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Abstract

Modelling with differential equations is of paramount importance as it provides pertinent insight
into the dynamics of many engineering and technological devices and/or processes. Many such
models, however, involve differential equations that are inherently nonlinear and difficult to solve.
Many numerical methods have been developed to solve a variety of differential equations that
cannot be solved analytically. Most numerical methods, however, require discretisation, lineari-
sation of the nonlinear terms and other simplifying approximations that may inhibit the accuracy
of the solution. Further, in some methods high computational complexity is involved. Due to the
importance of differential equations in modelling real life phenomena and these stated shortfalls,
continuous pursuit of more efficient solution techniques by the scientific community is ongoing.
Industrial and technological advancement are to a larger extent dependent upon efficient and
accurate solution techniques.

In this work, we investigate the use of Adomian decomposition method in solving nonlinear
ordinary and partial differential equations. One advantage of Adomian decomposition method
that has been demonstrated in literature is that it achieves a rapidly convergent infinite series
solution. The method is also advantageous in that it does not require one to linearise and
discretise the equations as is done with other numerical methods. In our investigation, among
other important examples, we will apply the Adomian decomposition method to solve selected fluid
flow and heat transfer problems. Fluid flow and heat transfer models have pertinent applications
in engineering and technology. The Adomian decomposition method will be compared with other
series solution methods, namely the differential transform method and the homotopy analysis
method. The desirable attributes of the Adomian decomposition method that are stated in
literature have been ascertained in this work and it has also been demonstrated that the Adomian
decomposition method compares favourably with the other series solution methods. It has also
been demonstrated that in some cases nonlinear complexity results in slow convergence rate of
the Adomian decomposition method.
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Chapter 1

Introduction

In this chapter an introduction to the research problem is provided. The aim, objectives of the
study and the significance of the study are also stated. The chapter concludes by giving an outline
of the dissertation.

1.1 Background of study

Quantitative descriptions for many models in physical, biological, and even social sciences are
provided through the use of differential equations. The descriptions are normally in terms of
unknown functions of one, two or more independent variables, and the relation between derivatives
with respect to those variables. If two or more independent variables are involved, the differential
equation is a partial differential equation (PDE). Otherwise, it is an ordinary differential equation
(ODE). If the relations between the unknown functions and their derivatives involved in the
equation are nonlinear, the ODE or PDE is said to be nonlinear. Nonlinear differential equations
are difficult to handle primarily because of difficulties in answering questions to do with uniqueness
and stability of solutions. The breakdown of the superposition principle due to the nonlinear terms
means that only numerical solutions can be established.

The rapid advancement of technology in the contemporary era has seen a growing need for
scientific computation in handling and analysing big data manifesting from a plethora of real
life modelling phenomena. Numerical methods for solving nonlinear ODEs and PDEs are at
the heart of many of these scientific computations [1]. Differential equations have become a
useful tool for describing these natural phenomena of science and engineering models. Therefore,
it becomes important to be familiar with all traditional and recently developed methods for
solving differential equations, and the implementation of these methods. Although many standard
methods for solving differential equations exist, more efficient methods still need to be developed
or investigated [2]. Adomian decomposition method (ADM) is one of the methods for solving
differential equations. With ADM, nonlinear problems can be solved elegantly without resorting
to linearised approximations of the equations. Another important advantage of ADM is that it is
capable of greatly reducing the size of computational work while still maintaining high accuracy
of the numerical solution [3].



1.2 Problem statement

The inability of analytical techniques to solve most nonlinear differential equations has led to the
tremendous growth in research in numerical methods. Many researchers have solved important
nonlinear models (differential equation models) using numerical techniques. However, further
refinement of solution techniques to achieve computational efficiency is still an on-going process
in the scientific community. Traditional perturbation methods provide the most versatile tools for
tackling nonlinear problems but their dependence on small parameters bears a negative limitation
on practicality. Several solution techniques that have been developed for solving nonlinear differ-
ential equation models include Runge-Kutta integration schemes, finite difference schemes, finite
element methods, variational iteration, the standard homotopy method, ADM, the homotopy
perturbation method (HPM) and the differential transform method (DTM). Although, like the
other methods, the ADM does not assure on its own the existence and uniqueness of the solu-
tion, it has proved to be a powerful semi-analytic approximation technique that achieves rapidly
convergent series with less volume of computational work [4]. It achieves solutions without any
discretization, linearization or restrictive assumptions and is mostly free from round-off errors.
ADM has thus proved to be a pertinent tool for untangling complex nonlinear problems. Of
particular interest in this study are nonlinear ODEs and PDEs arising from fluid flow phenomena.
Physical phenomena are often dominated by fluids, and as such, life would not exist without fluids
and without the behaviour that fluids exhibit. Fluid flow in varied geometries find applications in
many engineering processes and devices. Solutions to such fluid flow models contribute to the
improvement in technology that leads to the general advancement in the quality of life.

This work seeks to provide a detailed description of ADM, apply it to solve some nonlinear
ordinary and partial differential equations and to compare with other series solution methods like
the homotopy analysis method (HAM) and DTM in solving nonlinear differential equations, and
ultimately culminating in solving contemporary fluid flow problems.

1.3 Aim of the Study

The aim of this study is to investigate the application of ADM to solving some nonlinear differential
equations and to compare it with other methods like the HAM, DTM and perturbation methods.

1.4 Objectives of the study

The objectives of the study are to:
(i) Review some numerical methods for solving nonlinear differential equations.

(i) Describe the ADM.



(iii) Apply the ADM to solve nonlinear ODEs and PDEs.
(iv) Apply ADM to solve contemporary fluid flow problems.
(v) Compare ADM with other methods like the HAM, DTM and perturbation methods.

1.5 Significance of the study

Mathematical modelling, in particular modelling with differential equations, is a pertinent tool for
engineering solutions. Mathematical modelling thus contributes significantly to advancement of
technology and human civilisation. Any engineering system can be studied either experimentally
(testing and taking measurements) or theoretically (by analysis or calculations). The experimental
approach has the advantage that it deals with the actual physical system, and the desired quantity
is determined by measurement, within the limits of experimental error. However this approach
is expensive, time consuming and often impractical. The theoretical approach (including the
numerical approach) has the advantage that it is fast and inexpensive, but the results obtained
are subjected to the accuracy of the assumption, approximations, and idealisations made in the
analysis. Theoretically, differential equations are used to investigate a wide variety of problems in
science and engineering. Modelling with differential equations and solving the equations give rise
to solutions that can be interpreted to provide answers to the real life problems concerned. Since
most of the models inherently give rise to nonlinear differential equations, it becomes pertinent to
have a working knowledge of numerical methods. Numerical methods may generally be expensive
in terms of computational time and complexity. Some methods may simply fail to converge,
while some may require some discretization, linearisation and restrictive simplifying assumptions
that significantly reduce the accuracy of the solution. In this project, ADM is chosen because
it is a direct semi-analytic approach that provides solution in the form of a fast converging
series. The investigations in the application of ADM and the other methods in solving nonlinear
differential equations will contribute to the body of knowledge in applied mathematics in general
and numerical methods in particular.

1.6 Structure of the dissertation

Chapter 1

Chapter one contains the introduction, the aim and objectives of the study and the significance
of this study.

Chapter 2
This chapter contains the literature review.

Chapter 3



Perturbation methods, DTM and HAM are fully described and applied to solve selected examples
to show the effectiveness of the methods. The first objective is achieved in this chapter.

Chapter 4

In chapter 4, a detailed description of the ADM is presented and the method is applied to solve
the examples that were solved in chapter 3 using DTM and HAM. The second, third and fifth
objectives are achieved in this chapter.

Chapter 5

In chapter 5, the DTM, ADM and HAM are applied to solve selected fluid flow and heat transfer
problems, and the results are compared. The fourth and fifth objectives are achieved in this
chapter.

Chapter 6

This chapter concludes the dissertation with a general discussion, conclusions, recommendations,
limitations of the study and possible future research work.



Chapter 2

Literature Review

In this chapter we provide a succinct literature review of some of the work that has been done
by several researchers in the methods that are covered in the scope of this work.

2.1 Literature Review

Differential equations arising from fluid flow problems are mostly nonlinear and complex, and
inherent varied flow geometries add to the complexity maze. Yet successful traction provides
a rewarding fulfilment as the solutions help unlock avenues to advancement in technology and
modernity. Owing to the ubiquitous nature of fluid mechanics, applications are diverse [5]. They
include biological flow systems such as the flow of blood in warm bodies, fluid flow models
in nanotechnology, geothermal engineering, thermal insulation of buildings, chemical catalytic
reactors, petroleum reservoirs, direct contact heat exchangers, nuclear waste repositories, and
heat pipe technology. For instance, blood flow constitutive models coupled with nanotechnology
advancement has led to revolutionising the medical industry, thus contributing to longevity [6].

It thus remains relevant to upscale the pursuit of solution techniques to nonlinear differential
equations. Makinde and Rundora [7] used a semi-discretisation finite difference scheme to inves-
tigate unsteady mixed convection flow of a reactive Casson fluid in a permeable wall channel filled
with a porous medium. Rundora and Makinde [8] used the same method to solve nonlinear par-
tial differential equations modelling buoyancy effects on unsteady reactive variable properties fluid
flow in a channel filled with a porous medium. Adesanya et al. [9] used the ADM to investigate
natural convection flow of heat generating hydromagnetic couple stress fluid with time periodic
boundary conditions. Biazar [10] used the ADM to solve systems of differential equations by
converting the system into a system of ordinary differential equations, and it was demonstrated
that the ADM has the ability of solving systems of both linear and nonlinear differential equa-
tions. Tomaizeh [11] presented some modifications of the ADM and demonstrated that the ADM
solves the problem without using linearization, perturbation or any other preferable assumptions
that may change the size of the computational work while still maintaining high accuracy of the
numerical solution.

Jebari et al. [12] used the ADM to solve a nonlinear equation with exponential nonlinearity
and showed that the ADM is a very powerful and efficient method for solving different kinds of
problems arising in various fields of science and engineering and present a rapid convergence of
the solution. Odibat [13] proposed the optimized decomposition method to design a new optimal
construction of the series solution based on a linear approximation of the nonlinear equation.
They developed an efficient adaptation of the optimized decomposition method to expand the
application of the method to nonlinear PDEs. A comparison between the suggested method and



the Adomian decomposition method was made which is carried out through numerical simulation
of some test problems. Shah et al. [14] related the analytical solution of the fractional order
dispersive partial differential equations, using the Laplace-Adomian decomposition method. They
used Caputo operator to define the derivative of fractional-order. Laplace-Adomian decomposition
method solutions for both fractional and integer orders are obtained in series form, showing higher
convergence of the method they proposed. Li and Pang [15] studied the ADM including its
iterative scheme and convergence analysis. The algebraic equations and fractional differential
equations were taken as applications to illustrate ADM'’s efficiency.

The differential transform method (DTM) was first proposed by Zhou [16] in solving linear and
nonlinear initial value problems in electrical circuit analysis. Since then, several researchers applied
the method to different types of equations. For example, Chen et al. [17] applied DTM to solve
second order eigenvalue problems and the transverse vibration of a twisted beam under axial
loading. A semi-analytical solution in the form of a polynomial was obtained. Gepreel et al. [18]
studied the approximate solutions for some of nonlinear Biomathematics models via the e-epidemic
SI1I2R model characterizing the spread of viruses in a computer network and SIR childhood
disease model. They applied the reduced differential transform method (RDTM) to discuss the
analytic approximate solutions to the SI1I2R model for the spread of virus HCV-subtype and SIR
childhood disease model. Kharrat and Toma [19] presented a general framework of the DTM
for solving strongly nonlinear initial value problems represented by ordinary differential equations.
They found that DTM does not require any discretization, linearization or small perturbation and
therefore it reduces significantly the numerical computation.

Liao [20] and Abbasbandy et al. [21] developed the HAM and proved its convergence. Since
then, many researchers have used this method to solve certain classes of differential equations.
Abbasbandy [22] compared HAM and HPM in the heat transfer field and found that HAM provides
a convenient way of controling the convergence of the approximation series because it contains
the auxiliary parameter A, which is a fundamental qualitative difference in analysis between HAM
and other methods. Tan et al. [23] solved the quadratic Riccati differential equation using HAM
and compared the method with ADM , HPM and the exact solution. The authors discovered that
HPM and ADM are special cases of HAM. The auxiliary parameter /# in HAM provided them with
a convenient way to control and adjust the convergence region. This is one pertinent advantage
of HAM. Hashim et al. [24] applied HAM to derive exact and approximate analytical solutions
of both linear and nonlinear fractional initial value problems. The authors demonstrated that
ADM is a special case of HAM when they did some applications. Abbasbandy [25] applied HAM
to solve the generalised Hirota-Satsuma coupled KdV equation and compared the results with
those of ADM and HPM. It was also found that HAM provides a convenient way to control the
convergence of approximation series by adapting . Hamrelaine et al. [26] solved the 3rd-order
magnetohydrodynamic Jeffery-Hamel flow with injection or suction using HAM. They compared
HAM and Runge-Kutta method of order 4 using Mathematica software. Ghiasi [27] used HAM
to study Sakiadis flow of thixotropic fluid with the inclined Lorentz force and Newtonian heating.

DTM, ADM and HAM are all series solution methods that differ from other numerical meth-
ods in that they are direct without requiring linearisation approximation and other simplifying
assumptions that normally affect accuracy and efficiency. As related methods, it is interesting
to compare ADM, DTM and HAM in order to determine if there is significant difference in the



accuracy and the efficiency of the three methods.



Chapter 3

Review of some numerical methods

In this chapter, the perturbation methods, the DTM and the HAM are described and applied to
solve some selected examples.

3.1 Perturbation methods

3.1.1 Perturbation theory. Perturbation theory is commonly used to investigate the physical
systems that can be solved exactly but contain small perturbation parameters [28]. When solving
such systems by using perturbation theory, expansion around the perturbation parameter is in-
volved and approximates are expressed as power series of these parameters. There are two types
of perturbation methods, namely, regular perturbation method and singular perturbation method.
A regular perturbation method is one for which the perturbed problem for small, nonzero values
of € is qualitatively the same as the unperturbed problem for ¢ = 0 and a singular perturbation
method is one for which the perturbed problem is qualitatively different from the unperturbed
problem [29].

3.1.2 Asymptotic expansion of perturbation method. Following the presentation in [29],
consider a nonlinear differential equation of the form

L(z)+eN(z)=0 (3.1.1)

where x is assumed to be a function of one variable = z(t), L(x) is a linear operator which
contains derivatives in terms of ¢, N(z) is a nonlinear operator and ¢ is a small parameter.
Considering the nonlinear term in (3.1.1) to be a small perturbation and assuming that its
solution can be written as a power series in the small parameter ¢, we write

z(t) = zo(t) + exi(t) + Ema(t) + - - - . (3.1.2)

Substituting (3.1.2) into (3.1.1) and equating terms having identical powers of €, we obtain a
number of differential equations that can be integrated recursively to find the values for the
functions

xo(t), z1(t), z2(t), - - -

3.1.3 Solving nonlinear ordinary differential equations using the perturbation methods..



Example 3.1.4. Obtain a two-term expansion for the solution of the initial value problem

d
dfgy: —y=eye™,  y(0)=1. (3.1.3)

Solution 3.1.4.1. The solution y(x; €) depends on the independent variable = and the parameter

€. We will assume that the parameter ¢ dependence is of a standard power series form

y(x;€) = yo + eyr (),

where the coefficient functions yy(z) and y; () are independent of €. Substituting the expansion

into the differential equation leads to

dy() dy1 -
e + I Yo — ey = €(Yg + 2eyoyn + yi)e "

Equating coefficients of powers of ¢ on the left-hand and right-hand sides of the equation leads

to the set of equations

o) : W0 0, (o) =1

dr 0T
dy o
,0(e") : df; —y=e(y)e ™™, yi(0) = 0.

Solving the obtained differential equations we have



—z dyo
e

dr e “yo = 0,
d
@(eiwy()) = 07

/ CZc(e"’%/o) = / Odz,

= e "y = K,

= Yo = Ke".

Using the initial condition we find that K’ = 1. Thus we have

Yo = €”.

Solving the second obtained differential equation

dyl —x
% — Y1 = (yg)@ ) ?/1(0) = 07
we have
d
Ty = ()
dy o
E —lh =€,
I = ef—ldac — e—x’
d
() = (o),
d
- —e YL ey =1,
dx
d
%(eixyl) = 17

/;;(exyl) = /1d:v,

= e ‘yy=x+D,

= y; = (v + D)e".

10



By the initial condition we find that D = 0. Then we have

Yy = xe”.

Thus the two-term expansion for the solution of (3.1.3) is

y(z) = yo + e

= e* + exe”.

Example 3.1.5. Obtain a two-term expansion for the solution of

dy
+y6x,yU , MU

Solution 3.1.5.1. The solution y(x; €) depends on the independent variable = and the parameter

€. We will assume that the parameter € dependence is of a standard power series form

y(z;€) = yo + e (),

where the coefficient functions yo(x) and y;(x) are independent of €. Substituting the expansion

into the differential equation leads to

d*yo d*i dyo 2 dy1
A2 g Tt = ety

Equating coefficients of powers of € on the left and right hand sides of the equation leads to the

set of equations

d? d
0€): TR =0, wO0)=1 =20)=0,
d2y1 dyo dyl
1 — — — =
0): 5 +m =220 w@ =0, 0

11



Solving these differential equations we have

d2y0

- J0 =0
m?+1=0,
— m =1

The general solution of the 0(¢°) equation is thus

Yo = Acosx + Bsinx,

and the initial conditions yield A =1 and B = 0. Therefore

Yo = COS .

The 0(e!) equation is

Solving this differential equation using the method of undetermined coefficients , we first solve

the related homogeneous equation

to find y;,. As in the previous equation, we have

y1n = Asinx + Bcosx.

12



For the particular solution we have

y1p = Az sinz + Brcosw
yip = Asinz + Az cosx + Bcosz — Brsinz

yi, = 2Acosx — Axsinz — 2Bsinz — Brcosx

Now,
2Acosx — Axsinz — 2Bsinz — Bxcosz + Azxsinz + Brcosx = —sinz
= 2Acosx — Bxrsinz = —sinzx
1
— A=0, ,-2B=-1 B=_
Therefore
o
Y1p = 20083&.

Thus the two-term expansion for the solution is

y(x) = yo + ey

T
= cosx + €§COS$

(1)
= COST e~ ).
2

3.2 Differential transform method

For illustration of DTM, we follow [16,17]. We first consider u(x,y) which is analytic at (x,y)
and differentiated continuously in the domain of interest to give

Ur(z) = ,i, (W) : (3.2.1)

13



where Uy (z) is the transformed function, which is called the T-function in brief. The differential

transform of Uy(x) is defined as

u(z,y) = g: Ur(x)(t — to)".

Combining (3.2.1) and (3.2.2), we obtain

e =3 () e-nt

k=0

When ¢y = 0, (3.2.3) reduces to

and (3.2.2) is expressed as

u(z,y) = i_o: Uy (x)tF.

(3.2.2)

(3.2.3)

(3.2.4)

In real application, the infinite series in (3.2.4) is truncated at k = n so that u(z,y) is approxi-

mated by the finite series

u(z,y) = kzn: U (x)t".

Usually, the values of n are decided by convergence of the series coefficients. The theorems that

can be deduced from (3.2.1) and (3.2.4) follow here under.
Theorem 3.2.1. [f the original function is
u(r,y) = w(z,y) +o(z,y),
then the transformed function is
Ur(z) = W(z,y) £ V(z,y).
Theorem 3.2.2. If the original function is
u(z,y) = pu(z,y),
then the transformed function is
Ur(z) = pV(x,y).

14



Theorem 3.2.3. If the original function is

U(l'a y) = 8 g)y(i’ y)7
then the transformed function is
k+m)!
i) = 5 (o)
Theorem 3.2.4. If the original function is
dw(z,y)
U(% ?J) = Ty’
then the transformed function is
B OWy(x)
Theorem 3.2.5. If the original function is
ow(x,y,t)
u\zr, yat = a5
(@t = =0
then the transformed function is
oWy (x,
Uk(xay) = ka(x y)

Theorem 3.2.6. If the original function is

u(z,y,t) = g(x,y, t)h(z,y,t),

then the transformed function is

U(z,y,t) =>_ G(r)H(k —r).

r=0

3.3 Solving nonlinear ordinary differential equations using
the differential transform method.
Example 3.3.1. Solve the first order nonlinear differential equation
Y +y—y* =0, (33.1)

15



with the initial condition

y(0) =2

-2

using DTM. The exact solution for this problem is y(z) = .

Solution 3.3.1.1. Taking the differential transform of Equation (3.3.1) and the initial condition
respectively, we obtain

(k+ 1Y (k+1) + Y (k) - zk; Y(r)Y(k—r) =0,
(k+1)Y(k+1) = —Y (k) + zkj Y(r)Y (k).

r=0

Using the initial condition, we have

16



If k=2, 3Y(3)=-Y(2)+ f:Y(r)Y(Q —r)

r=0

=-Y(2) +Y(0)Y(2) + Y(1)Y(1) + Y (2)Y(0)

=—-3+6+4+6

=-Y3)+YO)Y(3) +Y(1)Y(2) + Y(2)Y(1) + Y (3)Y(0)

13 26 26
=+ T +6+6+
R R R

and so on. Finally, the differential inverse transform of Y} (t) gives

y(t) = > Y (k)"
k=0
13 25
=2+ 2+ 32+ P+ Tt +

3 4

Example 3.3.2. Use DTM to solve the second order nonlinear ode
y' +y* =0 (3.3.2)

with the initial conditions

y(0)=1 and vy'(0)=0.

Solution 3.3.2.1. Taking the differential transform of (3.3.2) and the initial condition respec-

17



tively, we obtain the following

(k+ 1)(k+2)Y(k+2) + i Y ()Y (k—1) =0,

r=0
k
(k+1)Y(k+1)=— Z Y(r)Y(k—r).
r=0
From the initial conditions, we have
Y(0) =1,
Y(1)=0

18



If k=2, 12Y(4)=-— ZQ:Y(r)Y@ —r)

— Y (0)Y(2) - Y()Y(1) — Y(2)Y(0)
1

1
= —0+-=
2 +2

w@:é.

If k=3, mwa:—iymyw—m

= —Y(0)Y(3) - Y(1)Y(2) = Y(2)Y(1) — Y(3)Y(0)

1 m} 0 1
12 4 12
__5
12
1
Y(6) = ——
(6) = .

19



and so on. The differential inverse transform of Y} (t) gives

e}

u(t) = v (b

1 1 1
=1t —tt— %4 ...
ST L

3.4 Solving nonlinear partial differential equations using

the differential transform method.

Example 3.4.1. Solve the first order nonlinear partial differential equation
Uy + Uy +u® =0, (3.4.1)

with the initial condition

using DTM.

Solution 3.4.1.1. Taking the differential transform of Equation (3.4.1) and the initial condition

respectively, we obtain

(l<;+1)U(k:+1)+8

(k+1DUKk+1)=—

From the initial condition, we have

20



If k=0, U= =250 - S UG-y
=0 pow)
1
T 22 4a?

U() = 4;2

If k=1, 20(2) = —agf) S U0 -1)

-2 éU(r)Uu )
U (1)

43
U(2) = 8;
If k=2 3U@) = —agf) S U@ -
_ —629(32) _U(OU(2) - U U() — U2)U(0)
3 1 1
T8zt 64zt 642t 642t
3
" 162t

21



UB) =1
If k=3 AU®4) = —agf) S UG -1)

_ _alg;a) —U(0)U(3) — UM)U(2) — U2U(L) — UB)U(0)

1 1 1 1 1

T 45 3225 3225 32° 3240

1

-

U=
If k=4, 5U(5) = _ag;4) - fj Ur)U(4 — 1)
_ _(9(;:(;4) _UO)U() — UMW) — UR)U(2) — UB)U) — U@)U(0)
5 1 1 1 1 1
T 3205 6426 6426 6426 6426 6426
5
T 6426
UG) = s

and so on. The differential inverse transform of Uy(z) gives

u(x,t) = kf: Uy (x)t*

Sl Ly ey L Ty sy
2 4?2 828 1624 3225 6426

3.5 Homotopy analysis method

Following [20, 21, 24, 30], we consider the nonlinear differential equation
Nlu(z,t)] =0, (3.5.1)

where N is a nonlinear operator, = and ¢ denote the independent variables and wu(z,t) is the
unknown function. By means of homotopy analysis method, we first construct the so-called
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zeroth-order deformation equation
(1= Q) LU (5, t;q) — wolw, £)] = g (z, ) [N[U (2, 1)] (35.2)

where ¢¢|0, 1] is the homotopy embedding parameter. L is an auxiliary linear operator, i # 0 is
an auxiliary parameter used to control the error and H(z,t) is an auxiliary function. U(z,t;q)
is an unknown function, wuy(z,t) is an initial guess. When ¢ = 0 and ¢ = 1, equation (3.5.2)
becomes

Uz, t;0) = up(z,t) and Uz, t;1) = u(z,t),

So if g varies from 0 to 1, the solution will change from ug(x,t) to the solution u(x,t). Expanding
U(z,t;q) in Taylor series with respect to ¢ gives

1 0"U(x,t;q)
.

Uz, t;q) = uo(z,t) Z lg=0q™ (3.5.3)

If L, h, H(x,t) and ug(x,t) are properly chosen, then the series (3.5.3) converges at ¢ = 1, then
we have

Uz, ;1) = up(z,t) + Y um(z,

m=0
where
1 0™U(x,t;q)
U (2, 1) = MTMZO,

which must be one of the solutions to the original equation as proved by Liao [43]. Differentiating
(3.5.2) m times with respect to ¢, then setting ¢ = 0 and diving by m!, gives the so-called m®"-
order deformation equation as,

LlUp(x,t) — Xmtm—1(z,t)] = ¢H (z,t) Ry [ty —1 (2, )],

where

_Joifm<1
Xm =V iem > 1,

and

_ 1 0™ U(x,t;q)
S =1 ognt

[NoU (2, t5.q) — ()] g -
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3.6 Solving nonlinear ordinary differential equations using

the homotopy analysis method.

Example 3.6.1. Solve the following first order nonlinear ode
v +y—y* =0,
with the initial condition
y(0) = 2.
Solution 3.6.1.1. Let L(y) = ¢'. Then yo = 2 is an initial guess.

By the so-called zeroth-order deformation equation

(1 =) LIU(x,t; q) — uo(w,t)] = gh[N[U(x, )] + L{U (z, 1)),

we have

(1= @)y () = yo(2)] = ghly'(x) + y(z) — y*(2)]. (3.6.1)
We will assume that the solution is of a standard power series form
Y =Yo+y1q+y2q” +ysq° + -

Substituting this into (3.6.1) we have

(1= )lyo + viq + 920 + y50° + - — yo) = qhlyo + viq + v50° + y30° + - + (o + 119 + 124° + ys¢’
) = (Yo + viq + ed® +ysd + )7

By the first derivative, we have

(1= @)y + 2y5q + 3y5¢° + -+ ) + (1) (v1q + ¥24° + v3¢° + - -)

= hlyh+via+ v+ s+ + o+ na + 1 +usd + ) — (o + g+ 2@ +ysd + )

+ glyy 4 250 + 3ysq® + -+ (1 + 2020 + 3ysq® + ) — 2(yo + v1q + 1207 s’ + )

(y1 + 2y2q + 3ysq® + -+ )]
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Taking ¢ = 0, we obtain

Yy =l + hyo — hyg
= h(0) + A(2) — h(2)?
— 2K — 4k
7

Yy = —2/; hdzda

= —2hx.

From the second derivative, we have

(1—q)(2ys + 6y4q + -+ ) + (=1)(yy + 2y5q + 340> + - -+ ) + (= 1) (¥ + 2yhq + 3ysq° + - --

= Ry} + 205 + 3Y4q* + -+ (Y1 + 2929 + 3ysq® + ) — 2(yo + Y1q + 2@ + ys3g® + - -
(91 + 292 + 3y3q® + -+ )] + hlyy + 2050 + 3y30° + -+ + (Y1 + 2000 + 3ys® + )
—2(yo + y1q + 2@ + ys@® + ) (1 + 2y2q + 3ysq® + - )] + hig[2y + 6yhbg + - -

+ (202 + 6ysq + -+ ) = 2(yo + 19 + v20° + ysq” + -+ ) (252 + Bysq + -+ - ).

Taking ¢ = 0, we have

2y5 — yy — Yy = 2hy; + 2hyr — dhyoy
Yo = Y1 + hyy + hyr — 2hyoys
= —2h + h(—2h) + 2h(2)(—2hx)
= —2h — 2h* + 6%
Uy = —Q/Omhdx—Z/Oxh2dm+6/0wh2xdx

= —2hx — 2R’z + 3h%a>.
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By the third derivative, we have

(1—q)(6ys+ )+ (=1) (25 + 6ysq + -+ ) + (=1)(2y + 6y3g + -+ ) + (=1)(2y2 + 6y + -+ +)
= N[22y + 6y3q + - - + (2y2 + Gysq + -+ ) — 2(yo + Y10 + Y2¢” + ysq® + -+ ) (22 + Gysg + -+ -)

—2(y1 + 2020 + 3ysq® + -+ ) (W1 + 2020 + 3ysq® + -+ )]

+ h[2u5 + 6ysq + -+ (202 + 6ysq + -+ ) — 2(Yo + v1q + v20” + ysq® + -+ )(2y2 + Bysg + - -)

— 2(y1 + 2y2q + 3ysq” + -+ ) (Y1 + 2u2q + 3ysq” + -+ )]

+ h[2y5 + 6ysq + - + (2u2 + 6ysq + -+ ) — 2(yo + 119 + v20° + Ysq” + -+ ) (252 + Bysq + -+ -)

— 2(y1 + 2y2q + 3ysq® + -+ ) (Y1 + 2424 + 3ysq® + - )]

+ hgl6y} + -
Taking ¢ = 0, gives

6y — 2y — 2y — Yy = Ghylh + 6lys — 12hyoys — 6hy;
Yy = b + Ay + hys — 2hyoys — hyi
= —2h — 2h* + 6R*x + h(—2h — 2h? + 6h*x) — 2R(2)(—2hx — 2h%x + 3h%2?)
— h(—2hz)?
= —2h — 2h* + 6R*x — 2R% — 2h° + 6R%x — 2Rh%x — 2h3x + 3h2a? 4 SRz + 8hlx

—12832% — 4R

ys — —2/ hd:n—Q/ h2dac+6/ hzxd:v—Q/ h2d:v—2/ h3da;+6/ Wrde
0 0 0 0 0 0
—2/$h2xdx—Z/xh?’xdx+S/xh%?dm—|—8/Zh2a7da:—|—8/xh3xda:
0 0 0 0 0
— 12/ mrldrdx —4/ Ra3dx
0 0
= —2h — 2R%x + 3Kz — 2R — 2R3 x + 3R — Bla? — B3 + B3P

4
+ 4R%2? + AR32? — AR2a® — §h3x3.
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We proceed in the same manner to get y4, ys5, - - - Thus the solution is given as

y(r)=yo+y1+y2 +ys+---
=2 — 2hx — 2hx — 2h%x + 3h%a? — 2h — 2R%x + 3h%x? — 2hx — 2h3x + 3R — hPa?

4
— B2 + B + AR + AR3a? — 4R%a — §h3x3 + .-

For A = —1, we obtain

y(r) =2+ 20+ 20 — 20 + 320> + 2 — 20 + 327 + 22 — 20 — 3% — 2 + 2% — 2® + 42® — 42
4
—4I3+§l’3+
13
:2+2x+3ﬁﬁL§w3+~-
which coincides with the one obtained by DTM.

Example 3.6.2. Consider the following second order nonlinear ode
y' +y* =0,
with the initial conditions

y(0)=1 and ¢'(0)=0.

Solution 3.6.2.1. Let L(y) = y”. From the initial conditions, the initial guess is found to be

yo(z) = 1. By the so-called zeroth-order deformation equation
(1= q)L[U(x,t:q) — uo(w,t)] = gh[N[U(, t)] + L[U (z,1)],
we have
(1= a)ly"(x) = yg(2)] = ahly"(2) + y*(2)]. (3.6.2)
We will assume that the solution is of a standard power series form
Y= Yo+ yid+y2a” +ysq’ + -
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Substituting this into (3.6.2) we get

(I —q)ye +vla+ o +ysa® + - — ) = ahlyg + va + v5a* + v + - -
+ (yo + 110 + v2q* +y3@® + )%

By the first derivative, we have

(1— )W) +205q +3y5 > + ) + (=) (g + v5* +yiq* + )
=Ry +yiq +ysq* +ysq° + -
+ (o + 1a + y20° + y3q® + )] + haly! + 2y5q + 3y5q® + - -

+2(yo + y1q + 20 + y3¢® + -+ ) (y1 + 2y2q + 3ysg* + ).

Taking ¢ = 0, we obtain

vl = hyy + hyg

= h(0) + hA(1)*
=h
Y1 :/x/xhda:dx
0 JO
_
2
By the second derivative, we have
(1—q)(2yy + 6ysq+ ) + (1) +2y5q + 395 ¢ + -+ ) + (1) (¥} + 2hq + 3y4q* + - -)
= hly! + 2050+ 3Y5¢° + -+ 2o + 1q + 1207 + ysa® + - ) (1 + 2400 + 3ysg” + )]
+ Alyy + 2y5q + 3y5q° + -+ 2(y0 + v1q + y20” + y3@’ + - ) (1 + 200 + 3ysq + - )]

+ hq[2ys + 6y5q + -+ 2(yo + y1q + ¥2q° + y3q> + -+ )(2y2 + 6yzq + - - -)

+2(y1 + 2y2q + 3ysq” + - ) (Y1 + 2y2q + 3ysq” + -+ +)].
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Taking ¢ = 0, we obtain

2y5 — iy — Y1 = 2hyy + 4hyo

Yy = yi + hyl + 2hyon

132

= h+ h(h) + 2h(1)(h )

//hda:da:+h//hd:cd:c+2//h2 " dede

= W%+ +#$

By the third derivative, we have

(1—q)(6ys + )+ (=1)(2y5 + 6y5q + -+ ) + (—1)(2y5 + 6ygqg + -+ ) + (—1)(2y5 + 6yzq + - -)
= h[2y5 + 6y5q + - - + 2(yo + n1q + yoa® + y3¢® + -+ )(2y2 + Bysq + -+ - )

+2(y1 + 202q + 3ysq” + -+ ) (y1 + 2520 + 3ysg® + -]

+ R[2y5 + 6ysq + -+ 2(yo + 119 + v20° + ysq® + -+ ) (252 + Bysq + - )

+2(y1 + 229 + 3ysq® + -+ ) (Y1 + 229 + 3ysq® + -]

+ h[2yy + 6y5q + -+ 2(yYo + y1q + v20® + y3q® + ) (2y2 + 6yzq + -+ +)

+2(y1 + 22q + 3ysq” + -+ ) (y1 + 2520 + 3ysg® + - -]

+ hq[6y; +
Taking ¢ = 0, gives

6y — 2y — 2y — Yo = 6hyl + 12hyoys + 6hy}

yg = y2 + hy + 2hy0y2 + h?h

x? x? x x? x? x4 x? x? xd
= A= + A + B2 hl{h— +h— +h>— 2h(1) [ A=— + h— + K>~
<2+2+12>+<2+2+12>+<)<2+2+12>

22\ 2
ey
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e oo (g2 2% ot e oo (g2 2% ot
yg_/ / <h2+h2+h12>da:dx+h/o /0 <h2+h2+h12 drdz+
T 22 o 2\ 2

2// <h2+h +h212>dxdx+h//<> drdz

. h2—4+h2—+h2—+h3—4+h3—6+h2—4+h3—4+h3x—6
o1 "2 T 360 T " 2 360 180
6
Xz
+ R et

120°

Thus the solution is

y(x)=yo+wm+y2 +ys+---

22 72 e izt A izt , a® , ,zt , 2 235
—1h h ﬁ—h—h h—ﬁ—h—ﬁ—ﬁ—h
+ + + + + 24+ 24+ 360+ + 24+ 360+ 12
6 6
h3— ﬁs— h?’—
+ + 180+ 120+
For h = —1, we obtain the solution
y@)=yo+yi+y2+ys+---
e e v N N v Y ST S S v N B 20
T I N SN e S T S A S AR
2 2+2+12 24+24+360+24 24 360+12 12 180 120+
2 ot af
S
2+12 72+

which is the same as that obtained by DTM.

3.7 Solving nonlinear partial differential equations using

the homotopy analysis method.

Example 3.7.1. Use HAM to solve the first order nonlinear partial differential equation
up + u, +u* =0, (3.7.1)

with the initial condition



Solution 3.7.1.1. Let L(y) = u/, and the initial guess uy(z,y) = 5. By the so-called zeroth-

order deformation equation
we have

(1= q)(u'(2,y) — ug(x,y)) = ha(u(x,y) + ug(z,y) + u*(2,y)). (3.7.2)

We will assume that the solution of the given differential equation is of a standard power series

form

U= ug + Uu1q + uzq® +uzq® + - .
Substituting this into (3.7.2) gives
/ / I 9 /3 / a 2 3 a
(1= q)(uy + g + upg” + uyq® + - = wg) = b (uo + urg + uag® +usg® + -+ ) + (g + wig

825( Ox
+uaq® +uzq® + -+ ) + (up + urq + uaq® + uzg® + -+ )7

From the first derivative,

(1 = q)(u) + 2uqq + 3ugq® + - ) + (= 1) (u)q + upq® + ugg® + - -)

0
:h[—(u0+u1q+uzq2+u3q3—|—---)+ u0+u1q+qu2

ot oz
+uzq® + ) + (uo + urq + uaq® + uzg® + -+ )7

0
+ hq[a(ul + 2uaq + 3uzg® + - - -)

0
+ %(m + 2uaq + 3usq® + - -+ ) + 2(ug + uyq + uxg?

+usq® + - ) (ur + 2upq + 3usq® + -]
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Take ¢ = 0 to get

/ 0 0
ulzh;°+h£+hg
0 /1 1\2
=h(0)+hA—[— h{—
(0) + ox <2x>+ (2:c>
__h
222 42
_
Y2
t R
Ul__()@dt
_
42

From the second derivative,

(1 = q)(2uy + 6uzq + - ) 4 (=1)(uy + 2ung + 3uzg® + -+ ) + (= 1) (u) + 2unq + 3usq® + )

B, B
= h[ = (ur + 2uaq + Busq® + -+ ) + o (ur + 2uzq + Busq® + -+ ) + 2(ug + wrq + uzq® + usq’

ot Ox
9]
+ o) (ug + 2uaq + 3uzg® + - -+ )] —|—h[a(u1 + 2u9q + 3uzg® + )
9]
+ £<UI + 2usq + 3uzq® + -+ ) + 2(ug + urq + uq® + uzq® + - ) (ug + 2uzq + 3uzg® + -+ -]
9] 0
+ hQ[a(2U2 + 6ugqg + -+ ) + £(2u2 + 6uzq + -+ ) + 2(up + urq + uzq?

+usq® + - ) (2ug + 6uzq + - -+ ) 4 2(up + 2uoq + 3usg® + - - - ) (uy + 2upq + 3usg® + - ).

Taking ¢ = 0, we get

p ou ou
2uy = 2u} + 2716—; - 27?(9—$1 + 4huguy

/ ou ou
Uy = Uy + ha—tl + ha—; + 2huguy

/ h 0 h 0 h 1 h

S Y A ) Y (NS U7 (G (.
b 42 + ot ( 42 > * ox ( 42 ) + (2x> < 42 )
h h? h?

4o2  4g2 | 43

t h t K2 t K2
— [ g [y /—w
04x2x o4x2x+o43:3 o
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hooom R,
t+ 12

T T 2 T

From the third derivative,

(1 —q)(6ug 4 ---) 4+ (=1)(2uy + 6ugqg + - - - ) + (—1)(2uy + 6ugq + - -+ ) 4+ (—1)(2uy + 6ugqg + - - -)

0
= h[a<2U2 + 6U3q + - )

0
+ %(21@ + 6usq + - - ) + 2(up + u1q + uzq?

4+ usq® + - ) (2ug + 6usq + - -+ ) 4 2(uy + 2uaq + 3usg® + - - - ) (uy + 2usq + 3usg® + - - )]

0
+ h[a(ZUQ + 6u;;q + - )

0
%(21@ + 6usq + -+ ) + 2(ug + urq + uzq?

4 usq® + - ) (2ug + 6usq + - -+ ) 4 2(uy + 2uaq + Busg® + - - - ) (uy + 2usq + Susg® + - - )]

+

0
+ h[a(qu + 6u;;q + - )

0
+ %(21@ + 6u9,q + - ) + 2<UO + u1q + u2q2

4 usq® + - ) (2ug + 6usq + - -+ ) 4 2(uy + 2uaq + 3usg® + - - - ) (uy + 2usq + 3usg® + - - )]

0
+hq[&(6u;g+~-)+---

Taking ¢ = 0, we get

6uy = 6uly + 6

Ouz | 622

5 + 6h% + 12hugus + 6hu%
ou ou
ug = uh + ha—; + ha—; + 2huguy + hu?
_i_ﬁ+ﬁt+hg _it_ﬁt+ﬁt2 —i—ﬁé _i ﬁt—l—ﬁﬁ +
42 4z?2  A4x3 ot 42 42 83 ox 42 42 83

(L) Chom N Y
2z 42 42 3 42
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42 A4x?2 43 223 Sz

1 h 72 h2 B\’
M —) [t — ——t+ -t —
h (2:5) ( 4x2t 4x2t+ 81:3t ) +h< 4x2t>

/ h n? h? n? n? n? n? n? 3n3

, h h? h? h h? h? h h? 3% ,
Uy == m ot b fi | — s =+ ——t | + B et ——t — — 1] +
3 T 223

- D D
Ys 42 Ax?2  A4x3 422 Ax? + 4a3 * 213 + 223 S *
h? h? R, R,
- —t— —t+ —t te.
43 43 + Sz + 1624
t h t K2 t h2 t h2 t j3 t j3 t K2
SR A (T AL / at— [ g [ / vt / 2yt
s 0 4x? 0o 4x? + o 4x3 o 4x? 0o 4x? + o 4x3 * 0 23
t B3 t 3p3 t K2 t B3 t B3 t p3
—tdt — | —t*dt — | —tdt — / ——tdt / ——2dt t2dt
+/0 213 o Szt o 43 o 4x3 + 0o Szt + o 16z4
ht h2t+ h2t2 h2t h3t+ h3t2+h2t2+h3t2 h3t3
U = ——[ — —— _— _—1 — — _— _— _— _—— —_
3 42 42 83 42 A2 Sz3 43 43 St
h? K3 h3 K3
— P 4 3+ 3, ete.

83 83 244 484

Thus the solution is given as

u(x,t) =Upt+ U +Us+ U3+ -
1 h h h? h? h h? h? h? 3 n?

=5~ 1 —@t—@H—@t?—@t—@t—l—@ﬂ—@t—@t—l—@ﬁ
2 3 3 2 3 3 3
+ 4713152 + 47;3# — 87;4&” — 87;3t2 — 87;39 + 2Zx4t3 + 4Zx4t3 + -
For h = —1, we obtain the solution
u(w,t) = LI SIS SPRRNE SN I S VS I . S SR SV I
2¢  4x? 42 42 813 422 422 813 42 422 813
Ll et e e L s

t —_
43 43 x4 83 83 2474 48x4

It again coincides with that obtained by DTM.

Example 3.7.2. Use HAM to solve the modified Korteweg de-Vries (mKdV) equation
up — 6uty + Uppy = 0
with the initial condition

u(z,0) = .
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This equation models a variety of nonlinear wave phenomena such as shallow water waves, acoustic

waves in a harmonic crystal, and ion-acoustic waves in plasmas. It thus has important applications.

Solution 3.7.2.1. Let L(y) = u', and the initial guess given by ug(z,y) = .

By the so-called zeroth-order deformation equation
(1= @)L[U(z,t;q) — uo(x,t)] = ¢hH(x,t)[N(z,1)],
we have
(1—q)(u — uy) = hig(uy — 6u*uy + Ugag). (3.7.3)

We will assume that the solution of the given differential equation is of a standard power series

form

u=up+ urq +usq’ + usq’ 4 - .

Substituting this into (3.7.3) gives

/ / / / / a
(1= q)(ug + tyq + ugg® + ugq® + - -+ —ug) = hq(a(uo +urq 4+ ugq® +usg® +---)
0
— 6(uo + urq + u2q® + usq’ + - - )2%(% +u1q + uaq” + usq’ + - -)
3
+ 7(U0 +u1q+u2q2 + u3q3 + .. ))

Ox3
From the first derivative,
(1 — q)(uy + 2upq + 3ugq® + -+ ) + (= 1) (u)q + tung® + uzg® + -+ )

0
= Rl (uo + wrq + usq® +uzq® + -+ ) — 6(ug + urq + uag® + uzg’ + -+ )’

ot
0 ) 5 3 , ,
%(uo—I—mq—I—mq + usq +...)+%(uo+u1q+u2q +uzq® + )]

0
o+ gl + 2ugq + Busq® 4 ---) = 12(u0 + g+ wzg” + usg’® + ) (s + 2uaq + Busg’ + -
0 9
%(Uo+u1q+wq2+u3q3—6(u0+mq+u2q2+u3q3+...)2%@1+2u2q+3u3q2+m)

3
+%(U1+2u2q—{—3u3q2+)]
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Taking ¢ = 0, we get

From the second derivative,

(1 — q)(2uy 4 6ugg + - - - ) + (= 1) (uy + 2unq + 3usq® + -+ ) 4+ (=1)(uy + 2usq + 3usq® + )

0
:2h[&(u1+2qu+3U3q2+---)—12(u0~|—u1q~|—uzq2+u;;q3+---) uy + 2usq + 3uzg® + -+ )
0
%(u0+u1q+qu2+u3q3+---)—6(u0~|—u1q—|—u2q2+u3q3—|—~--)2%(u1+2qu—|—3u3q2+---)
03 9 0
—l——(u1+2qu+3U3q —|—"')]+h(][*(2U2+6U3(]+"‘)

ox3 ot
_ 2 2 0 2 3
12(uy + 2upq + 3uzq”™ + -+ +) ax(U0+U1Q+U2Q +uzq” + -+ -)
’ ’ 8
_12(UO+U1Q+U2Q2+U3q3+“')(2u2+6u3q+---)%(u0+u1q+u2q2+u3q3_|_...)
0
_12<u0+“1Q+“2q2+“3q3+“')(ul+2U2Q+3U3q2+"')%(U1+2qu+3U3q2+-“)
0
_12(U0+U1Q+u2q2+U3q3—|—--~)(u1—|—2u2q+3u3q2—|—~-)%(u1+2u2q+3u3q2+...)

a ! !/ 83 / /
— 6(uo + urq + usg® + uzg’ + - -- )2%(2% +6ugq +---) + @(2% + 6ugg + -+ )]

Taking ¢ = 0, we obtain

8u1 (9u0 28'&1 83’&1
UL gy 20— 620"
gr ety T Ol s

2y — 2u) = 2h [
uy = 6%t + h /0 t[6x2 — 122(62%t) — 62%(12xt)]dt
= 627t + h/ot[6x2 — 722% — 722°t]dt
= 62°t — 62°t + 362°t* + 362°1>

= 72232,
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The third derivative gives

(1 —q)(6ug 4+ ) 4+ (—1)(2uy + 6ugq + - - - ) + (—1)(2uy + 6ugq + - - - ) 4+ (—1)(2uy + 6ugqg + - - -)

0 0
= 3h[= (2ug + 6usq + - -+ ) — 12(uy + 2ugq + 3usq® + - -+ )2 =—(ug + u1q + ugq® +usg® +---)

ot ox
0
—12(up + u1q + u2q” + usg® + - - )(2us + Gugg + - - - )5 (o + g + Upg® +usq® + )
0
— 12(up + urq + uaq® + uzq® + -+ ) (ug + 2u9q + 3uzg® + - - - )%(u1 + 2upq + 3usq® + -+ +)
0
- 12(u0+u1q+qu2+u3q3~|—---)(u1+2u2q+3u3q2+~--)%(u1+2qu+3u3q2+---)
2 3 5 0 0
—G(UQ—I-U;[C]—I-UQC] +U3q +) %(QUQ+6U3Q+"')+@(21L2+6U3q+"‘>]
+ hq[6us + - - -
Taking ¢ = 0, we obtain
’ ’ 8u2 2 0u0 8u0 6u1 8u1 2 (‘91,@ 63U2
6U3 — 6U,2 =3h l2at — 12U1% — 24U0U287 — 12UOU1% — 12UOU1a7 — 12“087 + 2 ax3

uz = 720> + ;h /0 t (28827 — 12(62%)? — 24x(722%t%) — 122(62°t) (122t) — 122(62°t) (12x)
— 122%(2162t?) + 864t%]dt
= 7221 + ;h /0 t[288m3t — 43227 — 17282 * — 8642t — 8642t — 25922 * + 864t%|dt
= 72032 + ;h /0 128827 — 6480242 + 86412t
= 720% + i /0 14423 — 3240202 + 4322t
= 72237 + R[7223t% — 108023 + 144¢°]
= 722°1% — 722 + 10802*® — 144¢°

= 1080zt — 144¢, etc.
Thus the solution is

u(z,y) = ug + uy +ug + uz + - - -
=+ 622t + 7223t + 7223t% — 7223t% + 10802 > — 1443 + - - -

= 2 + 622t + 72232 + 108024 — 144¢3 + - -
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Example 3.7.3. Solve the following nonlinear partial differential equation
Uyy + Uplgy = 2,
with the initial conditions
w(xz,0) =0 and uy(z,0)=ux.

Solution 3.7.3.1. Let L(y) = u, and initial guess uo(z,y) = zy.
By the so-called zeroth-order deformation equation

(1= q)L[U(x,t;q) — uo(,t)] = ghH (z,t)[N(z,1)],
we have

(1-— q)(u”(x, y) — ug (,y)) = hq(uyy + Ugtizy — 2). (3.7.4)

We will assume that the solution of the given differential equation is of a standard power series

form

u = g+ u1q + ugq® + uzg® + - - - .

Substituting this into (3.7.4) gives

1 1 1" 1 1" 82 a
(1= q)(ug + w1 g+ uy@® +ugq® + -+ —uy) = ﬁfJ(aTJg(uo +urq + upq® +uzg® + -+ ) + 55 (o T ug

2

0
+U2q2+U3q3+"')@(U0+U1Q+U2q2+U3q3+"‘)—2)-
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From the first derivative,

(1 — q)(u) + 2ugq + 3uzq® + -+ ) + (= 1) (u)q + upq® +uzq® +---)
2

0
= h[aTJg(Uo +urq + usq® + uzg® + -+ ) + 87:70(“0 + u1q + uzq?

32
+U3q3+"‘)@(quruquruzqz+u3q3+--~)—2]
2
+ hQ[@(ul + 2usq + 3uzq® + - +)
+a( + 2uaq + 3usq’ + )82( + u1q + Usg”
o 1q 29 39 o2 o 1q 29
82

)
3 ... —_— 2 3 .« o o —
+ugg’ + )]+ . (uo + u1q + u2q” + usq” + )&E2 (u1

+ 2usq + 3uzq® + - - )]

Take ¢ = 0 to get

82u0 @UQ @ZUO
02 +h8x Ox? - 2h

= 7(0) + R(0)(0) — 2h

= —2h.
Yoy
ulz/ / —2hdydy
0o Jo
——ﬁyQ

"
uy, =h

From the second derivative,

(1 — q)(2uy + 6usq+ -+ ) + (=1)(u; + 2upq + 3usq® + ) + (=1)(u] + 2uyq + usq® + - -)
h[aQ( + 2uaq + 3usq® + -+ +)
= h|=—=(u U U
Oy? 1 29 39
2

@(UO‘Fulq‘Fuqu—i‘Usqg‘i‘"’)

0
+%(u1 + 2uoq + 3uzg® + - )

9 2 3
+ax(uo+u1q+uzq +uzq® 4+ )

2

@(Ul + 2U2q + 3U3q2 + - )]
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2

0
+ h[fayQ (uy + 2uq + 3usg® + - --)
82

0
+ ——(u1q + 2uzq + 3uzg® + - - )5 (w0 + urg + Usq® + usq® + -+ )]
Ox Ox
2

0 )
+%(u0+u1q+u2q2+“3q3+"')w(m+2qu+3u3q2+...)

B
+hfl[62(

2
2ug + 6uzg + - - +)

2

0
+ —(2ug + 6ugq + - - Ug + u1q + qu + Usq + -]

ox
2

0 0
+a—x(u1q+2u2q+3u3q2+~ )8 5 (u1 + 2uq + 3usg® + - -)

0
- a—x(ulq + 2upq + 3uszq® + - - -

SpaT

2
Ox?
2

0
U0+U1Q+U2q2+u3q3+'--)@(2u2+6u3q—|—-~).

(u1 + 2uzq + 3uzg® + - -)

+a—x(

Take ¢ = 0 to get

1" 82u1 8u1 82U0 8U0 82U1
_ul_hayQ +h@m 0x? +h(9x 0x?

02u1 (9u1 (92u0
h8x2 + Ooxr 0x2
h%a ul.

Oox 0x2

Ouy 02 Oug 02

w= [ [ idoaon [ [ 50 TR AR

— h/ / —hdydy
0 0
Uy = _hyQ . h2y2

= (=h—1)y*
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From the third derivative,

(1—q)(6ug + -+ ) + (1) (2uy + 6ugq + -+ ) + (=1)(2uy + 6ugg + -+ ) + (—1)(2uy + uyq + - - -

2

[a 2(2U2+6U3q+ )

2

0
+%(u1+2qu+3u3q2+-~ )a 2(u1+2u2q+3u3q + - )

2

a 1" 14
+ 5 2z + 6z + ) o (o + wng + uzg” + s + -
a 2
+%(u1+2u2q+3u;),q2+---)@(u1+2u2q+3u3q2+---)]
+ hq[6us + - - -

Take ¢ = 0 to get

" " 0%uy ouy 0%y Ous 0%uy
6usg — 2uy — 2u2 2u2 = 6h B 37’L8— 52 6ha— 52
82u0 8u1 82U1
6h 52 + 3h 5 O +
" Yy ry o, a’l,h 82U1
" ! dwdz + b / /
us /0 / rer By or d YW

o[ G et en [ [ %?%;“‘5

= (=h—h*)y* + h(—=h — h*)y°

Thus the solution is

u(y) = wy — hy® + (—h — B*)y* + h(—h — I*)y* +

When h = —1, then we have

u(y) = zy +y* + (0)y* — (0)y* + - -

= y2 + xy.
which is the exact solution.
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In this chapter, it has clearly been demonstrated that both DTM and HAM can be directly applied
to the equations without requiring linearisation, discretisation or perturbation. We have seen that
in most examples that we have solved both methods obtain series solutions that converge to the
exact solution. The methods do not involve large amount of computational work. The other
strengths of the these two methods is that they do not require an initial guess of the solution as
is the case with the other methods like the HPM. Further, HAM contains the auxiliary parameter
h that provides a simple way to adjust and control the convergence region and rate of convergence
of the series. Finally with these two methods good approximations are obtained in few terms.
However, we have observed that the weakness of both methods is that they are not applicable to
some classes of nonlinear differential equations.
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Chapter 4

Adomian decomposition method

In this chapter, a description of ADM is given. Adomian polynomials for various forms of non-
linearity are calculated. The chapter concludes by applying the ADM to solve some selected
examples of nonlinear differential equations.

4.1 Description of the Adomian decomposition method.

Consider the following nonlinear differential equation

L(y(x)) + R(y(x)) + N(y(x)) = g(x) (4.1.1)

where L is the highest order differential operator , R is the linear remainder of the differential
operator, N is the nonlinear operator, and g(x) is an inhomogeneous term. The choice for L and
its inverse L~! are determined by the equation to be solved. For example, for cases of ordinary
differential equations, we choose a different form for the linear operator [31, 32]. Generally we
choose

d’n
L=—(
T ()

for nth-order ordinary differential equations and thus its inverse L~! follows as the nth-order
definite integration operator from 0 to x. Applying the inverse operator L~! to both sides of
(4.1.1) we obtain

L™'Ly(x) = L™'g(z) — L' [R(y(z)) + N(y(x))]
y(x) — o = L g(x) — L' R(y(x)) + N(y(z))]

y(z) = y(z) — L7 [R(y(z)) + N(y(z))] (4.1.2)
where ¢ includes the initial values as

n—1 r

@:Zaria n:172737"'
= rl
and
Y(x) = o+ L7g(x).
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The ADM decomposes the solution into a series

y(z) =>_vi(2), (4.13)
=0
and then decomposes the nonlinear term N (y(x)) into a series
N(y(x)) =>_ A, (4.1.4)
=0

where the A;’s are the Adomian polynomials that are evaluated according to the formula

1d !
Ai: - - | F Z)\pyp 77;:071727"' (415)
il dN mrd
p A=0
where F' represents the nonlinear term. Substituting (4.1.3) and (4.1.4) into (4.1.2), we obtain
> vilx) =v(x) - LT[R (Z yi(fﬁ)> +2_ Al
i=0 =0 =0

where R is the lower order derivative which is assumed to be invertible. The recursive relation is
found to be

yo(x) = ()
Ygr1(z) = _Lil[qu(m) + Ay, q=>0.

4.2 Calculation of Adomian polynomials

In this section, we calculate the Adomian polynomials for different forms of nonlinearity that
appear in nonlinear ordinary differential equations or partial differential equations. The Adomian
polynomials were first constructed by [31, 32, 33]. The general formula for calculating these
Adomian polynomials is given by formula (4.1.5). There are other ways to calculate the Adomian
polynomials.

We now use formula (4.1.5) to calculate the Adomian polynomials for different forms of nonlin-
earity that appear in differential equations.

4.2.1 Nonlinearity of the form y%.
1 dO dyo
Ay = =—[F = Yop—
0= graw W)l = w7
_1d
~1ldA

d
= ﬁ[(yo + Ay1)%(yo + Ay1)]a=o

d d
= AYp ) — — A _
(Yo + A1) d$yl + 1 I (Yo + Ay1)a=o

dy dyo

~ W T

A [F (o + Ay1)]a=o
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1 d?

Az = 525 [F o + A1 + Nao) o
= o s+ V) (o g+ %)
= or gz oA Y2) 7o T Al Y2)|r=0
= Sy Lo+ Ay o) (i + 209) + (11 + 2292) (30 + A1 + A92)r—o
= orlo0 X + W) (202) + (1 + Ag2) (0 + 222) + (202) (0 + M + Vo) + (31 + M)
d
@(yl + 22y2)]a=0
1 dyQ dyl dyo dyl
= —[2yp—— B P 29t
2![y0dx+y1dx+ y2dx+y1da:]
1 dya dy dyo
= —[2y0—= + 2y — + 2yp——
2![ yodx + 21 I + 2y dx]

o dys dy dyo
- y()% + yl% + QQE

1 &3
A3 = gw[F(yo + )\yl + )\2y2 + >\3y3)])\:0
1 d3 2 3 d 2 3
= gw[(yo + Ayr + Ay + A y3)@(yo + Ay1 + A y2 + A ys)|azo
1 d? d
= gy o+ Ay1 + Nys + Nys) (i + 2202 + 3Xs) + (1 + 202 + 3N ys)
d
%(yo + Ay + Aye + A2y3)]azo
= li[( + Ay + Ay + AP )i(Q + 6Ay3) + (Y1 + 2Ay2 + 3N° )i( + 2y + 3\ %y3)
~ 31N Yo Y1 Y2 Ys dr Y2 Ys Y1 Y2 Ys dx 1 Y2 Y3
d d
+ (292 + 6/\y3)%(y1 + 22 4 3N%y3) + (y1 + 2\yo + 3)\2y3)%(y1 + 22 + 3X%y3)] =0
1 d d
= §[(?JO + Ay + Ny + )\3y3)£(6y3) + (y1 + 2 y2 + 3/\293)%(2% + 6Ay3) + (2y2 + 6Ay3)
d d d
%(yl + 2Xy2 + 3Nys) + (g1 + 2Ayo + 3/\293)%(2?& + 6Ay3) + 63/3%(% + Ay1 + Ays + Ays)
d d
+ (292 + 6ys) (g1 + 202 + 3\*ys) + (y1 + 2\y2 + 3A2y3)%(2y2 + 6Ays)+
d
(2y2 + 6)\3/3)%(.01 + 22 + 32*y3)] =0
1 dys dys dy, dyo dyo dy: dyo dy,
= [6yo—2 + 21— + 2yt + 2y 2 + Byy— + 2ok + gy + yp—t
3![ yodw + yldx + yzdx + yld:v + ygdw + dea: + yldx + yzdx]
1 dys dys diy dyo
= —[6yo—2 + 6y1—= + 6ys—r + 6yz—
3![ yodw +ou dx + yzdx + y3d:v]

_odys o dyy dy dyo
— Yo dx T dx & dx Ty dz
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4.2.2 Nonlinearity of the form 1> + 1°.

1 d° 9 3
Ap = O,dAO[ (o)l = ¥o + %o
1d
Al = 1' d)\[ (yO + )\yl)]AZO
d
= 0 Y1 Yo Y1) |a=0
Lo+ 2n)” + (o + M)’
= [2(yo + Ay1) (1) + 3(yo + Ay1)* (y1)]a=o0
= 2yoy1 + 3Yoy;
1 & )
9 = EW[F@O + Ay1 + A°y2)]a=o0
1 d 2 \2 2. \3
= EW[(:UO + Ay + ANy2)” + (Yo + Ay1 + Ay2)° | azo
1 d
= 55[2@0 + Ay + Ay2) (1 + 2A02) + 3(yo + Ayn + Ny2)(y1 + 2Ay2)]a0
1
2,[ (yo + Ayr + N’ Y2)(2y2) + 2(y1 + 2\y2)? + 6(yo + Ay1 + )\ng)(yl + 20y0) 2+

3(yo + Ay1 + N*y2)*(242)]r0
= 2yoy2 + Y1 + 3yoyi + 3yoy2
14
3l d\3
1
= 31an
e . 2 o
=370 [2(y0 + Ay + XNy2 + Xys) (1 + 2Ay2 + 3X7ys) + 3(yo + Ayr + A ya + Ays3)
(y1 + 22y2 + 32%y3)]a=0

1d

= gy 200+ Ag1 + Ays + M) (20 + 6Ags) + 2(y1 + 2w + 3N )"+
6(yo + Ay 4+ Ny + Ays) (41 + 2Ay2 + 3Ny3)* + 3(yo + Ay + Ny + Nys)? (242 + 6ys)]a=o

Ag = [F(yo -+ )\yl -+ )\2y2 -+ >\3y3)])\:0

Yo + Ay + Ny + Nys)? 4 (o + Ay + Nye + Nys) o

1
=3 —[4(y1 + 2Ay2 + 3X\ys) (2 + 6Ays) + 2(y1 + 2Ay2 + 3Xys) (y2 + 6Ays)+
2(yo + Ayr + Ny + Nys) (6ys)]azo + 6(y1 + 2Ay2 + 3X%y3)°

—+ 12(3/0 + )\yl + >\2y2 + )\3y3)(y1 + 2)\y2 + 3)\2y3)(2y2 + 6)\y3)+
6(yo + Ay + Ay + Nys) (Y1 + 22 + 3X%y3) (2ys + 6Ays)+
3(yo + A+ y1 + Ny2 + Xy3)?(6y3)]a=0

1
= §[8y1y2 + 4192 + 12y0y3 + Gyi’ + 24y011y2 + 12y0y1y2 + 18y§y3]

1
= 512013 + 12005 + 6y + 36y0y1y2 + 18y5ys]
= 21y + 2y0y3 + ?J? + 6Yoy1y2 + 3y(2)y3
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4.2.3 Nonlinearity of the form 3.
1 d°

O7 01dN0
A= L L pe 4

[F(y0)] = vg

= ﬁ[(yo + )\yl)S]Azo

= [3(yo + Ay1)*(y1)]r=0
= 3yon
1
T 2ldxN?
1
T 2ldxN?

1 d
— 55[3(?/0 + A1+ Ay2) (11 + 222)]r=0

3
= 5[2(90 + Ay1 + Ny2) (1 + 222)° 4 (o + Ayr + Ay2)*(2y2)]a=0

= 3[yoyi + Yove]
= 3yoy; + 3Yy2
1@
T 3ldN3
1@
T 3ldN3
1@
T 3lda?
= ;dd)\[Q(yo + Ay + Ny + Nys) (g1 + 202 4+ 30%ys) + (o + Ayn + A2y + A2y3) (202 4 62y3)]a=0
= ;[2((110 + Ay 4 Nz + Nys) (1 4 2002 + 3N2ys) (252 + 6Xys) + (Y1 + 2My2 + 3X%y3)° )+

Ay [F(yo + Ayn + >\2y2)h:o

[(yo + Ay1 + Nya2)*]rzo

As [F(yo + My1 + Ny + Nys)]a=o

[(yo + Ayn + A2y2 + Nys)%]hzo

[3(yo + Ayr + Ny2 + Nya)?(y1 + 22y + 32\%y3)]a=0

2(yo + Ay1 + Ny + Nyz) (Y1 + 22 + 3X%y3) (292 + 6Xy3) + (Yo + Ayr + Ny + Xy3)?(6y3)]a—0
= 4yoy1y2 + yf + 2yoy1y2 + SySyg
= 3ygys + 6yoyry2 + i

4.2.4 Nonlinearity of the form y*.

A—ldOF =2
O—EN[ (vo0)] = o

1d
A = ﬂa[F(yo + Ay1)]a=o
1d
ﬂa[(yo + )\91)4]>\=0
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= [4(yo + A1) (¥1)]a=o
= dydn
_1da
27 21d)?
_1d
T 21d\?
1 d 9 \3
= 55[4@0 + Ay + ANy2)° (y1 + 2A02) a0
=2[3(yo + An + )\2y2>2(y1 + 2)\y2)2 + (yo + Aya + >\2192)3<2yz)]>\=0
= G?ngl + 4y3y2
1 &

[F(yo + Ayn + )\2312)]/\=0

[(yo + Ay + Ay2) "m0

Az = §w[F(fyo + Ayp + Ayp + /\32/3)]/\:0

1 d3 2 3 4

= ng\g[(yo + Ay1 + Ay + Xys) o
1 d?

= gﬁ[‘l((yo + Ay + Nye + Nys)? (g1 + 20y + 32%y3)] =0
2 d 2 3 2 2 2 2 3 3

= §ﬁ[3(y0 + Ay1 + AN y2 + Nys) (Y1 + 2 y2 + 3N y3)” + (Yo + Ayr + Ay + Ays)° (22 + 6Ays) =0
2

= 5[6(y0 +Ays + A2y + Nys) (1 + 22y + 3A2y3)3+

6(y0 + )\yl + )\2y2 + )\3y3)2(y1 -+ 2)\y2 + 3/\2y3)(2y2 + 6/\y3)+
3(yo + Ay1 + Ny + Nyz)?(y1 + 20y2 + 3X%y3) (202 + 6Ay3) + (Yo + Ayi + A2y + Ny3)* (6y3)]azo

2 3 2 2 3
= g[ﬁyoyl + 12y5y192 + 6y5y1Y2 + 6Y5Ys]

2
= g[ﬁyoyi’ + 18ygy1yo + 6Y5ys)
= dyoy} + 12y3y1ys + 4yiys

4.2.5 Trigonometry nonlinearity. i. siny.

A 1 d° )
0= EW[F(ZJO)] = Sl Yo
A= 2L R+ )]
1= 11 dN Yo Y1)a=0
= E[Siﬂ(yo + Ay1)]a=o
= [cos(yo + Ay1)Y1]a=o
= Y1 COS Yo
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1 d?
21d\2
1 d?
T 21dNe

d
= gy gleos(vo + Ayi + Ny2) (11 + 2\ya)a=

1. .
_ 5[_ sin(yo + My + A292) (g1 + 22y2)? + cos(yo + My + A292) (202)] a0
1

e

Ay = [F(yo + Ay1 + Nya)]amo

— [sin(yo + Ayr + A? Y2)a=

y1 sin yo + 2y cos yo|

1,
= Y2C08Yp — 591 S Yo
1 d3
A
731N
1 d3
E] d)\3[
1 d?
BE] d)\Q[
1d )
gd—A[— sin(yo + Ay + )\2y2 + /\3y3)(y1 + 2\ys + 3/\2y3)2 + cos(yo + Ay1 + )\2y2 + /\3y3)
(2y2 + 6y3)]x=0
1
— g[— cos(yo + Ayp + Ay + )\3y3)(y1 + 2y + 3)\21/3)3
— 2sin(yo + Ayr + A2y + XNys) (g1 + 2 e + 3A2y3) (20 + 6Ay3) + cos(yo + Ayi + Ay + Ays)

(6ys) — sin(yo + Ay1 + Nya + )\Sys)(Qyz + 6Ay3)(y1 + 2Ay2 + 3)\2?/3)]>\:0

——[F(yo + Ay1 + Ny2 + Ny3)]a=o
sin(yo + Ayr + A4z + Nys)]azo

cos(yo + Ayr + A*ya + Nys) (Y1 + 22y + 3\%y3)]a—0

1 . .
=3 —[y3 cosyo — dy1y2 sinyo + 6ys cos yo — 2y1y2 sin Yo

1 .
3 [y; cos yo — 6y1y2 sin yo + 6ys cos yo]
1

= Y3COS Yo — Y1Y2 Sin Yo — gyf’ €os Yo

il. cos2y.
1 d°
Ao = EN[F(yO)] = €08 2yo
1d

ﬂa[F(yO + Ay1)]a=o

d
= —[cos 2(yo + Ay1)]a=

= [—2 sin 2(@}0 + )\yl)yl],\zo
= —2y; sin 2y

Alz
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1 d?
21d\2
1 d?
T 21N

1d
= orgy (25200 + M + ANy2) (y1 + 2Ay2) =

4cos2(yo + Ay1 + Ny2) (y1 + 2Ay2)* — 2sin 2(yo + Ay + A*y2) (242)] a0

Ay = [F(yo + Ayn + )\Qyz)]Azo

—[cos 2(yo + Ay1 + N Y2)]a=

~ 2l a1l
1 :
=5 — [~y cos 2y — 4yo sin 2y
= —2yo sin 2yy — ny cos 21

1 d3

A
R
1 d3
T 314\
1 d?
~ 31 d)\Q[

1 d .
= gﬁ[—‘l cos 2(yo + Ayr + Ny + Nys) (1 + 2Ay2 + 3X%y3)% — 2sin2(yo + Ayr + Ay + Ays3)

(2y2 + 6y3)]r=0
1. .
= 5[8 sin 2(yo + A\yp + Ny + )\3y3)(y1 + 2y + 3)\23/3)3—

8¢os 2(yo + Ay1 + Ay2 + XNys) (y1 + 2X\y2 + 3X%y3)(2y2 + 6Ays) — 4cos 2(yo + Ayr + Ay2 + Nys)
(6y3) — 2sin2(yo + Ay1 + Ny + )\3y3)(2y2 + 6\y3)(y1 + 2A\yo + 3)\2y3)]>\:0

—[F(yo + Ay1 + XNy2 + Ny3)] a0
——[cos 2(yo + Ayr + Ny 4+ Nys)]a—o

2sin 2(yo + Ay1 + Nyy + N y3)(y1 + 2A\y2 + 3/\293)]

1
3, —[8y3 sin 2yg — 16y112 cos 2yo — 12ys cos 2y — By1ya cos 2yq]

=3 [89? sin 2yo — 24199 cos 2y — 12y3 sin 2y

4
= —2ys sin 2yg — 4y1ys cos 2yy + gyi’ sin 2y

4.2.6 Exponential nonlinearity. Y.
1 d°
0l dxo|
1 d
A=l
d —[e (y0+>\y1)]
)

d
— a[eyoe)\m]
— [yleyOJ”\yl]

Ay = F(yo)] = e

Yo + Ay1)]a=o

A=0

A=0

A=0
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= g%
1 d?
T 204N
— 21'65)\22[6(@/0+>\y1+>\2y2)]
1 d?
= glaxe!

1d
= iﬁeyo [yle’\ylev” + e 2)\y26/\2y2]/\:0

Ay [F(yo + Ay1 + Ay2)]azo

A=0

2
elo 6>\y1 6)‘ y2])\:0

— —_ go [yfex\mex\zyz + ylez\m 2)\y26/\2y2 + ylex\y12/\y2€>\2y2 + €Ay1(2y26>\2y2 + 4/\2y§e/\2y2)],\:0

4.3 Solving nonlinear ordinary differential equations using

Adomian decomposition method.
We apply ADM to selected examples of ODEs to illustrate the working of the method.

Example 4.3.1. Solve

y+y-y'=0, y(0)=2

The exact solution for this problem is y(z) = 2.

Solution 4.3.1.1. Writing the given differential equation in an operator form gives
Ly+y—y* =0,

where L = <L Applying the inverse operator L™! to both sides of (4.3.1) we have

/Lydx+/ yd:c—/ yidx = 0.
0 0 0
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which is

y(a) = y(0) = = [ ydv+ [ e

y(x):2+/$y2dx—/$ydm
0 0

Using the assumptions of the Adomian decomposition method we have

@) =2+ [ 3 Awdr — [ yala)da
> fy 3 Aude = [

where the A,,'s are the Adomian polynomials. This leads to

Calculating the first few components of the Adomian polynomials we obtain

Y1 :/0 Aodx—/o yo(x)dx

Ay = ?Jg
=4
Yo = 2
Y1 :/$4dx—/w2dx
0 0
=4x — 2z
=2z
Yy = / Aydx —/ y1(x)dx
0 0
Ay = 2yoyn
= 2(2)(2x)
=8z
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y2:/x8mdx—/m2xdx
0 0

= 32°
Yz = /Ox Asdx — /Ox yo(x)dx
As = 2yoys + i

= 2(2)(32%) + (22)?

= 1622

ygz/ 16:1:2dx—/ 32%dx
0 0

= —X

3

and so on. Thus the solution is given by

y(r)=yo+uy1+y2 +ys+---

13
:2+2x+3m2+§x3—|—---

and the solution agrees with that obtained by HAM and DTM. Table 4.1 gives a comparison of
the exact solution and the solution computed by ADM, DTM and HAM. The table shows that the
three numerical solutions are a good approximate to the exact solution. In fact, Table 4.1 shows
that if the truncation point is increased, the solutions by DTM, HAM and ADM will coincide

with the exact solution. Thus the series solutions are in all cases very good approximates.
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Table 4.1: Comparison between exact solution and numerical solution.

X Exact solution | Solution by ADM | Solution by HAM | Solution by DTM
-0.5 | 1.43527 1.59896 1.59896 1.59896
-0.4 | 1.50412 1.56267 1.56267 1.56267
-0.3 | 1.58833 1.60362 1.60362 1.60362
-0.2 | 1.69309 1.69533 1.69533 1.69533
-0.1 | 1.82621 1.82629 1.82629 1.82629
0.0 | 2.00000 2.00000 2.00000 2.00000
0.1 | 2.23506 2.23496 2.23496 2.23496
0.2 | 2.56872 2.56467 2.56467 2.56467
0.3 | 3.07625 2.56467 2.56467 2.56467
0.4 | 3.93565 3.71733 3.71733 3.71733
0.5 | 5.69348 4.68229 4.68229 4.68229

Figure 4.1 is a graphical illustration of the comparison between the exact solution and the nu-
merical solutions. From the figure it can be seen that for —0.3 < = < 0.3 the numerical results
coincides exactly with the exact solution. For the values x < —0.3 and x > 0.3 there is a signif-
icant derivation between the numerical solution and the exact solution. This can be attributed

to the fact that the series solution only has a few terms (4 terms). Increasing the terms of the

series will improve the numerical solution.
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Exact solution

DTM,HAM,
ADM solution

-0.4 -0.2 0 0.2 0.4

Figure 4.1: Comparison between exact solution and numerical solution.

Example 4.3.2. Solve

y' + 42 =0, y(0)=1 and ¢'(0)=0.

Solution 4.3.2.1. Writing the given differential equation in an operator form gives

Ly+y®> =0, (4.3.2)

where L = %. Applying the inverse operator L~ to both sides of (4.3.2) we have

/I/ILyd:vdx%—/x/xyzd:vdx:O,
0 0 0 0

which is
y() — 2y (0) = y(0) = - [ ["ydude,

ylx)=1-— /I /x y*dxdz.
0 Jo
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Using the assumptions of the Adomian decomposition method we have

> yalz) :1—/I/IZAnd1:da:
n=0 0 J0 =g

where the A,,'s are the Adomian polynomials. This leads to

Yo =1

Ypt1 = —/0 /0 Apdxdx

Calculating the first few components of the Adomian polynomials we obtain

" :—/w/ondxdw
0 0

Aozyg
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ygz/ / w?dxdx
0o Jo

_

12

ygz—/z/xAgdmdx
0 0

Az = 2yoys + Y7

and so on. Thus the solution is given by

y@)=vo+yi+y2+ys+---

2 xt b

— 1y T g
2+12 72Jr

and the solution agrees with that obtained by HAM and DTM.

Example 4.3.3. Solve the Lane-Emden equation
6
y' + ;y/ + 14y = —4lny, y(0)=1 and y'(0)=0.

The Lane-Emden equation is used to model several phenomena in mathematical physics and
astrophysics such as the theory of stellar structure, the thermal behaviour of a spherical cloud
of gas, isothermal gas spheres, and theory of thermionic currents[34]. The equation is thus of

paramount importance in physiscs and the sciences in general.

Solution 4.3.3.1. The difficulty of the given type of Lane-Emden equation is the behaviour of
the term © when 2 = 0. This kind of Lane-Emden equation has been studied by [35]. To succeed

in dealing with the singularity behaviour, we define the differential operator L in terms of the two
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derivatives contained in the problem. Following [28], we write our given Lane-Emden equation in

an operator form
Ly = 4lny — 14y
where L is the differential operator defined by

d d
2@ 5
L=a dx (x dx)

Applying the inverse operator L™! to both sides of (4.3.3) we have

/x 76 /gg 28 Lydxdr = — /x x5 /w 2% 4ylnydrdr — /x z " /m 214y duxdz.
0 0 0 0 0 0

This implies that

y(x) — 2y'(0) / / S 4ylnydrdx —/ / 28 14ydxdx.

Using the initial conditions gives

—/ x’G/ a:%ylnydxd:v—/ 376/ 2% 14ydrda.
0 0 0 0

Using the assumptions of decomposition method we have

(4.3.3)

— AT [T [ . T 6 [T N
nzzoyn(x)—l 4/0 x /Ox (1;)/1”) dxdx 14/0 x /Ox (T;)yn(x)> dxdzx.

This leads to

Yo =

Y1 = —4 / / J)drdz — 14 / /
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Calculating the first few components we obtain

= —4/ / (Ag)dzdr — 14/ / ))dxdx

Ay = Yolnyo

_ _14/ / 1)dzdz
- —2/ () )

Yy = —4 / / (Ay)dzdr — 14 / / ))dad

Ay =y + yilny

T / / 2) dwdz — 14 / / %) dwdz
o)l ()
:3<4>+194@

= —4/ / (Ag)dxdx — 14/ / ))dxdx

y3
Ay = yo + yalnyo + —

2yo
1'4 ZE4
= — + —
2 2
= [L’4
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— / / oY) dwdz — 14 / / v
_ _4/ ( ) dz — 14/ ( )
= <g6> - (122)

X

6

_ 4 / / (Ag)dwdr — 14 / / ))dada

Y1Y2 ?J
A = y3 + yslnyo + 2= — 2L

Yo 6y3
26 24 _22)3
:_7_’_(_332) < _( )
6 2 6
6 IE6 ZL‘G
~T6 27 %
_ 2
2

i = —4 Oxxﬁ/()xx‘i(—)dxdx—m/ / ——dxdyc
af ()L ()
:2<fm1>+ 6 (104)

Thus the solution is given as

y(@)=yo+uyi+y2+ys+---
4 6 8

2 6 24
0o 2n 2
— Z 1)n+1

It can be easily shown by the ratio test that this solution converges for all the values of n.
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4.4 Solving nonlinear partial differential equations
Adomian decomposition method.
In this section we apply ADM to selected PDEs.
Example 4.4.1. Solve
U +up +u =0,  u(z,0)= oy
Solution 4.4.1.1. Writing the given equation in an operator form we have

Liu+Lau+u*>=0

Making L;u the subject of the formula we obtain
Liu = —Lyu — u?.

Applying the inverse operator L; * to both sides of (4.4.1) we have

t t t
/ Loudt = — / Loudt — / W2dt.
0 0 0

This implies that

t t
u(x,t) —u(z,0) = —/ L,udt — / u?dt.
0 0

Using the initial condition we have

1 ¢ ¢
u(z,t) — o = —/ Lyudt — / u?dt.
x 0 0

where N (y) = u?.

Now, using the assumptions of the Adomian decomposition method we have

o0

> up(w,t) ——/ZLundt /ZAdt

n=0
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This leads to

up(x,t) = —

t t
Upir = — / Lyuydt — / Adt.
0 0

Calculating the first few components we obtain

t t
uy = —/ LxUOdt —/ Agdt
0 0

2

1 2
- (3)
1
T 42

~fe ()@= ) gt
_/ <2x2)dt /ng?dt

2x2 @
1

4x2
t t
Uy = —/ Lzuldt —/ Aldt
0 0

A1 = 2u0u1

B _/ (2x3 ) /t (491c3t> a

—¢? L t?
N 4353 1623
1
= —_¢2

83
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t t
Us = —/ L:DUth — / Agdt
0 0

Ay = 2ugug + u%

-2(5:) (&) + (1)

1 1
_ 2 2
Szt + 1624
3 9
= t
1624

tr 3 ¢ 3

= t2> dt—/ ( t2> dt
s 0 <8x4 0o \ 1624

_ 1 1

St 1624

1
= 3

1624

t3

and so on. Thus the solution is given by

U(l’,t):U0+U1+U2+U3+"'
1 1

1
= bt 1
2x + 42 + Sx3 * 1624

= 1<1+1t+1t2+1t3+ )
2 2x 422 83

52 ()
_2$n=o 2z

Example 4.4.2. Use ADM to solve the modified Korteweg de-Vries (mKdV) equation

3.

U — 61Uy + Uggy = 0
with the initial condition
u(x,0) = x.
Solution 4.4.2.1. Writing the given mKdV equation in an operator form we have

Liu — 6u*Lyu + Lygeu =0,
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o) 0 Foki
Lt = 5 Lz = Bz and szx = 353"

Making L;u the subject of the formula we obtain
Liu = 6u?Lyu — Ly
Applying the inverse operator L;* to both sides of (4.4.2) we have

t t t
/ Loudt = 6 / W2 Loudt — / Lo.oudt.
0 0 0

This implies that

t t
u(z,t) —u(z,0) = 6/ w? Lyudt — / Lyppudt.
0 0

Using the initial condition we have
t t
u(z,t) —x = 6/ u? Lyudt — / L, udt.
0 0

where N(y) = u*L,u.

Now, using the assumptions of the Adomian decomposition method we have

00 t o0 t ©©
Z up(z,t) = x + 6/0 Z A, dt — /0 Z Loyt dt.
n=0 n=0 n=0

This leads to

up(z,t) = x

t t
Upsr = 6 / At — / Lottt
0 0
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Calculating the first few components we obtain

t t
uy = 6/ Aodt — / Lxxxlbodt
0 0

aUQ
A = 2%
0= Yo ox
Lxxxu() =0
t
U = 6/ r2dt
0
= 62t
t t
Ug = 6/0 Aldt _/() Lxmuldt
Oug ouy
Ay = 2uguy 20 4 220
! ot ox + U ox

= 2(x)(62t)(1) + ()*(6t)
= 1223 + 1223
= 2423t

83
N T— —(695275)

ox3
=0
t
Uy = 6 / (242°t)dt
0
= 6(122%%)
= 7223¢?

t t
Uz = 6/0 Agdt —/0 Lxxxlbgdt

8U0 8u0 (‘9u1 0uQ
AQ = 2UO’U287 + u%% + 2UOUI87 + U/g%
= 2(z)(722%%) + (62%t)* + 2(62°t)(12xt) + 2*(2162°t?)

= 1442*? + 362t + 1442*t? + 21624>

= 54024t
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So we have

Lawatiy = Lagy (722°1%)
= 432>
s = 6 /0 (540242 dt — /0 "13212dt
= 6(1802*) — 144¢*
= 1080z** — 144¢°.

Thus the solution is given by

u(z,t) = up + up +ug +uz + - -
= 2 + 627t + 7203 + 1080x*t® — 1443 + - -

= 1 + 6%t + 722%% + (1080x* — 144)t3 + - -
and it coincides with the one obtained by HAM.
Example 4.4.3. Solve the nonlinear differential equation
Uy + un, = 2y* + 22%y°, (4.4.3)
with the initial conditions
u(0,y) = 0,u,(0,y) = 0,
where u = u(z,y).

Solution 4.4.3.1. Writing (4.4.3) in an operator form we have

Lyu = 2y* + 22*y® — uu, (4.4.4)
where L, is defined by
82
L,=—.
0x?
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The inverse operator L' is defined by

L) = /Om /Om(-)dxdx.

Applying the inverse operator L' to both sides of (4.4.4) we obtain

//umdxd:v:/ / (2y% + 22%y3)dadx
0o Jo 0o Jo

B L
/O/Ouuy:vx

Then we get

u(z,y) — u(0,y) — 2u(0,y) = /0 /0 (2y* + 22'y*)dxdx

" [, deds.
/O/Ouuyxx

Using the given initial conditions and substituting for

u(x,y) = iuz(xvy)

=0

and for the nonlinear term

o0
uuy, = A
i=0

where the A;'s are the Adomian polynomials, we get
iu(x y) = 2*y* + iarzﬁyg — /x /m iA-dxdx
= 15 0o Jo =

To use the ADM, we identify the component uq by

1
uo(z,y) = 2y + Bw6y3,

and the remaining term

—/m/IAidxcm
0o Jo

will be assigned to wu;(z,y) among other terms. Consequently, we obtain the recursive relation

1
uo(z,y) = 2y + ﬁxGy?’

Ugr1(T,y) = —/0 /0 A dxdx.
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Calculating the first few components we have

uy(z,y) = — /Ox /Ox Apdxdx

AOZUOUOy

_ (.22 i63 2 162

= (x%y +15xy 2xy+5xy
1 2 1

:2x4y3+5m8y4+ﬁx8y4+7—5x12y5
1 1

— ot L DByt L 128

Ty +3$y ~|—75xy

uy(z,y) = —/0 /0 (2x4y3 + §x8y4 + 75:1:12y5> drdx
1

1 1
Sy g0yt 14,5

270 13650" Y

15
ug(z,y) = —/Ox /DI Aydxdzx

A1 = UpyU1 + UoU1y

1 1 1 1 1
_ 2:1:21/—1— $6y2> ( x6y3 L 10y4 1'143/5) + <x2y2+ x6y3>

5 15 270" ¥ T 13650 15
(—;)LUGyZ o 1?)51,10y3 . 271303714y4)
_ _125$8y4 o 1§5x12y5 _ 68125:616y6 o 7151'12y5 o 13150«1716?/6 o 6821501,20y7 - ;$8y4_
1;5$12y5 o 27130.%'16y6 o ’715x12y5 o 202251,161/6 o 403)'50'1,20347
_ _lx8y4 LR &xmyﬁ _ 4 2207

2257 ¥ T 26325 102375

3
T rr 1 8 4 11 12 5 59 16 6 4 20 7)
o Lo M5 59 6 drd
(7, 9) /o /0 ( 370 T oot Y T og325 Y T 102375 Y )
1

11 50 2
_ 1 4004 14,5 16,6 2, 7
=270 Y T 10050" Y T so5520” Y T 23648625°
and so on. The solution is given by
u(z,y) = uo(z,y) +w(z,y) +us(x,y) +---
1 1 1 1 1 11
.22, + 63 L g3 L 404 14,5 , 104 14,5
STV BT BT o0 Y T 650" Y T a0t Yt 000" Y
I 50 16 6 2 2207 4.

8055407 Y T 23648625

Wazwaz [4] defined the expression "noise terms" as the identical terms with opposite signs that
p
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arise in the components ug(x,y) and wu;(z,y). By canceling the noise terms between ug(z,y)
and uy(x,y), even though wy(z,y) contains further terms, the remaining non-canceled terms of

uop(z,y) may give the exact solution of the PDE. So in our solution we can see that the terms

2% and 3;2'%* appear with opposite signs in the components ug(z,y) and u;(z, y), so by

cancelling these terms from wg(z,y),

u(z,y) = 2*y*.
Therefore the exact solution is

u(z,y) = 2*y*

This shows that the noise terms ensure fast convergence.
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Chapter 5

Application to fluid flow problems

In this chapter we solve two selected fluid flow and heat transfer problems using ADM. We
compare the results with those obtained by the authors of the selected papers. The former used
DTM and the later used HAM.

5.1 Unsteady nanofluid flow and heat transfer.

Nanofluids were pioneered by Choi [36]. These fluids are simply suspensions of nanoparticles
in a base fluid. The significant advantage of nanofluids over the traditional base fluids is that
they have significantly high thermal conductivity that makes them capable of heat transfer en-
hancement. For this reason, they find use in, among others, biomedical applications, coolants
in electronic devices, vehicle cooling and air conditioning equipment in buildings. The advent
of nanotechnology has seen many researchers actively engaging in experimental and theoretical
research in nanofluid flow and heat transfer.

Buongiorno [37] pioneered a two phase model for convective transport of nanofluid with emphasis
on thermophoresis and Brownian motion effects. Usman et al. [38] conducted investigation on
unsteady two phase nanofluid flow and heat transfer between moving parallel plates in the presence
of magnetic field. The authors applied DTM to solve the model equations. We, here, apply ADM
to solve the same model equations and perform a comparison.

The modelling equations for the flow are [38]

ou  Ou
3ty =0 (5.1.1)
ou ou  Ou oP Pu  0%u )
@%—u@%—v% __8£+ @%—@ (5.1.3)
Pr\or " or T8y ) T oy M \022 T a2 ) "
or T u  0%u dp - (ou\? (pey)p aC T  dC T
T S au o Tl
ot +u8x +U8y “ (8:{:2 - 8y2> (pep) (c%) +(pcp)f[ Plor oz * dy Oy

(5.1.4)
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Dr\ [ (oT\* [or\* onsB2
G- () e
T { Oz dy | (PCp)nf( )
8c  aCc  aC 2C  9°C\ Dy (0*T 0T
=D < ) T <6x2 + 8y2) , (5.1.5)

- - + -
ox?  0y?
where u, v, T, C, P, py, u; k, Cp, and Dp represent the velocity in x direction, velocity in y direction,
temperature, concentration, pressure, base fluid's density, dynamic viscosity, thermal conductivity,
specific heat and diffusion coefficient of diffusing species respectively.

E—’—u@x +U@y

The boundary conditions are

dh
y— h(t), C=0, V=t = o T=Tyg, C=Cxy (5.1.6)
8u or oc
0 =— =0. 5.1.7
The similarity transformations
Yy x T
— T, u = s v = -1 F 5 ]. 8
TRpE: 2(1 =) F"(n) 2(1 — t)3 () (5:18)
T C
0 — -
Ty ¢ Ch
transform equations (

1m

5.1.1) to (5.1.5) to a system of ODEs:
F (77) . S(nF/< 1"

n) +3F () + F (n)F"(n) — F)F" () — Ha®F"(n) =0,  (5.1.9)

0" (n) + PrS(FE (n) —nb' (n)) + PrEc(F" () + Nod' 6 (n) + Nt(6 (1)) (5.1.10)
+ PrHaEc(F'(n))* =0,

Nt 1"

¢"(77)+5~50(F¢'(77)—n¢/(n))+m9 (n) = 0. (5.1.11)

N T _ plpcp)y - __pf e )2
where S = 51 1S the squeeze number, Pr = o 1S the Prandtl number, Ec = o (2(17@)

is the Eckert number, Sc = ;;,% is the Schmidt number, Ha = LB,/%(l — 4t) is the Hartman

number, Nb = % is the Brownian motion parameter and Nt = % is the ther-

mophoretic parameter.

The boundary conditions become

F(n) =0,

F"(n) =0,

0'(n) =0

¢'(n) =0, for n=0



and

F(n) =1,
F'(n) =0,
0(n) =1,
o(n) =1, for n=1

5.1.1 Solution by ADM. Writing (5.1.9) in an operator form gives

"

L,F(n) = SmF" (n) +3F" (n) + F' (n)F" (n) — F(n) F

1"

)+ Ha®F'(n)  (5.1.12)

where the differential operator L, is defined by

d4
L77 - difr]‘l

L-'is an integration operator defined by

n
. nomomon
L, :/ / / /(.)dndndndn.
o Jo Jo Jo

Applying the inverse operator L' to both sides of (5.1.12) we get

L] [ o Goandnanan = [*[* " ["(@F" () + 38" () + F )F" () = Fn)F" ()

+ Ha’F" (n))dndndndn,
2

Fln) = F(0) = F O = F'O% = F" 0% = [* [* [* [t () + 3F" () + F ) F" ()

— F(n)F" (n)) + Ha’F" (n))dndndndn.

Using the given boundary conditions we obtain

1"

F(n) = am+a2% +/On/0n/0n/on(5(nF"'(n) +3F () + F' ()F" (n) — F(n)F
+ Ha*F" (n))dndndndn.

(n))

ADM introduces the following expression
s 773 n n n n R " e 7 e s
>R =am+a’t+ [T [T S B +3Y L)+ 3 G- Y B
n=0 o Jo Jo JoO n=0 n=0 n=0 n=0

+ Ha® Y F, (n))dndndndn,

n=0
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where C,, and P,'s represent the nonlinear terms calculated by using the Adomian polynomial
formula. The recursive relation is found to be

773
Fo(n) = ain+ 042

Fona(n // // F} (1) +3F, (n) + C, — P,) + H*F () dndndndy.
Determining the first component we have
= [ [ [ [ (S0F @)+ 35 )+ Co = R+ HaF ) duddy

Since we have Fj, we can find F and F’”

,'73
FO(77) = aqn -+ O[2€
’ 7]2
Fo(n) = a1+ az5
F(;l(ﬁ) = Qa1
o () =

Co and P, are calculated by the Adomian polynomial formula and they are

%:%W%Mﬁ«m+%fy%m
CY2773

5
(n) = <06177 + 042233) (a2)

2,3
Qal)

6

= q1Qon +

ll/

Py = Fo(n)F,

= q1Qaon +

Substituting the above values we obtain

nornofnon azn’3 a2nd
:/0 /0 /0 /0 (S (77042+304277+0410é277+ 2277 — QN — 2677 ) +HG204277> dndndndn,

2,3
= /77 /n /n /77 (S <47)a2 + il ) +Ha2a277> dndndndn.
o Jo Jo Jo 3

Therefore we obtain, after integration,

San® N Sazn’ N Ha%aon®

F =

1) = =35~ + 5590 120
_ (Say  Hd*ap\ 5 Sa3
_'< 30 ~ 120 )7 T 2520
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Similarly, we calculate Fy(n), F3(n), ---. Thus the solution for F'(n) is given by

F(n) = Fo(n) + Fi(n) +

3 Sa Ha’a Sa?
:a1n+a2n+<2+ 2>n5+ 27

6 30 120 2520

=Y F.(n), (5.1.13)

where the series is truncated at n = m.

To solve (5.1.10), writing it in an operator form we have

L,0(n) = —PrS(F(n)d (n) —n0'(n)) — PrEc(F"(n))* — Nb$ 0 (n) — Nt(6' (n))* — P?(“H aEC)(F '(n))?,
5.1.14

where the differential operator L, is defined by

d2
L77 — d7772

Applying the inverse operator L' to both sides of (5.1.14) we obtain

[ [ zattanin = [ [ PesE0 () 0 (0) — PrEe(E ()2 — Nb6 ) () — Ne(0' ()?
— PrHaFEc(F'(n))*)dndn.

This is

00m) = 00) =0’ O = [* ["(=PrSE@mO () = 18 (n) = PrE(F" () = Nog' ()6 () — Ne(6 ())?
— PrHaEc(F'(n))?)dndn.

Using the given boundary conditions we have

0(n) = az + /On /On(—PTS(F(n)@'(n) =0 (1)) = PrEc(F"(1))* = Nbd ()0 (n) — Nt(6 ())?
— PrHaEc(F'(n))?)dndn.

Now, applying the definition of ADM we have

—ag—i-/ / PrS T)ZH — PrEc (i Rn> —Nbicb;(n)e
— 0 n=0 n=0
— Nt Z Qn — PrHaEc (Z ) dndn,
n=0 =
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where the R,, @), and G,,'s are the nonlinear terms calculated by the Adomian polynomial
formula. The recursive relation gives

90(77 = Qs
i) = [ [ (=PSB0, ) = 8, (m) = PrEc(R, — Nbo, (n)6)(n) — NQ,
— PrHaEc(Gq))dndn.

Determining the first component we get the following:
//'.MSR>M)—Mm»fma&—M%w%w—N@w4wm&%MWm

Fo(n) = aun + 042776 ;

G() = (FS)Q (Ckl + 062%)2 = Oél + 0610617] + 0631 .

Therefore we have

/ / < PrEc(asn?) — PrHaEc (041 + an® + agz )) dndn,

21" Ui Ui n°
= —PrEcai~ — PrHaFEca?~ — PrHaEcoyay-— — PrHaEcas——.
12 2 12 120
01(n), 61(n), - - - are obtained similarly.
Thus the solution for 0(n) is given by
0(n) = bo(n) +6:1(n) +---,
_ 21 2 ' 2 1°
= a3 — PrHaFEcaj;— — (PrEca; + PrHaEcajay)— — PrHaEcas;——
2 12 120
= 0.(n) (5.1.15)
n=0
Writing (5.1.11) in an operator form we have
/ / Nt "
Lyg(n) = =S5.5c(F(n)¢ (n) —ne (n) = 570" (), (5.1.16)
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where L, is the second differential operator defined by
d2
Ln — d7772

Applying the inverse operator [F1 to both sides of (5.1.16) we get

[ [ 26 ndn = [ [ (=S.5e(F )6 ()~ 6 () = 316 (n)) i,

which is equal to

5(n) = 60) + 6 O+ [ [ (=S.SeBw) () — 06 () — ;6 (n)) dnd

Substituting the given boundary conditions we have

)= aut [ [ (=8.SeE6 ) =6 () — 320" () dy

Using the definition of ADM we have

S ontn = ant [ [ (=550 (S Batienin —n X 600) - i 30 o

The recursive relation is found to be
¢0( ) = Oy,
Nt 1
Pqr1(n / / ( SSG (n)éy(n) — ncb) Nb 0,(n )) dndn.

Calculating the first two components we obtain the following

//( S.Se (Fo(n)do(n) — neo(n)) — %0"( )) dndn,

[ [ (=5:5¢0) = 55 0)) dudn,
0.

//( S.Se (Fu )aﬁl(n)—nél(n))—%e;/(n)) dndn,

1
/ / (—PTEcag’vf — PrHaFEco? — PrHaFEcajon? — 4PrHaEcn4> dndn,

1 1 1
N < 12PrEcoz27] — §P7“HaEcozfn2 — EPrHaEca1a2n4 — mPTHaEcoé?f)
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Thus the solution for ¢(n) is given by

o(n) = ¢o(n) + é1(n) + ag+ -

Nt /1 1 1 1
=0y + b (12P7“E(2043774 + §PrHaEcaf772 + E]37“[{(1/3?0(341(12774 + mPrHaEca%?f) + e

=3 ¢u(n) (5.1.17)

The accuracy of the series solutions is dependent upon the truncation point. The more terms we
have the better the accuracy.
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Table 5.1: Comparison of velocity between DTM and ADM solution.

n | F by DTM [38] | ' by ADM

0 0.00000 0.00000
0.1 0.11890 0.11897
0.2 0.23760 0.23773
0.3 0.35578 0.35597
0.4 0.47297 0.47321
0.5 0.58827 0.58855
0.6 0.70007 0.70037
0.7 0.80538 0.80566
0.8 0.89869 0.89889
0.9 0.96982 0.96991
0.10 1.00000 1.00000

Table 5.2: Comparison of temparature between DTM and ADM solution.

n | 6 by DTM [38] | by ADM

0 476574 5.13796
0.1 4.72338 5.09548
0.2 459724 4.96820
0.3 439011 4.75650
0.4 4.10665 4.46107
0.5 3.75328 4.08283
0.6 3.33793 3.62298
0.7 2.86889 3.08296
0.8 2.35008 2.46447
0.9 1.76303 1.76943
0.10 1.00000 1.00000
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Table 5.3: Comparison of concentration between DTM and ADM solution.

n | ¢ by DTM [38] | ¢ by ADM

0 274191 -3.13796
0.1 -2.69956 -3.09548
0.2 257346 -2.96820
0.3 -2.36655 -2.75650
0.4 -2.08365 -2.46107
0.5 -1.73142 -2.08283
0.6 -1.31806 -1.62298
0.7 -0.85211 -1.08296
0.8 -0.33766 -0.46447
0.9 0.24370 0.23057
0.10 1.00000 1.00000

5.1.2 Results and discussion. The equations (5.1.13), (5.1.15) and (5.1.17) are coded into
MATHEMATICA for easy iteration. Expressions for the unknown constants are also obtained
with the aid of the remaining boundary conditions. At the end we obtain the m* partial sums

as the approximate solutions of the coupled differential equations. The results are presented in
Tables 5.1, 5.2 and 5.3.

The accuracy of the results in Tables 5.1, 5.2 and 5.3 is dependent upon the truncation points.
The more the terms we have the better the accuracy. The accuracy of the results of 6(n)
is dependent upon F'(n) solution. The more terms of F'(n), the better the accuracy of 6(n).
Similarly, the accuracy of the results of ¢(n) is dependent upon F(n) and 6(n) solutions. The
more terms of F'(n) and 6(n), the better the accuracy of ¢(n). Table 5.1 shows a good agreement
in the results of ADM and DTM. In Tables 5.2 and 5.3, the ADM results for 6(n) and ¢(n) do
not show good agreement with the DTM results in [38]. The explanation for this big deviation
is that in this problem only a few terms of F'(n) (6 terms) were obtained. The computation for
the 7" term demonstrated slow convergence rate of the problem. The code continued running
for many days indicating that a higher CPU time was required. This really demonstrated that a
computational complexity has been generated in the iterative process. For this reason we could
not use more that 6 terms of F'(n). It is evident that if more terms were used, the results of §(n)
and ¢(n) could have been improved. Clearly, this appears to be a limitation of this study.
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5.2 MHD lJeffery—Hamel flows in non-parallel walls.

Jefferey-Hamel flows were pioneered by Jeffery and Hamel [39, 40]. These are mostly applied in
fluid mechanics, civil, environmental and bio-mechanical engineering. Jeffery-Hamel flows are an
exact similarity solution of the Navier-Stokes equations in the special case of two-dimesional flow
through a channel with inclined plane walls meeting at a vertex [41]. Since the introduction of
Jefferey-Hamel flows, it has been studied by many authors.

Domairry et al. [41] studied the Jeffery-Hamel flow and solved its nonlinear ordinary differential
equation. Moghimi et al. [42] investigated the MHD Jeffery-Hamel flows in non-parallel walls
analytically for strongly nonlinear ordinary differential equations. The authors applied HAM to
solve the model equation. Here, we apply ADM to solve the same model equation and do the
comparison.

The governing equations for the flow are [42]

»o _
gy ru(r,0)) =0, (5.2.1)
ou(r,0)  10P Ou(r,0) 10u(r,0) 1 0*u(r,0) wu(r,0) oB2
U(T’, 6) or N _55 v T + r or t r2 062 - r2 - or? U(T, €>7
(5.2.2)
L0P_Ovoulnf) 0, (5.2.3)

pr 00  r2 06

where By, r, u(r,0), P, v, p are the electromagnetic induction, conductivity of the fluid, velocity
along radial direction, fluid pressure, coefficient of kinematic viscosity and the fluid density. From
(5.2.1),

f0 =ru(r,0).
Using dimensionless parameters
f(0) 0
— = — 2.4
f(n) P (5.2.4)

where « is the semi-angle between the two inclined walls, and eliminating P between equations
(5.2.2) and (5.2.3), we obtain an ordinary differential equation for the normalized function profile

F(n):

"

f(n)+2aRef(n)f'(n) 4+ (4= H)o? f'(n) =0 (5.2.5)

with the boundary conditions



5.2.1 Solution by ADM. To solve (5.2.5), we write it in an operator form

Lyf(n) = —2aRef(n)f'(n) — (4 — H)a*f'(n) (5.2.6)
where L, is defined by
d3
L,= i

Applying the inverse operator L' to both sides of (5.2.6) we obtain

L e tryndnan = — [ 7 ["fo0Re f(o)f ) + (4= H)o? /(o) dndndn,
o = 50) =) = L0 = = [ [" [ 2aRe o) ) + (4= ) o),

Using the given boundary conditions we have
1L T / 2 1
) =1+ 50 = [ [ ["2aRef o) () + (4 — H)a®f (n)]dndndn.

Using the definition of ADM we have

00 1 ) n n 00 ) o) .

S film)y =14 gn*— [ 7 [T 2aRe Y A+ (4= H)a? Y fi(n)| dndndn,

i=0 i=0 =0
where the A's are the Adomian polynomials. The recursive relation is found to be

folm) =1+ 5,

nonon 5
fat) == [ [7[" [2aReA, + (4= H)a f(n)] dndndn.
Calculating the first two components of f(n) we have

foln) = 1+ 175,
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_/On /On /077 PaRer + (4 — H)Oﬂfé(n)} dndndn

f(/) =np
Ay = fofy
= (1 + 177251) (nB1)
9

1 312
= B+ 5 Ioh
_ /n /n /77 {20&2@ (ﬁm + 17;3612) +(4- H)aQ(Bm)} dndndn
_ / / / 2aRefin + aReﬁ 3+ 40 Bin — Ho™ By Bn| dydndn

'
= — [aReﬁl + ozReﬁl 120 + 04261— — Ha*B - ]

n* 2, M 2 774
:—aReﬁl— aReBlﬁ—a b1 E%—Ha 51ﬂ
H ) 7 i’
= <CY p1—afr — aRBﬁl) - CVR€51 120
f2(n), f3(n), --- are obtained similarly. Thus the solution for f(n) is

f(n )Zfo(ﬁ)+f1( )+
4 6
1+ ﬁm + ( 028 — a2, — aReﬁl) T aReg2 2

=Y F) (5.27)

5.2.2 Results and discussion. Equation (5.2.7) is coded into MATHEMATICA for easy it-
eration. Expression for the unknown constant is also obtained with the aid of the remaining
boundary conditions. At the end we obtain the m'* partial sum as the approximate solution of
the coupled differential equation. The results are presented in Table 5.4. Table 5.4 shows a very
good agreement in the results of HAM and ADM. Thus the ADM is as good as the solution
obtained in [42] using HAM.
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Table 5.4: Comparison of the results for f(n) between HAM and ADM solution.

n Solution by HAM [42] | Solution by ADM
0.05 | 1.00000 1.00000
0.15 | 0.997605 0.997605
0.10 | 0.990427 0.990427
0.15 | 0.978486 0.978486
0.20 | 0.961810 0.961810
0.25 | 0.940437 0.940437
0.30 | 0.914404 0.914404
0.35 | 0.883743 0.883743
0.40 | 0.848474 0.848474
0.45 | 0.808593 0.808593
0.50 | 0.764064 0.764064
0.55 | 0.714806 0.714806
0.60 | 0.660677 0.660677
0.65 | 0.601462 0.601462
0.70 | 0.536852 0.536852
0.75 | 0.466421 0.466421
0.80 | 0.389602 0.389602
0.85 | 0.305652 0.305652
0.90 | 0.213611 0.213611
0.95 | 0.112250 0.112250
1.00 | 0.000000 0.000000
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Chapter 6
General discussion, conclusions,
recommendations and limitation of the

study

6.1 General discussion

In this dissertation, the application of Adomian decomposition method in solving nonlinear or-
dinary and partial differential equations was investigated. A detailed description of the method
was laid down and the method was applied to solve many examples including some important
differential equations like the Lane Emden and the mKdV equation. The method was also applied
to solve two fluid flow and heat transfer problems. A survey of the other series solution numer-
ical methods, namely the differential transform method and the homotopy analysis method was
also carried out in detail and these methods were also applied on the examples and problems on
which the Adomian decomposition method was applied. This was done in order to achieve a fair
comparison of the methods with the Admian decomposition method.

6.2 Conclusions

A survey of the differential transform method, the perturbation method and the homotopy analysis
method was successfully carried out, and a comprehensive description of the Adomian decompo-
sition method was also executed successfully. In most of the examples on which the Adomian
decomposition method, the differential transform method and the homotopy analysis method
were applied, the three methods produced similar series solutions. In particular, for the homotopy
analysis method, when i = —1 the solution exactly coincides with that of the Adomian decom-
position method. It can thus be concluded that in most examples the Adomian decomposition
method is as good as these other series solution methods. In most simple examples, the series
solution methods even provide exact solutions. It was also confirmed through this work that the
Adomian decomposition method obtains series solutions that are rapidly convergent. In general
it was observed that the accuracy of the series solutions is dependent upon the series truncation
point. Increasing the truncation point greatly improves the accuracy of the solution. It is however
extremely cumbersome to manually calculate the higher order terms. For this reason, in the fluid
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flow and heat transfer problems that were solved, the schemes were coded into the symbolic
package MATHEMATICA for easy of computation and to achieve higher truncation point where
possible. Numerical solutions obtained for the fluid flow and heat transfer problems demonstrated
that the Adomian decomposition method and the other two methods provide similar accuracy
when the truncation points are increased. However in one of the two fluid flow problems that
we solved a computational complexity was encountered in solving the nonlinear problem. The
problem demonstrated slow convergence rate and requiring excessively high CPU time. As a
result only fewer terms could be obtained and this affected the accuracy of the results in that
problem.

6.3 Limitation of the study

The fluid flow problem in section 5.1 demonstrated slow convergence rate and high CPU time
indicating that a computational complexity in the iterative process had been generated. Because
of this, fewer terms were obtained and the accuracy of the solution was affected. In the nearest
future, we hope to conduct further research into finding alternative ways of handling this type of
nonlinear problems.

6.4 Recommendations

In this dissertation it has been confirmed that the Adomian decomposition method requires no
prior linearisation of the nonlinear terms and discretization of the derivatives. In this way the
method has desirable attributes as compared to other numerical methods that require linear
approximation and discretization. Linearisation and discretization obviously increase greater de-
viation from the exact or actual solution.The Adomian decomposition method is direct and not
difficult to implement and can easily be coded into symbolic packages for easy of computation,
in the process producing easily converging series solutions in most cases. This work thus recom-
mends the Adomian decomposition method, as well as the other series solution methods discussed
herein, when faced with a problem that involves nonlinear differential equations. However, in this
work we have also observed that in problems with high nonlinear complexity the Adomian decom-
position method can have very slow convergence rate and high CPU time. We recommend that
in such cases other ways of handling such problems must be sought.

6.5 Future research work

Future research work will involve solving fluid dynamics problems arising from science, engineering
and technology using the Adomian decomposition method and the other series solution methods
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discussed in this dissertation. Fluid dynamics problems have wide pertinent applications but are
difficult to solve owing to the fact that they are inherently nonlinear. It will be an interesting
venture, particularly for this candidate, to pursue a PhD through a project involving the application
of Adomian decomposition method and/or other series solution methods in solving fluid dynamics
problems. Future work will also involve looking at other ways of solving nonlinear problems where
the Adomian decomposition method fails to converge.
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Appendix: Mathematica code used for

the computations in chapter 5

DSolve[{F’’’’ [y] -
SlyF’’’[y] + 3 F’’[y] + F’[y] F’’[ly] - Fly] F’?’[y]l] -
Ha"2 F’’[y] == 0, F[0] == 0, F’’[0] == 0, F[1] == 1,
F’[1] == 0}, F, yl
DSolve[{-0.5[
3 (F°\[Prime]\[Prime]) [y] +
Derivative[1] [F] [yl (F"\[Prime]\[Prime]) [
y] - (1.19003 y - 0.0323768 y~3 - 0.0615159 y~5 +
7.48755%107-6 y°7 +
y~7 (-0.0553789 + 0.0000118158 y~2 + 7.34615%x107-10 y~4) +
y~9 (-0.0284778 - 0.0000794436 y~2 + 2.20947%107-6 y~4 -
3.14769%107-10 y~6 - 1.3741%107-14 y~8) +
y~11 (-0.00953615 - 0.0000318582 y~2 + 7.10326%107-7 y~4 +
2.02993%107-9 y76 - 1.51721%107-11 y~8 +
1.58923%107-15 y~10 + 5.33819%107-20 y~12) +
y~13 (-0.00224007 - 0.0000181534 y~2 + 8.18955%107-7 y~4 +
3.30807%107-9 y~6 - 3.50038*107-11 y~8 -
8.21156%107-15 y~10 + 4.6559%107-17 y~12 -
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3.83933%x107-21 y~14 - 1.04605%107-25 y~16) +
y~15 (-0.000388864 - 9.90345%107-6 y~2 -

3.82615%107-8 y~4 + 2.55165%107-8 y~6 +

6.32675%107-10 y°8 - 5.31775%107-12 y~10

4.0754%107-14 y~12 + 1.97991%107-16 y~14

+

3.9499%107-20 y~16

1.91866%107-22 y~18

+

3.7106%107-26 y~20 - 1.41412%107-30 y~22
4.02724%10°-35 y~24))

\ '\ (\*SuperscriptBox [\ (F\),

TagBox [

RowBox [{" (", "3", ")"}],

Derivative],

MultilineFunction->Nonel\) [y] +

\!'\ (\*SuperscriptBox [\ (yF\),

TagBox [

RowBox [{" (", "3", ")"}],

Derivative],

MultilineFunction->None]\) [yl] - 36 (F~\[Prime]\[Prime]) [y] +

\ !\ (\*SuperscriptBox [\ (F\),

TagBox [

RowBox [{" (", "4", ")"}],

Derivative],

MultilineFunction->None]\) [y] == 0,

F[0] == 0, (F"\[Prime]\[Primel)[0] == 0, F[1] == 1,

Derivative[1] [F][1] == 0}, F, y]

Ha

I
(@)}
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S =0.5

0.5

Pr = 10
10

Nt = 0.1
0.1

Nb = 0.1
0.1

Sc =1
Ec = 0.1
1

0.1

Subscript [F, 0] [yl = \!\(

\*SubsuperscriptBox [\ (\ [Integrall\), \(0O\), \(y\)I\(A \
\[DifferentialDIy\)\) + \!\(

\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)]B \[DifferentialD]y \

\[DifferentialD]y \[DifferentialD]y\)\)\)

1.19003 y - 0.0323768 y~3
Subscript[F, 0]’ [y] = A + (y°2 B)/2
1.19003 - 0.0971304 y~2
Subscript[F, 0]1°’[y] =By
-0.194261 y

Subscript[F, 0]°’’[y] = B

-0.194261

Subscript[C, 0] = Subscript[F, 0]’ [y] Subscript[F, 0]’’[y]
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-0.194261 y (1.19003 - 0.0971304 y~2)
Subscript [P, 0] = Subscript[F, 0][y] Subscript[F, 0]’’’ [y]
-0.194261 (1.19003 y - 0.0323768 y~3)
Subscript [F, 11[y]l = \I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(O\), \(y\)I\NC(S \((y\ \(
\*SubscriptBox [\ (F\), \(0\)]1’’’\) [yl + 3 \(
\*SubscriptBox [\ (F\), \(0\)1’’\) [y] +
\*SubscriptBox[\(C\), \(O\)] -
\*SubscriptBox [\ (P\), \(0O\)1)\) +
\*SuperscriptBox [\ (Ha\), \(2\)]1 \(
\*SubscriptBox [\ (F\), \(0\)]1’’\)[

y1)\) \[DifferentialD]y \[DifferentialD]y \[DifferentialDly \
\ [DifferentialD]y\)\)\D\)
-0.0615159 y~5 + 7.48755%10"-6 y~7

Subscript[F, 1]’[y] = 1/24 Ha"2 y"4 B + 1/6 S y"4 B + (S y~6 B~2)/360
-0.30758 y~4 + 0.0000524129 y~6
Subscript[F, 1]°’[y] = 1/6 Ha™2 y"3 B + 2/3 S y"3 B + 1/60 S y~5 B2

-1.23032 y~3 + 0.000314477 y~5

Subscript[F, 1]’’’[y] = 1/2 Ha"2 y"2 B + 2 S y"2 B + 1/12 S y™4 B2
-3.69096 y~2 + 0.00157239 y~4

Subscript[C, 1] =

Subscript [F, 1]’ [y] Subscript[F, 0]’°[y] +

Subscript [F, 0]’ [y] Subscript[F, 11’7 [y]
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(1.19003 - 0.0971304 y~2) (-1.23032 y~3 + 0.000314477 y~5) -
0.194261 y (-0.30758 y~4 + 0.0000524129 y~6)
Subscript [P, 1] =
Subscript[F, 1][y] Subscript[F, 0]’’’ [y] +
Subscript[F, 0] [y] Subscript[F, 1]’’’ [y]
(1.19003 y - 0.0323768 y~3) (-3.69096 y~2 + 0.00157239 y~4) -

0.194261 (-0.0615159 y~5 + 7.48755%107-6 y~7)

Subscript [F, 21 [yl = \!\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\C(S \((y\ \(
\*SubscriptBox [\ (F\), \(1\)1’’’\) [yl + 3 \(
\*SubscriptBox [\ (F\), \(1\)]1’’\) [y] +
\*SubscriptBox [\ (C\), \(1\)] -
\*SubscriptBox [\ (P\), \(1\)1)\) +
\*SuperscriptBox [\ (Ha\), \(2\)]1 \(
\*SubscriptBox [\ (F\), \(1\)]1’’\)[
y1)\) \[DifferentialD]y \[DifferentialD]y \[DifferentialD]y \

\[DifferentialDIy\)\)\)\)
y~7 (-0.0553789 + 0.0000118158 y~2 + 7.34615%10"-10 y~4)
Subscript[C, 2] =

D[Subscript[F, 1]1[y], y] D[D[Subscript[F, 11[yl, yl, y] +

D[Subscript[F, 2] [y], y] D[D[Subscript([F, 0][yl, yl, yl +

2 D[Subscript[F, 0][yl, y] D[D[Subscript[F, 2]1[yl, y] y]
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(-1.23032 y~3 + 0.000314477 y~5) (-0.30758 y~4 + 0.0000524129 y~6) -
0.194261 y (y°7 (0.0000236315 y + 2.93846%10°-9 y~3) +

7 y°6 (-0.0553789 + 0.0000118158 y~2 + 7.34615%107-10 y~4)) +
2y (1.19003 -

0.0971304 y~2) (y~7 (0.0000236315 y + 2.93846%107°-9 y~3) +

7 y°6 (-0.0553789 + 0.0000118158 y~2 + 7.34615%107-10 y~4))
Subscript [P, 2] =
Subscript [F, 0][y] D[D[D[Subscript[F, 2]1[y]l, yl, yl, yl +

2 Subscript[F, 1][y] DID[D[Subscript[F, 11[yl, yl, yl, y] +

2 Subscript[F, 2][y] D[D[D[Subscript[F, 0][lyl, yl, yl, vl

-0.388522 y~7 (-0.0553789 + 0.0000118158 y~2 + 7.34615%107-10 y~4) +
2 (-3.69096 y~2 + 0.00157239 y~4) (-0.0615159 y~5 +

7.48755%107-6 y~7) + (1.19003 y -

0.0323768 y~3) (1.76308%10°-8 y~8 +

21 y~6 (0.0000236315 + 8.81538%x107-9 y~2) +

126 y~5 (0.0000236315 y + 2.93846*10°-9 y~3) +

210 y~4 (-0.0553789 + 0.0000118158 y~2 + 7.34615%107-10 y~4))

Subscript [F, 31[y]l = \!\(

\*SubsuperscriptBox [\ (\ [Integrall\), \(O\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\((S \((y\ DID[D[
\ (\*SubscriptBox [\ (F\), \(2\)I\)[yl, \ yl, \ yJ, \ y]l + 3 DI[DI

\ (\*SubscriptBox [\ (F\), \(2\)]I\) [y], yl, \ y] +
\*SubscriptBox [\ (C\), \(2\)] -

\*SubscriptBox [\ (P\), \(2\)1)\) +
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\*SuperscriptBox[\(Ha\), \(2\)] D[D[
\ (\*SubscriptBox [\ (F\), \(2\)1I\) [yl, \ yI, \
y1)\) \[DifferentialD]y \[DifferentialD]y \[DifferentialD]y \
\ [DifferentialDIy\)\)\)\)
y79 (-0.0284778 - 0.0000794436 y~2 + 2.20947%10°-6 y~4 -
3.14769%107-10 y~6 - 1.3741%10"-14 y~8)
Subscript[C, 3] =
D[Subscript[F, 3]1[y]l, y] D[D[Subscript[F, 01[yl, yl, yl +
D[Subscript[F, 2] [yl, y] D[D[Subscript(F, 11[yl, yl, y] +
D[Subscript[F, 1][yl, y] D[D[Subscript[F, 2][yl, yl, y] +

D[Subscript[F, 0][y], y] D[D[Subscript[F, 3]1[yl, y] vl

(-0.30758 y~4 +
0.0000524129 y~6) (y~7 (0.0000236315 + 8.81538%107-9 y~2) +
14 y~6 (0.0000236315 y + 2.93846%107-9 y~3) +
42 y~5 (-0.0553789 + 0.0000118158 y~2 +
7.34615%107-10 y~4)) + (-1.23032 y~3 +
0.000314477 y~5) (y~7 (0.0000236315 y + 2.93846%107-9 y~3) +
7 y°6 (-0.0553789 + 0.0000118158 y~2 + 7.34615%107-10 y~4)) -
0.194261 y (y~9 (-0.000158887 y + 8.83788%10°-6 y~3 -
1.88861%107-9 y~5 - 1.09928%107-13 y~7) +
9 y°8 (-0.0284778 - 0.0000794436 y~2 + 2.20947%10°-6 y 4 -
3.14769%107-10 y~6 - 1.3741%107-14 y~8)) +
y (1.19003 -
0.0971304 y~2) (y~9 (-0.000158887 y + 8.83788%10°-6 y~3 -
1.88861%107-9 y~5 - 1.09928%10°-13 y~7) +
9 y~8 (-0.0284778 - 0.0000794436 y~2 + 2.20947%107-6 y 4 -

3.14769%10°-10 y~6 - 1.3741%10"-14 y~8))
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Subscript [P, 3] =

Subscript [F, 3][y] D[D[D[Subscript[F, 01[yl, yl, yl, yl +
Subscript [F, 2][y] DID[D[Subscript[F, 11[yl, yl, yl, yl +
Subscript[F, 1][y] D[D[D[Subscript([F, 2][yl, yl, yl, y] +

Subscript [F, 0][y] D[D[D[Subscript[F, 31[yl, yl, yl, yI

y~7 (-0.0553789 + 0.0000118158 y~2 +
7.34615%10°-10 y~4) (-3.69096 y~2 + 0.00157239 y~4) -
0.194261 y~9 (-0.0284778 - 0.0000794436 y~2 + 2.20947*10°-6 y~4 -
3.14769%10°-10 y~6 - 1.3741%10"-14 y~8) + (-0.0615159 y~5 +
7.48755%107-6 y~7) (1.76308%10°-8 y~8 +
21 y~6 (0.0000236315 + 8.81538+10°-9 y~2) +
126 y~5 (0.0000236315 y + 2.93846%10°-9 y~3) +
210 y~4 (-0.0553789 + 0.0000118158 y~2 +
7.34615%107-10 y~4)) + (1.19003 y -

0.0323768 y~3) (y~9 (0.0000530273 y - 3.77722%10°-8 y~3 -
4.61699%10°-12 y~5) +

27 y~8 (-0.000158887 + 0.0000265136 y~2 - 9.44306%10°-9 y~4 -
7.69498%10°-13 y~6) +

216 y~7 (-0.000158887 y + 8.83788+10°-6 y~3 - 1.88861%10"-9 y~5 -
1.09928%10°-13 y~7) +

504 y~6 (-0.0284778 - 0.0000794436 y~2 + 2.20947*10°-6 y~4 -

3.14769%10°-10 y~6 - 1.3741%10"-14 y~8))

Subscript [F, 4]1[y]l = \!\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integral]l\), \(0O\), \(y\)I\(
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\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)1\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\((S \((y\ DID[D[
\(\*SubscriptBox [\ (F\), \(3\)I\)[yl, \ yl, \ yl, \ yl + 3 DIDI
\(\*SubscriptBox [\(F\), \(3\)I\)[yl, y1, \ yl +
\#SubscriptBox[\(C\), \(3\)] -
\*SubscriptBox [\ (P\), \(3\)D\) +
\*SuperscriptBox [\ (Ha\), \(2\)] D[D[
\(\*SubscriptBox [\ (F\), \(3VI\[y]l, \ yl, \

y] )AY) \[DifferentialD]y \[DifferentialD]y \[DifferentialD]y \

\ [DifferentialD]y\)\)\)\)

y~11 (-0.00953615 - 0.0000318582 y~2 + 7.10326%10°-7 y~4 +
2.02993%10°-9 y~6 - 1.51721%10"-11 y~8 + 1.58923%10°-15 y~10 +

5.33819%107-20 y~12)

Subscript[C, 4] =

D[Subscript [F, 4][y]l, y] D[D[Subscript[F, 0l[yl, yl, y] +
D[Subscript[F, 3][y], y] DID[Subscript[F, 1]1[yl, yl, yl +
D[Subscript[F, 2][y], y] D[D[Subscript[F, 21[y]l, yl, yl +
D[Subscript[F, 11[yl, y] D[D[Subscript[F, 3]1[yl, yl yl +

D[Subscript[F, 0][y]l, y] D[D[Subscript[F, 4][yl, y] vyl
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Subscript [P, 4] =

Subscript[F, 4][y] DID[D[Subscript[F, 0][yl, yl, yl, yl +
Subscript [F, 3] [y] D[D[D[Subscript[F, 1][yl, yl, yl, y] +
Subscript[F, 2] [y] D[D[D[Subscript[F, 21[y]l, yl, yl, yl +
Subscript[F, 1][y] D[D[D[Subscript[F, 31[yl, yl, yl, yl +

Subscript[F, 0] [y] D[D[D[Subscript[F, 4]1[yl, yl, yl, yl

(y~7 (0.0000236315 + 8.81538%107-9 y~2) +
14 y~6 (0.0000236315 y + 2.93846%107-9 y~3) +
42 y~5 (-0.0553789 + 0.0000118158 y~2 +
7.34615%107-10 y~4)) (y~7 (0.0000236315 y +
2.93846%107-9 y~3) +
7 y°6 (-0.0553789 + 0.0000118158 y~2 +
7.34615%107-10 y~4)) + (-1.23032 y~3 +
0.000314477 y~5) (y~9 (-0.000158887 y + 8.83788%10°-6 y~3 -
1.88861%107-9 y~5 - 1.09928%10°-13 y~7) +
9 y~8 (-0.0284778 - 0.0000794436 y~2 + 2.20947%10°-6 y~4 -
3.14769%107-10 y~6 - 1.3741%107-14 y~8)) +
y (-0.30758 y~4 +
0.0000524129 y~6) (y~9 (-0.000158887 y + 8.83788%10°-6 y~3 -
1.88861%107-9 y~5 - 1.09928%10°-13 y~7) +
9 y~8 (-0.0284778 - 0.0000794436 y~2 + 2.20947%107-6 y 4 -

3.14769%107-10 y~6 - 1.3741%107-14 y~8)) -
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0.194261 y (y~11 (-0.0000637165 y + 2.84131%107-6 y~3 +
1.21796%107-8 y~5 - 1.21377%*107-10 y~7 + 1.58923%107-14 y~9 +
6.40583%107-19 y~11) +

11 y~10 (-0.00953615 - 0.0000318582 y~2 + 7.10326%10°-7 y~4 +
2.02993%107-9 y~6 - 1.51721%107-11 y~8 + 1.58923%10"-15 y~10 +
5.33819%107-20 y~12)) +

y (1.19003 -

0.0971304 y~2) (y~11 (-0.0000637165 y + 2.84131%10°-6 y~3 +
1.21796%107-8 y~5 - 1.21377%107-10 y~7 + 1.58923%107-14 y~9 +
6.40583%107-19 y~11) +

11 y~10 (-0.00953615 - 0.0000318582 y~2 + 7.10326%10°-7 y~4 +
2.02993%107-9 y~6 - 1.51721%107-11 y~8 + 1.58923%10°-15 y~10 +

5.33819%107-20 y~12))

y~9 (-3.69096 y~2 + 0.00157239 y~4) (-0.0284778 - 0.0000794436 y~2 +
2.20947%10°-6 y~4 - 3.14769%10°-10 y~6 - 1.3741%10°-14 y~8) -
0.194261 y~11 (-0.00953615 - 0.0000318582 y~2 + 7.10326%10°-7 y~4 +
2.02993%10"-9 y~6 - 1.51721%10"-11 y~8 + 1.58923%10°-15 y~10 +

5.33819%107-20 y~12) +

y~7 (-0.0553789 + 0.0000118158 y~2 +

7.34615%107-10 y~4) (1.76308+10°-8 y~8 +

21 y~6 (0.0000236315 + 8.81538+10°-9 y~2) +

126 y~5 (0.0000236315 y + 2.93846%10°-9 y~3) +

210 y~4 (-0.0553789 + 0.0000118158 y~2 +
7.34615%107-10 y~4)) + (-0.0615159 y~5 +

7.48755%10°-6 y~7) (y~9 (0.0000530273 y - 3.77722%10°-8 y~3 -
4.61699%10°-12 y~5) +

27 y~8 (-0.000158887 + 0.0000265136 y~2 - 9.44306%107-9 y~4 -
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7.69498%10°-13 y~6) +

216 y~7 (-0.000158887 y + 8.83788%10"-6 y~3 - 1.88861%10°-9 y~5 -
1.09928%10°-13 y~7) +

504 y~6 (-0.0284778 - 0.0000794436 y~2 + 2.20947%10°-6 y~4 -
3.14769%10°-10 y~6 - 1.3741%10"-14 y~8)) + (1.19003 y -

0.0323768 y~3) (y~11 (0.0000170478 y + 2.43592%10°-7 y~3 -
5.09783%10°-9 y~5 + 1.14424%10°-12 y~7 + 7.04641%10°-17 y~9) +

33 y°10 (-0.0000637165 + 8.52392%10"-6 y~2 + 6.08979%10°-8 y~4 -
8.49638%10°-10 y~6 + 1.43031%10"-13 y~8 +
7.04641%10°-18 y~10) +

330 y°9 (-0.0000637165 y + 2.84131%10"-6 y~3 +
1.21796%10°-8 y~5 - 1.21377%10°-10 y~7 + 1.58923%10"-14 y~9 +
6.40583%10°-19 y~11) +

990 y~8 (-0.00953615 - 0.0000318582 y~2 + 7.10326%10"-7 y~4 +
2.02993%10°-9 y~6 - 1.51721%10"-11 y~8 + 1.58923%10°-15 y~10 +

5.33819%107-20 y~12))

Subscript[F, 5]1[y] = \!\(

\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\((S \((y\ D[D[D[
\ (\*SubscriptBox [\ (F\), \(4\)I\)[yl, \ yl, \ yl, \ yl + 3 DI[DI
\ (\*SubscriptBox [\ (F\), \(4\)]I\) [yl, yl, \ y] +
\*SubscriptBox [\ (C\), \(4\)] -

\*SubscriptBox [\ (P\), \(4\)1)\) +

\*SuperscriptBox [\ (Ha\), \(2\)] D[D[

\ (\xSubscriptBox [\ (F\), \(4\)I\) [yl, \ yl, \
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y1)\) \[DifferentialD]y \[DifferentialD]y \[DifferentialD]y \

\[DifferentialDIy\)\)\)\)

y~13 (-0.00224007 - 0.0000181534 y~2 + 8.18955%107-7 y~4 +
3.30807x107-9 y~6 - 3.50038%107-11 y~8 - 8.211566%107-15 y~10 +

4.6559%107-17 y~12 - 3.83933%107-21 y~14 - 1.04605%107-25 y~16)

Subscript[C, 5] =

D[Subscript[F, 5][yl, y] D[D[Subscript(F, 01[yl, yl, y] +
D[Subscript[F, 4][yl, y] D[D[Subscript[F, 11[yl, yl, y] +
D[Subscript[F, 3][y], y] DID[Subscript([F, 3]1[yl, yl, yl +
D[Subscript[F, 2]1[yl, yl DID[Subscript[F, 31[yl, yl yl +
D[Subscript[F, 11[yl, y] D[D[Subscript(F, 51[yl, y] yl +

D[Subscript[F, 0][y], y] D[D[Subscript[F, 5][yl, y] vl

Subscript [P, 5] =

Subscript[F, 5][y] D[D[D[Subscript([F, 0][yl, yl, yl, yl +
Subscript[F, 4][y] DID[D[Subscript[F, 11[yl, yl, yl, y] +
Subscript[F, 3][y] DID[D[Subscript([F, 31[yl, yl, yl, yl +
Subscript [F, 2] [y] D[D[D[Subscript([F, 3][yl, yl, yl, y] +
Subscript [F, 1][y] D[D[D[Subscript[F, 51[yl, yl, yl, yl +

Subscript[F, 0] [y] D[D[D[Subscript[F, 5][yl, yl, yl, vyl

y (y~7 (0.0000236315 y + 2.93846%10°-9 y~3) +
7 y~6 (-0.0553789 + 0.0000118158 y~2 +
7.34615%107-10 y~4)) (y~9 (-0.000158887 y +

8.83788%x107-6 y~3 - 1.88861%107-9 y~5 - 1.09928%107-13 y~7) +
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9 y~8 (-0.0284778 - 0.0000794436 y~2 + 2.20947%107-6 y~4 -
3.14769%10°-10 y~6 -
1.3741%107°-14 y~8)) + (y~9 (-0.000158887 + 0.0000265136 y~2 -
9.44306%107-9 y~4 - 7.69498%10°-13 y~6) +

18 y~8 (-0.000158887 y + 8.83788%107-6 y~3 - 1.88861%107-9 y~5 -
1.09928%107°-13 y~7) +

72 y~7 (-0.0284778 - 0.0000794436 y~2 + 2.20947%107-6 y~4 -
3.14769%10°-10 y~6 -
1.3741%107-14 y~8)) (y~9 (-0.000158887 y + 8.83788%107-6 y~3 -
1.88861%107-9 y~5 - 1.09928%10°-13 y~7) +

9 y°8 (-0.0284778 - 0.0000794436 y~2 + 2.20947*107-6 y~4 -
3.14769%107-10 y~6 - 1.3741%107-14 y~8)) + (-1.23032 y~3 +

0.000314477 y~5) (y~11 (-0.0000637165 y + 2.84131%10"-6 y~3 +
1.21796%10°-8 y~5 - 1.21377%107-10 y~7 + 1.58923%107-14 y~9 +
6.40583%107-19 y~11) +

11 y~10 (-0.00953615 - 0.0000318582 y~2 + 7.10326%107-7 y 4 +
2.02993%107-9 y~6 - 1.51721%107-11 y~8 + 1.58923%107-15 y~10 +
5.33819%107-20 y~12)) -

0.194261 y (y~13 (-0.0000363069 y + 3.27582%10°-6 y~3 +
1.98484%107-8 y~5 - 2.8003%107-10 y~7 - 8.21156%10"-14 y~9 +
5.58707%107-16 y~11 - 5.37507%107-20 y~13 -
1.67369%107-24 y~15) +

13 y~12 (-0.00224007 - 0.0000181534 y~2 + 8.18955%107-7 y 4 +
3.30807%107-9 y~6 - 3.50038%10°-11 y~8 - 8.21156%107-15 y~10 +
4.6559%107-17 y~12 - 3.83933%10°-21 y~14 -
1.04605%107-25 y~16)) +

y (1.19003 -

0.0971304 y~2) (y~13 (-0.0000363069 y + 3.27582%x107-6 y~3 +
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1.98484%10°-8 y~5 - 2.8003%10°-10 y~7 - 8.21156%10"-14 y~9 +
5.58707%10°-16 y~11 - 5.37507%10°-20 y~13 -
1.67369%10°-24 y~15) +

13 y~12 (-0.00224007 - 0.0000181534 y~2 + 8.18955%10°-7 y~4 +
3.30807%10°-9 y~6 - 3.50038%10°-11 y~8 - 8.21156%10°-15 y~10 +
4.6559%10°-17 y~12 - 3.83933%10°-21 y~14 -
1.04605%10°-25 y~16)) +

y (-0.30758 y~4 +

0.0000524129 y~6) (y~13 (-0.0000363069 y + 3.27582%10°-6 y~3 +
1.98484%10°-8 y~5 - 2.8003%10°-10 y~7 - 8.21156%10"-14 y~9 +
5.58707%10°-16 y~11 - 5.37507%10°-20 y~13 -
1.67369%10°-24 y~15) +

13 y~12 (-0.00224007 - 0.0000181534 y~2 + 8.18955%10°-7 y~4 +
3.30807%10°-9 y~6 - 3.50038%10°-11 y~8 - 8.21156%10°-15 y~10 +
4.6559%10"-17 y~12 - 3.83933%10°-21 y~14 -

1.04605%10°-25 y~16))

y~11 (-3.69096 y~2 + 0.00157239 y~4) (-0.00953615 -
0.0000318582 y~2 + 7.10326%10°-7 y~4 + 2.02993%10°-9 y~6 -
1.51721%10"-11 y~8 + 1.58923%10°-15 y~10 + 5.33819%10°-20 y~12) -
0.194261 y~13 (-0.00224007 - 0.0000181534 y~2 + 8.18955%10°-7 y~4 +
3.30807%10°-9 y~6 - 3.50038%10"-11 y~8 - 8.21156%10°-15 y~10 +
4.6559%10"-17 y~12 - 3.83933%10°-21 y~14 - 1.04605%10"°-25 y~16) +
y~7 (-0.0553789 + 0.0000118158 y~2 +
7.34615%10°-10 y~4) (y~9 (0.0000530273 y - 3.77722%10°-8 y~3 -
4.61699%10°-12 y~5) +
27 y°8 (-0.000158887 + 0.0000265136 y~2 - 9.44306%10°-9 y~4 -

7.69498%x107-13 y~6) +
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216 y~7 (-0.000158887 y + 8.83788*%107-6 y~3 - 1.88861%107-9 y~5 -
1.09928%107-13 y~7) +

504 y~6 (-0.0284778 - 0.0000794436 y~2 + 2.20947%107-6 y~4 -
3.14769%107-10 y~6 - 1.3741%107-14 y~8)) +

y~9 (-0.0284778 - 0.0000794436 y~2 + 2.20947%107-6 y~4 -

3.14769%107-10 y~6 -

1.3741%107-14 y~8) (y~9 (0.0000530273 y - 3.77722%10°-8 y~3 -
4.61699%107-12 y~5) +

27 y~8 (-0.000158887 + 0.0000265136 y~2 - 9.44306%107-9 y~4 -
7.69498%x107-13 y~6) +

216 y~7 (-0.000158887 y + 8.83788*107-6 y~3 - 1.88861%107-9 y~5 -
1.09928%107-13 y~7) +

504 y~6 (-0.0284778 - 0.0000794436 y~2 + 2.20947%107-6 y~4 -
3.14769%107-10 y~6 - 1.3741%107-14 y~8)) + (1.19003 y -

0.0323768 y~3) (y~13 (0.0000196549 y + 3.96968%107-7 y~3 -
1.17613%107-8 y~5 - 5.91233*%107-12 y~7 + 6.14578%x107-14 y~9 -
8.38511%x107-18 y~11 - 3.51474%107-22 y~13) +

39 y~12 (-0.0000363069 + 9.82746%107-6 y~2 + 9.9242%107-8 y~4 -
1.96021%107-9 y~6 - 7.39041%107-13 y~8 + 6.14578%x107-15 y~10 -
6.98759%x107-19 y~12 - 2.51053%107-23 y~14) +

468 y~11 (-0.0000363069 y + 3.27582%107-6 y~3 +
1.98484%107-8 y~5 - 2.8003%107-10 y~7 - 8.211566%107-14 y~9 +
5.58707%107-16 y~11 - 5.37507*107-20 y~13 -
1.67369%107-24 y~15) +

1716 y~10 (-0.00224007 - 0.0000181534 y~2 + 8.18955%107-7 y~4 +
3.30807%107-9 y~6 - 3.50038%107-11 y~8 - 8.21156%107-15 y~10 +
4.6559%x107-17 y~12 - 3.83933%107-21 y~14 -

1.04605%10"-25 y~16)) + (-0.0615159 y~5 +
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7.48755%107-6 y~7) (y~13 (0.0000196549 y + 3.96968%10°-7 y~3 -
1.17613%107-8 y~5 - 5.91233%107-12 y~7 + 6.14578%x107-14 y~9 -
8.38511%x107-18 y~11 - 3.51474%107-22 y~13) +

39 y~12 (-0.0000363069 + 9.82746%x107-6 y~2 + 9.9242%107-8 y~4 -

1.96021%107-9 y~6 - 7.39041%107-13 y~8 + 6.14578%107-15 y~10 -

6.98759%107-19 y~12 - 2.51053%107-23 y~14) +

468 y~11 (-0.0000363069 y + 3.27582*%107-6 y~3 +
1.98484%107-8 y~5 - 2.8003%107-10 y~7 - 8.211566%107-14 y~9 +
5.58707%107-16 y~11 - 5.37507*107-20 y~13 -
1.67369%107°-24 y~15) +

1716 y~10 (-0.00224007 - 0.0000181534 y~2 + 8.18955%107-7 y~4 +
3.30807%107-9 y~6 - 3.50038%107-11 y~8 - 8.21156%107-15 y~10 +
4.6559%107-17 y~12 - 3.83933%107-21 y~14 -

1.04605%107-25 y~16))

Subscript[F, 6]yl = \!\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\((S \((y\ DIDID[
\ (\*SubscriptBox [\ (F\), \(G\)I\)[yl, \ yl, \ yI, \ yl + 3 DI[DI
\ (\*SubscriptBox [\ (F\), \(G\)I\) [yl, yl, \ y] +
\*SubscriptBox [\ (C\), \(5\)] -
\#SubscriptBox [\ (P\), \(5\)]1)\) +
\*SuperscriptBox [\ (Ha\), \(2\)] D[D[
\ (\*SubscriptBox [\ (F\), \(G\)I\) [yl, \ yl, \

y1)\) \[DifferentialD]y \[DifferentialD]y \[DifferentialD]y \

\[DifferentialDIy\)\)\)\)
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y~15 (-0.000388864 - 9.90345%x107-6 y~2 - 3.82615%x107-8 y~4 +
2.55165%107-8 y~6 + 6.32675%x107-10 y~8 - 5.31775%x107-12 y~10 -
4.0754%107-14 y~12 + 1.97991%107-16 y~14 + 3.9499%107-20 y~16 -
1.91866%107-22 y~18 + 3.7105%107-26 y~20 - 1.41412%107-30 y~22 -
4.02724%10"-35 y~24)

Flyl = \!I\(

\*UnderoverscriptBox [\ (\ [Sum]\), \(n = 0\), \(6\)]\(

\ (\*SubscriptBox [\ (F\), \(@\)1\) [yI\)\)

1.19003 y - 0.0323768 y~3 - 0.0615159 y°b + 7.48755%x107-6 y~°7 +

y~7 (-0.0553789 + 0.0000118158 y~2 + 7.34615%107-10 y~4) +

y~9 (-0.0284778 - 0.0000794436 y~2 + 2.20947%107-6 y~4 -
3.14769%107-10 y~6 - 1.3741%107-14 y~8) +

y~11 (-0.00953615 - 0.0000318582 y~2 + 7.10326%107-7 y~4 +
2.02993%107-9 y°6 - 1.51721x107-11 y~8 + 1.58923%x107-15 y~10 +
5.33819%107-20 y~12) +

y~13 (-0.00224007 - 0.0000181534 y~2 + 8.18955%107-7 y~4 +
3.30807%107-9 y~6 - 3.50038%107-11 y~8 - 8.21156%x107-15 y~10 +
4.6559%107-17 y~12 - 3.83933%107-21 y~14 - 1.04605%107-25 y~16) +

y~15 (-0.000388864 - 9.90345%x107-6 y~2 - 3.82615%107-8 y~4 +
2.55165%107-8 y~6 + 6.32675%107-10 y~8 - 5.317756%107-12 y~10 -
4.0754%x107-14 y~12 + 1.97991%107-16 y~14 + 3.9499%107-20 y~16 -
1.91866%107-22 y~18 + 3.7105%107-26 y~20 - 1.41412%107-30 y~22 -

4.02724%107-35 y~24)

Qily]l] = D[Flyl, y1 /.y > 1
2.22045%107-16

Q2lyl = Flyl /.y > 1
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1.
Solve[{Q1ly] == 0 && Q2[y] == 1}, {A, B}]
Solve[{False}, {1.19003, -0.194261}]

Q3[x] = Flyl /.
y -> {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

{0., 0.11897, 0.237727, 0.355973, 0.473212, 0.588553, 0.700367, \

0.805655, 0.898892, 0.969909, 1.}

DSolve[{ D[ D[ D[ULyl, yl, yl, yl + 2 q E DL D[ULy], yl, y] +
Uly] D[ULy], y]1 + (4 - L) g°2 DI[Ulyl], y] == 0, U[0] == 1,
D[ U[0], y] == 0, U[1] == 1}, U, y]
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DSolve[{(4 - L) q~2 Derivative[1] [U] [y] + Uly] Derivativel[1][U][y] +
2 E q (U"\[Prime]\[Primel) [y] +

\ '\ (\*SuperscriptBox [\ (U\),

TagBox [

RowBox [{" (", "3", ")"}],

Derivativel],

MultilineFunction->None]\) [yl == 0, U[0] == 1, True, U[1] == 1}, U, y]

Subscript[U, 0][y] =1 + ( y°2 R)/2

1+ (R y°2)/2

Subscript[Z, 0] = Subscript[U, 0] [y] D[Subscript[U, 0] [y], yl

Ry (1 + (Ry"2)/2)

q= 1/36 \pi
\pi/36

Re = 50

50
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L = 1000

1000

D [ D[ D U {0}y, y1, y1, vl

2 q 50 D[U_{0}(y), y]l, ¥yl

(25 \pi R)/9

Subscript[U, 11yl = \!\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(O\), \(y\)I\(-\((2 \((
\*FractionBox [\ (\[Pi]\), \(36\)1)\)\ 50\
\*SubscriptBox [\ (Z\), \(0O\)] + \((4 - L)\)
\*SuperscriptBox[\(q\), \(2\)J\ \ D[\
\ (\*SubscriptBox [\ (U\), \(O\)I\) [y]l, \

y1)\)\) \[DifferentialD]y \[DifferentialD]y \

\[DifferentialD]y\)\)\)

(\[Pi] R y™4 (83 \[Pi] - 30 (10 + R y~2)))/2592
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Subscript[Z, 1] =
Subscript [U, 1][y] D[Subscript[U, 0][yl, y] +

Subscript [U, 0] [y] D[Subscript[U, 1][yl, y]

(\[Pi] R™2 y~5 (83 \[Pi] - 30 (10 + R y~2)))/2592 + (1 + (R y~2)/
2) (-(5/216) \[Pi] R"2 y°5 +

1/648 \[Pi] R y~3 (83 \[Pi] - 30 (10 + R y~2)))

Subscript[U, 21[y] = \!\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(-\((2 \((
\*FractionBox [\(\[Pi]I\), \(36\)1)\)\ 50\
\*SubscriptBox [\ (Z\), \(1\)] + \((4 - L)\)
\*SuperscriptBox[\(q\), \(2\)I\ \ D[\
\ (\*SubscriptBox [\ (U\), \(1\)I\) [y]l, \

y1)\)\) \[DifferentialD]y \[DifferentialD]y \

\[DifferentialD]y\)\)\)

(\[Pil"2 R y~6 (48223 \[Pi]~"2 - 6225 \[Pi] (56 + 9 R y~2) +

1500 (420 + 135 R y"2 + 7 R"2 y~4))) /58786560

Subscript[Z, 2] =
Subscript[U, 2][y] D[Subscript[U, 0][y], y] +
Subscript[U, 1][y] D[Subscript([U, 1][y], yl] +

Subscript [U, 0] [y] D[Subscript[U, 2][y], y]l

(\[Pil"2 R™2 y~7 (48223 \[Pi]"2 - 6225 \[Pi] (66 + 9 R y~2) +
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1500 (420 + 135 R y~2 +
7 R72 y~4)))/58786560 + (\[Pi]l R y~4 (83 \[Pi] -
30 (10 + R y72)) (-(5/216) \[Pi] R"2 y75 +
1/648 \[Pi] R y~3 (83 \[Pi] - 30 (10 + R y~2))))/2592 + (1 + (
R y~2)/2) ((\[Pi]"2 R y~6 (-112050 \[Pi] R y +
1500 (270 R y + 28 R™2 y~3)))/
58786560 + (\[Pi]"2 R y~5 (48223 \[Pi]"2 -
6225 \[Pi] (56 + 9 R y~2) +
1500 (420 + 135 R y~2 + 7 R™2 y~4)))/9797760)
Subscript [U, 31 [yl = \I\(
\*SubsuperscriptBox [\ (\[Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(O\), \(y\)I\(-\((2 \((
\*FractionBox [\(\[PiJ\), \(36\)1)\)\ 50\
\*SubscriptBox [\ (Z\), \(2\)] + \((4 - L)\)
\*SuperscriptBox[\(q\), \(2\)1\ \ D[\
\ (\*SubscriptBox [\ (U\), \(2\DI\) [y]l, \
y1)\)\) \[DifferentialD]y \[DifferentialD]y \

\[DifferentialDIy\)\)\)

1/7263197061120 \[Pi]~3 R y~8 (81765541 \[Pi]~3 -
88661430 \[Pi]"2 (10 + 3 R y72) +
1079000 \[Pi] (2970 + 1782 R y~2 + 127 R™2 y~4) -

75000 (51480 + 46332 R y~2 + 6604 R"2 y~4 + 231 R"3 y~6))

Subscript[Z, 3] =
Subscript[U, 3] [y] D[Subscript[U, 0][y], y] +

Subscript[U, 2] [y] D[Subscript[U, 1][y], y] +
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Subscript[U, 0] [y] D[Subscriptl[U, 3][y], y] +

Subscript [U, 1] [y] D[Subscript[U, 2][y], y]

1/7263197061120 \[Pi]~3 R™2 y~9 (81765541 \[Pi]~3 -
88661430 \[Pi]™2 (10 + 3 R y~2) +
1079000 \[Pi] (2970 + 1782 R y~2 + 127 R™2 y~4) -
75000 (51480 + 46332 R y~2 + 6604 R™2 y~4 +
231 R73 y76)) + (\[Pi]l"2 R y~6 (48223 \[Pi]"2 -
6225 \[Pi] (56 + 9 R y~2) +
1500 (420 + 135 R y~2 + 7 R™2 y~4)) (-(5/216) \[Pi] R"2 y~5 +
1/648 \[Pi] R y~3 (83 \[Pi] -
30 (10 + R y~2)))) /58786560 + (\[Pi] R y~4 (83 \[Pi] -
30 (10 + R y™2)) ((\[Pi]"2 R y~6 (-112050 \[Pi] R y +
1500 (270 R y + 28 R™2 y~3)))/
58786560 + (\[Pi]~2 R y~5 (48223 \[Pi]"2 -
6225 \[Pi] (56 + 9 R y™2) +
1500 (420 + 135 R y™2 + 7 R™2 y~4)))/9797760)) /2592 + (1 + (
R y2)/2) ((\[Pi]"3 R y~8 (-531968580 \[Pi]"2 R y +
1079000 \[Pi] (3564 R y + 508 R™2 y~3) -
75000 (92664 R y + 26416 R™2 y~3 + 1386 R™3 y~5)))/
7263197061120 +
1/907899632640 \[Pil~3 R y~7 (81765541 \[Pi]~3 -
88661430 \[Pi]"2 (10 + 3 R y~2) +
1079000 \[Pi] (2970 + 1782 R y~2 + 127 R™2 y~4) -
75000 (51480 + 46332 R y~2 + 6604 R™2 y~4 + 231 R"3 y76)))
Subscript [U, 4]1[y]l = \!\(
\*SubsuperscriptBox [\ (\ [Integrall\), \(0\), \(y\)I\(
\*SubsuperscriptBox [\ (\ [Integral]l\), \(0O\), \(y\)I\(
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\*SubsuperscriptBox [\ (\ [Integrall\), \(0O\), \(y\)I\(-\((2 \((
\#FractionBox [\ (\[Pi]\), \(36\)1)\)\ 50\
\*SubscriptBox [\ (Z\), \(8\)] + \((4 - L)\)
\*SuperscriptBox[\(q\), \(2\)I\ \ D[\
\ (\*SubscriptBox [\ (U\), \(3\)I\) [y]l, \
y1)\)\) \[DifferentialD]y \[DifferentialD]y \
\[DifferentialD]y\)\)\)
1/8401194776656281600 \[Pi]l~4 R y~10 (807598248457 \[Pi]~4 -
1061465386800 \[Pi]~3 (11 + 7 R y~2) +
10540170000 \[Pi]~2 (6006 + 7644 R y~2 + 773 R™2 y~4) -
476212500 \[Pi] (320320 + 611520 R y~2 + 123680 R"2 y~4 +
5481 R~3 y~6) +
11250000 (12252240 + 31187520 R y~2 + 9461520 R™2 y~4 +
838593 R™3 y~6 + 22099 R~4 y~8))
Ulyl = \!I\(
\*UnderoverscriptBox [\ (\[Sum]\), \(n = 0\), \(4\)]\(
\ (\*SubscriptBox [\ (U\), \(a\)I\) [y1\)\)
1+ (Ry2/2+ (\[Pi] R y°4 (83 \[Pi] -
30 (10 + R y72)))/2592 + (\[Pi]l"2 R y~6 (48223 \[Pi]"2 -
6225 \[Pi] (56 + 9 R y~2) +
1500 (420 + 135 R y™2 + 7 R™2 y~4))) /58786560 +
1/7263197061120 \[Pi]~3 R y~8 (81765541 \[Pi]~3 -
88661430 \[Pi]l~2 (10 + 3 R y™2) +
1079000 \[Pi] (2970 + 1782 R y~2 + 127 R™2 y~4) -
75000 (51480 + 46332 R y~2 + 6604 R™2 y~4 + 231 R"3 y~6)) +
1/8401194776656281600 \[Pi]~4 R y~10 (807598248457 \[Pi]~4 -
1061465386800 \[Pi]~3 (11 + 7 R y~2) +

10540170000 \[Pi]~2 (6006 + 7644 R y~2 + 773 R"2 y~4) -
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476212500 \[Pi] (320320 + 611520 R y~2 + 123680 R"2 y 4 +
5481 R~3 y~6) +
11250000 (12252240 + 31187520 R y~2 + 9461520 R™2 y~4 +
838593 R™3 y~6 + 22099 R"4 y~8))
QGlyl =Ulyl /.y > 1
1+ R/2 + (\[Pi] R (83 \[Pi] -

30 (10 + R)))/2592 + (\[Pi]l~2 R (48223 \[Pi]"2 -

6225 \[Pi] (66 + 9 R) +

1500 (420 + 135 R +

7 R"2))) /58786560 + (\[Pi]~3 R (81765541 \[Pi]"3 -

88661430 \[Pi]~"2 (10 + 3 R) +

1079000 \[Pi] (2970 + 1782 R + 127 R"2) -

75000 (51480 + 46332 R + 6604 R~2 + 231 R™3)))/7263197061120 +

1/8401194776656281600 \[Pi]l~4 R (807598248457 \[Pi]~4 -
1061465386800 \[Pi]l~3 (11 + 7 R) +
10540170000 \[Pi]~2 (6006 + 7644 R + 773 R™2) -
476212500 \[Pi] (320320 + 611520 R + 123680 R™2 + 5481 R~3) +
11250000 (12252240 + 31187520 R + 9461520 R~2 + 838593 R"3 +

22099 R~4))

Solve [{QG[y] == 0}, {R}]

{{R -> Root[

8401194776656281600 + (4200597388328140800 -
972360506557440000 \[Pi] + 359053120384358400 \[Pi]~2 -
54284411877696000 \[Pi]~3 + 10736124200081280 \[Pi]~4 -
1178069416524000 \[Pi]~5 + 157880826983880 \[Pi]~6 -
11676119254800 \[Pi]~7 +
807598248457 \[Pi]~8) #1 + (-97236050655744000 \[Pi] +

28939300790400000 \[Pi]~2 - 12025887217344000 \[Pi]~3 +
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2574898457040000 \[Pi]~4 - 598872176557200 \[Pi]~5 +
80569059480000 \[Pi]~6 -
7430257707600 \[Pi]~7) #1°2 + (1500556337280000 \[Pi]"2 -
572903604000000 \[Pi]~3 + 264945430440000 \[Pi]~4 -
58897962000000 \[Pi]~5 +
8147551410000 \[Pi]~6) #1°3 + (-20039481000000 \[Pi]"3 +
9434171250000 \[Pi]~4 - 2610120712500 \[Pi]~5) #1°4 +
248613750000 \[Pi]~4 #1°5 &, 11}, {R —>

Root [8401194776656281600 + (4200597388328140800 -
972360506557440000 \[Pi] + 359053120384358400 \[Pi]~2 -
54284411877696000 \[Pi]~3 + 10736124200081280 \[Pi]~4 -
1178069416524000 \[Pi]~5 + 157880826983880 \[Pi]“6 -
11676119254800 \[Pi]~7 +
807598248457 \[Pi]~8) #1 + (-97236050655744000 \[Pi] +
28939300790400000 \[Pi]~2 - 12025887217344000 \[Pi]~3 +
2574898457040000 \[Pi]~4 - 598872176557200 \[Pi]~5 +
80569059480000 \[Pi]~6 -
7430257707600 \[Pi]~7) #1°2 + (1500556337280000 \[Pi]~2 -
572903604000000 \[Pi]~3 + 264945430440000 \[Pi]~4 -
58897962000000 \[Pi]~5 +
8147551410000 \[Pi]~6) #1°3 + (-20039481000000 \[Pi]~3 +
9434171250000 \[Pi]~4 - 2610120712500 \[Pi]~5) #1°4 +

248613750000 \[Pi]~4 #1°5 &, 21}, {R —>

Root [8401194776656281600 + (4200597388328140800 -
972360506557440000 \[Pi] + 359053120384358400 \[Pi]~2 -
54284411877696000 \[Pi]~3 + 10736124200081280 \[Pi]~4 -
1178069416524000 \[Pi]~5 + 157880826983880 \[Pi]“6 -

11676119254800 \[Pi]~7 +
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807598248457 \[Pi]~8) #1 + (-97236050655744000 \[Pi] +
28939300790400000 \[Pi]~2 - 12025887217344000 \[Pi]~3 +
2574898457040000 \[Pi]~4 - 598872176557200 \[Pi]~5 +
80569059480000 \[Pi]~6 -
7430257707600 \[Pi]~7) #1722 + (1500556337280000 \[Pi]~2 -
572903604000000 \[Pi]~3 + 264945430440000 \[Pi]"4 -
58897962000000 \[Pi]~5 +
8147551410000 \[Pi]~6) #1°3 + (-20039481000000 \[Pi]~3 +
9434171250000 \[Pi]~4 - 2610120712500 \[Pi]~5) #174 +
248613750000 \[Pi]~4 #1°5 &, 3]}, {R —>

Root [8401194776656281600 + (4200597388328140800 -
972360506557440000 \[Pi] + 359053120384358400 \[Pi]~2 -
54284411877696000 \[Pi]~3 + 10736124200081280 \[Pi]~4 -
1178069416524000 \[Pi]~5 + 157880826983880 \[Pi]~"6 -
11676119254800 \[Pi]~7 +
807598248457 \[Pi]~8) #1 + (-97236050655744000 \[Pi] +
28939300790400000 \[Pi]~2 - 12025887217344000 \[Pi]~3 +
2574898457040000 \[Pi]~4 - 598872176557200 \[Pi]~5 +
80569059480000 \[Pi]~6 -
7430257707600 \[Pi]~7) #172 + (1500556337280000 \[Pi]~2 -
572903604000000 \[Pi]~3 + 264945430440000 \[Pi]~4 -
58897962000000 \[Pi]~5 +
8147551410000 \[Pi]~6) #173 + (-20039481000000 \[Pi]~3 +
9434171250000 \[Pi]~4 - 2610120712500 \[Pi]~5) #174 +

248613750000 \[Pi]~4 #1°5 &, 41}, {R —>

Root [8401194776656281600 + (4200597388328140800 -

972360506557440000 \[Pi] + 359053120384358400 \[Pi]~2 -

54284411877696000 \[Pi]~3 + 10736124200081280 \[Pi]~4 -
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1178069416524000 \[Pi]~5 + 157880826983880 \[Pi]~"6 -
11676119254800 \[Pi]~7 +

807598248457 \[Pi]~8) #1 + (-97236050655744000 \[Pi] +
28939300790400000 \[Pi]~2 - 12025887217344000 \[Pi]~3 +
2574898457040000 \[Pi]~4 - 598872176557200 \[Pi]~5 +
80569059480000 \[Pi]~6 -

7430257707600 \[Pi]~7) #172 + (1500556337280000 \[Pi]~2 -
572903604000000 \[Pi]~3 + 264945430440000 \[Pi]~4 -
58897962000000 \[Pi]~5 +

8147551410000 \[Pi]~6) #173 + (-20039481000000 \[Pi]~3 +
9434171250000 \[Pi]~4 - 2610120712500 \[Pi]~5) #174 +

248613750000 \[Pi]~4 #1756 &, 5]}}

{{R -> -1.91635}, {R -> -4.61078 - 21.6807 I}, {R -> -4.61078 +
21.6807 I}, {R -> 15.9154 - 10.7311 I}, {R —>

15.9154 + 10.7311 I}}

R = -1.9163528468097948°

-1.91635

Qolx] = Ulyl /.
y -> {0.0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45,

0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, 1}

{1., 0.997605, 0.990427, 0.978486, 0.96181, 0.940437, 0.914404, \
0.883743, 0.848474, 0.808593, 0.764064, 0.714806, 0.660677, 0.601462, \

0.536852, 0.466421, 0.389602, 0.305652, 0.213611, 0.11225,
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