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List of notation

We use the following standard notation throughout the dissertation.

℘(X) - the power set of X

∅ - set with no elements

N - set of all positive integers

Z - set of all integers

RL - ring of continuous functions frame L

Cov(L) - cover of L

FCov(L) - finite cover of L

RegFrm - regular frames

NFrm - nearness frames

βX - Stone-Čech compactification of X

CozL - cozero parts of L



Abstract

We study balanced filters and balanced z-filters considered by Carlson in [20] and [21] in

topological spaces. We consider closed filters which are open-generated and open filters

which are closed-generated. We show that a closed filter is open-generated precisely if it

is a minimal balanced closed filter and that an open filter is closed-generated precisely

when it is a minimal balanced open filter. For a completely regular topological space X,

we study balanced z-filters and show that there is a one-to-one correspondence between

the nonempty closed sets of βX and the balanced z-filter on X. By dualising closed filters

we obtain ideals which then enables us to put some of the results in the context of frames.

Dube in [28] has shown that a frame is normal if and only if its closed-generated filters

are precisely the stably closed-generated ones. By dualisation we show that a frame is

extremally disconnected if and only if its open-generated ideals are precisely the stably

open-generated ones. We show that there is one-to-one correspondence between points of

βL and the balanced ideals of Coz L. Furthermore we study nearness frames and show

that the locally finite nearness frames strictly contain the Pervin nearness frames and

the two coincide if the locally finite nearness frames are totally bounded. For perfect

extension h : M → L of L, we show that a point p of M is a remote point if and only if

Ip = {a ∈ L | h∗(a) ≤ p}.

Keywords: filters, balanced filters, closed-generated filters, remote points, frames, near-

ness frames, balanced ideals, open-generated ideals.
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Chapter 1

Introduction

1.1 A brief history on filters

A filter is a special subset of a partially ordered set. For example, the power set of some

set, partially ordered by set inclusion, is a filter. Filters appear in order and lattice theory,

but can also be found in topology from where they originate. The dual notion of a filter

is an ideal. Filters were introduced by Henri Cartan in 1937 and subsequently used by

Bourbaki in their book Topologie Generale as an alternative to the similar notion of a net

developed in 1922 by E.H. Moore and H.L. Smith.

Filters and nets were introduced as generalisation of sequences in topological spaces. In

literature we encounter filters more than nets. Balanced filters were considered by J.W.

Carlson [21] in 1984. Carlson showed in the same article that there is a one-to-one corre-

spondence between the nonempty closed sets in the Stone-Čech compactification βX and

the balanced closed filters in X. Filters on N serve as examples of balanced closed filters

(see for instance, Lemma 6.1 in [20]). As a special case Carlson [20] showed that there

exists a one-to-one correspondence between the nonempty closed subsets of βN and the fil-

ters on N. It is Carlson who introduced the notion of balanced z-filters in classical topology

in 1985. Carlson [21] further showed that there is a one-to-one correspondence between

the nonempty closed subsets of the Stone-Čech compactification βX and the balanced

z-filters. In this dissertation we study the dual notion of balanced z-filters in point-free

setting known as balanced ideals in cozero parts of frames.
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In [28], Dube introduced the notion of balanced filters in frames and showed that the

balanced filters are precisely the ones containing dense elements. It had been shown in

Corollary 5.5 in [18] that there is a one-to-one correspondence between the nonempty closed

sets in βX and the balanced closed filters in X. In [20], Carlson had shown as a special case

that there exists a one-to-one correspondence between the nonempty closed subsets of βN

and the filters on N. Filters on N are balanced closed filters (see for instance, Lemma 6.1

in [20]); where N is the set of natural numbers and βN is the Stone-Čech compactification

of the set of natural numbers.

1.2 Synopsis of the dissertation

We study the notion of balanced ideals of cozero parts of completely regular frames. We

show that there is a one-to-one correspondence between the points of a Stone-Čech com-

pactification of a frame and the balanced ideals of its cozero part. We study balanced

filters that correspond to remote points and those that correspond to p-points.

Chapter 1 is essentially introductory. Here we present the relevant definitions, pertaining

to frames and outline the relevant background for the other chapters.

In chapter 2, we show that closed filters which are open-generated are precisely the minimal

balanced closed ones, and the open filters which are closed-generated are precisely the

minimal balanced open ones. We show that there is one-to-one correspondence between

the closed sets of βX and balanced z-filters on X. We also give some brief background on

nearness spaces.

In chapter 3, we present some of the results of chapter 2 in the pointfree setting. Some

results have been presented in the pointfree context by Dube in [28]. Here we dualise some

of his results, for instance, Dube [28] has shown that a frame is normal if and only if its

closed-generated filters are precisely the stably closed-generated ones. In dualising Dube’s

statement we show that a frame is extremally disconnected if and only if its open-generated

ideals are precisely the stably open-generated ones. We show that there is a one-to-one

correspondence between the points of βL and the balanced ideals of Coz L. Furthermore,

we study locally finite nearness frames, Pervin nearness frames and finite nearness frames
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and show that the Pervin nearness frames are contained in locally finite nearness frames

and locally finite nearness are in turn contained in fine nearness frames.

In chapter 4, we study remote points and show that if h : M → L is a perfect extension

and p ∈ Pt(M), then p is a remote point if and only if Ip is a balanced ideal of L, where

Ip = {a ∈ L | h∗(a) ≤ p}. We show also that for any I ∈ βL, the closed quotient βL→↑I
is round if and only if there is only one ideal J of Coz L such that I =

∨
{r(a) | a ∈ J}.

We end this chapter by defining z∞-ideals and nicely balanced ideals of R∞(L) which is

the frame analogue of z∞-ideals and nicely balanced ideals of C∞(X) defined by Ghosh in

[37].

1.3 Preliminaries

1.3.1 Partially ordered set

Let A be a nonempty set. A binary relation on A is a subset R of the cartesian product

A× A. We write (a, b) ∈ R as a v b. A binary relation in lattices and ordered sets is said

to be:

(1) Reflexive if for all a ∈ A, a ∼ a,

(2) Antisymmetric if for all a, b ∈ A,

a v b, b v a⇒ a = b

(3) Transitive if for all a, b, c ∈ A,

a v b, b v c⇒ a v c

A partial order on a nonempty set P is a binary relation ≤ on P that is reflexive, anti-

symmetric and transitive, specifically, for x, y, z ∈ P,

(i) Reflexive

x ≤ x,
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(ii) Antisymmetry

x ≤ y, y ≤ x⇒ x = y,

(iii) Transitivity

x ≤ y, y ≤ z ⇒ x ≤ z.

The pair (P,≤) is called a partially ordered set or poset, although it is often said that P

is a poset, when the order relation is understood. If x ≤ y, we say that x is less than or

equal to y or y is greater than or equal to x. We also say that x is contained in y or that

y contains x. If x ≤ y but x 6= y, we write x < y or x and y are incomparable or parallel,

denoted by a ‖ b.

If S and T are subsets of a poset P , then S ≤ T means that s ≤ t for all s ∈ S, t ∈ T . If

T = {t}, then S ≤ {t} is written S ≤ t and similarly for s ≤ T .

If X is a nonempty set, then the power set ℘(X) of X is the set of all subsets of X. It is

well known that ℘(X) is a poset under set inclusion.

1.3.2 Maximal and minimal elements

Maximal and minimal elements can be defined in posets.

Let (P,≤) be a partially ordered set.

(1) A maximal element is an element m ∈ P that is not contained in any other element

of P, that is,

p ∈ P,m ≤ p⇒ m = p.

A maximal (largest or greatest) element m in P is an element that contains every

element of P, that is,

p ∈ P ⇒ p ≤ m.

We will generally denote the largest element by 1 and call it the unit element.

(2) A minimal element is an element n ∈ P that does not contain any other element of

P, that is,

p ∈ P, p ≤ n⇒ p = n.
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A minimum (smallest or least) element n in P is an element contained in all other

elements of P, that is,

p ∈ P ⇒ n ≤ p.

We will generally denote the smallest element by 0 and call it the zero element. A

partially ordered set is bounded if it has both a 0 and a 1.

If a poset P has a smallest element 0, then any cover of 0 is called an atom or point of P.

The set of all atoms of a poset P is denoted by A(P ). A poset with 0 is atomic if every

nonzero element contains an atom. If P has a 1, then any element covered by 1 is called

a coatom or copoint of P.

1.3.3 Upper and lower bounds

Upper and lower bounds can be defined in a poset.

Let (P,≤) be a partially ordered set and let S ⊆ P.

(1) An upper bound for S is an element x ∈ P for which

S ≤ x.

The set of all upper bounds for S is denoted by Su. We abbreviate {s}u by su. If Su

has a least element, it is called the join or least upper bound or supremum of S and

is denoted by
∨
S. The join of a finite set S = {a1, ..., an} is denoted by

a1 ∨ ... ∨ an.

(2) A lower bound for S is denoted by S`. We abbreviate {s}` by s`. If S` has a greatest

element, it is called the meet or greatest lower bound or infimum of S and is denoted

by
∧
S. The meet of a finite set S = {a1, ..., an} is denoted by

a1 ∧ ... ∧ an.

6



1.3.4 Lattices

Let P be a poset. Then P is said to be a lattice if every pair of elements of P has a meet

and a join. P is said to be a complete lattice if P is closed under arbitrary meets and

arbitrary joins.

Examples of Lattices

(1) Any totally ordered set is a lattice, but not necessarily a complete lattice. For

example, the set Z of integers under the natural order is a lattice, but not a complete

lattice.

(2) If S is a nonempty set, then the power set ℘(S) is a complete lattice under the usual

inclusion ordering.

A lattice L is distributive if it satisfies the distributive laws: For all a, b, c ∈ L

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Theorem 1.3.1. [44] If either of the distributive laws holds for all elements of a lattice L,

then so does the other.

Proof. Suppose that the first distributive law holds. Then applying it to the right side of

the second distributive law and using absorption gives

(a ∨ b) ∧ (a ∨ c) = [(a ∨ b) ∧ a] ∨ [(a ∨ b) ∧ c]

= a ∨ [(a ∨ b) ∧ c]

= a ∨ [(a ∧ c) ∨ (b ∧ c)]

= a ∨ (b ∧ c)

which shows that the second law holds.

1.3.5 Frames

A frame is a complete lattice L in which the infinite distributive law

a ∧
∨

S =
∨
{a ∧ s | s ∈ S}
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holds for all a ∈ L and S ⊆ L.

Examples of frames

(1) All finite distributive lattices are frames.

(2) All complete Boolean algebras are frames.

(3) For any topological space X, the collection of open subsets of X,DX, is a frame,

where for any arbitrary subset {Vi}i∈4 ⊆ DX∧
i∈4

Vi = int(
⋂
i∈4

Vi)

with int being the topological interior operator and∨
Vi =

⋃
Vi.

We call DX the frame of open sets of X.

(4) Every complete chain is a frame.

A frame homomorphism is a map h : L→M between frames which preserves finite meets,

including the top element, and arbitrarily joins, including the bottom element. Associated

with any frame homomorphism h : L→M is its right adjoint h∗ : M → L given by

h∗(b) =
∨
{a ∈ L | h(a) ≤ b}.

The pseudocomplement of an element x of L is the element

x∗ =
∨
{y ∈ L | x ∧ y = 0}.

It is the largest element that misses x. In general, x ≤ x∗∗ and x is a regular element in

case x = x∗∗. We say x is:

(a) complemented if x ∨ x∗ = 1,

(b) dense if x∗ = 0,

(c) a point (or prime) if x 6= 1 and a ∧ b 5 x implies a 5 x or b 5 x.
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Let L be a frame. We call D ⊆ L a downset if x ∈ D and y ≤ x implies y ∈ D, and U ⊆ L

an upset if u ∈ U and u ≤ v implies v ∈ U. For any a ∈ L, we write

↓a = {x ∈ L | x ≤ a},

which is a downset, and

↑a = {x ∈ L | a ≤ x},

which is an upset. We note that ↓a is a frame whose bottom element is 0 ∈ L and top

element a. Similarly, ↑a has 1 ∈ L as the top element and a as its bottom element. These

frames are in fact the quotients of L via the maps L →↑a and L →↓a, given respectively

by x 7→ a ∨ x and x 7→ a ∧ x. These quotient are known as the closed quotients and open

quotients, respectively.

An element a is said to be rather below an element b denoted by a ≺ b if there is a separating

element c ∈ L such that c ∧ a = 0 and c ∨ b = 1.

An element a is said to be completely below an element b denoted a ≺≺ b if there is a scale

((cq) | q ∈ Q ∩ [0, 1]) such that c0 = a, c1 = b and cr ≺ cs whenever r ≤ s.

A frame L is said to be regular if for every a ∈ L,

a =
∨
{x ∈ L | x ≺ a}.

A frame L is said to be completely regular if for every a ∈ L,

a =
∨
{x ∈ L | x ≺≺ a}.

1.3.6 Cozero parts of frames

A cozero element of L is an element of the form coz ψ for some ψ ∈ RL, where RL is the

ring of continuous functions on the frame L. It is shown in [8] that a ∈ L is a cozero element

if and only if there exists a sequence (an) such that an ≺≺ a for each n and a =
∨
an. The

cozero part of L, denoted by Coz L, is the regular sub-σ-frame consisting of all the cozero

elements of L. We refer to [8] for general properties of cozero elements and cozero parts

of frames. A frame homomorphism h : L → M is coz-onto if for every c ∈ Coz M there

exists d ∈ Coz L such that h(d) = c. It is almost coz-codense if for c ∈ Coz L such that

h(c) = 1, there exists d ∈ Coz L such that h(d) = 0 and c ∨ d = 1.
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A frame is completely regular if and only if it is generated by its cozero part. General

properties of cozero elements and cozero parts of frames can be found in [8], [9] and [11].

Here we highlight the following:

(a) If a ∈ Coz L; there is a sequence (cn) in Coz L such that cn ≺≺ cn+1 for each n, and

a =
∨
cn.

(b) If a ≺≺ b, there is a cozero element c such that a ≺≺ c ≺≺ b.

(c) If a ≺≺ b, there is a cozero element c such that a ∧ c = 0 and c ∨ b = 1.

(d) If c, d ∈ Coz L and c ≺ d in Coz L, then c ≺≺ d.

The properties of the cozero map coz: RL→ L, given by

coz ϕ =
∨
{ϕ(p, 0) ∨ ϕ(0, q) | p, q ∈ Q} = ϕ((−, 0) ∨ (0,−)),

that we shall frequently use are:

(a) coz γδ = coz γ ∧ coz δ,

(b) coz (γ + δ) 5 coz γ ∨ coz δ,

(c) coz (γ + δ) = coz γ ∨ coz δ, if γ, δ = 0,

(d) coz δ = 0 if and only if δ = 0,

(e) ϕ is invertible if and only if coz ϕ = 1.

1.3.7 The Stone-Čech compactification

A compactification h : M → L of L is large if whenever h(a) = 1, then M �↓a is the

Stone-Čech compactification of ↓a.

Note that if h is as in the definition and h(a) = 1, then M �↓a is indeed a compactification,

for if a∧x = 1, then h(x)∧h(a) = 1, implying that h(x) = 1, and hence x = 1 by codensity

of h. Thus, M �↓a is a dense onto homomorphism with compact domain. Consequently,

in light of [2, Corollary 8.2.7], h : M � L is a large compactification of L if and only if

M �↓a is a C∗-quotient map for every a ∈M with h(a) = 1.
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Not every compactification is large.

Example 1.3.1. Let X be a locally compact space which is not pseudocompact, and let

K be its one-point compactification. Then K is not a large compactification of X. If it

were, then, in light of X being open in K , K would be the Stone-Čech compactification

of X, which would mean that K is the only compactification of X, and hence X would be

pseudocompact.

Every frame has a large compactification, namely, its Stone-Čech compactification. This

will be apparent after proving the following lemma. In the proof we use the well-known

fact that if g : L � M is a dense onto frame homomorphism and a ≺≺ b in L, then

g∗g(a) ≤ b. Indeed, the ontoness of g implies that g(g∗g(a) ∧ a∗) = 1, hence g∗(a) ∧ a∗ = 1

by denseness. Hence g∗g(a) ≤ a∗∗ ≤ b.

Lemma 1.3.1. [32] Suppose βL � L factorizes as βL
h−→→ M

g−→ L with h onto. Then

βL
h−→→M is a compactification isomorphic to βM �M.

Proof. The homomorphism h is easily checked to be dense onto, so that βL
h−→→M is indeed

a compactification. To prove the latter assertion, it suffices, by [2, Corollary 8.2.7], to show

that h is a C∗ - quotient map. We apply [2, Theorem 8.2.6]. So let a and b be cozero

elements of M such that a ∨ b = 1. Find cozero elements of L such that g(u) ∨ g(v) = 1,

and so rg(u)∨ rg(v) = 1. But r = h∗g∗, so h∗(g∗g(u))∨ h∗(g∗g(v)) = 1. A straight forward

calculation shows that g is dense onto. Consequently, g∗g(u) ≤ a and g∗g(v) ≤ b, and

hence h∗(a) ∨ h∗(b) = 1, as desired.

Now consider the Stone-Čech compactification of L, and let I ∈ βL with
∨
I = 1. Then

βL� L factorises as βL�↓I −→ L, where the first map is the quotient map J 7→ J ∧ I,
and the second is the join map. Therefore, by the last lemma, βL �↓I is isomorphic to

β(↓I)�↓I. Consequently, βL� L is a large compactification of L.

An ideal J of L is completely regular if for each x ∈ J there exists y ∈ J such that x ≺≺ y.

For a completely regular frame L, the frame of its completely regular ideals is denoted by

βL. The join map βL→ L is dense onto, and βL (together with the join map) is referred

to as the Stone-Čech compactification of L. We denote the right adjoint of the join map

βL→ L by r (using subscripts if there is more than one frame under consideration), and

recall (from [4], for instance) that for any a ∈ L and I ∈ βL :

11



(a) r(a) = {x ∈ L | x ≺≺ a},

(b) r(a∗) = r(a)∗,

(c) I∗ = r((
∨
I)∗),

(d) r(a) ≺ I if and only if a ∈ I,

(e) r preserves ≺≺ .

Lemma 1.3.2. For a, b ∈ Coz L, we have rL(a ∨ b) = rL(a) ∨ rL(b).

Proof. We have

rL(a) ∨ rL(b) =
∨
{I1 ∈ βL | j(I1) ≤ a} ∨

∨
{I2 ∈ βL | j(I2) ≤ b}

=
∨∨

{I1 ∨ I2 ∈ βL | j(I1 ∨ I2) ≤ a ∨ b}

≥
∨
{I1 ∨ I2 ∈ βL | j(I1 ∨ I2) ≤ a ∨ b}

=
∨
{J ∈ βL | j(J) ≤ a ∨ b} where J = I1 ∨ I2

= rL(a ∨ b)

Thus rL(a) ∨ rL(b) ≥ rL(a ∨ b).

On the other hand, we have a ≤ a ∨ b and b ≤ a ∨ b. So that rL(a) ≤ rL(a ∨ b) and

rL(b) ≤ rL(a ∨ b). Therefore

rL(a) ∨ rL(b) ≤ rL(a ∨ b) ∨ rL(a ∨ b) = rL(a ∨ b).

Hence rL(a ∨ b) = rL(a) ∨ rL(b).

1.3.8 Nearness frames

In this section we lay out the necessary terminology for these structured frames. Let L

be a frame and A,B ∈ Cov(L). We say A refines B and write A ≤ B if for every a ∈ A,
there exists b ∈ B such that a ≤ b. We write FCov(L) for the collection of all covers of L

refined by some finite cover.

The star of x ∈ L with respect to a cover A of L is the element

Ax =
∨
{a ∈ A | a ∧ x 6= 0}.
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Further, we write AB = {Ax | x ∈ B}, which is a cover of L if A and B are covers. We

say A star-refines B, written A ≤∗ B, if AA ≤ B.

Given a collection µ ⊆ Cov(L), we say x ∈ L is µ− strongly below y ∈ L, written xCµ y

(or simply xC y) if there is a cover A ∈ µ such that Ax ≤ y. We shall frequently use the

following properties of the relation C.

(1) If xC y, a ≤ x and y ≤ b, then aC b.

(2) If xC y and aC b, then x ∧ aC y ∧ b and x ∨ aC y ∨ b.

(3) If µ is a uniformity, then xC y implies xC z C y for some z ∈ L.

We may now state the definition of nearness frames.

Definition 1.3.1. A nonempty collection µ ∈ Cov(L) is called a nearness on L if the

following hold:

(n1) Whenever A ∈ µ refines B ∈ Cov (L), then B ∈ µ.

(n2) Whenever A,B ∈ µ, then A ∧B ∈ µ.

(n3) Every x ∈ L can be expressed as

x =
∨
{y ∈ L | y Cµ x}.

This property is referred to as the admissibility property.

In the case where µ is a nearness on L, we refer to Cµ as the uniformly below relation on L,

often times dropping the index and simply writing C when the nearness on L is understood.

The pair (L, µ) is called a nearness frame, and members of µ are called uniform covers.

A map h : (L, µ) → (M, η) between nearness frames is called a uniform frame homomor-

phism if it is frame homomorphism and for every A ∈ µ, h[A] ∈ η.
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Chapter 2

Filters in topological spaces

The notion of a filter was introduced by H. Cartan [24] in 1937. Although recently Ashaea

and Yousif [1] indicated that the notion of a filter was first encountered by Riesz [51].

Filters and nets play a vital role in describing topological properties in more abstract

spaces. Sequences were found to be only sufficient to describe topological properties in

metric spaces and topological spaces having a countable base for the topology. Because

nets are not user friendly to work with many authors preferred filters. A good survey of

filters can be found in Bourbaki [16] and [25]. Carlson in [20] and [21] studied balanced

filters and balanced z-filters. In this chapter we are following Carlson [20] and [21] in

studying balanced filters and balanced z-filters.

2.1 Open and closed filters

Definition 2.1.1. A filter F is a nonempty collection of subsets of a topological space X

satisfying

(i) ∅ /∈ F .

(ii) A ∈ F and A ⊆ B ⇒ B ∈ F .

(iii) A,B ∈ F ⇒ A ∩B ∈ F .

If the collection in F consists entirely of open sets, then F is called an open filter. It is

called a closed filter if it consists entirely of closed sets. A filter F is said to be a prime
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filter if it is a filter and satisfies the following

A ∪B ∈ F ⇒ A ∈ F or B ∈ F .

Furthermore, it is a prime open (closed) filter if it is an open (closed) filter.

Recall that a topological space (X, τ) is said to be a T1-space if for any two distinct points

x 6= y in X, there are open sets U and V such that x ∈ U and y ∈ V.

The following definition will be useful in the sequel.

Definition 2.1.2. Let (X, τ) be a T1-space. Let C denote the collection of all closed

subsets in X. Let α ⊆ ℘(X). Set

(1) F(α) = {F | F is closed and X r F /∈ α}.

(2) O(α) = {O | O is open and X rO /∈ α}.

(3) G(α) = {F | F is closed and there exists A ∈ α with A ⊆ F}.

(4) S(α) = {O | O is open and there exists A ∈ α with A ⊆ O}.

(5) sec(α, τ) = {O ∈ τ | O ∩ A 6= ∅ for each A ∈ α}.

(6) sec(α, C) = {F ∈ C | F ∩ A 6= ∅ for each A ∈ α}.

Now we are ready for the following useful lemma, it is culled in [21] and here we include

the proof.

Lemma 2.1.1. [21] Let U be a nonempty collection of open sets and V a nonempty

collection of closed sets in a T1- topological space X.

(1) sec(U , C) ⊆ F(U).

(2) sec(V , τ) ⊆ O(V).

(3) sec(U , τ) = O(G(U)).

(4) sec(V , C) = F(S(V)).
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Proof. (1) Let B ∈ sec(U , C). Then, by definition, B ∈ C and B ∩ A 6= ∅ for each A ∈ U .
Hence B is closed. It remains to show that X r B /∈ U . Suppose on the contrary that

X r B ∈ U . Since X r B is open and B intersects all the open sets in U , it follows that

(X r B) ∩ B 6= ∅ which is a contradiction. Therefore X r B /∈ U . Therefore B ∈ F(U)

and hence sec(U , C) ⊆ F(U).

(2) Let D ∈ sec(V , τ). Then, by definition, D ∈ τ and D ∩ A 6= ∅ for each A ∈ V . Since

D is open, it follows that its complement X rD is closed. We show that X rD /∈ V . If

X r D ∈ V , then (X r D) ∩ D 6= ∅ because D intersects all closed sets in V which is a

contradiction. Therefore X rD /∈ V . Thus D ∈ O(V) and hence sec(U , τ) ⊆ O(V).

(3) Let B ∈ sec(U , τ). Then B ∈ τ and B ∩ A 6= ∅ for each A ∈ U . Then X r B is closed

and X r B /∈ U . Now B ∩ A 6= ∅ and is not contained in X r B for all A ∈ U . This

implies that X r B /∈ G(U). B is open and X r B /∈ G(U) and hence B ∈ O(G(U)) so

sec(U , τ) ⊆ O(G(U)). On the other hand D is open and X rD /∈ G(U). Therefore X rD

is a closed set and there is no subset A ∈ U such that A ⊆ (X rD). Therefore D ∩A 6= ∅
for every A ∈ U . Hence D ∈ sec(U , τ). So O(G(U)) ⊆ sec(U , τ) and hence equality.

(4) Let D ∈ sec(V , C). Then D ∈ C and D ∩ A 6= ∅ for each A ∈ V . Then X r D is

open and X r D ∈ V . Now D ∩ A 6= ∅ for each A ∈ V and is not contained in X r D

for all A ∈ V . This implies that X r D /∈ S(V). D is closed and X r D /∈ S(V) and

hence D ∈ F(S(V)). So sec(V , C) ⊆ F(S(V)). Conversely, let B ∈ F(S(V)). Then B is

closed and X r B /∈ S(V). Therefore X r B is a closed set and there is no subset A ∈ V
such that A ⊆ (X r B). Therefore B ∩ A 6= ∅ for every A ∈ V . Hence B ∈ sec(V , C). So

F(S(V)) ⊆ sec(V , C) and hence equality.

Theorem 2.1.1. [21] Let O1 and O2 be nonempty collections of open sets, and F1 and

F2 nonempty collections of closed sets. Then

(1) O1 ⊆ O2 implies G(O1) ⊆ G(O2).

(2) O1 ⊆ O2 implies F(O2) ⊆ F(O1).

(3) F1 ⊆ F2 implies S(F1) ⊆ S(F2).

(4) F1 ⊆ F2 implies O(F2) ⊆ O(F1).

16



Proof. (1) Let P ∈ G(O1). The set P is closed and there exists A ∈ O1 with A ⊆ P. Then

A ∈ O2 because O1 ⊆ O2. Therefore P ∈ G(O2) and hence G(O1) ⊆ G(O2).

(2) It is immediate from the fact that O1 ⊆ O2 implies that X rO2 ⊆ X rO1.

(3) Let K ∈ S(F1). By definition K is open and there exists A ∈ F1 with A ⊆ K. Then

A ∈ F2 because F1 ⊆ F2. Therefore K ∈ S(F2) and hence S(F1) ⊆ S(F2).

(4) O(F2) = {D | D is open and XrD /∈ F2}. Let D ∈ O(F2). D is open and XrD /∈ F2.

Now X rD /∈ F1, since F1 ⊆ F2. Therefore D ∈ O(F1) and hence O(F2) ⊆ O(F1).

Definition 2.1.3. A minimal prime open filter is a prime open filter that is minimal in

the collection of prime open filters.

Minimal prime closed filters are defined similarly.

Definition 2.1.4. Let S be a set. A collection of subsets F ⊆ ℘(S) is an ultrafilter on S

if for every subset A ⊆ S, F contains either A or its complement Ac.

Now we are ready for the following.

Theorem 2.1.2. [21] Let K be a nonempty collection of closed sets and P a nonempty

collection of open sets.

(1) K is a prime closed filter if and only if O(K) is an open prime filter.

(2) K is a minimal prime closed filter if and only if O(K) is an open ultrafilter.

(3) K is a closed ultrafilter if and only if O(K) is a minimal prime open filter.

(4) P is a prime open filter if and only if F(P) is a prime closed filter.

(5) P is a minimal prime open filter if and only if F(P) is a closed ultrafilter.

(6) P is an open ultrafilter if and only if F(P) is a minimal prime closed filter.

(7) K = F(O(K)).

(8) P = O(F(P)).

Proof. (1) We first show that O(K) is a filter. Since K is a prime closed filter and all filters

contain X, it follows that X ∈ K.
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(a) ∅ /∈ O(K), because if it were in O(K) we would have X r ∅ /∈ K i.e, X /∈ K which

contradict the fact that K is a filter.

(b) Suppose A ⊆ B and A ∈ O(K). We must show that B ∈ O(K). If B /∈ O(K), then

we would have X r B ∈ K. But A ⊆ B implies X r B ⊆ X r A, so we would have

X r A ∈ K, which would imply A /∈ O(K), a contradiction. Therefore B ∈ O(K).

(c) Let A,B ∈ O(K). Since K is prime (X r A) ∪ (X r B) /∈ K = X r (A ∩ B) /∈ K.
Therefore A∩B ∈ O(K). For primeness, let A and B be sets such that A∪B ∈ O(K).

Then X r (A∪B) /∈ K but X r (A∪B) = (X rA)∩ (X rB) /∈ K. Therefore either

X r A /∈ K or X rB /∈ K. That is, either A ∈ O(K) or B ∈ O(K).

Conversely, suppose O(K) is an open prime filter. We want to show that K is a prime

closed filter. We first show that K is a filter.

(a) X r ∅ = X ∈ O(K), so ∅ /∈ K.

(b) Suppose A ⊆ B and A ∈ K. We must show that B ∈ K. If we had B /∈ K, then we

would have X r B ∈ O(K). But A ⊆ B implies X r B ⊆ X r A, so we would have

X r A ∈ O(K), which would imply A /∈ K, a contradiction.

(c) Let A,B ∈ K. Then X r A /∈ O(K) and X r B /∈ O(K). Since O(K) is prime,

it follows that (X r A) ∪ (X r B) /∈ O(K) which implies X r (A ∩ B) /∈ O(K).

Therefore A ∩ B ∈ K. For primeness, let A ∪ B ∈ K. Then X r (A ∪ B) /∈ O(K).

But X r (A ∪B) = (X rA) ∩ (X rB) /∈ O(K). Therefore either X rA /∈ O(K) or

X rB /∈ O(K). That is, either A ∈ K or B ∈ K which shows that K is prime.

(2) Given that K is a minimal prime closed filter, we need to show that O(K) is an open

ultrafilter. We have already seen from (1) that O(K) is an open filter. Now we show that

O(K) is an ultrafilter. To this end, let A ⊂ X. Then A∪ (X rA) = X ∈ K. By primeness

of K either A ∈ K or X r A ∈ K but not both. If X r A /∈ K, then A ∈ O(K) if A /∈ K,
then X r (X r A) /∈ K showing that X r A ∈ O(K) and hence by Definition 2.1.4 O(K)

is an ultrafilter.

Conversely, suppose that O(K) is an open ultrafilter. We need to show that K is a minimal

prime closed filter. We have already seen from (1) that K is a closed filter.
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For primeness, suppose A ∪ B ∈ K, Then X r (A ∪ B) /∈ O(K). Now X ∩ (A ∪B)c =

X∩ (Ac∩Bc) = (X∩Ac)∩ (X∩Bc) = (XrA)∩ (XrB) /∈ O(K). Then XrA /∈ O(K) or

XrB /∈ O(K) implies A ∈ K or B ∈ K. Xr (XrA) = A ∈ K or Xr (XrB) = B ∈ K.
So K is prime. For minimality, suppose G is a prime closed filter contained in K. That is,

there is a closed set B ∈ K and B /∈ G. That is XrB /∈ O(K) and B /∈ O(K) contradicting

that O(K) is an ultrafilter. Hence K must be a minimal prime closed filter.

(3) Suppose that K is a closed ultrafilter. We have already seen from (1) that O(K)

is a filter. Now we want to show that O(K) is a minimal prime open filter. Let A

and B be open sets such that A ∪ B ∈ O(K). Then X r (A ∪ B) /∈ K. But then

X r (A∪B) = X ∩ (A∪B)c = (X ∩Ac)∩ (X ∩Bc) = (X rA)∩ (X rB) /∈ K. Therefore

either XrA /∈ K or XrB /∈ K. That is, either A ∈ O(K) or B ∈ O(K) which shows that

O(K) is prime. Lastly we show that O(K) is a minimal prime open filter. Suppose there

is a prime open filter G contained in O(K), that is, there is an open set U ∈ O(K) such

that U /∈ G. Then X r U /∈ K and U /∈ K contradicting that K is an ultrafilter. Hence

O(K) must be a minimal prime open filter.

Conversely, suppose that O(K) is a minimal prime open filter. We show that K is a closed

ultrafilter. Let B be a subset of X. Then B ∪ (X r B) = X ∈ O(K) and by primeness

of O(K) either B ∈ O(K) or X r B ∈ O(K) but not both. Therefore either X r B /∈ K
or B /∈ K but not both. That is either X r B ∈ K or B ∈ K and hence K is a closed

ultrafilter.

(4) The proof is similar to (1).

(5) The proof is similar to (2).

(6) The proof is similar to (3).

(7) Let A ∈ K. Then A is closed and XrA is open, so XrA /∈ K so that XrA ∈ O(K).

Now X r (X r A) = A is closed and X r (X r A) = A /∈ O(K). That is, A ∈ F(O(K))

and hence K ⊆ F(O(K)).

Conversely, let B ∈ F(O(K)) and X rB is open. This shows that X rB /∈ F(O(K)) and

hence X r B ∈ O(K) since X r B /∈ K. Since X r B is open and K is a closed set in X,

it follows that X r (X rB) = B is closed and hence B ∈ K. So F(O(K)) ⊆ K and hence

K = F(O(K)).
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(8) Let A ∈ P . Then A is open and XrA is closed, so XrA /∈ P so that XrA ∈ F(P).

Now X r (X \ A) = A is open and X r (X r A) = A /∈ F(P) so that A ∈ O(F(P)).

Hence P ⊆ O(F(P)).

Conversely, let B ∈ O(F(P)). Then B is open and so X r B is closed. This shows that

X rB /∈ O(F(P)) and hence X rB ∈ F(P) because X rB /∈ P . Since X rB is closed

and P is a collection of open sets in X. It follows that X r (X r B) = B is open and

hence B ∈ P so O(F(P) ⊆ P) and hence equality.

The following theorem plays a vital role in the discussion, and for completeness we include

the proof.

Theorem 2.1.3. [21] Let M be an open ultrafilter and N a closed ultrafilter. Then:

(1) S(N ) = O(N ).

(2) G(M) = F(M).

Proof. (1) Let B ∈ S(N ). Then B is open and there exists A ∈ N with A ⊆ B. Then

X r B ⊆ X r A and X r A /∈ N so that X r B /∈ N . Hence B ∈ O(N ). Thus

S(N ) ⊆ O(N ).

Conversely, let A ∈ O(N ). Then A is open and X r A /∈ N . Therefore X r A is closed

and X rA /∈ N . Since N is a closed ultrafilter, it follows that there is a closed set U ∈ N
such that (X r A) ∩ U = ∅. This implies that U ⊆ A because A is the largest set that

does not intersect X rA. Therefore A ∈ S(N ) so that O(N ) ⊆ S(N ) and hence equality.

(2) Let A ∈ G(M). Then A is closed and there exists B ∈ M with A ⊆ B. Then

X r B ⊆ X r A and X r A /∈ M so that X r B /∈ M. Hence B ∈ F(M). Thus

G(M) ⊆ F(M).

Conversely, let B ∈M. Then B is closed and XrB /∈M. SinceM is a closed ultrafilter,

it follows that there is a closed set U ∈M such that (X rB) ∩ U = ∅. This implies that

U ⊆ B because B is the largest set that does not intersect X r B. Therefore B ∈ G(M)

so that F(M) ⊆ G(M) and hence equality.

Definition 2.1.5. A point x is adherent to a set A if every neighborhood of x meets A.

20



The set of points adherent to a set A is called the adherence (closure) A of A.

An adherent point of A is an isolated point of A if there is a neighborhood of A which

contains no point of A other than x; otherwise is a point of accumulation (limit point) of

A.

Definition 2.1.6. Let F be a closed filter on X and x ∈ X. We say x is a cluster point

of F if for all neighborhoods U of x there exists F ∈ F such that F ⊆ U. If O is an open

filter on X, and x ∈ X, we say O converges to x if every open neighborhood of X belongs

to O.

It is known that a point p ∈ X of a topological space X is a cluster point of an ultrafilter

F if and only if F converges to p. In other words, for ultrafilters their cluster points are

precisely their limit points, and adherence is equivalent to convergence.

Theorem 2.1.4. [21] Let F be a closed filter and O be an open filter.

(1) x ∈ adhF implies x ∈ adhS(F).

(2) G(O)→ x implies O → x.

(3) x ∈ adhO if and only if x ∈ adhG(O).

(4) F → x if and only if S(F)→ x.

Proof. (1) Let F ∈ S(F) and U be any neighborhood of x. We want to show that F∩U 6= ∅.
Now x ∈ adhF , so every G ∈ F meets every neighborhood of x, in particular G ∩ U 6= ∅.
Since F ∈ S(F), it follows that there exists A ∈ F with A ⊆ F. Since F adheres to x and

A ∈ F , it follows that A ∩ U 6= ∅. Hence F ∩ U 6= ∅ because A ⊆ F.

(2) Let U be a neighborhood of x. By hypothesis G(O) → x, that is, every neighborhood

of x belongs to G(O), in particular U ∈ G(O). That is, U is closed and there exists A ∈ O
with A ⊆ U. Since O is a filter and U ⊇ A ∈ O, it follows that U ∈ O. Hence O → x.

(3) Suppose that x ∈ adhO and let K ∈ G(O). Let U be a neighborhood of x. We want

to show that K ∩ U 6= ∅. Since K ∈ G(O), it follows that there exists A ∈ O such that

A ⊆ K. By hypothesis, x ∈ adhO, so A ∩ U 6= ∅ which implies that K ∩ U 6= ∅, as was to

be shown.
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Conversely, suppose x ∈ adhG(O). Let U be a neighborhood of x. We want to show that

U ∈ O. By hypothesis, x ∈ adhG(O), that is, for every neighborhood U of x there is an

F ∈ O such that F ⊆ U. Now O is a filter, so U ∈ O as required.

(4) Suppose F → x and let U be a neighborhood of x. By hypothesis F → x, that is,

every neighborhood of x belongs to F , in particular U ∈ F . That is, U is open and there

exists A ∈ F with A ⊆ U. Since F is a filter and U ⊇ A ∈ F , it follows that U ∈ F . Hence

S(F)→ x.

Conversely, let U be a neighborhood of x. By hypothesis S(F)→ x, that is, every neigh-

borhood of x belongs to S(F), in particular U ∈ S(F). That is U is open and there exists

A ∈ F with A ⊆ U. Since F is a filter and U ⊇ A ∈ F , it follows that U ∈ F . Hence

F → x.

Definition 2.1.7. Let X be a topological space. An open grill is a nonempty collection

G of open sets satisfying:

(1) ∅ /∈ G.

(2) O ∈ G, Q open and Q ⊇ O implies Q ∈ G.

(3) For open sets O and Q we have that O ∪Q ∈ G if and only if O ∈ G or Q ∈ G.

Closed grills are defined similarly. Let G be a closed grill and H be an open grill. Set:

(1) O(G) = {O | O is open and XrO /∈ G}.

(2) F(H) = {F | F is closed and X r F /∈ H}.

Easily prime open (closed) filters are open (closed) grills and the operators F and O will

be used on prime open and closed filters. In a topological space prime open filters are not

necessarily open ultrafilters and prime closed filters are not necessary closed ultrafilters.

Similarly, open grills are not necessarily the union of the family of open ultrafilters and

this is also true for closed grills and closed filters. However for prime filters we have the

following theorem.

Theorem 2.1.5. [21]
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(1) Every open filter equals the intersection of the family of prime open filters that

contain it.

(2) Every closed filter equals the intersection of the family of prime closed filters that

contain it.

(3) Every open grill is precisely the union of a family of prime open filters.

(4) Every closed grill is precisely the union of a family of prime closed filters.

The following theorem appears in [21] and [36]. Here we include the proof for the sake of

completeness.

Theorem 2.1.6. [21], [36] Let X be a T1-topological space. The following statements are

equivalent:

(1) Every prime open filter is an open ultrafilter.

(2) Every prime closed filter is a closed ultrafilter.

(3) Each closed ultrafilter F satisfies the following equivalent properties:

(a) F ∈ F implies there exists G ∈ F and O open with G ⊆ O ⊆ F .

(b) F ∈ F implies that int(F ) ∈ S(F).

(c) F = G(S(F)).

(4) X has the discrete topology.

Proof. (1) ⇒ (2): Let K be a prime closed filter and let U ⊆ X. Then O(K) is a prime

open filter and hence an open ultrafilter by hypothesis. Then O(K) is minimal with this

condition and hence K is a closed ultrafilter.

(2) ⇒ (3): We show that the following conditions are equivalent:

(a) ⇒ (b): Let F ∈ F . Find G ∈ F by hypothesis and an open set O such that

G ⊆ O ⊆ F. Put O = int(F ), hence G ⊆ int(F ) ⊆ F. Now int(F ) is open and there

exists G ∈ F such that G ⊆ int(F ). Hence int(F ) ∈ S(F).
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(b) ⇒ (c): Let U ∈ F . Then U is closed and int(U) ∈ S(F). Therefore int(U) is open

and there exists A ∈ F with A ⊆ int(U). Now A ⊆ int(U) ⊆ U. Hence A ∈ U and

therefore U ∈ G(S(F)). Hence F ⊆ G(S(F)).

Let B ∈ G(S(F)). Then by definition B is closed and there exists D ∈ S(F) with

D ⊆ B. Now D ∈ S(F) implies that D is open and there exists E ∈ F with E ⊆ D.

Now E ⊆ D ⊆ B ⇒ E ⊆ B. This means that B ∈ F showing that G(S(F)) ⊆ F
and hence equality.

(c) ⇒ (a): Let F ∈ F . Then F ∈ G(S(F)). Then F is closed and there is A ∈ S(F)

such that A ⊆ F . By definition A is open and there is B ∈ F such that B ⊆ A.

Hence there exist B ∈ F and A open with B ⊆ A ⊆ F .

(3) ⇒ (4): In a discrete topology every subset of X is open. To this end, let A ⊆ X. We

want to show that A is open. Since F is a closed ultrafilter, it follows that either A ∈ F
or X r A ∈ F . If X r A ∈ F , then X r A is closed and so its complement A is open. If

A ∈ F , then A is closed and int(A) ∈ S(F) with int(A) ⊆ F. Int(A) ∈ S(F), int(A) is

open and there F ∈ F with F ⊆ int(A). In particular, A ∈ F with A ⊆ int(A). That is,

A = int(A) and hence A is open.

(4) ⇒ (1): Let G be a prime open filter. Then by hypothesis U and XrU are open subsets

of X. U ∪ (X rU) = X ∈ G and by primeness of G either U ∈ G or X rU ∈ G. Therefore

G is an ultrafilter.

Theorem 2.1.7. [21] Let P be a prime open filter and K a prime closed filter. Then:

(1) F(P)→ x implies x ∈ adhP .

(2) K → x implies x ∈ adhO(K).

(3) x ∈ adhK if and only if O(K)→ x.

(4) P → x if and only if x ∈ adhF(P).

Proof. (1) Let U be a neighborhood of x. Since F(P)→ x, it follows that U ∈ F(P). That

is, U is closed and XrU /∈ P . Now U ∪ (XrU) = X ∈ P and by primeness of P , U ∈ P .
Since P is a filter, so every member of P meets U. So indeed x ∈ adhP .
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(2) Let U be a neighborhood of x. Since K → x, it follows that U ∈ K. That is, U is open

and X r U /∈ K. Now U ∪ (X r U) = X ∈ K and by primeness of K, U ∈ K. Since K is a

filter, so every member of K meets U. So indeed x ∈ adhO(K).

(3) Let U be a neighborhood of x. We need to show that U ∈ O(K). By hypothesis,

B ∩U 6= ∅ for every B ∈ K. This shows that X rU misses some members of K because U

intersects all members of K. Therefore X r U /∈ K and since U is an open neighborhood

of x, it follows that U ∈ O(K).

Conversely, suppose that O(K)→ x. Let U be a neighborhood of x. Since O(K)→ x every

neighborhood U of x belongs to O(K). That is, U is open and X r U /∈ K. Since K is a

prime closed filter is a closed ultrafilter by Theorem 2.1.6 (2), it follows that U ∈ K and

hence meets every members of K. So x ∈ adhK.

(4) Let U be a neighborhood of x. Since P → x, it follows that U ∈ P . That is U is open

and X r U /∈ P . Now U ∪ (X r U) = X ∈ P and by primeness of P , U ∈ P . Since P is a

filter, so every member of P meets U and hence x ∈ adhF(P).

Conversely, suppose x ∈ adhF(P). Let U be a neighborhood of x. We need to show that

U ∈ P . By hypothesis, B ∩ U 6= ∅ for every B ∈ P . This shows that X r U misses some

members of P . Therefore X rU /∈ P and since U is an open neighborhood of x, it follows

that U ∈ O(K).

2.2 Balanced filters

Open filters are not necessarily the intersection of open ultrafilters that contain them and

the statement is also true for closed filters. This motivates for the following definitions.

Definition 2.2.1. Let O be an open filter. Set

b(O) =
⋂
{M |M is an open ultrafilter and O ⊆M}.

An open filter O is said to be balanced provided O = b(O), that is, O is equal to the

intersection of all of the open ultrafilters that contain it.

Definition 2.2.2. Let F be a closed filter. Set

b(F) =
⋂
{N | N is a closed ultrafilter and F ⊆ N}.
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A closed filter F is said to be balanced provided F = b(F), that is, F is equal to the

intersection of family of closed ultrafilters that contain it.

Definition 2.2.3.

(1) A closed filter F is said to be open-generated if there exists an open filter O such

that F = G(O).

(2) An open filter O is said to be closed-generated if there exists a closed filter F such

that O = S(F).

We give the lemma below without proof.

Lemma 2.2.1. [18], [21] Let O be an open filter and F a closed filter on a T1-topological

space X.

(1) sec(O) =
⋃
{M | M an open ultrafilter and O ⊆M}.

(2) sec2(O) =
⋂
{M | M an open ultrafilter and O ⊆M}.

(3) sec(F) =
⋃
{N | N a closed ultrafilter and F ⊆ N}.

(4) sec2(F) =
⋂
{N | N an closed ultrafilter and F ⊆ N}.

From the Lemma we deduce immediately that b(F) = sec2(F). The following theorem and

its proof is taken verbatim as in [46].

Theorem 2.2.1. [21],[47] Let F be an open filter on X and

G =
⋂
{U | U is an open ultrafilter with F ⊆ U}.

Then

G = {U | U is open and int(U) ∈ F} = F ∨ D

where D = {U | U is open and dense}.

Proof. Since D is contained in every open ultrafilter, then F ∨D ⊆ G. Let U be open in X

such that int(cl(U)) /∈ F . Then Xr cl(U)∩F 6= ∅ for all F ∈ F . For some open ultrafilter

U , U ⊇ F ∪ {X r cl(U)}. This shows

G ⊆ {U | U open in X and int(cl(U)) ∈ F}.
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Now, let U be open in X such that int(cl(U)) ∈ F . Then X r bd U ∈ D and int(cl(U))∩
X r bd U = U ∈ F ∨ D. Hence,

{U | U is open in X and int(cl(U)) ∈ F} ⊆ F ∨ D.

This completes the proof.

Theorem 2.2.2. [21],[47] Let X be a T1-topological space and set

S =
⋂
{M | M an open ultrafilter on X}.

Let O be an open filter on X. Then:

(1) S is the smallest balanced open filter on X.

(2) S = {O | O is an open dense set}.

(3) b(O) = {Q ∈ τ | there exists O ∈ O with O ⊆ Q}.

(4) b(O) is the smallest balanced open filter containing O.

(5) b(O) = O ∨ S.

Proof. (1) S is the intersection of all open ultrafilters, it follows that O ⊆M, whereM is

an open ultrafilter. Thus S = b(O) and hence S is the smallest balanced open filter on X.

(2) By definition, U ∈ S if U is an open ultrafilter, so U is an open set in X. U is an open

ultrafilter, so it is not contained in any other open set other than X, so U = X.

(3) Now by definition of b(O), Q ∈ b(O) if Q is an open ultrafilter and O ⊂ Q. Thus every

O ∈ O also belongs to Q. Q ∈ τ because is open. Thus

b(O) = {Q ∈ τ | there exists O ∈ O with O ⊆ Q}

because Q ⊆ Q, as required.

(4) It follows immediately from the definition of a balanced filter.

(5) This is Theorem 2.2.1.

The following theorems appears in [21] without proofs. Here we include the proof for

completeness.
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Theorem 2.2.3. [21] Let O be an open filter. The following statements are equivalent.

(1) O is balanced and prime.

(2) O ∪Q ∈ sec2(O) implies O ∈ O or Q ∈ O.

Proof. (1) ⇒ (2): Let O ∪ Q ∈ sec2(O). We show that either O ∈ O or Q ∈ O. Then

by definition sec2(O) = b(O) and because O is a balanced, b(O) = O. Hence if O ∪ Q ∈
sec2(O), then O ∪Q ∈ O and by primeness of O, O ∈ O or Q ∈ O as required.

(2) ⇒ (1): Let O ∪ Q ∈ O. Since O ⊆ b(O) = sec2(O), it follows that O ∪ Q ∈ sec2(O)

and hence by (2) O ∈ O or Q ∈ O. So Q is prime. It remains to show that O is balanced.

Let U ∈ b(O). Then X rU /∈ b(O). But U ∪ (X rU) ∈ b(O) = sec2(O). By (2) U ∈ O or

X r U ∈ O. But X r U /∈ O since O ⊆ b(O). Therefore U ∈ O and hence b(O) ⊆ O. The

other containment is trivial and hence O = b(O). Thus O is balanced.

Theorem 2.2.4. [21] Let F be a closed filter. The following statements are equivalent:

(1) F is a balanced closed filter.

(2) For each closed set G /∈ F there exists an open set O ⊇ G such that F ⊆ O for each

F ∈ F .

(3) If F is a closed set and each open O that contains F belongs to S(F) then F ∈ F .

Proof. (1)⇒ (2): Let G be a closed set such that G /∈ F . Put E = ∩{F | F ∈ F} 6= ∅ and

E ∈ F . We have two possibilities E ∩G = ∅ or E ∩G 6= ∅. If E ∩G = ∅, then G ⊆ X rE

and X r E is open. So F ( X r E. If E ∩ G 6= ∅. Put K = E ∩ G /∈ F because F is a

closed filter and G /∈ F . But E ∩G ⊆ E ∈ F with E ∩G /∈ F , this then contradicts that

E /∈ F and hence E ∩G = ∅.

(2)⇒ (3): Let F be a closed set and an open set O ⊇ F be such that O ∈ S(F). Therefore

there is A ∈ F such that A ⊆ O. Suppose F /∈ F , then, by hypothesis, there exists an

open set O such that F ( O for each F ∈ F . This shows that O /∈ S(F) which is a

contradiction. Hence F ∈ F .

(3) ⇒ (1): Let F be closed and every open set O containing F belongs to F . Then by (3)

F ∈ F . So

F = {F | F is closed and F ⊆ O where O ∈ S(F)}
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F = {F | F is closed and F ⊆ O where O ∈ S(F)}

F = ∩{O | O is a closed ultrafilter and F ⊆ O}

F = b(F)

as required.

Recall that a space X is normal if and only if for each pair A,B of disjoint closed subsets

of X, there is a pair U, V of disjoint open subsets of X so that A ⊆ U and B ⊆ V. A

normal T1-space is called a T4-space.

Theorem 2.2.5. [21] Let X be a T1-topological space and F a closed filter on X.

(1) b(F) = F ∪ {G | G is closed and for each O ∈ t with O ⊇ G there exists F ∈
F with F ⊆ O}.

(2) If X is normal then each balanced prime closed filter is a closed ultrafilter.

Proof. (1) Follows immediately from the definition of the balanced filter.

(2) Let F be a balanced prime closed filter. We want to show that F is an ultrafilter. To

this end, let A ⊆ X. Since X is a T1-space it follows that both A and X r A are disjoint

closed subsets of X. By normality of X find disjoint open subsets U and V such that A ⊆ U

and X r A ⊆ V. Since X is closed and X ∈ F , it follows that A ∪ (X r A) = X ∈ F .
So A ∪ (X r A) ∈ F and by primeness of F either A ∈ F or X r A ∈ F . Since A was

arbitrary chosen, it follows that F is a closed ultrafilter.

Theorem 2.2.6. [21] Let F be a closed filter and O an open filter. Then:

(1) S(F) = S(b(F)).

(2) G(O) = G(b(O)).

Proof. (1) Let B ∈ S(F). Then B is open and there exists A ∈ b(F) with A ⊆ B. Then

X r B ⊆ X r A and X r A /∈ b(F) so that X r B /∈ b(F). Hence B ∈ S(F). Then

S(F) ⊆ S(b(F)).
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Conversely, let B ∈ S(b(F)). Then B is open and there exists A ∈ b(F) with A ⊆ B. Then

X rB ⊆ X rA and X rA /∈ b(F) so that X rB /∈ b(F). Therefore B ∈ S(b(F)) so that

S(b(F)) ⊆ S(F). Hence equality.

(2) Let A ∈ G(O). Then A is closed and there exists B ∈ b(O) with B ⊆ A. Then

X r A ⊆ X r B and X r B /∈ G(O) so that X r A /∈ G(O). Hence B ∈ G(O). Thus

G(O) ⊆ G(b(O)).

Conversely, let B ∈ G(b(O)). Then B is closed and there exists A ∈ b(O) with B ⊆ A.

Then X r A ⊆ X r B and X r B /∈ b(O) so that X r A /∈ b(O). Therefore A ∈ G(b(O))

so that G(b(O)) ⊆ G(O). Hence equality.

2.3 Open-generated closed filters and closed-generated

open filters

We notice from Carlson [21] in the beginning of section 4 that from Theorem 2.2.6, we have

that an open envelope of a closed filter equals the open envelope of the smallest balanced

closed filter that contains the filter, that is, S(F) = S(b(F)) for each closed filter F . We

also have that a closed envelope of an open filter equals the closed envelope of the smallest

balanced open filter that contains the filter, that is, G(O) = G(b(O)) for each open filter

O. This motivates the following definitions.

Definition 2.3.1. A closed filter F is said to be open-generated if there exists an open

filter O such that F = G(O).

Definition 2.3.2. An open filter O is said to be closed-generated if there exists a closed

filter F such that O = S(F).

A minimal prime closed filter is a prime closed filter that is minimal in the collection of

prime closed filters. A minimal prime open filter is a prime open filter that is minimal in

the collection of prime open filters.

Theorem 2.3.1. [21] A closed filter F is open-generated if and only if cl(int(F )) ∈ F for

each F ∈ F .

30



Proof. Suppose that a filter F is open-generated. That is, there is an open filter O such

that F = G(O). But then

G(O) = {F | F is closed and there exists A ∈ O with A ⊆ F}.

Now A is open and A ⊆ F, so A ⊆ int(F ) ⊆ F implies that A ⊆ cl(int(F )) = F ∈ F .

Hence cl(int(F )) ∈ F for each F ∈ F as required.

Conversely, suppose that cl(int(F )) ∈ F for each F ∈ F . Now for each F ∈ F we have

int(F ) is open, so there exists an open filter O such that int(F ) ∈ O. Also int(F ) ⊆ F.

Indeed F = G(O) and hence F is open-generated.

Remark 2.3.1. The dual statement of the preceding theorem does not hold because

cl(O) ⊇ O.

Now we are ready for the following theorem.

Theorem 2.3.2. [21] Let F be a closed filter and O an open filter.

(1) If F is prime then S(F) ⊆ O(F) and S(F) = O(F) if and only if F is a closed

ultrafilter.

(2) If O is prime then G(O) ⊆ F(O) and G(O) = F(O) if and only if O is a open

ultrafilter.

(3) If S(F) is an open ultrafilter then F is a closed ultrafilter.

(4) If G(O) is a closed ultrafilter then O is an open ultrafilter.

(5) If X is normal then S(F) = S(G(S(F))).

(6) If X is normal then O is closed-generated if and only if O = S(G(O)).

Proof. (1) Let B ∈ S(F). Then B is open and there exists V ∈ F with V ⊆ B. Now

X r B is closed and X r B /∈ F . So B ∈ O(F) and hence S(F) ⊆ O(F). Suppose that

S(F) = O(F). Let A ⊆ X. If A is open, then X rA is closed. We show that X rA ∈ F .

Suppose on contrary that X r A /∈ F . Then A ∈ O(F) = S(F). Find B ∈ F with

B ⊆ A. By Definition 2.1.1 of a filter, A ∈ F contradicting that F is a closed filter. If A
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is closed, then X r A is open. We show that A ∈ F . Suppose on contrary that A /∈ F .

Now X r (X r A) = A ∈ F , so that X r A ∈ O(F) = S(F). By definition of S(F)

there is a D ∈ F such that D ⊆ X r A. Again by Definition 2.1.1 of a filter X r A ∈ F
contradicting that F is a closed filter.

Conversely, suppose that F is a closed ultrafilter. Let A ⊆ X. If A is open then X r A is

closed and X r A ∈ F . If A is closed, then A ∈ F . We want to show that S(F) = O(F)

and it suffices to show that O(F) ⊆ S(F). Let B ∈ O(F). Then B is open and XrB /∈ F .
Further X rB is closed and since F is a closed ultrafilter, it follows that there is a closed

set U ∈ F such that U misses XrB. Then U ⊆ B because B is the largest set that misses

XrB. That is, U ∈ F with U ⊆ B. Therefore B ∈ S(F). Hence O(F) ⊆ S(F) and hence

equality.

(2) The proof is similar to (1).

(3) Let S(F) be an open ultrafilter. Recall that

S(F) = {O | O is open and there exists A ∈ F with A ⊆ O}.

For any B ⊆ X, we have either B ∈ S(F) or X r B ∈ S(F). If B ∈ S(F), then B is

open and there exists A ∈ F such that A ⊆ B, then X r B is closed. Since A ⊆ B ⊆ B,

it follows that B ∈ F . If X r B ∈ S(F). Then X r B is open and there exists A ∈ F
such that A ⊆ (X rB). Since A ⊆ (X rB) ⊆ X rB, it follows that X rB ∈ F . Hence

either B ∈ F or X rB ∈ F , so F is a closed ultrafilter.

(4) The proof is similar to (3).

(5) Let A ∈ S(F). Then A is open and there exists B ∈ F such that B ⊆ A. Then X rA

is closed and B ∩ (X r A) = ∅. By normality of X there exists disjoint open sets U and

V such that B ⊆ U and (X r A) ⊆ V . Now

G(S(F)) = {XrA | XrA is closed and there exists XrB ∈ S(F) such that XrB ⊆ XrA}

and

S(G(S(F))) = {A | A is open and there exists X r V ∈ G(S(F)) such that X r V ⊆ A}.

So S(F) ⊆ S(G(S(F))). Then the other containment is trivial. So S(F) = S(G(S(F))).
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(6) Suppose that O is closed-generated. That is, there exists a closed filter F such that

every closed set K in F is a subset of an open set U in O. Now O is an open filter, so it

is a collection of open subsets of X. That is

G(O) = {V | V is open and X r V /∈ O}.

Now O is closed-generated, so there exists a closed set H ⊆ V . Now H and X r V are

disjoint closed subset of X, so by normality of X there exists disjoint open sets U and W

such that H ⊆ U and X r V ⊆ W .

G(O) = {X r V | X r V is closed and there exists A ∈ O with A ⊆ X r V }.

Now

S(G(O)) = {V | V is open and there exists X rW ∈ G(O) with X rW ⊆ V }.

So O ⊆ S(G(O)). Then the other containment is trivial. So O = S(G(O)).

Conversely, suppose that O = S(G(O)). Let U ∈ O. We need to show that there is a

closed set H ⊆ U . By hypothesis U ∈ S(G(O)) by definition U is open and there is a

closed set K ∈ G(O) such that K ⊆ U . If O is an open filter then G(O) is a closed filter

and hence O is closed-generated.

Theorem 2.3.3. [21] Let F1 and F2 be closed filters and O1 and O2 be open filters. Then

1. S(F1) = S(F2) if and only if b(F1) = b(F2).

2. G(O1) = G(O2) if and only if b(O1) = b(O2).

Proof. We only show (1) and (2) is done similarly. Let K ∈ b(F1) be a closed set. We

show that K ∈ b(F2). Then by Theorem 2.2.4 each open filter O that contains K belongs

to S(F1) implies that each open filter O that contains K belongs to S(F2), implies that

K ∈ b(F2). Therefore b(F1) ⊆ b(F2) and by symmetry b(F2) ⊆ b(F1) and hence equality.

Conversely, Let U ∈ S(F1), then there exists A ∈ F1 with A ⊆ U. Then by Theorem 2.2.4

U ∈ b(F1). So U ∈ S(F2) because b(F1) = b(F2). Therefore U ∈ S(F2). By symmetry

S(F2) ⊆ S(F1) so S(F1) = S(F2).
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Definition 2.3.3. Let N be a specified type of filter. A nonempty collection C will be

called a balanced collection of type N provided:

(1) if F ∈ N and F ⊇
⋂
C then F ∈ C, and

(2) if F ∈ N and F ⊆
⋃
C then F ∈ C.

N will denote: open ultrafilters, closed ultrafilters, minimal prime open filters, or minimal

prime closed filters.

Recall that an open filter O is called a minimal balanced open filter provided there exists

a balanced collection P of minimal prime open filters such as O =
⋂
P . Minimal balanced

closed filters are defined similarly. Every balanced open (closed) filter is the intersection

of a balanced collection of open (closed) ultrafilters. Also, if {Nα | α ∈ Ω} is a balanced

collection of closed ultrafilters then S({Nα | α ∈ Ω}) =
⋂
{S(Nα) | α ∈ Ω}.

The theorem below is culled in [21] and the author showed (1) and indicated that (2) can

be shown similarly. Here we show (2).

Theorem 2.3.4. [21] Let X be a topological space. Let F be a closed filter and O an

open filter. Then:

(1) F is an open-generated closed filter if and only if F is a minimal balanced closed

filter.

(2) O is a closed-generated open filter if and only if O is a minimal balanced open filter.

Proof. (2) Let O be a closed-generated open filter. Then there exists a closed filter F1

such that O = G(F1). Let F = b(F1). Then, F is a balanced closed filter and by Theorem

2.3.3, O = G(F1) = G(b(F1)) = G(F). Since F is balanced, the family

{N | F ⊆ N, N is a closed ultrafilter}

is a balanced collection of closed ultrafilters. Let Ω be an index set for this collection.

Then F =
⋂
{Nα | α ∈ Ω} and

O = G(F) =
⋂
{G(Nα) | α ∈ Ω} =

⋂
{O(Nα) | α ∈ Ω}.
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Now {O(Nα) | α ∈ Ω} is a balanced collection of minimal prime open filters and thus O is

a minimal balanced open filter.

Conversely, if O is a minimal balanced open filter there exists a balanced collection of

minimal prime open filters {Pα | α ∈ Ω} such that O =
⋂
{Pα | α ∈ Ω}. Now {F(Pα) |

α ∈ Ω} is a balanced collection of closed ultrafilters and F =
⋂
{F(Pα) | α ∈ Ω} is a

balanced closed filter. Now,

G(F) =
⋂
{G(F(Pα)) | α ∈ Ω} =

⋂
{O(F(Pα)) | α ∈ Ω} =

⋂
{Pα | α ∈ Ω} = O.

Thus, O is a closed-generated open filter.

2.4 Extensions

In this section we consider extensions of a topological space X. There are several exten-

sions of a topological space X, Here we will consider Hausdorff extensions. We pay more

attention to the simple and strict extensions resulting from the filter trace of Y on X.

Definition 2.4.1. A space Y is an extension of a topological space X, if X is a dense

subspace of Y. If Y possesses some topological property P, then Y is a P - extension of X.

Let Y be a Hausdorff extension of X. For y ∈ Y,

Oy = {U ∩X | y ∈ U,U ∈ τY }

is called the neighborhood filter trace of Y on X (see [3]). Then Oy is an open filter on X

and for each x ∈ X, Ox = Nx. For an open subset U of X,

oU = {y ∈ Y | U ∈ Oy}.

Now the sets

{U ∪ {y} | U ∈ Oy, y ∈ Y } and {oU | U open in X}

form bases for topologies on Y and the resulting new spaces are denoted by Y + and Y ],

respectively. The spaces Y + and Y ] are also Hausdorff extensions of X, and the topology

of Y ] is coarser than the topology of Y, also the topology of Y is coarser than that of

Y +. Y is called a simple extension if Y = Y + and Y is called a strict extension if Y = Y ]
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(see [46]). The space is H-closed if X is closed in every Hausdorff space in which it is

embedded, or equivalently, if every open filter is fixed. Let

X∗ = X ∪ {U | U is a free open ultrafilter on X}.

For each open subset U of X, let

OU = U ∪ {U ∈ X∗ rX | U ∈ U}.

Then X∗ with the topology generated by the open basis {OU | U open in X} is an H-closed

extension of X denoted by σX and called the Fomin extension of X. Again X∗ with the

topology generated by open basis

{U | U open in X} ∪ {U ∪ {U} | U open in X, U ∈ U , U ∈ X∗ rX}

is an H-closed extension [40] of X denoted by κX called the Katětov extension of X. Next

recall that a cover (or covering) of a space X is a collection A of subsets of X whose union

is all of X. A subcover of a cover A is a subcollection B of A which is a cover. An open

cover of X is a cover consisting of open sets, and other adjectives applying to subsets of X

apply similarly to covers. A topological space X is said to be compact if every open cover

of X has a finite subcover.

Again recall that a function f : Y → Z is

(i) irreducible if f is onto and no proper closed subset of Y is mapped onto Z,

(ii) compact if f−1(z) is compact for each z ∈ Z, and

(iii) perfect if f is closed and compact (see [47]).

Theorem 2.4.1. [46] Let Y be an extension of X. Then for an open subset V of Y :

(a) X ∩ o(V ∩X) = V ∩X;

(b) V ⊆ o(V ∩X) ⊆ clY (V ∩X) = clY (V );

(c) intY clY (V ) = intY clY (V ∩X) = o(intX clX(V ∩X)).

The following theorem is consequences of the preceding theorem [47] and was not proved.

36



Theorem 2.4.2. [47] If U is an open ultrafilter on X and V is an open set such that

int(cl(V )) ∈ U , then V ∈ U .

Proof. Let F be an open filter such that V ∈ F .

G = {U | U is open and int(cl(U)) ∈ F}.

Then by Theorem 2.2.1

G =
⋂
{U | U is an open ultrafilter on X and F ⊆ U}.

If V is open and int(cl(V )) ∈ U , then by Theorem 2.2.1, V ∈ F ∨ D. Hence V ∈ F , but

F ⊂ U , so V ∈ U .

Lemma 2.4.1. [47]

(1) For each open set U , π(GU)rX = OU r U and π−1(OU r U) = GU r pX.

(2) π : (θX r pX) : θX r pX → σX rX is a homeomorphism.

Now we are ready for the following theorem which is taken verbatim in [47].

Theorem 2.4.3. [47] Suppose there exists a continuous function from σX onto an H-

closed extension Y of X that leaves X pointwise fixed. Let O ⊆ Y rX. The following are

equivalent:

(1) O is closed in Y.

(2) O is compact.

(3)
⋂
{Oy | y ∈ O} is a free open filter and if

⋂
{Oy | y ∈ O} meets Oz for some

z ∈ Y rX then z ∈ O.

Proof. Let f : σX → Y be continuous function that leaves X point-wise fixed and O =

∩{Oy : y ∈ O}.
(1) ⇒ (2): By Lemma 2.4.1 (2), it suffices to show that π−1(f−1(O)) is closed in θX

since θX is compact. By Lemma 2.4.1 (2), π−1(f−1(O)) is closed in θX r pX. Let

q ∈ pX and N ⊆ q where x ∈ X. Now OV ∩ f−1(O) = ∅ for some V ∈ Nx, implying

GV ∩ π−1(f−1(O)) = ∅. Thus, π−1(f−1(O)) is closed in θX.
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(2)⇒ (3): Clearly O is an open filter on X. Let x ∈ X. There are disjoint open sets R and

S in Y such that x ∈ R and F ⊆ S. Now x ∈ R∩X, S∩X ∈ O, and (R∩X)∩(S∩X) = ∅;
so, O is free. Suppose z ∈ Y rX and z /∈ O. There are disjoint open sets R and S in Y

such that z ∈ R and F ⊆ S. Now R∩X ∈ Oz and S ∩X ∈ O, implying O does not meet

Oz.

(3) ⇒ (1): Since O is a free open filter, the closure of O in Y is contained in Y rX. Let

z ∈ Y r (X ∪O). Then Oz does not meet O; so, there are disjoint open sets V ∈ Oz and

V ∈ O. Now o(V) ∩ o(V ) = ∅, z ∈ o(V), and O ⊆ o(V ). So, z /∈ clyO. Hence, O is closed

in Y .

If Y is the Fomin extension of X in the preceding theorem and since identity map on Y is

continuous it follows that condition (3) to say that {Oy | y ∈ O} is a balanced collection

of open ultrafilters. Then the theorem below is immediate.

Theorem 2.4.4. [21],[46] Let X be a Hausdorff topological space. Then there exists a

one-to-one correspondence between the balanced free open filters on X and the nonempty

closed subsets of σX rX, the remainder of the Fomin H-closed extension of X.

Definition 2.4.2. An open filter O is called regular provided O ∈ O implies there exists

Q ∈ O with Q ⊆ O. Equivalently, O = S(G(O)).

Lemma 2.4.2. [21] Let O be an open ultrafilter. Then O is regular if and only if O is

closed-generated.

Proof. Suppose that O is regular. By definition, for each O ∈ O there exists Q ∈ O such

that Q ⊆ O. Therefore there exists a closed filter F such that for each Q ∈ O, Q ∈ F .
Therefore

O = {O | O is open and there exists Q ∈ F with Q ⊆ O}

O = S(F)

and hence O is closed-generated.

Conversely, suppose that O is closed-generated. Then, by definition, O = S(F) for some

closed filter F . But

S(F) = {O | O is open and there exists A ∈ F such that A ⊆ O}.
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Since int(A) is open and int(A) ⊆ A, there exists an open filter O such that int(A) ∈ O
for each A ∈ F . Put int(A) = Q. Then

O = {O | O is open and for each Q ∈ O we have Q ⊆ O}.

That is, for each O ∈ O there exists Q ∈ O such that Q ⊆ O. Hence O is regular.

The following theorem and proof is taken verbatim in [21].

Theorem 2.4.5. [21] Let X be a regular space. The following statements are equivalent:

(1) Every free open ultrafilter is regular.

(2) Every free prime open filter is a free open ultrafilter.

Proof. (1) ⇒ (2): Suppose P is a free prime open filter that is not an open ultrafilter.

Then there exists an open ultrafilter M such that P ⊆ M and P 6= M. Now, by

(1) and Lemma 2.4.2, there exists a closed ultrafilter N such that M = O(N ). Hence

F(P) % F(M) = F(O(N )), which is impossible. Thus, P is a free open ultrafilter.

(2) ⇒ (1): Let M be a free open ultrafilter. Set K = F(M). Then K is a minimal

prime closed filter and there exists a closed ultrafilter N ⊇ K. Let P = O(N ). Then,

P = O(N ) ⊆ O(K) = O(F(M)) = M. By condition (2), S(N ) = O(N ) = P = M
provided P is free. P is clearly a minimal prime open filter. In order to show that P is

free, we first note that adhK =
⋂
K ⊂ {M̄ | M ∈ M} = ∅. Similarly, K ⊆ N implies N

is a free closed ultrafilter. Now P = O(N ) = S(N ). Let χ ∈
⋂
S(N ). Now χ /∈ N and

so there exist Nχ ∈ N with χ /∈ N . Since X is regular there exists disjoint open sets Oχ

and ON containing χ and N , respectively. Now ON ∈ S(N) and χ /∈ ON . Thus, P is a

free open filter. Hence, we have that M = S(N ), where N is a free closed ultrafilter. M
is regular by Lemma 2.4.2.

Lemma 2.4.3. [47] Let f : κX → Y be a Katětov function of an H-closed extension Y of

X. Then for each open set U in X, oYU ⊆ f(OU) = U ∪ (clYU rX).

Definition 2.4.3. A binary relation ∼on a set X is said to be an equivalence relation, if

and only if it is reflexive, symmetric and transitive. That is, for all a, b and c in X:

(1) a ∼ a. (Reflexivity)
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(2) a ∼ b if and only if b ∼ a. (Symmetry)

(3) if a ∼ b and b ∼ c, then a ∼ c. (Transitivity)

The following theorem [46] and proved.

Theorem 2.4.6. [46] Let R be an equivalence relation on κX such that R(x) = {x} for

x ∈ X. The following are equivalent:

(i) There is an H- closed extension Y of X such that R = RY .

(ii) Let y, z ∈ κX rX. Then
⋂
R(y) is a free open filter on X, and if

⋂
R(y) ⊆ z, then

z ∈ R(y).

(iii) For y ∈ κX, R(y) = aκX(NR(y)).

Theorem 2.4.7. [47] Let f : κX → Y be a Katětov function of an H-closed extension

Y of X. f factor through σX (i.e., f : σX → Y is continuous) if and only if Y is regular

relative to Y rX.

Proof. Suppose f factors through σX. Let y ∈ Y and U an open set containing y. Then,

by Theorem 2.4.3 and Theorem 2.4.6, f−1(y) is a compact subset of σX. It follows that

there is an open set V in X such that f−1(y) ⊆ OV and f(OV ) ⊆ U. If y ∈ X, then

y ∈ V ⊆ oY V. If y /∈ X, then V ∈
⋂
f−1(y); since

f−1(y) = {z | z is open ultrafilter and Oy ⊆ z},

then by Theorem 2.4.3, intXV ∈ Oy. Then, by Theorem 2.4.1.,

y ∈ (intY clY oY V )rX = oY (intXclXV )rX.

Since f(OV ) ⊆ U, then by Theorem 2.4.1 and Lemma 2.4.3, (oY V ) ∪ (clY oY V )rX ⊆ U.

Thus, Y is regular relative to Y rX. Conversely, suppose Y is regular relative to Y rX

and that f(z) = y. Let U be an open set containing y. There is an open set V such that

y ∈ V ∪ (intY clY V rX) ⊆ V ∪ (clY V rX) ⊆ U.

Since W = V ∩X. If y ∈ X, then z ∈ W ⊆ OW . Suppose y /∈ X. By Theorem 2.4.1, W ∈ z
implying z ∈ OW . By Lemma 2.4.3, f(OW ) = W ∪ (clYW rX) ⊆ V ∪ (clY V rX) ⊆ U.

This shows that f factors through σX.
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Theorem 2.4.8. [47] Let Y be an extension of X. Then Y is regular if and only if Y is

regular relative to Y rX and Oy is regular filter on X for each y ∈ Y.

Proof. It is easy to verify that a regular space Y satisfies the two conditions. To prove the

converse, let y ∈ U ⊆ Y where U is open in Y. Since U ∩X ∈ Oy, then there is an open

set W in Y that contains y and clX(W ∩X) ⊆ U ∩X and W ⊆ U. There is an open set

V in Y such that

y ∈ V ∪ (intY clY V )rX ⊆ V ∪ (clY V )rX ⊆ W.

Now, y ∈ intY clY V ⊆ clY V = ((clY V ) ∩X) ∪ (clY V rX). Since (clY V ) ∩X = (clY (V ∩
X)) ∩X = clX(V ∩X) ⊆ clX(W ∩X) ⊆ U ∩X, then it follows that clY V ⊆ U. Thus, X

is regular.

If X is a Tychonoff space, then by Theorem 2.4.3., σX is projectively larger than any

compactification of X, including the Stone-Čech compactification. So, σX is the Stone-

Čech compactification of X if and only if σX is compact, or equivalently, σX is regular.

Since σX is regular relative to σrX by Theorem 2.4.7, then the following theorems is an

easy consequence of Theorem 2.4.8 (see [47]).

Theorem 2.4.9. [21],[46],[47] Let X be Hausdorff space. σX is the Stone-Čech compact-

ification of X if and only if X is regular and every free open ultrafilter is regular.

Theorem 2.4.10. [21],[46],[47] Let X be Hausdorff space. σX is the Stone-Čech com-

pactification if and only if X is regular and every free prime open filter is a free open

ultrafilter.

2.5 Minimal prime co-zero filters and balanced z-filters

In this section we consider minimal cozero filters and balanced z-filters. We start by

showing the relationship between minimal prime cozero filters and the z-ultrafilters. In

particular, if M is a z-ultrafilter on a completely regular space X, then the set of the

complements of members ofM is a minimal prime co-zero ideals on X and vice-versa. We

also show that there is a one-to-one correspondence between the closed sets in Stone-Čech

compactification (βX) and the balanced z-ultrafilters in X.
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Lemma 2.5.1. Let F be a closed filter and G = {O ∈ τ | X rO /∈ F}. Then:

(1) F is a closed ultrafilter if and only if G is a minimal prime open filter.

(2) G is an open ultrafilter if and only if F is a minimal prime closed filter.

Theorem 2.5.1. [20] Let Mp be a z-ultrafilter on a completely regular space X. Set

Vp = {V ∈ co− Z(X) | X r V /∈Mp}.

Then Vp is a minimal prime co-zero filter on X.

Proof. Easily ∅ /∈ Vp and if V ∈ Vp and V ⊆ W ∈ co−Z(X) then X rW ⊆ X rV /∈Mp

and thus X rW /∈ Mp. Hence W ∈ Vp. Let V1 ∈ Vp and V2 ∈ Vp. Then X r V1 ∈ Mp

and X r V2 ∈ Mp and thus X r (V1 ∩ V2) = (X r V1) ∪ (X r V2) /∈ Mp. Therefore,

V1 ∩ V2 ∈ Vp and Vp is a co-zero filter. To see that Vp is prime let V1 ∪ V2 ∈ Vp. Then

Xr(V1∪V2) /∈Mp. If V1 /∈ Vp and V2 /∈ Vp it follows that XrV1 ∈Mp and XrV2 ∈Mp

and thus X r (V1 ∪ V2) = (X r V1)∩ (X r V2) ∈Mp, a contradiction. Thus, Vp is a prime

co-zero filter.

Suppose W is a prime co-zero filter with W ⊆ Vp. Then,

N = {Z ∈ Z(X) | X r Z ∈ W}

is a prime z-filter. Moreover, Mp ⊂ N and since Mp is a z-ultrafilter Mp = N . Thus,

W = Vp and Vp is a minimal prime co-zero filter on X.

Theorem 2.5.2. [20] Let X be a completely regular topological space and let V be a

minimal prime co-zero filter. Set

M = {Z ∈ Z(X) | X r Z /∈ V}.

Then, M is a z-ultrafilter.

Definition 2.5.1. Let F be a zero filter on X. F is called a balanced zero filter provided F
is the intersection of all the z-ultrafilters that contain it. That is; F =

⋂
{Mp | F ⊆ Mp}.

Theorem 2.5.3. [20] Let G be a nonempty closed set in βX. Set F = {Z ∈ Z(X) | G ⊆
clβXZ}. Then:
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(1) G =
⋂
{clβXZ | Z ∈ F}.

(2) F is a balanced z-filter.

Proof. (1) Follows since {clβXZ | Z ∈ Z(X)} is a base for the closed sets in βX. (A parallel

argument is that βX is a strict extension of X and the zero sets in X form a base for the

closed sets in X).

(2) Easily ∅ /∈ F and if Z ∈ F with Z ⊆ Z
′

then Z
′ ∈ F . If Z1 ∈ F and Z2 ∈ F then since

clβXZ1 ∩ clβXZ2 = clβX(Z1 ∩Z2), we have that G ⊆ clβX(Z1 ∩Z2) and Z1 ∩Z2 ∈ F . Thus,

F is a z-filter.

To see that F is balanced, it suffices to let Z ∈ Mp for each Mp containing F and show

that Z ∈ F . Let Z ∈
⋂
{Mp | F ⊆ Mp}. Then p ∈ clβXZ for each Mp containing F .

Let q ∈ G. Then q ∈ clβXZ for each Z ∈ F . Hence F ⊆ Mq. Thus, if Z ∈ ∩{Mp | F ⊆
Mp} we have that G ⊆ clβXZ. Therefore Z ∈ F and F is a balanced z-filter.

The following theorem now follows immediately.

Theorem 2.5.4. [20] Let X be a completely regular topological space. Then there exists

a one-to-one correspondence between the nonempty closed sets in βX and the balanced

z-filter on X. The correspondence is given by: G←→ F = {Z | G ⊆ clβXZ}.

Corollary 2.5.1. [20] Let O be an open set in βX and O = βX. Then there exists a

balanced z-filter F such that O = {p ∈ βX | F (Mp}.

Corollary 2.5.2. [20] There exists a natural one-to-one correspondence between the

nonempty closed subsets of βN and the filters on N.

Corollary 2.5.3. [20] Let X be a completely regular space. Then there exists a one-to-

one correspondence between the zero sets in βX and the balanced z-filters on X with a

countable base.

Proof. It is known, (6E) in [38], that each nonempty zero set in βX is the countable

intersection of sets of the form clβXZ, where Z ∈ Z(X). The result now follows from

Theorem 2.5.4 above.
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Theorem 2.5.5. [20] Let G be a nontrivial open-closed subset of βX. Then there exist

balanced z-filters F and G such that each z-ultrafilter contains one and only one of these

filters.

Lemma 2.5.2. [20] Let X be a completely regular space with F1 and F2 nonempty closed

subsets of βX. For i = 1, 2; let Oi = βX r Fi and Fi = {Z ∈ Z(X) | Fi ⊆ clβXZ}. The

following statements are equivalent:

(1) F1 ⊆ F2.

(2) O2 ⊆ O1.

(3) F2 ⊆ F1.

Proof. By Theorem 2.5.4 above, Fi = {p ∈ βX | Fi ⊆Mp} for i = 1, 2. Suppose F1 ⊆ F2.

Let Z ∈ F2. Then F2 ⊆ clβXZ and thus F1 ⊆ clβXZ and Z ∈ F1. Suppose F2 ⊆ F1. Let

p ∈ F1, then F1 ⊆Mp and thus F2 ⊆Mp and p ∈ F2.

Definition 2.5.2. A point p in a topological space X is called a P -point if for each

countable collection {Oi} of open sets containing p there exists an open set O with p ∈
O ⊂

⋂
Oi.

Theorem 2.5.6. [20] Let X be a completely regular topological space and Mp a z-

ultrafilter on X. A point p is a p-point in βX if and only if for each countable collections

{Fi} of balanced z-filter F such that F (Mp and for each i, F ⊆ Fi.

Proof. Let p be a p-point in βX, and {F | i ∈ N} a countable collection of balanced

z-filters with Fi ( Mp. Set Fi =
⋂

clβXFi. Then Fi is a closed set with p /∈ Fi. Then

Oi = βX rFi is an open set containing p for each i ∈ N. Since p is a p-point in βX, there

exists an open set O in βX with p ∈ O ⊆
⋂
Oi. Let F = βXrO and F the corresponding

balanced z-filter on X. Then for each i ∈ N, F ⊆ Fi and, by Lemma 2.5.2, F ⊆ Fi. Easily,

F (Mp. The proof in the other direction follows in a similar manner.

Let {Fi} be a countable collection of filters on N. Then
⋂
Fi is a filter on N and we have

the following corollary.
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Corollary 2.5.4. [20] Let N denote the natural numbers with the discrete topology. Let

M be an ultrafilter on N. Then M is a p-point in βX if and only if for each countable

family of filters {Fi} on N, with each Ji (M, then
⋂
Fi (M.

2.6 Nearness spaces

Definition 2.6.1. Let X be a set and ξ a collection of covers of X, called uniform covers.

Then (X,µ) is a nearness space provided:

(1) A ∈ µ and A refines B implies B ∈ µ.

(2) X ∈ µ and ∅ /∈ µ.

(3) If A ∈ µ and B ∈ µ then A ∧ B = {A ∩B | A ∈ A and B ∈ B} ∈ µ.

(4) A ∈ µ implies int(A) = {X | X r x,A} ∈ µ.

For a given nearness space (X,µ) the collection of sets that are ”near” is given by ξ =

{A ⊆ P(X) | {X \ A | A ∈ A} /∈ µ}. The micromeric collections are given by A ∈ γ if

and only if {B ⊆ X | A ∩ B 6= ∅ for each A ∈ A} ∈ ξ. The closure operator generated

by a nearness space is given by clξA = {x | {{x}, A} ∈ ξ}. If we are primarily using these

”near” collections we will denote the nearness space by (X, ξ). The underlying topology of

a nearness space is always symmetric; that is, x ∈ {y} implies y ∈ {x}.

Definition 2.6.2. Let (X, ξ) be a nearness space. The nearness space is called:

(1) topological provided A ∈ ξ implies
⋂
Ā 6= ∅.

(2) complete provided each ξ-cluster is fixed; that is
⋂
Ā 6= ∅ for each maximal element

A ∈ ξ.

(3) concrete provided each near collection is contained in some ξ-cluster.

(4) contigual provided A ∈ ξ implies there exists a finite B ⊆ A such that B /∈ ξ.

(5) totally bounded provided A /∈ ξ implies there exists a finite B ⊆ A such that
⋂
B = ∅.
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Recall that an extension of a topological space X is a dense embedding e : X → Y of

X into a topological space Y. Since for every nonempty space X there exists a proper

class of essentially different extensions, it is natural to restrict attention to a narrower

class of extensions, still large enough to contain the more interesting extensions usually

encountered in topology. The restriction to T2-extensions, i.e. extensions e : X → Y with

Y being T2-space, though natural, is not stringent enough, since every infinite T2-space

still has a proper class of essentially different T2-extensions. Among all extensions of a

fixed space X which induce the same filter trace (= set of trace filters of neighborhood

filters of single points) on X. An extension e : X → Y such that {clY (eA) | A ⊆ X} is a

base for the closed sets in Y.

To characterize the latter, some more information concerning nearness space is needed. If

X = (X, ξ) is a nearness space then a non-empty collection of subsets of X is called an

X-cluster provided it is a maximal (with respect to inclusion) X-near collection. Every

X-cluster is easily seen to be a grill on X. A nearness space is called complete provided⋂
clXG 6= ∅ for any X-cluster G.

Definition 2.6.3. Let (X, ξ) be a nearness space. Let A ⊆ ρ(X) and let c(A) denote the

set of all ξ- clusters that contain A. Let ρ(A) denote the set of all the fixed ξ- clusters that

contain A. Set b(A) =
⋂

c(A). A is said to be a balanced near collection provided A ∈ ξ,
A =

⋂
c(A) and A is called a rigid near collection provided A ∈ ξ and A =

⋂
ρ(A).

Theorem 2.6.1. Let (X, ξ) be a concrete nearness space and A ∈ ξ.

(1) A ∈ ξ.

(2) b(A) is the smallest balanced near collection containing A.

(3) Each ξ-clusters is a balanced near collection.

(4) If η is a nonempty collection of ξ - clusters then
⋂
η is a balanced near collection.

(5) If A is a rigid near collection then A is a balanced near collection.

Theorem 2.6.2. Let Y be a T2-strict extension of X. Set ξ = {A ⊆ ρ(X) |
⋂

clYA 6= ∅}

(1) If ∅ 6= F ⊆ Y then c(S(F )) = {Ay | y ∈ clY F} and S(F ) is a balanced near

collection.
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(2) If A is a balanced near collection then there exists a closed set F in Y such that

A = S(F ).

(3) If ∅ 6= F ⊆ Y then S(F ) = S(clY F ).

(4) If F and E are nonempty subsets of Y then S(F ∪ E) = S(F ) ∩ S(E).

(5) There exists a one-to-one correspondence between the nonempty closed subsets of Y

and the balanced near collections.

Proof. (1) Let ∅ 6= F ⊆ Y. Let U ∈ c(S(F )).

⇒ U is an ξ − cluster that contain S(F ).

⇒ U ⊆ ρ(X) and {A ⊆ X | F ⊆ clYA} ⊆ U.

⇒ U ∈ {A ⊆ X | F ⊆ clYA} for some y ∈ F.

⇒ c(S(F )) ⊆ Ay for some y ∈ F.

Conversely, let U ∈ Ay.

⇒ U ∈ {A ⊆ X | y ∈ clYA} for some y ∈ F.

⇒ U ∈ {A ⊆ X | F ⊆ clYA}.

⇒ {A ⊆ X | F ⊆ clYA} ⊆ U.

⇒ U is an ξ − cluster that contain S(F ).

⇒ U ∈ c(S(F )).

and hence c(S(F )) = {Ay | y ∈ clY F}. Hence S(F ) is a balanced near collection.

(2) Follows immediately from (1).

(3) From (1) and (2), we have S(F ) = S(clY F ).

(4) If F and E are nonempty subsets of Y.

S(F ∪ E) = {A ⊆ X | F ∪ E ⊆ clYA}.

= {A ⊆ X | F ⊆ clYA and E ⊆ clYA}.

= {A ⊆ X | F ⊆ clYA} ∩ {A ⊆ X | E ⊆ clYA}.

= S(F ) ∩ S(E).
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(5) From (1) and (2) it follows that there is a one-to-one correspondence between the

nonempty closed subsets of Y and the balanced near collections.

Theorem 2.6.3. Let Y be a strict T2-extension of X and ξ the nearness structure on X

induced by Y. Let A ⊆ ρ(X).

(1) If T = {x | Ax ∈ ρ(A)} then T =
⋂

clXA.

(2) A is a rigid near collection if and only if there exists a nonempty closed set T in X

such that A = {A ⊆ X | T ⊆ clXA}.

(3) A is a rigid near collection if and only if

(A) A is a balanced near collection, and

(B) clY (
⋂

clXA) =
⋂

clYA.

(4) Let F be a nonempty closed subset of Y. The following statements are equivalent.

(A) F = clY (F ∩X).

(B) There exists a unique closed subset of X, say G, such that F = clYG.

(C) S(F ) is a rigid near collection.

Proof. (1) If T = {x | Ax ∈ ρ(A)} then T =
⋂

clXA. Recall that ρ(A) denotes the set of

all the fixed ξ-clusters that contain A, so A ⊆ ρ(X). Ax = {A ⊆ X | x ∈ clXA} ∈ ρ(A).

Now Ax ∈ ρ(A) implies that x ∈ clxA because
⋂
A 6= ∅. Now

Ax ∈ ρ(A)⇒ A ⊆ Ax.

⇒ x ∈ clXA⇒ x ∈ clXA.

⇒ x ∈
⋂

clXA⇒ x ∈
⋂

clXA.

⇒ T ⊆
⋂

clXA.
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Now

x ∈
⋂

clXA.

⇒ x ∈ clXA for every A ∈ A.

⇒ Ax is a fixed ξ− cluster.

⇒ Ax ∈ ρ(A).

⇒ x ∈ T.

So
⋂

clXA ⊆ T and hence equality.

(2) By definition A is a rigid near collection provided A ∈ ξ and A =
⋂
ρ(A). Now

from (1), we have T =
⋂

clXA, Ax ∈ ρ(A). Since the arbitrary intersection of closed

sets in closed, it follows T is a closed set. Also T ⊆ clXA for every ξ-cluster A. Hence

A = {A ⊆ X | T ⊆ clXA}.

Conversely, suppose there exists a nonempty closed set T in X such that A = {A ⊆ X |
T ⊆ clXA}. Then

A is a fixed ξ − cluster since T ∈
⋂

clXA.

⇒ A ∈ ρ(A).

Now from (1) if T =
⋂

clXA for every A ∈ A, we have A =
⋂
ρ(A) and hence A is a rigid

near collection.

From (2),

T =
⋂

clXA.

⇒ clY T = clY (
⋂

clXA).

⇒
⋂

clYA = clY (
⋂

clXA).

If A and B, then it follows immediately that A is a rigid near collection.

(4) (A)⇔ (B): Put G = F ∩X.
(A)⇒ (C): S(F ) = {A ⊆ X | F ⊆ clYA} is a balanced near collection. That S(F ) = A,
where A is a balanced near collection. Now, from

F = clY (F ∩X) = clY (clXF ).

⇒
⋂

clY F = clY (
⋂

clXF ).
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which is statement (B) in part (3) above. Hence S(F ) is a rigid near collection.

(C)⇒ (A): ⋂
clY (S(F )) = clY (

⋂
clXS(F )).

⇒ clY (S(F )) = clY (clXS(F )).

⇒ clY (F ) = clY (clXF ).

⇒ F = clY (F ∩X).

The following theorem has been taken as verbatim in [14].

Theorem 2.6.4. [14], [20] For any T2-nearness space (X, ξ) the following conditions are

equivalent:

(1) ξ is a nearness structure induced on X by a strict extension.

(2) The completion X∗ of X is topological.

(3) ξ is concrete.

Proof. (1)⇒ (3): If ξ is induced by the strict extension e : X → Y and if G is a non-empty

X-near collection, then there exists some y ∈
⋂

clY . The collection LY of all subsets of X

whose Y -closure contains y is easily seen to be an X-cluster.

(3)⇒ (2): For any non-empty X∗-near collection L, the collection of all subsets A of X for

which there exists a B ∈ L with B ⊆ cl∗XA is an X-near collection and hence is contained

in an X-cluster G . If x ∈
⋂

clXG then x ∈
⋂

clX∗L and if
⋂

clXG = ϕ then G ∈
⋂

clX∗L.

(2) ⇒ (1): If e : X → X∗ is the completion then e : X → TX∗ is a strict extension,

inducing the nearness structure ξ on X.
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Chapter 3

Ideals and filters in pointfree

topology

The dual notion of a filter in topological spaces is an ideal. Ideals, just like filters, play a

vital role in topological spaces and rings. In pointfree topology Dube in [28] introduced

balanced filters, closed-generated filters, open-generated ideals and stably closed-generated

filters in frames. Dube and Mugochi in [34] introduced the notion of a balanced ideal in

frames. We introduce the notion of stably open-generated ideals in frames and show

that an ideal is regular if and only if it is stably open-generated. Dube has shown as an

application that a frame is normal if and only if its closed-generated filters are precisely

the stably closed-generated ones (see [28]). By dualising Dube’s statement we show that a

frame is extremally disconnected if and only if its open-generated ideals are precisely the

stably open-generated ones. We show that there is a one-to-one correspondence between

points of βL and the balanced ideals of Coz L. Furthermore we study locally finite nearness

frames, Pervin nearness frames and fine nearness frames. We end the chapter with strict

extensions in frames and introduce a notion of a Baire frame.

3.1 Filters and ideals

Definition 3.1.1. A subset F of L is called a filter if it is satisfies the following

(1) 1 ∈ F,
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(2) a, b ∈ F ⇒ a ∧ b ∈ F,

(3) a ≤ b and a ∈ F ⇒ b ∈ F.

A filter F of L is said to be a maximal filter if for any filter G,

F ⊆ G ⊆ L⇒ F = G or G = L.

Definition 3.1.2. A subset I of L is called an ideal if it satisfies the following

(1) 0 ∈ I,

(2) a, b ∈ I ⇒ a ∨ b ∈ I,

(3) a ≤ b and b ∈ I ⇒ a ∈ I.

An ideal I of L is said to be a maximal ideal if for any ideal J,

I ⊆ J ⊆ L⇒ I = J or J = L.

In Definition 2.1.2 we notice that α is in general the collection of subsets of a topological

space X. If α is a collection of either open or closed subsets of X statements (1) and (2)

cannot be expressed solely in terms of open sets and hence cannot be extended to frames.

For all results which we have shown in topological spaces using statement (1) and (2) of

Definition 2.1.2 we will not attempt them in frames. However we point that the statements

(1) and (2) hold in the cases where α is an ideal or a filter.

Lemma 3.1.1. [28] Let F ⊆ L be a filter and 0 6= x /∈ F. Then there is a prime filter G

such that x /∈ G and F ⊆ G.

Proof. The principal ideal generated by x misses F, so by Stone’s Separation Lemma there

is a prime ideal J that misses F and contains ↓x. Then G = L r J is a prime filter with

the required property.

3.2 Balanced filters

Unlike in spaces, every filter in a frame is the intersection of prime filters containing it.

This is captured by the following proposition which is taken as is from [28].
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Proposition 3.2.1. [28] Every filter in a frame is the intersection of prime filters containing

it.

Proof. Let F be a filter in a frame L and P be the collection of all prime filters containing

F. Then F ⊆
⋂

P. On the other hand let x ∈
⋂

P. If x /∈ F, then let F ⊆ L be a filter and

0 6= x ∈ F. Then there is a prime filter G such that x /∈ G and F ⊆ G there exists Q ∈ P
such that x /∈ Q, which is a contradiction since x ∈

⋂
P.

Definition 3.2.1. The balance of a filter F in a frame L is the filter b(F ) =
⋂
{P ⊆ L |

P is an ultrafilter containing F}. We say F is balanced if F = b(F ).

We remark that the definition of a balance of an ideal is not the consequence of the

dualisation of the above definition. The definition as introduced by Dube and Mugochi in

[34] will be studied in the section.

Proposition 3.2.2. [28] A filter is an ultrafilter if and only if it is prime and balanced.

Proof. Suppose that a filter F is an ultrafilter. By Proposition 3.2.1, F is the intersection

of all prime filters containing F. Furthermore F is an ultrafilter, so it is maximal in terms

of containment, so F = b(F ). Hence F is prime and balanced.

Conversely, suppose a filter G is prime and balanced. By definition of a balanced filter, G

is an ultrafilter.

Dualisation of the preceding proposition does not hold in general.

The following proposition is found in [28] together with its proof. Here we only give the

statement and leave out the proof.

Proposition 3.2.3. [28] For any filter F in a frame L we have that

(a) b(F ) = {x ∈ L | x∗∗ ∈ F}.

(b) b(F ) = 〈F ∪D(L)〉.

Corollary 3.2.1. [28] A filter is balanced if and only if it contains all the dense elements.
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Proof. By the definition of balanced filters which contains all the dense elements.

conversely, Let F be a filter containing all the dense elements. Since F ⊆ b(F ) we need to

show that b(F ) ⊆ F. If x /∈ F, then every filter in a frame is the intersection of prime filters

containing it there is a prime filter P ⊇ F with x /∈ P. So, A filter is an ultrafilter if and

only if it is prime and balanced, P is an ultrafilter that does not containing x; therefore

x /∈ b(F ).

The following definitions were also introduced by Dube in [28].

Definition 3.2.2. A filter F in a frame L is closed-generated if there is an ideal J in L

such that F = {x ∈ L | x ∨ y = 1 for some y ∈ J}. In this case we shall write F = γ(J),

and call such an ideal J a witness for F.

Dually,

Definition 3.2.3. An ideal I in a frame L is open-generated if, for some filter F, it is of

the form δ(F ) = {x ∈ L | x ∧ y = 0 for some y ∈ F} and call F a witness for the ideal I.

The following result is taken verbatim as in [28], here we include the proof for the sake of

completeness. The author took the result from Gratzer’s book but stated in a less general

form.

Lemma 3.2.1. [28] A prime ideal J in a frame L is a minimal prime ideal if and only if

it contains no dense elements.

Proof. Suppose J is a minimal prime ideal in L. Take I to be the prime ideal in L.

Suppose on contrary that J contains a dense element u. Then u∗ = 0 ∈ J. So we have

u, u∗ ∈ J. For any a ∈ I, we have u ∧ a ∈ J and a 6= 1 because I is an ideal. Hence

u∗ ∨ (u ∧ a) = (u∗ ∨ u) ∧ (u∗ ∨ a) = (u∗ ∨ u) ∧ a = a ∈ J. So I ⊆ J. But I is a prime

ideal, so this contradicts that J is a minimal prime ideal. Therefore J contains no dense

elements. Conversely, suppose J contains no dense elements. We want to show that J is a

minimal prime ideal. We claim that the maximal w ∈ L such that w is not dense is in J.

If not, there exist y ∈ L, y /∈ J and y not dense w < y. Then y∗ /∈ J because J as an ideal

is a downset. Now y ∧ y∗ = 0 ∈ J which contradict the primeness of J. Indeed a maximal

element w ∈ L such that w is not dense is an element of J. Hence J is a minimal prime

ideal.
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Corollary 3.2.2. [28] A filter F in a frame L is an ultrafilter if and only if L r F is a

minimal prime ideal.

Proof. If F is an ultrafilter then it is a prime filter (so that Lr F is a prime ideal) and it

contains all the dense elements, so that (LrF )∩D(L) = ∅. Therefore LrF is a minimal

prime ideal by Lemma 3.2.1. Conversely, since Lr F is a prime ideal F is a prime filter,

and since (Lr F ) ∩D(L) = ∅ we have that F is balanced by Proposition 3.2.2.

Corollary 3.2.3. Let L be a frame. Then the following statements are equivalent:

(1) Every prime filter is an ultrafilter.

(2) Every prime ideal is a minimal prime ideal.

Proof. (1)⇒ (2): Suppose that J is a prime ideal. Then Lr J is a prime filter and since

(L r J) is a prime filter, it is an ultrafilter by (1). Hence L r (L r J) = J is a minimal

prime ideal.

(2)⇒ (1): Suppose that F is a prime filter. Then (Lr F ) is a prime ideal and so by (2)

is a minimal prime ideal and by Corollary 3.2.2, Lr (Lr F ) = F is an ultrafilter.

The following lemma is culled from [28], the author proved the first statement and indicated

that the second statement can be shown in the similar fashion. Here we include proofs for

both statements.

Lemma 3.2.2. [28] Let F be a filter and J be an ideal in a frame L. Then

(a) F is an ultrafilter if and only if δ(F ) = Lr F.

(b) J is a maximal ideal if and only if γ(J) = Lr J.

Proof. (a) Suppose F is an ultrafilter. Let x ∈ δ(F ). Then x ∧ y = 0 for some y ∈ F and

hence x /∈ F, that is, x ∈ LrF ; establishing the one inclusion. Now let w ∈ LrF and put

T = {t ∈ L | t ≥ w ∧ x for some x ∈ F}. If we assume that w meets every member of F

then T is a filter properly containing F, contradicting the maximality of F. Thus w∧x = 0

for some x ∈ F ; proving the reverse inclusion.
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Conversely, suppose δ(F ) = Lr F and let G be a filter with G ⊇ F. Let g ∈ G. For each

x ∈ F we have that g ∧ x 6= 0, and therefore g /∈ δ(F ), that is, g /∈ LrF. This shows that

g ∈ F, so that F = G, and therefore proves that F is an ultrafilter.

(b) Suppose J is a maximal ideal. Let x ∈ γ(J). Then x∨ y = 1 for some y ∈ J and hence

x /∈ J, that is, x ∈ L r J, establishing the one inclusion. Now let w ∈ L r F and put

S = {s ∈ L | s ≤ w ∨ x for some x ∈ J}. If w joins every member of J then S is an ideal

properly containing J contradicting the maximality of J. Then w ∨ x = 1 for some x ∈ J.
Proving the reverse inclusion.

Conversely, suppose γ(J) = Lr J and let K be an ideal with K ⊇ J. Let y ∈ K. For each

x ∈ J we have x∨ y 6= 1, and therefore y /∈ γ(J), that is y /∈ Lr J. This shows that y ∈ J,
so that K = J, and therefore proves that J is a maximal ideal.

Corollary 3.2.4. [28] A filter F is a minimal prime filter if and only if it is closed-generated

witnessed by a maximal ideal.

The dual of the preceding corollary also holds as is seen below.

Corollary 3.2.5. An ideal I is a maximal prime ideal if and only if it is open-generated

witnessed by a minimal filter.

Definition 3.2.4. A filter F in frame L is said to be regular if for each a ∈ F, there exists

x ∈ F such that x ≺ a.

Dually,

Definition 3.2.5. An ideal I in a frame L is said to be regular if for each b ∈ I, there

exists x ∈ I such that b ≺ x.

Definition 3.2.6. A filter F is stably closed-generated in case F = γ(δ(F )).

The dual notion of the above definition were not defined in [28] we give the definition here.

Definition 3.2.7. An ideal I is stably open-generated in case I = δ(γ(I)).

Observation 3.2.1. An ideal J is stably open-generated in case J = δ(γ(J)). If J is any

ideal, then J ⊆ δ(γ(J)). For any a ∈ J then a ∧ b = 0. If a ∈ δ(γ(J)), then a ∧ b = 0 for

some b ∈ γ(J); so that for some c ∈ J, b ∨ c = 1 whence we deduce that a ≤ c implying

that a ∈ J.
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The following result and its proof appear in [28]. Here we leave out the proof.

Proposition 3.2.4. [28] A filter is regular if and only if it is stably closed-generated.

We show below that the dualisation of the preceding proposition also holds.

Proposition 3.2.5. An ideal I is regular if and only if it is stably open-generated.

Proof. Suppose that an ideal I is regular. If I is a regular ideal and t ∈ I, then t ≺ s for

some s ∈ I. Then t∗ ∨ s = 1 implies that t∗ ∈ γ(I), and t∗ ∧ t = 0 implies that t ∈ δ(γ(I)).

Thus I ⊆ δ(γ(I)). Let a ∈ δ(γ(I)), then a ∧ b = 0 for some c ∈ I b ∨ c = 1, whence we

deduce that a ≤ c implies that a ∈ I. So δ(γ(I)) ⊆ I and hence equality.

Conversely, suppose that an ideal I is stably open-generated. That is I = δ(γ(I)). Then

for any x ∈ I, x∧y = 0 for some y ∈ γ(I). But then there exists w ∈ I such that w∨y = 1.

Thus x ≺ w and therefore I is regular.

Corollary 3.2.6. [28] An ultrafilter is regular if and only if it is closed-generated

Dually,

Corollary 3.2.7. A minimal prime ideal is regular if and only if it is open-generated.

Proof. The necessity part follows immediately from Proposition 3.2.5.

Conversely, for the sufficient part, suppose J = δ(F ) for some (proper) filter F. Let x ∈ F.
Then x /∈ J, otherwise y ∧ x = 0 for some y ∈ F implying that 0 ∈ F, a contradiction.

Thus F ⊆ L r J, and hence J = δ(F ) ⊆ δ(L r J) = δ(γ(J)) by Lemma 3.2.2 since is a

prime ideal. So J = δ(γ(J)) and the result follows by Proposition 3.2.5.

Recall that for any filter F in L, sec(F ) = {a ∈ L | a ∧ b 6= 0, for each b ∈ F}.

Definition 3.2.8. A filter F in a frame L is said to be

(a) Convergent if F ∩ S 6= ∅ for any cover S of L.

(b) Clustered if sec(F ) ∩ S 6= ∅ for any cover S of L.

Definition 3.2.9. A filter F in a frame L is said to be free if for any cover S of L such

that sec(F )
⋂
S = ∅.
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Proposition 3.2.6. [28] Let F be a filter in a frame L. Then:

(a) sec(F ) =
⋃
{U | U is an ultrafilter and U ⊇ F}.

(b) b(F ) = sec2(F ).

Proof. (a) Let U be the collection of all ultrafilters that contain F. Then for any Q ∈ U
we have Q = sec(Q) ⊆ sec(F ), which shows that

⋃
U ⊆ sec(F ). On the other hand let

x /∈
⋃
U. Therefore, if Q ∈ U then x /∈ Q; so that x∗ ∈ Q as Q is an ultrafilter. Thus

x∗ ∈
⋂
U = b(F ). Thus, by the (a) part of Proposition 3.2.3, we have that x∗∗∗ = x∗ ∈ F.

Since x ∧ x∗ = 0, x /∈ sec(F ). Therefore sec(F ) ⊆
⋃
U, proving the result.

(b) Let x ∈ b(F ). Then x∗∗ ∈ F. If t is an arbitrary element of sec(F ) then t∧x∗∗ 6= 0 which

implies that t ∧ x 6= 0. So x meets every member of sec(F ) and is therefore in sec2(F ),

establishing the one inclusion. Now let a ∈ sec2(F ). Then a∗ /∈ sec(F ) = sec(F ) =
⋃
U.

As argued above that a ∈ Q for each Q ∈ U. So a ∈ b(F ), and the reverse inclusion

follows.

Lemma 3.2.3. Let F and Q be filters in a frame L such that F ⊆ Q. If F is free, then so

is Q.

Proof. Suppose that F ⊆ Q and F is a free filter in L and Q is a maximal. Since F is free

there is a cover S of L such that sec(F ) ∩ S = ∅. Since Q is a maximal filter, it follows

that Q = sec(Q) in [39]. But sec(F ) ⊆ sec(Q). Since sec(F ) is maximal filter it follows

that sec(F ) = sec(Q). Hence sec(Q) ∩ S = ∅ showing that Q is also free.

The following propositions is the frame analogue of Theorem 2.4.5, it has been taken

verbatim in [28].

Proposition 3.2.7. [28] The following are equivalent for a regular frame L.

(a) Every free ultrafilter in L is regular.

(b) Every free prime filter in L is an ultrafilter.

Proof. (a) ⇒ (b): Let F be a free prime filter and Q be an ultrafilter with F ⊆ Q.

We want to show that F = Q. Since F is free and Q ⊇ F, Q is also free. So Q is a
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free ultrafilter and therefore, by hypothesis, Q is regular. Thus by Proposition 3.2.5 we

have that Q = γ(δ(Q)). Since Q is an ultrafilter, δ(Q) = L r Q by Lemma 3.2.2. Thus,

Q = γ(L r Q). Now let x ∈ Q. Then there is y ∈ L r Q such that x ∨ y = 1. So x ∨ y
is an element of the prime filter F, hence x ∈ F or y ∈ F. But y /∈ F because y /∈ Q and

F ⊆ Q. So x ∈ F, and therefore F = Q and we are done.

(b) ⇒ (a): Let F be a free ultrafilter. We must show that F is regular. Put J = L r F.

Then J is an ideal. Find a maximal ideal I with I ⊇ J and put P = Lr I. Notice that P

is a prime filter and, by Lemma 3.2.2,

P = γ(I) = Lr I ⊆ Lr J = F.

If we can show that P is free, then (P being prime) we will have that P is an ultrafilter by

hypothesis. Thus we will have that P = F, and so F will be a closed-generated ultrafilter

and will therefore be regular by Corollary 3.2.5. Because F is a free ultrafilter, there is a

cover C of L such that C ∩ F = ∅. We claim that sec(P ) ∩ C = ∅. If not, let t be in the

intersection and pick c ∈ C such that t ≺ c. Then t∗ ∨ c = 1, so that t∗ ∈ P or c ∈ P

because P is prime. Since t ∈ sec(P ), we cannot have t∗ ∈ P. Thus c ∈ P ; which is a

contradiction because P ⊆ F and F misses C. It follows therefore that P is free, and we

are done.

Definition 3.2.10. A frame L is normal if for any elements a, b ∈ L such that a ∨ b = 1,

there are elements c, d ∈ L such that c ∧ d = 0 and a ∨ c = 1 = b ∨ d.

Definition 3.2.11. A frame L is said to be extremally disconnected if a∗ ∨ a∗∗ = 1 for

every a ∈ L.

The equivalent definition is that the frame L is said to be extremally disconnected if for

a, b ∈ L such that a∧ b = 0 there exist u, v ∈ L such that u∨ v = 1 and u∧ a = 0 = b∧ v.

One can see clearly from the equivalent statement of the preceding definition that ex-

tremally disconnectedness is a dual notion of normality.

Proposition 3.2.8. [28] A frame is normal if and only if its closed-generated filters are

precisely the stably closed-generated ones.

The dual statement also holds as seen below.
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Proposition 3.2.9. A frame is extremally disconnected if and only if its open-generated

ideals are precisely the stably open-generated ones.

Proof. Let L be an extremally disconnected frame and J be an open-generated ideal in L.

We must show that J is stably open-generated. Say J = δ(F ) for some filter F. In view

of the earlier Observation 3.2.1, it suffices to show that J ⊆ δ(γ(J)). Let x ∈ J and pick

y ∈ F such that x∧ y = 0. By extremal disconnectedness find u, v ∈ L such that u∨ v = 1

and u ∧ v = 0 = y ∧ v. Now y ∧ v = 0 implies v ∈ J since y ∈ F, whence u ∨ v = 1 implies

that u ∈ γ(J). Thus x ∧ u = 0 implies that x ∈ δ(γ(J)), as required.

Conversely, let L be a frame with the stated property and suppose a ∧ b = 0. To prove

that L is extremally disconnected we may assume, without loss of generality, that b 6= 0

and a 6= 1. Since a ∧ b = 0, we have, by hypothesis, that

a ∈ δ(↑b) = δ(γ(δ(↑b))).

Now take p ∈ γ(δ(↑b)), q ∈ δ(↑b) and r ∈↑b such that p ∧ a = 0, p ∨ q = 1, q ∧ r = 0.

Since r ≥ b, it follows that q ∧ b = 0, and therefore p and q are the elements required to

show extremal disconnectedness.

3.3 Balanced ideals

In this section we give the definition of a sparce ideal in frames and show that an ideal is

sparce if for any nonzero element in the frame meets a nonzero element in the ideal. We

use the definition of a balanced ideal introduced by Dube and Mugochi in [34] to show that

there is a one-to-one correspondence between the points of βL and the balanced ideals of

Coz L. Although ideals are dual notions of filters in topological spaces, the notion of a

balanced ideal in a frame is not obtained from dualisation of a balanced filter and extend

it to frames. Here we show that there is a one-to-one correspondence between the points

of βL and the balanced ideals of Coz L.

Definition 3.3.1. Let J be an ideal in a frame L.

(a) O(J) = {a ∈ L | there exists b ∈ J such that a ∨ b = 1}.
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(b) sec∗(J) = {a ∈ L | a ∨ b 6= 1, for each b ∈ J}.

(c) J is nontrivial provided J 6= {0}.

(d) J is a sparce ideal if for each nontrivial ideal I there exists a minimal prime ideal K

such that K � I and K � J.

(e) A collection of ideals {Jα | α ∈ I} is called uniformly sparce if for each nontrivial

ideal H there exists a minimal prime ideal K such that K � H and K � Jα for each

α ∈ I.

The above definition is the frame analogue of the Definition 2.1 in [18]. Here the reader

must not confuse the definition of sec∗(J) of an ideal J with that of sec(F ) for any subset

F of L. We used sec∗(J) of an ideal J just to follow Carlson’s terminology in [18]. To avoid

any confusion we will indicate with subscript (∗) for sec(J) of an ideal J by sec∗(J).

Observation 3.3.1. For a closed filter F in a topologicalX, we have sec2(F ) = sec(sec(F )).

But for an ideal J in a frame L, it is not necessarily true that sec2∗(J) = sec∗(sec∗(J)).

Indeed if a ∨ b 6= 1 and b ∨ c 6= 1, one cannot conclude that a ∨ b ∨ c 6= 1 or a ∨ c 6= 1.

Lemma 3.3.1. Let J1 and J2 be an ideals on a frame L. Then J1 ≤ J2 if and only if

G(J1) ≤ G(J2).

Proof. Let a ∈ G(J1). Then a∗ ∈ J1, so a∗ ∈ J2 and hence a ∈ G(J2).

Conversely, suppose that G(J1) ≤ G(J2). Let a∗ ∈ J1. Then a ∈ G(J1), and hence a ∈ G(J2),

so a∗ ∈ J2.

Proposition 3.3.1. Let J be an ideal on a frame L. Then the following are equivalent:

(1) J is a sparce ideal.

(2) For 0 6= a ∈ L there exists b ∈ J such that a ∧ b 6= 0.

Proof. (1) ⇒ (2): Let 0 6= a ∈ L and J be a sparce ideal. Then ↓a is a nontrivial ideal.

So by hypothesis there exists a minimal prime ideal K such that K � ↓a and K � J.

Take b =
∨
J. We claim that a ∨ b /∈ K. Otherwise either a ∈ K or b ∈ K because K is

a prime ideal. If a ∈ K, then ↓a is a prime ideal contained in K, a contradiction because
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K is a minimal prime ideal. Similarly, if b ∈ K, then ↓b is a prime ideal contained in K,

contradicting the minimality of K. Now a /∈ K ⇒ a ∈ L r K where L r K is a filter.

Similarly b ∈ L r K. So a, b ∈ L r K and L r K is filter, so a ∧ b ∈ L r K and hence

a ∧ b 6= 0.

(2) ⇒ (1): Let J be an ideal such that for each 0 6= a ∈ L there exists b ∈ J such that

a ∧ b 6= 0. Let c = a∗ ∨ b∗. Then ↓c is a minimal prime ideal containing both a∗ and b∗.

We claim that ↓c is a minimal prime ideal containing both a∗ and b∗. If it is, then we are

done. If not, there is a minimal prime ideal K containing a∗ and b∗. Now ↓a is a nontrivial

ideal. So indeed K is such that K � ↓a and K � J. Hence J is a sparce ideal.

To show that there is a one-to-one correspondence between the points of βL and the

balanced ideals of Coz L, we first extend the result of Carlson [20]. But before embarking

on this journey we first extend to frames two important results of Carlson in [20] repeated

in this dissertation as Theorem 2.5.1 and Theorem 2.5.2. We start with a lemma.

Lemma 3.3.2. If a, b ∈ Coz L, then a ∧ b ∈ Coz L.

Proof. A cozero element of L is an element of the form coz ϕ for some ϕ ∈ RL. Now

a = coz γ for some γ ∈ RL and b = coz δ for some δ ∈ RL. Now

a ∧ b = coz γ ∧ coz δ = coz γδ, γδ ∈ RL.

Hence a ∧ b ∈ Coz L.

Theorem 3.3.1. Let L be a completely regular frame and Ip be a minimal prime ideal in

Coz L. Set

Vp = {a ∈ Coz L | a misses Ip}.

Then Vp is a minimal prime filter in Coz L.

Proof. Clearly from the definition of Vp, 0 /∈ Vp since 0 ∈ Ip because Ip is an ideal. Let

a, b ∈ Vp. Then we need to show that a∧b ∈ Vp. Then a ∈ Coz L, a misses Ip and b ∈ Coz L,

b misses Ip. Now a ∧ b ≤ a and a misses Ip, so a ∧ b misses Ip. That a ∧ b ∈ Coz L follows

from Lemma 3.3.2. Hence a ∧ b ∈ Vp.
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Let a, b ∈ Coz L, a ≤ b with a ∈ Vp. We need to show that b ∈ Vp. Suppose on contrary

that b /∈ Vp. Then b is a cozero element which does not miss Ip. Then b ∈ Ip and so a ∈ Ip
since Ip is an ideal is a down-set. But this contradicts the hypothesis that a ∈ Vp. Hence

b ∈ Vp and hence Vp is a filter in Coz L.

It remains to show that Vp is a prime filter. To this end, let a, b ∈ Coz L such that

a ∨ b ∈ Vp. Then if a ∨ b misses Ip, then both a and b misses Ip. That is both a and b are

elements of Vp, so Vp is a prime filter. Suppose W is a prime filter in Coz L which misses

Ip with W ⊆ Vp. Take any b ∈ Vp, then b ∈ Coz L and b misses Ip, so that b ∈ W. Hence

W = Vp so that Vp is a minimal prime filter in Coz L.

Theorem 3.3.2. Let L be a completely regular frame and let V be a minimal prime filter

in Coz L. Set

I = {a ∈ Coz L | a /∈ V }.

Then, I is a minimal ideal in Coz L.

Proof. Clearly, the bottom element 0 ∈ I because 0 /∈ V. Take a, b ∈ I, then a, b ∈ Coz L

and a, b /∈ V. We want to show that a ∨ b ∈ I. Suppose on contrary that a ∨ b ∈ V. Then

by primeness of V either a ∈ V or b ∈ V. Which means either a /∈ I or b /∈ I but both a

and b are in I. A contradiction, so a ∨ b /∈ V, so that a ∨ b ∈ I. Let a, b ∈ Coz L, a ≤ b

and b ∈ I. Then b /∈ V and clearly a /∈ V because V is a filter. So indeed a ∈ I and hence

I is an ideal. Suppose J is an ideal in Coz L which does not contain elements of V such

that J ⊆ I. Pick u ∈ I, then u ∈ Coz L and u /∈ V, so u ∈ J. Therefore I = J and hence I

is a minimal ideal of Coz L.

We now give the definition of a balanced ideal which plays significant role on this disser-

tation.

Definition 3.3.2. An ideal I in a frame L is said to be balanced if, for any a ∈ L, a∗∗ ∈ I
whenever a ∈ I.

Theorem 3.3.3. Let L be a completely regular frame. For any I ∈ βL with I < 1βL, the

set

J = {c ∈ Coz L | rL(c) ≤ I}

is a balanced ideal of Coz L.
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Proof. Clearly 0 ∈ Coz L and rL(0) = 0 ∈ I, rL(0) ≤ I, so 0 ∈ J. Take a, b ∈ J. Then

a, b ∈ Coz L with rL(a) ≤ I and rL(b) ≤ I. Then rL(a ∨ b) = rL(a) ∨ rL(b) ≤ I ∨ I = I.

Hence rL(a ∨ b) ≤ I and so a ∨ b ∈ J. Furthermore, let a ≤ b and b ∈ J. Then b ∈ Coz L

with rL(b) ≤ I. Now a ≤ b ⇒ rL(a) ≤ rL(b) ≤ I. Since I is an ideal, it follows that

rL(a) ≤ I and hence a ∈ J.
Let a ∈ J. Then a ∈ Coz L and rL(a) ≤ J. Since I is a regular ideal in βL, it follows that

there is rL(b) ∈ I such that rL(a) ≺ rL(b). Now (rL(a))∗ ∨ rL(b) = 1βL. Since rL(a)∗∗ ∧
rL(a)∗ = 0βL, it follows that rL(a)∗∗ ≺ rL(b). Thus rL(a∗∗) ≤ (rL(a))∗∗ ≺ rL(b). Thus

rL(a∗∗) ≺ rL(b). Hence rL(a∗∗) ≺ I. Therefore rL(a∗∗) = rL(a)∗∗ ≺ I. It remains to show

that a∗∗ ∈ Coz L. Furthermore, I is a regular ideal, so for each rL(a∗∗) ∈ I there is rL(a) ∈ I
such that rL(a) ≺ rL(a∗∗). Now rL(a∗∗) ∨ rL(a∗) = 1βL. The join map j : βL→ L, takes

j(1βL) = j(rL(a∗∗) ∨ rL(a∗)) = j(rL(a∗∗)) ∨ j(rL(a∗)) = a∗∗ ∨ a∗ = 1L.

That is, a∗∗ is complemented and hence a∗∗ ∈ Coz L. So indeed a∗∗ ∈ J and thus J is a

balanced ideal of Coz L.

From the preceding Theorem, the following theorem is apparent.

Theorem 3.3.4. The map I → J, where J is as above, is a bijection between βLr {1βL}
and the balanced ideals of Coz L.

Corollary 3.3.1. The map I → J, is a bijection between βNr {1βN} and the ideals of N.

Corollary 3.3.2. The map I → J, where J is as above, is a bijection between ideals of

Coz (βL) and the balanced ideals of Coz L.

Theorem 3.3.5. Let 0βL 6= I 6= 1βL be a complemented element in βL. Then there exist

balanced ideals of Coz L, J and K such that each minimal ideal H of Coz L is contained

in either J or K but not both, that is H ≤ J or H ≤ K.

Proof. Let I be a complemented element in βL such that 0βL 6= I 6= 1βL. Let I∗ be the

complement of I in βL. Then I ∧ I∗ = 0βL and I ∨ I∗ = 1βL. By Theorem 3.3.3

J = {u ∈ Coz L | rL(u) ≤ I} and K = {v ∈ Coz L | rL(v) ≤ I∗}

are balanced ideals of Coz L and they don’t meet. If H is a minimal ideal of Coz L, then

H is either contained in J or K and cannot be contained in both because J and K do not

meet.
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Proposition 3.3.2. For a completely regular frame L, For i = 1, 2; Ii < 1βL, let

Ji = {a ∈ Coz L | rL(a) ≤ Ii}.

Then the following are equivalent:

(1) I2 ≤ I1,

(2) J2 ≤ J1.

Proof. (1) ⇒ (2): Let a ∈ J2. Then a ∈ Coz L with rL(a) ≤ I2, then rL(a) ≤ I1 since

I2 ≤ I1 by hypothesis. So a ∈ J1. Hence J2 ≤ J1.

(2)⇒ (1): Let w ∈ I2. Then w ≤ I2. Therefore w = rL(a) for some a ∈ J2, then w = rL(a)

for some a ∈ J1, w ∈ I1 and we are done.

3.4 Nearness frames

By a cover A of a frame L we mean a subset of L such that
∨
A = 1. We write Cov(L) for

the set of all covers of the frame L. The frame L is compact if for any A ∈ Cov(L), there

is a finite F ⊆ A in Cov(L).

Let L be a completely regular frame. Then by a compactification of L we mean a dense

onto frame homomorphism h : M → L with M being a compact regular frame. The

Stone-Čech compactification homomorphism of L is normally denoted by βL→ L.

Next recall the background of nearness frames in section 1.3.8, Given a collection µ ⊆
Cov(L), we say x ∈ L is µ− strongly below y ∈ L, written xCµ y (or simply xCy) if there

is a cover A ∈ µ such that Ax ≤ y.

Lemma 3.4.1. [6], [7],[43] A frame L has a nearness if and only if L is a regular frame.

Proof. Suppose that the frame L has a nearness µ say. Then each x ∈ L has the represen-

tation

x =
∨
{y ∈ L | y /µ x}

by the admissibility of µ. If Ay ≤ x for some A ∈ µ. Then for z =
∨
{t ∈ A | t∧ y = 0}, we

have z ≤ y∗. So, z ∧ y ≤ y∗ ∧ y = 0. Thus z ∨ x = 1. So, we have y ∧ z = 0 and z ∨ x = 1.

Thus y ≺ x and so, x =
∨
{y ∈ L | y ≺ x}. Hence L is regular.
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Conversely, suppose that L is regular. Let µ be the filter in L generated by all finite covers

and let x ∈ L. By regularity, x =
∨
{y ∈ L | y ≺ x}. If y ≺ x, then A = {x, y∗} is a µ-cover

since it is clear that y∗ ∨ x = 1. Also, Ay =
∨
{a ∈ A | a ∧ y 6= 0} = x. Thus y /µ x, so

x =
∨
{y ∈ L | y /µ x}. Hence, µ is admissible and thus a nearness on L.

Lemma 3.4.2. [43],[48],[49]

(1) If L is a compact regular frame, then Cov(L) is the unique nearness on L, and, in

fact, Cov(L) is a uniformity on L.

(2) A frame has a uniformity if and only if it is completely regular.

(3) If L is a regular frame, then Cov(L) is a uniformity if and only if the frame L is

paracompact.

Remark 3.4.1. For any regular frame L, any filter µ ⊆ Cov(L) containing all finite covers

is thus admissible and so is a nearness by Lemma 3.4.1. Thus, Cov(L) itself is a nearness,

which we call the fine nearness.

A frame homomorphism h : L → M between nearness frames (L, µL) and (M,µM) is

called a uniform or nearness homomorphism if h(A) ∈ µM for each A ∈ µL. Thus we have

the category NFrm of nearness frames and uniform homomorphisms. Also, NFrm ⊆
RegFrm is a subcategory of RegFrm.

We thus adopt the convention that all frames considered hereafter in this section are

assumed to be regular.

Let L be a regular frame. Put

(1) µT = {A ∈ Cov(L) | there exists B ∈ Cov(L) such that B ≤ A}.

(2) µP = {A ∈ Cov(L) | there exists finite B ∈ Cov(L) such that B ≤ A}.

(3) µL = {A ∈ Cov(L) | there exists countable B ∈ Cov(L) such that B ≤ A}.

(4) µLF = {A ∈ Cov(L) | there exists locally finite B ∈ Cov(L) such that B ≤ A}.

Theorem 3.4.1. [43] µT , µP , µL, µLF are nearness structures on the frame L.

66



Proof. µT is clearly the fine nearness, i.e. µT = Cov(L). We shall show that

(1) µP

(2) µL

(3) µLF

are all nearnesses.

(1) If A,B ∈ µP , then there exists finite covers A
′

and B
′

of L such that A
′ ≤ A and

B
′ ≤ B. Then A

′ ∧ B′ is a finite cover and A
′ ∧ B′ ≤ A ∧ B. So, A ∧ B ∈ µP . Also, if

A ≤ C then there exists A
′

finite such that A
′ ≤ A ≤ C ⇒ C ∈ µP . Hence, µP is a filter

on L. But, µP clearly contains all finite covers, so by Remark 3.4.1, µP is a nearness.

(2) Let A,B ∈ µL be any. Then there exists countable covers A
′

and B
′

of L such that

A
′ ≤ A and B

′ ≤ B. Then A
′ ∧ B′ is a countable refinement of A ∧ B, so A ∧ B ∈ µL.

Also if A ≤ C, then A
′ ≤ A ≤ C ⇒ A

′ ≤ C. Thus A
′

is a countable refinement of C and

so C ∈ µL. So, µL is a filter. Also, as every finite cover is countable, µL contains all finite

covers and thus by Remark 3.4.1, µL is admissible. Hence µL is a nearness on L.

(3) Let A,B ∈ µLF be arbitrary. Then there exists locally finite covers A
′

and B
′

of L

such that A
′ ≤ A and B

′ ≤ B. Then A
′ ≤ B

′
is a locally finite refinement of A ∧B. Thus

A∧B ∈ µLF . Again, if A ≤ C, then A
′
is a locally finite refinement of C. So, µLF is a filter.

Again, as µLF contains all finite covers, by Remark 3.4.1, µLF is admissible and hence a

nearness on L.

Remark 3.4.2. [43] Using the notation in [18] and [19], we call µP the Pervin nearness

structure and µL the Lindelöf nearness structure on the regular frame L.

3.5 Locally finite nearness frames

We refer to [15], [18], [19] and [22] and attempt to find generalisations to the concepts

contained therein for nearness frames.

In a frame L, a subset A is locally finite provided that there exists B ⊆ Cov(L) such that

each b ∈ B meets only finitely many elements of A. The frame L is paracompact provided
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that each cover of L has a locally finite refinement, and L is countably paracompact provided

that each countable cover of L has a locally finite refinement. A nearness µ ⊆ Cov(L) is

called locally finite provided that for each uniform cover A there exists a locally finite cover

B ∈ µ such that B ≤ A. Then (L, µ) is called a locally finite nearness frame.

Theorem 3.5.1. [43]:

(1) µLF is a locally finite nearness on L.

(2) If v is any locally finite nearness on L, then v ⊆ µLF .

Proof. (1) Proved in Theorem 3.4.1.

(2) If v is any locally finite nearness on L and A ∈ v, then there exists locally finite

B ∈ v such that B ≤ A. Then obviously, B ≤ B and B locally finite ⇒ B ∈ µLF .
Since µLF is a filter and µLF 3 B ≤ A⇒ A ∈ µLF . Thus v ⊆ µLF .

Remark 3.5.1. [43] We call µLF the locally finite nearness on L.

Definition 3.5.1. The nearness frame (L, µ) is called

(a) paracompact provided that each uniform cover has a locally finite uniform refinement

i.e. for all A ∈ µ there exists B ∈ µ such that B is locally finite and B ≤ A.

(b) countably paracompact provided that each countable uniform cover has a uniform

locally finite refinement.

Remark 3.5.2. [43] It is quite vacuous that a regular frame L is paracompact provided

that (L,Cov(L)) is a paracompact nearness. Paracompact nearness spaces have been

studied in [15].

3.6 Pervin nearness frame

Recall the definition of a cover of L from section 1.3.8. For two covers A and B of L, we

have

A ∧B = {a ∧ b | a ∈ A, b ∈ B}.
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Note that A∧B is a common refinement of A and B, maximal in the preorder ≤ of covers.

Furthermore, if A,B are two covers we will write

AB = {Ab | b ∈ B}.

Facts.

(1) For any cover A, x ≤ Ax,

(2) A ≤ B and x ≤ y ⇒ Ax ≤ By,

(3) A(Bx) ≤ (AB)x = A(B(Ax)), and

(4) (A1 ∧ ......... ∧ An)(B1 ∧ ... ∧Bn) ≤ (A1B1) ∧ ... ∧ (AnBn).

Definition 3.6.1. A uniformity on a frame L is a nonempty admissible system of covers

A such that

(U1) A ∈ A and A ≤ B ⇒ B ∈ A,

(U2) A,B ∈ A ⇒ A ∧B ∈ A,

(U3) for every A ∈ A there is a B ∈ A such that BB ≤ A.

A cover B such that BB ≤ A is often called a star-refinement of A; thus, (U3) is often

expressed by saying that each A ∈ A has a star-refinement in A.

The collection of all covers of a frame generates the Pervin quasi-uniform structure for

that frame. All covers refined by some finite cover forms a nearness structure for a frame.

This nearness structure will be called the Pervin nearness structure.

The Pervin nearness structure plays an interesting role in the family of all compatible

nearness structure on a frame. It is the smallest totally bounded structure, the smallest

contigual structure, and the largest ultrafilter generated structure.

The completion of the contigual reflection for T2-nearness frame is the Wallman compact-

ification. But the contigual reflection of a nearness frame is the Pervin nearness frame.

A prime extension is one for which each trace filter is a prime filter. Since the Pervin
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nearness structure is ultrafilter generated it follows that the Stone-Čech compactification,

if the frame is normal, is a prime extension.

We can construct the Stone-Čech compactification for a normal frame, using the strict

extension on the family of all minimal prime filters.

Definition 3.6.2. Let (L, ηL) be a nearness frame. Let S ⊆ L. Then S is called a sparce

near collection if S ∈ ηL and for each B ∈ ηL such that B is not contained in each ηL-cluster,

then there exists an ηL-cluster A such that B � A and S � A.

Let {Sα | α ∈ I} ⊂ ηL. Then {Sα | α ∈ I} is called a uniformly sparce family if for each

B ∈ ηL such that B is not contained in each ηL-cluster, there exists an ηL-cluster A such

that B � A and Sα � A for each α ∈ I.

Clearly each member of a uniformly sparce family is itself a sparce near collection.

Definition 3.6.3. Let L be a regular frame. A nearness frame (L, µ) is said to be

(i) totally bounded provided that for each A ∈ µ there exists B ∈ Cov(L) such that

B ≤ A and B is finite.

(ii) contigual if for each µ-cover A there exists a µ-cover B such that B is a finite

refinement of A.

Theorem 3.6.1. Let (L, µ) be a nearness frame. Then

(1) µP is contigual.

(2) µP is the smallest compatible contigual nearness structure on L.

(3) µP =
⋂
{µ | µ is a compatible contigual nearness structure on L}.

(4) µP =
⋂
{µ | µ is a compatible totally bounded nearness structure on L}.

(5) µP is the smallest compatible totally bounded nearness structure on L.

(6) The Pervin nearness structure is contained in each compatible totally bounded near-

ness structure on L.

Definition 3.6.4. A cover B is said to corefines A if for each b ∈ B there exists a ∈ A
such that a ≤ b.
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Theorem 3.6.2. Let (L, µP ) be a nearness frame.

(1) µP = {A ∈ Cov(L) | G(J) ≤ A for some minimal prime ideal J}.

(2) A is minimal in µP if and only if there exists a minimal prime ideal J such that

G(J) = A.

(3) γP = {A ∈ Cov(L) | there exists a minimal prime filter B that corefines A}.

Lemma 3.6.1. [18] Every contigual nearness structure in a frame L is concrete.

Proof. Let S ∈ µ. The nearness structure µ is contigual, so there exists A ∈ µ such that

A is a finite refinement of S. Also, A ∈ µ so there is a B ∈ µ such that B is also a finite

refinement of A. Now the union of all the finite sets in µ is also in µ and contain S. Thus

S is contained in the µ-cluster. Hence µ is concrete.

Corollary 3.6.1. Every Pervin nearness frame is concrete.

Proof. Every Pervin nearness structure is contigual and by the preceding Lemma 3.6.1 the

result follows immediately.

The following theorem compares the Locally finite nearness, the Pervin nearness, the Lin-

delöf nearness and the fine nearness.

Theorem 3.6.3. [43] For any regular frame L

(1) µP ⊆ µLF ⊆ µT .

(2) µLF = µT ⇔ L is a paracompact frame.

(3) µL ⊆ µLF ⇔ L is a countably paracompact frame.

(4) µLF ⊆ µL ⇔ every locally finite cover of L has a countable subcover.

Proof. (1): If A ∈ µP , then there exists finite B ∈ Cov(L) such that B ≤ A. As every

finite cover is locally finite, B ∈ µLF . Since B ≤ A and µLF is a filter ⇒ A ∈ µLF . Thus

µP ⊆ µLF . As µT = Cov(L), clearly µLF ⊆ µT .
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(2): Suppose that µLF = µT . Let A ∈ Cov(L) be any. Then Cov(L) = µT ⇒ A ∈ µT =

µLF . Then there exists locally finite B ∈ Cov(L) such that B ≤ A. Thus each cover of L

has a locally finite refinement ⇒ L is paracompact.

Conversely, if L is paracompact, then by (1) it suffices to show that µT ⊆ µLF . So, let

A ∈ µT be arbitrary. Then A ∈ Cov(L) and A ≤ A. Since L is paracompact and A ∈
Cov(L)⇒ there exists B ∈ Cov(L), B locally finite such that B ≤ A. Then B is a locally

finite refinement of A. Thus A ∈ µLF . So, µT ⊆ µLF .

(3): Suppose that µL ⊆ µLF . Let A be any countable cover of L. Then clearly, A ∈ µL.
Thus A ∈ µ. Thus A ∈ µL. So, there exists a locally finite B ∈ Cov(L) such that B ≤ A.

Thus A has a locally finite refinement and clearly L is countably paracompact. For the

converse, if A ∈ µL then there exists a countable cover B such that B ≤ A. By countably

paracompactness there exists a locally finite refinement C ofB and hence of A i.e., A ∈ µLF .
So, µL ⊆ µLF .

(4): Suppose that µLF ⊆ µL. Let A be a locally finite cover of L. Then A ∈ µLF ⇒
A ∈ µL. Thus there exists a countable B ∈ Cov(L) such that B ≤ A. Then for each

b ∈ B there exists ab ∈ A such that b ≤ ab. As B is countable cover, AB = {ab ∈ A | b ∈
B} ⊆ A is a countable subcover of A.

Conversely, suppose that every locally finite cover of L has a countable subcover. Let

A ∈ µLF . Then there exists a countable subcover A
′

of A. Since A
′ ⊆ A we have A ∈ µL,

whence µLF ⊆ µL.

Theorem 3.6.4. [43] (L, µLF ) is a locally fine nearness frame.

Proof. Let A ∈ µLF and {Ba | a ∈ A} be a family of µLF -covers. We require that

{a ∧ b | a ∈ A and b ∈ Ba} ∈ µLF . Since A ∈ µLF , there exists a locally finite S ∈ Cov(L)

such that S ≤ A. Then for each s ∈ S, there exists as ∈ A such that s ≤ as. Then

B = {Ba | s ∈ S} ⊆ {Ba | a ∈ A}. Thus B ⊆ µLF . Thus for each s ∈ S, Bas ∈ µLF ⇒
there exists Ts locally finite such that Ts ≤ Bas . Since S and Ts are locally finite for each

s ∈ S we have S∧Ts is locally finite and for each x ∈ S∧Ts, x = u∧v for some u ∈ S and

v ∈ Ts. Then there exists as ∈ A such that u ≤ au as S ≤ A. Also, there exists b ∈ Bas such

that v ≤ b as Ts ≤ Bas . Thus x = u ∧ v ≤ au ∧ b. So, S ∧ Ts ≤ {a ∧ b | a ∈ A and b ∈ Ba}.
Since µLF is a filter we have {a ∧ b | a ∈ A and b ∈ Ba} ∈ µLF .
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Theorem 3.6.5. [43] For a regular frame L, the following are equivalent:

(1) µP = µLF .

(2) Every locally finite cover of L has a finite subcover.

(3) µLF is totally bounded.

(4) µLF is contigual.

Proof. (1) ⇒ (2): Suppose that µP = µLF . Let A be any locally finite cover of L. Then

A ∈ µLF ⇒ A ∈ µP . Thus there exists a finite B ∈ Cov(L) such that B ≤ A. Then for each

b ∈ B, there exists ab ∈ A such that b ≤ ab. Then {ab ∈ A | b ∈ B} is a finite subcover of

A.

(2) ⇒ (3): Suppose (2). For any A ∈ µLF , there exists a locally finite B ∈ Cov(L) such

that B ≤ A. Then B has a finite subcover C. Then C is a finite refinement of A. Thus µLF

is totally bounded.

(3) ⇒ (4): Suppose that µLF is totally bounded. Let A be a µLF - cover of L. Then by

total boundedness there exists a finite B ∈ cov(L) such that B ≤ A. Since every finite

cover is locally finite, clearly B is a µLF - cover. Thus every µLF - cover has a finite µLF -

refinement ⇒ µLF is contigual.

(4) ⇒ (1): Suppose that µLF is contigual. By the previous Theorem 3.6.3, it suffices to

show that µLF ⊆ µP . Let A ∈ µLF be any. As µLF is contigual, A has a finite refinement

B ∈ µLF . So, clearly A ∈ µP . Thus µLF ⊆ µP .

We call the nearness frame (L, v) a locally fine nearness frame if whenever A ∈ v and

{Ba ∈ v | a ∈ A} ⊆ v is any v-subcollection, then {a ∧ b | a ∈ A and b ∈ Ba} is a v-cover.

3.7 Strict Extensions in Frames

The type of frame homomorphism under investigation here is described as follows:

Definition 3.7.1. A frame homomorphism h : M → L is called

(1) strict if M is generated by the image of the right adjoint h∗ : L→M, and
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(2) a strict extension if it is strict, dense, and onto.

It is worth adding that, for regular M, any dense h : M → L is strict because x ≺ a in M

implies x ≤ h∗h(x) ≤ a since h∗h(x) ∧ x∗ = 0 (act the dense h).

Note that, for topological spaces, an extension X ⊆ Y (meaning: X is a dense subspace

of Y ) is called strict whenever the corresponding homomorphism DY → DX between the

frames of open sets of Y and X is a strict extension in the present sense, and there is a

description of all strict extension of a given space by means of the open filters on that

space (Banaschewski [3]). In the next section, we shall study the analogue of the latter for

frames; here we present a few generalities concerning strict extensions of frames.

The basic example in this context is given by the frame DL of all non-void downsets of a

frame L, that is, the U ⊆ L such that 0 ∈ U and a ∈ U implies b ∈ U, for all b ≤ a, with

union as join and intersection as meet: the map
∨

: DL → L taking each U to its join∨
U is a frame homomorphism, with right adjoint ↓ : L→ DL where

↓a = {x ∈ L | x ≤ a},

and hence indeed a strict extension.

The map ↓ : L → DL is obviously a (∧, 0, 1)-homomorphism, and in fact universally so

since any arbitrary homomorphism ϕ : L → N of this kind into a frame N determines a

(necessarily unique) frame homomorphism ϕ : DL→ N such that ϕ(↓a) = ϕ(a):

ϕ(U) =
∨

ϕ[U ].

It follows from this fact that the strict extension
∨

: DL→ L, in turn, is universal in the

sense that, for any other such h : M → L, there is a factorization∨
: DL

h−→M
h−→ L.

This results from the fact that h∗ : L→ M is a (∧, 0, e)-homomorphism and hence deter-

mines h = h∗ such that

hh(↓a) = hh∗(a) = a =
∨
↓a

for any a ∈ L, and therefore hh =
∨
. Also, h is onto since h is strict extension h : M → L.

Lemma 3.7.1. [10] If h = fg for onto g : M → N and arbitrary f : N → L then f∗ = gh∗

and f is a strict extension.

74



Proof. Since h is a strict extension, it follows that it is onto so that f is also onto. Also

f is dense since h is dense and g is onto. Further, f(x) ≤ y implies fgg∗(x) ≤ y, hence

g∗(x) ≤ h∗(y) and consequently x ≤ gh∗(y) since g is onto; conversely, the latter implies

f(x) ≤ hh∗(y) ≤ y by the properties of h. Hence f∗ = gh∗, as claimed, and since g is onto

this shows f is strict.

Together with the previous observation concerning DL, this immediately leads to the

following characterization:

Proposition 3.7.1. [10] The strict extensions M → L are exactly the homomorphisms

obtained by factoring DL→ L = DL→M → L with onto DL→M.

We note that this is the precise counterpart for frames of a result of Banashewski [3] on

strict extensions of T0 spaces, where one has a universal such extension for any given space,

provided by the space of all proper filters in the corresponding frame of open sets. The

connection between the two results lies in the fact that, for any frame L, the proper filters

in L correspond exactly to the completely prime filters in DL, and the original result of

[3] is in fact a consequence of Proposition 3.7.1.

We now turn to a topologically motivated construction of particular strict extensions of a

frame L due to Hong [39].

Given a frame L and a set X of (proper) filters F in L, the latter viewed as a space with

its usual topology DX generated by the sets

Xa = {F ∈ X | a ∈ F},

we have a (∧, 0, 1)-homomorphism L→ DX given by a 7−→ Xa and hence homomorphism

DL→ DX, taking ↓a to Xa and consequently each U ∈ DL to

XU =
⋃
{Xa | a ∈ U} = {F ∈ X | F ∩ U 6= ∅}

(note X↓a = Xa). Together with
∨

: DL→ L, this then determines the homomorphism

DL→ L×DX, U 7−→ (
∨

U,XU),

and we let τXL be the corresponding images frame. Thus, we have the decomposition∨
: DL→ τXL→ L
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where the second map is given by the first projection L×DX → L. It follows from Lemma

3.7.1 that τXL→ L is a strict extension, with right adjoint taking a ∈ L to (a,Xa).

Definition 3.7.2. τXL→ L is called the strict extension of L determinant by X.

Note that, for any U and W in DL,

(
∨

U,XU) ≤ (
∨

W,XW ) if and only if s ≤
∨

W and Xs ⊆ XW

for each s ∈ U, and hence

W = {s ∈ L | s ≤
∨

W, Xs ⊆ XW}

is the largest U ∈ DL mapped to (
∨
W,XW ) by the above homomorphism DL → τXL.

Consequently, the right adjoint of the latter takes each (
∨
W,XW ) to W so that the nucleus

induced by DL→ τXL takes W to W. Thus, τXL can also be described by means of this

nucleus on DL. As an application of this, we have the following:

Theorem 3.7.1. Let (L, µ) be a nearness frame. The following are equivalent:

(1) µ is a nearness structure on L induced by strict extension.

(2) (L, µ) is concrete.

Theorem 3.7.2. Let (L, µP ) be the Pervin nearness frame. Then the completion h :

(M, v)→ (L, µ) is the Wallman compactification (wL) of L.

In a normal frame the Wallman compactification coincides with the Stone-Čech compact-

ification βL of L.

Corollary 3.7.1. Let L be a normal frame. Let (L, µP ) be the Pervin nearness frame.

The completion h : (M, v)→ (L, µP ) is the Stone-Čech compactification (βL) of L.

Corollary 3.7.2. Let L be a frame. Then the Wallman compactification is a prime

extension of L. If L is normal, then βL is a prime extension of L.

Corollary 3.7.3. Let L be a regular frame. Then the Pervin nearness structure on L

is induced by the Wallman compactification of L. If L is normal, the Pervin nearness

structure on L is induced by the Stone-Čech compactification βL of L.
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Definition 3.7.3. Let (L, µ) be a nearness frame. Let S ∈ Cov(L). Then S is a sparce

near collection if S ∈ µ and for each B ∈ µ such that B is not contained in each µ-cluster,

then there exists µ-cluster A such that B � A and S � A.

Definition 3.7.4. Let (L, µ) be a nearness frame. A collection v ∈ Cov(L) is said to be

a µ-cluster provided v is maximal.

Let Sα ∈ µ. Then Sα∈I is called a uniformly sparce family if for each B ∈ µ such that B

is not contained in each µ-cluster, then there exists a µ-cluster A such that B * A and

Sα * A for each α ∈ I.

We observe that each member of a uniformly sparce family is itself a sparce near collection.

Recall from [52, p. 185], that a topological space X is a Baire space if and only if the

intersection of each countable family of dense open sets in X is dense. A set A ⊆ X is

nowhere dense in X if and only intXclXA = ∅. A set A ⊆ X is of first category in X if

and only if A =
∞⋃
n=1

An, where each An is nowhere dense in X. All other subsets of X are

of second category in X. Also, recall that a ∈ L is dense if a∗ = 0.

Definition 3.7.5. Let {Uα} be a countable family of elements in a frame L. Then L is a

Baire frame if and only if (
∧
ui)
∗ = 0 for all dense ui ∈ Uα and each Uα in L.

Recall from Dube [29] that a quotient h : L → M of L is nowhere dense in L if for any

nonzero x ∈ L there is nonzero y ≤ x in L such that h(y) = 0.

Definition 3.7.6. A quotient h : L → M of L is of first category in L if and only if

for every a ∈ M, a = h(
∨

(h∗(an))), where each h∗(an) is nowhere dense in L. All other

quotients of L are of second category in L.

Theorem 3.7.3. A quotient h : L → L of L is of second category in L if and only if

(
∧
ui) 6= 0 for all dense ui ∈ Uα for each countable family Uα in L.

Theorem 3.7.4. Let (L, µ) be a nearness frame. The following statements are equivalent:

(1) µ is a nearness induced on L by a second category strict extension.

(2) (L, µ) is concrete and for each countable {si | i ∈ N} of sparce near collections there

exists a µ-cluster A such that si ∨ A /∈ µ for each i ∈ N.
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Definition 3.7.7. Let (L, µ) be a nearness frame. A nearness frame is said to be concrete

if each S ∈ µ is contained in some µ-cluster.

We end the chapter by providing the pointfree version of Theorem 4.10, Theorem 4.11,

Theorem 4.12, Theorem 4.13 and Corollary 4.14 in [18]. Here we only mention the results

in the context of frames without giving the proofs. Although they seem to be slightly out

of the research topic, they are worthy to be noted.

Proposition 3.7.2. Let (L, µ) be a nearness frame. The following are equivalent:

(1) µ is a nearness structure induced on L by strict Baire extension.

(2) (L, µ) is concrete and each countable family of sparce near collections is uniformly

sparce.

Proposition 3.7.3. Let (L, µP ) be the Pervin nearness frame. Let A ∈ µP .

(1) v is not contained in each µ-cluster if and only if an ideal Lr v is not a trivial ideal.

(2) v is a sparce near collection if and only if Lr v is a sparce ideal.

Proposition 3.7.4. Let L be a regular frame. The following statements are equivalent:

(1) The Wallman compactification of L is of second category.

(2) For each countable collection {Ji | i ∈ N} of sparce ideals there exists a minimal

prime sparce ideal K such that K � Ji for each i ∈ N.

Theorem 3.7.5. Let L be a regular frame. The Wallman compactification of L is a Baire

frame if and only if each countable family of sparce ideals is uniformly sparce.

Corollary 3.7.4. Let L be a normal frame. Then each countable family of sparce ideals

is uniformly sparce.

78



Chapter 4

Miscellaneous

In this chapter we study remote points which was studied by Dube in [31] and the remote

points in perfect extensions studied by Dube and Mugochi in [34]. It is shown that if

h : M → L is a perfect extension of L and p is a point in M, then p is a remote point if

and only if Ip is a balanced ideal of L, where

Ip = {a ∈ L | h∗(a) ≤ p}.

We also study the roundness of the quotient h : βL→M of βL as defined in [31]. It is also

shown that for any I ∈ βL, the closed quotient h : βL→ ↑I is round if and only if there is

only one ideal J of Coz L such that I =
∨
{r(x) | x ∈ J}. We end this chapter (dissertation)

with allusions to some future work by studying z∞-ideals and a nicely balanced ideals of

C∞(X) defined by Ghosh [37]. Our ultimate goal is to put this in frame perspective.

4.1 Remote points

Let X be a topological space and Y ⊇ X be an extension of X. A point p ∈ Y rX is said

to be remote from X if for any nowhere dense set D ∈ X, p /∈ clYD. Remote point were

first defined by Fine and Gillman and subsequently studied by several authors (see [35],

[41], [42] and [45]). Remote points in pointfree topology were first considered by Dube in

[31]. We recall from [29] that a quotient h : L→M of L is said to be nowhere dense if for

every nonzero x ∈ L there exists a nonzero y ≤ x in L such that h(y) = 0. It is also shown

in [29] that a closed quotient L→ ↑a is nowhere dense if and only if a is dense.
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Recall that a point p of βX, where X is a Tychonoff space, is called a remote point if for

any nowhere dense D j X, p /∈ clβXD.

In frame perspective.

Definition 4.1.1. A point I of βL is remote if for each nowhere dense quotient L
h−→

M, I ∨ r(h∗(0)) = 1βL.

Lemma 4.1.1. [31] A quotient L
h−→M is nowhere dense if and only if h∗(0) is dense.

Proposition 4.1.1. [31] (cf.[[27], 5.1 and 14.2]). The following are equivalent for a point

I of βL:

(1) I is remote.

(2) I ∨ r(a) = 1βL for each dense a ∈ L.

(3) For any a ∈ L, r(a) 5 I implies a ∈ I.

(4) For any a ∈ L, r(a∗) 5 I implies r(a) ∨ I = 1βL.

(5) For any J ∈ βL, J∗ 5 I implies r(
∨
J) ∨ I = 1βL.

(6) The set F = {a ∈ L | r(a) ∨ I = 1βL} is an ultrafilter in L.

Proof. (1) ⇒ (2): Let a be a dense element of L. Then the closed quotient L
h−→ ↑a

is nowhere dense. Therefore, by hypothesis, I ∨ r(h∗(0↑a)) = 1βL. But h∗(0↑a) = a, so

I ∨ r(a) = 1βL.

(3)⇒ (4): Suppose r(a∗) 5 I. Since r(a ∨ a∗) = r(a) ∨ r(a∗), r(a) � I, lest we have that

r(a∨a∗) 5 I, implying, by hypothesis, that I contains the dense element a∨a∗. It follows,

therefore that r(a) ∨ I = 1βL since I is a point.

(4)⇒ (5): This is so in light of the fact that J∗ = r((
∨
J)∗) for each J ∈ βL.

(5) ⇒ (6): We check first that F is a filter. Clearly, F is not empty (as 1 ∈ F ) and is an

upset. Suppose a, b ∈ F. Then I∨r(a∧b) = I∨(r(a)∧r(b)) = (I∨r(a))∧(I∨r(b)) = 1βL,

and so a ∧ b ∈ F. In order to show that F is an ultrafilter, let z ∈ L, and suppose z∗ /∈ F.
We must show that z ∈ F. Since z∗ /∈ F, r(z∗)∨ I 6= 1βL, and therefore r(z)∗ = r(z∗) 5 I.

So, by hypothesis, r(
∨
r(z)) ∨ I = 1βL, that is, r(z) ∨ I = 1βL, and therefore z ∈ F.
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(6)⇒ (1): Let L
h−→M be a nowhere dense quotient of L. Then, by Lemma 4.1.1, h∗(0) is

dense, and so, h∗(0) ∈ F since an ultrafilter in a frame contains all dense elements of the

frame. So, by hypothesis, I ∨ r(h∗(0)) = 1βL, and therefore I is remote.

Corollary 4.1.1. [31] A frame is Boolean if and only if every point of its Stone-Čech

compactification is remote.

Definition 4.1.2. A frame L is δ-normally separated in case for every a ∈ L and c ∈ Coz L,

such that a ∨ c = 1, there exists d ∈ Coz L such that d 5 a and d ∨ c = 1. It is apparent

that L is δ-normally separated if and only if for each a ∈ L and c ∈ Coz L, a ∨ c = 1

implies r(a) ∨ r(c) = 1βL.

Proposition 4.1.2. [31] Let L be δ-normally separated. A point I of βL is remote if and

only if I is a maximal ideal in L.

Proof. Let a be an element of L such that a ∨ x 6= 1 for each x ∈ I. We must show that

a ∈ I, which will prove that I is a maximal ideal in L. Now r(a) ∨ I 6= 1βL, for otherwise

a∨u = 1 for some u ∈ I. Therefore r(a) 5 I, and hence a ∈ I by the previous proposition.

Conversely, let a be a dense element of L. Then a /∈ I, and therefore, by maximality,

a ∨ v = 1 for some v ∈ I. Since I is a completely regular ideal, there exists a cozero

element c such that v 5 c ∈ I. So a ∨ c = 1, and therefore, by δ-normal separation,

r(a) ∨ r(c) = 1βL, and hence r(a) ∨ I = 1βL. Therefore I is a remote point.

Following [13], we say an extension M
h−→ L is perfect if h∗(a ∨ a∗) = h∗(a) ∨ h∗(a∗) for

every a ∈ L. This is equivalent to saying h∗(a∨ b) = h∗(a)∨h∗(b) for all disjoint a and b in

L. The extensions βL→ L and κL→ L are perfect. For perfect extensions there are more

equivalent conditions for a point to be remote. As in [23], we say a filter F in a frame L

is disjoint-prime if, for any a ∈ L, a ∨ a∗ ∈ F implies a ∈ F or a∗ ∈ F. Because a filter

is an ultrafilter if and only if, for every a ∈ L, either a ∈ F or a∗ ∈ F, it follows easily

that a filter is an ultrafilter if and only if it is saturated and disjoint-prime. Observe that

if M
h−→ L is a perfect extension, then Up is saturated for every p ∈ Pt(M), where

Up = {a ∈ L | h∗(a) � p}.

Recall Definition 3.3.2 that an ideal I in a frame L is balanced if, for any a ∈ L, a∗∗ ∈ I
whenever a ∈ I. Minimal prime ideals are balanced because they do not contain dense

81



elements, so that if one such contains a∗∗, then it does not contain a∗, and hence it must

contain a by primeness. For an extension M
h−→ L and p ∈ Pt(M), we set

Ip = {a ∈ L | h∗(a) ≤ p}

so that Ip = Lr Up.

Proposition 4.1.3. [34] Let M
h−→ L be a perfect extension of L. The following statements

about a point p ∈ Pt(M) are equivalent:

(1) p is a remote point.

(2) For any dense a ∈ L, h∗(a) ≤ p.

(3) For any a ∈ L, h∗(a) ≤ p implies h∗(a
∗) � p.

(4) For any a ∈ L, h∗(a∗) ≤ p implies h∗(a) � p.

(5) For any b ∈M, b∗ ≤ p implies h∗h(b) � p.

(6) Up is an ultrafilter.

(7) Ip is a minimal prime ideal of L.

(8) Ip is a balanced ideal of L.

Proof. (2) ⇒ (3): Let a ∈ L be such that h∗(a) ≤ p. Since a ∨ a∗ is dense, (2) implies

h∗(a∨ a∗) � p. Since h∗(a∨ a∗) = h∗(a)∨ h∗(a∗) and h∗(a) ≤ p, it follows that h∗(a
∗) � p.

(3)⇒ (4): Clearly the denial of (4) contradicts (3).

(4)⇒ (5): For any b ∈M, b∗ = h∗h(b∗), so b∗ ≤ p implies h∗h(b∗) ≤ p, that is, h∗(h(b)∗) ≤
p, so that, h∗h(b) � p by (4).

(5) ⇒ (6): Let a ∈ L be such that a∗ /∈ Up. Then h∗(a
∗) ≤ p, that is, h∗(a)∗ ≤ p. So, by

(5), h∗hh∗(a) � p, that is, h∗(a) � p, so that a ∈ Up. Therefore Up is an ultrafilter.

(6)⇒ (7): Since Ip = LrUp, it follows from [28, Corollary 3], which states that a filter is

an ultrafilter if and only if its set-theoretic complement is a minimal prime ideal, that Ip

is a minimal prime ideal in L.

(7)⇒ (8): Minimal prime ideals are balanced.
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(8)⇒ (1): If L
η−→ N is a nowhere dense quotient of L, then η∗(0) is dense, and is therefore

not in Ip, otherwise 1 = η∗(0)∗∗ ∈ Ip because Ip is balanced. Thus, h∗η∗(0) � p, hence p is

remote from L.

For each I ∈ βL the ideals MI and OI of RL are defined by

MI = {ϕ ∈ RL | r(coz ϕ) 5 I} and OI = {ϕ ∈ RL | r(coz ϕ) ≺ I}.

Clearly, OI ⊆MI . Since, for any I ∈ βL and a ∈ L, r(a) ≺ I, and only if a ∈ I, it follows

that

OI = {ϕ ∈ RL | coz ϕ ∈ I}.

These are of course frame counterparts of the ideals Op and Mp of C(X) (see [38]). It is

shown in [30] that:

(1) A subset Q of RL is a maximal ideal if and only if there is a unique point I of βL

such that Q = MI .

(2) If P is a prime ideal, then there is a unique point I of βL such that OI j P jMI .

(3) For each point I of βL, MI is the unique maximal ideal containing OI .

(4) For any point I of βL and ϕ ∈ RL, ϕ ∈ OI if and only if γϕ = 0 for some γ /∈MI .

Definition 4.1.3. The annihilator of a set S ⊆ A is the ideal

Ann(S) = {a ∈ A | as = 0 for every s ∈ S}.

The following proposition extends some characterizations of remote points of R obtained

by Mandelker [41].

Proposition 4.1.4. [31] Let L be perfectly normal. Then the following are equivalent for

a point I of βL:

(1) I is remote.

(2) MI = OI .

(3) For each ϕ ∈MI , coz ϕ is not dense.
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(4) MI is a minimal prime ideal of RL.

Proof. (1) ⇒ (2): Let I be remote and ϕ ∈ MI . Then r(coz ϕ) 5 I, and therefore, by

hypothesis, coz ϕ ∈ I, implying that ϕ ∈ OI . Therefore MI j OI , and hence MI = OI as

the other inclusion always holds.

(2)⇒ (3): If ϕ ∈MI , then coz ϕ cannot be dense since coz ϕ ∈ I, by hypothesis.

(3) ⇒ (1): Suppose, for contradiction, that I is not remote. Let L
h−→ M be a nowhere

dense quotient of L such that I ∨ r(h∗(0)) 6= 1βL. This implies that r(h∗(0)) 5 I. Take

γ ∈ RL such that coz γ = h∗(0). Then γ ∈MI . But coz γ is dense by Lemma 4.1.1, so we

have a contradiction.

(2) ⇒ (4): Recall that in any ring a prime ideal is minimal prime if and only if each

element in the annihilated by an element outside it. Let α ∈ MI . Then, by hypothesis,

α ∈ OI . By the last of the results cited from [30], α is annihilated by an element outside

MI . Since MI is a prime ideal as it is a maximal ideal, it follows that it is a minimal prime

ideal.

(4)⇒ (2): Let ϕ ∈MI . Then, in virtue of MI being a minimal prime ideal as hypothesized,

ϕ is annihilated by an element outside MI . So, ϕ ∈ OI . This shows that MI j OI , and

hence MI = OI as the other inclusion always holds.

Definition 4.1.4. A quotient βL
h−→M of βL is round if for each c ∈ Coz L, h(r(c)) = 0

implies h(r(c∗)) = 1. It is strongly round if for each a ∈ L, h(r(a)) = 0 implies h(r(a∗)) =

1.

Proposition 4.1.5. [31] A quotient βL
h−→ M of βL is round if and only if h(r(c∗)) =

h(r(c))∗ for each c ∈ Coz L.

The example is taken from [31] and the definition of nearly open map was considered in

[5].

Example 4.1.1.

(a) Recall that a homomorphism h : L→M is said to be nearly open if h(a∗) = h(a)∗ for

all a ∈ L. Every nearly open quotient is strongly round. Hence, every open quotient is

strongly round, and every dense quotient is strongly round. Thus, non-spatial frames
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that admit round quotients abound. Indeed, every quotient of a Boolean frame is

open, so that every quotient of a Boolean frame is strongly round. Conversely, if every

quotient of L is strongly round, then L is Boolean. To see this, let a ∈ L and consider

the quotient βL
ϕ−→ ↑ a given by J 7→ a ∨

∨
J. Since ϕ(r(a)) = 0↑a, ϕ(r(a∗)) = 1,

that is, a ∨ a∗ = 1.

(b) If in the composite βL
h−→M

g−→ N of quotients h is round (resp. strongly round) and

g is dense, then βL
gh−→ N is round (resp. strongly round). For, let c ∈ Coz L such

that gh(r(c)) = 0. Then, by denseness, h(r(c)) = 0, so that h(r(c∗)) = 1, implying

that gh(r(c∗)) = 1. Hence, for any quotient βL
h−→M, if the quotient βL

h−→ h∗(0) is

round (resp. strongly round) then βL
h−→M is also round (resp. strongly round).

(c) A quotient map h : L → M is nearly open if and only if the composite βL
hβL−−→ M

is strongly round.

Having observed that open quotients are round, we provide necessary and sufficient con-

ditions for closed quotient to be round. Given I ∈ βL, let

I• = {c ∈ Coz L | r(c) 5 I} and I• = I ∩ Coz L.

Then of course I• and I• are ideals of Coz L, and, in fact, I• = {coz ϕ | ϕ ∈ OI} and

I• = {coz ϕ | ϕ ∈MI}. Furthermore,

I• j I•

and

(‡) I =
∨
c∈I•

r(c) =
∨
c∈I•

r(c).

Lemma 4.1.2. [31] Let I ∈ βL. For any ideal J of Coz L, I =
∨
{r(x) | x ∈ J} if and

only if I• j J j I•.

Proof. Let J be an ideal of Coz L and suppose I =
∨
{r(x) | x ∈ J}. Then, in fact,

I =
⋃
{r(x) | x ∈ J} since the join is directed. So, if c ∈ I• then c ∈ I, and hence c ∈ r(d)

for some d ∈ J, implying that c ∈ J. Therefore I• j J. On the other hand, if x ∈ J then
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r(x) 5 I, and so x ∈ I•. Thus, I• j J j I•. Conversely, if I• j J j I•, then it follows

from (‡) above that I =
∨
{r(x) | x ∈ J}.

The desired characterizations of round closed quotients are:

Proposition 4.1.6. [31] The following are equivalent for any I ∈ βL:

(1) The closed quotient βL
h−→ ↑I is round.

(2) I• = I•.

(3) There is only one ideal J of Coz L such that I =
∨
{r(x) | x ∈ J}.

Proof. (1)⇒ (2): If βL
h−→ ↑I is round, then, for any ϕ ∈MI , r(coz ϕ) 5 I, and therefore

coz ϕ ∈ I, implying that ϕ ∈ OI . Thus, MI j OI , and hence MI = OI . Therefore I• = I•.

(2)⇒ (3): This follows from the lemma. In fact, the ideal in question is I•.

(3)⇒ (1): The current hypothesis implies that I• = I•. Let ϕ ∈MI . Then coz ϕ ∈ I• = I•.

So there exists ϕ ∈ OI such that coz ϕ = coz ψ ∈ I. But this implies that ϕ ∈ OI .

Consequently, MI j OI , and hence MI = OI . Therefore, for any c ∈ Coz L (say, c =

coz ϕ), if I ∨ r(c) = I, then r(coz ϕ) 5 I, and hence ϕ ∈ MI = OI , so that r(c∗) ≺ I,

implying I ∨ r(c∗) = 1βL. Therefore βL
h−→ ↑I is round.

4.2 RK(L) and R∞(L)

We end the dissertation by giving the results of Ghosh [37] on the note of ideals of C∞(X)

of a topological space X. The author defined z∞-ideal and nicely balanced ideals of C∞(X)

and showed that if I is a z∞-ideal of C∞(X) then I is the intersection of all free maximal

ideals of A(X) for some A(X) ∈ Σ(X) if and only if I is nicely balanced. For the back-

ground on all free maximal ideals of A(X) for some A(X) ∈ Σ(X) we refer the reader to

[17], [26], [37] and [50]. We want to put this result in frame perspective.

In this dissertation we just lay the foundation in terms of frames and extend all the required

results in pointfree setting. For a given frame L, let

R∞(L) = {ϕ ∈ RL | ↑ϕ(
−1

n
,

1

n
) is compact for each n ∈ N}.
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This is the frame analogue of the subset of C(X) consisting of functions that vanish at

infinity (see[33], [38]). Again set

RK(L) = {ϕ ∈ RL | ↑(coz ϕ)∗ is compact}

an ideal that was introduced by Dube in [33].

Observation 4.2.1. Observe that RK(L) ⊆ R∞(L). It is shown in [33] that RK(L) ⊆
Rs(L), where

Rs(L) = {ϕ ∈ R(L) | coz ϕ is small},

and that Rs(L) ⊆ R∞(L).

Definition 4.2.1. An ideal I of R(L) or R∗(L) is said to be fixed if
∨
ϕ∈I

coz ϕ < 1.

Definition 4.2.2. An ideal I of R(L) or R∗(L) is said to be free if
∨
ϕ∈I

coz ϕ = 1.

Let Σ(L) = {family of all subrings of R(L) contaning R∗(L)}. If A(L) ∈ Σ(L), then the

intersection of all free maximal ideals of A(L) is the set

A∞(L) = {α ∈ A(L) | αϕ ∈ R∞(L) for all ϕ ∈ A(L)}.

Proposition 4.2.1. If A(L) ∈ Σ(L), the intersection of all free maximal ideals of A(L) is

an ideal of R∞(L) containing RK(L).

Proposition 4.2.2.

(a) R∞(L) =
⋂
{Q ∈ R∗L | Q is a free maximal ideal}.

(b) If L is realcompact, then RK(L) =
⋂
{Q ∈ RL | Q is a free maximal ideal}.

(c) If L is realcompact, then RK(L) = Rs(L).

Definition 4.2.3. A proper ideal J of R∞(L) is called a z∞-ideal if α ∈ J, ϕ ∈ R∞(L)

and coz (α) = coz (ϕ) imply that ϕ ∈ J.

Definition 4.2.4. A proper ideal J of R∞(L) is called a nicely balanced if α ∈ R∞(L)rJ

implies that there is ϕ ∈ RL such that ϕγ ∈ R∞(L) for some γ ∈ J but αϕ /∈ R∞(L).
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Proposition 4.2.3. Let J be a z∞-ideal of R∞(L). Then J = A∞(L) for some A(L) ∈ ΣL

if and only if J is nicely balanced.

Proposition 4.2.4. [33] Rs(L) =
⋂
{M ⊆ R(L) |M is a free maximal ideal}.

Proof. Let ϕ ∈ Rs(L) and I be a point of βL with
∨
I = 1. We must show that r(coz ϕ) 5

I. If not, then r(coz ϕ) ∨ I = 1βL, and therefore there is a cozero element c in I such that

c ∨ coz ϕ = 1. Thus, ↑c is compact since ϕ ∈ Rs(L). But now the set I
′

= I ∩ Coz L

is a proper ideal of Coz L such that c ∈ I
′

and
∨
I
′

= 1. This violates the lemma, and

hence establishes the inclusion j . On the other hand, let ϕ be in the stated intersection.

Suppose, for contradiction, that ϕ /∈ Rs(L). Then there is a cozero element c such that

c ∨ coz ϕ = 1 but ↑c is not compact. By the lemma, select a proper ideal J of Coz L

such that c ∈ J and
∨
J = 1. Put Q = {α ∈ RL | coz α ∈ J}. Clearly Q is a free proper

ideal of RL, and so is contained in some free maximal ideal M. Take γ ∈ RL such that

c = coz γ. Then M contains both γ and ϕ, and hence the invertible element γ2 +ϕ2, which

is impossible. Therefore the reverse inclusion also holds.

Corollary 4.2.1. [33] RK(L) =
⋂
{Q ⊆ R(L) | Q is a free ideal}.

Proof. By the Proposition, RK(L) contains the stated intersection. For the reverse inclu-

sion, let ϕ ∈ RK(L) and let Q be a free ideal of RL. As shown in [33, Proposition 3.4], if

we set J =
∨
{r(coz α) | α ∈ Q}, then OJ = mQ j Q. Notice that∨

J =
∨
{coz α | α ∈ Q} = 1

since Q is free. Thus, {(coz ϕ)∗∨x | x ∈ J} is a cover of the compact frame ↑(coz ϕ)∗. Since

J is an ideal of L, compactness therefore yields an element u of J such that (coz ϕ)∗∨u = 1.

Therefore coz ϕ 5 u, and hence coz ϕ ∈ J, so that ϕ ∈ OJ j Q. Thus, RK(L) j Q, which

establishes the outstanding inclusion.

Corollary 4.2.2. Suppose RK 6= R∞(L). Then RK(L) is nicely balanced ideal of R∞(L)

if and only if RK(L) = Rs(L).

Lemma 4.2.1. Let A(L), B(L) ∈ Σ(L) with A(L) ≤ B(L). Then B∞(L) ≤ A∞(L).

Proposition 4.2.5. Suppose RK(L) 6= R∞. Then R(L) is a nicely balanced ideal of

R∞(L) if and only if RK(L) =
⋂
{Q ∈ R(L) | is a free maximal ideal}.
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Definition 4.2.5. For any sublattice A of a frame L, an ideal J ⊆ A is called

(a) σ-proper if
∨
S 6= 1 for any countable S ⊆ J and

(b) completely proper if
∨
J 6= 1, the join understood in L.

Definition 4.2.6. A frame L is called realcompact if any σ-proper maximal ideal in Coz L

is completely proper.

Corollary 4.2.3. If L is realcompact such that RK(L) 6= R∞(L). Then RK(L) is a nicely

balanced ideal of R∞(L).

For any frame L, ϕ : L(R)→ L is called bounded if ϕ(p, q) = 1 for some p, q ∈ Q, and L

is called pseudocompact if all ϕ : L(R)→ L are bounded.

Corollary 4.2.4. If L is pseudocompact such that RK(L) 6= R∞(L) then RK(L) is not a

nicely balanced ideal of R∞(L).
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