3.633 0.0001 0.177 L-L No

Umzumbe 15.61 -1.056 -0.060 -0.012 -5.106 0.0003 0.035 L-L Yes

UMuziwabantu 33.18 -0.208 -0.125 -0.002 -10.715 0.0001 0.215 L-L No

Ezingoleni 28.26 -0.445 -0.047 -0.005 -4.000 0.0001 0.223 L-L No

Hibiscus Coast 34.65 -0.137 -0.086 -0.002 -7.417 0.0001 0.478 L-L No

Emnambithi/Ladysmith 28.81 -0.419 -0.057 -0.005 -4.923 0.0001 0.170 L-L No

Newcastle 24.07 -0.648 -0.076 -0.008 -6.562 0.0002 0.086 L-L No

Emadlangeni 15.6 -1.057 -0.062 -0.012 -5.309 0.0003 0.029 L-L Yes

Continued on next page
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Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Dannhauser 29.41 -0.390 0.105 -0.005 9.044 -0.0002 0.999 L-H No

Abaqulusi 28.17 -0.450 -0.026 -0.005 -2.229 0.0000 0.450 L-L No

uMhlathuze 22.62 -0.718 -0.083 -0.008 -7.140 0.0003 0.054 L-L No

Nkandla 15.78 -1.048 -0.087 -0.012 -7.479 0.0004 0.030 L-L Yes

Maphumulo 16.25 -1.025 -0.061 -0.012 -5.265 0.0003 0.056 L-L No

Vulamehlo 12.67 -1.198 -0.078 -0.014 -6.674 0.0004 0.024 L-L Yes

Umdoni 37.85 0.017 -0.120 0.000 -10.320 0.0000 0.999 H-L No

uMshwathi 28.72 -0.423 -0.056 -0.005 -4.825 0.0001 0.207 L-L No

uMngeni 30.01 -0.361 -0.083 -0.004 -7.104 0.0001 0.177 L-L No

Mpofana 27.88 -0.464 0.044 -0.005 3.792 -0.0001 0.999 L-H No

Impendle 31.3 -0.299 -0.115 -0.003 -9.846 0.0001 0.162 L-L No

The Msunduzi 26.84 -0.514 -0.109 -0.006 -9.377 0.0002 0.070 L-L No

Mkhambathini 27.99 -0.458 -0.011 -0.005 -0.926 0.0000 0.700 L-L No

Richmond 26.77 -0.517 -0.064 -0.006 -5.452 0.0001 0.164 L-L No

Indaka 34.83 -0.128 -0.069 -0.001 -5.877 0.0000 0.547 L-L No

Umtshezi 35.13 -0.114 -0.069 -0.001 -5.940 0.0000 0.589 L-L No

Okhahlamba 34.14 -0.162 -0.032 -0.002 -2.788 0.0000 0.620 L-L No

Continued on next page
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Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Imbabazane 33.4 -0.197 -0.074 -0.002 -6.318 0.0001 0.394 L-L No

Endumeni 32.24 -0.253 -0.076 -0.003 -6.500 0.0001 0.343 L-L No

Nqutu 33.98 -0.169 -0.076 -0.002 -6.528 0.0001 0.376 L-L No

Msinga 12.2 -1.221 -0.059 -0.014 -5.025 0.0003 0.050 L-L Yes

Umvoti 35.03 -0.119 -0.051 -0.001 -4.363 0.0000 0.641 L-L No

eDumbe 27.73 -0.471 0.104 -0.005 8.927 -0.0002 0.999 L-H No

UPhongolo 26.58 -0.526 -0.115 -0.006 -9.861 0.0003 0.066 L-L No

Nongoma 27.91 -0.462 -0.121 -0.005 -10.360 0.0002 0.071 L-L No

Ulundi 27.14 -0.500 -0.103 -0.006 -8.813 0.0002 0.092 L-L No

Umhlabuyalingana 10.71 -1.293 -0.114 -0.015 -9.807 0.0006 0.006 L-L Yes

Jozini 13.45 -1.160 -0.105 -0.014 -9.020 0.0005 0.016 L-L Yes

The Big 5 False Bay 31.89 -0.270 -0.061 -0.003 -5.267 0.0001 0.330 L-L No

Hlabisa 33.76 -0.180 -0.067 -0.002 -5.757 0.0001 0.404 L-L No

Mtubatuba 26.33 -0.539 -0.056 -0.006 -4.833 0.0001 0.128 L-L No

Mfolozi 25.87 -0.561 -0.044 -0.007 -3.742 0.0001 0.168 L-L No

Ntambanana 33.56 -0.190 -0.023 -0.002 -1.940 0.0000 0.669 L-L No

uMlalazi 28.78 -0.420 0.087 -0.005 7.490 -0.0002 0.999 L-H No

Continued on next page
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Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Mthonjaneni 32.11 -0.260 0.031 -0.003 2.668 0.0000 0.999 L-H No

Mandeni 25.4 -0.584 -0.119 -0.007 -10.166 0.0003 0.056 L-L No

KwaDukuza 32.28 -0.251 0.057 -0.003 4.867 -0.0001 0.999 L-H No

Ndwedwe 15.83 -1.046 -0.109 -0.012 -9.314 0.0005 0.011 L-L Yes

Ingwe 15.15 -1.078 0.028 -0.013 2.444 -0.0001 0.999 L-H No

Kwa Sani 29.74 -0.374 -0.074 -0.004 -6.381 0.0001 0.181 L-L No

Greater Kokstad 27 -0.506 -0.083 -0.006 -7.091 0.0002 0.118 L-L No

Ubuhlebezwe 15.41 -1.066 -0.118 -0.012 -10.083 0.0005 0.017 L-L Yes

Umzimkhulu 15.21 -1.075 -0.089 -0.013 -7.640 0.0004 0.022 L-L Yes

eThekwini 36.43 -0.051 -0.095 -0.001 -8.171 0.0000 0.687 L-L No

Moretele 28.65 -0.427 0.027 -0.005 2.284 0.0000 0.999 L-H No

Madibeng 28.96 -0.411 -0.115 -0.005 -9.850 0.0002 0.098 L-L No

Rustenburg 26.81 -0.515 -0.121 -0.006 -10.337 0.0003 0.066 L-L No

Kgetlengrivier 35.04 -0.118 -0.078 -0.001 -6.701 0.0000 0.517 L-L No

Moses Kotane 28.4 -0.439 -0.120 -0.005 -10.318 0.0002 0.081 L-L No

Ratlou 36.24 -0.060 0.033 -0.001 2.792 0.0000 0.999 L-H No

Tswaing 30.82 -0.322 -0.053 -0.004 -4.539 0.0001 0.314 L-L No

Continued on next page
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Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Mafikeng 26.88 -0.512 -0.109 -0.006 -9.307 0.0002 0.069 L-L No

Ditsobotla 30.71 -0.327 0.104 -0.004 8.916 -0.0001 0.999 L-H No

Ramotshere Moiloa 30.36 -0.344 0.103 -0.004 8.867 -0.0002 0.999 L-H No

Naledi 37.62 0.007 -0.022 0.000 -1.855 0.0000 0.999 H-L No

Mamusa 30.03 -0.360 -0.109 -0.004 -9.355 0.0002 0.124 L-L No

Greater Taung 36.28 -0.058 -0.114 -0.001 -9.753 0.0000 0.635 L-L No

Lekwa-Teemane 28.14 -0.451 -0.076 -0.005 -6.477 0.0001 0.171 L-L No

Kagisano/Molopo 35.12 -0.114 -0.064 -0.001 -5.517 0.0000 0.584 L-L No

Ventersdorp 30.51 -0.337 0.105 -0.004 9.015 -0.0002 0.999 L-H No

Tlokwe City Council 32.02 -0.264 -0.039 -0.003 -3.381 0.0000 0.436 L-L No

City of Matlosana 27.57 -0.479 -0.067 -0.006 -5.732 0.0001 0.172 L-L No

Maquassi Hills 30.98 -0.314 -0.026 -0.004 -2.219 0.0000 0.513 L-L No

Emfuleni 25.88 -0.560 0.030 -0.007 2.605 -0.0001 0.999 L-H No

Midvaal 47.88 0.502 -0.120 0.006 -10.278 -0.0003 0.999 H-L No

Lesedi 28.62 -0.428 0.073 -0.005 6.236 -0.0001 0.999 L-H No

Mogale City 34.84 -0.128 -0.060 -0.001 -5.175 0.0000 0.562 L-L No

Randfontein 32.42 -0.244 -0.025 -0.003 -2.131 0.0000 0.631 L-L No

Continued on next page
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Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Westonaria 30.53 -0.336 0.106 -0.004 9.054 -0.0002 0.999 L-H No

Merafong City 28.44 -0.436 -0.034 -0.005 -2.920 0.0001 0.320 L-L No

Ekurhuleni 32.07 -0.261 -0.082 -0.003 -6.997 0.0001 0.196 L-L No

City of Johannesburg 26.57 -0.527 0.035 -0.006 2.995 -0.0001 0.999 L-H No

City of Tshwane 28.07 -0.455 0.064 -0.005 5.471 -0.0001 0.999 L-H No

Albert Luthuli 27.93 -0.461 0.001 -0.005 0.087 0.0000 0.999 L-H No

Msukaligwa 29.78 -0.372 0.107 -0.004 9.205 -0.0002 0.999 L-H No

Mkhondo 32.73 -0.229 -0.095 -0.003 -8.136 0.0001 0.288 L-L No

Pixley Ka Seme 31.17 -0.305 0.057 -0.004 4.907 -0.0001 0.999 L-H No

Lekwa 26.63 -0.524 0.110 -0.006 9.456 -0.0002 0.999 L-H No

Dipaleseng 30.01 -0.361 0.109 -0.004 9.331 -0.0002 0.999 L-H No

Govan Mbeki 26.53 -0.529 -0.091 -0.006 -7.779 0.0002 0.099 L-L No

Victor Khanye 32.5 -0.241 -0.053 -0.003 -4.553 0.0001 0.421 L-L No

Emalahleni 31.7 -0.279 -0.109 -0.003 -9.317 0.0001 0.168 L-L No

Steve Tshwete 29.34 -0.393 -0.114 -0.005 -9.808 0.0002 0.105 L-L No

Emakhazeni 30.72 -0.326 0.107 -0.004 9.176 -0.0001 0.999 L-H No

Thembisile 21.38 -0.777 0.039 -0.009 3.318 -0.0001 0.999 L-H No

Continued on next page
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Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Dr JS Moroka 23.42 -0.679 -0.079 -0.008 -6.814 0.0002 0.076 L-L No

Thaba Chweu 31.43 -0.292 -0.071 -0.003 -6.062 0.0001 0.261 L-L No

Mbombela 27.51 -0.482 -0.065 -0.006 -5.617 0.0001 0.138 L-L No

Umjindi 28.74 -0.422 -0.026 -0.005 -2.245 0.0000 0.390 L-L No

Nkomazi 24.09 -0.647 0.042 -0.008 3.561 -0.0001 0.999 L-H No

Bushbuckridge 25.31 -0.588 0.031 -0.007 2.653 -0.0001 0.999 L-H No

Greater Giyani 26.11 -0.549 -0.035 -0.006 -3.033 0.0001 0.224 L-L No

Greater Letaba 27.17 -0.498 -0.044 -0.006 -3.773 0.0001 0.181 L-L No

Greater Tzaneen 26.62 -0.525 -0.104 -0.006 -8.960 0.0002 0.088 L-L No

Ba-Phalaborwa 26.84 -0.514 0.081 -0.006 6.938 -0.0002 0.999 L-H No

Maruleng 27 -0.506 -0.120 -0.006 -10.286 0.0003 0.066 L-L No

Mutale 13.6 -1.153 -0.099 -0.013 -8.530 0.0005 0.016 L-L Yes

Thulamela 25.77 -0.566 -0.098 -0.007 -8.438 0.0002 0.068 L-L No

Musina 22.81 -0.708 -0.115 -0.008 -9.876 0.0003 0.047 L-L Yes

Makhado 27.12 -0.501 -0.097 -0.006 -8.288 0.0002 0.090 L-L No

Blouberg 28.47 -0.435 -0.122 -0.005 -10.490 0.0002 0.076 L-L No

Aganang 32.07 -0.262 -0.116 -0.003 -9.937 0.0001 0.176 L-L No

Continued on next page



D
isc

ussio
n

a
n

d
c

o
n

c
lu

sio
n

s
183

Table A.3 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Molemole 23.04 -0.697 -0.117 -0.008 -10.020 0.0003 0.048 L-L Yes

Polokwane 27.37 -0.488 0.029 -0.006 2.524 -0.0001 0.999 L-H No

Lepele-Nkumpi 28.29 -0.444 -0.117 -0.005 -9.998 0.0002 0.081 L-L No

Thabazimbi 27.99 -0.458 -0.094 -0.005 -8.071 0.0002 0.104 L-L No

Lephalale 21.92 -0.751 -0.119 -0.009 -10.228 0.0004 0.031 L-L Yes

Mookgopong 25.06 -0.600 -0.096 -0.007 -8.273 0.0002 0.070 L-L No

Modimolle 23.56 -0.672 -0.072 -0.008 -6.149 0.0002 0.086 L-L No

Bela-Bela 25.93 -0.558 -0.101 -0.007 -8.689 0.0002 0.086 L-L No

Mogalakwena 28.89 -0.415 -0.111 -0.005 -9.540 0.0002 0.109 L-L No

Ephraim Mogale 27.95 -0.460 -0.056 -0.005 -4.766 0.0001 0.182 L-L No

Elias Motsoaledi 28.63 -0.427 -0.085 -0.005 -7.317 0.0002 0.152 L-L No

Makhuduthamaga 28.84 -0.417 -0.109 -0.005 -9.332 0.0002 0.090 L-L No

Fetakgomo 27.93 -0.461 -0.071 -0.005 -6.086 0.0001 0.170 L-L No

Greater Tubatse 24.69 -0.618 0.116 -0.007 9.985 -0.0003 0.999 L-H No
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Table A.4: Classification of spatial autocorrelation based negative exponential spatial weight, α = 2.

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Matzikama 80.99 2.101 0.085 0.044 4.098 0.0008 0.008 H-H Yes

Cederberg 74.93 1.808 0.053 0.038 2.547 0.0004 0.034 H-H Yes

Bergrivier 77.52 1.933 -0.236 0.04 -11.335 -0.0019 0.999 H-L No

Saldanha Bay 61.7 1.169 -0.109 0.024 -5.269 -0.0005 0.999 H-L No

Swartland 68.23 1.484 -0.177 0.031 -8.541 -0.0011 0.999 H-L No

Witzenberg 57.4 0.962 0.017 0.02 0.833 0.0001 0.531 H-H No

Drakenstein 63.95 1.278 -0.121 0.027 -5.804 -0.0007 0.999 H-L No

Stellenbosch 58.22 1.001 0.142 0.021 6.815 0.0006 0.023 H-H Yes

Breede Valley 62.13 1.19 0.144 0.025 6.911 0.0007 0.013 H-H Yes

Langeberg 70.48 1.593 -0.119 0.033 -5.744 -0.0008 0.999 H-L No

Swellendam 78.05 1.959 0.124 0.041 5.964 0.0010 0.004 H-H Yes

Theewaterskloof 59.33 1.055 0.143 0.022 6.883 0.0006 0.023 H-H Yes

Overstrand 58.59 1.019 -0.084 0.021 -4.046 -0.0004 0.999 H-L No

Cape Agulhas 83.21 2.208 0.074 0.046 3.562 0.0007 0.024 H-H Yes

Kannaland 90.67 2.568 0.123 0.053 5.913 0.0013 0.003 H-H Yes

Hessequa 92.48 2.655 -0.014 0.055 -0.696 -0.0002 0.999 H-L No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Mossel Bay 64.27 1.293 -0.127 0.027 -6.091 -0.0007 0.999 H-L No

George 60.08 1.091 0.123 0.023 5.934 0.0006 0.02 H-H Yes

Oudtshoorn 83.16 2.205 0.11 0.046 5.296 0.0010 0.007 H-H Yes

Bitou 54.09 0.802 0.148 0.017 7.112 0.0005 0.037 H-H Yes

Knysna 66.87 1.419 0.117 0.029 5.65 0.0007 0.024 H-H Yes

Laingsburg 85.9 2.338 -0.147 0.049 -7.067 -0.0015 0.999 H-L No

Prince Albert 87.8 2.43 -0.13 0.05 -6.253 -0.0013 0.999 H-L No

Beaufort West 73.75 1.751 -0.135 0.036 -6.473 -0.0010 0.999 H-L No

City of Cape Town 49.53 0.582 -0.223 0.012 -10.717 -0.0006 0.999 H-L No

Buffalo City 32.58 -0.237 -0.182 -0.005 -8.758 0.0002 0.22 L-L No

Camdeboo 66.47 1.399 -0.034 0.029 -1.644 -0.0002 0.999 H-L No

Blue Crane Route 41.26 0.182 -0.158 0.004 -7.593 -0.0001 0.999 H-L No

Ikwezi 56.07 0.897 -0.074 0.019 -3.561 -0.0003 0.999 H-L No

Makana 29.58 -0.382 -0.1 -0.008 -4.835 0.0002 0.328 L-L No

Ndlambe 39.07 0.077 0.156 0.002 7.509 0.0001 0.602 H-H No

Sundays River Valley 30.49 -0.338 -0.187 -0.007 -8.982 0.0003 0.171 L-L No

Baviaans 80.05 2.055 -0.151 0.043 -7.282 -0.0013 0.999 H-L No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Kouga 63.85 1.273 -0.15 0.026 -7.231 -0.0008 0.999 H-L No

Kou-Kamma 56.07 0.897 -0.116 0.019 -5.582 -0.0004 0.999 H-L No

Mbhashe 13.5 -1.158 -0.183 -0.024 -8.791 0.0009 0.024 L-L Yes

Mnquma 17.15 -0.982 -0.125 -0.02 -5.993 0.0005 0.043 L-L Yes

Great Kei 32.62 -0.235 0.007 -0.005 0.341 0.0000 0.999 L-H No

Amahlathi 31.81 -0.274 -0.133 -0.006 -6.384 0.0002 0.318 L-L No

Ngqushwa 32.55 -0.238 -0.122 -0.005 -5.847 0.0001 0.388 L-L No

Nkonkobe 32.34 -0.248 -0.211 -0.005 -10.155 0.0002 0.214 L-L No

Nxuba 41.98 0.217 0.077 0.005 3.727 0.0001 0.406 H-H No

Inxuba Yethemba 42.41 0.238 -0.22 0.005 -10.596 -0.0002 0.999 H-L No

Tsolwana 34.11 -0.163 -0.034 -0.003 -1.634 0.0000 0.807 L-L No

Inkwanca 26.59 -0.526 -0.109 -0.011 -5.257 0.0002 0.19 L-L No

Lukanji 31.15 -0.306 -0.217 -0.006 -10.442 0.0003 0.177 L-L No

Intsika Yethu 18.02 -0.94 -0.175 -0.02 -8.415 0.0007 0.037 L-L Yes

Emalahleni 40.57 0.149 -0.125 0.003 -6.013 -0.0001 0.999 H-L No

Engcobo 13.14 -1.176 0.03 -0.024 1.422 -0.0001 0.999 L-H No

Sakhisizwe 30.95 -0.316 0.037 -0.007 1.773 0.0000 0.999 L-H No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Elundini 16.85 -0.996 0.033 -0.021 1.573 -0.0001 0.999 L-H No

Senqu 30.39 -0.343 0.177 -0.007 8.511 -0.0003 0.999 L-H No

Maletswai 31.88 -0.271 -0.149 -0.006 -7.192 0.0002 0.266 L-L No

Gariep 32.78 -0.227 0.015 -0.005 0.699 0.0000 0.999 L-H No

Ngquza Hill 11.72 -1.244 -0.076 -0.026 -3.666 0.0004 0.076 L-L No

Port St Johns 12.29 -1.216 -0.16 -0.025 -7.723 0.0008 0.019 L-L Yes

Nyandeni 14.69 -1.1 -0.088 -0.023 -4.235 0.0004 0.089 L-L No

Mhlontlo 16.16 -1.029 -0.014 -0.021 -0.672 0.0001 0.542 L-L No

King Sabata Dalindyebo 27.01 -0.506 -0.118 -0.011 -5.682 0.0003 0.152 L-L No

Matatiele 16.25 -1.025 -0.096 -0.021 -4.643 0.0004 0.084 L-L No

Umzimvubu 12.67 -1.198 0.177 -0.025 8.511 -0.0009 0.999 L-H No

Mbizana 14.73 -1.099 0.175 -0.023 8.431 -0.0008 0.999 L-H No

Ntabankulu 12.52 -1.205 -0.168 -0.025 -8.07 0.0009 0.021 L-L Yes

Nelson Mandela Bay 38.57 0.052 -0.196 0.001 -9.423 0.0000 0.999 H-L No

Joe Morolong 37.17 -0.015 0.137 0 6.597 0.0000 0.999 L-H No

Ga-Segonyana 29.88 -0.367 -0.208 -0.008 -10.031 0.0003 0.138 L-L No

Gamagara 35.76 -0.083 -0.208 -0.002 -9.998 0.0001 0.581 L-L No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Richtersveld 73.65 1.746 -0.253 0.036 -12.198 -0.0019 0.999 H-L No

Nama Khoi 92.06 2.635 -0.253 0.055 -12.191 -0.0029 0.999 H-L No

Kamiesberg 95.46 2.799 -0.019 0.058 -0.929 -0.0002 0.999 H-L No

Hantam 93.57 2.708 -0.046 0.056 -2.235 -0.0005 0.999 H-L No

Karoo Hoogland 91.17 2.592 0.05 0.054 2.385 0.0005 0.029 H-H Yes

Khâi-Ma 66.83 1.417 0.002 0.029 0.083 0.0000 0.852 H-H No

Ubuntu 82.98 2.197 -0.195 0.046 -9.4 -0.0018 0.999 H-L No

Umsobomvu 46.11 0.416 -0.011 0.009 -0.513 0.0000 0.999 H-L No

Emthanjeni 58.7 1.024 0.11 0.021 5.279 0.0005 0.019 H-H Yes

Kareeberg 116.24 3.803 0.077 0.079 3.684 0.0012 0 H-H Yes

Renosterberg 73.52 1.74 0.137 0.036 6.617 0.0010 0.012 H-H Yes

Thembelihle 91.45 2.605 0.097 0.054 4.682 0.0011 0 H-H Yes

Siyathemba 72.5 1.691 0.142 0.035 6.839 0.0010 0.003 H-H Yes

Siyancuma 69.15 1.529 -0.009 0.032 -0.444 -0.0001 0.999 H-L No

Mier 109.13 3.459 -0.122 0.072 -5.855 -0.0018 0.999 H-L No

Kai !Garib 56.91 0.938 0.12 0.019 5.796 0.0005 0.025 H-H Yes

//Khara Hais 62.65 1.215 -0.086 0.025 -4.145 -0.0004 0.999 H-L No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

!Kheis 98.76 2.959 0.113 0.061 5.437 0.0014 0.001 H-H Yes

Tsantsabane 48.82 0.547 -0.038 0.011 -1.829 -0.0001 0.999 H-L No

Kgatelopele 42 0.218 0.142 0.005 6.827 0.0001 0.279 H-H No

Sol Plaatjie 36.52 -0.047 0.122 -0.001 5.849 0.0000 0.999 L-H No

Dikgatlong 47.44 0.481 -0.204 0.01 -9.829 -0.0004 0.999 H-L No

Magareng 36.68 -0.039 -0.225 -0.001 -10.846 0.0000 0.732 L-L No

Phokwane 34.81 -0.129 0.176 -0.003 8.466 -0.0001 0.999 L-H No

Letsemeng 33.4 -0.197 0.171 -0.004 8.219 -0.0001 0.999 L-H No

Kopanong 33.34 -0.2 -0.169 -0.004 -8.153 0.0001 0.322 L-L No

Mohokare 30.29 -0.347 -0.066 -0.007 -3.164 0.0001 0.383 L-L No

Naledi 24.63 -0.621 -0.106 -0.013 -5.099 0.0003 0.158 L-L No

Masilonyana 23.89 -0.656 -0.055 -0.014 -2.633 0.0002 0.261 L-L No

Tokologo 32.84 -0.224 -0.13 -0.005 -6.244 0.0001 0.393 L-L No

Tswelopele 24.53 -0.626 -0.017 -0.013 -0.797 0.0000 0.624 L-L No

Matjhabeng 25.2 -0.593 0.048 -0.012 2.293 -0.0001 0.999 L-H No

Nala 24.72 -0.616 -0.071 -0.013 -3.424 0.0002 0.247 L-L No

Setsoto 29.42 -0.39 -0.04 -0.008 -1.942 0.0001 0.51 L-L No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Dihlabeng 30.66 -0.329 -0.169 -0.007 -8.125 0.0002 0.182 L-L No

Nketoana 30.67 -0.329 -0.036 -0.007 -1.74 0.0001 0.614 L-L No

Maluti a Phofung 27.15 -0.499 0.08 -0.01 3.827 -0.0002 0.999 L-H No

Phumelela 30.58 -0.333 -0.083 -0.007 -3.99 0.0001 0.352 L-L No

Mantsopa 25.35 -0.586 -0.114 -0.012 -5.502 0.0003 0.16 L-L No

Moqhaka 26.5 -0.53 -0.013 -0.011 -0.612 0.0000 0.734 L-L No

Ngwathe 27.47 -0.483 -0.195 -0.01 -9.403 0.0004 0.086 L-L No

Metsimaholo 25.54 -0.577 -0.056 -0.012 -2.676 0.0001 0.277 L-L No

Mafube 30.24 -0.35 -0.218 -0.007 -10.471 0.0003 0.155 L-L No

Mangaung 26.05 -0.552 -0.09 -0.011 -4.341 0.0002 0.141 L-L No

Umzumbe 15.61 -1.056 -0.12 -0.022 -5.77 0.0005 0.031 L-L Yes

UMuziwabantu 33.18 -0.208 -0.23 -0.004 -11.053 0.0002 0.268 L-L No

Ezingoleni 28.26 -0.445 -0.082 -0.009 -3.931 0.0002 0.257 L-L No

Hibiscus Coast 34.65 -0.137 -0.112 -0.003 -5.402 0.0001 0.554 L-L No

Emnambithi/Ladysmith 28.81 -0.419 -0.117 -0.009 -5.648 0.0002 0.159 L-L No

Newcastle 24.07 -0.648 -0.145 -0.013 -6.992 0.0004 0.084 L-L No

Emadlangeni 15.6 -1.057 -0.12 -0.022 -5.778 0.0005 0.026 L-L Yes

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Dannhauser 29.41 -0.39 0.156 -0.008 7.484 -0.0003 0.999 L-H No

Abaqulusi 28.17 -0.45 -0.032 -0.009 -1.523 0.0001 0.588 L-L No

uMhlathuze 22.62 -0.718 -0.159 -0.015 -7.661 0.0005 0.081 L-L No

Nkandla 15.78 -1.048 -0.113 -0.022 -5.445 0.0005 0.039 L-L Yes

Maphumulo 16.25 -1.025 -0.086 -0.021 -4.141 0.0004 0.116 L-L No

Vulamehlo 12.67 -1.198 -0.126 -0.025 -6.083 0.0006 0.032 L-L Yes

Umdoni 37.85 0.017 -0.199 0 -9.583 0.0000 0.999 H-L No

uMshwathi 28.72 -0.423 -0.099 -0.009 -4.777 0.0002 0.262 L-L No

uMngeni 30.01 -0.361 -0.127 -0.008 -6.111 0.0002 0.256 L-L No

Mpofana 27.88 -0.464 0.06 -0.01 2.879 -0.0001 0.999 L-H No

Impendle 31.3 -0.299 -0.217 -0.006 -10.419 0.0003 0.201 L-L No

The Msunduzi 26.84 -0.514 -0.17 -0.011 -8.167 0.0004 0.122 L-L No

Mkhambathini 27.99 -0.458 -0.001 -0.01 -0.026 0.0000 0.985 L-L No

Richmond 26.77 -0.517 -0.074 -0.011 -3.584 0.0002 0.301 L-L No

Indaka 34.83 -0.128 -0.082 -0.003 -3.955 0.0000 0.672 L-L No

Umtshezi 35.13 -0.114 -0.09 -0.002 -4.313 0.0000 0.699 L-L No

Okhahlamba 34.14 -0.162 -0.063 -0.003 -3.026 0.0000 0.619 L-L No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Imbabazane 33.4 -0.197 -0.093 -0.004 -4.485 0.0001 0.513 L-L No

Endumeni 32.24 -0.253 -0.097 -0.005 -4.691 0.0001 0.446 L-L No

Nqutu 33.98 -0.169 -0.137 -0.004 -6.589 0.0001 0.398 L-L No

Msinga 12.2 -1.221 -0.065 -0.025 -3.115 0.0003 0.126 L-L No

Umvoti 35.03 -0.119 -0.054 -0.002 -2.591 0.0000 0.787 L-L No

eDumbe 27.73 -0.471 0.167 -0.01 8.023 -0.0003 0.999 L-H No

UPhongolo 26.58 -0.526 -0.215 -0.011 -10.365 0.0005 0.091 L-L No

Nongoma 27.91 -0.462 -0.219 -0.01 -10.526 0.0004 0.111 L-L No

Ulundi 27.14 -0.5 -0.155 -0.01 -7.475 0.0003 0.117 L-L No

Umhlabuyalingana 10.71 -1.293 -0.201 -0.027 -9.686 0.0011 0.009 L-L Yes

Jozini 13.45 -1.16 -0.164 -0.024 -7.875 0.0008 0.016 L-L Yes

The Big 5 False Bay 31.89 -0.27 -0.068 -0.006 -3.256 0.0001 0.45 L-L No

Hlabisa 33.76 -0.18 -0.076 -0.004 -3.671 0.0001 0.519 L-L No

Mtubatuba 26.33 -0.539 -0.105 -0.011 -5.061 0.0002 0.14 L-L No

Mfolozi 25.87 -0.561 -0.089 -0.012 -4.273 0.0002 0.136 L-L No

Ntambanana 33.56 -0.19 -0.04 -0.004 -1.941 0.0000 0.711 L-L No

uMlalazi 28.78 -0.42 0.121 -0.009 5.804 -0.0002 0.999 L-H No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Mthonjaneni 32.11 -0.26 0.063 -0.005 3.043 -0.0001 0.999 L-H No

Mandeni 25.4 -0.584 -0.22 -0.012 -10.568 0.0005 0.071 L-L No

KwaDukuza 32.28 -0.251 0.103 -0.005 4.96 -0.0001 0.999 L-H No

Ndwedwe 15.83 -1.046 -0.188 -0.022 -9.023 0.0008 0.022 L-L Yes

Ingwe 15.15 -1.078 0.066 -0.022 3.166 -0.0003 0.999 L-H No

Kwa Sani 29.74 -0.374 -0.138 -0.008 -6.634 0.0002 0.208 L-L No

Greater Kokstad 27 -0.506 -0.144 -0.011 -6.938 0.0003 0.149 L-L No

Ubuhlebezwe 15.41 -1.066 -0.212 -0.022 -10.212 0.0010 0.013 L-L Yes

Umzimkhulu 15.21 -1.075 -0.163 -0.022 -7.834 0.0007 0.013 L-L Yes

eThekwini 36.43 -0.051 -0.122 -0.001 -5.863 0.0000 0.734 L-L No

Moretele 28.65 -0.427 0.064 -0.009 3.098 -0.0001 0.999 L-H No

Madibeng 28.96 -0.411 -0.183 -0.009 -8.783 0.0003 0.137 L-L No

Rustenburg 26.81 -0.515 -0.212 -0.011 -10.204 0.0005 0.084 L-L No

Kgetlengrivier 35.04 -0.118 -0.147 -0.002 -7.08 0.0001 0.538 L-L No

Moses Kotane 28.4 -0.439 -0.207 -0.009 -9.956 0.0004 0.109 L-L No

Ratlou 36.24 -0.06 0.075 -0.001 3.632 0.0000 0.999 L-H No

Tswaing 30.82 -0.322 -0.09 -0.007 -4.318 0.0001 0.377 L-L No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Mafikeng 26.88 -0.512 -0.201 -0.011 -9.683 0.0004 0.083 L-L No

Ditsobotla 30.71 -0.327 0.174 -0.007 8.357 -0.0002 0.999 L-H No

Ramotshere Moiloa 30.36 -0.344 0.148 -0.007 7.11 -0.0002 0.999 L-H No

Naledi 37.62 0.007 -0.048 0 -2.313 0.0000 0.999 H-L No

Mamusa 30.03 -0.36 -0.191 -0.007 -9.214 0.0003 0.148 L-L No

Greater Taung 36.28 -0.058 -0.187 -0.001 -8.993 0.0000 0.668 L-L No

Lekwa-Teemane 28.14 -0.451 -0.098 -0.009 -4.71 0.0002 0.236 L-L No

Kagisano/Molopo 35.12 -0.114 -0.114 -0.002 -5.473 0.0001 0.624 L-L No

Ventersdorp 30.51 -0.337 0.177 -0.007 8.541 -0.0003 0.999 L-H No

Tlokwe City Council 32.02 -0.264 -0.04 -0.005 -1.923 0.0000 0.624 L-L No

City of Matlosana 27.57 -0.479 -0.09 -0.01 -4.311 0.0002 0.274 L-L No

Maquassi Hills 30.98 -0.314 -0.035 -0.007 -1.66 0.0000 0.586 L-L No

Emfuleni 25.88 -0.56 0.046 -0.012 2.21 -0.0001 0.999 L-H No

Midvaal 47.88 0.502 -0.227 0.01 -10.901 -0.0005 0.999 H-L No

Lesedi 28.62 -0.428 0.085 -0.009 4.105 -0.0002 0.999 L-H No

Mogale City 34.84 -0.128 -0.07 -0.003 -3.391 0.0000 0.723 L-L No

Randfontein 32.42 -0.244 -0.031 -0.005 -1.511 0.0000 0.719 L-L No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Westonaria 30.53 -0.336 0.15 -0.007 7.207 -0.0002 0.999 L-H No

Merafong City 28.44 -0.436 -0.057 -0.009 -2.724 0.0001 0.385 L-L No

Ekurhuleni 32.07 -0.261 -0.158 -0.005 -7.59 0.0002 0.199 L-L No

City of Johannesburg 26.57 -0.527 0.052 -0.011 2.501 -0.0001 0.999 L-H No

City of Tshwane 28.07 -0.455 0.106 -0.009 5.12 -0.0002 0.999 L-H No

Albert Luthuli 27.93 -0.461 -0.01 -0.01 -0.498 0.0000 0.787 L-L No

Msukaligwa 29.78 -0.372 0.157 -0.008 7.542 -0.0002 0.999 L-H No

Mkhondo 32.73 -0.229 -0.137 -0.005 -6.593 0.0001 0.356 L-L No

Pixley Ka Seme 31.17 -0.305 0.108 -0.006 5.207 -0.0001 0.999 L-H No

Lekwa 26.63 -0.524 0.162 -0.011 7.794 -0.0004 0.999 L-H No

Dipaleseng 30.01 -0.361 0.167 -0.008 8.042 -0.0003 0.999 L-H No

Govan Mbeki 26.53 -0.529 -0.124 -0.011 -5.958 0.0003 0.144 L-L No

Victor Khanye 32.5 -0.241 -0.058 -0.005 -2.779 0.0001 0.562 L-L No

Emalahleni 31.7 -0.279 -0.16 -0.006 -7.702 0.0002 0.243 L-L No

Steve Tshwete 29.34 -0.393 -0.216 -0.008 -10.382 0.0004 0.134 L-L No

Emakhazeni 30.72 -0.326 0.158 -0.007 7.597 -0.0002 0.999 L-H No

Thembisile 21.38 -0.777 0.057 -0.016 2.766 -0.0002 0.999 L-H No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Dr JS Moroka 23.42 -0.679 -0.105 -0.014 -5.054 0.0003 0.153 L-L No

Thaba Chweu 31.43 -0.292 -0.083 -0.006 -4.011 0.0001 0.359 L-L No

Mbombela 27.51 -0.482 -0.101 -0.01 -4.863 0.0002 0.214 L-L No

Umjindi 28.74 -0.422 -0.061 -0.009 -2.914 0.0001 0.364 L-L No

Nkomazi 24.09 -0.647 0.067 -0.013 3.211 -0.0002 0.999 L-H No

Bushbuckridge 25.31 -0.588 0.074 -0.012 3.567 -0.0002 0.999 L-H No

Greater Giyani 26.11 -0.549 -0.053 -0.011 -2.56 0.0001 0.318 L-L No

Greater Letaba 27.17 -0.498 -0.09 -0.01 -4.341 0.0002 0.187 L-L No

Greater Tzaneen 26.62 -0.525 -0.2 -0.011 -9.615 0.0004 0.096 L-L No

Ba-Phalaborwa 26.84 -0.514 0.142 -0.011 6.84 -0.0003 0.999 L-H No

Maruleng 27 -0.506 -0.205 -0.011 -9.868 0.0004 0.093 L-L No

Mutale 13.6 -1.153 -0.188 -0.024 -9.037 0.0009 0.018 L-L Yes

Thulamela 25.77 -0.566 -0.13 -0.012 -6.241 0.0003 0.102 L-L No

Musina 22.81 -0.708 -0.195 -0.015 -9.389 0.0006 0.047 L-L Yes

Makhado 27.12 -0.501 -0.133 -0.01 -6.379 0.0003 0.126 L-L No

Blouberg 28.47 -0.435 -0.219 -0.009 -10.52 0.0004 0.091 L-L No

Aganang 32.07 -0.262 -0.218 -0.005 -10.493 0.0002 0.226 L-L No

Continued on next page
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Table A.4 – continued from previous page

Municipality Ischaemic z f f∗ z∗ LISA P value Type Significant

Molemole 23.04 -0.697 -0.219 -0.014 -10.561 0.0007 0.057 L-L No

Polokwane 27.37 -0.488 0.053 -0.01 2.553 -0.0001 0.999 L-H No

Lepele-Nkumpi 28.29 -0.444 -0.216 -0.009 -10.376 0.0004 0.122 L-L No

Thabazimbi 27.99 -0.458 -0.182 -0.01 -8.769 0.0004 0.105 L-L No

Lephalale 21.92 -0.751 -0.221 -0.016 -10.655 0.0007 0.049 L-L Yes

Mookgopong 25.06 -0.6 -0.186 -0.012 -8.928 0.0005 0.08 L-L No

Modimolle 23.56 -0.672 -0.135 -0.014 -6.514 0.0004 0.092 L-L No

Bela-Bela 25.93 -0.558 -0.195 -0.012 -9.366 0.0005 0.091 L-L No

Mogalakwena 28.89 -0.415 -0.169 -0.009 -8.137 0.0003 0.132 L-L No

Ephraim Mogale 27.95 -0.46 -0.073 -0.01 -3.528 0.0001 0.3 L-L No

Elias Motsoaledi 28.63 -0.427 -0.12 -0.009 -5.798 0.0002 0.221 L-L No

Makhuduthamaga 28.84 -0.417 -0.206 -0.009 -9.934 0.0004 0.114 L-L No

Fetakgomo 27.93 -0.461 -0.102 -0.01 -4.9 0.0002 0.262 L-L No

Greater Tubatse 24.69 -0.618 0.182 -0.013 8.741 -0.0005 0.999 L-H No
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Appendix B for Chapter 5

B.1 R code for univariate and bivariate Moran’s

I using canonical approach

HEXshp <- readShapePoly("HEX61_Man3.shp",

proj4string=CRS("+proj=longlat +datum=WGS84"))

# Queen based contiguity

library(spdep)

HEX.nb<-poly2nb(HEXshp, queen=T);

HEX.wt<-nb2listw(neighbours=HEX.nb, style="W")

library("CCA")

##Y values

Y <- HEXshp@data$Y3

# X values

X <- HEXshp@data$Y3

#A function to calculate Univariate and Bivariate Moran’s I

mmi<- function(Y,X,r,HEX.nb)



Discussion and conclusions 199

{

HEXshp$Y<-Y

Y0 <- lag.listw(nb2listw(HEX.nb),HEXshp$Y)

Y1 <- scale(lag.listw(nb2listw(HEX.nb),HEXshp$Y))

X1 <- X

Y_vec <- cbind.data.frame(Y1)

X_vec <- cbind.data.frame(X1)

Zx <- scale(X_vec); Zy <- (Y_vec);

Zx<-as.matrix(Zx);Zy<-as.matrix(Zy)

n <- nrow(X_vec);p <- ncol(X_vec);

q <- ncol(Y_vec);k<-min(p,q)

#Calculate Covariances

Sx<-cov(Zx);Sxy<-cov(Zx,Zy);Syx<-t(Sxy);Sy<-cov(Zy)

#Eigenvectors

Ex<-(solve(Sx)%*%Sxy%*%solve(Sy)%*%Syx);

Ey<-(solve(Sy)%*%Syx%*%solve(Sx)%*%Sxy)

Ahat <- (as.matrix(eigen(Ey)$vectors[,1:k]));

Bhat <- (as.matrix(eigen(Ex)$vectors[,1:k]))

#Calculate Canonical variables:

#U <- Zy %*% Ahat

#V <- Zx %*% Bhat

u1 <- as.matrix(Zy) %*% as.matrix(eigen(Ey)$vectors[,1])

v1 <- as.matrix(Zx) %*% as.matrix(eigen(Ex)$vectors[,1])

# display the canonical correlations
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canon.corr <-cor(u1,v1)

canon.corr

# Calculate the CCA Coefficients

Inv_A=solve(Ahat)

rho_y1_v1<-Inv_A[1,1]*canon.corr[1]

SD_Y_lag<-sqrt(var(Y0))

SD_Y<-sqrt(var(HEXshp$Y))

SD_Ratio<-SD_Y_lag/SD_Y

mmi<-SD_Ratio*rho_y1_v1

#return(mmi)

(dmat <- cbind(rho=rho_y1_v1, SD1=SD_Y_lag,SD2=SD_Y,

SDRatio=SD_Ratio, mm_i = mmi))

}

dmat<-mmi(Y,X,r,HEX.nb)

dmat

mmi_global<-dmat[,5]

mmi_global

B.2 R code for multivariate Moran’s I using canonical

approach

HEXshp <- readShapePoly("hex61_Man_2.shp",

proj4string=CRS("+proj=longlat +datum=WGS84"))

# Queen based contiguity

library(spdep)



Discussion and conclusions 201

HEX.nb<-poly2nb(HEXshp, queen=T);

HEX.wt<-nb2listw(neighbours=HEX.nb, style="W")

library("CCA")

##Y values

Y <- HEXshp@data$Y3cY1cY2

#For calculating X values

X <- cbind.data.frame(HEXshp@data$Y2,HEXshp@data$Y3)

#A function to calculate Trivariate Moran’s I

mmi<- function(Y,X,r,HEX.nb)

{

HEXshp$Y<-Y

Y0 <- lag.listw(nb2listw(HEX.nb),HEXshp$Y)

Y1 <- scale(lag.listw(nb2listw(HEX.nb),HEXshp$Y))

n<-length(Y1)

set.seed(123)

Y2 <- r*Y1 + rnorm(n, mean = 0,sd=sqrt(1-r ˆ2))

X1 <- X[,1]

X2 <- X[,2]

Y_vec <- cbind.data.frame(Y1,Y2)

X_vec <- cbind.data.frame(X1,X2)

Zx <- scale(X_vec); Zy <- (Y_vec);

Zx<-as.matrix(Zx);Zy<-as.matrix(Zy)

n <- nrow(X_vec);p <- ncol(X_vec);

q <- ncol(Y_vec);k<-min(p,q)
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#Calculate Covariances

Sx<-cov(Zx);Sxy<-cov(Zx,Zy);Syx<-t(Sxy);Sy<-cov(Zy)

#Eigenvectors

Ex<-(solve(Sx)%*%Sxy%*%solve(Sy)%*%Syx);

Ey<-(solve(Sy)%*%Syx%*%solve(Sx)%*%Sxy)

Ahat <- (as.matrix(eigen(Ey)$vectors[,1:k]));

Bhat <- (as.matrix(eigen(Ex)$vectors[,1:k]))

u1 <- as.matrix(Zy) %*% as.matrix(eigen(Ey)$vectors[,1])

v1 <- as.matrix(Zx) %*% as.matrix(eigen(Ex)$vectors[,1])

# display the canonical correlations

# canon.corr <- sqrt(eigen(Ey)$values) Note: Do not use this

#because always positive; instead use

canon.corr <-(-1)*cor(u1,v1)

canon.corr

# Calculate the CCA Coefficients

Inv_A=solve(Ahat)

rho_y1_v1<-Inv_A[1,1]*canon.corr[1]

SD_Y_lag<-sqrt(var(Y0))

SD_Y<-sqrt(var(HEXshp$Y))

SD_Ratio<-SD_Y_lag/SD_Y
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mmi<-SD_Ratio*rho_y1_v1

#return(mmi)

(dmat <- cbind(rho=rho_y1_v1, SD1=SD_Y_lag,SD2=SD_Y,

SDRatio=SD_Ratio, mm_i = mmi))

}

r=0.6

dmat<-mmi(Y,X,r,HEX.nb)

dmat

mmi_global<-dmat[,5]

mmi_global
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APPENDIX 5.3

Table B.1: Multivariate spatial autocorrelation analysis of the hypothetical spatial
data, r = 0.1.

r = 0.1
Criterion variable Predictor variables ρyi,v1 Standard Deviations Multivariate Moran’s I

SD1 SD2 SD ratio MMI
Y1 Y2 Y3 0.6997 1.1615 1.6121 0.7205 0.5041**
Y2 Y1 Y3 0.7106 1.1157 1.6121 0.6920 0.4918**
Y3 Y1 Y2 0.7377 1.1234 1.6615 0.6762 0.4988**
Y1 Y4 Y5 -0.2018 1.1615 1.6121 0.7205 -0.1454INS

Y2 Y4 Y5 -0.3006 1.1157 1.6121 0.6920 -0.2080**
Y3 Y4 Y5 -0.2379 1.1234 1.6615 0.6762 -0.1608**

Table B.2: Multivariate spatial autocorrelation analysis of the hypothetical spatial
data, r = 0.3.

r = 0.3
Criterion variable Predictor variables ρyi,v1 Standard Deviations Multivariate Moran’s I

SD1 SD2 SD ratio MMI
Y1 Y2 Y3 0.6703 1.1615 1.6121 0.7205 0.4829**
Y2 Y1 Y3 0.6828 1.1157 1.6121 0.6920 0.4725**
Y3 Y1 Y2 0.7258 1.1234 1.6615 0.6762 0.4908**
Y1 Y4 Y5 -0.1893 1.1615 1.6121 0.7205 -0.1364INS

Y2 Y4 Y5 -0.2915 1.1157 1.6121 0.6920 -0.2017**
Y3 Y4 Y5 -0.2250 1.1234 1.6615 0.6762 -0.1521**

Table B.3: Multivariate spatial autocorrelation analysis of the hypothetical spatial
data, r = 0.5.

r = 0.5
Criterion variable Predictor variables ρyi,v1 Standard Deviations Multivariate Moran’s I

SD1 SD2 SD ratio MMI
Y1 Y2 Y3 0.6367 1.1615 1.6121 0.7205 0.4587**
Y2 Y1 Y3 0.6507 1.1157 1.6121 0.6920 0.4503**
Y3 Y1 Y2 0.7115 1.1234 1.6615 0.6762 0.4811**
Y1 Y4 Y5 -0.1761 1.1615 1.6121 0.7205 -0.1269INS

Y2 Y4 Y5 -0.2807 1.1157 1.6121 0.6920 -0.1943**
Y3 Y4 Y5 0.2108 1.1234 1.6615 0.6762 -0.1425INS
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Table B.4: Multivariate spatial autocorrelation analysis of the hypothetical spatial
data, r = 0.7.

r = 0.7
Criterion variable Predictor variables ρyi,v1 Standard Deviations Multivariate Moran’s I

SD1 SD2 SD ratio MMI
Y1 Y2 Y3 0.5913 1.1615 1.6121 0.7205 0.4260**
Y2 Y1 Y3 0.6068 1.1157 1.6121 0.6920 0.4199**
Y3 Y1 Y2 0.6902 1.1234 1.6615 0.6762 0.4667**
Y1 Y4 Y5 -0.1613 1.1615 1.6121 0.7205 -0.1162INS

Y2 Y4 Y5 -0.2654 1.1157 1.6121 0.6920 -0.1837**
Y3 Y4 Y5 -0.1933 1.1234 1.6615 0.6762 -0.1307INS

Table B.5: Multivariate spatial autocorrelation analysis of the hypothetical spatial
data, r = 0.9.

r = 0.9
Criterion variable Predictor variables ρyi,v1 Standard Deviations Multivariate Moran’s I

SD1 SD2 SD ratio MMI
Y1 Y2 Y3 0.5194 1.1615 1.6121 0.7205 0.3742**
Y2 Y1 Y3 0.5305 1.1157 1.6121 0.6920 0.3671**
Y3 Y1 Y2 0.6376 1.1234 1.6615 0.6762 0.4311**
Y1 Y4 Y5 -0.1648 1.1615 1.6121 0.7205 0.1188INS

Y2 Y4 Y5 -0.2333 1.1157 1.6121 0.6920 -0.1614INS

Y3 Y4 Y5 -0.1818 1.1234 1.6615 0.6762 -0.1229INS
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