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Abstract

A Császár frame is a pointfree version of syntopogenous space, itself a concept that is at-

tributed to Ákos Császár [14]. In his two papers, Chung ([12] and [13]) characterised few

types of Császár frames and extended Hong’s construction [21] to the Cauchy completions

in Császár frames. From his results, we anchored objectives of our study on the actions of

certain frame homomorphisms on proximal Császár frames, as well as co-reflective subcate-

gories of Cauchy complete Császár frames.

We conclude the dissertation by constructing the compactification of proximal Császár

frames by applying the methods of Banaschewski and Mulvey [7]. We introduce a weak

notion of connectedness of Császár frames and show, following the approach of Baboolal

and Banaschewski [4], that most of the standard results on connectedness are do-able in the

setting of Császár frames.



LIST OF SYMBOLS

Frm : The category of frames and frame homomorphisms

CsFrm : The category of Császár frames and frame homomorphisms

PCsFrm : The category of proximal Császár frames and uniform homomorphisms

CCCsFrm : The category of Cauchy Complete Császár frames and Cauchy homomorphisms

CCUCsFrm : The category of Cauchy Complete Uniform Császár frames and frame homo-

morphisms
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Chapter 0

Introduction and summary

In his celebrated article “The point of pointless topology”, Johnstone [24] showed that many

results from topology were extended to generalized spaces by John Isbell in [23]. Frames

are complete lattices which satisfy a distributive law and the morphisms are maps which

preserves finite meet and arbitrary joins.

Following on the groundwork laid by Isbell [22] on uniform frames, Banishes and Pultr [8]

introduced complete nearness frames, especially Cauchy complete nearness frames. In addi-

tion to constructing the completion of nearness frames, they showed that the completion of

nearness frames gives rise to the category of almost uniform spaces. Isbell [22] also showed

that the use of uniform structures is required on results on paracompactness, hence uniform

frames are important in Topology.

Since the introduction of Pointfree Topology, many topological facts are re-discovered as

generalisations from results in this pointfree setting. For example, abstractly defined lattices

of open sets are regarded as frames. However, many proofs in Pointfree Topology are often

more suggestive and transparent than they would have been in General Topology [6]. It is

in this respect that Pointfree Topology is more fundamental than Classical Topology.

When Chung [12] introduced Cauchy complete Császár frames, he used strict extensions of

frames to construct their Cauchy completion. It was shown that the Cauchy completion gives

rise to a coreflection in the categories of Császár frames and uniform Császár frames. In

extending syntopogeneous spaces to other platforms of General Topology, Chung [12] further
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showed that connection properties are possible in syntopogenous spaces. When connected-

ness was introduced into the category of frames and frame homomorphism, it was applied

in constructions related to Stone-Cech compactification. A frame homomorphism is a map

between frames which preserves the bottom (zero) and the (top) as well as the generalised

distributive law.

Connectedness and its importance in relation to other topological properties was studied by

many people, see for instance Baboolal and Banaschewski [4]. However, in his paper titled

“On the local connectedness of frames”, Chen [11], showed that connectedness is possible in

frames where amongst many results, he showed that any Tychonoff space containing X as a

dense subspace is locally connected if and only if X is locally connected and pseudocompact.

Baboolal and Banaschewski also showed that the Stone-Cech compactification βX of a Ty-

chonoff space X is locally connected if and only if X is locally connected and pseudocompact

has a frame-theoretic counterpart.

Synopsis of the dissertation

Chapter 1

In this chapter we define some topological concepts. We study syntopogenous and Császár

orders and their properties as introduced by [14]. The Császár orders are studied according

to [12], see also [14]. We also show how to construct Császár order from the domain to the

codomain and from the codomain to the domain. We look at their properties and show that

the right adjoint of frame homomorphism between Császár frames reflects symmetric and

strong Császár orders.

Chapter 2

Our focus is in properties of filters and selected frame homomorphisms on proximal Császár

frames. Amongst the important results we prove is the fact that uniform frame homomor-

phism is a Cauchy homomorphism, essentially meaning that the category UCsFrm of uni-

form Császár frames and uniform homomorphisms is a subcategory of the category PCsFrm

of proximal Császár frames and Cauchy homomorphisms.
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Chapter 3

In this chapter, we first outline the role of filters on completion of frames, especially nearness

frames paving the way for the constructions in the remaining three sections: critical to our

later constructions is the concept of strict extension which Apfel has(correctly by the way)

called ”Hong’s construction” (see Apfel [2]). We then go on to look into some properties of

completions of Császár frames and construct their Cauchy completions according to [12]: we

give detailed proofs of the following results:

(i) The category of Cauchy Complete Császár frames and Cauchy homomorphisms is

coreflective in the category of Császár frames and Cauchy homomorphisms

(ii) The category of Cauchy complete uniform Császár frames is coreflective in the category

of uniform Császár frames and uniform frame homomorphisms.

(iii) The category of Cauchy proximal Császár frames is coreflective in the category of

proximal Császár frames and continuous frame homomorphisms.

Chapter 4

We focus on the compactification of proximal frames connectedness of Császár frames. This

follows since connectedness was not looked into when Császár introduced syntopogenuos

spaces in [14]. We refer to Pervin and Sieber in [32] and translate their approach into the

setting of Császár frames. We follows Baboolal’s paper [3]

Whereas the first three chapters are devoted to basic facts related to Chung’s Császár frames

and the expansion of sketchy proofs and revisiting coreflective subcategories of the category

CsFrm of Császár frames and frame homomorphisms, as far as we know the results on

compactification of proximal Császár frames, and L-connectedness in Chapter 4 are new.
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Chapter 1

Syntopogenous and Császár Orders

This chapter commences with standard pointfree concepts and basic facts that will be re-

quired in the study. We study syntopogenous orders and their properties as introduced by

Császár [14], and from them we look at constructions related to Császár orders whose origin

is attributed to Chung [12]: specifically, we will show how to construct Császár order from

the domain to the codomain and from the codomain to the domain, as well as show that

the right adjoint of frame homomorphism between Császár frames reflects symmetric and

strong Császár orders.

1.1 Preliminary Concepts

We recall that a frame is a complete lattice L in which the following generalized distributive

law is satisfied:

a ∧
∨

S =
∨
{a ∧ s | s ∈ S},

for all a ∈ L and all S ⊆ L. A frame homomorphism h : M → L is a map between frames

which preserves finite meets (including the top element e) and arbitrary joins (including

the bottom element 0). Frame homomorphisms are closed under compositions, so we have

the category Frm of frames and frame homomorphisms between them. Unless specified oth-

erwise, our knowledge of frames and locales stems from Johnstone in [24], Picado and Pultr

in [30] and Pultr in [31].

An element u in a frame L is said to be rather below an element v ∈ L (written u ≺ v) if
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there is an element w ∈ L such that u ∧ w = 0 and v ∨w = e. This definition is equivalent

to saying u ≺ v if and only if u∗ ∨ v = e, where u∗ is called the pseudocomplement of u

and is defined by

u∗ =
∨
{t ∈ L | u ∧ t = 0}.

A frame homomorphism h : M → L is said to be dense if h(x) = 0L implies x = 0M .

Dually, h is called co-dense if h(u) = eL implies that u = eM .

Remark 1.1.1. We will need the following elementary properties of pseudocomplements in

any frame M : for any u, v ∈M , we have

a): e∗ = 0 and 0∗ = e: This follows from the fact that if u ∧ e = 0 then u = 0 and

(from the definition of ∗) the largest u for which u ∧ 0 = 0 is e.

b): u ≤ u∗∗: We know that u∗ ∧ u = 0 and u∗ ∧ u∗∗ = 0, so u ≤ u∗∗ follows from u∗∗

being the largest for which the meet with u∗ is 0.

c): If u ≤ v then v∗ ≤ u∗: This is immediate from the calculation u∧ v ≤ u∧ v∗ = 0

implies that u ∧ v∗ = 0; so, together with u ∧ u∗ = 0, we conclude that v∗ ≤ u∗.

d): u = u∗∗∗: Since u ≤ u∗∗, we have u∗∗∗ ≤ u∗. But u∗ ≤ (u∗)∗∗, so we must have

u∗ = u∗∗∗.

e): (u ∨ v)∗ = u∗ ∧ v∗: That (u∨ v)∗ ≤ u∗ and (u∨ v)∗ ≤ v∗ so that (u∨ v)∗ ≤ u∗ ∧ v∗

follows from c). For the reverse inclusion, we note that

(u∗ ∧ v∗) ∧ (u ∨ v) = (u∗ ∧ v∗ ∧ u) ∨ (u∗ ∧ v∗ ∧ v) = 0

so, together with the definition of (u ∧ v)∗, this ensures that u∗ ∧ v∗ ≤ (u ∧ v)∗. 2

Given a frame homomorphism h : M → L, the Galois right adjoint h∗ : L → M is defined

by

h(x) ≤ y if and only if x ≤ h∗(y)

where

h∗(y) =
∨
{x ∈M | h(x) ≤ y}.

Lemma 1.1.2. Let h : M → L be a frame homomorphism, then:

i) x ≤ h∗(h(x)) for all x ∈M .
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ii) If h is onto then h(x) ∧ y∗ = 0 implies y∗ ≤ h(x∗).

Proof:

i) If we set y = h(x) in the definition and use the fact that h(x) ≤ h(x), then x ≤
h∗(h(x)).

ii) Note that if h is onto, it holds that h(x∗) = h(x)∗ (see Pultr [31]). For, by definition

of pseudocomplement, we have that

h(x∗) = h[
∨
{z ∈M | z ∧ x = 0}]

=
∨
{h(z) ∈ L | h(z ∧ x) = 0}

=
∨
{h(z) ∈ L | h(z) ∧ h(x) = 0}

=
∨
{y ∈ L | y ∧ h(x) = 0}

= h(x)∗.

Now we find that (by definition of y) h(x) ∧ y∗ = 0 implies y∗ ≤ h(x)∗ = h(x∗). 2

Lemma 1.1.3. For a dense frame homomorphism h : M → L it holds that

h∗(h(x)) ≤ x∗∗.

Proof:

Note that x ≤ x∗∗, then x∗∗ ∧ x = x. This implies that

h(x∗∗) ∧ h(x) = h(x)

⇒ h(x∗∗) ∧ (id)h(x) = (id)(h(x))

⇒ h(x∗∗) ∧ (hh∗)h(x) = (hh∗)(h(x))

⇒ h(x∗∗) ∧ h(h∗h(x)) = h(h∗h(x))

⇒ x∗∗ ∧ h∗(h(x)) = h∗(h(x))

Therefore h∗h(x) ≤ x∗∗. 2

Lemma 1.1.4. Let h : M → L be a frame homomorphism between frames.
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a) If x ≺ y in M then h(x) ≺ h(y) in L.

b) If x ≺ y in M then x ≺ y∗∗ in M : If x ≺ y then from the properties of

pseudocomplement we have x∗ ∨ y = e; so, x ≤ x∗∗ implies that

x∗ ∨ x∗∗ ≥ x∗ ∨ x = e,

which means that

x∗ ∨ x∗∗ = e and so x ≺ x∗∗. 2

We say a frame L is a regular frame if for all v ∈ L we have

v =
∨
{u | u∗ ∨ v = e} =

∨
{u | u ≺ v}.

We say a frame homomorphism h : M → L is a monomorphism if for any two frame ho-

momorphisms g, f : K → M with hg = hf then g = f . One well-known result that we

will need in the sequel is the following (whose proof is adapted from Murugan [27] who has

assembled a number of important results on dense homomorphisms):

Proposition 1.1.5. A dense homomorphism on regular frames is a monomorphism.

Proof. Take a dense homomorphism h : M → L between regular frames, and two frame

homomorphisms f, g : K →M such that h◦f = h◦g. Then for x ∈ K, we have h◦f(x) =

h ◦ g(x). The fact that K is regular implies that for all y ∈ K, y =
∨
{x ∈ K | x ≺ y}.

But x ≺ y implies that there exists z ∈ K such that x ∧ z = 0 and y ∨ z = e. We will then

have that

(h ◦ f)(x ∧ z) = (h ◦ f)(0), and so h(f(x)) ∧ h(f(z)) = 0.

Since h ◦ f = h ◦ g, it follows that

h(f(x)) ∧ h(g(z)) = 0 and h(f(x) ∧ g(z)) = 0.

Since h is dense, we must have f(x) ∧ g(z) = 0.
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On the other hand, y ∨ z = e implies g(y ∨ z) = g(e); thus g(y) ∨ g(z) = e. Then

f(x) = f(x) ∧ e

= f(x) ∧ (g(y) ∨ g(z))

= (f(x) ∧ g(y)) ∨ (f(x) ∧ g(z))

= (f(x) ∧ g(y)) ∨ 0

= f(x) ∧ g(y)

≤ g(y).

This implies that

f(y) =
∨
x ≺ y

f(x) ≤ g(y).

Then f(y) ≤ g(y). By symmetry we have g(y) ≤ f(y), hence g(y) = f(y) 2

Moving on to compactness in frames, we have the following (which is not difficult to translate

from a classical setting):

Let L be a frame, then a subset C of L is a cover of L if
∨
C = e.

Definition 1.1.6. A frame L is said to be compact if for every subset U of L with
∨
U = e

there exists a finite subset T of U with
∨
T = e.

1.2 Properties of Syntopogenous orders

We study syntopogenous orders in accordance to Császár [14]. Motivating examples of syn-

topogenous orders are given and we include some properties of syntopogenous from [17].

Motivating example 1.2.1. Given a topological space (X, τ), define a binary relation ≤
on P(X)× P(X), where P(X) is the power set of X, by

U ≤ V if and only if U ⊆ V ◦, where V ◦ is the interior of V

Then ≤ satisfies the following five properties:
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i) ∅ ≤ ∅ and X ≤ X.

ii) U ≤ V ⇒ U ⊆ V .

iii) (U ≤ V, H ≤ K)⇒ U ∩H ≤ V ∩K.

iv) (U ≤ V, H ≤ K)⇒ U ∪H ≤ V ∪K.

v) U ⊆ V ≤ W ⊆ H ⇒ U ≤ H.

Proof:

i) This is trivial since ∅ = ∅◦ and X = X◦

ii) Suppose that U ≤ V , then by definition of ≤, it follows that U ⊆ V ◦. But we know

that V ◦ ⊆ V , thus we have U ⊆ V .

iii) Suppose that U ≤ V and H ≤ K. Then it follows that

U ⊆ V ◦ and H ⊆ K◦,

so that

U ∩H ⊆ V ◦ ∩K◦ = (V ∩K)◦.

But (V ∩K)◦ ⊆ (V ∩K), hence we have that U ∩H ≤ V ∩K.

iv) Suppose that U ≤ V and H ≤ K. Then U ⊆ V ◦ and H ⊆ K◦. Since V ⊆ V ∪K and

K ⊆ V ∪K, we find that

V ◦ ⊆ (V ∪K)◦ and K◦ ⊆ (V ∪K)◦.

This implies that

U ∪H ⊆ V ◦ ∪K◦ ⊆ (V ∪K)◦.

Therefore U ∪H ≤ V ∪K.

v) Suppose that U ⊆ V ≤ W ⊆ H. Then V ⊆ W ◦. We know that W ◦ ⊆ W , and

then

U ⊆ V ⊆ W ◦ ⊆ H.

But H◦ is the largest open subset in H, hence it holds that W ◦ ⊆ H◦. Thus it follows

that U ⊆ H◦ and so U ≤ H results. 2
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Motivating example 1.2.2. Given a topological space (X, τ) a binary relation ≤ on P(X)

defined by

W ≤ V if and only if ϑ(W ) ⊆ V,

(where ϑ(W ) ⊆ V means ϑ(W ) is a uniform neighbourhood of W , that is for all x ∈ W ,

then x ∈ ϑ(W )). Then ≤ satisfies the following five properties:

i) ∅ ≤ ∅ and X ≤ X.

ii) U ≤ V ⇒ U ⊆ V .

iii) (U ≤ V, H ≤ K)⇒ U ∩H ≤ V ∩K.

iv) (U ≤ V, H ≤ K)⇒ U ∪H ≤ V ∪K.

v) U ⊆ V ≤ W ⊆ H ⇒ U ≤ H.

Proof:

i) Since ϑ(∅) ⊆ ∅ and ϑ(X) ⊆ X (trivially), we must have ∅ ≤ ∅ and X ≤ X.

ii) Suppose that U ≤ V . By definition, it follows that ϑ(U) ⊆ V . Since ϑ(U) is a

neighbourhood of U , it implies that for all x ∈ U , x ∈ ϑ(U). Then x ∈ V , which then

implies that U ⊆ V .

iii) Suppose that U ≤ V and H ≤ K. It then follows that ϑ(U) ⊆ V and ϑ(H) ⊆ K. We

have that

ϑ(U) ∩ ϑ(H) ⊆ V ; ϑ(U) ∩ ϑ(H ) ⊆ K,

so that

ϑ(U) ∩ ϑ(H) ⊆ V ∩K.

Therefore U ∩H ≤ V ∩K.

iv) Suppose that U ≤ V and H ≤ K. Then it follows that ϑ(U) ⊆ V and ϑ(H) ⊆ K. We

have the following relations

ϑ(U) ⊆ V ∪K,ϑ(H) ⊆ V ∪K.
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This implies that

ϑ(U) ∪ ϑ(H) ⊆ V ∪K.

Therefore U ∪H ≤ V ∪K.

v) Suppose that U ⊆ V ≤ W ⊆ H. This implies that ϑ(V ) ⊆ W , but ϑ(U) ⊆ ϑ(V ),

hence we have that ϑ(U) ⊆ H. Therefore U ≤ H.

We follow Császár [14] in defining a syntopogenous space. See also Flax [17].

Definition 1.2.3. A Let X be a non-empty set and ≤ a relation on X. Then ≤ is said to

be a semi-topogenous ordern on X if the following conditions are satisfied:

(i) ∅ ≤ ∅ and X ≤ X

(ii) A ≤ B implies A ⊆ B

(ii) A ⊆ C ≤ D ⊆ B implies A ≤ B

Definition 1.2.3. B A relation ≤ on X is a topogenous order if it satisfies all the three

conditions in Definition 1.2.3 A and the following contition:

A ≤ B and C ≤ D implies (A ∩ C) ≤ (B ∩ D) and (A ∪ B) ≤ (B ∪ D)

Definition 1.2.3 C Let a family of topogenous orders on X be denoted by S. Then S is

said to be a syntopogenous structure on X if and only if the following conditions are satisfied:

(i) If ≤1, ≤2 ∈ S then there exists ≤3 ∈ S finer than both ≤1 and ≤2.

(ii) If ≤ ∈ S, then there exists ≤1 ∈ S such that A ≤ B implies that there exists D with

A ≤1 D ≤1 B.

Observation 1.2.4. Given a syntopogenous space (X, γ), say γ = {≤i| i ∈ I}, we can

topologize X as follows. Define the topology τγ associated with γ by

U ∈ τγ if and only if for each x ∈ U there exists i ∈ I such that {x} ≤i U .
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Proof:

i) That ∅, X ∈ τγ is trivial.

ii) If U, V ∈ τγ and suppose that x ∈ U ∩ V , then there exists i ∈ I such that {x} ≤i U
and {x} ≤i V . By SNY5, we get {x} ≤i U ∩ V , hence U ∩ V ∈ τγ.

iii) Suppose that x ∈
⋃
U . Then x ∈ Ux for some Ux ∈ τγ and then {x} ≤i Ux ⊆

⋃
U∈τγ U .

by SNY3 it follows that {x} ≤i
⋃
U∈τγ U and the

⋃
U∈τγ U ∈ τγ. 2

Proposition 1.2.5. For any topological space (X, τ), the relation ≤ defined on P(X) by

U ≤ V if and only if there are H,K ∈ τ such that U ⊆ H ⊆ K ⊆ V is syntopogenous,

making (X,≤) a syntopogenous space.

Proof:

i) We know that ∅ ≤ ∅ and X ≤ X.

ii) Suppose that U ≤ V , so there are H,K ∈ τ such that U ⊆ H ⊆ K ⊆ V from

which U ⊆ V is clear.

iii) Suppose that U ⊆ V ≤ W ⊆ H. Then by definition it follows that U ≤ H.

iv) Suppose U ∈ A, where U ≤ V and A ⊆ P(X). We then have that
⋃
U ≤ V .

Therefore
⋃
A ≤ V .

v) Suppose that U ≤ V and U ≤ W . Then there are H,K,M,N ∈ τ such that

U ⊆ H ⊆ K ⊆ V and U ⊆ M ⊆ N ⊆ W,

which imply

U ⊆ H ∩M ⊆ K ∩N ⊆ V ∩W.

Therefore U ≤ V ∩W . 2

1.3 Properties of Császár orders

We study Császár orders and their properties and also show how to construct a Császár

order from a given Császár order. Whilst Chung [12] clearly translated a Császár order from
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the founding monograph of general topology [14], we also used Flax [17].

Definition 1.3.1. A Császár order on a frame M is a binary relation �M on M satisfying

the following properties:

CO1) : 0 �M 0 and e�M e;

CO2) : x�M y ⇒ x ≤ y; and

CO3) : x ≤ a�M b ≤ y ⇒ x�M y.

The pair (M,�M) is a Császár frame.

Lemma 1.3.2. [12] Given a frame L and a family L = {�L
i | i ∈ I} of Császár or-

ders on L, then the set �L is a Császár order on L, making (L,L) a Császár frame where

�L =
⋃
{�L

i | i ∈ I}.

Proof:

CO1) : Since each �L
i is a Császár order on L, we have that 0 �L

i 0 for any i ∈ I. Therefore

0 �L 0.

Similarly, since �L
i is a Császár order on L, it follows that e �L

i e for i ∈ I and hence

e �L e.

CO2) : Suppose that x �L y. This implies that x�L
i y for some i ∈ I. But �L

i is a Császár

order on L for each i ∈ I, so x ≤ y.

CO3) : Suppose that x ≤ a �L b ≤ y. This implies that x ≤ a �L
i b ≤ y for some

i ∈ I. It then follows that x �L
i y since �L

i is a Császár order. Thus we have x �L y.

Therefore �L is a Császár order on L. 2

We strengthen our approach to Császár frames by the following

Definition 1.3.3. Let L be a frame.

i) Let L be a family of Császár orders on L. We say L is admissible if, for all a ∈ L, it

holds that

a =
∨
{b ∈ L | b�L a}

15



ii) A family of Császár orders L on a frame L is said to be a Császár structure on L if it

satisfies the following:

CS1: L is up-directed, that is, for a, b ∈ L there is c ∈ L such that a �L c and b �L c;

CS2: �L is a meet-sublattice of L×L, that is, a �L b and a �L c imply a �L b ∧ c;

CS3: L is admissible.

Remark 1.3.4. In his dissertation, Flax [17] showed that if ≤ is a topogenous order on a

set X, then the relation c(≤) defined by A c(≤) B if and only if X − B ≤ X − A. In what

follows, we translate this result to Császár frames.

Motivating Example 1.3.5. Given a Császár order �M on a frame M , the relation �M
c

defined by

u�M
c v if and only if v∗ �M u∗

is also a Császár order on M .

Proof:

CO1) : We have that 0∗�M 0∗ since �M is a Császár order, hence 0�M
c 0. Similarly, e∗�M e∗

implying that e�M
c e.

CO2) : Suppose u�M
c v. It then follows that v∗�M u∗. �M is a Császár order, hence we have

v∗ ≤ u∗ which then implies that u ≤ v as it was to be shown.

CO3) : Suppose u ≤ x�M
c y ≤ v. We want show that u�M

c v. From the definition of �M
c , we

have y∗ �M x∗, hence we will have v∗ ≤ y∗ �M x∗ ≤ u∗. Since �M is a Császár order

it follows that v∗ �M u∗ and this shows that u�M
c v. 2

The above definition justifies the following concept (due to Chung [13]).

Definition 1.3.6. Let L be a frame.

(i) A symmetric Császár order on L is a Császár order satisfying the following property:
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If a�L b then b∗ �L a∗

ii) A Császár frame (L,L) is said to be symmetric if every member of L is symmetric.

iii) A Császár frame (L,L) is said to be strong if for each �L ∈ L, there is �L
◦ ∈ L such

that a�L b implies a�L
◦ c �L

◦ b for some c ∈ L.

Definition 1.3.7. Let (M,M) and (L,L) be Császár frames.

(i) A frame homomorphism h : M → L is said to be continuous if for each �M ∈M there

is a �L ∈ L with h(�M) ⊆ �L, where h(�M) is defined as follows

x h(�M) y if and only if there exist a, b ∈M such that x ≤ h(a), a�M b and h(b) ≤ y.

(ii) A frame homomorphism h : M → L is said to be a surjection if it is dense, onto and

M = {h∗(�L) | �L ∈ L},

that is, M is generated by h∗(�
L), where h∗(�

L) is defined as follows

x h∗(�
L) y if and only if there exist a, b ∈ L such that h(x) ≤ a � b; h∗(b) ≤ y.

In what follows, we prove a characterisation for generating a Császár order through the

right adjoint. Moreover, the right adjoint of a dense homomorphism reflects symmetric

orders (see Chung [12]).

Theorem 1.3.8. Given an onto frame homomorphism h : M → (L,�L) between Császár

frames M and L. Then the following hold:

i) (M,h∗(�
L)) is a Császár frame.

ii) If h is dense and �L is symmetric, then h∗(�
L) is symmetric on M .

iii) If �L
1 and �L

2 are Császár orders with �L
1 ⊆ �L

2 , then h∗(�
L
1 ) ⊆ h∗(�

L
2 ).

iv) x �L y if and only if h∗(x) h∗(�
L) h∗(y).
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Proof:

i) We will establish the three axioms of a Császár order on M :

CO1) : Since h(0M) = 0L �L 0L and h∗(0L) = 0M . We therefore have 0M h∗(�
L) 0M .

Similarly, since h(eM) = eL �L eL and h∗(eL) = eM , then eM h∗(�
L) eM .

CO2) : Suppose that x h∗(�
L) y, take a, b ∈ L such that

h(x) ≤ a �L b, h∗(b) ≤ y.

But �L is a Császár order hence we have a ≤ b. We then have

x ≤ h∗h(x) ≤ h∗(a) ≤ h∗(b) ≤ y.

Therefore x ≤ y.

CO3) : Suppose that

x ≤ a h∗(�
L) b ≤ y.

Take u, v ∈ L such that

h(a) ≤ u �L v and h∗(v) ≤ y.

From x ≤ a (so that h(x) ≤ h(a)) and b ≤ y we have that

h(x) ≤ u�L v, h∗(v) ≤ y.

Therefore x h∗(�
L) y. Thus h∗(�

L) is a Császár order on M .

ii) Suppose that x h∗(�
L) y; take a, b ∈ L such that

h(x) ≤ a �L b and h∗(b) ≤ y.

Since �L is symmetric, it then follows that b∗ �L a∗ and hence we have y∗ ≤ (h∗(b))
∗

and a∗ ≤ (h(x))∗, then h∗(a
∗) ≤ h∗(h(x)∗). This implies that

h(y)∗ ≤ b∗ �L a∗ and h∗(a)∗ ≤ x∗.

Therefore y∗ h∗(�
L) x∗.

iii) Suppose that �L
1 ⊆ �L

2 and let x h∗(�
L
1 ) y. Take a, b ∈ L such that
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h(x) ≤ a �L
1 b, h∗(b) ≤ y.

Since �L
1 ⊆ �L

2 , we must have that a�L
2 b, so that

h(x) ≤ a �L
2 b, h∗(b) ≤ y,

from which it follows that

x h∗(�
L
2 ) y,

that is, h∗(�
L
1 ) ⊆ h∗(�

L
2 ).

iv) Suppose x �L y. Since h is onto, we have that

hh∗(x) hh∗(�
L) hh∗(y)

so that

h(h∗(x)) ≤ x �L y and h∗(y) ≤ h∗(y).

Therefore h∗(x) h∗(�
L) h∗(y). Conversely, suppose h∗(x) h∗(�

L) h∗(y). Take u, v ∈ L
such that

h(h∗(x) ≤ u �L v and h∗(v) ≤ h∗(y).

But x ≤ hh∗(x) and h∗(v) ≤ h∗(y) ⇒ v ≤ y, hence it follows that x ≤ u�L v ≤ y.

Since �L is a Császár order we therefore have that x�L y. 2

Dense onto frame homomorphisms reflect symmetric and strong orders in Császár frames

(see [13]) in the sense that

Lemma 1.3.9. Let h : M → L be an onto frame homomorphism and �L a meet-sublattice

of L× L. Then h∗(�
L) is a meet-sublattice of M ×M .

Proof:

Given any u, v, w ∈M , suppose that u h∗(�
L) v and u h∗(�

L) w. We claim that u h∗(�
L) (v∧

w). By Theorem 1.3.8, there exist a, b, c, d ∈ L such that
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h(u) ≤ a�L b, h∗(b) ≤ v and h(a) ≤ c �L d, h∗(d) ≤ w.

Since �L is a meet-sublattice, it follows from the properties of �L that

h(u) ≤ (a ∧ c) �L (b ∧ d) and h∗(b) ∧ h∗(d) = h∗(b ∧ d) ≤ v ∧ w.

It follows from CO3 of Definition 1.3.1 that u h∗(�
L) (v ∧ w). 2

Given a Császár frame (L,L), following the notation introduced in Section 3.1 above, we set

L∗ = {(cL)∗(�
L) | �L ∈ L} for cL : tXL → L. To get to a Császár frame completion, we

start with the following result. We recall that admissibility in a frame L means that if L is

a frame and L a family of Császár orders on L, then for any a ∈ L we have

a =
∨
{x ∈ L | x�L a}.

In the next result, we show how to induce a Császár order on the codomain, and also that

an onto frame homomorphism preserves symmetric Császár orders, and that frame homo-

morphisms are monotone on Császár orders.

Theorem 1.3.10. Given a frame homomorphism h : M → L from a Császár frame (M,�M)

to a frame L, define h(�M) on L. Then the following hold:

i) (L, h(�M)) is a Császár frame.

ii) If h is onto and (M,�M) is symmetric, then (L, h(�M)) is symmetric.

iii) For Császár orders �M
1 and �M

2 on M , if �M
1 ⊆ �M

2 , then h(�M
1 ) ⊆ h(�M

2 ).

iv) If x�M y, then h(x) h(�M) h(y).

v) If h is onto and �L is a Császár order on L, then �L = hh∗(�
L).

Proof:

i) We shall verify the three axioms of Császár order for h(�M) on L.

CO1) : 0L = h(0M), 0M �M 0M and h(0M) = 0L, therefore 0L h(�M) 0L. Similarly,

eL = h(eM), eM �M eM and h(eM) = eM , therefore eL h(�M) el.
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CO2) : Suppose that x h(�M) y. Take u, v ∈M such that

x ≤ h(a), u �M v and h(v) ≤ y.

Since u �M v implies that u ≤ v in M , it then follows that x ≤ h(u) ≤ h(v) ≤ y.

Therefore x ≤ y as desired.

CO3) : Suppose that x ≤ u h(�M) v ≤ y in L. Take s, t ∈M such that

u ≤ h(s), s �M t and h(t) ≤ v.

Then we have

x ≤ u ≤ h(s), s �M t and h(t) ≤ v ≤ y.

Therefore x h(�M) y. This shows that h(�M) is a Császár order.

ii) Suppose that x h(�M) y and take u, v ∈M such that

x ≤ h(u), u �M v and h(v) ≤ y

Then we have that

y∗ ≤ h(v)∗ = h(v∗), v∗ �M u∗ andh(u)∗ = h(u∗) ≤ x∗.

Therefore y∗ h(�M) x∗.

iii) Suppose that �M
1 ⊆ �M

2 in M and let x h(�M
1 ) y. Take u, v ∈M such that

x ≤ h(u), u �M
1 v and h(v) ≤ y.

It then follows that

x ≤ h(u), u �M
2 v andh(v) ≤ y.

Therefore x h(�M
2 ) y.

iv) Suppose that x�M y. This implies that x ≤ y and hence h(x) ≤ h(y). We have that

h(x) ≤ h(y), x �M y and h(y) ≤ h(y).

Therefore h(x) h(�M) h(y).
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v) This will follows from the fact that for an onto frame homomorphism h : M → L, it

holds that h ◦ h∗ = idL (see [12]) because then:

x �L y ⇔ x idL (�L) y

⇔ x (h ◦ h∗) (�L) y. 2

Proposition 1.3.11. For a symmetric and strong Császár frame (L,L) and a dense onto

homomorphism h : M → L, the Császár frame (M,h∗(L)) is symmetric and strong, where

h∗(L) = {h∗(�L) | �L ∈ L}.

Proof:

Since h dense and �L is symmetric on L, from Theorem 1.3.8(ii) it follows that h∗(�
L) is

also symmetric on M . To see that h∗(�
L) is strong, suppose that x h∗(�

L) y for x, y ∈M
and �L ∈ L. From Theorem 1.3.10 (iv) it follows that

h(x) h(h∗(�
L)) h(y).

By Theorem 1.3.10 (v) we have that h(x) �L h(y). Since �L is strong, there exists h(z) ∈ L
such that

h(x) �L h(z) �L h(y).

According to Theorem 1.3.8(iv) it follows that

h∗(h(x)) h∗(�
L) h∗(h(z)) h∗(�

L) h∗(h(y))

and thus

x h∗(�
L) z h∗(�

L)y.

This proves that h∗(�
L) is strong. 2

Definition 1.3.12 ([12]). If �M is a Császár order on M , we say an element w ∈ M is

�M -small if whenever u �M v then either w ≤ u∗ or w ≤ v.

Remark 1.3.13
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i) If s, t ∈ M are �M -small, then s ∧ t and s ∨ t are �M -small: For, if u �M v then

s ≤ u∗ or s ≤ v so that together with t ≤ u∗ or t ≤ v we find that s ∧ t ≤ u∗ or

s ∧ t ≤ v. A similar argument establishes the �M -smallness of s ∨ t.

ii) Another notion of smallness that we know of is called u-smallness in the paper [29] of

Picado and Pultr. In their case, “smallness” was used in relation to covers in quasi-

uniformities.

Given a poset (L,≤), we call a subset D of L a downset if, whenever v ∈ D and u ∈ L with

u ≤ v, then u ∈ D. Equivalently, a subset D of a frame (or a semi-lattice) M is a downset

if for each u ∈ D, it holds that

↓ u = {v ∈ L | v ≤ u} ⊆ D.

Notation 1.3.14. If �M is a Császár order on M , we will denote by B�M the �M -small

set

B�M = {u ∈M | u is �M −small}.

In consequence, B�M◦ denotes the set of elements that are �M
◦ -small (with respect to the

Császár order �M
◦ on M).

In the following result [12], we show that a �-small set is a downset.

Lemma 1.3.15. For Császár orders �M and �M
◦ on M , we have:

i) B�M is a downset.

ii) If �M ⊆ �M
◦ , then B�M◦ ⊆ B�M .

Proof:

i) Suppose that v ∈ B�M and u ∈ M such that u ≤ v. To see that u ∈ B�M , we assume

that for some w, w � z and note that v ≤ w∗ or v ≤ z which then give rise to u ≤ w∗

or u ≤ z so that u is �M -small.
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ii) Suppose that w ∈ B�M◦ , that is w is “small” with respect to the Császár order �M
◦ and

let u �M v. By hypothesis we find that u �M
◦ v and thus w ≤ u∗ or w ≤ v, which

proves that w is small with respect to the Császár order �M as was to be shown. 2

We now show that the right adjoint of a frame homomorphism “preserves” �-smallness. See

also [12].

Theorem 1.3.16. For a frame homomorphism h : M → (L,�L), it holds that:

i) If h is a dense homomorphism, then h∗(B�L) ⊆ Bh∗(�L).

ii) If h is an onto homomorphism, then Bh∗(�L) ≤ h∗(B�L).

iii) If h a dense onto homomorphism, then h(Bh∗(�L)) = B�L.

Proof:

i) Suppose that a h∗(�
L) b, for a, b ∈ M . By definition of h∗(�

L), there are c, d ∈ L
such that

h(a) ≤ c �L d and h∗(d) ≤ b.

Let s ∈ B�L . Then s is �L-small and then we have that s ≤ c∗ or s ≤ d. If

h∗(s) ∧ a 6= 0, then

hh∗(s) ∧ h(a) 6= 0 and h(a) ≤ c.

But hh∗(s) ≤ s, so we must have s ∧ c 6= 0. Now s ≤ c∗ and s ≤ d imply

that h∗(s) ≤ h∗(c
∗) = (h∗(c))

∗ and h∗(s) ≤ h∗(d), respectively. Therefore

h∗(s) ≤ h∗(c))
∗ or h∗(s) ≤ h∗(d). This implies that h∗(s) is h∗(�

L)-small and thus

h∗(s) ∈ Bh∗(�L). Then s ∈ h(Bh∗(�L)) and it then follows that

B�L ⊆ h(Bh∗(�L)).

Therefore our desired result, namely h∗(B�L) ⊆ Bh∗(�L), follows.

ii) Suppose that a�L b. We then have h∗(a) h∗(�
L) h∗(b). Let s ∈ Bh∗(�L), so that then

s ≤ h∗(a
∗) or s ≤ h∗(b).

If h(s) ∧ a 6= 0 then

h∗h(s) ∧ h∗(a) = s ∧ h∗(a) 6= 0.
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But then s ≤ h∗(a)∗ and h(s) ≤ b imply that h(s) ≤ a∗ or h(s) ≤ b. Respectively,

from which it follows that h(s) is �L-small and hence h(s) ∈ B�L . Since h is onto, it

follows that s ∈ h∗(B�L) which then implies that

Bh∗(�L) ⊆ h∗(B�L).

Therefore Bh∗(�L) ≤ h∗(B�L).

iii) From (i) and (ii) have that h∗(B�L) = Bh∗(�L). Since h is onto then hh∗ = id,

therefore it holds that hh∗(B�L) = B�L = h(Bh∗(�L)). 2

Concluding Remark. In the next chapter, we will look at the role of Császár orders on

proximal Császár frames, and �-smallness will feature in the discussion on Cauchy filters

and uniform homomorphisms.
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Chapter 2

Proximal Császár Frames

In this chapter, we introduce and study properties of proximal Császár frames, regular

(Cauchy) filters, uniform and Cauchy homomorphisms on these frames and related filters.

2.1 Introduction

The concept of a proximal frame comes out of that of a proximity structure. One of the

earliest treatment of proximity spaces that has shaped our approach is that of Dowker in [15]

in the definition below. We will show that Császár orders on proximal frames are symmetric

and strong.

Definition 2.1.1. A proximity structure on a set X is a relation ≤ ⊆ P(X)×P(X) which

satisfies the following:

P1 If A ≤ B, then A ⊆ B;

P2 If A ⊆ B ≤ C ⊆ D, then A ≤ D;

P3 Given that i ∈ {1; 2; 3; ...; n}:

i) If Ai ≤ B, then
⋃
iAi ≤ B;

ii) If A ≤ Bi, then A ≤
⋂
i Bi;

P4 If A ≤ C, there exists a B such that A ≤ B ≤ C.
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Motivating example 2.1.2. Recall that a frame is completely regular if for u in a frame

L, we have

u =
∨
{v | v ≺≺ u},

where v ≺≺ u means there is a system

{ar | r ∈ Q ∩ [0, 1]}

satisfying a0 = v, a1 = u and an1 ≺ an2 whenever n1 < n2. Now, the relation ≺≺ satisfies

the following properties in the frame (M, ≤):

i) If u ≺≺ v, then u ≤ v;

ii) If u ≤ v ≺≺ w ≤ t, then u ≺≺ t;

iii) If u ≺≺ w and v ≺≺ w, then u ∨ v ≺≺ w;

iv) If u ≺≺ v and u ≺≺ w, then u ≺≺ v ∧ w;

v) If u ≺≺ v, then v∗ ≺≺ u∗.

Proof:

i) Suppose u ≺≺ v. With u = c0 and v = c1 it easily follows from the definition that

u ≺ v. Now u∗ ∨ v = e implies that

u = u ∧ e = u ∧ (u∗ ∨ v) = (u ∧ u∗) ∨ (u ∧ u) = 0 ∨ (u ∧ v) = u ∧ v

from which u ≤ v follows.

ii) Suppose u ≤ v ≺≺ w ≤ t. It follows from i) that v ≺ w that u ≤ v ≺ w ≤ t

so that u ≤ t. By definition find a system {ar | r ∈ Q ∩ [0, 1]} such that

u = v = a0, w = t = a1 and a0 ≺ a1.

Therefore u ≺≺ t.

iii) Suppose u ≺≺ v and v ≺≺ w. Find {ar | r ∈ Q ∩ [0, 1]} and {cs | s ∈ Q ∩ [0, 1]}
such that

a0 = u, c0 = v, and a1 = w = c1.

Putting d0 = a0 ∧ c0 = u ∧ v, it is immediate that u ∨ v ≺≺ w.

27



iv) Suppose u ≺≺ v and u ≺≺ w. We find {ar | r ∈ Q ∩ [0, 1]} and {cs | s ∈ Q ∩ [0, 1]}
such that

a0 = u = c0, a1 = v and c1 = w.

Then d0 = a0 ∨ c0 = u and d1 = a1 ∨ c1 = v ∨ w ensures that u ≺≺ v ∧ w.

v) Suppose u ≺≺ v. We find {ar | r ∈ Q ∩ [0, 1]} such that a0 = u and a1 = v. Then

b0 = v∗, b1 = u∗ and v∗ ≺ u∗ imply v∗ ≺≺ u∗ as desired. 2

Definition 2.1.3. Let L be a frame, then a binary relation � on L is a strong inclusion if

it satisfies the following properties:

SI1 : If x ≤ a � b ≤ y, then x � y

SI2 : � is a sublattice of L× L

SI3 : If a � b, then a ≺ b

SI4 : If a � b, then a � c � b for some c ∈ L

SI5 : If a � b, then b∗ � a∗

SI6 : For each a ∈ L, a =
∨
{x ∈ L | x � a}

As far as we are aware, proximal frames were introduced by Frith in [18] and it is easily seen

that there is a relationship between the above two definitions and this one.

Definition 2.1.4([18]). A proximal frame is a pair (M,2) where M is a frame and 2 is a

relation on M satisfying the following:

PF1 : 0 2 0 and e 2 e;

PF2 : If u 2 v, then u ≤ v;

PF3 : If u ≤ v 2 s ≤ w, then u 2 w;

PF4 : (i) If ui 2 v for i ∈ {1; 2; 3; ...;n}, then
∨
i ui 2 v;

(ii) If u 2 vi, for i ∈ {1; 2; 3; ...;n}, then u 2
∧
i vi;

PF5: If u 2 w, there exists a v ∈M such that u 2 v 2 w;
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PF6 : If u 2 v, then v∗ 2 u∗;

PF7 : For each v ∈M , it holds that v =
∨
{u ∈M | u 2 v}.

The above relation 2 is said to be a proximal relation.

Example 2.1.5. If (M,≤) is a frame, then the relation 2 on M defined by

u 2 v if and only if u ≤ v

is proximal, making (M,2) a proximal frame. 2

Definition 2.1.6 ([13]). Let (M,M) be a Császár frame

i) The frame M is said to be a regular Császár frame if every �M ∈ M is coarser than

≺, i.e. �M ⊆ ≺ if u �M v implies that u ≺ v.

ii) The frame M is said to be a proximal Császár frame if �M is strong, symmetric and

regular for all �M ∈M.

iii) The frame M is said to be uniform if it is proximal and every member of M is a

meet-complete sublattice of M ×M .

The following result is immediate from the definition of a proximal Császár frame.

Lemma 2.1.7. If (L,2) is a proximal frame, then L is a regular frame. 2

For the rest of this chapter, unless stated otherwise, we will assume all frames to be proximal

Császár frames.

Theorem 2.1.8 ([13]). For a proximal Császár frame (L,L) we have that for all �L ∈ L:

i) �L is a symmetric order.

ii) �L is strong order.

iii) �L is a sub-lattice of L× L.

Proof:
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i) Suppose that a �L b for a, b ∈ L. This implies that a �L b for any �L ∈ L. L is a

proximal frame, then if follows that each �L is symmetric, hence we have b∗ �L a∗.

Thus b∗ �L a∗.

ii) Suppose that a �L b for a, b ∈ L. Then a �L b for any �L ∈ L. The fact that

L is a proximal frame ensures that �L is strong, hence there exists c ∈ L such that

a �L c �L b. Therefore we have a �L c �L b.

iii) Suppose that x �L y and x �L z for x, y, z ∈ L. Then x �L y and x �L y for any

�L ∈ L. Since L is up-directed, there is �L
◦ ∈ L such that x �L

◦ y and x �L
◦ z. But

�L
◦ is a meet-sublattice hence we will have x �L

◦ y ∧ z and therefore x �L y ∧ z.

On the other hand, if y �L x and z �L x. Since �L is strong, we have that y �L a �L x

and z �L b �L x for a, b ∈ L. The fact that �L ⊆≺ implies that there are c, d ∈ L
such that

y �L a ≺ c �L x and z �L b ≺ d �L x.

It then follows that (y ∨ z) �L (a ∨ b) ≺ c ∨ d ≤ x. Therefore we have

(y ∨ z) �L (a ∨ b)∗∗

≺ (c ∨ d)

≤ x

Therefore we have (y ∨ z) �L x as it was to be shown. 2

2.2 Filters on proximal Császár Frames

In this section, we study regular Cauchy filters in proximal Császár Frames and show,

amongst few results, that;

i) regular Cauchy filters are minimal Cauchy

ii) Cauchy filters are preserved by the right adjoints of uniform homomorphisms

iii) surjections preserve regular Cauchy filters
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iv) the round filters (as in Bezanishvili [9]) are precisely those filters that are completely

prime.

Definition In a frame M , we say that F ⊆ M is a filter if the following three conditions

are satisfied:

i) F 6= ∅,

ii) If u, v ∈ F then u ∧ v ∈ F , and

iii) If u ≤ v and u ∈ F then v ∈ F .

Recall that in Chapter 1 (Notation 1.3.14), we denoted by B�M the set of elements in Császár

frame M which are “small” with respect to some �M in a Császár order M on M, which is

needed in the definition below (see [13]).

Definition 2.2.1. A filter F on a frame (L,L) is said to be:

i) A regular filter if for all a ∈ F , there exists b ∈ F such that b �L a for �L ∈ L.

i) A Cauchy filter if and only if for any �L ∈ L, it holds that F ∩ B�L 6= ∅.

ii) A regular Cauchy filter if whenever F is a Cauchy filter and v ∈ F , then there exists

u ∈ F with u �L v, for some �L ∈ L.

In what follows, we prove standard and well-known results of (regular) Cauchy filters (see

also [21]).

Proposition 2.2.2. Let (L,L) be a Császár frame and F a filter on L. Then:

i) If F is a Cauchy filter, then for any a�L b, either b ∈ F or a∗ ∈ F .

ii) If F is a regular Cauchy filter, then F is a minimal Cauchy filter.

iii) A regular Cauchy filter is a regular filter.

Proof:
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i) Let F be a Cauchy filter and a �L b. It follows by CO2 in definition 1.3.1 that a ≤ b.

F being Cauchy implies that F ∩ B�L 6= ∅. Take u ∈ F ∩ B�L such that u ≤ a∗

or u ≤ b. We then have that a∗ ∈ F or b ∈ F .

ii) Let F be a regular Cauchy filter. The regularity of F ensures that for any a ∈ F , there

exists b ∈ F such that b �L a. If G is another Cauchy filter on M with G ⊆ F , then

we will have that b∗ ∈ G or a ∈ G. Suppose that b∗ ∈ G, then we will have b∗ ∈ F
and thus ∅ = b∗ ∧ b ∈ F which is a contradiction, hence we must have a ∈ G. This

implies that F ⊆ G

iii) This follows immediately from the fact that for every regular Cauchy filter F , a ∈ F
implies that there is b ∈ F such that b �L a. 2

Our next result shows that surjections preserve regular Cauchy filters.

Proposition 2.2.3. If a frame homomorphism h : M → L is a surjection and F is a regular

Cauchy filter on M , then h(F ) is a regular Cauchy filter on L.

Proof:

Since h is a surjection, it is dense and onto and therefore h(F ) is a filter base. Let x ∈ h(F )

and suppose x ≤ y. There exists s ∈ F such that h(s) = x and so h(s) ≤ y. It then

follows that h∗(h(s)) ≤ h∗(y) which implies that s ≤ h∗(y) since h is onto. Therefore

y ∈ h(F ) and hence h(F ) is a filter. To see that h(F ) is a regular Cauchy filter, suppose

p �L q in L. It then follows from Theorem 1.3.8 that

h∗(p) h∗(�
L) h∗(q) in M.

F is Cauchy, hence h∗(p)
∗ ∈ F or h∗(q) ∈ F . This implies that

h(h∗(p)
∗) ∈ h(F ) or h(h∗(q)) ∈ h(F ).

Since h is onto we have p∗ ∈ h(F ) or q ∈ h(F ). 2

Turning to prime filters, we recall ([20]) that a filter F is prime if a ∨ b ∈ F implies a ∈ F
or b ∈ F , and it is completely prime if for S ⊂ L,

∨
S ∈ F implies S ∩ F 6= ∅.
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Definition 2.2.4. We say a filter F in a frame L is convergent if for any cover T of L we

have F ∧ T 6= ∅.

Proposition 2.2.5. A regular filter on a frame M is convergent if and only if it is com-

pletely prime.

Proof:

⇒: If F is a regular filter, we take
∨
S ∈ F and pick u ∈ F satisfying u ≺

∨
S. Then

F ∩ (S ∪ {x∗}) 6= ∅. Since F ⊆M is proper, it follows that F ∩ S 6= ∅.

⇐: We take a regular filter F that is a completely prime. Since
∨
S = e ∈ F ensures that

F ∩ S 6= ∅, it follows that F converges. 2

Remark 2.2.6. Note that completely prime filters are also important in the sense that

there is a bijective correspondence between points of a locale and completely prime filters.

Suppose p : L → 2 is a point. We set F = p−1(1). To see that u ∧ v ∈ F for any u, v ∈ F ,

note that

u, v ∈ F ⇔ p(u) = 1 = p(v) ⇔ p(u ∧ v) = 1 ⇔ u ∧ v ∈ F.

On the other hand, if
∨
S ∈ F , then

p(
∨

S) = 1 ⇒
∨
s∈S

p(s) = 1

⇒ p(s) = 1, for some s ∈ S

⇒ S ∩ F 6= ∅,

making F completely prime. In the opposite direction, if F is a completely prime filter, then

the mapping p : F → 2 defined by p(u) = 1 for u ∈ F and p(u) = 0 for u ∈ M − F defines

a point. 2

Completely prime filters also relate to round filters (in the sense of Bezhanishvili ([9]). First,

given a compact regular frame L and a subset S of L, we define

� S = {u ∈ L | u ≺ s for some s ∈ S}

and

� S = {u ∈ L | s ≺ u for some s ∈ S}
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An ideal I in L is said to be round if I = � I and a filter F is said to be round if F = � F .

Here is the relationship (see [9]):

Theorem 2.2.7. For a compact regular frame L and a filter F of L, these are equivalent.

i) F is a completely prime filter.

ii) F is a round prime filter.

iii) F = G, for some prime filter G.

iv) F is a meet-prime element of the lattice of round filters of L ordered by set inclusion

⊆.

Proof

i) ⇒ ii) : Suppose that F is a completely prime filter in L and so primeness is trivial. To see

that it is also round, we take u ∈ F and note that compact regularity of L ensures

that

u =
∨
{v ∈ L | v ≺ u}.

It then follows from complete primeness of F that v ≺ u, for some v ∈ F .

ii) ⇒ iii) : Suppose F is a round prime filter. Then F = � F and hence for each a ∈ F there

exists b ∈ F with b ≺ a. If G is another prime filter on L, then it is minimal since L

is regular compact. Thus G ⊆ F . But b ≺ a implies b∗ ∈ G or a ∈ G: If b∗ ∈ G, then

b∗ ∧ b ∈ G. But G ⊆ F , hence b∗ ∧ b ∈ F . We know that b∗ ∧ b = 0 and that 0 6∈ F
which will contradict the fact that b∗ ∧ b ∈ F . Therefore b∗ /∈ G and this implies that

a ∈ G. This shows that F ⊆ G and therefore G = F .

iii) ⇒ iv) : In a lattice of round filters, meet is given by intersection. Suppose that H and K are

round filters such that H * F and K * F , thus there are u ∈ H − F and v ∈ K − F .

Since H and K are round filters, there are wu ∈ H and wv ∈ K such that wu ≺ u

and wv ≺ v, so that wu /∈ G and wv /∈ G. But G is prime, so wu ∨ wv /∈ G; it then

follows from wu ∨wv ≺ u∨ v that u∨ v /∈ F . Since u∨ v ∈ H ∩K, we must have that

H ∩K ⊆ F .
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iv) ⇒ i) : We assume
∨
S ∈ F . By hypothesis F is round, so there is a u ∈ F satisfying

u ≺
∨
S, and so by the familiar property u∗ ∨ (

∨
S) = e. Since L is compact, let us

find {ui ∈ S | 1 ≤ i ≤ n} such that

u∗ ∨ u1 ∨ . . . ∨ un = e.

Since L is regular, we know that each ui satisfies

ui =
∨
{vji | vji ≺ ui},

so compactness of L ensures that

u∗ ∨ vj1 ∨ · · · ∨ vjn = e,

for some vji ≺ ui. Therefore, we have

u ≺ vj1 ∨ . . . ∨ vjn so that vj1 ∨ . . . ∨ vjn ∈ F.

Thus,

� vj1 ∩ . . .∩ � vjn = � (vj1 ∨ · · · ∨ vjn) ⊆ F.

By assumption F is meet prime in the lattice of round filters, so � vji ⊆ F for some

vji , giving some ui ∈ F . This completes the proof that F is completely prime. 2

2.3 Homomorphisms on proximal Császár frames

In this section, we study properties of frame homomorphisms between proximal Császár

frames and show that the category of proximal Császár frames and uniform homomorphisms

exist; in particular, we show that:

i) on these frames, dense onto homomorphisms are uniform;

ii) the right adjoint of a uniform homomorphism reflects Cauchy filters;

iii) uniform homomorphisms and surjections between these frames are Cauchy.

Definition 2.3.1 ([10]). A proximity morphism between proximal frames is a map f :

(M,2M)→ (L,2L) satisfying the following axioms:
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i) f(0) = 0 and f(1) = 1.

ii) f(a ∧ b) = f(a) ∧ f(b).

iii) If a1 2M b1 and a2 2M b2, then f(a1 ∨ a2) 2L f(b1) ∨ f(b2).

iv) f(b) =
∨
{f(a) : a 2M b}.

The category UCsFrm of uniform Császár frames and uniform homomorphisms arises as fol-

lows. But we need the concept of a uniform homomorphism first. The definition of Császár

smallness is related to uniform homomorphisms between uniform Császár frames as follows

(from [12]):

Definition 2.3.2. Given uniform Császár frames (L,L) and (M,M), we say a frame homo-

morphism h : M → L is a uniform homomorphism if whenever �M ∈ M, then there exits

a �L ∈ L such that B�L ⊆ h(B�M ).

Now the following arise:

Lemma 2.3.3. The composition of uniform frame homomorphism is again a uniform ho-

momorphism.

Proof:

We start with two uniform frame homomorphisms f : (N,N )→ (M,M) and g : (M,M)→
(L,L), and take a �N ∈ N . There is a �M ∈M such that

B�M ⊆ f(B�N ).

But for this �M there is a �L ∈ L such that

B�L ⊆ g(B�M ).

Combining the two relations, we find that

B�L ⊆ g(f(B�N )) = (g ◦ f)(B�N ),

showing that g ◦ f is a uniform homomorphism. 2
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Theorem 2.3.4. Any dense onto continuous homomorphism h : (M,M)→ (L,L) between

proximal Császár frames is a uniform homomorphism.

Proof:

Suppose that x �M y for �M ∈ M. Since M is a proximal Császár frame, there exists a

c ∈ M such that x �M c �M y. By continuity of h, it follows that for each �M ∈ M
there is a �L ∈ L such that h(�M) ⊆ �L. Then we have B�L ⊆ Bh(�M ). Now suppose

a ∈ Bh(�M ) and s �M t. Since M is a proximal frame, it follows that s �M r �M t for

r ∈M . Then

h(s) h(�M) h(r) h(�M) h(t).

For a ∈ Bh(�M ) we will have

a ≤ (h(s))∗ or a ≤ h(r).

Since h is dense, then

h∗(a) ∧ s = 0 or h∗(a) ≤ t.

Therefore h∗(a) ∈ B�M and it then follows that h∗(Bh(�M )) ⊆ B�M and thus Bh(�M ) ⊆
h(B�M ). Hence h is uniform. 2

Remark 2.3.5. Proximal Császár frames are Császár frames; in particular, uniform frame

homomorphisms on proximal Császár frames are accordingly uniform on Császár frames.

Thus, the above result is equally true in the setting of Császár frames. Please refer to [16].

The right adjoint of a uniform homomorphism preserves Cauchy filters [12] in the following

sense

Proposition 2.3.6. If h : (M,M)→ (L,L) is a uniform homomorphism, where M and L

are proximal Császár frames with �M ∈M and �L ∈ L, respectively, and G a Cauchy filter

on L, then h∗(G) is a Cauchy filter on M .

Proof:

Suppose G is a Cauchy filter on L. Then G∩B�L 6= ∅ for all �L ∈ L. Since h is uniform,

we have B�L ⊆ h(B�M ), for all lhdM ∈ M, which then give rise to h∗(B�L) ⊆ B�M . To
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see that h∗(G) is a Cauchy filter, take a ∈ G ∩ B�L . Then

h∗(a) ∈ h∗(G ∩ B�L) ⊆ h ∗ (G) ∩ h∗(B�L).

But h∗(B�L) ⊆ B�M , hence h∗(a) ∈ B�M and therefore

h∗(a) ∈ h∗(G) ∩ B�M .

Thus h∗(G) is a Cauchy filter in M . 2

Definition 2.3.7. A frame homomorphism h : M → L between Császár frames is a Cauchy

frame homomorphism if for any regular Cauchy filter F in L, there exists a regular Cauchy

filter G in M such that G ⊆ h∗(F ).

Remark 2.3.8. Given two Cauchy homomorphisms h : M → L and g : L → K between

Császár frames, let F be a regular filter on K. Pick a regular Cauchy filter G on L such

that G ⊆ g∗(F ). There is also a regular Cauchy filter H on M such that H ⊆ h∗(G). Since

(g◦h)∗ = h∗ ◦g∗, it follows that H ⊆ (g◦h)∗(F ). We therefore have the category of proximal

Császár frames and Cauchy homomorphisms, which we will denote by PCsFrm.

In the following result [13], we show the relationship between uniform and Cauchy homo-

morphisms. To wit, it follows from Lemma 2.3.3 that UCsFrm ⊆ PCsFrm.

Theorem 2.3.9. Every uniform homomorphism h : (M, M) → (L, L) between proximal

Császár frames is a Cauchy homomorphism.

Proof.

Let F and G be regular Cauchy filters in L and M , respectively. Since h is uniform, we

have that h∗(F ) is a regular Cauchy filter in M . But G is a minimal Cauchy filter and thus

G ⊆ h∗(F ). Therefore h is a Cauchy homomorphism. 2

Observation 2.3.10.

i) Since dense onto continuous homomorphisms, it follows that every dense onto contin-

uous homomorphism between proximal Császár frames is a Cauchy homomorphism.
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ii) Every surjection is a Cauchy homomorphism.

Proof:

i) A dense onto continuous homomorphism h : M → L is a uniform homomorphism and

we have have that every uniform homomorphism between proximal Császár frames is

a Cauchy homomorphism.

ii) We know that if �M ∈ M and h is a surjection then h(h∗(�
L)) = �L such that

h(�M) ⊆ �L. Thus h is continuous and hence a Cauchy homomorphism. 2

Concluding Remarks: Cauchy homomorphisms and their properties will be used in con-

structing coreflective subcategories of Császár frames in the last three sections of the next

chapter.
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Chapter 3

Completion Properties of Császár

Frames

In the first section, we look at some concepts and results on nearness frames that is needed

in constructing completions of three Császár frames in the following sections. The concept of

a strict extension is introduced in accordance with Apfel’s “Hong’s construction” in [2]. We

then go on to look into some properties of completions of Császár frames and construct their

Cauchy completions according to Chung in [12]. In this chapter, unless otherwise stated, all

frames are Császár frames. To avoid confusion with the relation �, we will use superscripts

on the relations we encounter here to emphasise the Császár orders we are working with.

3.1 The role of filters in completion of frames

The importance of filters in topology in general is well-known. They have been studied in

their own right and have also been used to construct extensions and completions related to

mathematical structures. We know cases where mathematical structure of graduate studies,

for instance [2] and [26].

Recall [8] that a nearness structure on a frame L is a collection N ⊆ Cov(L) satisfying:

i) N is non-empty upset, (that is if a ∈ N and a ≤ b then b ∈ N ), in (Cov(L),≤) such

that for any C,D ∈ N ,

C ∧D = {c ∧ d | c ∈ C, d ∈ D} ∈ N .
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ii) For any u ∈ L, we have

u =
∨
{v ∈ L, v � u},

where v � u means that there is C ∈ N with Cv ≤ u and the C-star of v is defined by

Cv =
∨
{w ∈ L | w ∧ v 6= 0}.

The pair (L,N ) is then called a nearness frame. A frame homomorphism h : (M,M) →
(L,N ) is said to be uniform if for any U ∈ M, it holds that h(U) ∈ N ; it is said to be a

surjection if it is onto and for any V ∈ N , then h∗(V ) is a cover of M and {h∗(V ) | V ∈ N}
generates the filter M.

A nearness frame (L,N ) is complete if any dense surjection h : M → L is an isomorphism;

and it is Cauchy complete if every regular Cauchy filter in (L,N ) is completely prime.

We will say that a filter F in a frame L is convergent if for every cover U of L, it holds that

F ∩ U 6= ∅, We observe (see for instance, [20]) that:

i) Every completely prime filter is convergent: For, suppose F is a completely prime.

Then
∨
U = e ∈ F , we have that C ∩ F 6= ∅. Thus F is convergent.

ii) A filter containing a convergent filter is convergent, since if F is a convergent filter and

G another filter with F ⊆ G, then for a cover U of L, we have that F ∩ U 6= ∅. Now

if G ∩ U = 0 were true, then (since F ⊆ G) it would mean that F ∩ U ⊆ G ∩ U 6= ∅,
which is a contradiction to the convergence of F . Therefore we must have G ∩ U 6= ∅.

iii) A filter containing a completely prime filter is convergent. Let F ⊆ G where F is

a completely prime filter. Then F is convergent by (i) and so the convergence of G

follows from (ii). 2

In nearness frames (see for instance, [21]), completely prime filters are regular Cauchy in the

following sense

Proposition 3.1.1:

i) Every completely prime filter on a nearness frame is a regular Cauchy filter.
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ii) A nearness frame (L,N ) is Cauchy complete if and only if every regular Cauchy filter

on (L,N ) is convergent.

Proof:

i) Take a completely prime filter F in a nearness frame (L,N ). It follows then that any

subset U ⊆ L satisfying
∨
U ∈ F , it holds that U ∩F 6= ∅; that is F is a Cauchy filter.

Now, suppose that v ∈ F and pick u ∈ L satisfying v� u. By CO2) in Definition 1.3.1

it holds that v ≤ u. But F is a filter, so it follows that u ∈ F , which proves that F is

a regular Cauchy filter.

ii) Suppose (L,N ) is a Cauchy complete nearness frame and take F to be a regular

Cauchy filer in L. Then, by definition of this frame L, every regular Cauchy filter in

L is a completely prime filter, so F is completely prime. By definition again, every

completely prime filter is convergent, and so does F . 2

For the reverse implication, we assume that every regular Cauchy filter in the near-

ness frame (L,N ) is convergent. Then it immediately follows that (L,N ) is Cauchy

complete.

Filters play a crucial role in completion of frames, especially in the uniform and nearness

Cauchy completions. See for example, Banaschewski and Pultr in [8]. In what follows, we

will follow Apfel and refer to construction of strict extensions as “Hong’s Construction” be-

cause indeed the idea came from him in [20].

Let L be a frame, and let X be the set of filters on L. We set

sXL = {(a,
∑

) ⊆ L× P(X) | a ∈ F, F ∈
∑
}

We then define cL : sXL→ L, (a,
∑

) 7→ a, that is, it is the restriction of the first projection

map π1 : L× P(X)→ L. Then cL is obviously a frame homomorphism. Denoting by (cL)∗

the right adjoint of cL, we find that

(cL)∗(a) =
∨
{a,

∑
a

} = (a,
∑
a

),where
∑
a

= {F ∈ S | a ∈ F}.
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We denote by tXL the subframe of sXL that is generated by (cL)∗(L), and set c|tXL = t,

that is t the restriction of s to tXL.

By definition t is strict, that is, t∗(L) generates tXL, and for any a ∈ L we find that

(t ◦ cL∗)(a) = t(a,Xa) = a so that t is onto; moreover, it is a strict extension.

In the setting of nearness frames, tXL with the associated induced nearness structure is

known to be a complete nearness frame as well, and the map cL : cL → L is also a dense

surjection. Moreover, it is Cauchy complete and so cL : cL→ L is the Cauchy completion of

L. See details in [21]. We conclude this section by a related result in strong nearness frames

which we will need in the construction of a Cauchy Completion of a Császár frame. First,

we recall that a nearness frame (L,N ) is said to be strong if whenever U ∈ N , the set

Ǔ = {u ∈ L | u� v for some v ∈ U}

also belong to N .

Theorem 3.1.2. If (L,N ) is a strong nearness frame and

F ◦ = {x ∈ L | y � x for some y ∈ F}

for any filter F in L, then the following hold:

i) If F is a Cauchy filter, then F ◦ is a regular Cauchy filter.

ii) F is a regular Cauchy filter if and only if it is a minimal Cauchy filter.

iii) If F is a Cauchy filter, then F ◦ is the unique regular Cauchy filter contained in F .

iv) (L,N ) is Cauchy complete if and only if every Cauchy filter is convergent.

Proof:

i) Let (L,N ) be a strong nearness frame. Then for U ∈ N , by definition

Ǔ = {u ∈ L | u� v for some v ∈ U}.
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Now, if F is a Cauchy filter in (L,N ), then we must have that F ∩ Ǔ 6= ∅. So, there is

some element u ∈ F ∩ Ǔ , so that then there exists v ∈ U such that u� v, which proves

that v ∈ F ◦. Therefore F ◦ ∩ U 6= ∅; thus F ◦ is a Cauchy filter.

Since F ◦ ∩ U 6= ∅, take any u ∈ F ◦ ∩ U . This implies that u ∈ F ◦ and u ∈ U . Then

there is v ∈ F such that v � u. This shows that F ◦ is regular.

ii) ⇒ We refer to Proposition 2.2.2(ii).

⇐ Conversely, suppose that F is a minimal Cauchy filter. By (i) above, we know that

F ◦ is a Cauchy filter, so we need only show that F ◦ ⊆ F . Take x ∈ F ◦, so that a� x

for some a ∈ F . From the fact that � ⊆≺ (Definition 2.1.7 (i)), we know that a ≺ x,

and so a ≤ x, which means that x ∈ F because a ∈ F . So F ◦ ⊆ F .

iii) Suppose F and G are Cauchy filters with G ⊆ F ◦. We know that for any a ∈ F ◦,

there exists b ∈ F with b�a. Since G is also a Cauchy filter, we have b∗ ∈ G or a ∈ G.

Since G ⊆ F ◦ ⊆ F , b∗ 6∈ G, thus a ∈ G. This implies that F ◦ is minimal Cauchy filter

and hence a regular Cauchy filter. Therefore F ◦ ⊆ G which implies that F ◦ ⊆ G.

iv) (⇒): Suppose (L,N ) is Cauchy complete. This implies that every regular Cauchy filter

is a completely prime filter. We know that a completely prime filter is convergent.

(⇐): Suppose every Cauchy filter in (L,N ) is convergent. Then it follows immediate

that (L,N ) is Cauchy complete. 2

3.2 Completion Properties of Császár frames

Unless stated otherwise, the results of this section are taken from Chung’s treatise in

[12].

Proposition 3.2.1.

For any Császár frame (L,L), the pair (tXL,L∗) is a Császár frame.

Proof:

By Theorem 1.3.8 (i), we know that L∗ is a Császár order on tXL. We begin by showing

that L∗ is admissible, namely that for every A ⊆ L, it holds that
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(
∨
A,

∑
a) =

∨
{(
∨
B,

∑
b) | (

∨
B,Sb) �tXL (

∨
A,

∑
a)}

Since cL(x,
∑

a) = a, we must have∨
{(cL)∗(u) | u ∈ A} = (

∨
A,

∑
a).

We also have that if v �tXL u, then

(cL)∗(v) �tXL (cL)∗(u),

which reduces to having to show that

(cL)∗(u) =
∨
{(cL)∗(v) | v �tXL u}, for each u ∈ L.

Note that ⋃
{Sv | v �tXL u} ⊆ Su.

Now if F ∈ Su then (F being regular) there is a v ∈ F such that v �L u, so that then

F ∈
⋃
{Sv | v �tXL u} ⊆ Su.

By Definition 1.3.3 (CS2), we must have that �tXL is a meet-sublattice of tXL× tXL.

It remains to show that (tXL,L∗) is regular. To this end, we assume that (u,Sa) �L

(v,Sb). Then, by Definition 1.3.7 (ii), there are x, y ∈ L for which

(u,Sa) ≤ x �L y and(cL)∗(y) ≤ (v,Sb).

But (L,L) is regular, and u�Ly (from u ≤ x�Ly) implies that u ≺ y, so u∗∨y = e. On

the other hand, F is a regular Cauchy filter so that either u∗ ∈ F or v ∈ F ; therefore

(cL)∗(u
∗) ∨ (cL)∗(v) = (e,X).

Now

(u,Su)∗ ≥ (cL)∗(u
∗)

⇒ (u,Su)∗ ∨ (v,Sv) ≥ (cL)∗(u
∗) ∨ (cL)∗(v) = e

and so

(u,Su)∗ ∨ (v,Sv) = e,

which shows that

(u,Su) ≺ (v,Sv). 2

Proposition 3.2.2. Let (L,L) be Császár frame. Then we have the following:
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i) cL : (tXL,L∗)→ (L,L) is a Cauchy homomorphism.

ii) For any regular Cauchy filter G on (tXL,L∗), cL(G) is a regular Cauchy filter on

(L,L).

Proof:

i) Suppose F is a regular Cauchy filter in a Császár frame (L,L) and set

G = {u ∈ tXL | v ≤ u for some v ∈ (cL)∗(F )}.

G is a filter: From the fact that the right adjoint of cL, (cL)∗, preserves finite

meets, it follows that G is a filter in (tXL,L∗).

We claim that G ⊆ (cL)∗(F ): For, assume ∈ G. Then there exists a v ∈
(cL)∗(F ) such that v ≤ u. Since cL is onto. we must have that cL(v) ∈ F . But

together with cL(v) ≤ cL(u), this implies that cL(u) ∈ F , and then u ∈ (cL)∗(F )

as asserted.

G is Cauchy: We take any �tXL ∈ L∗. We must show that G ∩ B�tXL 6= ∅,
where B�tXL is the set of �tXL-small elements. Then we find �L ∈ L such that

�tXL = cL∗(�
L). From the fact that F is a Cauchy filter in L, we have F∩ B�L 6= ∅

so that cL∗(F )∩ cL∗B�L 6= ∅. It follows that B�L ∩ G 6= ∅ since G ⊆ (cL)∗(F )

and therefore G is a Cauchy filter on (tXL,L∗).

To see that G is regular, let a ∈ G. Then there is z ∈ F with c∗(z) ≤ a. F is a

regular filter on (L,L), hence there is w ∈ F such that w �L z. It then follows

that c∗(w)c∗(�
L)c∗(z) and hence c∗(w) �L a. Therefore G is a regular filter on

(tXL,L∗).

ii) Suppose G is a regular Cauchy filter on (tXL,L∗). Since cL is dense, then

G ∩ B(cL)∗(�L) 6= ∅, from Theorem 1.3.16(i). But cL is an onto dense homo-

morphism, hence it follows from Theorem 1.3.16(iii) that cL(B(cL)∗(�L)) = B�L ,

thus cL(G) ∩ B�L 6= ∅. This shows that cL(G) is a Cauchy filter on (L,L).

Now, if y ∈ G, then there is z ∈ G and (cL) ∗ (�L) ∈ L∗ for which z (cL) ∗ (�L) y

holds. It follows that cL(z) �L cL(y) and thus cL(z) ∈ cL(G) since cL is onto.

This proves that cL(G) is indeed a regular filter on (L,L). 2

Observation 3.2.3. The following are immediate:
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i) For a Császár frame (L,L), the homomorphism cL : (tXL,L∗) → (L,L) is an

isomorphism if and only if every filter in X is a Cauchy completely prime filter

in L.

ii) A Császár frame (L,L) is Cauchy complete if and only if tXL = {(a,Σa) | a ∈ L}.

Theorem 3.2.4. The Császár frame (tXL,L∗) is Cauchy complete.

Proof:

Let F be a regular Cauchy filter on (tXL,L∗) and B a cover of tXL. Then

B = {(v,Sv) | v ∈ V }, for some V ⊆ L,

and we also know that

∨
B = (

∨
V,Sv) = (e,X).

Since cL preserves regular Cauchy filters, we must have that cL(F ) is also a regular

Cauchy filter in (L,L). From
∨
B = (

∨
V,Sv) = (e,X), it follows that Sv = X, and

then cL(F ) ∈ Sv; thus cL(F )∩V 6= ∅. So, we pick u ∈ cL(F )∩V and find a v ∈ F such

that v � (cL)∗(u) implying that v ≤ (cL)∗(u). Since F is a filter, we must have that

(cL)∗(u) ∈ F which gives (cL)∗(v) = (v,Sv) ∈ F ∩B 6= ∅ showing that F is convergent,

so that (tXL,L∗) is Cauchy complete. 2

En route to the main result in this section, we recall the following concept. See, for

example, Herrlich ([19]) and Abdujabal ([1]) Given a category C, let B be a subcate-

gory of C. This means that there is an inclusion functor I : B → C. For any C-object

C, we call a B-object R together with a morphism rC : R → C a coreflection of C in

B if for every morphism f : B → C, for B ∈ Ob(B), factors uniquely through R, that

is, there exists a unique B-morphism f̂ : B → R such that f = rC ◦ f̂ :

B

f̂

��

f

��
R rC

// C

47



Note that f̂ is unique with respect to f and rC , but (R, rC) is determined up to iso-

morphism. Now, here is the main result of this section, namely

Theorem 3.2.5. The category CCCsFrm of Cauchy Complete Császár frames and

Cauchy homomorphisms is coreflective in the category CsFrm of Császár frames and

Cauchy homomorphisms.

Proof.

Given a Császár frame (L,L), we know that its completion tXL is Cauchy complete

Császár frame (Theorem 3.2.4) and then by Proposition 3.2.3(i), cL : (tXL,L∗) →
(L,L) is a Cauchy homomorphism. We take a Cauchy complete Császár frame (M,M)

and a Cauchy homomorphism h : (M,M) → (L,L). We want to construct a Cauchy

homomorphism ĥ : (M,M)→ (tXL,L∗) such that h = (cL) ◦ ĥ:

(M,M)

ĥ

��

h

##
(tXL,L∗) cL

// (L,L)

Following Dube et al [16], we use the notation ch for the map (cM,M∗)→ (tXL,L∗)
defined by

ch(u,Su) = (h(u),
⋃
{Sh(v) | v �M u}).

FACT 1: The map ch makes the following rectangle commutative:

cM

cM

��

ch // tXL

cL

��
M

h
// L

This follows from the fact that, for any (u,Su) ∈ (cM,M∗), we find that

(cL ◦ (ch))(u,Su) = cL[(ch)(u,Su)]

= cL(h(u),
⋃
{Sh(v) | v �M u})

= h(u)
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and

(h ◦ cM)(u,Su) = h[cM(u,Su)] = h(u).

which shows that cL ◦ (ch) = h ◦ cM .

FACT 2: The map ch : cM → tXL is a Cauchy homomorphism. For, suppose that

H is a regular Cauchy filter in (tXL,L∗). By proposition 3.2.3, we know that cL(H) is

a regular Cauchy filter in (L,L). By Cauchyness of h : (M,M)→ (L,L), there exists

a regular Cauchy filter G in (M,M) for which

G ⊆ h∗[cL(H)].

It remains to show that

(cM)∗(G) ⊆ (ch)∗(H).

If x ∈ (cM)∗(G) then x = (cM)∗(y) with y ∈ G. There exists (by regularity of G) a

z ∈ G such that z �M y. Since G ⊂ h∗[cL(H)], we have h(G) ⊆ cL(H) and then

h(z) ∈ cL(H). This implies that there is an element (v,Sv) ∈ H such that

h(z) ⊆ cL(v,Sv) = v.

Acting (cL)∗ on this equality , we have that

(cL)∗(v) = (cL)∗(h(z)) ≤ (ch)[(cM)∗(z)].

Now let F ∈ Sh(z) be any filter in tXL. Since z �M y (and therefore z ≤ y), we must

have h(z) ≤ h(y) with h(z) ∈ F , so that h(y) ∈ F . The definition of ch ensures that

F ∈
⋃
{Sh(z) | z �M y}

and so

(cL)∗[h(z)] ≤ (cL)∗[h(y)] ≤ (ch)[(cM)∗(z)].

Remember, (u,SU) was taken from H and that H is an upset (as a filter), so we must

have that

(ch)[(cM)∗(z)] ∈ H or (cM)∗(z) ∈ (ch)−1(H),

which implies that

(cM)∗(G) ⊆ (ch)−1(H),

as was to be shown. 2
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3.3 Cauchy Complete Uniform Császár frames

In this section, we will show that the category CCUCsFrm of Cauchy complete uniform

Császár frames is coreflective in the category UCsFrm. The results leading to this

result are developed from the following definition, adopted from Chung ([12]). First,

if �L and �L
◦ are Császár orders in (L,L), we will write

�L ⊆ (�L
◦ )2

to mean that:

if u �L w there exists v ∈ L such that u �L
◦ v �L

◦ w.

Definition 3.3.1. A Császár frame (L,L) is said to be a uniform Császár frame if

each of L is symmetric and for any �L ∈ L there exists a �L
◦ such that

�L ⊆ (�L
◦ )2.

Theorem 3.3.2. ([12]). For any uniform Császár frame (L,L), the pair (tXL,L∗) is

a Cauchy complete uniform Császár frame.

Proof:

Suppose (L,L) is a uniform Császár frame. Then L is symmetric and for any �L ∈ L
if y �L z, then there is a w ∈ L with y �L

◦ w �L
◦ z. By Theorem 3.2.5, the pair

(tXL,L∗) is Cauchy complete. We must now show that (tXL,L∗) is a uniform Császár

frame. Suppose (cL)∗(y) (cL)∗(�
L) (cL)∗(z) in (tXL,L∗). Then y �L z in (L,L) by

Theorem 1.3.10 (v), and then z∗ �L y∗, since �L is symmetric. Thus it follows that

[(cL)∗(z)]∗ (cL)∗(�
L) [(cL)∗(y)]∗.

Therefore (cL)∗(�
L) is symmetric. Now, y �L z implies that

y �L
◦ w �L

◦ z for �L
◦ ∈ L andw ∈ L.

Then we will have (cL)∗(y) (cL)∗(�
L
◦ ) (cL)∗(w)(cL)∗(�

L
◦ )(cL)∗(z) since cL is onto dense

(appealing to Theorem 1.3.8 (iv)). This completes the proof. 2
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Definition 3.3.3 Let (L,L) and (M,M) be uniform Császár frames. A frame homo-

morphism h : M → L is said to be a uniform homomorphism if for any �M ∈M there

exists �L ∈ L with B�L ≤ h(B�M ).

Notation: Let (L,L) be a Császár frame and A,B ⊆ L. Then A is said to �−refine

B if for any a ∈ A there is b ∈ B with a � b. In this case we write A � B. When

necessary, we may use superscripts (such as �L) to distinguish one Császár order from

another.

Lemma 3.3.4 ([12]). Let (L,L) be a uniform Császár frame. Then for any �L ∈ L,

there exists �L
◦ ∈ L with B�L◦ �L

◦ B�L.

Proof:

Suppose that �L ∈ L. Without loss of generality, we pick �L
◦ ,�

L
◦◦ such that

�L ⊆ (�L
◦◦)

2 and �L
◦◦ ⊆ (�L

◦ )2.

Now we take u ∈ B�L◦ . We want to show that u ∈ B�L . Suppose then that v ∈ L and

that u �L
◦ v. We then set

u◦ =
∧
{w ∈ L | u �L

◦ v �L
◦ w}

We note that

u�L
◦ v ≤ u◦

and therefore u �L
◦ u◦. It will be enough to show that u◦ ∈ B�L . Take m �L n such

that u◦ ∧m 6= 0. Since �L ⊆ (�L
◦◦)

2 there exists p ∈ L such that

m �L
◦◦ p �L

◦◦ n.

However, the relation �L
◦◦ ⊆ (�L

◦ )2 implies that there are r, s ∈ L such that

m �L
◦ r �L

◦ p and p �L
◦ s �L

◦ n.

Consequently, we have

m �L
◦ r �L

◦ p �L
◦ s �L

◦ n.

We assert that u∧p 6= 0: For, if u∧p = 0, then from the relation (due to symmetry)

u ≤ p∗ �L
◦ r∗ ◦ m∗
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it follows that u◦ ≤ m∗ and so u◦ ∧ m = 0. But this contradicts the fact that

u◦ ∧ m 6= 0. Therefore, u ∧ p 6= 0. From the assumption that u ∈ B�L◦ it follows

that

u ≤ s �L
◦ n.

Then (by definition of u◦), we find that u◦ ≤ n and so u◦ ∈ B�L , hence B�L◦ �L
◦ B�L ,

as asserted. 2

Notation 3.3.5. The following result of Chung ([12]) is analogous to the one proved

by Hong and Kim ([21]). See Theorem 3.1.2 (earlier). Given a filter F on a uniform

Császár frame, F ◦ denotes the filter

F ◦ = {x ∈ L | a�L x for some a ∈ F}.

Proposition 3.3.6. Let (L,L) be a uniform Császár frame and F a Cauchy filter on

(L,L). Then F ◦ is a regular Cauchy filter on (L,L).

Proof:

Since F ◦ = {x ∈ L | a �L x for some a ∈ F}, it follows that F ◦ is a regular filter.

It remains to show that F ◦ is a Cauchy filter. Following the previous result (Lemma

3.3.4), we take �L, �L
◦ ∈ L such that

B�◦ �L
◦ B�L .

Since F is a Cauchy filter, we must have F∧B�L◦ 6= ∅. So, there must be a u ∈ F∧B�L◦
so that u ∈ F and u ∈ B�L◦ . From B�L◦ �L

◦ B�L , we find a v ∈ B�L such that u �L
◦ v.

Since F is a filter we must have v ∈ F (because u ≤ v). This implies that v ∈ F ◦,
and so F ◦ ∩ B�L◦ 6= ∅; hence F ◦ is a Cauchy filter. 2

Lemma 3.3.7. Every uniform frame homomorphism h : M → L between uniform

frames is a Cauchy homomorphism.

Proof:

By definition, a proximal Császár frame is symmetric and uniform, so the result follows

from Observation 2.3.10. 2
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We are now ready to prove the main result in this section.

Theorem 3.3.8 ([12]). The category CCUCsFrm of Cauchy complete uniform Császár

frames and Cauchy frame homomorphisms is coreflective in the category UCsFrm of

uniform Császár frames and uniform Cauchy frame homomorphisms.

Proof

Suppose (L,L) is a uniform Császár frame and let cL : (tXL,L∗ → (L,L) be its

Cauchy completion; thus (tXL,L∗) is a Cauchy complete uniform Császár frame and

cL is uniform because cL is onto dense (by Theorem 2.3.4). Let (M,M) be a Cauchy

complete uniform Császár frame and let h : (M,M) → (L,L) be a uniform frame

homomorphism. Since h is a uniform frame homomorphism, it follows from Theorem

2.3.9 that it is a Cauchy frame homomorphism. By an argument similar to that used

in Theorem 3.2.6, there is a unique Cauchy homomorphism ch : cM → tXL such that

cL ◦ ch = h ◦ cM .

We want to show that ch is uniform. We take (cM)∗(�
M) ∈ (cM)∗(M), for some

�M ∈ M. By assumption (M,M) is a (Cauchy complete) uniform Császár frame, so

we pick �M
◦ ∈M (guaranteed by Lemma 3.3.4) such that

B�M◦ �M
◦ B�M .

But h is a uniform frame homomorphism, so we find a �L ∈ L such that

B�L ≤ h(B�M◦ ).

We will work back to tXL by showing that

(cL)∗(B�L) ≤ ch ◦ (cM)∗(B�M ).

To this end, we take (cL)∗(u) ∈ (cL)∗(B�L), so that u ∈ B�L . Since B�L ≤ h(B�M◦ ),

we find a v ∈ B�M◦ such that u ≤ h(v). From v ∈ B�M◦ �M
◦ B�M , we pick x ∈ B�M

such that v �M x. Now take F ∈ Σu. Now the relations v �M x and ≤ h(v) ensure

that

F ∈ ∪{Σh(z) | z �M x}

and

(cL)∗(u) ≤ ch ◦ (cM)∗(x)
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But this means that

(cL)∗(B�L) ≤ ch ◦ (cM)∗(B�M ).

Since cM and cL are dense onto frame homomorphisms, we invoke Theorem 1.3.16(ii)

so that

B(cL)∗(�L) ≤ (cL)∗(B�L)

which yields

B(cL)∗(�L) ≤ ch(B(cM )∗(�M )).

Therefore cL : (tXL,L∗)→ (L,L) is the CCUCsFrm-coreflection of (L,L) in UCsFrm.

2

3.4 Cauchy Complete Proximal Császár frames

For simplicity, we recall that B�L denotes the set of all elements of L which are �L-

small. In addition, we have cL : L∗ → L where

L∗ = {(cL)∗(�
L) | �L ∈ L}.

The following result [13] extends that of Proposition 3.2.2 proved earlier.

Theorem 3.4.1. For any proximal Császár frame (L,L), the pair (tXL,L∗) is a

Cauchy complete proximal Császár frame.

Proof:

Suppose F is a regular Cauchy filter on (tXL,L∗). Since cL preserves regular Cauchy

filters (by Theorem 3.2.5), it follows that cL(F ) is a regular Cauchy filter on L. We

take a basic cover U of tXL so that

V = {(u,Σu) | u ∈ U},

for some U ⊆ L. We have that∨
V = (

∨
U,ΣU) = (eL, X),
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which implies that ΣU = X and cL(F ) ∈ ΣU and then

cL(F ) ∩ U 6= ∅;

and so we pick u ∈ cL(F ) ∩ U . Now, for the right adjoint (cL)∗, we find a v ∈ F such

that

v ≤ (cL)∗(u).

Consequently, we arrive at

(cL)∗(u) = (u,Σu) ∈ F ∩ u

making F ∩ U 6= ∅, thus F is convergent as was to be shown. 2

The following result, analogous to Chapter 1 (Theorem 1.3.15) on Császár frames,

provides an interplay between dense onto frame homomorphisms and small sets [13].

Importantly, we show that to any Császár order on a uniform proximal Császár frame

corresponds a Császár order whose “small set” is related to that of original Császár

order.

Lemma 3.4.2. Let (L,L) be a proximal Császár frame. Then the following results

hold:

i) If L is also uniform, then for any �L ∈ L, there is �◦ ∈ L with B�◦ �◦ B�L.

ii) If h : M → L is an onto dense frame homomorphism and � is a Császár order

on L, then Bh∗(�L) ≤ h∗(B�L).

Proof:

i) Suppose that �L ∈ L and, without loss of generality, find �1, �◦ ∈ L such that

�L ⊆ �2
1, and �1 ⊆ �2

◦.

We pick u ∈ B�◦ and take w ∈ L such that u �◦ w (by �◦-smallness). We set

u◦ =
∧
{v ∈ L | u �◦ w �◦ v}

and note that u �◦ u
◦. We claim that u◦ ∈ B�L .

55



Suppose then that p �L
1 q with u◦∧ p 6= 0. From �1 ⊆ �2

◦, we find m,n, l ∈ L
such that

p �◦ m �◦ n �◦ l �◦ q.

Now u ∧ n 6= 0: For, if not (see Remark 1.3,12), and by symmetry of �◦

u ≤ n∗ �◦ m
∗ �◦ p

∗

from which we find that u◦ ≤ p∗ and so (easily) u◦ ∧ p = 0, a contradiction to

our assumption that u◦ ∧ p 6= 0. Since u was chosen from B�◦ , we find that

u ≤ l �◦ q so that u
◦ ≤ q.

Therefore, u◦ ∈ B�L , making B�◦ ⊆ B�L as desired.

ii) We refer to Theorem 1.3.15. 2

The following definition is adopted from [28].

Definition 3.4.3. Given a functor U : C → D and a source (si : A → Bi)i∈I , we say

that (si) is U -initial if whenever (ti : C → Bi)i∈I is any source and f is a D-morphism

such that U(si) ◦ f = U(ti) for all i, then there is only one C-morphism g : C → A

such that U(g) = f and si ◦ g = ti, for all i ∈ I, that is, the following triangles

commute, one for each i ∈ I:

C

ti

��

g

A si
// Bi

Remark. U -initial morphisms have been studied extensively in the setting of forgetful

functors U : C → C, where in “mapping” from C to C, the functor U “leaves something

behind”. See, for instance, Herrlich [19]. We are interested in the following result of

Chung [13].

Lemma 3.4.4. If U : PCsFrm → Frm is a forgetful functor, then every surjection

in the category of proximal Császár frames PCsFrm is U-initial.
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Proof:

Let h : (M,M) → (L,L) be a surjection in PCsFrm, let g : (K,K) → (L,L) be a

uniform continuous homomorphism and let k : K →M be a frame homomorphism (in

Frm) such that (we refer to the triangle below)

U(h) ◦ k = h ◦ k = g.

K

g

��

k

M
h

// L

Claim i): The frame homomorphism k is continuous:

suppose u �K v for any �K ∈ K. Take any �K
◦ ∈ K such that

u �K
◦ r �K

◦ s �K
◦ v for a, b ∈ K.

Since K is a proximal Császár frame, then it is regular and from Definition 2.1.7(i) it

follows that

u ≺ r ≺ s ≺ v.

Using the fact that k is a frame homomorphism and M is a proximal Császár frame,

we have that

k(u) �M
◦ k(r) �M

◦ k(s) �M
◦ k(v).

Applying h we get

h(k(u)) h(�M
◦ ) h(k(r)) h(�M

◦ ) h(k(s)) h(�M
◦ ) h(k(v)).

But h is uniform hence continuous, therefore we have

h(k(u)) �L
◦ h(k(r)) �L

◦ h(k(s)) �L
◦ h(k(v))

Since h is a surjection, then it is a dense onto homomorphism, thus we have

k(u) h∗(�
L
◦ ) k(r) h∗(�

L
◦ ) k(s) h∗(�

L
◦ ) k(v)

Therefore it follows that k(u) h∗(�
L) k(v). This proves that k is continuous.
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Claim ii): The continuous frame homomorphism k is uniform: To this end,

we start with �K ∈ K. By Lemma 3.3.4, we pick �K
◦ ∈ K such that

B�K◦ �K
◦ B�K .

Since g is uniform by assumption, we find �L ∈ L satisfying

B�L ≤ g(B�K◦ ).

Applying the right adjoint h∗, we find that

h∗(B�L) ≤ h∗(g(B�K◦ ))

Now for any u ∈ B�K◦ , we find from B�K◦ �K
◦ B�K that there is a v ∈ B�K such that

h∗(g(u)) ≤ k(v)

from which it follows that

h∗(g(B�K◦ )) ≤ k(B�K ).

By hypothesis h is surjective (and so dense onto), therefore Theorem 1.3.15(ii) implies

that

Bh∗(�K◦ ) ≤ k(B�K ).

Therefore k is uniform. 2

Theorem 3.4.5. ([13]). The category Cauchy complete proximal Császár frames

CPCsFrm of Cauchy proximal Császár frames is coreflective in the category PCsFrm
of proximal Császár frames and Cauchy homomorphisms.

Proof:

Let (L,L) be any proximal Császár frame. Then cL : (tXL,L∗)→ (L,L is a surjection

and hence a uniform continuous homomorphism. Take any Cauchy complete proximal

Császár frame (M,M) and a uniform continuous homomorphism h : M → L. Define

hc : cM → tXL by

(hc)(aΣa) = (h(a),
∨
{Σh(x) : x�M a}).

It then follows that hc is a homomorphism with h ◦ cM = cL ◦ hc. Suppose l =

hc ◦ (cM)∗. Since h : M → L is a uniform continuous homomorphism, it is a Cauchy
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homomorphism and hence l is a frame homomorphism. Then we have that l is a

uniform continuous homomorphism. But cL is dense and thus a monomorphism (the

underlying frames are regular). Therefore c is unique with this property. This implies

that cL is a coreflection of (L,L) in the category PCsFrm. 2

From Observation 2.3.10, Theorem 3.2.6, Theorem 3.3.6 and Theorem 3.4.5, the fol-

lowing is immediate:

Proposition 3.4.6. The FIVE subcategories we have come across thus far relate as

per the following diagram (the arrows indicate inclusion functor):

CCPCsFrm

��

//

&&

UCsFrm

��

zz
CCUCsFrm // CsFrm

CCPCsFrm //

88

PCsFrm

dd
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Chapter 4

Compactification and Connectedness

in Császár frames

4.1 Compactification of proximal Császár frames

Proximal Császár frames, being proximal, are completely regular, and so, they have com-

pactifications. For background on compactifications, we follow Banaschewski [5]. See also

Banaschewski and Pultr [8]. In this section, we follow the construction of Banaschewski

and Mulvey [7] to construct the compactification of a proximal Császár frame. First, by

a compactification of a frame L we mean a dense onto frame homomorphism h : M → L,

where M is a compact regular frame. Ideals are dual to filters, thus: a non-empty proper

subset I of a frame L is said to be an ideal of L if:

i) whenever u, v ∈ I then u ∨ v ∈ I, and

ii) whenever u ∈ I and v ≤ u, then v ∈ I.

Construction

An ideal I of a proximal Császár frame (M,M) is said to be strongly regular if whenever

u ∈ I there exists v ∈ I such that u�M v for some �M ∈M. We shall denote by CMM the

set of all strongly regular ideals of M .

We will need the following result
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Observation 4.1.1. Let (M,M) be a Császár frame and let �M ∈M.

i) If x ≤ y �M z then x �M z: Together with x ≤ y �M z and z ≤ z, Definition

1.3.1 ensures that x �M z.

ii) If y � y and u �M v, then x ∧ u �M y ∧ v: Under the hypothesis, we have

x ∧ u ≤ x �M y and x ∧ u ≤ u �M v

which by i) imply that

x ∧ u �M y and x ∧ u �M v.

Since M is a meet-sublattice of M ×M , we much have

x ∧ u �M y ∧ v. 2

Lemma 4.1.2. CMM is a compact frame.

Proof.

a) First, we observe that the bottom element and top element in CMM are respectively {0M}
and {M}. Recall that for ideals (even strongly regular ones) I, J ∈ CMM , we have

I ∧ J = {x ∧ y | x ∈ I, y ∈ J}.

Now, if u ∈ I ∧ J then u = x ∧ y, so that there exists ux ∈ I and uy ∈ J such that

x �M ux and y �M uy.

Consequently, we have

u = x ∧ y �M ux ∧ uy ∈ I ∧ J,

showing that strongly regular ideals are closed under finite meets. To see that I ∨J ∈ CMM
for any I, J ∈ CMM , take x ∈ I ∨ J so that x = u ∨ v for some u ∈ I and v ∈ J . By

definition, we pick ux ∈ I, vx ∈ J such that

u �M ux and v �M vx.

Then

x = u ∨ v �M ux ∨ vx ∈ I ∨ J,

61



which establishes that I ∨ J is a strongly regular ideal. Next, we consider
⋃
i Ii where each

Ii ∈ CMM . It is easily shown that for any x ∈
⋃
i Ii there is a y ∈

⋃
i Ii with x �M y, for

some �M ∈ M. Given a strongly regular ideal I and a collection {Ji}i of strongly regular

ideals in CMM , let us consider∨
i

Ji = {
∨

E | E finite, E ⊆
⋃
i

Ji}.

We claim that

I ∩ (
∨
i

Ji) =
∨
i

(I ∩ Ji) :

Note that Ji ≤
∨
i Ji and Ji ∩ I ⊆ I, so it easily follows that∨

i

(Ji ∩ I) ≤ (
∨
i

Ji) ∩ I.

For the opposite implication, we take u ∈ I ∩ (
∨
i Ji), say

u = u1 ∨ u2 ∨ . . . ∨ un.

Since uj ≤ u, the definition of an ideal implies that u = u1 ∨ u2 ∨ . . . ∨ un ∈
∨
i(I ∩ Ji),

and so

(
∨
i

Ji) ∩ I ≤
∨
i

(Ji ∩ I)

whence the generalised distributivity property follows:

(
∨
i

Ji) ∩ I =
∨
i

(Ji ∩ I)

Consequently, CMM is a frame. To see that CMM is compact, let us take a cover {Ji}i for

CMM , say
∨
i Ji = M , since {M} is the top element in CMM . Since eM ∈ M , it follows

that there are finitely many uj ∈ Jij fuch that

u1 ∨ u2 ∨ . . . ∨ un = eM ∈
n∨
ij

Jij .

But then we must have M =
∨n
ij
Jij , making CMM a compact frame. 2

Lemma 4.1.3. CMM is a proximal Császár frame.

Proof.

We start with the Császár part: we will say (and write)
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I �M
C J if and only if for every x ∈ I there exists a y ∈ J such that x �M y,

for some �M ∈M.

We claim that: �M
C is a Császár order on CMM :

(CO1): We have {OM} �M
C {OM} and {L} �M

C {L} since 0M �M 0M and eM �M eM .sss

(CO2): Suppose that I �M
C J . To see that I ≤ J , we take x ∈ I and y ∈ J such x �M y

which implies that x ≤ y, thus I ≤ J .

(CO3): We start with I ≤ A �M
C B ≤ J . For any x ∈ I, there exist y ∈ A z ∈ B and

t ∈ J such that

x ≤ y ≤M z ≤ t.

Then x �M t, showing that I �M
C J . By construction, CMM is regular, being a collection

of strongly regular ideals.

It remains to show that CMM is strong and symmetric. Let us denote by MC the Császár

structure on CMM . Well, for symmetry, we assume that x �M
C y, for some �M

C ∈MC, and

x ∈ I and y ∈ J . Then, by definition, for some �M ∈M (which is symmetric because M is

proximal),

x �M y and so y∗ �M x∗; thus y∗ �M
C x∗,

which shows that J∗�M
C I∗, where J∗ = {u∗ | u ∈ J}; thus CMM is symmetric. Finally, for

strongness of CMM , suppose that �M
C ∈MC and let I �M

C J , and let �M be the associated

Császár order in M. Since M is strong (being proximal), we find an order �M
◦ ∈ M such

that

u �M v =⇒ u �M
◦ w �M

◦ v,

for some w ∈M . There is a �M
C◦ generating the �M

◦ so that �M
C ⊆ (�M

C◦)
2, so �M

C◦ is strong

as desired. 2

Lemma 4.1.4. The map

νM : CMM →M, I 7→
∨

I,

(that is, the join map νM) is a dense onto proximal map.

Proof.
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We first note that for a map

ρM : M → CMM, u 7→↓ u,

the map νM is onto because for each u ∈M it holds that

νM ◦ (ρM(u)) = νM(↓ u) = u,

We also see that for any I ∈ CMM , it holds that

(ρM ◦ νM)(I) = ρM(
∨

I) = ↓ (
∨

I) = I

which means that νM is a left adjoint of ρM ; consequently it must preserve all updirected

joins. So, if I1 �MC J1 and I2 �M
C J2, then (see Definition 2.3.1)

νM(I1 ∨ I2) = νM(I1) ∨ νM(I2) �M νM(J1) ∨ νM(J2).

In addition, if

J =
∨
{I ∈ CMM ∈| I �M

C J},

it easily follows that this left adjoint satisfies

νM(J) =
∨
{νM(I) | I �M

C J}.

To show that ρM : CMM →M preserves finite meets, we take I, J ∈ CMM , and note that

νM(I ∧ J) =
∨

I ∧
∨

J

=
∨
{u ∧ v | u ∈ I, v ∈ J}

≤
∨
{w | w ∈ I ∩ J}

= νM(I ∩ J)

≤ νM(I) ∧ νM(J).

On the other hand, we also have

νM(I) ∧ νM(J) = (
∨

I) ∧ (
∨

J)

≤
∨

(I ∩ J)

= νM(I ∧ J);

whence,

νM(I ∧ J) = νM(I) ∧ νM(J).
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For denseness, we proceed thus: let νM(I) = 0M and note that then∨
I = 0M ,

can only be true if I = {0M}, the bottom element of CMM . It is also true that

νM({L}) =
∨
{L} = eM .

We have therefore shown that νM is a dense onto proximal map. 2

Putting these results together, noting also that
∨
{L} = eM , we have proved that

Proposition 4.1.5. The pair (CMM, νM) is a compactification of a proximal Császár frame

(M,M). 2

By definition we have PCsFrm ⊆ RegFrm, so we derive the following:

Corollary 4.1.6. The proximal frame homomorphism νM : CMM →M is a monomorphism.

Proof. Since CMM ia proximal, it is regular. Since νM is dense (onto), it follows from

Murugan in [27] (see Lemma 1.1.5) that this morphism νM is a monomorphism. 2

Analogous to Banaschewski and Mulvey in [7], there is more if M is compact in the sense of

the following.

Proposition 4.1.7. In our construction, if M compact, then for any strongly regular ideal

I ∈ CMM , it holds that

x ∈ I if and only if x�M
∨
I,

for all x ∈M . Moreover, νM : CMM →M is an isomorphism in PCsFrm.

Proof.

We need only find an inverse for νM . We claim that ρM : M → CMM is actually the desired

inverse. Since we saw in Lemma 4.1.4 that I ≤ (νM ◦ ρM)(I), it is enough if we can show

that (ρM ◦ νM)(I) ≤ I.
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ii) Since CMM is compact, then for any I ⊆ CMM with
∨
I = e there exists a finite

U ⊆ I with
∨
U = e. From the definition of ρM we have that ρM(I) =

∨
I, it implies

that
∨
I is a subset of M and

∨
(
∨
I) =

∨
(e) = e. We also have that

∨
U ⊆

∨
I and∨

(
∨
U) =

∨
(e) = e. Therefore M is compact.

We close this section by relating compactifications with strong inclusions as advocated by

Banaschewski in [5]. The definition of a strong inclusion was given in Chapter 2 (Definition

2.1.4).

Proposition 4.1.8. If h : N → (M,M) is a compactification of M , then the relation

�h ⊆ P(N)× P(N) defined by

u�h v if and only if there exists s and t in N with h(s) = u and h(t) = v

is a strong inclusion on M .

Proof.

i) Suppose x ≤ u �h v ≤ y. Then there exists s, t ∈ N such that h(s) = u and

h(t) = v. We then have x ≤ h(s) �h h(t), h(t) ≤ y which then shows that x�h y.

ii) Suppose u�h v and u�h w. Then there are r, s, t ∈ N such that h(r) = u, h(s) = v

and h(t) = w. We then have that

h(r) �h h(s) and h(r) �h h(t)

Since h is a compactification and hence a proximal homomorphism, it follows that:

h(r) = h(r ∧ r)

= h(r) ∧ h(r)

�h h(s) ∧ h(t)

= h(s ∧ t).

Therefore u �h v ∧ w.

On the other hand, suppose u�h w and v �h w. Then we have
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h(r) �h h(t) and h(s) �h h(t) for r, s, t ∈ N .

Since h is a proximal homomorphism, we have that

h(r ∨ s) �h h(t) ∨ h(t) = h(t)

This implies that u ∧ v �h w as was to be shown.

(iii) Suppose u �h v. It immediately follows that u ≺h v since ≺h is coarser than �h.

(iv) Suppose u �h v. Since h is a compactification, then h is a proximal homomorphism

and thus implies that N and M are proximal frames. By property (PF5) there exists

a ∈ N such that u �h a �h v.

(v) Suppose u �h v. Since M is a proximal frame, then by (PF6) it follows that v∗ �h u∗.

(vi) For any u ∈ N , by (PF7) there exists v ∈ N such that u =
∨
{v ∈ N | u �h v}.

Therefore �h is regular. 2

4.2 L-Connectedness of Császár frames

When Császár introduced syntopogenous space, he did not treat connectedness. However,

Sieber and Pervin in [32] noted this omission and then introduced it via separated sets and

proceeded to show which familiar properties of connectedness are do-able in syntopogenous

spaces. It is in this regard that this section is aimed at translating their approach into the

setting of Császár frames, which are attributed to the work of [12]. This work is influenced

by remarks made by Baboolal in his paper [3] where connectedness is as looked at in relation

to some earlier work of Whyburn which we will not touch on here. In addition, we want to

point out that connectedness is an important concept in pointfree topology. For the purpose

of this work, we cite the work of [11], [3] and [4] who respectively introduced connectedness

in frames, introduced and classified various properties of connectedness in uniform spaces,

and its relation of other topological notions such as Property S. In fact, there are many

weaker forms of connectedness that have been shown in pointfree topology which we will not

mention in this exposition.

Definition 4.2.1. Let (L,L) be a Császár frame.
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(i) Two elements u, v ∈ L are said to be L-separated if there exists a Császár order �L ∈ L
such that u �L v∗ and v �L u∗.

(ii) An element w in (L,L) is said to be L-connected if whenever w = u ∨ v, u and v are

L-separated, then w = u or w = v.

(iii) The frame (L,L) is L-connected if its top element, eL, is L-connected.

(iv) A frame (L,L) is locally connected if each element is a join of L-connected elements.

Remark 4.2.2. Our definition is influenced by what has been done in fuzzy syntopogeneous

spaces [25]. Since L−separated are disjoint, it is clear that an L−connected element is also

connected in a familiar sense.

Remark 4.2.3. Recall that in Chapter 1 we showed that if h : M → L is a frame homomor-

phism where (M,�M) is a Császár frame, then (L, h(�M)) is a Császár frame where h(�M)

is given by

xh(�M)y in L if and only if there exist a, b ∈M such that x ≤ h(a), a�M b and h(b) ≤ y

We use this result to show that

Lemma 4.2.4. For any frame homomorphism h : (M,M) → L from Császár frame M , it

holds that if u and v are M-separated in M , then h(u) and h(v) are separated relative to the

induced Császár order h(�M) for some �M ∈M.

Proof: If u and v are M-separated then

u�M v∗ and v �M u∗

for some �M ∈M. By the remark above, we have that

h(u) h(�M) h(v∗) and h(v) h(�M) h(u∗).

By [31]), we know that

h(v∗) ≤ [h(v)]∗.
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So we find that

h(u) h(�M) h(v∗) ≤ [h(v)]∗ and h(v) h(�M) h(u∗) ≤ [h(u)]∗.

By a familiar property, we must have

h(u) h(�M) [h(u)]∗ and h(v) h(�M) [h(v)]∗,

which shows that h(u) and h(v) are separated relative to h(�M). 2

In [32], Sieber and Pervin showed that analogous to the topological setting, L-connectedness

is related to a constant continuous function on a discrete space. We follow the approach by

Baboolal and Banaschewski in [3] and show that L-connectedness is also related to a certain

factorisation.

Theorem 4.2.5. A frame L is connected if and only if each homomorphism h : 4 → L

factors through the unique homomorphism h̄ : 2→ L.

Proof:

Let L be connected. Suppose x and y are the non-zero element of 4. The connectedness of L

implies that h(x)∨ h(y) = e and h(x)∧ h(y) = 0 for any frame homomorphism h : 4→ L.

It then follows that h(x) = e or h(y) = e and we can define h̄ : 4 → 2 by h̄(x) = 1 or

h̄(y) = 0 and this shows that h factors through the homomorphism h̄ : 2→ L.

Conversely. Suppose that h : 4 → L factors through a unique homomorphism h : 2 → L.

Take any s, t ∈ L such that s ∨ t = e and s ∧ t = 0. We get h : 4 → L by letting h(w) = s

and h(z) = t. The fact that h factors trough h̄, we have s = e or t = e. This completes the

proof. 2

Corollary in [32] can be cast into Császár frames as follows, see also [11] in Lemma 3.1.

Theorem 4.2.6. For any dense frame homomorphism h : (M,M) → (L,L), if L is L-

connected, then so is M .

Proof:
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We assume that h : (M,M) → (L,L) is dense onto frame homomorphism with h(u) and

h(v) L−separated for some u, v ∈M . We claim that

u �M v∗ and v �M u∗.

By definition we have

h(u) �L h(v∗) and h(v) �L h(u∗).

Let us pick a, b ∈M satisfying

h(u) ≤ h(a), a �M b and h(b) ≤ [h(v)]∗.

We set s = h(a) and t = h(b). Similarly, for v �M u∗, take x, y ∈M with

h(v) ≤ h(x), x �M y and h(y) ≤ [h(u)]∗.

By definition of h(�M), we have that s h(�M) t. Since h(u) ≤ s is clear, we remain to show

that h∗(t) ≤ v∗. Since h is onto, we must have that

h[v ∧ h∗(t)] = h(v) ∧ h ◦ h∗(t)

= h(v) ∧ t

≤ h(v) ∧ [h(v)]∗

= 0,

thus h[v ∧ h∗(t)] = 0. But h is dense, so we must have

v ∧ h∗(t) = 0

from which it follows that h∗(t) ≤ v∗. This completes the proof that u and v are M-

separated. 2

Definition 4.2.7 ([3]). A family {ui ∈ (L,L) | i ∈ I} is said to be chained if ui ∧ uj 6= 0 for

any i 6= j.

Proposition 4.2.8 For any pairwise L-connected family in (L,L), the join u =
∨
I ui is

L-connected.

Proof:
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Let {ui | i ∈ I} be a pairwise L-connected family in (L,L). This implies that ui is L-

connected for each i ∈ I. Take a, b ∈ L with
∨
ui = a ∨ b for i ∈ I, where a and b are

L-separated. Then ∨
ui =

∨
(ai ∧ bi)

=
∨

(0)

= 0.

Therefore u =
∨
ui is L-connected. 2
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