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Abstract

A finite group G is called (l,m, n)-generated, if it is a quotient group of the triangle group

T (l,m, n) =
〈
x, y, z|xl = ym = zn = xyz = 1

〉
. In [43], Moori posed the question of finding all

the (p, q, r) triples, where p, q and r are prime numbers, such that a non-abelian finite simple

group G is a (p, q, r)-generated. In this thesis, we will establish all the (p, q, r)-generations of

the following groups, the Mathieu sporadic simple group M23, the alternating group A11 and

the symplectic group Sp(6, 2).

Let X be a conjugacy class of a finite group G. The rank of X in G, denoted by rank(G : X),

is defined to be the minimum number of elements of X generating G. We investigate the ranks

of the non-identity conjugacy classes of the above three mentioned finite simple groups. The

Groups, Algorithms and Programming (GAP) [26] and the Atlas of finite group representatives

[55] are used in our computations.
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List of Symbols and Notations

Throughout this thesis all groups will be assumed to be finite, unless otherwise stated. We

will use the notation and terminology from these two Atlases [20] and [38].

G groups

1G the identity element of G

H,K,M maximal subgroups of G

H ∼= G H is isomorphic to G

F a field

nX a general conjugacy class of G with representatives of order n

|g| order of g ∈ G

[g]G a conjugacy class of G with representative g

|Ω| the cardinality of the set Ω

1G the identity character of G

Dn dihedral group of order 2n

Sn the symmetric group on n symbols
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GF (q) the Galois field of q elements

V (n, q) a vector space of dimension n over GF (q)

Sp(2n, q) symplectic group of dimension 2n over GF (q)

M23 Sporadic Mathieu group acting on 23 points

An alternating group of order
n!

2

9



CHAPTER 1

Introduction

According to [54], the classification theorem for finite simple groups states that every finite

simple group is isomorphic to one of the following:

(a) a cyclic group Cp of prime order p;

(b) an alternating group An, for n ≥ 5;

(c) a classical group:

linear: PSLn(q), n ≥ 2, except PSL2(2) and PSL2(3);

unitary: PSUn(q), n ≥ 3, except PSU3(2);

symplectic: PSp2n(q), n ≥ 2, except PSp4(2);

orthogonal:

PΩ2n+1(q), n ≥ 3, q is odd;

PΩ+
2n(q), n ≥ 4;

PΩ−2n(q), n ≥ 4;

where q is a power pa of a prime p;
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CHAPTER 1 – Introduction

(d) an exceptional group of Lie type:

G2(q), q > 2; F4(q); E6(q);
2E6(q);

3D4(q); E7(q); E8(q)

where q is a prime power, or

2B2(2
2n+1), n ≥ 1; 2G2(3

2n+1), n ≥ 1; 2F4(2
2n+1), n ≥ 1

or the Tits group 2F4(2)
′
;

(e) One of the 26 sporadic simple groups

the five Mathieu groups M11, M12, M22, M23, M24;

the seven Leech lattice groups Co1, Co2, Co3, McL, HS, Suz, J2;

the three Fischer groups Fi22, Fi23, Fi
′
24;

the five Monstrous groups M, B, Th, HN , He;

the six pariahs J1, J3, J4, O
′
N , Ly, Ru.

1.1. Motivation

In this thesis, we investigate the generation of groups by their triples using structure constant

method. We are also interested in generation of finite simple groups by minimal number of

elements from a given non-identity conjugacy class of a group. This minimal number is called

the rank of that conjugacy class for that group. Our targeted groups are the Mathieu simple

group M23, the alternating group A11 and the symplectic group Sp(6, 2).

Generation of finite groups by suitable subsets is of great interest and has many applications to

groups and their representations. For example, the computations of the genus of simple groups

can be reduced to the generation of the relevant simple groups (see Woldar [57] for details).

Also Di Martino et al. [41] established a useful connection between generation of groups by
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CHAPTER 1 – Introduction

conjugate elements and the existence of elements represented by almost cyclic matrices. Their

motivation was to study irreducible projective representations of sporadic simple groups.

Following Basheer and Moori [13], the study of generating sets in finite groups has a rich

history, with numerous applications. If G is a finite non-abelian simple group then the group

G is said to be 2-generated if it can be generated by two elements. This has been known for

a long time in the case of the alternating groups in 1901 by Miller [42]. In 1962 the result

was extended by Steinberg [51] to the groups of Lie type, where he gave a unified treatment

for the 2-generation of the Chevalley and the Twisted groups. Before this the 2-generation of

certain families of groups of Lie type were known (e.g., PSL(n,F) and Sp(2n,F)). In 1984,

Aschbacher and Guralnick [10] completed the problem of determining which of the finite simple

groups are 2-generated by analyzing the sporadic groups that had not already been settled by

other authors. They showed that any sporadic simple group can be generated by an involution

(an element of order 2) and another suitable element. In 2017, King [39] wrote a paper giving

a refinement where it was shown that every finite non-abelian simple group is generated by an

involution and an element of a prime order.

The topic of generation of finite simple groups is fairly rich. In this thesis we cover generation of

some finite simple groups by methods of (p, q, r)-generation. The following are a few examples

of the problems concerning the generation of finite simple groups that may be found in the

literature:

• In his PhD Thesis [53], Ward considered the problem of generating a non-abelian finite

simple group by a set of conjugate involutions whose product is the identity. More specif-

ically, he considers the problem of which groups have the property of being generated by

the product of 5 conjugate involutions whose product is the identity and which simple

groups have the property that they can be generated by 3 conjugate involutions, a, b

12



CHAPTER 1 – Introduction

and c such that ab is also conjugate to a. The second of these properties can easily be

shown to imply the first.

• A group is said to be 3
2 -generated if every non-trivial element is contained in a generating

pair. Guralnick and Kantor [34] showed that every finite simple group is 3
2 -generated. In

[18], Breuer et. al., conjectured that any finite group is 3
2 -generated if and only if every

proper quotient is cyclic and the recent work of Guralnick [33] reduces this conjecture to

almost simple groups. In 2017, a paper by S. Harper [37] extended the results to almost

simple symplectic and odd-dimensional orthogonal groups.

• Guralnick et. al. [34, 35] were interested in probabilistic random generation of a finite

simple group using elements of a fixed conjugacy class of the group. In fact Burness,

Guralnick, Kantor, Liebeck, Saxl and Shalev have a pioneering role in the problem of the

probabilistic random generation.

In addition to the above methods of generating a group G, there are many other problems con-

cerning generating sets of groups. In this thesis we restrict ourselves to the areas of generation

of finite non-abelian simple groups through

• the ranks of non-trivial conjugacy classes of elements,

• the (p, q, r)-generations.

1.2. Literature review

A finite group G is said to be (l,m, n)-generated, if G = 〈x, y〉 , with o(x) = l, o(y) = m

and o(xy) = o(z) = n. Here [x] = lX, [y] = mY and [z] = nZ, where [x] is the conju-

gacy class of X in G containing elements of order l. The same applies to [y] and [z]. When

13



CHAPTER 1 – Introduction

we refer to (lX,mY, nZ)-generations, we mean generations of all possible triples of conju-

gacy classes of elements of orders l, m and n respectively. In this case G is also a quotient

group of the triangular group T (l,m, n) and, by definition of the triangular group, G is also

(σ(l), σ(m), σ(n))-generated group for any σ ∈ S3. Therefore we may assume that l ≤ m ≤ n.

Also a finite simple group G is said to be (p, q, r)-generated if a group G can be generated by

two elements x and y of respective prime orders p and q such that xy has a prime order r.

For more information on (p, q, r)-generations, the reader is referred this series of papers [27,

28, 29, 30, 31, 32, 43, 44, 45] and [46]. Moori and Ganief established all possible (p, q, r)-

generations of the sporadic groups J1, J2, J3, HS, McL, Co3, Co2 and F22, where p, q and

r are distinct prime divisors of the order of a group. Ashrafi in [11, 12] established all possible

(p, q, r)-generations for the sporadic simple groups He and HN. The (p, q, r)-generations of the

sporadic simple groups Co1, Ru, O
′
N and Ly were calculated by Darafsheh and his co-authors

in these papers [21, 22, 23] and [24]. The motivation for this study is outlined in these papers

and the reader is encouraged to consult these papers for background material as well as basic

computational techniques. In establishing all the (p, q, r)-generations of a group, we follow the

methods used in [16] and [17] and also methods used in the recent papers [7] and [8] by Ali,

Ibrahim and Woldar.

If nX be a non-identity conjugacy class of element of a finite simple group G, then G = 〈nX〉 .

Let G be a finite group and nX a conjugacy class of non-identity elements of G. We define the

rank of G with respect to the conjugacy class nX to be the minimum number of elements of G

in nX generating the entire group G and it is denoted by rank(G : nX). One of the applications

of ranks of conjugacy classes of a finite group is that they are used in the computations of the

covering number of the finite simple group (see Zisser [59]).

Moori in various articles [45, 46] and [47]), computed the ranks of involution classes of the Fis-

14



CHAPTER 1 – Introduction

cher sporadic simple group Fi22.He proved that rank(Fi22 : 2A) ∈ {5, 6} and rank(Fi22 : 2B) =

3 = rank(Fi22 : 2C). Hall and Soicher [36] found that rank(Fi22 : 2A) = 6. Ali in [1, 2] com-

puted the ranks of the Fischer group Fi22 and both simple sporadic groups O′N and Ly. Ali

and Ibrahim in [3, 4, 5] determined the ranks of Conway group Co1, the Higman-Sims group

HS, McLaughlin group McL, Conway’s sporadic simple groups Co2 and Co3. More recently

Ibrahim and his co-authors in [6], computed the ranks of the Fischer group Fi
′
24 and the Baby

Monster group B. In determining the rank for each non-identity conjugacy class of a group G,

we follow the methods in in [14] and [48] and the notation used in [20].

Note that, in general, if G is a (2, 2, n)-generated group, then G is a dihedral group and

therefore G is not simple. Also by [19], if G is a non-abelian (lX,mY, nZ)-generated group,

then either 1
l + 1

m + 1
n ≥ 1 or 1

l + 1
m + 1

n < 1. If a simple group G is (lX,mY, nZ)-generated

with 1
l + 1

m + 1
n ≥ 1 then G ∼= A5. Thus for our purpose of establishing the (p, q, r)-generations

of G, the only cases we need to consider are when 1
p + 1

q + 1
r < 1. None of the groups we are

dealing is isomorphic to A5. None of these groups we are dealing with is (2, 2, n)-generated,

thus the rank of an involution class of any of these groups cannot be 2. In most cases two

involutions generate a dihedral group. Thus the lower bound of the rank of an involution class

in a finite group G 6= D2n (the dihedral group of order 2n) is 3.

1.3. Thesis outlines

In this thesis we are mainly concerned with the (p, q, r)-generations of a group G, where p, q

and r are prime numbers (not necessarily distinct) dividing the order G. We find the conjugacy

classes ranks for each targeted group G. The thesis is structured into five chapters.

Chapter 1, which is the current chapter is an introduction to the thesis, which is itself divided

into three sections. In Sections 1.1 and 1.2 we introduce the purposes of the thesis, the ideas

15



CHAPTER 1 – Introduction

and background behind the (p, q, r)-generations and the conjugacy classes ranks. Section 1.3

which is the current section, describes the structure of this thesis.

In Chapter 2 we discuss the structure constant method and use some of the results to find

ranks. This chapter is divided into two sections. We first give important definitions and basic

concepts in Section 2.1. Section 2.2 is mainly concerned with using some of the basic results

in computing the ranks.

In Chapter 3, we discuss the symplectic simple group Sp(6, 2). This chapter is divided into

three sections. In Section 3.1, we give some information about the group Sp(6, 2) that may

be required in some of the computations. We discuss triple generation of Sp(6, 2) in Section

3.2 and this section is divided into three subsections. The discussions on the (2, q, r)- and

(3, q, r)-generations of group Sp(6, 2) are discussed in the respective Sections 3.2.1 and 3.2.2.

Other results in Section 3.2.3 deals with the (5, 5, r)-, (5, 7, r)- and (7, 7, 7)-generations for the

group Sp(6, 2). In Section 3.3, we find the ranks of all the conjugacy classes except the identity

element in Sp(6, 2). The proofs of the results for the ranks of each non-identity conjugacy class

of Sp(6, 2) in this section are done in Propositions 3.3.1 to 3.3.14.

In Chapter 4, we discuss one of the 26 sporadic simple group called the Mathieu group M23.

This chapter is divided into three sections. Section 4.1 gives information about the sporadic

simple group called the Mathieu group M23. We discuss the (p, q, r)-generations of the Mathieu

group M23 in Section4.2. This section is divided into three subsection, namely, 4.2.1, 4.2.2 and

4.2.3. In Sections 4.2.1 and 4.2.2, we discuss the (2, q, r)- and (3, q, r)-generations of the group

M23, respectively. Section 4.2.3 named ”Other results” investigates the (5, q, r)-, (7, q, r)-,

(11, q, r)- and (23, q, r)-generations of the group M23. In Section 4.3, we find the ranks of all

the conjugacy classes except the identity element of M23. The values of the ranks in this section

are proved in the Propositions 4.3.1 to 4.3.3.
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CHAPTER 1 – Introduction

In Chapter 5, we discuss the alternating group A11. This chapter is divided into three sections,

namely, 5.1, 5.2 and 5.3. The basic information about the alternating group A11 is given in

Section 5.1. The (p, q, r)-generations of the alternating group A11 is discussed in Section

5.2 divided into three subsections, namely, 5.2.1, 5.2.2 and 5.2.3. The (2, q, r)- and (3, q, r)-

generations of the alternating group A11 are discussed in the respective Sections 5.2.1 and

5.2.2. Other results in Section 5.2.3 refers to the investigations on triple generations of (5, q, r),

(7, q, r) and (11, q, r).

The Appendix A is divided into three sections. In Section A.1, we put tables for relevant

structure constants for the symplectic simple group Sp(6, 2) are found in Tables A.1 to A.8.

In Section A.2, we listed the tables for relevant structure constants for the Mathieu group M23

in Tables A.9 to A.12. Finally, Section A.3 provides tables for the relevant structure constants

of the alternating group A11 in Tables A.13 to A.16.

It worth mentioned that an article titled ”The (p, q, r)-generations of the alternating group

A11” has been published online (article in press) by Khayyam journal of mathematics. The

aticle titled ”The (p, q, r)-generations of the symplectic group Sp(6, 2)” has been accepted

by Algebraic structures and their applications. We would like to mention that the (p, q, r)-

generations of the Mathieu group M23 have been submitted for publication and its status

is under review. Ones more the conjugacy classes ranks of the following groups, namely,

symplectic group Sp(6, 2), Mathieu group M23 and the alternating group A11 have both been

submitted for publications and all their status are also under review.
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CHAPTER 2

Preliminaries

2.1. The structure constant method

Let G be a finite group and C1, C2, · · · , Ck for k ≥ 3 (not necessarily distinct) be conjugacy

classes of G with g1, g2, · · · , gk being representatives for these classes respectively.

For a fixed representative gk ∈ Ck and for gi ∈ Ci, 1 ≤ i ≤ k − 1, denote by ∆G =

∆G(C1, C2, · · · , Ck) the number of distinct (k−1)-tuples (g1, g2, · · · , gk−1) ∈ C1×C2×· · ·×Ck−1

such that g1g2 · · · gk−1 = gk. This number is known as class algebra constant or structure con-

stant. With Irr(G) = {χ1, χ2, · · · , χr}, the number ∆G is easily calculated from the character

table of G through the formula

∆G(C1, C2, · · · , Ck) =

k−1∏
i=1

|Ci|

|G|

r∑
i=1

χi(g1)χi(g2) · · ·χi(gk−1)χi(gk)

(χi(1G))k−2
. (2.1)

Also for a fixed gk ∈ Ck we denote by ∆∗G(C1, C2, · · · , Ck) the number of distinct (k−1)-tuples

(g1, g2, · · · , gk−1) satisfying

g1g2 · · · gk−1 = gk and G = 〈g1, g2, · · · , gk−1〉 . (2.2)

Definition 2.1.1. If ∆∗G(C1, C2, · · · , Ck) > 0, the group G is said to be (C1, C2, · · · , Ck)-

18



CHAPTER 2 – Preliminaries

generated.

Furthermore, if H is any subgroup of G containing a fixed element hk ∈ Ck, we let

ΣH(C1, C2, · · · , Ck) be the total number of distinct tuples (h1, h2, · · · , hk−1) such that

h1h2 · · ·hk−1 = hk and 〈h1, h2, · · · , hk−1〉 ≤ H. (2.3)

The value of ΣH(C1, C2, · · · , Ck) can be obtained as a sum of the structure constants

∆H(c1, c2, · · · , ck) of H-conjugacy classes c1, c2, · · · , ck such that ci ⊆ H ∩ Ci.

Theorem 2.1.1. Let G be a finite group and H be a subgroup of G containing a fixed element

g such that gcd(o(g), [NG(H):H]) = 1. Then the number h(g,H) of conjugates of H containing

g is χH(g), where χH(g) is the permutation character of G with action on the conjugates of

H. In particular

h(g,H) =

m∑
i=1

|CG(g)|
|CNG(H)(xi)|

,

where x1, x2, · · · , xm are representatives of the NG(H)-conjugacy classes fused to the G-class

of g.

Proof. See Ganief and Moori [27, 29, 32].

By [15], the above number h(g,H) is useful in giving a lower bound for ∆∗G(C1, C2, · · · , Ck),

namely ∆∗G(C1, C2, · · · , Ck) ≥ ΘG(C1, C2, · · · , Ck), where

ΘG(C1, C2, · · · , Ck) = ∆G(C1, C2, · · · , Ck)−
∑

h(gk, H)ΣH(C1, C2, · · · , Ck), (2.4)

gk is a representative of the class Ck and the sum is taken over all the representatives H

of G-conjugacy classes of maximal subgroups of G containing elements of all the classes

C1, C2, · · · , Ck. Since we have all the maximal subgroups of the sporadic simple groups ex-

cept for G = M the Monster group, it is possible to build a small subroutine in GAP [26] to

19



CHAPTER 2 – Preliminaries

compute the values of ΘG = ΘG(C1, C2, · · · , Ck) for any collection of conjugacy classes and

any finite simple group.

Remark 2.1.1. It can be easily noted that the upper bound of ∆∗G(C1, C2, · · · , Ck) is

∆G(C1, C2, · · · , Ck). Preciously, the value of ∆∗G(C1, C2, · · · , Ck) will range between 0 and

the value of ∆G(C1, C2, · · · , Ck).

Theorem 2.1.2 ([32]). Let G be a finite group and let l,m and n be integers that are pairwise

co-prime. Then for any integer t co-prime to n, we have

∆(lX,mY, nZ) = ∆(lX,mY, (nZ)t).

Remark 2.1.2. The above Theorem 2.1.2 is saying that a group G is (lX,mY, nZ)-generated

if and only if G is (lX,mY, (nZ)t)-generated.

We see that (7A)−1 = 7B, (11A)−1 = 11B and (23A)−1 = 23B in M23. As an application of the

above theorem, the group M23 is (p, q, 7A)-generated if and only if it is (p, q, 7B)-generated, is

(p, q, 11A)-generated if and only if it is (p, q, 11B)-generated and it is also (p, q, 23A)-generated

if and only if it is (p, q, 23B)-generated. Therefore, it is sufficient to check the (p, q, 7A)-,

(p, q, 11A)- and (p, q, 23A)-generations of M23.

We see that (11A)−1 = 11B in A11. As an application of the above theorem, the group A11

is (p, q, 11A)-generated if and only if it is (p, q, 11B)-generated. Therefore, it is sufficient to

consider only the (p, q, 11A)-generations of A11.

Lemma 2.1.3, Theorems 2.1.4 and 2.1.5 are in some cases useful in establishing non-generation

of finite groups.

Lemma 2.1.3. Let G be a finite centerless group. If ∆∗G(C1, C2, · · · , Ck) < |CG(gk)|,

gk ∈ Ck, then ∆∗G(C1, C2, · · · , Ck) = 0 and therefore G is not (C1, C2, · · · , Ck)-generated.
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Proof. See [14].

Theorem 2.1.4 (Ree [49]). Let G be a transitive permutation group generated by permutations

g1, g2, · · · , gs acting on a set of n elements such that g1g2 · · · gs = 1G. If the generator gi has

exactly ci cycles for 1 ≤ i ≤ s, then
∑s

i=1 ci ≤ (s− 2)n+ 2.

Theorem 2.1.5 (Scott [50]). Let g1, g2, · · · , gs be elements generating a group G with

g1g2 · · · gs = 1G and V be an irreducible module for G with dimV = n ≥ 2. Let CV(gi) denote the

fixed point space of 〈gi〉 on V and let di be the co-dimension of CV(gi) in V. Then
∑s

i=1 di ≥ 2n.

With χ being the ordinary irreducible character afforded by the irreducible module V and 1〈gi〉

being the trivial character of the cyclic group 〈gi〉 , the co-dimension di of CV(gi) in V can be

computed using the following formula ([25]):

di = dim(V)− dim(CV(gi)) = dim(V)−
〈
χ↓G〈gi〉,1〈gi〉

〉
= χ(1G)− 1

| 〈gi〉 |

o(gi)−1∑
j=0

χ(gji ). (2.5)

2.2. Ranks

Lemma 2.2.1, Theorem 2.2.3, Corollaries 2.2.2 and 2.2.4 can be used to determine the ranks

(G,nX) of the finite group G.

Lemma 2.2.1 ([9]). Let G be a finite simple group such that G is (lX,mY, nZ)-generated.

Then G is ((lX, lX, . . . , lX︸ ︷︷ ︸
m−times

), (nZ)m)-generated.

Corollary 2.2.2 ([9]). Let G be a finite simple group such that G is (lX,mY nZ)-generated.

Then rank(G : lX) ≤ m.

Proof. The result follows immediately from Lemma 2.2.1.
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Theorem 2.2.3 ([32]). Let G be a (2X, sY, tZ)-generated simple group, then G is (sY, sY, (tZ)2)-

generated.

Corollary 2.2.4. Let G be a finite simple group such that G is (2X,mY, nZ)-generated. Then

rank(G : mY ) = 2.

Proof. IfG is (lX,mY, nZ)-generated so by Lemma 2.2.1 we obtained thatG is (mY,mY, (nZ)m)-

generated. Hence the result follows.
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The Symplectic group Sp(6, 2)

In this chapter, we are interested in two kinds of generations of the group Sp(6, 2), namely, the

(p, q, r)-generations and the ranks of the conjugacy classes of Sp(6, 2). For (p, q, r)-generations,

we prove Theorem 3.0.1 in Section 3.2 and its subsections. We also prove Theorem 3.0.2 in

Section 3.3 and its subsections.

Theorem 3.0.1. With the notation being as in the Atlas [20], the symplectic group Sp(6, 2) ∼=

S6(2) is generated by the triples (lX,mY, nZ), l, m and n primes dividing |Sp(6, 2)|, except for

the cases (lX,mY, nZ) ∈ {(2M, 3N, 7A), (2M, 5A, 5A), (2N, 5A, 7A), (3N, 3N, 5A), (3M, 3N, 7A),

(3O, 5A, 5A), (3A, 5A, 7A)}, for all M ∈ {A,B,C,D}, O ∈ {A,B} and N ∈ {A,B,C}.

Theorem 3.0.2. Let G be the symplectic group Sp(6, 2). Then

1. rank(G : 2A) = 7,

2. rank(G : 2X) = rank(G : 3A) = 3 for X ∈ {B,C},

3. rank(G : 2D) = rank(G : 3B) = rank(G : 4A) = rank(G : 4B) = rank(G : 6A) = 4,

4. rank(G : nX) = 2 for all nX 6∈ {1A, 2A, 2B, 2C, 2D, 3A, 3B, 4A, 4B, 4C, 6A}.
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3.1. Introduction

There are six classical simple groups, namely, linear, unitary and symplectic groups, and three

families of orthogonal groups. The classical groups are defined in terms of groups of matrices

over fields. Let F be a field. Then the general linear group GL(n,F) is the group of invertible

n×n matrices with entries in F under matrix multiplication. A linear group L(n,F) is a closed

subgroup of GL(n,F).

The group Sp(6, 2) is a group of 6× 6 symplectic matrices with entries 0 and 1, and with the

matrix multiplication as the operation. Since all symplectic matrices have determinant 1, the

symplectic group Sp(6, 2) is a subgroup of the special linear group SL(6, 2). The symplectic

group Sp(6, 2) has order 1451520 = 29 × 34 × 5 × 7. By the Atlas [20] the group Sp(6, 2) has

exactly 30 conjugacy classes of its elements and 8 conjugacy classes of its maximal subgroups.

Representatives of conjugacy classes of the maximal subgroups can be taken as follows:

H1 = U4(2):2 H2 = S8 H3 = 25:S6

H4 = U3(3):2 H5 = 26:L3(2) H6 = (22 × 21+4):(S3 × S3)

H7 = S3 × S6 H8 = L2(8):3.

In this chapter, we will use G instead of Sp(6, 2), unless stated otherwise. For the sake of

computations with Gap [26], we use a permutation presentation for G. By the electronic Atlas

of Wilson [55], G can be generated in terms of permutations on 28 points. Generators g1 and

g2 can be taken as follows:

g1 = (2, 3)(6, 7)(9, 10)(12, 14)(17, 19)(20, 22),

g2 = (1, 2, 3, 4, 5, 6, 8)(7, 9, 11, 13, 16, 18, 14)(10, 12, 15, 17, 20, 19, 21)(22, 23, 24, 25,

26, 27, 28),

with o(g1) = 2, o(g2) = 7 and o(g1g2) = 9.
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Table 3.1 gives all the values of dnX = dim(V/CV(nX)) for nX classes of prime order for

the G with dim(V) = 7. This table will be referred to when we are proving non-generation

of a triple for the group G. In Table 3.3, we list the values of the cyclic structure for each

conjugacy of G which containing elements of prime order together with the values of both ci

and di obtained from Ree and Scotts theorems, respectively.

In Table 3.4 we list the representatives of classes of the maximal subgroups together with

the orbits lengths of Sp(6, 2) on these groups and the permutation characters.

Table 3.5 gives us the partial fusion maps of classes of maximal subgroups into the classes

of Sp(6, 2). These will be used in our computations.

Table 3.1: dnX = dim(V/CV(nX)), nX is a non-trivial class of G and dim(V) = 7

nX 2A 2B 2C 2D 3A 3B 3C 4A 4B 4C 4D 4E 5A 6A 6B

dnX 6 4 2 4 2 6 4 4 4 6 6 4 4 6 4

nX 6C 6D 6E 6F 6G 7A 8A 8B 9A 10A 12A 12B 12C 15A

dnX 6 4 6 6 6 6 6 6 6 6 6 6 6 6

Table 3.2: dnX = dim(V/CV(nX)), nX is a non-trivial class of Sp(6, 2) and dim(V) = 15.

nX 2A 2B 2C 2D 3A 3B 3C 4A 4B 4C 4D 4E 5A 6A 6B 6C 6D

dnX 10 4 6 8 10 12 8 10 12 10 8 10 12 14 12 12 12

nX 6E 6F 6G 7A 8A 8B 9A 10A 12A 12B 12C 15A

dnX 12 10 12 12 12 12 14 14 14 14 14 14
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Table 3.3: Cycle structures of conjugacy classes of G

nX Cycle Structure ci di

1A 128 28 0

2A 11626 22 6

2B 14212 16 12

2C 18210 18 10

2D 14212 16 12

3A 11036 16 12

3B 1 39 10 18

3C 1 39 10 18

4A 1446 10 18

4B 122345 10 18

4C 162 45 12 16

4D 2445 9 19

4E 122345 10 18

5A 1355 8 20

6A 1423346 12 16

6B 142363 10 18

6C 1 3 64 6 22

6D 12243263 11 17

6E 1 3562 8 20

6F 1 3 64 6 22

6G 1 3 64 6 22

7A 74 4 24

8A 122 83 6 22

8B 4 83 4 24

9A 1 93 4 24

10A 1 2 55 7 21

12A 12426 12 6 22

12B 2 324212 6 22

12C 1 3 122 4 24

15A 3 53 4 24

Table 3.4: Maximal subgroups of Sp(6, 2)

Maximal Subgroup Order Orbit Lengths Character

U4(2):2 27 · 34 · 5 [1,27] 1a + 27a

S8 27 · 32 · 5 · 7 [28] 1a + 35b

25:S6 29 · 32 · 5 [12,16] 1a + 27a + 35b

U3(3):2 26 · 33 · 7 [28] 1a + 35a + 84a

26:L3(2) 29 · 3 · 7 [28] 1a + 15a + 35b + 84a
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Table 3.4 continued

Maximal Subgroup Order Orbit Lengths Character

(2 · 26):(S3 × S3) 29 · 32 [4,24] 1a + 27a + 35b + 84a + 168a

S3 × S6 25 · 33 · 5 [10,18] 1a + 27a + 35b + 105b + 168a

L2(8):3 23 · 33 · 7 [28] 1a + 70a + 84a + 105b + 280a + 420a

Table 3.5: The partial fusion maps into Sp(6, 2)

U4(2):2-class 2a 2b 2c 2d 3a 3b 3c 5a

→ G 2A 2B 2C 2D 3B 3A 3C 5A

h 3

S8-class 2a 2b 2c 2d 3a 3b 5a 7a

→ Sp(6, 2) 2A 2B 2C 2D 3A 3C 5A 7A

h 1 1

25:S6-class 2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 3a 3b 5a

→ Sp(6, 2) 2A 2C 2B 2C 2A 2B 2D 2D 2C 2D 3A 3C 5A

h 3

U3(3):2-class 2a 2b 3a 3b 7a

→ Sp(6, 2) 2B 2D 3B 3C 7A

h 1

26:L3(2)-class 2a 2b 2c 2d 2e 2f 2g 3a 7a 7b

→ Sp(6, 2) 2A 2B 2C 2D 2C 2B 2D 3C 7A 7A

h 1 1

2 · 26:(S3 × S3)-class 2a 2b 2c 2d 2e 2f 2g 2h 2i 2j 2k 2l 2m 3a 3b 3c

→ Sp(6, 2) 2B 2C 2A 2C 2B 2A 2D 2D 2C 2B 2D 2C 2D 3A 3B 3C

h 15 9 3

S3 × S6-class 2a 2b 2c 2d 2e 2f 2g 3a 3b 3c 3d 3e 5a

→ Sp(6, 2) 2A 2A 2B 2C 2C 2D 2D 3A 3A 3C 3C 3B 5A

h 1

L2(8):3-class 2a 3a 3b 3c 7a

→ Sp(6, 2) 2D 3B 3C 3C 7A

h 1

3.2. The (p, q, r)-generations of Sp(6, 2)

Let tX, t ∈ {2, 3, 5, 7} be a conjugacy class of G and ci be the number of disjoint cycles in

a representative of pX. The group G is not (2Y, 2Z, pX)-generated, for if G is (2Y, 2Z, pX)-

generated, then G is a dihedral group and thus is not simple for all Y, Z ∈ {A,B}. Also we

know that if G is (lX,mY, nZ)-generated with 1
l + 1

m + 1
n ≥ 1 and G is simple, then G ∼= A5,
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but G ∼= Sp(6, 2) and Sp(6, 2) 6∼= A5. Hence if G is (lX,mY, nZ)-generated, then we must have

1
l + 1

m + 1
n < 1.

From the Atlas of finite group representations [55], we see that G is acting on 28 points, implies

that n = 28 and since our generation is triangular, we have s = 3. Hence by Ree’s Theorem

[49] if G is (l,m, n)-generated, then
∑
ci ≤ 30.

3.2.1 (2, q, r)-generations

Now the (2, q, r)-generations ofG comprises the cases (2, 3, r)-, (2, 5, r)- and (2, 7, r)-generations.

(2, 3, r)-generations

The condition 1
2 + 1

3 + 1
r < 1 shows that r ≥ 7. Thus we have to consider the cases (2X, 3Y, 7A)

for X ∈ {A,B,C,D} and Y ∈ {A,B,C}.

Proposition 3.2.1. The group G is

(i) not (2X, 3Y, 7A), (2Z, 3C, 7A)-generated for all X ∈ {A,B,C,D}, Y ∈ {A,B} and Z ∈

{A,B,C},

(ii) (2D, 3C, 7A)-generated.

Proof. (i) By [40, Theorem 2], G is a Hurwitz group, we have to consider the triples (2X, 3Y, 7A)

for X ∈ {A,B,C,D} and Y ∈ {A,B,C}. If G is a (2A, 3A, 7A)-generated group, then we must

have c2A+c3A+c7A ≤ 30. From Table 3.3 we see that c2A+c3A+c7A = 22+16+4 = 42 > 30 and

by Ree’s Theorem [49], it follows that G is not (2A, 3A, 7A)-generated. Similarly, by applying

Ree’s Theorem, the group G is not generated by these triples (2A, 3B, 7A), (2A, 3C, 7A),

(2B, 3A, 7A), (2C, 3A, 7A), (2C, 3B, 7A), (2C, 3C, 7A) and (2D, 3A, 7A). By Table A.2 we have
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∆G(2B, 3B, 7A) = 0 and when we apply Lemma 2.1.3, it follows that the group G is not

(2B, 3B, 7A)-generated.

By Table 3.4 we see that only four maximal subgroups of G have each an element of order 7,

namely, H2, H4, H5 and H8. The non-empty intersection with all the conjugacy classes for

these four maximal subgroups does not contain elements of order 7.

We have PSL3(2) and 7:6 are the only groups having elements of order 7 after taking non-

empty intersection with all the conjugacy classes for any three maximal subgroups of G.

We have 23:PSL3(2), PSL3(2):2, PSL3(2) (2-copies) and 7:6 (2-copies) are the only groups

having elements of order 7 after taking non-empty intersection with all the conjugacy classes

for any two maximal subgroups of G.

The groups 23:PSL3(2) and PSL3(2) will not have any contribution because their elements of

order 2 does not fuse to the class 2B of the group G. The groups H2, H4, H8, PSL3(2):2 and 7:6

will also not have any contributions here because their relevant structure constants are all zeros.

We obtained that ΣH5(2x, 3a, 7y) = ∆H5(2d, 3a, 7a) + ∆H5(2d, 3a, 7b) = ∆H5(2g, 3a, 7a) +

∆H5(2g, 3a, 7b) = 0 + 0 + 14 + 0 = 14 and the value of h for each contributing group is 1. We

then have ∆∗G(2D, 3B, 7A) = ∆G(2D, 3B, 7A)−ΣH5(2x, 3c, 7y) = 14− 14 = 0, proving that G

is not (2D, 3B, 7A)-generated. By Table 3.2, the group G acts on a 15-dimensional irreducible

complex module V and we have d2B + d3C + dnX = 4 + 8 + dnX < 2× 15 for all nX where nX

is any conjugacy class dividing |Sp(6, 2)|. By applying Scott’s Theorem [50], we conclude that

G is not (2B, 3C, nX)-generated.

(ii) By Table A.4 we have ∆G(2D, 3C, 7A) = 28.We then have ∆∗G(2D, 3C, 7A) ≥ ∆G(2D, 3C, 7A)−

ΣH5(2x, 3y, 7z) = 28− 14 = 14, proving that G is (2D, 3C, 7A)-generated.
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(2, 5, r)-generations

The condition 1
2 + 1

5 + 1
r < 1 shows that r > 10

3 . Thus we have to consider the cases (2X, 5A, 5A)

and (2X, 5A, 7A), for X ∈ {A,B,C,D}.

Proposition 3.2.2. The group G is not a (2X, 5A, 5A)-generated group for all X ∈ {A,B,C,D}.

Proof. If G is a (2X, 5A, 5A)-generated group, then we must have c2X + c5A + c5A ≤ 30. Since

by Table 3.3 we have c2X ∈ {16, 18, 22}, it follows that c2X+c5A+c5A = c2X+8+8 > 30 for any

X ∈ {A,B,C,D} and by Ree’s Theorem [49] we conclude that G is not (2X, 5A, 5A)-generated

group, for all X ∈ {A,B,C,D}.

Proposition 3.2.3. The group G is

(i) not (2X, 5A, 7A)-generated for X ∈ {A,B},

(ii) (2Y, 5A, 7A)-generated for Y ∈ {C,D}.

Proof. (i) By Table A.1 we see that ∆G(2A, 5A, 7A) = 0, it follows that G is not (2A, 5A, 7A)-

generated.

We prove that G is not (2B, 5A, 7A)-generated. Look at Proposition 3.2.1, we see that the

groups 23:PSL3(2), PSL3(2):2, PSL3(2) and 7:6 have elements of order 7 and none will be

considered here since none of these groups have elements of order 5. By Table 3.4, H2 is the

only maximal subgroup containing elements of orders 2, 5 and 7. We have ΣH2(2b, 5a, 7a) =

7 and h(7A,H2) = 1. Since by Table A.2 we have ∆G(2B, 5A, 7A) = 7, it follows that

∆∗G(2B, 5A, 7A) = ∆G(2B, 5A, 7A) −
∑

H2
(2b, 5a, 7a) = 7 − 7 = 0, proving that G is not

(2B, 5A, 7A)-generated.

(ii) As stated ealier, only H2 will have a contribution because it contains elements of orders 2,
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5 and 7. By GAP, we have ΣH2(2c, 5a, 7a) = 7 and by Table A.3, we have ∆G(2C, 5A, 7A) = 14

so that ∆∗G(2C, 5A, 7A) ≥ ∆G(2C, 5A, 7A)−ΣH2(2c, 5a, 7a) = 14− 7 = 7 > 0, proving that G

is (2C, 5A, 7A)-generated.

By Table A.4 we have ∆G(2D, 5A, 7A) = 98. Although H2 is the only maximal subgroup

meeting the 2D, 5A, 7A classes of G, it will not have any contribution since its relevant

structure constant is zero. We then obtained that ∆∗G(2D, 5A, 7A) = ∆G(2D, 5A, 7A) = 98 >

0, proving that G is (2D, 5A, 7A)-generated.

(2, 7, r)-generations

We have to check the generation ofG through the triples (2A, 7A, 7A), (2B, 7A, 7A), (2C, 7A, 7A)

and (2D, 7A, 7A).

Proposition 3.2.4. The group G is (2X, 7A, 7A)-generated for X ∈ {A,B,C,D}.

Proof. As in Proposition 3.2.1, subgroups H2, H4, H5, H8, 23:PSL3(2), PSL3(2):2, PSL3(2)

and 7:6 are the only ones having elements of order 7.

By Table A.1 we have ∆G(2A, 7A, 7A) = 14. Out of all the subgroups having elements of

order 7, only 23:PSL3(2), H2 and H5 meet the 2A, 7A classes of G. The maximal sub-

group H2 will not have any contribution here since its relevant structure constant is zero.

We obtained that Σ23:PSL3(2)(2x, 7y, 7z) = ∆23:PSL3(2)(2a, 7a, 7a) + ∆23:PSL3(2)(2a, 7a, 7b) +

∆23:PSL3(2)(2a, 7b, 7b)+∆23:PSL3(2)(2c, 7a, 7a)+∆23:PSL3(2)(2c, 7a, 7b)+∆23:PSL3(2)(2c, 7b, 7b) =

7 + 0 + 7 + 0 + 14 + 0 = 28 and ΣH5(2a, 7x, 7y) = ∆H5(2a, 7a, 7a) + ∆H5(2a, 7a, 7b) +

∆H5(2a, 7b, 7b) = 7 + 0 + 7 = 14. Since the value of h for each of these contributing sub-

groups is 1, we then obtain that ∆∗G(2A, 7A, 7A) ≥ ∆G(2A, 7A, 7A) − ΣH5(2a, 7x, 7x) +
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Σ23:PSL3(2)(2x, 7y, 7z) = 14− 14 + 28 = 28 > 0, proving that G is (2A, 7A, 7A)-generated.

By Table A.2 we have ∆G(2B, 7A, 7A) = 70. Out of all the subgroups having elements of order

7, only 7:6 does not meet the 2B, 7A classes of G. We obtained that Σ23PSL3(2)(2x, 7y, 7z) =

∆23PSL3(2)(2a, 7a, 7a)+∆23PSL3(2)(2a, 7a, 7b)+∆23PSL3(2)(2a, 7b, 7b)+∆23PSL3(2)(2b, 7a, 7a)+

∆23PSL3(2)(2b, 7a, 7b)+∆23PSL3(2)(2b, 7b, 7b) = 7+0+7+0+14+0 = 28, ΣPSL3(2):2(2b, 7a, 7a) =

7, ΣPSL3(2)(2a, 7x, 7y) = ∆PSL3(2)(2a, 7a, 7a) + ∆PSL3(2)(2a, 7a, 7b) + ∆PSL3(2)(2a, 7b, 7b) =

0+7+0 = 7, ΣH2(2b, 7a, 7a) = 35, ΣH4(2a, 7a, 7a) = 14 and ΣH5(2x, 7y, 7z) = ∆H5(2b, 7a, 7a)+

∆H5(2b, 7a, 7b)+∆H5(2b, 7b, 7b)+∆H5(2f, 7a, 7a)+∆H5(2f, 7a, 7b)+∆H5(2f, 7b, 7b) = 7+0+7+

0+28+0 = 42. Since the value of h for each of these contributing subgroups is 1, we then obtain

that ∆∗G(2B, 7A, 7A) ≥ ∆G(2B, 7A, 7A)−ΣH2(2b, 7a, 7a)−ΣH4(2a, 7a, 7a)−ΣH5(2x, 7y, 7z)+

Σ23PSL3(2)(2x, 7y, 7z)+ΣPSL3(2):2(2b, 7a, 7a)+2×ΣPSL3(2)(2a, 7x, 7y)−ΣPSL3(2)(2a, 7x, 7y) =

70− 35− 14− 42 + 28 + 7 + 2(7)− 7 = 21 > 0, proving that G is (2B, 7A, 7A)-generated.

By Table A.3 we have ∆G(2C, 7A, 7A) = 210. Of all the subgroups of G having elements

of order 7, only H2, H5 and 23:PSL3(2) meet the 2C, 7A classes of G. We obtained that

ΣH2(2c, 7a, 7a) = 70,
∑

H5
(2x, 7y, 7z) = ∆H5(2c, 7a, 7a) + ∆H5(2c, 7a, 7b) + ∆H5(2c, 7b, 7b) +

∆H5(2e, 7a, 7a) + ∆H5(2e, 7a, 7b) + ∆H5(2e, 7b, 7b) = 21 + 0 + 21 + 0 + 28 + 0 = 70 and∑
23:PSL3(2)

(2b, 7x, 7y) = ∆23:PSL3(2)(2b, 7a, 7a)+∆23:PSL3(2)(2b, 7a, 7b)+∆23:PSL3(2)(2b, 7b, 7b)

= 0 + 14 + 0 = 14. The value of h for all contributing subgroups is 1. We then get that

∆∗G(2C, 7A, 7A) ≥ ∆G(2C, 7A, 7A)−
∑

H2
(2c, 7a, 7a)−

∑
H5

(2x, 7y, 7z)+
∑

23:PSL3(2)
(2b, 7x, 7y)

−
∑

23:PSL3(2)
(2b, 7x, 7y) = 210− 70− 70 + 14− 14 = 70 > 0, proving that G is (2C, 7A, 7A)-

generated.

By Table A.4 we have ∆G(2D, 7A, 7A) = 560. The groupsH2, H4, PSL3(2):2 and 7:6 have their

relevant structure constant all zero. The elements of order 2 of these groups 23:PSL3(2) and

PSL3(2) do not fuse to the class 2D of G. Thus, only the maximal subgroups H5 and H8 have
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contributions here. We obtained that
∑

H5
(2x, 7y, 7z) = ∆H5(2d, 7a, 7a) + ∆H5(2d, 7a, 7b) +

∆H5(2d, 7b, 7b)+∆H5(2g, 7a, 7a)+∆H5(2g, 7a, 7b)+∆H5(2g, 7b, 7b) = 28+0+28+0+56+0 =

112 and
∑

H8
(2a, 7a, 7a) = 28. The value of h for all contributing subgroups is 1. We then get

∆∗G(2D, 7A, 7A) ≥ ∆G(2D, 7A, 7A) −
∑

H5
(2x, 7y, 7z) −

∑
H8

(2a, 7a, 7a) = 560 − 112 − 28 =

420 > 0, proving that G is (2D, 7A, 7A)-generated.

3.2.2 (3, q, r)-generations

The condition 1
3+ 1

3+ 1
r < 1 shows that r > 3. For the (3, q, r)-generations, we end up having the

following cases: (3X, 3Y, 5A)-, (3X, 3Y, 7A)-, (3X, 5A, 5A)-, (3X, 5A, 7A)- and (3X, 7A, 7A)-

generations.

(3, 3, r)-generations

Proposition 3.2.5. The group G is not (3X, 3Y, 5A)-generated group for all X,Y ∈ {A,B,C}.

Proof. The groupG acts on a 7-dimensional irreducible complex module V. By Scott’s Theorem

[50] applied to the module V and using the Atlas of finite groups [20], we see that d3A =

dim(V/CV(3A)) = 2(7−4)
3 = 2, d3B = dim(V/CV(3B)) = 2(7+2)

3 = 6, d3C = dim(V/CV(3C)) =

2(7−1)
3 = 4 and d5A = dim(V/CV(5A)) = 4(7−2)

5 = 4. Since d3X ∈ {2, 4, 6} above, it follows

that d3A + d3X + d5A < 14 and by Scott’s Theorem G is not (3A, 3X, 5A)-generated for all

X ∈ {A,B,C}. Again by Scott’s Theorem, G is not (3C, 3C, 5A)-generated because d3C+d3C+

d5A = 12 < 14. By Table A.6 we see that ∆G(3B, 3B, 5A) = ∆G(3B, 3C, 5A) = 10 < 30 =

|CG(5A)|. Using Lemma 2.1.3, the group G is not (3B, 3X, 5A)-generated for X ∈ {B,C}.

Proposition 3.2.6. The group G is
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(i) not (3X, 3Y, 7A)-generated for X ∈ {A,B} and Y ∈ {A,B,C},

(ii) (3C, 3C, 7A)-generated.

Proof. (i) By Table A.5 we have ∆G(3A, 3A, 7A) = ∆G(3A, 3B, 7A) = 0, it follows that

G is not (3A, 3X, 7A)-generated for all X ∈ {A,B}. As in Proposition 3.2.1, subgroups

H2, H4, H5, H8, 23:PSL3(2), PSL3(2):2, PSL3(2) and 7:6 are the only ones having ele-

ments of order 7.

By the same Table A.5 we have ∆G(3A, 3C, 7A) = 7. The maximal subgroup H2 is the only one

meeting the classes 3A, 3C and 7A of G. We obtained that
∑

H2
(3a, 3b, 7a) = 7 and we have

h(7A,H2) = 1. We obtain ∆∗G(3A, 3C, 7A) = ∆G(3A, 3C, 7A) −
∑

H2
(3a, 3b, 7a) = 7 − 7 = 0,

proving that the group G is not (3A, 3C, 7A)-generated.

By Table A.6 we have ∆G(3B, 3B, 7A) = 7. Although the maximal subgroups H4 and H8 are

the only ones meeting the 3B, 7A classes of G, the maximal subgroup H4 will not contribute

because its relevant structure constant is zero. We obtained that
∑

H8
(3a, 3a, 7a) = 7 and we

have h(7A,H8) = 1. Thus we obtain ∆∗G(3B, 3B, 7A) = ∆G(3B, 3B, 7A)−
∑

H8
(3a, 3a, 7a) =

7− 7 = 0, proving that G is not (3B, 3B, 7A)-generated.

By Table A.6 we have ∆G(3B, 3C, 7A) = 7. Although H4 and H8 meet the 3B, 3C, 7A

classes of G, only H4 has a contribution because the relevant structure constant of H8 is zero.

We obtained that
∑

H4
(3a, 3b, 7a) = 7. Thus we obtain ∆∗G(3B, 3C, 7A) = ∆G(3B, 3C, 7A) −∑

H4
(3a, 3b, 7a) = 7− 7 = 0, proving that G is not (3B, 3C, 7A)-generated.

(ii) By Proposition 3.2.1, G is (2B, 3C, 7A)-generated. It follows by Theorem 2.2.3 that G is

(3C, 3C, (7A)2)-generated. Since G has one class of order 7, we must have (7A)2 = 7A. The

group G will become (3C, 3C, 7A)-generated.
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(3, 5, r)-generations

Proposition 3.2.7. The group G is

(i) not (3X, 5A, 5A)-generated for all X ∈ {A,B},

(ii) (3C, 5A, 5A)-generated.

Proof. (i) If G is a (3A, 5A, 5A)-generated group, then we must have c3A + c5A + c5A ≤ 30.

Since by Table 3.3 we have c3A + c5A + c5A = 16 + 8 + 8 = 32 > 30 and by Ree’s Theorem we

conclude that G is not (3A, 5A, 5A)-generated group.

By Table 3.4 we see that only four maximal subgroups of G have each an element of order 5,

namely, H1, H2, H3 and H7. The non-empty intersection with all the conjugacy classes for

these four maximal subgroups does not contain elements of order 5. Also non-empty intersection

with all the conjugacy classes for any three maximal subgroups of G does not have elements

of order 5.

We have 2 × S6 (4-copies), 24:S5, S3 × S5 and 2 × S5 are the only groups having elements of

order 5 resulted when taking non-empty intersection with all the conjugacy classes for any two

maximal subgroups of G.

We found that h(5A, 24:S5) = 6, h(5A,H1) = h(5A,H3) = h(5A, 2× S6) = h(5A, 2× S5) = 3

and h(5A,H2)H2 = h(5A,H7) = h(5A,S3 × S5) = 1.

By Table A.6 we have ∆G(3B, 5A, 5A) = 30. Out of the above subgroups having elements of

order 5, only H1 and H7 meet the 3B, 5A classes of G. The maximal subgroup H7 has no

contributions because its structure constant is zero. We obtained that
∑

H1
(3a, 5a, 5a) = 10.

We obtain ∆∗G(3B, 5A, 5A) = ∆G(3B, 5A, 5A)− 3 ·
∑

H1
(3a, 5a, 5a) = 30− 3(10) = 0, proving
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that G is not (3B, 5A, 5A)-generated.

(ii) By Table A.7 we have ∆G(3C, 5A, 5A) = 690. Out of the above subgroups having el-

ements of order 5, only H1, H2, H3, H7, 2 × S6 and S3 × S5 meet the 3C, 5A classes

of G. The relevant structure constant for the group S3 × S5 is zero. We obtained that∑
H1

(3c, 5a, 5a) = 105,
∑

H2
(3b, 5a, 5a) = 135,

∑
H3

(3b, 5a, 5a) = 120,
∑

H7
(3c, 5a, 5a) = 15

and
∑

2×S6
(3b, 5a, 5a) = 15. We get ∆∗G(3C, 5A, 5A) ≥ ∆G(3C, 5A, 5A)− 3 ·

∑
H1

(3c, 5a, 5a)−∑
H2

(3b, 5a, 5a)−
∑

H7
(3c, 5a, 5a) + 4× 3 ·

∑
2×S6

(3a, 5b, 5a) = 690− 3(105)− 135− 120− 15 +

4(3)(15) = 285 > 0, proving (ii).

Proposition 3.2.8. The group G is

(i) not (3A, 5A, 7A)-generated

(ii) (3X, 5A, 7A)-generated, where X ∈ {B,C}.

Proof. (i) The groups H2, H4, H5, H8, 23:PSL3(2), PSL3(2):2, PSL3(2) and 7:6 have elements

of order 7 and the group H2 will contribute here because is the only one have elements of

order 5. We obtained that
∑

H2
(3a, 5a, 7a) = 7 and we have h(7A,H2) = 1. Since by Table

A.5 we have ∆G(3A, 5A, 7A) = 7, we then obtain that ∆∗G(3A, 5A, 7A) = ∆G(3A, 5A, 7A) −∑
H2

(3a, 5a, 7a) = 7− 7 = 0. Hence, the group G is not (3A, 5A, 7A)-generated.

(ii) By Table A.6 we have ∆G(3B, 5A, 7A) = 77. Although the group H2 is the only one having

elements of order, it will not have any contributions because its elements of order 3 do not meet

the class 3B of G. We obtained that ∆∗G(3B, 5A, 7A) = ∆G(3B, 5A, 7A) = 77 > 0, proving

that G is (3B, 5A, 7A)-generated.

By Table A.7 we have ∆G(3C, 5A, 7A) = 441. Although H2 is the only maximal subgroup

meeting the classes 3C, 5A and 7A of G so that
∑

H2
(3b, 5a, 7a) = 77. We obtain that

∆∗G(3C, 5A, 7A) = ∆G(3C, 5A, 7A) −
∑

H2
(3b, 5a, 7a) = 441 − 77 = 368 > 0. Thus, the
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group G is (3C, 5A, 7A)-generated.

(3, 7, r)-generations

In this subsection we discuss the cases (3, 7, r)-generations. It follows that we will end up with

3 cases, namely (3A, 7A, 7A)-, (3B, 7A, 7A)- and (3C, 7A, 7A)-generation.

Proposition 3.2.9. The group G is (3X, 7A, 7A)-generated for all X ∈ {A,B,C}.

Proof. The subgroups H2, H4, H5, H8, 23:PSL3(2), PSL3(2):2, PSL3(2) and 7:6 are the only

ones having elements of order 7. By Table A.5 we have ∆G(3A, 7A, 7A) = 133. Only H2 has

a contribution because it meets the 3A, 7A classes of G. We obtained that
∑

H2
(3a, 7a, 7a) = 42

and h(7A,H2) = 1.We then obtain that ∆∗G(3A, 7A, 7A) ≥ ∆G(3A, 7A, 7A)−
∑

H2
(3a, 7a, 7a) =

133− 42 = 91 > 0. This shows that the group G is (3A, 7A, 7A)-generated.

By Table A.6 we have ∆G(3B, 7A, 7A) = 245. Out of all the subgroups of G having elements

of order 7, only H4 and H8 meet the 3B, 7A classes of G. We obtained that
∑

H4
(3a, 7a, 7a) = 7

and
∑

H8
(3a, 7a, 7a) = 21.We then obtain ∆∗G(3B, 7A, 7A) ≥ ∆G(3B, 7A, 7A)−

∑
H4

(3a, 7a, 7a)−∑
H8

(3a, 7a, 7a) = 245− 7− 21 = 217 > 0, proving that G is (3B, 7A, 7A)-generated.

By Table A.7 we have ∆G(3C, 7A, 7A) = 2289.All these subgroupsH2, H4, H5, H8, 23:PSL3(2),

PSL3(2):2, PSL3(2) and 7:6 meet the 3C, 7A classes of G. Although H8 and 7:6 meet the

3C, 7A classes of G, they will not have any contributions because their relevant structure

constants are all zero. We obtained that
∑

H2
(3b, 7a, 7a) = 294,

∑
H4

(3b, 7a, 7a) = 189,∑
H5

(3a, 7x, 7y) = ∆H5(3a, 7a, 7a)+∆H5(3a, 7a, 7b)+∆H5(3a, 7b, 7b) = 112+112+112 = 336,∑
23:PSL3(2)

(3a, 7x, 7y) = ∆23:PSL3(2)(3a, 7a, 7a)+∆23:PSL3(2)(3a, 7a, 7b)+∆23:PSL3(2)(3a, 7b, 7b)

= 28+28+28 = 84,
∑

PSL3(2):2
(3a, 7a, 7a) = 14 and

∑
PSL3(2)

(3a, 7x, 7y) = ∆PSL3(2)(3a, 7a, 7a)+
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∆PSL3(2)(3a, 7a, 7b) + ∆PSL3(2)(3a, 7b, 7b) = 7 + 7 + 7 = 21. The value of h for each con-

tributing subgroups is 1. We then get ∆∗G(3C, 7A, 7A) ≥ ∆G(3C, 7A, 7A)−
∑

H2
(3b, 7a, 7a)−∑

H4
(3b, 7a, 7a)−

∑
H5

(3a, 7x, 7y) +
∑

23:PSL3(2)
(3a, 7x, 7y) +

∑
PSL3(2):2

(3a, 7a, 7a) +

2×
∑

PSL3(2)
(3a, 7x, 7y)−

∑
PSL3(2)

(3a, 7x, 7y) = 2289−294−189−112+84+14+2(21)−21 =

1813 > 0. Hence G is (3C, 7A, 7A)-generated.

3.2.3 Other results

In this subsection we handle all the remaining cases, namely the (5, q, r)-and (7, q, r)-generations.

This will end up with four cases, namely (5A, 5A, 5A)-, (5A, 5A, 7A)-, (5A, 7A, 7A)- and

(7A, 7A, 7A)-generation.

(5, 5, r)-generations

We have to check the generation of G through the triples (5A, 5A, 5A) and (5A, 5A, 7A) .

Proposition 3.2.10. The group G is (5A, 5A, 5A)-generated.

Proof. As in Proposition 3.2.7, the groups having elements of order 5 are H1, H2, H3, H7,

2×S6, 24:S5, S3×S5 and 2×S5. We already have h(5A, 24:S5) = 6, h(5A,H1) = h(5A,H3) =

h(5A, 2× S6) = h(5A, 2× S5) = 3 and h(5A,H2)H2 = h(5A,H7) = h(5A,S3 × S5) = 1.

By Table A.8 we have ∆G(5A, 5A, 5A) = 3998. We obtained that
∑

H1
(5a, 5a, 5a) = 1163,∑

H2
(5a, 5a, 5a) = 173,

∑
H3

(5a, 5a, 5a) = 488,
∑

H7
(5a, 5a, 5a) = 53,

∑
2×S6

(3b, 5a, 5a) =

53,
∑

24:S5
(5a, 5a, 5a) = 128,

∑
S3×S5

(5a, 5a, 5a) = 8 and
∑

2×S5
(5a, 5a, 5a) = 8. We get

∆∗G(5A, 5A, 5A) ≥ ∆G(5A, 5A, 5A)−3 ·
∑

H1
(5a, 5a, 5a)−

∑
H2

(5a, 5a, 5a)−
∑

H3
(5a, 5a, 5a)−∑

H7
(5a, 5a, 5a) + 4 × 3 ·

∑
2×S6

(3a, 5b, 5a) + 6 ·
∑

24:S5
(5a, 5a, 5a) +

∑
S3×S5

(5a, 5a, 5a) + 3 ·
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∑
2×S5

(5a, 5a, 5a) = 3998−3(1163)−173−3(488)−53+4(3)(53)+6(128)+8+3(8) = 255 > 0,

proving that the group G is (5A, 5A, 5A)-generated.

Proposition 3.2.11. The group G is (5A, 5A, 7A)-generated.

Proof. By Proposition 3.2.3, G is (2D, 5A, 7A)-generated. It follows by Theorem 2.2.3 that G

is (5A, 5A, (7A)2)-generated. Since G has one class of order 7, we must have (7A)2 = 7A. The

group G will become (5A, 5A, 7A)-generated.

(5, 7, r)- and (7, 7, r)-generations

Proposition 3.2.12. The group G is (5A, 7A, 7A)-generated.

Proof. The subgroups of G having elements of order 7 are H2, H4, H5, H8, 23:PSL3(2),

PSL3(2):2, PSL3(2) and 7:6. Only H2 has elements of order 5. We obtained that∑
H2

(5a, 7a, 7a) = 378. Since by Table A.8 we have ∆G(5A, 7A, 7A) = 7483, we then obtain

that ∆∗G(5A, 7A, 7A) ≥ ∆G(5A, 7A, 7A) −
∑

H2
(5a, 7a, 7a) = 7483 − 378 = 7105 > 0. Hence

the group G is (5A, 7A, 7A)-generated.

We conclude our investigation on the (p, q, r)-generation of the symplectic group Sp(6, 2) by

considering the (7A, 7A, 7A)-generations.

Proposition 3.2.13. The group G is (7A, 7A, 7A)-generated.

Proof. By Proposition 3.2.4, G is (2C, 7A, 7A)-generated. By the application of Theorem

2.2.3, it follows that G is (7A, 7A, (7A)2)-generated. Since (7A)2 = 7A, the group G becomes
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(7A, 7A, 7A)-generated.

3.3. The conjugacy classes ranks of the Symplectic Group Sp(6, 2).

Now we study the ranks of G with respect to the various conjugacy classes of all its non-identity

elements. We start our investigation on the ranks of the non-trivial classes of G by looking at

the four classes of involutions 2A, 2B, 2C and 2D. It is well known that the rank of any of

these involutions classes will be at least 3.

Proposition 3.3.1. rank(G : 2A) = 7.

Proof. For G with four disjoint cycles and acting on n = 28 points, we get n(s − 2) +

2 = 58. If G is (2A, 2A, 2A, pX)-generated group, then we must have c2A + c2A + c2A +

cpX ≤ 58, where pX is a non-identity conjugacy class whose order divides the order of

G. By Table 4.1 we have c2A + c2A + c2A + cpX = 3(22) + cpX > 58 and by Ree’s The-

orem [49] it follows that G is not (2A, 2A, 2A, pX)-generated group. Same applies to G

with five disjoint cycles acting on n = 28 points, we get n(s − 2) + 2 = 86. By Table

4.1 we have c2A + c2A + c2A + c2A + cpX = 4(22) + cpX > 86 and it follows that G is

not (2A, 2A, 2A, 2A, pX)-generated group. Same applies to G with six disjoint cycles act-

ing on n = 28 points, we get n(s − 2) + 2 = 114. By Table 4.1 we have c2A + c2A + c2A +

c2A + c2A + cpX = 5(22) + cpX > 114 and it follows that G is not (2A, 2A, 2A, 2A, 2A, pX)-

generated group for pX /∈ {7A, 8B, 9A, 12C, 15A}. With reference to [5, Lemma 4] and [15, Re-

mark 1], simple computation shows that the structure constant ∆G(2A, 2A, 2A, 2A, 2A,nX) =

0, this shows that the group G is not (2A, 2A, 2A, 2A, 2A,nX)-generated for each nX ∈

{7A, 8B, 9A, 12C, 15A}. The group G with seven disjoint cycles acting on n = 28 points,

we get n(s − 2) + 2 = 142. By Table 4.1 we have c2A + c2A + c2A + c2A + c2A + c2A + cpX =

6(22) + cpX > 142 and it follows that G is not (2A, 2A, 2A, 2A, 2A, 2A, pX)-generated group
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for pX /∈ {2A, 2B, 2C, 3A, 4C, 6A, 6D}. By Gap, we have ∆G(2A, 2A, 2A, 2A, 2A, 2A,nX) =

0, proving that the group G is not (2A, 2A, 2A, 2A, 2A, 2A,nX)-generated for each nX ∈

{8A, 12A, 12B}. By Gap, we have ∆G(2A, 2A, 2A, 2A, 2A, 2A, 3B) = 9720. Subgroups fusing

to 2A and 3B have all their relevant structure constant zero except the maximal subgroup

H1. Since
∑

H1
(2a, 2a, 2a, 2a, 2a, 2a, 3a) = 9720 and the value of h is 1, we then obtain that

∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 3B) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 3B)−
∑

H1
(2a, 2a, 2a, 2a, 2a, 2a, 3a)

= 9720−9720 = 0. Similarly, we obtain the following results, ∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 3C) =

∆G(2A, 2A, 2A, 2A, 2A, 2A, 3C)−
∑

H1
(2a, 2a, 2a, 2a, 2a, 2a, 3c)−3·

∑
H2

(2a, 2a, 2a, 2a, 2a, 2a, 3b)

+ 3 ·
∑

2×S6
(2b, 2b, 2b, 2b, 2b, 2b, 3b) = 9450− 70470− 3(3960) + 3(24300) = 0,

∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 4A) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 4A)−4·
∑

H1
(2c, 2c, 2c, 2c, 2c, 2c, 4a)

− 3 ·
∑

H3
(2f, 2f, 2f, 2f, 2f, 2f, 4d)− 6 ·

∑
H6

(2j, 2j, 2j, 2j, 2j, 2j, 4f) = 1246080− 4(168960)−

3(128640)−6(30720) = 0, ∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 4B) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 4B)−

4·
∑

H2
(2b, 2b, 2b, 2b, 2b, 2b, 4b)−2·

∑
H3

(2f, 2f, 2f, 2f, 2f, 2f, 4h) = 52480−4(5120)−2(16000) =

0,∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 4E) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 4E)−
∑

H2
(2b, 2b, 2b, 2b, 2b, 2b, 4c)

= 43008 − 43008 = 0, ∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 5A) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 5A) − 3 ·∑
H1

(2c, 2c, 2c, 2c, 2c, 2c, 5a)−
∑

H2
(2b, 2b, 2b, 2b, 2b, 2b, 5a)−3 ·

∑
H3

(2f, 2f, 2f, 2f, 2f, 2f, 5a)−∑
H7

(2c, 2c, 2c, 2c, 2c, 2c, 5a) + 2 · 3 ·
∑

2×S6
(2b, 2b, 2b, 2b, 2b, 2b, 5a) = 573750 − 3(126875) −

68125− 3(93750)− 31250 + 2(3)(31250) = 0, ∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 6B) =

∆G(2A, 2A, 2A, 2A, 2A, 2A, 6B)−4·
∑

H1
(2c, 2c, 2c, 2c, 2c, 2c, 6c)−3·

∑
H3

(2f, 2f, 2f, 2f, 2f, 2f, 6b)−

6 ·
∑

H6
(2j, 2j, 2j, 2j, 2j, 2j, 6g) = 1017800− 4(126875)− 3(111780)− 6(29160) = 0,

∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 6C) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 6C)−
∑

H1
(2c, 2c, 2c, 2c, 2c, 2c, 6d) =

77760− 77760 = 0, ∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 6E) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 6E)−∑
H3

(2f, 2f, 2f, 2f, 2f, 2f, 6f) = 43740− 43740 = 0, ∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 6F ) =

∆G(2A, 2A, 2A, 2A, 2A, 2A, 6F )−
∑

H1
(2c, 2c, 2f, 2c, 2c, 2c, 6e) = 23328− 23328 = 0,

∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 6G) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 6G)−
∑

H2
(2b, 2b, 2b, 2b, 2b, 2b, 6c)
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= 7776− 7776 = 0, ∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 7A) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 7A)−∑
H2

(2b, 2b, 2b, 2b, 2b, 2b, 7a) = 16807− 16807 = 0, ∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 8B) =

∆G(2A, 2A, 2A, 2A, 2A, 2A, 8B)−
∑

H3
(2f, 2f, 2f, 2f, 2f, 2f, 8b) = 40960− 40960 = 0,

∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 9A) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 9A)−
∑

H1
(2c, 2c, 2c, 2c, 2c, 2c, 9a)

= 59049 − 59049 = 0, ∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 10A) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 10A) −∑
H3

(2f, 2f, 2f, 2f, 2f, 2f, 10a) = 31250− 31250 = 0, ∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 12C) =

∆G(2A, 2A, 2A, 2A, 2A, 2A, 12C) −
∑

H1
(2c, 2c, 2c, 2c, 2c, 2c, 12a) = 41472 − 41472 = 0 and

∆∗G(2A, 2A, 2A, 2A, 2A, 2A, 15A) = ∆G(2A, 2A, 2A, 2A, 2A, 2A, 15A)−
∑

H2
(2b, 2b, 2b, 2b, 2b, 2b, 15a)

= 2625 − 2625 = 0. The group G is not (2A, 2A, 2A, 2A, 2A, 2A,nX)-generated for each

nX ∈ {3B, 3C, 4A, 4B, 4E, 5A, 6B, 6C, 6E, 6F, 6G, 7A, 8B, 9A, 10A, 12C, 15A}. We then con-

clude that rank(G : 2A) /∈ {2, 3, 4, 5, 6}. By Proposition 3.2.4, the group G is (2A, 7A, 7A)-

generated. By Corollary 2.2.2, rank(G : 2A) ≤ 7 and it follows that rank(G : 2A) = 7.

Proposition 3.3.2. rank(G : 2B) = 4.

Proof. By Table 3.2, the group G acts on a 15-dimensional irreducible complex module V

and we have d2B + d2B + d2B + dnX = 3 × 4 + dnX < 2 × 15 for all nX where nX is any

conjugacy class dividing |Sp(6, 2)|. By applying Scott’s Theorem [50], we conclude that G

is not (2B, 2B, 2B,nX)-generated. We then conclude by the above result and the result of

Proposition 3.3.1 that rank(G : 2B) 6= 3. Direct computations show that the structure con-

stant ∆G(2B, 2B, 2B, 2B, 9A) = 4617. (See [5, Lemma 4] and [15, Remark 1]). We see that

only two maximal subgroups of G have each an element of order 9 viz. H1 and H8. The

intersection of conjugacy classes of these two maximal subgroups do not contain elements of

order 9. Only the maximal subgroup H1 meets the classes 2B and 9A of G. We obtained that

ΣH1(2B, 2B, 2B, 2B, 9A) = 243 and h(9A,H1) = 1. It follows that ∆∗G(2B, 2B, 2B, 2B, 9A) =

4617 − 243 = 4374, proving that the group G is (2B, 2B, 2B, 2B, 9A)-generated. Hence the
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result.

Proposition 3.3.3. rank(G : 2C) = 4.

Proof. To show that G is not generated by only three elements from class 2C, we use Scott’s

Theorem. If G is (2C, 2C, 2C, nX)-generated group for any non-trivial class nX of G, then

we must have d2C + d2C + d2C + dnX ≥ 2 × 7. However, it is clear from Table 4.2 that

3 × d2C + dnX < 14, for each nX of G. Thus G is not (2C, 2C, 2C, nX)-generated group

and it follows that rank(G : 2C) 6= 3. We obtained that ∆G(2C, 4D, 15A) = 45 and only

two maximal subgroups of G have each an element of order 15, namely, H2 and H7. The

group formed by non-empty intersection with all the conjugacy classes for these two maximal

subgroups having elements of order 15 is isomorphic to S3 × S5. The subgroups H2, H7 and

S3 × S5 having elements of order 7 will not have any contributions because their elements of

order 4 do not fuse to the class 4D of G. Since the is no contribution from any of the three

group, we then have ∆∗G(2C, 4D, 15A) = ∆G(2C, 4D, 15A) = 45 > 0. This shows that the

group G is (2C, 4D, 15A)-generated. By the application of Lemma 2.2.1, we then obtain that

the group G is (2C, 2C, 2C, 2C, (15A)4)-generated. Since the is only one class of order 15 in

G, we then have (15A)4 = 15A so that G becomes (2C, 2C, 2C, 2C, 15A)-generated. Hence

rank(G : 2C) = 4.

Proposition 3.3.4. rank(G : 2D) = 3.

Proof. Using GAP, by taking

a = (3, 4)(6, 22)(7, 21)(8, 19)(9, 23)(10, 17)(11, 12)(13, 24)(15, 20)(16, 26)(18, 28)(25, 27) ∈ 2D,

b = (1, 3, 25)(2, 8, 26)(4, 24, 10)(5, 6, 20)(7, 14, 16)(9, 13, 18)(12, 23, 19)(15, 17, 22)(21, 28, 27) ∈ 3C.

Then 〈a, b〉 = G with

ab = (1, 3, 24, 18, 27)(2, 8, 12, 11, 23, 13, 10, 22, 20, 17, 4, 25, 21, 14, 16)(5, 6, 15)(7, 28, 9, 19, 26) ∈ 15A.
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Thus, the group G is (2D, 3C, 15A)-generated. The result follows from the application of

Theorem 2.2.3.

Proposition 3.3.5. rank(G : 3A) = 4.

Proof. To show that G cannot be generated by only two (or three) elements from class 3A,

we use Scott’s Theorem. If G is (3A, 3A,nX)-generated group (or (3A, 3A, 3A,nX)-generated

group) for any non-trivial class nX of G, then we must have d3A + d3A + dnX ≥ 2 × 7 (or

d3A +d3A +d3A +dnX ≥ 2×7). However, it is clear from Table 4.2 that 2×d3A +dnX < 14 (or

3×d3A +dnX < 14), for each nX of G. Thus G is neither (3A, 3A,nX)- nor (3A, 3A, 3A,nX)-

generated group and it follows that rank(G : 3A) 6∈ {2, 3}. By direct computations show that

∆G(3A, 3A, 3A, 3A, 9A) = 229797 and we see that only two maximal subgroups of G have

each an element of order 9, namely, H1 and H8. The subgroup 9:6 of G arises from taking

non-empty intersection with all the conjugacy classes for these two maximal subgroups, has

elements of order 9. The subgroups 9:6 and H8 will not have any contributions because their

elements of 3 do not fuse to the class 3A of G. Only H1 meets the classes 3A and 9A of

G. We obtained that ΣH1(3b, 3b, 3b, 3b, 9a) = 118989 and h(9A,H1) = 1. We then obtain

that ∆∗G(3A, 3A, 3A, 3A, 9A) ≥ ∆G(3A, 3A, 3A, 3A, 9A) − ΣH1(3b, 3b, 3b, 3b, 9a) = 229797 −

118989 = 110808, proving that G is (3A, 3A, 3A, 3A, 9A)-generated. Hence the result.

Remark 3.3.1. An alternative way to show that G is not (3A, 3A,nX)-generated group for

any non-trivial class nX of G, we note that the direct computations yield ∆G(3A, 3A,nX) =

0 for all non-trivial classes nX of G except for nX ∈ {2C, 3A, 3C, 4A, 5A, 6B} := T. For

nX ∈ T, we have ∆G(3A, 3A, 2C) = 32 < 1536 = |CG(2C)|, ∆G(3A, 3A, 3A) = 46 < 2160 =

|CG(3A)|, ∆G(3A, 3A, 3C) = 2 < 108 = |CG(3C)|, ∆G(3A, 3A, 4A) = 16 < 384 = |CG(4A)|,

∆G(3A, 3A, 5A) = 5 < 30 = |CG(5A)| and ∆G(3A, 3A, 6B) = 6 < 144 = |CG(6B)|. Then using

Lemma 2.1.3 we deduce that G is not (3A, 3A,nX)-generated group for nX ∈ T and thus

44



CHAPTER 3 – The Symplectic group Sp(6, 2)

rank(G : 3A) 6= 2.

Proposition 3.3.6. rank(G : 3B) = 3.

Proof. To show that G is not (3B, 3B,nX)-generated group for any non-trivial class nX of G,

we note that the direct computations yield ∆G(3B, 3B,nX) = 0 for all non-trivial classes nX

of G except for nX ∈ {2C, 3A, 3B, 3C, 4A, 4D, 5A, 6C, 6D, 7A, 9A, 15A}.

It was proved in Proposition 3.2.6 that the group G is not (3B, 3B, 7A)-generated.

Direct computations show that ∆G(3B, 3B, 9A) = 9. Subgroups meeting the classes 3B and

9A of G are 9:6, H1 and H8. The subgroups 9:6 and H1 will not have any contributions

because their relevant structure constants are all zeros. The direct computations show that

ΣH8(3a, 3a, 9x) = ∆H8(3a, 3a, 9a)+∆H8(3a, 3a, 9b)+∆H8(3a, 3a, 9c) = 0+0+9 = 9. We found

that h(9A,H8) = 1. It follows that ∆∗G(3B, 3B, 9A) = ∆G(3B, 3B, 9A) − ΣH8(3a, 3a, 9x) =

9− 9 = 0, showing the non-generation of G by the triple (3B, 3B, 9A).

Let T := {2C, 3A, 3B, 3C, 4A, 4D, 5A, 6C, 6D, 15A}. For nX ∈ T, we have ∆G(3B, 3B, 2C) =

64 < 1536 = |CG(2C)|, ∆G(3B, 3B, 3A) = 40 < 2160 = |CG(3A)|, ∆G(3B, 3B, 3B) =

28 < 648 = |CG(3B)|, ∆G(3B, 3B, 3C) = 20 < 108 = |CG(3C)|, ∆G(3B, 3B, 4A) = 16 <

384 = |CG(4A)|, ∆G(3B, 3B, 4D) = 16 < 128 = |CG(4D)|, ∆G(3B, 3B, 5A) = 10 < 30 =

|CG(5A)|, ∆G(3B, 3B, 6C) = 12 < 72 = |CG(6C)|, ∆G(3B, 3B, 6D) = 8 < 48 = |CG(6D)| and

∆G(3B, 3B, 15A) = 5 < 15 = |CG(15A)|. Then using Lemma 2.1.3 we deduce that G is not

(3B, 3B,nX)-generated group for nX ∈ T and thus rank(G : 3B) 6= 2.

Direct computations show that ∆G(3B, 3C, 15A) = 25. As in Proposition 3.3.3, subgroups

having elements of order 15 are S3 × S5, H2 and H7. The subgroups S3 × S5 and H2 will not

have any contributions because their elements of 3 do not fuse to the class 3B of G. Only H7
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meets the classes 3B, 3C and 15A of G. The direct computations show that
∑

H7
(3e, 3x, 15a) =

∆H7(3e, 3c, 15a) + ∆H7(3e, 3d, 15a) = 5 + 5 = 10 and we found that h(15A,H7) = 1. We then

obtain that ∆∗G(3B, 3C, 15A) ≥ ∆G(3B, 3C, 15A) −
∑

H7
(3e, 3x, 15a) = 25 − 10 = 15 > 0,

proving that G is (3B, 3C, 15A)-generated. By the application of Lemma 2.2.1, we then obtain

that the group G is (3B, 3B, 3B, (15A)3)-generated. Since the class 15A is only one of order

15 in G, we then have (15A)3 = 15A so that G becomes (3B, 3B, 3B, 15A)-generated. Hence

rank(G : 3B) = 3.

Proposition 3.3.7. rank(G : 3C) = 2.

Proof. We have proved in Proposition 3.2.1 that the group G is generated by (2D, 3C, 7A). By

Corollary 2.2.4, rank(G : 3C) = 2.

Proposition 3.3.8. rank(G : 4A) = 3.

Proof. To show that G cannot be generated by only two elements from class 4A, we use Scott’s

Theorem. If G is (4A, 4A,nX)-generated group for any non-trivial class nX of G, then we must

have d4A +d4A +dnX ≥ 2×7 . However, it is clear from Table 3.1 that 2×d4A +dnX = 2(4) +

dnX < 14, for each nX ∈ {2B, 2C, 2D, 3A, 3C, 4A, 4B, 4E, 5A, 6B, 6D} of G. Thus G is not

(4A, 4A,nX)-generated group, for each nX ∈ {2B, 2C, 2D, 3A, 3C, 4A, 4B, 4E, 5A, 6B, 6D}.

The groupG is not (4A, 4A,nX)-, for each nX ∈ {2B, 2C, 2D, 3A, 3C, 4A, 4B, 4E, 5A, 6B, 6D}.

Let T1 := {2A, 3B, 4C, 4D, 6A, 6E, 6F, 6G, 8A, 10A, 12A, 12B, 15A}. By Gap, we have

∆G(4A, 4A,nX) = 0, so that the group G is not (4A, 4A,nX)-generated for all nX ∈ T1.

We obtained that ∆G(4A, 4A, 12C) = 11 < 12 = |CG(12C)|, showing that the group G is

not (4A, 4A, 12C)-generated. By Gap, we have ∆G(4A, 4A, 6C) = 114,
∑

H1
(4a, 4a, 6d) =

24,
∑

H4
(4b, 4b, 6b) = 14,

∑
H6

(4d, 4d, 6a) = 18 and h(4A,H4) = 3. We then obtain that

∆∗G(4A, 4A, 6C) = ∆G(4A, 4A, 6C)−
∑

H1
(4a, 4a, 6d)− 3 ·

∑
H4

(4b, 4b, 6b)−
∑

H6
(4d, 4d, 6a) =
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114 − 24 − 3 × 14 − 18 = 30 < 72 = |CG(6C)|. Again by Gap, we have ∆G(4A, 4A, 7A) =

7. Subgroups fusing to 4A and 7A have all their relevant structure constant zero except

the maximal subgroup H4. Since
∑

H4
(4c, 4c, 7a) = 7 and h = 1, we then obtain that

∆∗G(4A, 4A, 7A) = ∆G(4A, 4A, 7A) −
∑

H4
(4c, 4c, 7a) = 7 − 7 = 0. Similarly we obtain the

following results, ∆∗G(4A, 4A, 8B) = ∆G(4A, 4A, 8B) −
∑

H3
(4f, 4f, 8b) −

∑
H5

(4a, 4a, 8b) =

36 − 32 − 8 = 0, ∆∗G(4A, 4A, 9A) = ∆G(4A, 4A, 9A) −
∑

H1
(4a, 4a, 9a) = 9 − 9 = 0 and

∆∗G(4A, 4A, 6C) = ∆G(4A, 4A, 6C) −
∑

H1
(4c, 4c, 6a) = 27 − 27 = 0. These show that the

group G is not (4A, 4A, 6C)-, (4A, 4A, 7A)-, (4A, 4A, 8B)-and (4A, 4A, 9A)-generated. Thus,

rank(G : 4A) 6= 2. Easy computations show that ∆G(4A, 4A, 4A, 9A) = 47385. The subgroups

having elements of order 9 are H1, H8 and 9:6. The subgroups H8 and 9:6 do not have ele-

ments of order 4. Only H1 meets the classes 4A and 9A of the group G. We obtained that∑
H1

(4a, 4a, 4a, 9a) = 5832. We then obtain that ∆∗G(4A, 4A, 4A, 9A) ≥ ∆G(4A, 4A, 4A, 9A)−∑
H1

(4a, 4a, 4a, 9a) = 47385−5832 = 41553 > 0, proving that G is (4A, 4A, 4A, 9A)-generated.

Hence the result.

Proposition 3.3.9. rank(G : 4B) = 3.

Proof. To show that G cannot be generated by only two elements from class 4B, we use Scott’s

Theorem. If G is (4B, 4B,nX)-generated group for any non-trivial class nX of G, then we must

have d4B +d4B +dnX ≥ 2×7 . However, it is clear from Table 3.1 that 2×d4A +dnX = 2(4) +

dnX < 14, for each nX ∈ {2B, 2C, 2D, 3A, 3C, 4A, 4B, 4E, 5A, 6B, 6D} of G. Thus G is not

(4A, 4A,nX)-generated group, for each nX ∈ {2B, 2C, 2D, 3A, 3C, 4A, 4B, 4E, 5A, 6B, 6D}.

Let T1 := {2A, 3B, 4C}. By Gap, we have ∆G(4B, 4B,nX) = 0, so that the group G is

not (4A, 4A,nX)-generated for all nX ∈ T1. We obtained that ∆G(4B, 4B, 4D) = 64 <

192 = |CG(4D)|, ∆G(4B, 4B, 6A) = 36 < 144 = |CG(6A)|, ∆G(4B, 4B, 6C) = 18 < 72 =

|CG(6C)|, ∆G(4B, 4B, 6E) = 18 < 36 = |CG(6E)|, ∆G(4B, 4B, 8A) = 8 < 16 = |CG(8A)|,
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∆G(4B, 4B, 12A) = 12 < 24 = |CG(12A)|, ∆G(4B, 4B, 12B) = 12 < 24 = |CG(12B)| and

∆G(4B, 4B, 12C) = 3 < 12 = |CG(12C)| so that the group G is not (4B, 4B,nX)-generated

for each nX ∈ {4D, 6A, 6C, 6E, 8A, 12A, 12B, 12C}. It follows that rank(G : 4B) 6= 2. Easy

computations show that ∆G(4B, 3B, 9A) = 9. Although the subgroup H1 meets the classes 3B,

4B and 9A of the group G, it will not have any contribution because its relevant structure is

zero. We then obtain that ∆∗G(4B, 3B, 9A) ≥ 27 > 0, proving that G is (4B, 3B, 9A)-generated.

Hence the result.

Proposition 3.3.10. rank(G : 4C) = 3.

Proof. Let nX ∈ {2A, 2B, 2C, 2D, 3A, 3B, 3C, 4A, 4B, 4C, 4D, 4E, 5A, 6A, 6B, 6D, 6E, 10A}.

If G is a (4C, 4C, nX)-generated group, then we must have c4C + c4C + cnX ≤ 30. Since by

Table 3.3 we have c4C +c4C +cnX = 12+12+cnX > 30 and by Ree’s Theorem we conclude that

G is not 4C, 4C, nX)-generated group. By Gap, we have ∆G(4C, 4C, 6F ) = ∆G(4C, 4C, 6G) =

∆G(4C, 4C, 8A) = ∆G(4C, 4C, 12A) = ∆G(4C, 4C, 12B) = ∆G(4C, 4C, 15A) = 0, so that

the group G is not (4C, 4C, 6G)-, (4C, 4C, 6G)-, (4C, 4C, 8A)-, (4C, 4C, 12A)-, (4C, 4C, 12B)-

and (4C, 4C, 15A)-generated. By Gap, we have ∆G(4C, 4C, 6C) = 162. We obtained that∑
H1

(4c, 4c, 6d) = 162 and h = 1. Subgroups fusing to 4C and 6C have all their relevant

structure constant zero except the maximal subgroup H1. Similarly we obtain the following

results, ∆∗G(4C, 4C, 7A) = ∆G(4C, 4C, 7A) −
∑

H2
(4a, 4a, 7a) = 7 − 7 = 0. ∆∗G(4C, 4C, 8B) =

∆G(4C, 4C, 8B) −
∑

H3
(4f, 4f, 8b) −

∑
H5

(4a, 4a, 8b) = 40 − 32 − 8 = 0, ∆∗G(4C, 4C, 9A) =

∆G(4C, 4C, 9A) −
∑

H1
(4c, 4c, 9a) = 81 − 81 = 0 and ∆∗G(4C, 4C, 12C) = ∆G(4C, 4C, 12C) −∑

H1
(4c, 4c, 12a) = 27 − 27 = 0. These show that the group G is not (4C, 4C, nX)-generated

for each nX ∈ {6C, 7A, 8B, 9A, 12C}. Easy computations show that ∆G(4C, 3B, 9A) = 27.

Although the subgroup H1 meets the classes 3B, 4C and 9A of the group G, it will not have

any contribution because its relevant structure is zero. We then obtain that ∆∗G(4C, 3B, 9A) ≥
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27 > 0, proving that G is (4C, 3B, 9A)-generated. Hence the result.

Proposition 3.3.11. rank(G : 4D) = 2.

Proof. It was proved in Proposition 3.3.3 that the group G is (2C, 4D, 15A)-generated. By the

application of Corollary 2.2.4, it follows that rank(G : 4D) = 2.

Proposition 3.3.12. rank(G : 6A) = 3.

Proof. Let nX ∈ {2A, 2B, 2C, 2D, 3A, 3B, 3C, 4A, 4B, 4C, 4D, 4E, 5A, 6A, 6B, 6D, 6E, 10A}.

If G is a (6A, 6A,nX)-generated group, then we must have c6A + c6A + cnX ≤ 30. Since

by Table 3.3 we have c6A + c6A + cnX = 12 + 12 + cnX > 30 and by Ree’s Theorem we con-

clude that G is not (6A, 6A,nX)-generated group. By Gap, we have ∆G(6A, 6A, 12A) =

8 < 24 = |CG(12A)|, so that the group G is not (6A, 6A, 12A)-generated. By Gap, we

have ∆G(6A, 6A, 6C) = 144. Subgroups fusing to 6A and 6C have all their relevant struc-

ture constant zero except the maximal subgroup H1. Since
∑

H1
(6b, 6b, 6d) = 144 and the

value of h is 1, we then obtain that ∆∗G(6A, 6A, 6C) = ∆G(6A, 6A, 6C) −
∑

H1
(4a, 4a, 7a) =

144− 144 = 0. Similarly we obtain the following results, ∆∗G(6A, 6A, 6F ) = ∆G(6A, 6A, 6F )−∑
H1

(6b, 6b, 6e) = 72 − 72 = 0, ∆∗G(6A, 6A, 6G) = ∆G(6A, 6A, 6G) −
∑

H2
(6d, 6d, 6a) = 24 −

24 = 0, ∆∗G(6A, 6A, 7A) = ∆G(6A, 6A, 7A)−
∑

H2
(6d, 6d, 7a) = 63−63 = 0, ∆∗G(6A, 6A, 8A) =

∆G(6A, 6A, 8A) −
∑

H1
(6a, 6a, 8a) = 32 − 32 = 0, ∆∗G(6A, 6A, 8B) = ∆G(6A, 6A, 8B) −∑

H2
(6d, 6d, 8a) = 64 − 64 = 0, ∆∗G(6A, 6A, 9A) = ∆G(6A, 6A, 9A) −

∑
H1

(6b, 6b, 9a) = 81 −

81 = 0, ∆∗G(6A, 6A, 12B) = ∆G(6A, 6A, 12B)−
∑

H2
(6b, 6b, 6a) = 32−32 = 0, ∆∗G(6A, 6A, 12C) =

∆G(6A, 6A, 12C)−
∑

H1
(6b, 6b, 12a) = 48−48 = 0 and ∆∗G(6A, 6A, 15A) = ∆G(6A, 6A, 15A)−∑

H2
(6d, 6d, 15a) = 25 − 25 = 0. Let nX ∈ T := {6C, 6F, 6G, 7A, 8A, 8B, 9A, 12B, 12C, 15A}.

Thus G is not (6A, 6A,nX)-generated group and it follows that rank(G : 6A) 6= 2. Easy com-

putations show that ∆G(6A, 3B, 9A) = 27. Although the subgroup H1 meets the classes 3B,
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6A and 9A of the group G, it will not have any contribution because its relevant structure is

zero. We then obtain that ∆∗G(6A, 3B, 9A) ≥ 27 > 0, proving that G is (6A, 3B, 9A)-generated.

Hence the result.

Proposition 3.3.13. rank(G : 6B) = 2.

Proof. The structure constant give us ∆G(6B, 6B, 8B) = 40 and only six maximal subgroups

of G have each an element of order 8, namely, H1, H2, H3, H4, H5 and H6. Let T be the

set of all maximal subgroups of G having elements of order 8. The non-empty intersection of

conjugacy classes from any 6 or 5 or 4 or 3 maximal subgroups of T does not contain elements

of order 8. The groups formed when taking the non-empty intersection with all the conjugacy

classes for any two maximal subgroups having elements of order 8 are isomorphic to PSL3(2):2,

((((22×24):2):2):3):2 (3-copies), 24:S5, (32:3):QD16, (((23:22):3):2): (4-copies) and (S4×S4):2.

Out of all subgroups having elements of order 8, only M2, M3 and M6 meet the classes 6B and

8B of G. None of them will have any contributions because their relevant structure constants

are all zeros. We then obtain that ∆∗G(6B, 6B, 8B) ≥ ∆G(6B, 6B, 8B) = 40, proving that G

is (6B, 6B, 8B)-generated. Hence the result follows.

Proposition 3.3.14. Let nX ∈ T1 := {4E, 5A, 6C, 6D, 6E, 6F, 6G, 7A, 8A, 8B, 9A, 10A, 12A,

12B, 12C, 15A} then rank(G : nX) = 2

Proof. The maximal subgroups, H2 and H7 are the only ones containing elements of order 15.

The group S3×S5 has elements of order 15 and it is arising from taking non-empty intersection

with all the conjugacy classes for these two maximal subgroups of G.

We use Table 3.6 in getting the results of this Proposition. In the same Table 3.6 we give

required information needed to calculate ΘG(nX, nX, 15A) where nX ∈ T1. The value of h
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for these contributing groups is 1. We give some information about ∆G(nX, nX, 15A), h ,∑
H2

(nx, nx, 15a),
∑

H7
(nx, nx, 15a) and

∑
S3×S5

(nx, nx, 15a). The last column

ΘG(nX, nX, 15A) = ∆G(nX, nX, 15A)− h ·
∑

H2
(nx, nx, 15b)− h ·

∑
H7

(nx, nx, 15b) +

h ·
∑

S3×S5
(nx, nx, 15a) establishes each generation of G by its triples (nX, nX, 15A) because

∆∗G(nX, nX, 15A) ≥ ΘG(nX, nX, 15A) as it appears in Equation 2.4. Looking at Table 3.6, we

see that ∆∗G(nX, nX, 15A) > 0. It follows that G is (nX, nX, 15A)-generated where nX ∈ T1.

This proves that rank(G : nX) = 2 for all nX ∈ T1.

Table 3.6: Some information on the nX ∈ T1

nX ∆G(nX, nX, 15A) h h ·
∑
H2

(nx, nx, 15a) h ·
∑
H7

(nx, nx, 15a) h ·
∑

S3×S5

(nx, nx, 15a) ΘG(nX, nX, 15A)

4E 1290 1 270 60 45 1005

5A 645 1 45 0 0 600

6C 280 1 - 40 - 240

6D 845 1 155 125 20 585

6E 1260 1 510 0 - 750

6F 1180 1 35 55 5 1095

6G 8580 1 510 120 - 7950

7A 28605 1 1620 - - 26985

8A 5100 1 - - - 5100

8B 5100 1 1140 - - 3960

9A 15645 1 - - - 15645

10A 15864 1 789 159 24 14940

12A 1490 1 - 20 - 1470

12B 2450 1 540 20 15 1905

12C 10920 1 - - - 10920

15A 5933 1 308 53 8 5580

The rank for each conjugacy class of elements for the symplectic group Sp(6, 2) will be sum-

marized as follows:

• rank(G : 2A) = 7, see the proof of Proposition 3.3.1,

• rank(G : 2X) = rank(G : 3A) = 4 for X ∈ {B,C}, results follow by Propositions 3.3.2,

3.3.3 and 3.3.5,
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• rank(G : 2D) = rank(G : 3B) = rank(G : 4A) = rank(G : 4B) = rank(G : 6A) = 3,

results follow by Propositions 3.3.4, 3.3.6, 3.3.8, 3.3.9 and 3.3.12,

• rank(G : nX) = 2 for all nX 6∈ {1A, 2A, 2B, 2C, 2D, 3A, 3B, 4A, 4B, 4C, 6A}, results

follow by Propositions 3.3.7, 3.3.11, 3.3.13 and 3.3.14.
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CHAPTER 4

The Mathieu sporadic simple group

M23

In this chapter, we determine all the generation of the Mathieu group M23 by the triples

(lX,mY, nZ), where l, m and n are primes that divide the order of M23, that is, l,m, n ∈

{2, 3, 5, 7, 11, 23}. The triple generation of this group will be investigated in Section 4.2. As

an application of Theorem 2.1.2, the group M23 is (lX,mY, 7A)-generated if and only if it

is (lX,mY, 7B)-generated, is also (lX,mY, 11A)-generated if and only if it is (lX,mY, 11B)-

generated and is (lX,mY, 23A)-generated if and only if it is (lX,mY, 23B)-generated. There-

fore, it is sufficient to check the (lX,mY, 7A)-, (lX,mY, 11A)- and (lX,mY, 23A)-generations

of M23. The result on the (p, q, r)-generations of M23 can be summarized in the following

theorem.

Theorem 4.0.1. The sporadic simple group M23 is generated by all the triples (lX,mY, nZ),

where l, m and n are primes dividing |M23|, except for the cases (lX,mY, nZ) ∈ {(2A, 3A,nZ),

(2A, 5A, 5A), (2A, 5A, 7M), (3A, 3A, 5A), (3A, 3A, 7M)} for M ∈ {A,B}.

We also determine the ranks for all the non-identity conjugacy classes of the elements of the

group M23 in Section 4.3. The main result of the conjugacy classes ranks are summarized by
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the following Theorem 4.0.2.

Theorem 4.0.2. For the Mathieu sporadic simple group G, we have

(i) rank(G : 2A) = 3,

(ii) rank(G : nX) = 2 if nX /∈ {1A, 2A} and where nX is a conjugacy class of G.

Remark 4.0.1. From Theorem 4.0.2, we noticed that rank(G : nX) = 2 for the non-identity

conjugacy classes nX of G, except for the conjugacy class 2A.

4.1. Introduction

According to [20], there are 26 sporadic simple groups which are members of the family of

finite simple groups. The recognition of the sporadic simple groups depends on how they were

constructed. The groups of rank 3 refer to those acting transitively on a set such that the

stabilizer of a point has 3 orbits. So, the sporadic simple groups which were constructed by

the centralizers of involutions, can be characterized by such centralizers and those of rank 3

are characterized by their point stabilizers. Thus, the sporadic simple groups may be roughly

sorted as the Mathieu groups, the Leech groups, the Fischer’s 3-transposition groups, the

Monster centralizers and the other six groups that are sub-quotients of the Monster group.

For about a hundred years, the only known sporadic simple groups were the five Mathieu

groups, described by Emil Mathieu as highly transitive permutation groups. Mathieu inves-

tigated multiply-transitive permutation groups on n points. The highest transitivity, found in

a simple group is 5-transitive and was discovered by Mathieu. Thus, the 5-transitive permu-

tation groups on 12 points and 24 points are M12 and M24 respectively. The other Mathieu

groups arose as subgroups of these. So, M24 is the largest Mathieu sporadic simple group and

contains all the other Mathieu sporadic simple groups as subgroups.
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The group M23 was discovered by Mathieu. The Mathieu group M23 is best studied as the

point stabilizer in the largest Mathieu group M24. Thus, M23 is the automorphism group of the

Steiner system S(4, 7, 23), whose 253 heptads arise from the octads of S(5, 8, 24) containing the

fixed point. The sporadic simple group M23 has order 10200960 = 27×32×5×7×11×23. By

the Atlas of finite groups [20], the group M23 has exactly 17 conjugacy classes of its elements

and 7 conjugacy classes of its maximal subgroups. Representatives of the conjugacy classes of

maximal subgroups are as follows:

K1 = M22 K2 = L3(4):22 K3 = 24:A7 K4 = A8

K5 = M11 K6 = 24:(3×A5):2 K7 = 23:11

Throughout Chapter 4 we let G = M23, unless otherwise stated. From the electronic Atlas of

finite group representations [55], we can see that G has a permutation representation on 23

points. Generators g1 and g2 can be taken as follows:

g1 = (1, 2)(3, 4)(7, 8)(9, 10)(13, 14)(15, 16)(19, 20)(21, 22),

g2 = (1, 16, 11, 3)(2, 9, 21, 12)(4, 5, 8, 23)(6, 22, 14, 18)(13, 20)(15, 17),

with o(g1) = 2, o(g2) = 4 and o(g1g2) = 23.

In Table 4.1, we list the values of the cyclic structure for each conjugacy of G together with

the values of both ci and di obtained from Ree and Scotts theorems, respectively.

Table 4.2 gives all the values of dnX for classes nX of prime order for the G with dim(V) = 22.

In Table 4.3 we list the representatives of classes of the maximal subgroups together with the

orbits lengths of M23 on these groups and the permutation characters except for the smallest

maximal subgroup of M23.

Table 4.4 gives us partial fusion maps of classes of maximal subgroups into the classes of M23.
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These will be used in our computations.

Table 4.1: Cycle structures of conjugacy classes of G

nX Cycle Structure ci di

1A 123 23 0

2A 1728 15 8

3A 1536 11 12

4A 132244 9 14

5A 1354 7 16

6A 11223262 7 16

7A 1273 5 18

7B 1273 5 18

8A 11214182 5 18

11A 11112 3 20

11B 11112 3 20

14A 2171141 3 20

14B 2171141 3 20

15A 3151151 3 20

15B 3151151 3 20

23A 231 1 22

23B 231 1 22

Table 4.2: dnX = dim(V/CV(nX)), nX is a non-trivial class of G and dim(V) = 22.

nX 2A 3A 5A 7A 7B 11A 11B 23A 23B

Cycle Structure 17 28 15 36 13 54 12 73 12 73 11 112 11 112 231 231

ci 15 11 7 5 5 3 3 1 1

dnX 8 12 16 18 18 20 20 22 22

Table 4.3: Maximal subgroups of M23

Maximal Subgroup Order Orbit Lengths Character

K1 27 · 32 · 5 · 7 · 11 [1,22] 1a + 22a

K2 27 · 32 · 5 · 7 [2,21] 1a + 22a + 230a

K3 27 · 32 · 5 · 7 [7,16] 1a + 22a + 230a

K4 26 · 32 · 5 · 7 [8,15] 1a + 22a + 230a + 253

K5 24 · 32 · 5 · 11 [11,12] 1a + 22a + 230a + 1035a

K6 27 · 32 · 5 [3,20] 1a + 22a + 230a + 253a + 1035a

K7 11 · 23 [23]
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Table 4.4: The partial fusion maps into M23

K1-class 2a 3a 5a 7a 7b 11a 11b

→ G 2A 3A 5A 7B 7A 11B 11A

h 2 2 1 1

K2-class 2a 2b 3a 5a 7a 7b

→ G 2A 2A 3A 5A 7B 7A

h 1 1

K3-class 2a 2b 3a 3b 5a 7a 7b

→ G 2A 2A 3A 3A 5A 7A 7B

h 1 1

K4-class 2a 2b 3a 3b 5a 7a 7b

→ G 2A 2A 3A 3A 5A 7B 7A

h 2 2

K5-class 2a 3a 5a 11a 11b

→ G 2A 3A 5A 11B 11A

h 1 1

K6-class 2a 2b 2c 3a 3b 3c 5a

→ G 2A 2A 2A 3A 3A 3A 5A

h 1

K7-class 11a 11b 11c 11d 11e 11f 11g 11h 11i 11j 23a 23b

→ G 11A 11B 11A 11A 11A 11B 11B 11B 11A 11B 23A 23B

h 1 1 1 1 1 1 1 1 1 1 1 1

4.2. The (p, q, r)-generations of M23

Let pX, p ∈ {2, 3, 5, 7, 11, 23} be a conjugacy class of G and ci be the number of disjoint

cycles in a representative of pX. Using the result of Ree’s theorem 2.1.4, we have
∑s

i=1 ci ≤

(s−2)n+2. For the Mathieu sporadic simple group G = M23 and from the Atlas of finite group

representations [55] we have G acting on 23 points, so that n = 23 and since our generation is

triangular, we have s = 3. Hence if G is (l,m, n)-generated, then
∑
ci ≤ 25.
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4.2.1 (2, q, r)-generations

Now the (2, q, r)-generations of G comprises the cases (2, 3, r)-, (2, 5, r)-, (2, 7, r)-, (2, 11, r)-

and (2, 23, r)- generations.

(2, 3, r)-generations

Proposition 4.2.1. The group G is not (2A, 3A, 7X), (2A, 3A, 11X) and (2A, 3A, 23X)-

generated for X ∈ {A,B}.

Proof. The condition 1
2 + 1

3 + 1
r < 1 shows that r > 6. Therefore we have to consider the cases

(2A, 3A, 7X), (2A, 3A, 11X) and (2A, 3A, 23X) for all X ∈ {A,B}. Theorem 1.1 of [52] implies

that G is not a Hurwitz group and hence G is not a (2A, 3A, 7X)-generated for X ∈ {A,B}.

Generally, if G is (2A, 3A, r)-generated group, then we must have c2A + c3A + cp ≤ 25. From

Table 4.1 we see that c2A + c3A + cr = 15 + 11 + cp > 25 for p ∈ {7A, 7B, 11A, 11B, 23A, 23B}.

Now using Ree’s Theorem [49], it follows that G is not (2A, 3A, r)-generated.

Remark 4.2.1. The above results can be deduced by Scott’s Theorem [50], as from Table 4.2

we can see that d2A+d3A+dnX = 8+12+dnX < 2×22 for nX ∈ {7A, 7B, 11A, 11B, 23A, 23B}.

(2, 5, r)-generations

The condition 1
2 + 1

5 + 1
r < 1 shows that r > 10

3 . Thus we have to consider the cases (2A, 5A, 5A),

(2A, 5A, 7X), (2A, 5A, 11X) and (2A, 5A, 23X) for X ∈ {A,B}.

Proposition 4.2.2. The group G is neither (2A, 5A, 5A)- nor (2A, 5A, 7X)-generated for X ∈

{A,B}.
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Proof. If G is a (2A, 5A, 5A)-generated group, then we must have c2A + c5A + c5A ≤ 25. From

Table 4.1 we see that c2A + c5A + c5A = 15 + 7 + 7 = 29 > 25. Now using Ree’s Theorem, it

follows that G is not (2A, 5A, 5A)-generated.

By the same Table 4.1 we see that c2A + c5A + c7A = 15 + 7 + 5 = 27 > 25. Again by

Ree’s Theorem, it follows that G is not (2A, 5A, 7A)-generated. Since the same holds for

(2A, 5A, 7B), it follows that G is not (2A, 5A, 7X)-generated for X ∈ {A,B} and the proof is

complete.

Proposition 4.2.3. The group G is (2A, 5A, 11X)-generated for X ∈ {A,B}.

Proof. By Table 4.4, we see that K1, K5 and K7 are the maximal subgroups having elements

of order 11.

The intersection of the conjugacy classes these three maximal subgroups do not contain ele-

ments of order 11. Considering all various pairwise intersections of the conjugacy classes for

these three maximal subgroups, we found that the only candidate having elements of order 11

is isomorphic to the group PSL2(11).

The maximal subgroup K7 will not have any contributions because it does not contain elements

of orders 2 and 5. We obtained that
∑

K1
(2a, 5a, 11b) = 176,

∑
K5

(2a, 5a, 11b) = 33 and∑
PSL2(11)

(2a, 5x, 11b) = ∆PSL2(11)(2a, 5a, 11b) + ∆PSL2(11)(2a, 5b, 11b) = 11 + 11 = 22. By

[31, 58], we have h(11A,K1) = h(11A,K5) = h(11A,PSL2(11)) = 1. Since by Table A.9 we

have ∆G(2A, 5A, 11A) = 253, we then obtain that ∆∗G(2A, 5A, 11A) ≥ ∆G(2A, 5A, 11A) −∑
K1

(2a, 5a, 11b)−
∑

K5
(2a, 5a, 11b) +

∑
PSL2(11)

(2a, 5x, 11b) = 253− 176− 33 + 22 = 66 > 0.

Hence G is (2A, 5A, 11A)-generated. Since the same holds for (2A, 5A, 11B) (see Remark

2.1.2), it follows that G is (2A, 5A, 11X)-generated, for all X ∈ {A,B}.
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Proposition 4.2.4. The group G is (2A, 5A, 23X)-generated for X ∈ {A,B}.

Proof. By Table 4.4, we see the maximal subgroup K7 is the only one have elements of order

23. This maximal subgroup will not have any contributions because it does not have elements

of orders 2 and 5. Since by Table A.9, we have ∆G(2A, 5A, 23A) = 138, we then deduce that

∆∗G(2A, 5A, 23A) = ∆G(2A, 5A, 23A) = 138 > 0. Thus G is (2A, 5A, 23A)-generated. Since

the same holds for (2A, 5A, 23B), it follows that G is a (2A, 5A, 23X)-generated group, for

X ∈ {A,B}.

(2, 7, r)-generations

We check for the generation of G through the triples (2A, 7X, 7Y ), (2A, 7X, 11Y ) and

(2A, 7X, 23Y ) for all X,Y ∈ {A,B}.

Proposition 4.2.5. The group G is (2A, 7X, 7Y )-generated for all X,Y ∈ {A,B}.

Proof. By Table 4.4 we see that the maximal subgroups of G whose orders are divisible by 7

are K1, K2, K3 and K4.

The intersection of conjugacy classes from these four maximal subgroups do not contain ele-

ments of order 7. The intersection of the conjugacy classes from any three maximal subgroups

do not contain elements of order 7. Considering all various intersections of the conjugacy

classes for pairwise of these three maximal subgroups, we noticed that the groups PSL3(4),

A7 (2-copies), 23:PLS3(2) (2-copies) and PSL3(2) are the only ones having elements of order

7.

The group PSL3(2) has its relevant structure constant zero and as such it will not have any

contributions. We obtained that
∑

PSL3(4)
(2a, 7a, 7a) = 42,

∑
A7

(2a, 7a, 7a) = 7,
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∑
23:PSL3(2)

(2a, 7b, 7b) = 7 and h(7A,PSL3(4)) = h(7A,A7) = h(7A, 23:PSL3(2)) = 2.

For the contributing maximal subgroups, we have
∑

K1
(2a, 7b, 7b) = 147,

∑
K2

(2x, 7b, 7b) =

∆K2(2a, 7b, 7b) + ∆K2(2b, 7b, 7b) = 0 + 42 = 42,
∑

K3
(2a, 7a, 7a) = 7,

∑
K4

(2x, 7b, 7b) =

∆K4(2a, 7b, 7b) + ∆K4(2b, 7b, 7b) = 14 + 28 = 42 and found that h(7A,K2) = h(7A,K3) = 1

and h(7A,K1) = h(7A,K4) = 2. Since by Table A.9 we have ∆G(2A, 7A, 7A) = 301, we

then obtain that ∆∗G(2A, 7A, 7A) ≥ ∆G(2A, 7A, 7A)− 2 ·
∑

K1
(2a, 7b, 7b)−

∑
K2

(2x, 7b, 7b)−∑
K3

(2a, 7a, 7a)− 2 ·
∑

K4
(2x, 7b, 7b) + 2 ·

∑
PSL3(4)

(2a, 7b, 7b) + 2 · 2 ·
∑

A7
(2a, 7a, 7a) + 2 · 2 ·∑

23:PSL3(2)
(2a, 7b, 7b) = 301−2(147)−42−7−2(42) + 2(42) + 2(2)(7) + 2(2)(7) = 14 > 0 and

it follows that (2A, 7A, 7A) is a generating triple for G. Since the same holds for (2A, 7B, 7B),

it follows that the group G is (2A, 7X, 7X)-generated, for all X ∈ {A,B}.

We now investigate the (2A, 7A, 7B)- generations forG. From the intersections, we noticed that

the groups PSL3(4), A7 (2-copies), 23:PLS3(2) (2-copies) and PSL3(2) will all contribute here.

We obtained that
∑

PSL3(4)
(2a, 7a, 7b) = 63,

∑
A7

(2a, 7a, 7b) = 28,
∑

23:PSL3(2)
(2a, 7b, 7a) =

14,
∑

PSL3(2)
(2a, 7a, 7b) = 7 and h(7B,PSL3(4)) = h(7B,A7) = h(7B, 23:PSL3(2)) =

h(7B,PSL3(2)) = 2.

The maximal subgroup K3 will not have any contributions because its relevant structure

constant is zero. For the contributing maximal subgroups, we have
∑

K1
(2a, 7b, 7a) = 224,∑

K2
(2x, 7b, 7a) = ∆K2(2a, 7b, 7a) + ∆K2(2b, 7b, 7a) = 0 + 63 = 63,

∑
K4

(2x, 7b, 7a) =

∆K4(2a, 7b, 7a)+∆K4(2b, 7b, 7a) = 21+42 = 63 and found that h(7B,K2) = 1 and h(7B,K1) =

h(7B,K4) = 2. Since by Table A.9 we have ∆G(2A, 7A, 7B) = 462, we then obtain that

∆∗G(2A, 7A, 7B) = ∆G(2A, 7A, 7B)−2·
∑

K1
(2a, 7b, 7a)−

∑
K2

(2x, 7b, 7a)−2·
∑

K4
(2x, 7b, 7a)+

2·
∑

PSL3(4)
(2a, 7a, 7b)+2·

∑
A7

(2a, 7b, 7a)+2·
∑

23:PSL3(2)
(2a, 7b, 7a)+2·

∑
PSL3(2)

(2a, 7b, 7a) =

462 − 2(224) − 63 − 2(21) + 2(63) + 2(2)(28) + 2(2)(14) + 2(7) = 217 > 0. Therefore G is

(2A, 7A, 7B)-generated.
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Proposition 4.2.6. The group G is (2A, 7X, 11Y )-generated for all X,Y ∈ {A,B}.

Proof. Looking at Proposition 4.2.3, we see that PSL2(11) is the only group having elements

of order 11. This group PSL2(11) will not have any contributions because it does not contain

elements of order 7. With regard to maximal subgroups having elements of order 11, by Table

4.4 we see that the maximal subgroup K1 of G is the only one whose order is divisible by 7

and 11. We obtained that
∑

K1
(2a, 7x, 11y) = 176 and h(11Z,K1) = 1 for Z ∈ {A,B}. By

Table A.9 we have ∆G(2A, 7X, 11Y ) = 308 so that ∆∗G(2A, 7X, 11Y ) ≥ ∆G(2A, 7X, 11Y ) −∑
K1

(2a, 7x, 11y) = 308 − 176 = 132 > 0, implies that G is (2A, 7X, 11Y )-generated for all

X,Y ∈ {A,B}.

Proposition 4.2.7. The group G is (2A, 7X, 23Y )-generated for all X,Y ∈ {A,B}.

Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. This maxi-

mal subgroup K7 does not have elements of order 7. By Table A.9 we have ∆G(2A, 7X, 23Y ) =

184. Since there are no contributions from any of the maximal subgroups of G, we then have

∆∗G(2A, 7X, 23Y ) = ∆G(2A, 7X, 23Y ) = 184 > 0, proving that G is (2A, 7X, 23Y )-generated

for all X,Y ∈ {A,B}.

(2, 11, r)-generations

Also here we check for the generation of G through the triples (2A, 11A, 11A)-, (2A, 11A, 11B)-,

(2A, 11A, 23A)-, (2A, 11A, 23B)-, (2A, 11B, 11B)-, (2A, 11B, 23A)- and (2A, 11B, 23B)-

generation. For this we have the following theorems:

Proposition 4.2.8. The group G is (2A, 11X, 11Y )-generated for X,Y ∈ {A,B}.
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Proof. Looking at discussions in Proposition 4.2.3 on the intersections, we see that the group

PSL2(11) may be involved. By Table 4.4 we see that the maximal subgroups of G containing

elements of orders 2 and 11 are K1 and K5. The groups K1, K5 and PSL2(11) have elements

of orders 2 and 11. We obtained that
∑

K1
(2a, 11x, 11x) = 99,

∑
K5

(2a, 11x, 11x) = 11 and∑
PSL2(11)

(2a, 11x, 11x) = 11. We found that h(11A,K1) = h(11A,K5) = h(11A,PSL2(11)) =

1. Since by Table A.9 we have ∆G(2A, 11X, 11X) = 341, so that ∆∗G(2A, 11X, 11X) ≥

∆G(2A, 11X, 11X)−
∑

K1
(2a, 11x, 11x)−

∑
K5

(2a, 11x, 11x)+
∑

PSL2(11)
(2a, 11x, 11x) = 341−

147− 11 + 11 = 194 > 0, proving that G is (2A, 11X, 11X)-generated for X ∈ {A,B}.

Finally, we show that G is (2A, 11A, 11B)-generated. We obtained that
∑

K1
(2a, 11b, 11a) =

132 and
∑

K5
(2a, 11b, 11a) = 11.The group PSL2(11) will not have any contributions because

its relevant structure constant is zero. Since by Table A.9 we have ∆G(2A, 11A, 11B) = 341,

so that ∆∗G(2A, 11A, 11B) = ∆G(2A, 11A, 11B)−
∑

K1
(2a, 11b, 11a)−

∑
K5

(2a, 11b, 11a)

= 341− 224− 11 = 106 > 0, implies that G is (2A, 11A, 11B)-generated. We conclude that G

is (2A, 11Y, 11Z)-generated for all Y, Z ∈ {A,B}.

Proposition 4.2.9. The group G is (2A, 11X, 23Y )-generated for X,Y ∈ {A,B}.

Proof. By Table 4.4 we see the K7 is the only maximal subgroup of G containing elements of

order 23. This maximal subgroup will not have any contributions because it does not have ele-

ments of order 2. By Table A.9 we have ∆G(2A, 11X, 23Y ) = 391, so that ∆∗(2A, 11X, 23Y ) =

∆G(2A, 11X, 23Y ) = 391 > 0. Hence the group G is (2A, 11X, 23Y )-generated for all X,Y ∈

{A,B}.
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(2, 23, r)-generations

In here we check for the generation of G through the triples (2A, 23A, 23A), (2A, 23A, 23B)

and (2A, 23B, 23B). For these we have the following theorems:

Proposition 4.2.10. The group G is (2A, 23X, 23Y )-generated for X,Y ∈ {A,B}.

Proof. By Table 4.4 we see the K7 is the only maximal subgroup of G containing elements of

order 23. This maximal subgroup will not have any contributions because it does not have ele-

ments of order 2. By Table A.9 we have ∆G(2A, 23X, 23X) = 161 and ∆G(2A, 23A, 23B) = 230

for X ∈ {A,B}. Since there is no contributing group here, we then obtain that

∆∗G(2A, 23X, 23X) = ∆G(2A, 23X, 23X) = 161 > 0 and ∆∗G(2A, 23A, 23B) = ∆G(2A, 23A, 23B)

= 230 > 0 for all X ∈ {A,B}. Hence, the group G is a (2A, 23X, 23Y )-generated for

X,Y ∈ {A,B}.

4.2.2 The (3, q, r)-generations

The condition 1
3 + 1

3 + 1
r < 1 shows that r > 3. We then handle all the possible (3, q, r)-

generations, namely (3A, 3A, 5A)-, (3A, 3A, 7X)-, (3A, 3A, 11X)-, (3A, 3A, 23X)-, (3A, 5A, 5A)-

, (3A, 5A, 7X)-, (3A, 5A, 11X)-, (3A, 5A, 23X)-, (3A, 7X, 7Y )-, (3A, 7X, 11Y )-, (3A, 7X, 23Y )-,

(3A, 11X, 11Y )-, (3A, 11X, 23Y )- and (3A, 23X, 23Y )-generations in this section.

(3, 3, r)-generations

Proposition 4.2.11. The group G is neither (3A, 3A, 5A)- nor (3A, 3A, 7X)-generated group

for X ∈ {A,B}.
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Proof. By Table 4.2, the group G acts on a 22-dimensional irreducible complex module V.

By Scott’s Theorem applied to this module and using the Atlas of finite groups, we see that

d3A = dim(V/CV(3A)) = 2(22−4)
3 = 12, d5A = dim(V/CV(5A)) = 4(22−2)

5 = 16 and d7A =

d7B = dim(V/CV(5A)) = 6(22−1)
7 = 18. For the case (3A, 3A, 5A), we get d3A + d3A + d5A =

2 × 12 + 16 = 40 < 44 showing that G is not (3A, 3A, 5A)-generated. We also get that

d3A + d3A + d7X = 2 × 12 + 16 = 42 < 44 for X ∈ {A,B} and by Scott’s Theorem G is not

(3A, 3A, 7X)-generated for all X ∈ {A,B} and the proof is complete.

Proposition 4.2.12. The group G is (3A, 3A, 11X)-generated for X ∈ {A,B}.

Proof. Looking at Proposition 4.2.3, we notice that the subgroups ofG involved here areK1, K5

and PSL2(11) because both subgroups have their elements of respective orders 3 and 11 which

fuse to the elements 3A and 11A (or 11B) of the group G. We obtained that
∑

K1
(3a, 3a, 11b) =

209,
∑

K5
(3a, 3a, 11b) = 11 and

∑
PSL2

(11)(3a, 3a, 11b) = 11. We already have h(11A,K1) =

h(11A,K5) = h(11A,PSL2(11)) = 1. Since by Table A.10 we have ∆G(3A, 3A, 11A) = 275, we

then obtain that ∆∗G(3A, 3A, 11A) ≥ ∆G(3A, 3A, 11A)−
∑

K1
(3a, 3a, 11b)−

∑
K5

(3a, 3a, 11b)+∑
PSL2(11)

(3a, 3a, 11b) = 275 − 209 − 11 + 11 = 66 > 0, proving that G is (3A, 3A, 11A)-

generated. Since the same holds for (3A, 3A, 11B), it follows that G is (3A, 3A, 11X)-generated,

for all X ∈ {A,B}.

Proposition 4.2.13. The group G is a (3A, 3A, 23X)-generated for X ∈ {A,B}.

Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. This

maximal subgroup will not have any contributions because it does not have elements of order

3. By Table A.10 we have that ∆G(3A, 3A, 23X) = 138. Since there is no contributing group, we

then obtain that ∆∗(3A, 3A, 23X) = ∆G(3A, 3A, 23X) = 138 > 0, so that G is (3A, 3A, 23X)-

generated for X ∈ {A,B}.
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(3, 5, r)-generations

Proposition 4.2.14. The group G is (3A, 5A, 5A)-generated.

Proof. Looking at Table 4.4 we see that all the maximal subgroups of G have elements of order

5 except for the seventh maximal subgroup. Let T be the set of all maximal subgroups of G

except the seventh one. We look at various intersections of conjugacy classes for these maximal

subgroups. We have the following:

• The groups arising from the intersections of conjugacy classes for any 4, 5 or 6 maximal

subgroups in T do not contain elements of order 5.

• The group arising from intersections of the conjugacy classes for any three maximal

subgroups in T having elements of orders 3 and 5 is S5 (2-copies). We obtained that∑
S5

(3a, 5a, 5a) = 10 and h(5A,S5) = 3.

• The groups arising from intersections of the conjugacy classes for any two maximal sub-

groups in T having elements of orders 3 and 5 are 24:S5 (3-copies), PSL3(4), A7 (2-

copies), 24:A6, PSL2(11), A6:2, A5 and S5 (2-copies). We obtained that
∑

24:S5
(3a, 5a, 5a)

= 160,
∑

PSL3(4)
(3a, 5x, 5y) = ∆PSL3(4)(3a, 5a, 5a) + ∆PSL3(4)(3a, 5a, 5b) +

∆PSL3(4)(3a, 5b, 5b) = 445 + 445 + 445 = 1335,
∑

A7
(3x, 5a, 5a) = ∆A7(3a, 5a, 5a) +

∆A7(3b, 5a, 5a) = 20+60 = 80,
∑

24:A6
(3x, 5y, 5z) = ∆24:A6

(3a, 5a, 5a)+∆24:A6
(3a, 5a, 5b)+

∆24:A6
(3a, 5b, 5b)+∆24:A6

(3b, 5a, 5a)+∆24:A6
(3b, 5a, 5b)+∆24:A6

(3b, 5b, 5b) = 80+160+

80+20+40+20 = 400,
∑

PSL2(11)
(3a, 5x, 5y) = ∆PSL2(11)(3a, 5a, 5a)+∆PSL2(11)(3a, 5a, 5b)+

∆PSL2(11)(3a, 5b, 5b) = 20 + 20 + 20 = 60,
∑

A6:2
(3a, 5a, 5a) = 30,

∑
A5

(3a, 5x, 5y) =

∆A5(3a, 5a, 5a)+∆A5(3a, 5a, 5b)+∆A5(3a, 5b, 5b) = 5+5+5 = 15 and
∑

S5
(3a, 5a, 5a) =

10. We found that the value of h for each of these eight groups is 3.
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By Table A.10 we have ∆G(3A, 5A, 5A) = 6550. We obtained that
∑

K1
(3a, 5a, 5a) = 2800,∑

K2
(3a, 5a, 5a) = 910,

∑
K3

(3x, 5a, 5a) = ∆K3(3a, 5a, 5a)+∆K3(3b, 5a, 5a) = 320+240 = 560,∑
K4

(3x, 5a, 5a) = ∆K4(3a, 5a, 5a) + ∆K4(3b, 5a, 5a) = 25 + 135 = 160,
∑

K5
(3a, 5a, 5a) = 80,∑

K6
(3x, 5a, 5a) = ∆K6(3a, 5a, 5a)+∆K6(3b, 5a, 5a)+∆K6(3c, 5a, 5a) = 0+0+160 = 160. The

value of h for each maximal subgroup is 3 except for K4 and K6. The value of h is 1 for each of

these maximal subgroups K4 and K6. It follows that ∆∗G(3A, 5A, 5A) ≥ ∆G(3A, 5A, 5A)− 3 ·∑
K1

(3a, 5a, 5a)−3·
∑

K2
(3a, 5a, 5a)−3·

∑
K3

(3x, 5a, 5a)−
∑

K4
(3x, 5a, 5a)−3·

∑
K5

(3a, 5a, 5a)−∑
K6

(3x, 5a, 5a)− 2 · 3 ·
∑

S5
(3a, 5a, 5a) + 3 · 3 ·

∑
24:S5

(3a, 5a, 5a) + 3 ·
∑

PSL3(4)
(3a, 5x, 5y) + 2 ·

3 ·
∑

A7
(3x, 5a, 5a) + 3 ·

∑
24:A6

(3x, 5y, 5z) + 3 ·
∑

PSL2(11)
(3a, 5x, 5y) + 3 ·

∑
A6:2

(3a, 5a, 5a) + 3 ·∑
A5

(3a, 5x, 5y) + 2 · 3 ·
∑

S5
(3a, 5a, 5a) = 6550− 3(2800)− 3(910)− 3(560)− 1(160)− 3(80)−

1(160)−2(3)(10)+3(3)(160)+3(1335)+2(3)(80)+3(400)+3(60)+3(30)+3(15)+2(3)(10) =

620 > 0. It follows that the group G is (3A, 5A, 5A)-generated.

Proposition 4.2.15. The group G is (3A, 5A, 7X)-generated for X ∈ {A,B}.

Proof. As in Proposition 4.2.5, the groups PSL3(4), A7 (2-copies), 23:PLS3(2) (2-copies)

and PSL3(2) may have contributions here.The groups 23:PLS3(2) and PSL3(2) will not

have any contributions because they do not have elements of order 5. We obtained that∑
PSL3(4)

(3a, 5x, 7b) = ∆PSL3(4)(3a, 5a, 7b) + ∆PSL3(4)(3a, 5b, 7b) = 441 + 441 = 882,∑
A7

(3x, 5a, 7b) = ∆A7(3a, 5a, 7b) + ∆A7(3b, 5a, 7b) = 56 + 7 = 63 and h(7A,PSL3(4)) =

h(7A,A7) = 2.

The maximal subgroups K1, K2, K3 and K4 meet the 3A, 5A, 7A classes of G. We obtained

that
∑

K1
(3a, 5a, 7b) = 2464,

∑
K2

(3a, 5a, 7b) = 882,
∑

K3
(3x, 5a, 7a) = ∆K3(3a, 5a, 7a) +

∆K3(3b, 5a, 7a) = 112 + 224 = 336,
∑

K4
(3x, 5a, 7b) = ∆K4(3a, 5a, 7b) + ∆K4(3b, 5a, 7b) =

77 + 7 = 84. We found that h(7A,K1) = h(7A,K4) = 2 and h(7A,K2) = h(7A,K3) = 1.
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Since by Table A.10 we have ∆G(3A, 5A, 7A) = 5124, we then obtain that ∆∗G(3A, 5A, 7A) ≥

∆G(3A, 5A, 7A)−2 ·
∑

K1
(3a, 5a, 7b)−

∑
K2

(3a, 5a, 7b)−
∑

K3
(3x, 5a, 7a)−2 ·

∑
K4

(3a, 5a, 7b)+

2 ·
∑

PSL3(4)
(3a, 5x, 7b) + 2 · 2 ·

∑
A7

(3x, 5a, 7b) = 5124− 2(2464)− 882− 336− 2(84) + 2(882) +

2(2)(63) = 826 > 0. Therefore, the group G is (3A, 5A, 7A)-generated. Since the same holds

for (3A, 5A, 7B), it follows that the group G is (3A, 5A, 7X)-generated for X ∈ {A,B}.

Proposition 4.2.16. The group G is (3A, 5A, 11X)-generated for X ∈ {A,B}.

Proof. By Table 4.4 we see that the maximal subgroups of G containing elements of orders

3 and 11 are K1 and K5. The group PSL2(11)contains elements of orders 3, 5 and 11. We

obtained that
∑

K1
(3a, 5a, 11b) = 2112,

∑
K5

(3a, 5a, 11a) = 99 and
∑

PSL2(11)
(3a, 5x, 11b) =

∆PSL2(11)(3a, 5a, 11b) + ∆PSL2(11)(3a, 5b, 11b) = 22 + 22 = 44. We already have h(11A,K1) =

h(11A,K5) = h(11A,PSL2(11)) = 1. Since by Table A.10 we have ∆G(3A, 5A, 11A) = 4136,

we then have ∆∗G(3A, 5A, 11A) ≥ ∆G(3A, 5A, 11A) −
∑

K1
(3a, 5a, 11b) −

∑
K5

(3a, 5a, 11b) +∑
PSL2(11)

(3a, 5x, 11b) = 4136−2112−99+44 = 1969 > 0, so thatG is (3A, 5A, 11A)-generated.

Since the same holds for (3A, 5A, 11B), it follows that the group G is (3A, 5A, 11X)-generated

for X ∈ {A,B}.

Proposition 4.2.17. The group G is (3A, 5A, 23X)-generated group for X ∈ {A,B}.

Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. This

maximal subgroup will not have any contributions because it does not have elements of order 5.

By Table A.10 we have that ∆G(3A, 5A, 23X) = 2438. Since there is no contributing group, we

then obtain that ∆∗G(3A, 5A, 23X) = ∆G(3A, 5A, 23X) = 2438 > 0, so thatG is (3A, 5A, 23X)-

generated for

X ∈ {A,B}.
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(3, 7, r)-generations

In this subsection we discuss the case (3, 7, r)-generations. It follows that we will end up with

11 cases, namely (3A, 7A, 7A)-, (3A, 7A, 7B)-, (3A, 7A, 11A)-, (3A, 7A, 11B)-, (3A, 7A, 23A)-,

(3A, 7A, 23B)-, (3A, 7B, 7B)-, (3A, 7B, 11A)-, (3A, 7B, 11B)-, (3A, 7B, 23A) and (3A, 7B, 23B)-

generation.

Proposition 4.2.18. The group G is (3A, 7X, 7Y )-generated for all X,Y ∈ {A,B}

Proof. As in Proposition 4.2.5, the groups PSL3(4), A7 (2-copies), 23:PLS3(2) (2-copies) and

PSL3(2) have elements of order 7. We obtained that
∑

PSL3(4)
(3a, 7b, 7b) = 357,∑

A7
(3x, 7b, 7b) = ∆A7(3a, 7b, 7b)+∆A7(3b, 7b, 7b) = 56+21 = 77,

∑
23:PSL3(2)

(3a, 7b, 7b) = 28,∑
PSL3(2)

(3a, 7a, 7a) = 7 and h(7A,PSL3(4)) = h(7A,A7) = h(7A, 23:PSL3(2)) =

h(7A,PSL3(2)) = 2.

The maximal subgroups K1, K2, K3 and K4 meet the 3A, 7A classes of G. We obtained

that
∑

K1
(3a, 7b, 7b) = 1792,

∑
K2

(3a, 7b, 7b) = 357,
∑

K3
(3x, 7a, 7a) = ∆K3(3a, 7a, 7a) +

∆K3(3b, 7a, 7a) = 168 + 126 = 294,
∑

K4
(3x, 7b, 7b) = ∆K4(3a, 7b, 7b) + ∆K4(3b, 7b, 7b) =

147 + 21 = 168. We found that h(7A,K1) = h(7A,K4) = 2 and h(7A,K2) = h(7A,K3) = 1.

Since by Table A.10 we have ∆G(3A, 7A, 7A) = 4886, we then obtain that ∆∗G(3A, 7A, 7A) ≥

∆G(3A, 7A, 7A)−2·
∑

K1
(3a, 7b, 7b)−

∑
K2

(3a, 7b, 7b)−
∑

K3
(3x, 7a, 7a)−2·

∑
K4

(3a, 7b, 7b)+2·∑
PSL3(4)

(3a, 7b, 7b)+2·2·
∑

A7
(3x, 7b, 7b)+2·2·

∑
23:PSL3(2)

(3a, 7b, 7b)+2·
∑

PSL3(2)
(3a, 7a, 7a) =

4886−2(1792)−357−394−2(168)+2(357)+2(2)(77)+2(2)(28)+2(7) = 1363 > 0. Therefore,

the group G is (3A, 7A, 7A)-generated. Since the same holds for (3A, 7B, 7B), it follows that

the group G is (3A, 7X, 7X)-generated for X ∈ {A,B}.

We now prove that G is (3A, 7A, 7B)-generated. We obtained that
∑

PSL3(4)
(3a, 7b, 7a) = 357,

69



CHAPTER 4 – The Mathieu sporadic simple group M23

∑
A7

(3x, 7b, 7b) = ∆A7(3a, 7b, 7b)+∆A7(3b, 7b, 7b) = 28+14 = 32,
∑

23:PSL3(2)
(3a, 7b, 7b) = 28,∑

PSL3(2)
(3a, 7a, 7b) = 7,

∑
K1

(3a, 7b, 7a) = 1792,
∑

K2
(3a, 7b, 7a) = 357,

∑
K3

(3x, 7a, 7b) =

∆K3(3a, 7a, 7b) + ∆K3(3b, 7a, 7b) = 112 + 70 = 182,
∑

K4
(3x, 7b, 7a) = ∆K4(3a, 7b, 7a) +

∆K4(3b, 7b, 7a) = 21+147 = 168,
∑

PSL3(4)
(3a, 7b, 7a) = 357,

∑
A7

(3x, 7b, 7a) = ∆A7(3a, 7b, 7a)+

∆A7(3b, 7b, 7a) = 56+21 = 77,
∑

23:PSL3(2)
(3a, 7b, 7a) = 28 and

∑
PSL3(2)

(3a, 7a, 7b). Since by

the same Table A.10 we have ∆G(3A, 7A, 7B) = 4886, so that ∆∗G(3A, 7A, 7B) ≥ ∆G(3A, 7A, 7B)

− 2 ·
∑

K1
(3a, 7b, 7a)−

∑
K2

(3a, 7b, 7a)−
∑

K3
(3x, 7a, 7b)− 2 ·

∑
K4

(3x, 7a, 7b) +

2·
∑

PSL3(4)
(3a, 7b, 7a)+2·2·

∑
A7

(3x, 7b, 7a)+2·2·
∑

23:PSL3(2)
(3a, 7b, 7a)+2·

∑
PSL3(2)

(3a, 7a, 7b)

= 4886− 2(1792)− 357− 182− 2(168) + 2(357) + 2(2)(42) + 2(2)(28) + 2(7) = 1435 > 0. This

proves that G is (3A, 7A, 7B)-generated group.

Proposition 4.2.19. The group G is (3A, 7X, 11Y )-generated for all X,Y ∈ {A,B}.

Proof. Looking at Proposition 4.2.3, K1, K5, K7 and PSL2(11) are the only groups having

elements of order 11. The group PSL2(11) will not have any contributions because it does not

have elements of order 7. Looking at Table 4.4, we see that K1 is the only maximal subgroup

of G having elements of orders 3, 7 and 11. We obtained that
∑

K1
(3a, 7x, 11y) = 1760 and

h(11X,K1) = 1 for X ∈ {A,B}. By Table A.10 we have ∆G(3A, 7X, 11Y ) = 4136. We obtained

that ∆∗G(3A, 7X, 11Y ) ≥ ∆G(3A, 7X, 11Y ) −
∑

K1
(3a, 7x, 11y) = 4136 − 1760 = 2376 and so

that the group G becomes is (3A, 7X, 11Y )-generated for all X,Y ∈ {A,B}.

Proposition 4.2.20. The group G is (3A, 7X, 23Y )-generated for all X,Y ∈ {A,B}.

Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. This

maximal subgroup will not have any contributions because it does not have elements of orders

3 and 7. By Table A.10 we have that ∆G(3A, 7X, 23Y ) = 3312. Since there is no contributing
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group, we then obtain that ∆∗G(3A, 7X, 23Y ) = ∆G(3A, 7X, 23Y ) = 3312 > 0, so that the

group G is (3A, 7X, 23Y )-generated for all X,Y ∈ {A,B}.

(3, 11, r)-generations

In this subsection we discuss the case (3, 11, r)-generations. It follows that we will end

up with 7 cases, namely (3A, 11A, 11A)-, (3A, 11A, 11B)-, (3A, 11A, 23A)-, (3A, 11A, 23B)-,

(3A, 11B, 11B)-, (3A, 11B, 23A)-, (3A, 11B, 23B)-generation.

Proposition 4.2.21. The group G is (3A, 11X, 11Y )-generated for all X,Y ∈ {A,B}.

Proof. Looking at Proposition 4.2.3, K1, K5, K7 and PSL2(11) are the only groups having

elements of order 11. The maximal subgroup K7 will not have any contributions because it does

not have elements of order 3. We obtained that
∑

K1
(3a, 11b, 11b) = 1320,

∑
K5

(3a, 11b, 11b) =

22 and
∑

PSL2(11)
(3a, 11b, 11b) = 0. The value of h for each group is 1. Since by Table A.10

we have ∆G(3A, 11A, 11A) = 5126, it follows that ∆∗G(3A, 11A, 11A) ≥ ∆G(3A, 11A, 11A) −∑
K1

(3a, 11b, 11b) −
∑

K5
(3a, 11b, 11b) +

∑
PSL2(11)

(3a, 11b, 11b) = 5126 − 1320 − 22 + 0 =

3784 > 0. Therefore, the group G is (3A, 11A, 11A)-generated. Since the same holds for

(3A, 11B, 11B),the group G becomes (3A, 11X, 11X)-generated for X ∈ {A,B}.

We now prove thatG is (3A, 11A, 11B)-generated. We obtained that
∑

K1
(3a, 11a, 11b) = 1276,∑

K5
(3a, 11a, 11b) = 77 and

∑
PSL2(11)

(3a, 11a, 11b) = 22. By the same Table A.10 we have

∆G(3A, 11A, 11B) = 5379. Then we obtain that ∆∗G(3A, 11A, 11B) ≥ ∆G(3A, 11A, 11B) −∑
K1

(3a, 11b, 11a) −
∑

K5
(3a, 11b, 11a) +

∑
PSL2(11)

(3a, 11b, 11a) = 5379 − 1276 − 77 + 22 =

4048 > 0, proving that G is (3A, 11A, 11B)-generated. Hence, the group G is (3A, 11X, 11Y )-

generated for all X,Y ∈ {A,B}.

Proposition 4.2.22. The group G is (3A, 11X, 23Y )-generated for all X,Y ∈ {A,B}.
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Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. This

maximal subgroup will not have any contributions because it does not have elements of order

3. By Table A.10 we have that ∆G(3A, 11X, 23Y ) = 5129. Since there is no contributing group,

we then obtain that ∆∗(3A, 11X, 23Y ) = ∆G(3A, 11X, 23Y ) = 5129 > 0, so that the group G

is (3A, 11X, 23Y )-generated for all X,Y ∈ {A,B}.

(3, 23, r)-generations

In this subsection we discuss the case (3, 23, r)-generations. It follows that we will end up

with 3 cases, namely (3A, 23A, 23A)-, (3A, 23A, 23B)-, (3A, 23B, 23B)-generation which will

be handled in the following Proposition 4.2.23.

Proposition 4.2.23. The group G is (3A, 23X, 23Y )-generated for all X,Y ∈ {A,B}.

Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. This

maximal subgroup will not have any contributions because it does not have elements of order

3. By Table A.10 we have ∆G(3A, 23A, 23A) = 3082. Since there is no contributing group,

we then obtain that ∆∗(3A, 23X, 23X) = ∆G(3A, 23A, 23A) = 3082 > 0, so that the group

G is (3A, 23A, 23A)-generated. Since the same holds for (3A, 23B, 23B), the group G will be

(3A, 23B, 23B)-generated. Similarly, ∆∗(3A, 23A, 23B) = ∆G(3A, 23A, 23B) = 2714 > 0, so

that the group G becomes (3A, 23A, 23B)-generated.

4.2.3 Other results

In this section we handle all the remaining cases, namely the (5, q, r)-, (7, q, r)-, (11, q, r)- and

(23, q, r)-generations.
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(5, 5, r)-generations

In this subsection we discuss the case (5, 5, r)-generations. It follows that we will end up with

5 cases, namely (5A, 5A, 5A)-, (5A, 5A, 11A)-, (5A, 5A, 11B)-, (5A, 5A, 23A)-, (5A, 5A, 23B)-

generation.

Proposition 4.2.24. The group G is (5A, 5A, 5A)-generated.

Proof. From Table 4.4 we see that all the maximal subgroups of G have elements of order 5

except for the seventh maximal subgroup. Let T be the set of all maximal subgroups of G

except the seventh one. We look at various intersections of conjugacy classes for these maximal

subgroups. We have the following:

• The groups arising from the intersections of conjugacy classes for any 4, 5 or 6 maximal

subgroups in T do not contain elements of order 5.

• The groups arising from intersections of the conjugacy classes for any three maximal

subgroups in T having elements of order 5 are S5 (2-copies), D10 and 5:4. We ob-

tained that
∑

S5
(5a, 5a, 5a) = 8,

∑
D10

(5x, 5y, 5z) = ∆D10(5a, 5a, 5a)+∆D10(5a, 5a, 5b)+

∆D10(5a, 5b, 5b)+∆D10(5b, 5b, 5b) = 0+1+1+0 = 2 and
∑

5:4(5a, 5a, 5a) = 3. We found

that the value of h for each of these three groups is 3.

• The groups arising from intersections of the conjugacy classes for any two maximal sub-

groups in T having elements of order 5 are 24:S5 (3-copies), PSL3(4), A7 (2-copies),

24:A6, PSL2(11), A6:2, A5 and S5 (2-copies). We obtained that
∑

24:S5
(5a, 5a, 5a) = 128,∑

PSL3(4)
(3a, 5x, 5y) = ∆PSL3(4)(5a, 5a, 5a)+∆PSL3(4)(5a, 5a, 5b)+∆PSL3(4)(5a, 5b, 5b)+

∆PSL3(4)(5b, 5b, 5b) = 845 + 781 + 781 + 845 = 3252,
∑

A7
(a, 5a, 5a) = ∆A7(5a, 5a, 5a) =

108,
∑

24:A6
(5x, 5y, 5z) = ∆24:A6

(5a, 5a, 5a) + ∆24:A6
(5a, 5a, 5b) + ∆24:A6

(5a, 5b, 5b) +
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∆24:A6
(5b, 5b, 5b) = 320 + 176 + 176 + 320 = 992,

∑
PSL2(11)

(5x, 5y, 5z) =

∆PSL2(11)(5a, 5a, 5a)+∆PSL2(11)(5a, 5a, 5b)+∆PSL2(11)(5a, 5b, 5b)+∆PSL2(11)(5b, 5b, 5b) =

20 + 31 + 31 + 20 = 102,
∑

A6:2
(5a, 5a, 5a) = 53,

∑
A5

(5x, 5y, 5z) = ∆A5(5a, 5a, 5a) +

∆A5(5a, 5a, 5b)+∆A5(5a, 5b, 5b)+∆A5(5b, 5b, 5b) = 5+1+1+5 = 12 and
∑

S5
(5a, 5a, 5a) =

8. We found that the value of h for each of these eight groups is 3.

By Table A.11 we have ∆G(5A, 5A, 5A) = 61058. We obtained that
∑

K1
(5a, 5a, 5a) = 18368,∑

K2
(5a, 5a, 5a) = 3188,

∑
K3

(5a, 5a, 5a) = 1728,
∑

K4
(5a, 5a, 5a) = 173,

∑
K5

(5a, 5a, 5a) =

378,
∑

K6
(5a, 5a, 5a) = 128 The value of h for each maximal subgroup is 3 except for K4

and K6. The value of h is 1 for each of these maximal subgroups K4 and K6. It follows that

∆∗G(5A, 5A, 5A) ≥ ∆G(5A, 5A, 5A)−3·
∑

K1
(5a, 5a, 5a)−3·

∑
K2

(5a, 5a, 5a)−3·
∑

K3
(5a, 5a, 5a)−∑

K4
(5a, 5a, 5a)−3·

∑
K5

(5a, 5a, 5a)−
∑

K6
(5a, 5a, 5a)−2·3·

∑
S5

(5a, 5a, 5a)−3·
∑

D10
(5x, 5y, 5z)−

3 ·
∑

5:4(5a, 5a, 5a)+3 ·3 ·
∑

24:S5
(5a, 5a, 5a)+3 ·

∑
PSL3(4)

(5x, 5y, 5z)+2 ·3 ·
∑

A7
(5a, 5a, 5a)+3 ·∑

24:A6
(5x, 5y, 5z) + 3 ·

∑
PSL2(11)

(5x, 5y, 5z) + 3 ·
∑

A6:2
(5a, 5a, 5a) + 3 ·

∑
A5

(5x, 5y, 5z) + 2 · 3 ·∑
S5

(5a, 5a, 5a) = 61058−3(18368)−3(3188)−3(1728)−1(173)−3(378)−1(128)−2(3)(11)−

3(2)−3(3)+3(3)(128)+3(3252)+2(3)(108)+3(992)+3(102)+3(53)+3(12)+2(3)(8) = 6499 > 0.

It follows that the group G is (5A, 5A, 5A)-generated.

Proposition 4.2.25. The group G is (5A, 5A, 7X)-generated for X ∈ {A,B}.

Proof. As in Proposition 4.2.5, we observe that the groups PSL3(4), A7 (2-copies), 23:PLS3(2)

(2-copies) and PSL3(2) may have contributions here.The groups 23:PLS3(2) and PSL3(2)

will not have any contributions because they do not have elements of order 5. We obtained

that
∑

PSL3(4)
(5x, 5y, 7b) = ∆PSL3(4)(5a, 5a, 7b) + ∆PSL3(4)(5a, 5b, 7b) + ∆PSL3(4)(5b, 5b, 7b) =

819 + 819 + 819 = 2457,
∑

A7
(5a, 5a, 7b) = 84 and h(7A,PSL3(4)) = h(7A,A7) = 2.

The maximal subgroups K1, K2, K3 and K4 meet the 5A, 7A classes of G. We obtained that
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∑
K1

(5a, 5a, 7b) = 17920,
∑

K2
(5a, 5a, 7b) = 3276,

∑
K3

(5a, 5a, 7a) = 1344,
∑

K4
(5a, 5a, 7b) =

91. We found that h(7A,K1) = h(7A,K4) = 2 and h(7A,K2) = h(7A,K3) = 1.

Since by Table A.11 we have ∆G(5A, 5A, 7A) = 54320, we then obtain that ∆∗G(5A, 5A, 7A) ≥

∆G(5A, 5A, 7A)−2 ·
∑

K1
(5a, 5a, 7b)−

∑
K2

(5a, 5a, 7b)−
∑

K3
(5a, 5a, 7a)−2 ·

∑
K4

(5a, 5a, 7b)+

2 ·
∑

PSL3(4)
(5x, 5y, 7b) + 2 · 2 ·

∑
A7

(5a, 5a, 7b) = 54320 − 2(17920) − 3276 − 1344 − 2(91) +

2(2457) + 2(2)(84) = 18928 > 0. Therefore, the group G is (5A, 5A, 7A)-generated. Since

the same holds for (5A, 5A, 7B), it follows that the group G is (5A, 5A, 7X)-generated for

X ∈ {A,B}.

Proposition 4.2.26. The group G is (5A, 5A, 11X)-generated for X ∈ {A,B}.

Proof. By Proposition 4.2.3 we proved that the group G is (2A, 5A, 11X)-generated for X ∈

{A,B}. It follows by Theorem 2.2.3 thatG is (5A, 5A, (11A)2)- and (5A, 5A, (11B)2)-generated.

By GAP, we see that (11A)2 = 11B and (11B)2 = 11A and the results follow.

Proposition 4.2.27. The group G is (5A, 5A, 23X)-generated for X ∈ {A,B}.

Proof. By Proposition 4.2.4 we proved that G is (2A, 5A, 23X)-generated for X ∈ {A,B}. It

follows by Theorem 2.2.3 that the group G is (5A, 5A, (23A)2)- and (5A, 5A, (23B)2)-generated.

Since by GAP we have (23A)2 = 23A and (23B)2 = 23B, then the results follow.

(5, 7, r)-generations

In this subsection we discuss the case (5, 7, r)-generations. It follows that we will end up with

11 cases, namely (5A, 7A, 7A)-, (5A, 7A, 7B)-, (5A, 7A, 11A)-, (5A, 7A, 11B)-, (5A, 7A, 23A)-,

(5A, 7A, 23B)-, (5A, 7B, 7B)-, (5A, 7B, 11A)-, (5A, 7B, 11B)-, (5A, 7B, 23A)-, (5A, 7B, 23B)-

generation.
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Proposition 4.2.28. The group G is (5A, 7X, 7Y )-generated for all X,Y ∈ {A,B}.

Proof. As in Proposition 4.2.5, we observe that the groups PSL3(4), A7 (2-copies), 23:PLS3(2)

(2-copies) and PSL3(2) may have contributions here.The groups 23:PLS3(2) and PSL3(2) will

not have any contributions because they both do not have elements of order 5. We obtained

that
∑

PSL3(4)
(5x, 7b, 7b) = ∆PSL3(4)(5a, 7b, 7b) + ∆PSL3(4)(5b, 7b, 7b) = 567 + 567 = 1134,∑

A7
(5a, 7b, 7b) = 84 and h(7A,PSL3(4)) = h(7A,A7) = 2.

The maximal subgroups K1, K2, K3 and K4 meet the 5A, 7A classes of G. We obtained that∑
K1

(5a, 7b, 7b) = 12544,
∑

K2
(5a, 7b, 7b) = 1134,

∑
K3

(5a, 7a, 7a) = 672,
∑

K4
(5a, 7b, 7b) =

189. We found that h(7A,K1) = h(7A,K4) = 2 and h(7A,K2) = h(7A,K3) = 1.

Since by Table A.11 we have ∆G(5A, 7A, 7A) = 52584, we then obtain that ∆∗G(5A, 7A, 7A) ≥

∆G(5A, 7A, 7A)−2·
∑

K1
(5a, 7b, 7b)−

∑
K2

(5a, 7b, 7b)−
∑

K3
(5a, 7a, 7a)−2·

∑
K4

(5a, 7b, 7b)+2·∑
PSL3(4)

(5x, 7b, 7b)+2 ·2 ·
∑

A7
(5a, 7b, 7b) = 52584−2(12544)−1134−672−2(189)+2(1134)+

2(2)(84) = 27916 > 0. Therefore, the group G is (5A, 7A, 7A)-generated. Since the same holds

for (5A, 7B, 7B), it follows that the group G is (5A, 7X, 7X)-generated for X ∈ {A,B}.

We now prove that the group G is (5A, 7A, 7B)-generated. We obtained that∑
PSL3(4)

(5x, 7b, 7a) = ∆PSL3(4)(5a, 7b, 7a) + ∆PSL3(4)(5b, 7b, 7a) = 567 + 567 = 1134,∑
A7

(5a, 7b, 7b) = 84,
∑

K1
(5a, 7b, 7a) = 12544,

∑
K2

(5a, 7b, 7a) = 1134,
∑

K3
(5a, 7a, 7b) = 672

and
∑

K4
(5a, 7b, 7a) = 189. Since by same Table A.11 we have ∆G(5A, 7A, 7B) = 52584, we

then obtain that ∆∗G(5A, 7A, 7B) ≥ ∆G(5A, 7A, 7B)− 2 ·
∑

K1
(5a, 7b, 7a)−

∑
K2

(5a, 7b, 7a)−∑
K3

(5a, 7a, 7b)−2 ·
∑

K4
(5a, 7b, 7a)+2 ·

∑
PSL3(4)

(5x, 7b, 7a)+2 ·2 ·
∑

A7
(5a, 7b, 7a) = 52584−

2(12544)− 1134− 672− 2(189) + 2(1134) + 2(2)(84) = 27916 > 0, proving that the group G is

(5A, 7A, 7B)-generated.

Proposition 4.2.29. The group G is (5A, 7X, 11Y )-generated for all X,Y ∈ {A,B}.
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Proof. Looking at Proposition 4.2.3, we see that K1, K5, K7 and PSL2(11) are the only groups

having elements of order 11. The groups K5, K7 and PSL2(11) will not have any contributions

because they both do not have elements of order 7. We obtained that
∑

K1
(5a, 7x, 11y) =

12672 and h(11Z,K1) = 1 for Z ∈ {A,B}. By Table A.11 we have ∆G(5A, 7X, 11Y ) =

48576 for all X,Y ∈ {A,B}. We then obtain that ∆∗G(5A, 7X, 11Y ) ≥ ∆G(5A, 7X, 11Y ) −∑
K1

(5a, 7x, 11y) = 48576− 12672 = 35904 > 0, so that the group G becomes (5A, 7X, 11Y )-

generated for all X,Y ∈ {A,B}.

Proposition 4.2.30. The group G is (5A, 7X, 23Y )-generated for all X,Y ∈ {A,B}.

Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. This

maximal subgroup will not have any contributions because it does not have elements of orders

5 and 7. By Table A.11 we have ∆G(5A, 7X, 23Y ) = 44160 for all X,Y ∈ {A,B}. Since there is

no contributing group, we then obtain that ∆∗G(5A, 7X, 23Y ) = ∆G(5A, 7X, 23Y ) = 44160 > 0

, so that the group G is (5A, 7X, 23Y )-generated for all X,Y ∈ {A,B}.

(5, 11, r)-generations

In this subsection we discuss the case (5, 11, r)-generations. It follows that we will end

up with 7 cases, namely (5A, 11A, 11A)-, (5A, 11A, 11B)-, (5A, 11A, 23A)-, (5A, 11A, 23B),

(5A, 11B, 11B)-, (5A, 11B, 23A)- and (5A, 11B, 23B),-generation.

Proposition 4.2.31. The group G is (5A, 11X, 11Y )-generated for all X,Y ∈ {A,B}.

Proof. Looking at Proposition 4.2.3, we see that K1, K5, K7 and PSL2(11) are the only groups

having elements of order 11. The group K7 will not have any contributions because it does

not have elements of order 5. We obtained that
∑

K1
(5a, 11b, 11b) = 8448,

∑
K5

(5a, 11b, 11b) =
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198 and
∑

PSL2(11)
(5x, 11b, 11b) = ∆PSL2(11)(5a, 11b, 11b) + ∆PSL2(11)(5b, 11b, 11b) = 11 +

11 = 22. By Table A.11, we have ∆G(5A, 11A, 11A) = 62238. We already have h(11A,K1) =

h(11A,K5) = h(11A,PSL2(11)) = 1. We then have ∆∗G(5A, 11X, 11X) ≥ ∆G(5A, 11A, 11A)−∑
K1

(5a, 11b, 11b)−
∑

K5
(5a, 11b, 11b) +

∑
PSL2(11)

(5a, 11b, 11b) = 62238− 8448− 198 + 22 =

53614 > 0, showing that the group G is (5A, 11A, 11A)-generated. Since the same holds for

(5A, 11B, 11B) implies that the group G is (5A, 11A, 11A)-generated.

For the (5A, 11A, 11B)-generations, we obtained that
∑

K1
(5a, 11b, 11a) = 8448,∑

K5
(5a, 11b, 11a) = 99 and

∑
PSL2(11)

(5a, 11x, 11y) = ∆PSL2(11)(5a, 11b, 11b) +

∆PSL2(11)(5b, 11b, 11b) = 11 + 11 = 22. Since by Table A.11 we have ∆G(5A, 11A, 11B) =

61479, we obtain that ∆∗G(5A, 11A, 11B) ≥ ∆G(5A, 11A, 11B)−
∑

K1
(5a, 11b, 11a)−∑

K5
(5a, 11b, 11a) +

∑
PSL2(11)

(5a, 11b, 11a) = 61479 − 8448 − 99 + 22 = 52954 > 0, proving

that the group G is (5A, 11A, 11B)-generated.

Proposition 4.2.32. The group G is (5A, 11X, 23Y )-generated for all X,Y ∈ {A,B}.

Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. This

maximal subgroup will not have any contributions because it does not have elements of order

5. By Table A.11 we have ∆G(5A, 11X, 23Y ) = 61893 for all X,Y ∈ {A,B}. Since there is no

contributing group, we then obtain that ∆∗G(5A, 11X, 23Y ) = ∆G(5A, 11X, 23Y ) = 61893 > 0,

so that G is (5A, 11X, 23Y )-generated group for all X,Y ∈ {A,B}.

(5, 23, r)-generations

In this subsection we discuss the case (5, 23, r)-generations. It follows that we will end up with

3 cases, namely (5A, 23A, 23A)-, (5A, 23A, 23B)- and (5A, 23B, 23B)-generation.

Proposition 4.2.33. The group G is (5A, 23X, 23Y )-generated for all X,Y ∈ {A,B}.
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Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. This

maximal subgroup will not have any contributions because it does not have elements of order

5. By Table A.11 we have ∆G(5A, 23X, 23Y ) = 32706 for all X,Y ∈ {A,B}. Since there is no

contributing group, we then obtain that ∆∗G(5A, 23X, 23Y ) = ∆G(5A, 23X, 23Y ) = 32706 > 0,

so that the group G is (5A, 11X, 23Y )-generated for all X,Y ∈ {A,B}.

(7, 7, r)-generations

In this subsection we discuss the case (7, 7, r)-generations. It follows that we will end up with

16 cases, namely (7A, 7A, 7A)-, (7A, 7A, 7B)-, (7A, 7A, 11A)-, (7A, 7A, 11B), (7A, 7A, 23A)-,

(7A, 7A, 23B)-, (7A, 7B, 7B)-, (7A, 7B, 11A)-, (7A, 7B, 11B), (7A, 7B, 23A)-, (7A, 7B, 23B),

(7B, 7B, 7B)-, (7B, 7B, 11A)-, (7B, 7B, 11B)-, (7B, 7B, 23A)- and (7B, 7B, 23B)-generation.

Proposition 4.2.34. The group G is (7X, 7Y, 7Z)-generated for all X,Y, Z ∈ {A,B}.

Proof. By Proposition 4.2.5 we proved that G is (2A, 7A, 7X)-generated for X ∈ {A,B}. It

follows by Theorem 2.2.3 that the group G is (7A, 7A, (7A)2)- and (7A, 7A, (B)2)-generated.

Since by the power maps, we have (7A)2 = 7A and (7B)2 = 7B, the group G becomes

(7A, 7A, 7A)- and (7A, 7A, 7B)-generated. Since G is (7A, 7A, 7A)-generated, the same will

hold for (7B, 7B, 7B).

We are left only to investigate of the (7A, 7B, 7B) generation for the group G. As in Proposition

4.2.5, we observe that the groups PSL3(4), A7 (2-copies), 23:PLS3(2) (2-copies) and PSL3(2)

have contributions. We obtained that
∑

PSL3(4)
(7b, 7a, 7a) = 357,

∑
A7

(7b, 7a, 7a) = 36,∑
23:PSL3(2)

(7b, 7a, 7a) = 8,
∑

PSL3(2)
(7a, 7b, 7b) = 1 and h(7A,PSL3(4)) = h(7A,A7) =

h(7A, 23:PSL3(2)) = h(7A,PSL3(2)) = 2.
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The maximal subgroups K1, K2, K3 and K4 have elements of order 7. We obtained that∑
K1

(7b, 7a, 7a) = 8576,
∑

K2
(7b, 7a, 7a) = 379,

∑
K3

(7a, 7b, 7b) = 148,
∑

K4
(7b, 7a, 7a) = 379.

We found that h(7A,K1) = h(7A,K4) = 2 and h(7A,K2) = h(7A,K3) = 1.

Since by Table A.11 we have ∆G(7A, 7B, 7B) = 51948, we then obtain that ∆∗G(7A, 7B, 7B) ≥

∆G(7A, 7B, 7B)−2·
∑

K1
(7b, 7a, 7a)−

∑
K2

(7b, 7a, 7a)−
∑

K3
(7a, 7b, 7b)−2·

∑
K4

(7b, 7a, 7a)+2·∑
PSL3(4)

(7b, 7a, 7a)+2·2·
∑

A7
(7b, 7a, 7a)+2·2·

∑
23:PSL3(2)

(7b, 7a, 7a)+2·
∑

PSL3(2)
(7a, 7b, 7b) =

51948−2(8576)−379−148−2(379)+2(379)+2(2)(36)+2(2)(8)+2(1) = 34447 > 0. Therefore,

the group G is (7A, 7B, 7B)-generated.

Proposition 4.2.35. The group G is (7X, 7Y, 11Z)-generated for X,Y, Z ∈ {A,B}.

Proof. By Proposition 4.2.6 we have proved that G is (2A, 7X, 11Y )-generated for all X,Y ∈

{A,B}. It follows by Theorem 2.2.3 that G is (7X, 7X, (11Y )2)-generated. It follows that

G is (7X, 7X, (11A)2)- and (7X, 7X, (11B)2)-generated for X ∈ {A,B}. Since by the power

maps we have (11A)2 = 11B and (11B)2 = 11A, it then follows that G is (7X, 7X, 11B)- and

(7X, 7X, 11A)-generated group for X ∈ {A,B}.

We investigate the (7A, 7B, 11X) generations of G, where X ∈ {A,B}. Looking at Propo-

sition 4.2.3, we see that K1, K5, K7 and PSL2(11) are the only groups having elements

of order 11. The groups K5, K7 and PSL2(11) will not have any contributions because

they both do not have elements of order 7. We obtained that
∑

K1
(7b, 7a, 11x) = 9856 for

x ∈ {a, b}. We already have h(11X,K1) = 1 for X ∈ {A,B}. Since by Table A.11 we

have ∆G(7A, 7B, 11X) = 56496 for X ∈ {A,B}, we then obtain that ∆∗G(7A, 7B, 11X) ≥

∆G(7A, 7B, 11X)−
∑

K1
(7b, 7a, 11x) = 56496−9856 = 46640 > 0, proving G is (7A, 7B, 11X)-

generated for X ∈ {A,B}.

Proposition 4.2.36. The group G is (7X, 7Y, 23Z)-generated for X,Y, Z ∈ {A,B}.
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Proof. By Proposition 4.2.7 we have proved that G is (2A, 7X, 23Y )-generated for all X,Y ∈

{A,B}. It follows by Theorem 2.2.3 that G is (7X, 7X, (23Y )2)-generated. Since (23A)2 = 23A

and (23B)2 = 23B then it follows that G is (7X, 7X, 23A)- and (7X, 7X, 23B)-generated for

X ∈ {A,B}.

We prove that G is (7A, 7B, 23X)-generated for X ∈ {A,B}. By Table 4.4, K7 is the only max-

imal subgroup having elements of order 23. This maximal subgroup will not have any contribu-

tions because it does not have elements of order 7. By Table A.11 we have ∆G(7A, 7B, 23X) =

45264 forX ∈ {A,B}. Since there is no contributing group, we then obtain that ∆∗(7A, 7B, 23X)

= ∆G(7A, 7B, 23X) = 45264 > 0, so that G is (7A, 7B, 23X)-generated group for X ∈

{A,B}.

(7, 11, r)- and (7, 23, 23)-generations

In this subsection we discuss the cases (7, 11, r)- and (7, 23, r)-generations. It follows that we

will end up with 20 cases, namely (7A, 11A, 11A)-, (7A, 11A, 11B)-, (7A, 11A, 23A)-,

(7A, 11A, 23B)-, (7A, 11B, 11B)-, (7A, 11B, 23A)-, (7A, 11B, 23B)-, (7B, 11A, 11A)-,

(7B, 11A, 11B)-, (7B, 11A, 23A)-, (7B, 11A, 23B)-, (7B, 11B, 11B)-, (7B, 11B, 23A)-,

(7B, 11B, 23B)-, (7A, 23A, 23A)-, (7A, 23A, 23B)-, (7A, 23B, 23B)-(7B, 23A, 23A)-,

(7B, 23A, 23B)- and (7B, 23B, 23B)-generation.

Proposition 4.2.37. The group G is (7X, 11Y, 11Z)-generated for X,Y, Z ∈ {A,B}.

Proof. Looking at Proposition 4.2.3, we see that K1, K5, K7 and PSL2(11) are the only groups

having elements of order 11. The groups K5, K7 and PSL2(11) will not have any contributions

because they both do not have elements of order 7. We obtained that
∑

K1
(7X, 11Y, 11Z) =

5632 and h(11Z,K1) = 1 for all X,Y, Z ∈ {A,B}. By Table A.11 we have ∆G(7X, 11Y, 11Z) =
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64416. We then obtained that ∆∗G(7X, 11Y, 11Z) ≥ ∆G(7X, 11Y, 11Z)−
∑

K1
(7X, 11Y, 11Z) =

64416 − 5632 = 58784 > 0 and so G is (7X, 11Y, 11Z)-generated group for all X,Y, Z ∈

{A,B}.

Proposition 4.2.38. The group G is (7X, 11Y, 23Z)-generated for all X,Y, Z ∈ {A,B}.

Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. This

maximal subgroup will not have any contributions because it does not have elements of order

7. By Table A.11 we have ∆G(7X, 11Y, 23Z) = 67712 for all X,Y, Z ∈ {A,B}. Since there is no

contributing group, we then obtain that ∆∗(7X, 11Y, 23Z) = ∆G(7X, 11Y, 23Z) = 67712 > 0,

so that G is (7X, 11Y, 23Z)-generated group for all X,Y, Z ∈ {A,B}.

Proposition 4.2.39. The group G is (7X, 23Y, 23Z)-generated for all X,Y, Z ∈ {A,B}.

Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. This

maximal subgroup will not have any contributions because it does not have elements of order

7. By Table A.11 we have ∆G(7X, 23Y, 23Z) = 32384 for all X,Y, Z ∈ {A,B}. Since there is no

contributing group, we then obtain that ∆∗(7X, 23Y, 23Z) = ∆G(7X, 23Y, 23Z) = 32384 > 0,

so that the group G is (7X, 23Y, 23Z)-generated for all X,Y, Z ∈ {A,B}.

(11, 11, r)-generations

In this subsection we discuss the case (11, 11, r)-generations. It follows that we will end up

with 10 cases, namely (11A, 11A, 11A)-, (11A, 11A, 11B)-, (11A, 11A, 23A)-, (11A, 11A, 23B)-,

(11A, 11B, 11B)-, (11A, 11B, 23A)-, (11A, 11B, 23B)-, (11B, 11B, 11B)-, (11B, 11B, 23A)- and

(11B, 11B, 23B)-generation.

Proposition 4.2.40. The group G is (11X, 11Y, 11Z)-generated for all X,Y, Z ∈ {A,B}.
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Proof. By Proposition 4.2.8 we have proved that G is (2A, 11X, 11Y )-generated for all X,Y ∈

{A,B}. Then by Theorem 2.2.3 it follows that G is (11X, 11X, (11Y )2)-generated for all

X,Y, Z ∈ {A,B}. Since (11A)2 = 11B and (11B)2) = 11A then it follows that G is

(11X, 11X, 11Y )-generated for all X,Y, Z ∈ {A,B}.

We prove that G is (11A, 11B, 11B)-generated. Looking at Proposition 4.2.3, we see that K1,

K5, K7 and PSL2(11) are the only groups having elements of order 11. The maximal subgroup

K7 have its relevant structure constant zero, so it will not have any contributions. We obtained

that
∑

K1
(11b, 11a, 11a) = 3632,

∑
K5

(11b, 11a, 11a) = 35 and
∑

PSL2(11)
(11b, 11a, 11a) = 2.

We have found that h(11B,K1) = h(11B,K5) = h(11B,PSL2(11)) = 1. By Table A.12 we

have ∆G(11A, 11B, 11B) = 87485, we then obtain ∆∗G(11A, 11B, 11B) ≥ ∆G(11A, 11B, 11B)−∑
K1

(11b, 11a, 11a)−
∑

K5
(11b, 11a, 11a) +

∑
PSL2(11)

(11b, 11a, 11a) = 87485−3632−35 + 2 =

83820 > 0, proving that the group G is (11A, 11B, 11B)-generated.

Proposition 4.2.41. The group G is (11X, 11Y, 23Z)-generated for all X,Y, Z ∈ {A,B}.

Proof. By Proposition 4.2.9 we have proved that G is (2A, 11X, 23Y )-generated for all X,Y ∈

{A,B}. Then by Theorem 2.2.3 it follows that G is (11X, 11X, (23Y )2)-generated for all X,Y ∈

{A,B}. Since (23A)2 = 23A and (23B)2 = 23B we then obtained that G is (11X, 11X, 23Y )-

generated for all X,Y ∈ {A,B}.

We still have to prove the (11A, 11B, 23X)-generations where X ∈ {A,B}. By Table 4.4 we

see that K7 is the only maximal subgroup having elements of orders 11 and 23. We then ob-

tain that
∑

K7
(11x, 11y, 23z) = ∆K7(11a, 11j, 23z)+∆K7(11c, 11h, 23z)+∆K7(11d, 11g, 23z)+

∆K7(11e, 11f, 23z) + ∆K7(11i, 11b, 23x) = 23 + 23 + 23 + 23 + 23 = 115 for z ∈ {a, b}. We have

found that h(23X,K7) = 1 for X ∈ {A,B}. Since by Table A.12 we have ∆G(11A, 11B, 23X) =

79994, then we obtained that ∆∗G(11A, 11B, 23X) ≥ ∆G(11A, 11B, 23Z)−
∑

K7
(11x, 11y, 23z) =
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79994− 115 = 79879 > 0 for all Z ∈ {A,B}. Hence G is (11A, 11B, 23X)-generated group for

X ∈ {A,B}.

(11, 23, r)-generations

We will be looking at the cases (11A, 23A, 23A)-, (11A, 23A, 23B)-, (11A, 23B, 23B)-,

(11B, 23A, 23A)-, (11B, 23A, 23B)- and (11B, 23B, 23B)-generation.

Proposition 4.2.42. The group G is (11X, 23Y, 23Z)-generated for all X,Y, Z ∈ {A,B}.

Proof. By Table 4.4, K7 is the only maximal subgroup having elements of orders 11 and 23.

This maximal subgroup K7 will not have any contributions because its relevant structure con-

stants are all zero. By Table A.12 we have ∆G(11X, 23Y, 23Z) = 42067 for all X,Y, Z ∈

{A,B}. Since there is no contributing group, we then obtain that ∆∗G(11X, 23Y, 23Z) =

∆G(11X, 23Y, 23Z) = 42067 > 0, showing that G is (11X, 23Y, 23Z)-generated group for all

X,Y, Z ∈ {A,B}.

(23, 23, r)-generations

We conclude our investigation on the (p, q, r)-generations of the Mathieu sporadic simple group

G by considering the (23, 23, 23)-generations. We will be looking at the cases (23A, 23A, 23A)-,

(23A, 23A, 23B)-, (23A, 23B, 23B)- and (23B, 23B, 23B)-generation.

Proposition 4.2.43. The group G is (23X, 23Y, 23Z)-generated for all X,Y, Z ∈ {A,B}.

Proof. By Proposition 4.2.10 we have proved that G is (2A, 23X, 23Y )-generated for all X,Y ∈

{A,B}. Then by Theorem 2.2.3 it follows that G is (23X, 23X, (23Y )2)-generated for all X,Y ∈
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{A,B}. Since (23A)2 = 23A and (23B)2 = 23B then it follows that G is (23X, 23X, 23Y )-

generated for all X,Y ∈ {A,B}. We now check the (23A, 23B, 23B)-generation of G. By

Table 4.4, K7 is the only maximal subgroup having elements of order 11. We obtained that∑
K7

(23a, 23b, 23b) = 5 and h(23B,K7) = 1. Since by Table A.12 we have ∆G(23A, 23B, 23B) =

17646, then we obtained that ∆∗G(23A, 23B, 23B) ≥ ∆G(23A, 23B, 23B)−
∑

K7
(23a, 23b, 23b) =

17646− 5 = 17641 > 0. Hence the group G is (23A, 23B, 23B)-generated.

4.3. The conjugacy class ranks of the sporadic simple group M23.

Now we study the ranks of M23 with respect to the various conjugacy classes of all its non-

identity elements.

Proposition 4.3.1. rank(G : 2A) = 3.

Proof. The rank of any involution class will be at least 3. Thus, rank(G : 2A) 6= 2. Direct

computation shows that the structure constant ∆G(2A, 2A, 2A, 23A) = 3174. More information

on direct computation see [5, Lemma 4] and [15, Remark 1]. By Table 4.4, K7 is the only

maximal subgroup having elements of order 23. This maximal subgroup will not have any

contributions because it does not have elements of order 2. Since there is no contributing

group, we then obtain that ∆∗G(2A, 2A, 2A, 23A) ≥ 3174, proving that G is (2A, 2A, 2A, 23A)-

generated. Hence the result follows.

Proposition 4.3.2. Let nX ∈ T := {3A, 4A, 5A, 6A, 7A, 7B, 8A, 14A, 14B, 15A, 15B, 23A, 23B}

then rank(G : nX) = 2.

Proof. By Table 4.4, K7 is the only maximal subgroup having elements of order 23. We use

Table 4.5 in getting the results of this Proposition. In the same Table 4.5 we give required
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information needed to calculate the minimum value of ∆∗G(nX, nX, 23A) where nX ∈ T. Since

∆∗G(nX, nX, 23A) > 0, it follows that G is (nX, nX, 23A)-generated where nX ∈ T. This

proves that rank(G : nX) = 2 for all nX ∈ T.

Proposition 4.3.3. rank(G : 11A) = 2 = rank(G : 11B).

Proof. We have proved in Proposition 4.2.9 that the group G is (2A, 11X, 23A)-generated for

all X ∈ {A,B}. By applying Theorem 2.2.3, we see that the group G is (11A, 11A, (23A)2)-

generated. Since (23A)2 = 23A, the group G becomes (11A, 11A, 23A)-generated. Since the

same follows for (11B, 11B, 23A), we then have rank(G : 11X) = 2 for X ∈ {A,B}.

The following Table 4.5 gives information on partial structure contants of G computed us-

ing GAP and the relevant information required to calculate ΘG(nX, nX, 23A). We give some

information about ∆G(nX, nX, 23A), h(23A,K7) and
∑

K7
(nx, nx, 23b). The last column

ΘG(nX, nX, 23A) = ∆G(nX, nX, 23A)− h
∑

K7
(nx, nx, 23b) establishes each generation of G

by its triples (nX, nX, 23A) because ∆∗G(nX, nX, 23A) ≥ ΘG(nX, nX, 23A), that is

∆∗G(nX, nX, 23A) > 0 then the group G is (nX, nX, 23A)-generated.

The rank for each conjugacy class of elements for the sporadic simple group M23 will be

summarized as follows:

• rank(G : 2A) = 3, the result follows by 4.3.1.

• Let nX ∈ T := {3A, 4A, 5A, 6A, 7A, 7B, 8A, 11A, 11B, 14A, 14B, 15A, 15B, 23A, 23B}

then rank(G : nX) = 2. The results follow by the proofs of Propositions 4.3.2 and

4.3.3.
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Table 4.5: Some information on the nX ∈ T

nX ∆G(nX, nX, 23A) h(23A,K7) h
∑
K7

(nx, nx, 23b) ΘG(nX, nX, 23A)

3A 138 1 - 138

4A 7866 1 - 7866

5A 37582 1 - 37582

6A 72588 1 - 72588

7A 52992 1 - 52992

7B 52992 1 - 52992

8A 154376 1 - 154376

14A 52992 1 - 52992

14B 52992 1 - 52992

15A 41998 1 - 41998

15B 41998 1 - 41998

23A 17646 1 5 17641

23B 17646 1 6 17640
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The alternating group A11

In this chapter, we will establish all the (p, q, r)-generations together with the ranks of the

conjugacy classes of the alternating group A11. The result on the (p, q, r)-generations of A11

can be summarized in the following theorem.

Theorem 5.0.1. With the notation being as in the Atlas [20], the alternating group A11 is

generated by all the triples (lX,mY, nZ), l, m and n primes dividing |A11|, except for the cases

(lX,mY, nZ) ∈ {(2M, 3V, 7A), (2M, 3N, 11O), (2A, 5B, 5B), (2M, 5A, 5N), (2M, 5N, 7A),

(2M, 5A, 11N), (2M, 7A, 7A), (2A, 7A, 11M), (3V, 3W, 5M), (3V, 3W, 7A), (3A, 3V, 11M),

(3B, 3B, 11M), (3V, 5A, 5M), (3A, 5B, 5B), (3M, 5N, 7A), (3C, 5A, 7A), (3M, 5A, 11N),

(3V, 7A, 7A), (3A, 7A, 11M), (5A, 5A, 5M), (5A, 5M, 7A), (5A, 5A, 11M), (5A, 7A, 7A)}, for

all M,N,O ∈ {A,B} and V,W ∈ {A,B,C}.

The main result on the ranks in this thesis can summarized by Theorem 5.0.2 as follows.

Theorem 5.0.2. For the alternating group G, we have

(i) rank(G : 2A) = rank(G : 3A) = 5,

(ii) rank(G : 2B) = rank(G : 3B) = rank(G : 4A) = rank(G : 5A) = rank(G : 6B) = 3,

(iii) rank(G : nX) = 2 if nX /∈ {1A, 2A, 2B, 3A, 3B, 4A, 5A, 6B}, where nX is a conjugacy
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class of G.

5.1. Introduction

The Symmetric group denoted by SX is defined to be the group of all permutations ρ:X → X,

where X is a non-empty set. Suppose |X| = n, thus SX will be denoted by Sn. In general, for

n ≥ 2, the number of even permutations in the symmetric group Sn is the same as number

of odd permutations. So, Sn splits equally into odd and even permutations. It is well known

that an alternating group An is a normal subgroup of Sn. The group A11 is defined to be the

alternating group of degree 11. The group A11 is a normal subgroup of S11, the symmetric

group on a set of size 11. The Schur multiplier and the outer automorphism group of A11 are

both 2.

The group A11 is a simple group of order 19958400 = 27×34×52×7×11. By the Atlas of finite

groups [20], the group A11 has exactly 31 conjugacy classes of its elements and 7 conjugacy

classes of its maximal subgroups. Representatives of these classes of maximal subgroups can

be taken as follows:

M1 = A10 M2 = S9 M3 = (A8 × 3):2

M4 = (A7 ×A4):2 M5 = (A6 ×A5):2 M6 = M11

M7 = M11.

Throughout this Chapter, by G we mean the alternating group A11, unless stated otherwise.

From the electronic Atlas of finite group representations [55], we see that G can be generated

in terms of permutations on 11 points. Generators g1 and g2 can be taken as follows:

g1 = (1, 2, 3)

g2 = (3, 4, 5, 6, 7, 8, 9, 10, 11),
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with o(g1) = 3, o(g2) = 9 and o(g1g2) = 11.

In Table 5.1, we list the values of the cyclic structure for each conjugacy of G together with

the values of both ci and di obtained from Ree and Scotts theorems, respectively.

Table 5.2 gives the partial fusion maps of classes of maximal subgroups into the classes of G.

These will be used in our computations.

In Table 5.3, we have the order of each maximal subgroup, listed the representatives of classes

of the maximal subgroups together with the orbits lengths of G on these groups and the

permutation characters.

Table 5.1: Cycle structures of conjugacy classes of G

nX Cycle Structure ci di

2A 1722 9 2

2B 1324 7 4

3A 1831 9 2

3B 1532 7 4

3C 1233 5 6

4A 152 3 7 4

4B 1242 5 6

4C 112341 5 6

5A 1651 7 4

5B 1152 3 8

6A 1431 5 6

6B 142231 7 4

6C 122232 5 6

6D 132161 5 6

6E 213161 3 8

7A 1471 5 6

8A 122181 3 8

9A 1291 3 8

10 122251 5 6

11A 111 1 10

11B 111 1 10

12A 3142 3 8

12B 12213141 5 6

12C 114161 3 8

14A 2271 3 8
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Table 5.1 continued

nX Cycle Structure ci di

15A 133151 5 6

15B 3251 5 6

20A 214151 3 8

20B 214151 3 8

21A 113151 3 8

21B 113151 3 8

Table 5.2: The partial fusion maps into G

M1-class 2a 2b 3a 3b 3c 5a 5b 7a

→ G 2A 2B 3A 3B 3C 5A 5B 7A

h 6 1 4

M2-class 2a 2b 2c 2d 3a 3b 3c 5a 7a

→ G 2A 2A 2B 2B 3A 3C 3B 5A 7A

h 15 6

M3-class 2a 2b 2c 2d 3a 3b 3c 3d 3e 5a 7a

→ G 2A 2B 2A 2B 3A 3A 3B 3B 3C 5A 7A

h 20 4

M4-class 2a 2b 2c 2d 2e 3a 3b 3c 3d 3e 5a 7a

→ G 2A 2A 2A 2B 2B 3A 3A 3B 3B 3C 5A 7A

h 15 1

M5-class 2a 2b 2c 2d 2e 3a 3b 3c 3d 3e 5a 5b 5c 5d

→ G 2A 2A 2A 2B 2B 3A 3A 3B 3B 3C 5A 5A 5B 5B

h 1 6 1 1

M6-class 2a 3a 5a 11a 11b

→ G 2B 3C 5B 11A 11B

h 5 1 1

M7-class 2a 3a 5a 11a 11b

→ G 2B 3C 5B 11A 11B

h 5 1 1

Table 5.3: Maximal subgroups of G

Maximal Subgroup Order Orbit Lengths Character

M1 27 · 34 · 52 · 7 [1,10] 1a + 10a

M2 27 · 34 · 5 · 7 [2,9] 1a + 10a + 44a

M3 27 · 33 · 5 · 7 [3,8] 1a + 10a + 44a + 110a

M4 26 · 33 · 5 · 7 [7,4] 1a + 10a + 44a + 110a + 165a

M5 26 · 33 · 52 [5,6] 1a + 10a + 44a + 110a +132a + 165a
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Table 5.3 continued

Maximal Subgroup Order Orbit Lengths Character

M6 24 · 32 · 5 · 11 [11] 1a + 132a + 462a + 825a + 1100a

M7 24 · 32 · 5 · 11 [11] 1a + 132a + 462a + 825a + 1100a

5.2. (p, q, r)-generations of A11

Let tX, p ∈ {2, 3, 5, 7, 11} be a conjugacy class of G and ci be the number of disjoint cycles

in a representative of tX. The group G is not (2Y, 2Z, tX)-generated, for if G is (2Y, 2Z, tX)-

generated, then G is a dihedral group and thus is not simple for all Y,Z ∈ {A,B}. Also we

know that if G is (lX,mY, nZ)-generated with 1
l + 1

m + 1
n ≥ 1 and G is simple, then G ∼= A5,

but G ∼= A11 and A11 6∼= A5. Hence if G is (lX,mY, nZ)-generated, then we must have

1
l + 1

m + 1
n < 1.

5.2.1 (2, q, r)-generations

Now the (2, q, r)-generations of G comprises the cases (2, 3, r)-, (2, 5, r)-, (2, 7, r)- and (2, 11, r)-

generations.

(2, 3, r)-generations

The condition 1
2 + 1

3 + 1
r < 1 shows that we must have r > 6. Thus we have to consider the

cases (2X, 3Y, 7A) and (2X, 3Y, 11Z) for all X,Z ∈ {A,B} and Y ∈ {A,B,C}.

Proposition 5.2.1. The group G is not (2X, 3Y, 7A)-generated where X ∈ {A,B}, Y ∈

{A,B,C}.

Proof. If the group G is (2X, 3Y, 7A)-generated then we must have c2X +c3Y +c7A ≤ 13 where
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X ∈ {A,B} and Y ∈ {A,B,C}. By Table 5.1 we see that c2X ∈ {7, 9} and c3Y ∈ {5, 7, 9}, it

follows that c2X + c3Y + c7A = c2X + c3X + 5 > 13, for X ∈ {A,B} and Y ∈ {A,B,C}. Now

using Ree’s Theorem [49], it follows that G is not (2X, 3Y, 7A)-generated where X ∈ {A,B}

and Y ∈ {A,B,C}.

Proposition 5.2.2. The group G is

(i) neither (2X, 3Y, 11Z)- nor (2A, 3C, 11Z)-generated for all X,Y, Z ∈ {A,B},

(ii) (2B, 3C, 11X)-generated for X ∈ {A,B}.

Proof. (i) Since by Table A.13, we have ∆G(2A, 3A, 11X) = ∆G(2A, 3B, 11X) = ∆G(2A, 3C, 11X) =

∆G(2B, 3A, 11X) = ∆G(2B, 3B, 11X) = 0, Lemma 2.1.3 implies that the group G is neither

(2X, 3Y, 11Z)- nor (2A, 3C, 11Z)-generated for all X,Y, Z ∈ {A,B}.

(ii) From Table 5.2 we see H6 (or H7) (two non-conjugate copies) is the only maximal subgroup

containing elements of orders 2, 3 and 11. The non-empty intersection of the conjugacy classes

for H6 with the conjugacy classes for H7 which has elements of order 11 is isomorphic to the

group 11:5. This subgroup 11:5 of G has no elements of orders 2 and 3, as such it will not

have any contributions here. We obtained that
∑

H6
(2a, 3a, 11x) = 11 and h(11X,H6) = 1

(see [31, 58]). Since by Table A.13 we have ∆G(2B, 3C, 11X) = 110, we then obtained that

∆∗G(2B, 3C, 11X) ≥ ∆G(2B, 3C, 11X) −
∑

H6
(2a, 3a, 11x) −

∑
H7

(2a, 3a, 11x) = 110 − 11 −

11 = 88 > 0 for X ∈ {A,B}. This proves that the group G is (2B, 3C, 11X)-generated for

X ∈ {A,B}, proving (ii).

(2, 5, r)-generations

The condition 1
2 + 1

5 + 1
r < 1 shows that we must have r > 10

3 . We have to consider the following

the cases (2X, 5Y, 5Z), (2X, 5Y, 7A) and (2X, 5Y, 11Z) for all X,Y, Z ∈ {A,B}.
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Proposition 5.2.3. The group G is

(i) neither (2A, 5B, 5B)- nor (2X, 5A, 5Y )-generated for all X,Y ∈ {A,B},

(ii) (2B, 5B, 5B)-generated.

Proof. (i) If G is (2A, 5B, 5B)-generated group, then we must have c2A + c5B + c5B ≤ 13. For

r ∈ {5A, 5B}, then by Table 5.1 we have cr ∈ {3, 7} and it follows that c2A + c5A + cr =

9 + 7 + cr > 13, c2A + c5B + cr = 9 + 3 + cr > 13 and c2B + c5A + cr = 7 + 7 + cr > 13. Now

using Ree’s Theorem [49], it follows that G is not (2A, 5B, 5B)-generated. Same applies to

(2X, 5A, 5Y ) for all X,Y ∈ {A,B}. Thus G is neither (2A, 5B, 5B)- nor (2X, 5A, 5Y )-generated

for all X,Y ∈ {A,B}, proving (i).

(ii) Looking at Table 5.2 we see that all the maximal subgroups of G have elements of order 5.

Let T be the set of all maximal subgroups of G. We look at various non-empty intersections

of conjugacy classes for these maximal subgroups. We have the following:

• The subgroups arising from the non-empty intersections of conjugacy classes for any 6

or 7 maximal subgroups in T do not contain elements of order 5.

• The subgroups arising from non-empty intersections of the conjugacy classes for any 5

maximal subgroups in T having elements of order 5 are S5 and A6. Both subgroups S5

and A6 will not have any contributions because none of their elements of order 5 fuse to

the class 5B of the group G.

• The subgroups arising from non-empty intersections of the conjugacy classes for any four

maximal subgroups in T having elements of order 5 are S7, 2× S6, 2× S5, A6:2, A6 and

A7. No contributions from any of these subgroups of G because they both do not meet

the classes 2B and 5B of G.
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• The subgroups arising from non-empty intersections of the conjugacy classes for any

three maximal subgroups in T having elements of order 5 are S7, 2 × S6, 2 × S5, A6:2,

A6, A6:S3 and A8. No contributions from any of these subgroups of G because they both

do not meet the classes 2B and 5B of G.

• The subgroups arising from non-empty intersections of the conjugacy classes for any two

maximal subgroups in T having elements of order 5 are S8, 2×S6, A6:S4, A9, S7, A6:S3,

A5:S5, A6:2, S4 × S5, S5, S6 × S3, 3:S7, 2× S7, 11:5 and 4:5. Only S5 and 4:5 meet the

classes 2B and 5B of G. Although 4:5 meets the classes 2B and 5B of G, it will not have

any contributions because its relevant structure constant is zero.

By Table A.13 we have ∆G(2B, 5B, 5B) = 825. We obtained that
∑

S5
(2x, 5a, 5a) =

∆S5(2a, 5a, 5a) + ∆M5(2b, 5a, 5a) = 5 + 0 = 5 and h(5B,S5) = 5. We see that M1, M5 and

M6 (or M7) are the only maximal subgroups having their elements of orders 2 and 5 fusing

to respective classes 2B and 5B of the group G. We also obtained that
∑

M1
(2b, 5b, 5b) =

225,
∑

M5
(2x, 5y, 5z) = ∆M5(2d, 5c, 5c)+∆M5(2d, 5c, 5d)+∆M5(2d, 5d, 5d)+∆M5(2e, 5c, 5c)+

∆M5(2e, 5c, 5d) + ∆M5(2e, 5d, 5d) = 0 + 0 + 0 + 50 + 50 + 50 = 150 and
∑

M6
(2a, 5a, 5a) = 45

(or
∑

M7
(2a, 5a, 5a) = 45). We found that h(5B,M1) = 1 = h(5B,M5) and h(5B,M6) = 5

( h(5B,M7) = 5). It follows that ∆∗G(2B, 5B, 5B) ≥ ∆G(2B, 5B, 5B) −
∑

M1
(2b, 5b, 5b) −∑

M5
(2x, 5y, 5z)−5 ·

∑
M6

(2a, 5a, 5a)−5 ·
∑

M7
(2a, 5a, 5a)+5 ·

∑
S5

(2x, 5a, 5a) = 825−1(225)−

1(150)− 5(45)− 5(45) + 5(5) = 25 > 0, proving that (2B, 5B, 5B) is a generating triple for the

group G.

Proposition 5.2.4. The group G is not (2X, 5Y, 7A)-generated for all X,Y ∈ {A,B}.

Proof. If G is (2X, 5Y, 7A)-generated group, then we must have c2X + c5Y + c7A ≤ 13 for all

X,Y ∈ {A,B}. From Table 5.1 we see that c2A + c5A + c7A = 9 + 7 + 5 > 13, c2A + c5B + c7A =
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9 + 3 + 5 > 13, c2B + c5A + c7A = 7 + 7 + 5 > 13 and c2B + c5B + c7A = 7 + 3 + 5 > 13. It

follows by Ree’s Theorem that G is not (2X, 5Y, 7A)-generated for all X,Y ∈ {A,B}.

Proposition 5.2.5. The group G is

(i) not (2X, 5A, 11Y )-generated for all X,Y ∈ {A,B},

(ii) (2X, 5B, 11Y )-generated for all X,Y ∈ {A,B}.

Proof. (i) By Table A.13 we see that ∆G(2X, 5A, 11Y ) = 0 and by Lemma 2.1.3, G is not

(2X, 5A, 11Y )-generated for all X,Y ∈ {A,B} and (i) is complete.

(ii) From Table 5.2 we see that M6 (or M7) (two non-conjugate copies) is the only maximal

subgroup containing elements of orders 2, 5 and 11. As stated in Proposition 5.2.2, the non-

empty intersection of the conjugacy classes for H6 with the conjugacy classes for H7 which

has elements of order 11 is isomorphic to the group 11:5. This subgroup 11:5 of G has no

elements of order 2, as such it will not have any contributions. No element of order 2 from the

maximal subgroup M6 (or M7) fuses to the class 2A of G. By Table A.13 we then obtain that

∆∗G(2A, 5B, 11X) ≥ ∆G(2A, 5B, 11X) = 44 > 0 for X ∈ {A,B}. This proves that the group

G is (2A, 5B, 11X)-generated for X ∈ {A,B}.

We obtained that
∑

M6
(2a, 5a, 11x) = 33 and found that h(11X,M6) = 1 (or h(11X,M7) = 1).

Since by Table A.13 we have ∆G(2B, 5B, 11X) = 660, we then obtained that ∆∗G(2B, 5B, 11X) ≥

∆G(2B, 5B, 11X) −
∑

M6
(2a, 5a, 11x) −

∑
M7

(2a, 5a, 11x) = 660 − 33 − 33 = 594 > 0 for

X ∈ {A,B}. This proves that the group G is (2B, 5B, 11X)-generated for X ∈ {A,B}.
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(2, 7, r)-generations

Here we have to check the generation of G through the triples (2A, 7A, 7A)-, (2A, 7A, 11A)-,

(2A, 7A, 11B)-, (2B, 7A, 7A)-, (2B, 7A, 11A)- and (2B, 7A, 11B)-generation

Proposition 5.2.6. The group G is not (2X, 7A, 7A)-generated for X ∈ {A,B}.

Proof. We start by counting the (2A, 7A, 7A)-subgroups in A8.

Consider the following sub-chains of lattice of subgroups in A8, starting at the bottom and

gradually working our way up.

(1) L3(2) < A7 < A8 : We compute
∑∗

L3(2)
(2A, 7A, 7A) = 7,

∑
A7

(2A, 7A, 7A) = 35 and∑
A8

(2A, 7A, 7A) = 70. Since the normalizer of L3(2) in A7 is 7 we obtain that a fixed element

z ∈ 7A lies in a unique A7-conjugate copy of L3(2). As there are two non-conjugate copies of

L3(2), we have
∑∗

A7
(2A, 7A, 7A) = 35− 2(7) = 21.

(2) L3(2) < 23:L3(2) < A8 : In this case, we calculate
∑

23:L3(2)
(2A, 7A, 7A) = 14. By looking

at maximal subgroups of 23:L3(2) we observe that (23:7):3 and L3(2) (two non conjugate copies)

are the only maximal subgroups that might be (2A, 7A, 7A)-generated. As the 2A∩((23:7):3) =

∅, we obtain
∑∗

23:L3(2)
(2A, 7A, 7A) = 14 − 2(7) = 0. That is, there is no contribution from

groups 23:L3(2) and (23:7):3 to
∑

A8
(2A, 7A, 7A).

As there are three non-conjugate copies of L3(2) in A8, we obtain
∑∗

A8
(2A, 7A, 7A) =∑

A8
(2A, 7A, 7A) − 3

∑∗
L3(2)

(2A, 7A, 7A) −
∑∗

A7
(2A, 7A, 7A) = 70 − 3(7) − 21 = 28. Further,

we see that NG(A8) = 3:S8, NG(A7) = ((23:7):3) and NA11(L3(2)) = A4×L3(2). Thus, a fixed

z ∈ 7A in G is contained in three, one and two conjugates of A8, A7 and L3(2), respectively.

Since there are two non-conjugate copies of L3(2) in G. We obtain that ∆∗G(2A, 7A, 7A) ≤
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∆G(2A, 7A, 7A)−3
∑∗

A8
(2A, 7A, 7A)−4

∑∗
L3(2)

(2A, 7A, 7A)−
∑∗

A7
(2A, 7A, 7A) = 175−4(7)−

3(28) − 21 = 42 < 84 = |CG(7A)|. This shows that (2A, 7A, 7A) is not a generating triple of

A11.

By proving that G is not (2B, 7A, 7A) generated, we first compute the structure constant

∆G(2B, 7A, 7A) = 644. The only maximal subgroups of G that can potentially contribute to

the structure constant G are isomorphic to A10, S9, (A8 × 3):2 and (A7 ×A4):2. We calculate

now contribution from each these maximal subgroups to G.

First, we consider the group Σ(A7×A4):2. The 2B-class of G does not meet the group A7. We

have ΣA7 = 0. Further, as Σ(A7×A4):2 = ΣA7 we have Σ∗(A7×A4):2
= 0. This means the maximal

subgroup (A7×A4):2 does not contribute to ∆A11 .

For the group (A8×3):2, we calculate Σ(A8×3):2 = ΣA8 = 35. Up to isomorphism, A7 and

23:L3(2) (two non-conjugate copies) are the only maximal subgroups of A8. From above case,

we know that ΣA7 = 0. Next consider the subchain of groups 23:7 < (23:7):3 < 23:L3(2). We

compute that Σ∗23:7 = Σ23:7 = 7, Σ(23:7):3 = 7 = Σ23:L3(2). As |N(23:7):3(2
3:7)| = (23:7):3 =

N23:L3(2)(2
3:7), we obtain that a fixed z ∈ 7A is contained in a unique copy of each of (23:7):3-

conjugate of 23:7 and 23:L3(2) groups. Thus we obtain Σ∗(23:7):3 = Σ(23:7):3 −Σ23:7 = 7− 7 = 0

and Σ∗(23:L3(2))
= Σ23:L3(2) − Σ23:7 = 7 − 7 = 0. Observe that, the only contribution toward

ΣA8 so far is coming from a unique conjugate of 23:7. As there are two non-conjugate copies

of 23:L3(2), we compute

Σ∗A8
= ΣA8 − 2 Σ23:7 = 35− 2(7) = 21.

Next, we treat the maximal group S9. We compute ΣS9 = ΣA9.2 = ΣA9 = 154. From the

list of maximal subgroups of A9, observe that the (2B, 7A, 7A)-generated proper subgroups

of A11 are contained in the subgroups isomorphic to S7, A8 or 23:L2(8) (two non-conjugate

copies). From above, we have ΣS7 = ΣA7.2 = 0 as A7∩2B = ∅. Also Σ∗A8
= 21. We investigate
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contribution from L2(8):3 to ∆A11 . We calculate ΣL2(8):3 = ΣL2(8) = 28 and Σ∗23:7 = 7. Since

23:7 < L2(8) and a fixed element z ∈ 7A lies in two L2(8)-conjugates of 23:7, we have

Σ∗L2(8)
= ΣL2(8) − 2Σ23:7 = 28− 2(7) = 14.

We now collect the total contribution coming from A9 to G. Note that a fixed element z of order

7 (in A11) lies in two, two and four A9-conjugates of groups A8, L2(8) and 23:7, respectively.

We obtain Σ∗A9
= ΣA9 − 2 Σ∗A8

− 2 Σ∗L2(8)
− 4 Σ∗23:7 = 154− 2(28)− 2(14)− 4(7) = 56.

Finally, it remains to compute contribution from the group A10. We calculate Σ(A10) = 644.

From the list of maximal subgroups of A10, the groups that may contain (2B, 7A, 7A)-generated

proper subgroups, up to isomorphism, are A9, S8 and (A7×3):2. In fact, we have already have

contributions from these groups as ΣS8 = ΣA8.2 = ΣA8 , Σ∗A9
= 56 and Σ(A7×3):2 = ΣA7 = 0.

As, NA10(A8) = S8, NA10(L2(8)) = 3:L2(8), NA10(23:7) = (23:7) : 3 and A9 is self normalized

in A10 being maximal in A10. A fixed element z ∈ 7B is contained in three, three, six

and six A10-conjugates of groups A9, A8, L2(8) and 23:7, respectively. We calculate that

Σ∗A10
= ΣA10 − 3 Σ∗A9

− 3 Σ∗A8
− 6 Σ∗L2(8)

− 6 Σ23:7 = 357− 3(56)− 3(21)− 6(14)− 6(7) = 0.

To summarize, the only proper (2B, 7A, 7A)-subgroups of A11 are A9, A8, 23:7 and L2(8). As

the respective numbers of A11-conjugates of these subgroups containing a fixed element z ∈ 7A

are six, four, six and twelve, we obtain ∆∗G ≤ ∆A11 − 6 Σ∗A9
− 4 Σ∗A8

− 6 Σ23:7 − 12 Σ∗L2(8)
=

644 − 6(56) − 4(21) − 6(7) − 12(14) = 14 < 84 = |CA11(7A)|, which establishes that G is not

(2B, 7A, 7A)-generated.

Proposition 5.2.7. The group G is

(i) not (2A, 7A, 11X)-generated for X ∈ {A,B},

(ii) (2B, 7A, 11X)-generated for X ∈ {A,B}.

Proof. (i) Table A.13 gives that ∆G(2A, 7A, 11X) = 0 for X ∈ {A,B} and thus the result.
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(ii)None of these subgroups M11 and M6 (or M7) of G contain elements of order 7. By Table

A.13 we obtained that ∆∗G(2B, 7A, 11X) ≥ ∆G(2B, 7A, 11X) = 55 > 0 for X ∈ {A,B}. Hence

the result.

(2, 11, r)-generations

Also here we have to check for the generation of G through the triples (2A, 11A, 11A)-,

(2A, 11A, 11B)- (2A, 11B, 11B)-, (2B, 11A, 11A)-, (2B, 11A, 11B)- and (2B, 11B, 11B)-

generation. We handle all these cases in the following Proposition.

Proposition 5.2.8. The group G is (2X, 11Y, 11Z)-generated for all X,Y, Z ∈ {A,B}.

Proof. As in Proposition 5.2.5, the subgroups M6 (or M7) and 11:5 contain elements of order

11. None of these groups meet the classes 2A, 11A and 11B of G. Thus ∆∗G(2A, 11A, 11B) =

∆G(2A, 11A, 11B) = 220 > 0 and ∆∗G(2A, 11X, 11X) = ∆G(2A, 11X, 11X) = 110 > 0 for

X ∈ {A,B}. This proves that G is (2A, 11X, 11Y )-generated for X,Y ∈ {A,B}.

We obtained that
∑

M6
(2a, 11x, 11y) = 11 and we have h(11X,M6) = 1 for all x, y ∈ {a, b}. By

Table A.13 we have ∆G(2B, 11A, 11B) = 1320 and ∆G(2B, 11X, 11X) = 2145 for X ∈ {A,B}.

It renders that ∆∗G(2B, 11A, 11B) ≥ ∆G(2B, 11A, 11B)−
∑

M6
(2a, 11a, 11b)−

∑
M7

(2a, 11a, 11b)

= 1320−11−11 = 1298 > 0 and ∆∗G(2B, 11X, 11X) ≥ ∆G(2B, 11X, 11X)−
∑

M6
(2a, 11x, 11x)−∑

M7
(2a, 11x, 11x) = 2145− 11− 11 = 2123 > 0, proving that G is (2B, 11X, 11Y )-generated

for X,Y ∈ {A,B}.

100



CHAPTER 5 – The alternating group A11

5.2.2 (3, q, r)-generations

In this section we handle all the possible (3, q, r)-generations, namely (3X, 3Y, 5A)-,

(3X, 3Y, 5B)-, (3X, 3Y, 7A)-, (3X, 3Y, 11A)-, (3X, 3Y, 11B)-, (3X, 5A, 5A)-, (3X, 5A, 5B)-,

(3X, 5A, 7A)-, (3X, 5A, 11A)-, (3X, 5A, 11B)-, (3X, 5B, 5B)-, (3X, 5B, 7A)-, (3X, 5B, 11A)-,

(3X, 5B, 11B)-, (3X, 7A, 7A)-, (3X, 7A, 11A)-, (3X, 7A, 11B)-, (3X, 11A, 11A)-, (3X, 11A, 11B)-

and (3X, 11B, 11B)-generations.

(3, 3, r)-generations

Proposition 5.2.9. The group G is neither (3X, 3Y, 5Z)- nor (3X, 3Y, 7A)-generated group

for all X,Y ∈ {A,B,C} and Z ∈ {A,B}.

Proof. The group G acts on a 10-dimensional irreducible complex module V. Applying Scott’s

Theorem to the module V and using the Atlas of finite groups, we get that d3A = dim(V/CV(3A)) =

2(10−7)
3 = 2, d3B = dim(V/CV(3B)) = 2(10−4)

3 = 4, d3C = dim(V/CV(3C)) = 2(10−1)
3 = 6,

d5A = dim(V/CV(5A)) = 4(10−5)
5 = 4, d5B = dim(V/CV(5B)) = 4(10−0)

5 = 8 and d7A =

dim(V/CV(7A)) = 6(10−3)
7 = 6. For the cases (3A, 3A,nX) we get d3A + d3A + dnX =

2 × 2 + dnX < 2 × 10 and hence by Scott’s Theorem, G is not (3A, 3A,nX)-generated for

all nX ∈ {5A, 5B, 7A}. We get non-generations when Scott’s Theorem is applied to the fol-

lowing cases (3A, 3B,nX), (3A, 3C, nX), (3B, 3B,nX), (3B, 3C, nX) and (3C, 3C, nX) for all

nX ∈ {5A, 5B, 7A}.

Proposition 5.2.10. The group G is

(i) neither (3A, 3X, 11Y )- nor (3B, 3B, 11Y )-generated for X ∈ {A,B,C} and Y ∈ {A,B},

(ii) (3B, 3C, 11X)- and (3C, 3C, 11X)-generated for X ∈ {A,B}.
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Proof. (i) By Table A.14 we see that ∆G(3A, 3X, 11Y ) = 0 = ∆G(3B, 3B, 11Y ) for X ∈

{A,B,C} and Y ∈ {A,B}. Hence, G is neither (3A, 3X, 11Y )- nor (3B, 3B, 11Y )-generated

for X ∈ {A,B,C} and Y ∈ {A,B}.

(ii) Of the groups having elements of order 11 discussed above, none of them meet the classes

3B, 3C and 11A or 11B of G. By Table A.13 we then obtained that ∆∗G(3B, 3C, 11X) =

∆G(3B, 3C, 11X) = 66 > 0, proving that G is (3B, 3C, 11X)-generated for X ∈ {A,B}. Now

we prove that G is (3C, 3C, 11X)-generated for X ∈ {A,B}. By Proposition 5.2.2, we proved

that G is (2B, 3C, 11X)-generated for X ∈ {A,B}. It follows by Theorem 2.2.3 that G is

(3C, 3C, (11A)2)- and (3C, 3C, (11B)2)-generated. By GAP, we see that (11A)2 = 11B and

(11B)2 = 11A and thus G is (3C, 3C, 11X)-generated for X ∈ {A,B}.

(3, 5, r)-generations

Proposition 5.2.11. The group G is

(i) neither (3X, 5A, 5Y )- nor (3A, 5B, 5B) generated for X ∈ {A,B,C} and Y ∈ {A,B}, while

it is

(ii) (3X, 5B, 5B)-generated for X ∈ {B,C}.

Proof. (i) If G is (3X, 5A, 5Y )-generated group, then we must have c3X +c5A +c5Y ≤ 13 where

X ∈ {A,B,C} and Y ∈ {A,B}. Since by Table 5.1 we have c3X ∈ {5, 7, 9} for X ∈ {A,B,C},

we then obtain by same Table 5.1 that

c3X + c5A + c5A = c3X + 7 + 7 > 13,

c3X + c5A + c5B = c3X + 7 + 3 > 13.

Now using Ree’s Theorem, it follows that G is not (3X, 5A, 5Y )-generated for X ∈ {A,B,C}
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and Y ∈ {A,B}. Again by Table 5.1, we have c3A + c5B + c5B = 9 + 3 + 3 > 13 and by Ree’s

Theorem, the group G is not (3A, 5B, 5B)-generated.

(ii) Following the discussions in Proposition 5.2.3, the subgroups S5 and 4:5 may have contri-

butions here. We show that G is (3X, 5B, 5B)-generated for X ∈ {B,C}. We firstly consider

the triple (3B, 5B, 5B). By Table A.14 we have ∆G(3B, 5B, 5B) = 1080. We realize that none

of them will have any contributions since the elements of order 3 for both S5 and 4:5 do not

fuse to the class 3B of G. We noticed that the elements of order 5 for each the following

maximal subgroups M2, M3 and M4 do not fuse to the class 5B of G. The maximal subgroup

M6 (or M7) does not fuse to the class 3B of G. We obtained that
∑

M1
(3b, 5b, 5b) = 650

and
∑

M5
(3x, 5y, 5z) = ∆M5(3c, 5c, 5c) + ∆M5(3c, 5c, 5d) + ∆M5(3c, 5d, 5d) + ∆M5(3d, 5c, 5c) +

∆M5(3d, 5c, 5d) + ∆M5(3d, 5d, 5d) = 5 + 10 + 5 + 75 + 75 + 75 = 245. We then obtained that

∆∗G(3B, 5B, 5B) ≥ ∆G(3B, 5B, 5B) −
∑

M1
(3b, 5b, 5b) −

∑
M5

(3x, 5y, 5z) = 1080 − 1(650) −

1(245) = 185 > 0.

We turn to the other case, namely the triple (3C, 5B, 5B). In order to show that (3C, 5B, 5B)

is a generating triple of G, we consider its 10-dimensional irreducible representation over F2

(Wilson [55]). The group G = 〈a, b〉 is generated by its standard generators a and b, where

a and b are 10 × 10 matrices over F2 with orders 3 and 9, respectively such that a is in

class 3A and ab has order 11. Then via GAP, we produce c = ab3a−1b2(ba)3b3aba−1 and

d = ab−1ab2a−1b4ab−1a−1b2ab2 such that c and d are in 5B and cd ∈ 12A. Set y = c and

x = dc−1 then we see that P = 〈x, y〉 and such that x ∈ 3C, y ∈ 5B and xy ∈ 5B. Moreover,

there are elements of order 5, 7 and 11 in P . As G has no proper subgroup divisible by 5×7×11,

we have G = 〈x, y〉 = P , as claimed. Hence (ii) is complete.

Proposition 5.2.12. The group G is

(i) neither (3X, 5Y, 7A)- nor (3C, 5A, 7A)-generated for all X,Y ∈ {A,B},
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(ii) (3C, 5B, 7A)-generated.

Proof. (i) Since by Table A.14 we have ∆G(3A, 5A, 7A) = 7 < 84 = |CG(7A)| and

∆G(3A, 5B, 7A) = 0, it follows that G is not (3A, 5X, 7A)-generated for X ∈ {A,B}. By

Proposition 5.2.9 we see that d3B = 4, d3C = 6, d5A = 4, d5B = 8 and d7A = 6. Thus

d3B + d5X + d7A = 4 + d5X + 6 < 20 and d3C + d5A + d7A = 6 + 4 + 6 < 20 for X ∈ {A,B}. By

Scott’s Theorem the group G is not (3B, 5X, 7A)- and (3C, 5A, 7A)-generated for X ∈ {A,B}.

(ii) By Table A.14 we have ∆G(3C, 5B, 7A) = 5376. By Table 5.2, the maximal subgroups

having elements of order 7 are M1, M2, M3 and M4. We look at various non-empty intersections

of conjugacy classes for these maximal subgroups.

We got the following subgroups of G having elements of order 7:

• The subgroups arising from the non-empty intersections of conjugacy classes for these

four maximal subgroups are A7 and S7.

• The subgroups arising from the non-empty intersections of the conjugacy classes for any

three maximal subgroups are S7 (4-copies) and A8.

• The subgroups arising from the non-empty intersections of the conjugacy classes for any

two maximal subgroups are S7, 2× S7, A7:S3 (4-copies), S8 (3-copies) and A9.

Out of all these subgroups and maximal subgroups of G having elements of order 7, only

M1 meets the classes 3C, 5B and 7A of G. We obtained that
∑

M1
(3c, 5b, 7a) = 882 and

h(7A,M1) = 4. It then follows that ∆∗G(3C, 5B, 7A) ≥ ∆G(3C, 5B, 7A) −
∑

M1
(3c, 5b, 7a) =

5376− 4(882) = 1848 > 0, proving (ii).

Proposition 5.2.13. The group G is
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(i) not (3X, 5A, 11Y )-generated for all X,Y ∈ {A,B},

(ii) (3C, 5A, 11Y )- and (3X, 5B, 11Y )-generated for X ∈ {A,B,C} and Y ∈ {A,B}.

Proof. (i) Since c3X ∈ {7, 9} by Table 5.1, it follows that c3X + c5A + c11Y = c3X + 7 + 1 > 13

for all X,Y ∈ {A,B} and the result follows.

(ii) No element of order 5 from the maximal subgroups M6 (or M7) fuses the class 5A

of G and the subgroup 11:5 does not have elements of order 3. By Table A.14, we have

∆G(3C, 5A, 11X) = 22 for X ∈ {A,B}. Since there is no contribution from any of the sub-

groups of G, we then have ∆∗G(3C, 5A, 11X) ≥ ∆G(3C, 5A, 11X) = 22 > 0, proving that

G is (3C, 5A, 11X)-generated for X ∈ {A,B}. Similarly we have ∆G(3A, 5B, 11X) = 11

for X ∈ {A,B} and it follows that ∆∗G(3A, 5B, 11X) ≥ ∆G(3A, 5B, 11X) = 11 > 0, prov-

ing that G is (3A, 5B, 11X)-generated for X ∈ {A,B}. By the same Table A.14, we have

∆G(3B, 5B, 11X) = 704 for X ∈ {A,B}. No element of order 3 from these subgroups fuses to

the class 3B of G. Therefore we get ∆∗G(3B, 5B, 11X) ≥ ∆G(3B, 5B, 11X) = 704 > 0, proving

that G is (3B, 5B, 11X)-generated for X ∈ {A,B}.

For the other argument, the computations show that
∑

M6
(3a, 5a, 11x) = ∆M6(3a, 5a, 11a) +

∆M6(3a, 5a, 11b) = 99 + 99 = 198 and h(11X,M6) = 1. Similarly
∑

M7
(3a, 5a, 11x) = 198.

Since by Table A.14 we have ∆G(3C, 5B, 11X) = 4928, we obtain that ∆∗G(3C, 5B, 11X) ≥

∆G(3C, 5B, 11X) −
∑

M6
(3a, 5a, 11x) −

∑
M7

(3a, 5a, 11x) = 4928 − 198 − 198 = 4532 > 0 for

X ∈ {A,B}. This proves that G is (3C, 5B, 11X)-generated for X ∈ {A,B}.

(3, 7, r)- and (3, 11, r)-generations

In this subsection we discuss the cases (3, 7, r)- and (3, 11, r)-generations. This comprises

of 18 cases : (3A, 7A, 7A)-, (3A, 7A, 11A)-, (3A, 7A, 11B)-, (3B, 7A, 7A)-, (3B, 7A, 11A)-,

105



CHAPTER 5 – The alternating group A11

(3B, 7A, 11B)-, (3C, 7A, 7A)-, (3C, 7A, 11A)-, (3C, 7A, 11B)-, (3A, 11A, 11A)-, (3A, 11A, 11B)-

, (3A, 11B, 11B)-, (3B, 11A, 11A)-, (3B, 11A, 11B)-, (3B, 11B, 11B)-, (3C, 11A, 11A)-,

(3C, 11A, 11B)- and (3A, 11B, 11B)-generation.

Proposition 5.2.14. The group G is not (3X, 7A, 7A)-generated for X ∈ {A,B,C}.

Proof. This is a direct application of Ree’s Theorem, since by Table 5.1 we see that c3X ∈

{5, 7, 9}, it then follows that c3X + c7A + c7A = c3X + 5 + 5 > 13, it follows that G is not

(3X, 7A, 7A)-generated for X ∈ {A,B,C}.

Proposition 5.2.15. The group G is

(i) not (3A, 7A, 11X)-generated for X ∈ {A,B},

(ii) (3Y, 7A, 11X)-generated for X ∈ {A,B} and Y ∈ {B,C}.

Proof. (i) Since by Table A.14 we have ∆G(3A, 7A, 11X) = 0, it follows that G is not

(3A, 7A, 11X)-generated for X ∈ {A,B}. (ii) None of these groups M11 and M6 (or M7) contain

elements of order 7. Therefore

∆∗G(3B, 7A, 11X) = ∆G(3B, 7A, 11X) = 33 > 0 and ∆∗G(3C, 7A, 11X) = ∆G(3C, 7A, 11X) =

990 > 0. Hence the results.

Proposition 5.2.16. The group G is (3X, 11Y, 11Z)-generated for X ∈ {A,B,C} and Y, Z ∈

{A,B}.

Proof. None of these groups 11:5 and M6 (or M7) meet the classes 3A, 11A and 11B of

G. Then by Table A.14 we have ∆∗G(3A, 11X, 11X) = ∆G(3A, 11X, 11X) = 110 > 0 and

∆∗G(3A, 11A, 11B) = ∆G(3A, 11A, 11B) = 55, proving that G is (3A, 11X, 11Y )-generated for

all X,Y ∈ {A,B}. Again, none of these groups M11 and M6 (or M7) meet the classes 3B, 11A

and 11B ofG. Then by Table A.14 we obtained that ∆∗G(3B, 11X, 11X) = ∆G(3B, 11X, 11X) =
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3212 and ∆∗G(3B, 11A, 11B) = ∆G(3B, 11A, 11B) = 2332 > 0, proving thatG is (3B, 11X, 11Y )-

generated for all X,Y ∈ {A,B}. By Table A.14 we have ∆(3C, 11X, 11Y ) = 12760 for all

X,Y ∈ {A,B}. Two non-conjugate copies of M6 (or M7) is the only one meeting the classes

3C, 11A and 11B of G. We obtained that
∑

M6
(3a, 11a, 11b) = 22,

∑
M6

(3a, 11x, 11x) =

77 and h(11Y,M6) = 1. Similarly
∑

H7
(3a, 11a, 11b) = 22,

∑
M7

(3a, 11x, 11x) = 77 and

h(11Y,M7) = 1. Therefore ∆∗G(3C, 11A, 11B) ≥ ∆G(3C, 11A, 11B) −
∑

M6
(3a, 11a, 11b) −∑

M7
(3a, 11a, 11b) = 12760−77−77 = 12529 > 0 and ∆∗G(3C, 11X, 11X) ≥ ∆G(3C, 11X, 11X)−∑

M6
(3a, 11x, 11x) −

∑
M7

(3a, 11x, 11x) = 12760 − 22 − 22 = 12716 > 0, proving that G

is (3C, 11X, 11Y )-generated for all X,Y ∈ {A,B}. Thus, G is (3X, 11Y, 11Z)-generated for

X ∈ {A,B,C} and Y ∈ {A,B}.

5.2.3 Other results

In this section we handle all the remaining cases, namely the (5, q, r)-, (7, q, r)- and (11, q, r)-

generations.

(5, 5, r)-generations

We have to check for the generation of G through the triples (5A, 5A, 5A)-, (5A, 5A, 5B)-,

(5A, 5A, 7A)-, (5A, 5A, 11A)-, (5A, 5A, 11B)-, (5A, 5B, 5B)-, (5A, 5B, 7A)-, (5A, 5B, 11A)-,

(5A, 5B, 11B)-, (5B, 5B, 5B)-, (5B, 5B, 7A)-, (5B, 5B, 11A)- and (5A, 5A, 11B)-generation.

Proposition 5.2.17. The group G is

(i) not (5A, 5A, 5X)-generated for X ∈ {A,B},

(ii) (5X, 5B, 5B)-generated for X ∈ {A,B}.

Proof. (i) Since by Table A.15 we have that ∆G(5A, 5A, 5A) = 428 < 1800 = |CG(5A)| and
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∆G(5A, 5A, 5B) = 2 < 25 = |CG(5B)|, it follows be Lemma 2.1.3 that G is not (5A, 5A, 5X)-

generated for X ∈ {A,B}.

(ii) The subgroups S5 and 4:5 arising from the intersections discussed in Proposition 5.2.3, are

the only ones that may have contributions here. The subgroups M2, M3, M4, M6 (or M7),

S5 and 4:5 will not have any contributions because their elements of order 5 do not fuse to

the class 5A of G. The computations render
∑

M1
(5a, 5b, 5b) = 316 and

∑
M5

(5x, 5c, 5y) =

∆M5(5a, 5c, 5c) + ∆M5(5a, 5c, 5d) + ∆M5(5a, 5d, 5d) + ∆M5(5b, 5c, 5c) + ∆M5(5b, 5c, 5d) +

∆M5(5b, 5d, 5d) = 6+2+6+31+22+31 = 98. We found that h(5B,M1) = h(5B,M5) = 1. Since

by Table A.15, we have ∆G(5A, 5B, 5B) = 456, we have ∆∗G(5A, 5B, 5B) ≥ ∆G(5A, 5B, 5B)−∑
M1

(5a, 5b, 5b)−
∑

M5
(5x, 5c, 5y) = 456−316−98 = 42 > 0. This proves thatG is (5A, 5B, 5B)-

generated.

Now we prove that G is (5B, 5B, 5B)-generated. By Proposition 5.2.3 we proved that G is

(2B, 5B, 5B)-generated. It follows by Theorem 2.2.3 that G is (5B, 5B, (5B)2)-generated. By

GAP, we see that (5B)2 = 5B so that G becomes (5B, 5B, 5B)-generated as required.

Proposition 5.2.18. The group G is

(i) not (5A, 5X, 7A)-generated for X ∈ {A,B},

(ii) (5B, 5B, 7A)-generated.

Proof. (i) If G is (5A, 5X, 7A)-generated group, then we must have c5A + c5X + c7A ≤ 13

where X ∈ {A,B}. Since by Table 5.1 we have c5X ∈ {3, 7}, we then obtained by same Table

5.1 that c5A + c5X + c7A = 7 + c5X + 5 > 13 for X ∈ {A,B}. By Ree’s Theorem, G is not

(5A, 5X, 7A)-generated for X ∈ {A,B}.

(ii) By Table A.15 we have that ∆G(5B, 5B, 7A) = 32256. Out of all the subgroups of G having

elements of order 7 in Proposition 5.2.12, only M1 meets the classes 5B and 7A of the group
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G. We obtained that
∑

M1
(5b, 5b, 7a) = 3654 and h(7A,M1) = 4. We have ∆∗G(5B, 5B, 7A) ≥

∆G(5B, 5B, 7A) − 4 ·
∑

M1
(5b, 5b, 7a) = 32256 − 4(3654) = 17640 and so G is (5B, 5B, 7A)-

generated.

Proposition 5.2.19. The group G is

(i) not (5A, 5A, 11X)-generated for X ∈ {A,B},

(ii) (5X, 5B, 11Y )-generated for all X,Y ∈ {A,B}.

Proof. (i) By Table A.15 we have ∆G(5A, 5A, 11X) = 0. Hence the results follow.

(ii) As in Proposition 5.2.5, we see that two non-conjugate copies of M6 (or M7) and the group

11:5 contain elements of orders 5 and 11. None of these two groups meet the classes 5A, 5B

and 11A or 11B of G. It follows that ∆∗G(5A, 5B, 11X) = ∆G(5A, 5B, 11X) = 440 > 0, proving

that G is (5A, 5B, 11X)-generated for X ∈ {A,B}.

We now prove that G is (5B, 5B, 11X)-generated for X ∈ {A,B}. By Proposition 5.2.5, the

group G is (2X, 5B, 11Y )-generated, it follows by Theorem 2.2.3 that G is (5B, 5B, 11X)-

generated for all X,Y ∈ {A,B}.

Proposition 5.2.20. The group G is

(i) not (5A, 7A, 7A)-generated,

(ii) (5B, 7A, 7A)-generated.

Proof. (i) The group G acts on a 10-dimensional irreducible complex module V. By Scott’s

Theorem [50] applied to the module V and using the Atlas of finite groups, we get d5A +d7A +

d7A = 4 + 6 + 6 = 16 < 2× 10 and hence by Scott’s Theorem, G is not (5A, 7A, 7A)-generated.

(ii) By Table A.15 we have that ∆G(5B, 7A, 7A) = 8736. As in Proposition 5.2.18, the max-

imal subgroup M1 will have contributions here because it is the only one meeting the classes
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5B and 7A of G. We have
∑

M1
(5b, 7a, 7a) = 1974 and h(7A,M1) = 4. We then obtain

∆∗G(5B, 7A, 7A) ≥ ∆G(5B, 7A, 7A) − 4 ·
∑

M1
(5b, 7a, 7a) = 8736 − 4(1974) = 840 > 0 and

hence G is (5B, 7A, 7A)-generated group.

Proposition 5.2.21. The group G is (5X, 7A, 11Y )-generated for all X,Y ∈ {A,B}.

Proof. None of these subgroups 11:5 and M6 (or M7) meet the classes 5X, 7A and 11Y of G for

all X,Y ∈ {A,B}. Since there is no contribution from any of these subgroups of G, using Table

A.15 we will have ∆∗G(5A, 7A, 11X) = ∆G(5A, 7A, 11X) = 11 > 0 and ∆∗G(5B, 7A, 11X) =

∆G(5B, 7A, 11X) = 9504 > 0 for X ∈ {A,B}. Hence G is (5A, 7A, 11X)- and (5B, 7A, 11X)-

generated for X ∈ {A,B}.

Proposition 5.2.22. The group G is (5X, 11Y, 11Z)-generated for all X,Y, Z ∈ {A,B}.

Proof. As in Proposition 5.2.5, M6 (or M7) (two non-conjugate copies) and 11:5 are the only

groups containing elements of order 11. Since none of them meet the classes 5A, 11A and

11B of G, by Table A.15 we then obtain ∆∗G(5A, 11A, 11B) = ∆G(5A, 11A, 11B) = 1804 >

0 and ∆∗G(5A, 11X, 11X) = ∆G(5A, 11X, 11X) = 1892 > 0 for X ∈ {A,B}. Hence G is

(5A, 11A, 11B)- and (5A, 11X, 11X)-generated for X ∈ {A,B}.

By the same Table A.15, we have ∆G(5B, 11A, 11B) = 69696 and ∆G(5B, 11X, 11X) =

76032 for X ∈ {A,B}. The subgroup 11:5 of G will not have any contributions because

its relevant structure constants are all zeros. We obtained that
∑

M6
(5a, 11a, 11b) = 99 and∑

M7
(5a, 11a, 11b) = 99. We also have

∑
M6

(5a, 11x, 11x) = 198 (or
∑

M7
(5a, 11x, 11x) = 198),

h(11x,M6) = 1 (or h(11x,M7) = 1) for x ∈ {a, b}. It follows that ∆∗G(5B, 11A, 11B) ≥

∆G(5B, 11A, 11B) −
∑

M6
(5a, 11a, 11b) −

∑
M7

(5a, 11a, 11b) = 69696 − 99 − 99 = 69498 > 0

and ∆∗G(5B, 11X, 11X) ≥ ∆G(5B, 11X, 11X) −
∑

M6
(5a, 11x, 11x) −

∑
M6

(5a, 11x, 11x) =
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76032−198−198 = 75636 > 0 for X ∈ {A,B}. Hence G is (5B, 11A, 11B)- and (5B, 11X, 11X)-

generated for X ∈ {A,B}.

(7, 7, r)-generations

Proposition 5.2.23. The group G is (7A, 7A, 7A)-generated.

Proof. We start by counting the (7A, 7A, 7A)-subgroups in A8.

Consider the following sub-chains of lattice of subgroups in A8, starting at the bottom and

gradually working our way up.

(1) L3(2) < A7 < A8 : We compute
∑∗

L3(2)
(7A, 7A, 7A) = 12,

∑
A7

(7A, 7A, 7A) = 180 and∑
A8

(7A, 7A, 7A) = 1580. Since the normalizer of L3(2) in A7 is 7 we obtain that a fixed

element z ∈ 7A lies in a unique A7-conjugate copy of L3(2). As there are two non-conjugate

copies of L3(2), we have
∑∗

A7
(7A, 7A, 7A) = 180− 2(12) = 156.

(2) L3(2) < 23:L3(2) < A8 : In this case, we calculate
∑

23:L3(2)
(7A, 7A, 7A) = 96. By

looking at maximal subgroups of 23:L3(2) we observe that ((23:22):3):2 and L3(2) (two non

conjugate copies) are the only maximal subgroups that might be (2A, 7A, 7A)-generated. As

the ((23:22):3):2 do not have elements of order 7, we obtain
∑∗

23:L3(2)
(7A, 7A, 7A) = 96 −

2(12) = 72. As there are three non-conjugate copies of L3(2) and two non-conjugate copies

of 23:L3(2) in A8, we obtain
∑∗

A8
(7A, 7A, 7A) =

∑
A8

(7A, 7A, 7A) − 3
∑∗

L3(2)
(7A, 7A, 7A) −∑∗

A7
(7A, 7A, 7A) = 1580− 3(12)− 2(96) = 1352.

Further, we see that NA11(A8) = 3:S8, NA11(A7) = ((23:22):3):2 and NA11(L3(2)) = A4×L3(2).

Thus, a fixed z ∈ 7A in A11 is contained in three, one and two conjugates of A8, A7 and

L3(2), respectively. Since there are two non-conjugate copies of L3(2) in A11. We obtain
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that ∆∗A11
(7A, 7A, 7A) ≥ ∆A11(7A, 7A, 7A) − 3

∑∗
A8

(7A, 7A, 7A) − 4
∑∗

L3(2)
(7A, 7A, 7A) −∑∗

A7
(7A, 7A, 7A) = 11996−3(1580)−4(1352)−156 = 1692 > 0. This shows that (7A, 7A, 7A)

is a generating triple of A11.

Proposition 5.2.24. The group G is (7A, 7A, 11X)-generated.

Proof. By Proposition 5.2.7 we proved that G is (2B, 7A, 11X)-generated for X ∈ {A,B}. It

follows by Theorem 2.2.3 that G is (7A, 7A, (11A)2)- and (7A, 7A, (11B)2)-generated. By GAP,

we see that (11A)2 = 11B and (11B)2 = 11A so that G becomes (7A, 7A, 11X)-generated for

X ∈ {A,B}.

Proposition 5.2.25. The group G is (7A, 11X, 11Y )-generated for all X,Y ∈ {A,B}.

Proof. The subgroups M6 (or M7) (two non-conjugate copies) and 11:5 of G are the only ones

whose order is divisible by 11 and they both do not have elements of order 7. By Table A.16 we

have ∆∗G(7A, 11X, 11Y ) = ∆G(7A, 11X, 11Y ) = 29700 > 0, proving that G is (7A, 11X, 11Y )-

generated for all X,Y ∈ {A,B}.

(11, 11, r)-generations

We conclude our investigation on the (p, q, r)-generation of the alternating group A11 by con-

sidering the (11, 11, 11)-generations. Thus we will be looking at the cases (11A, 11A, 11A)-,

(11A, 11A, 11B)-, (11A, 11B, 11B)- and (11B, 11B, 11B)-generation.

Proposition 5.2.26. The group G is (11A, 11A, 11A)-, (11A, 11A, 11B)-, (11A, 11B, 11B)-

and (11B, 11B, 11B)-generated.

Proof. The cases (11A, 11A, 11A), (11A, 11A, 11B) and (11B, 11B, 11B) follow by Proposition
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5.2.8 together with the applications of Theorem 2.2.3. By Proposition 5.2.2, 11:5 and M6

(or M7) (two non-conjugate copies) are the only groups of G whose order is divisible by 11.

We have
∑

11:5(11a, 11b, 11b) = 2,
∑

M6
(11a, 11b, 11b) = 35, h(11B, 11:5) = h(11B,M6) =

1. Since by Table A.16, we have ∆G(11A, 11B, 11B) = 1476600, we then obtained that

∆∗G(11A, 11B, 11B) ≥ ∆G(11A, 11B, 11B)−
∑

M6
(11a, 11b, 11b)−

∑
M7

(11a, 11b, 11b) +∑
11:5(11a, 11b, 11b) = 1476600−35−35+2 = 1476532 > 0, proving that G is (11A, 11B, 11B)-

generated group.

5.3. The conjugacy classes ranks of A11

Now we study the ranks of G with respect to the various conjugacy classes of all its non-identity

elements. We start our investigation on the ranks of the alternating group A11 by looking at

two classes of involutions, namely 2A and 2B. Since G � D2n, it follows that the lower bound

of the rank of an involutry class of G will be 3.

Lemma 5.3.1. rank(G : 2A) /∈ {3, 4}.

Proof. Now if G is (2A, 2A, 2A,nX)-generated, then by Scott’s Theorem [50] we must have

d2A + d2A + d2A + dnX ≥ 2 × 10. However, it is clear from Table 5.1 that 3 × d2A + dnX =

3 × 2 + dnX < 20 for each nX, where nX is a set of all the non-identity classes of G and

therefore G is not (2A, 2A, 2A,nX)-generated, for any nX. We use the similar arguments to

prove that G is not (2A, 2A, 2A, 2A,nX)-generated because 4× d2A + dnX = 4× 2 + dnX < 20

for any nX ∈ T. Hence rank(G : 2A) /∈ {3, 4}.

Proposition 5.3.2. rank(G : 2A) = 5.

Proof. It was proved in Proposition 5.2.5 that the group G is (2A, 5B, 11X)-generated for

X ∈ {A,B}. Since G is (2A, 5B, 11X)-generated for X ∈ {A,B}, then by Corollary 2.2.2, we

113



CHAPTER 5 – The alternating group A11

must have rank(G : 2A) ≤ 5. Since by Lemma 5.3.1, rank(G : 2A) /∈ {3, 4}, it follows that

rank(G : 2A) = 5.

Proposition 5.3.3. rank(G : 2B) = 3.

Proof. It was proved in Proposition 5.2.2 that the group G is (2B, 3C, 11X)-generated for

X ∈ {A,B}, then by Corollary 2.2.2, we must have rank(G : 2B) ≤ 3. It then follows that

rank(G : 2B) = 3.

Proposition 5.3.4. rank(G : 3A) = 5.

Proof. Now if G is (3A, 3A, 3A,nX)-generated, then by Scott’s Theorem [50] we must have

d3A + d3A + d3A + dnX ≥ 2 × 10. However, it is clear from Table 5.1 that 3 × d3A + dnX =

3 × 2 + dnX < 20 for each non-identity class of G and therefore G is not (3A, 3A, 3A,nX)-

generated. We use similar arguments to prove that G is not (3A, 3A, 3A, 3A,nX)-generated

because 4 × d2A + dnX = 4 × 2 + dnX < 20 for any non-identity nX of G. It was proved

in Proposition 5.2.13 that the group G is (3A, 5B, 11A)-generated. By applying Lemma 2.2.1

above, it follows that G is (3A, 3A, 3A, 3A, 3A, (11A)5)-generated. Using GAP, (11A)5 = 11A

so that G becomes (3A, 3A, 3A, 3A, 3A, 11A)-generated. Since rank(G : 3A) /∈ {2, 3, 4}, it

follows that

rank(G : 3A) = 5.

Proposition 5.3.5. rank(G : 3B) = 3.

Proof. If the group G is (3B, 3B,nX)-generated then we must have c3B + c3B + nX ≤ 13

where nX is any non-identity class of G. Since by Table 5.1 we have c3B + c3B + cnX =

7 + 7 + cnX > 13, using Ree’s Theorem [49], it follows that G is not (3B, 3B,nX)-generated.
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Thus rank(G : 3B) 6= 2. It was proved in Proposition 5.2.10 that the group G is (3B, 3C, 11X)-

generated for X ∈ {A,B}. By applying Lemma 2.2.1 above, then we obtained that the group

G is (3B, 3B, 3B, (11X)3)-generated for all X ∈ {A,B}. It is easy to check with GAP that

(11A)3 = 11A and (11B)3 = 11B. Thus G becomes (3B, 3B, 3B, 11X)-generated for X ∈

{A,B}. Hence rank(G : 3B) = 3.

Proposition 5.3.6. rank(G : 3C) = 2.

Proof. It was proved in Proposition 5.2.2 that the group G is (2B, 3C, 11X)-generated for

X ∈ {A,B}, then by Corollary 2.2.4, it follows that rank(G : 3C) = 2.

Proposition 5.3.7. rank(G : 4A) = 3.

Proof. If the group G is (4A, 4A,nX)-generated then we must have c4A + c4A + cnX ≤ 13

where nX is any non-identity class of G. Since by Table 5.1 we have c3B + c3B + cnX =

7 + 7 + cnX > 13, using Ree’s Theorem [49], it follows that G is not (3B, 3B,nX)-generated.

Thus rank(G : 4A) 6= 2. We see that no maximal subgroup of G meets the classes 3C, 4A

and 11A of G. We then obtained that ∆∗G(4A, 3C, 11A) ≥ ∆G(4A, 3C, 11A) = 132 > 0, prov-

ing that G is (4A, 3C, 11A)-generated. By applying Lemma 2.2.1, we then obtain that the

group G is (4A, 4A, 4A, (11A)3)-generated. Since (11A)3 = 11A, the group G will become

(4A, 4A, 4A, 11A)-generated. Hence rank(G : 4A) = 3.

Proposition 5.3.8. rank(G : 5A) = 3.

Proof. Now if G is (5A, 5A,nX)-generated, then by Scott’s Theorem we must have d5A +

d5A + dnX ≥ 2× 10. However, it is clear from Table 5.1 that 2× d5A + dnX = 2× 4 + dnX <

20 for each nX a non-identity class of G and therefore G is not (5A, 5A,nX)-generated.

Thus rank(G : 5A) /∈ 2. We see that no maximal subgroup of G meets the classes 3C,

115



CHAPTER 5 – The alternating group A11

5A and 11A of G. We then obtained that ∆∗G(5A, 3C, 11A) ≥ ∆G(5A, 3C, 11A) = 22 >

0, proving that G is (5A, 3C, 11A)-generated. Applying Lemma 2.2.1, we obatin that the

group G is (5A, 5A, 5A, (11A)3)-generated. Since (11A)3 = 11A, the group G will become

(5A, 5A, 5A, 11A)-generated. Hence rank(G : 5A) = 3.

Proposition 5.3.9. rank(G : 6B) = 3.

Proof. Now if G is (6B, 6B,nX)-generated, then by Scott’s Theorem we must have d6B+d6B+

dnX ≥ 2 × 10. However, it is clear from Table 5.1 that 2 × d6B + dnX = 2 × 4 + dnX < 20

for each nX a non-identity class of G and therefore G is not (6B, 6B,nX)-generated. Thus

rank(G : 6B) 6= 2. We see that no maximal subgroup of G meets the classes 3C, 6B and

11A of G. We obtain that ∆∗G(6B, 3C, 11A) ≥ ∆G(3C, 6B, 11A) = 330 > 0, proving that

G is (6B, 3C, 11A)-generated. By applying Lemma 2.2.1 above, then we obtained that the

group G is (6B, 6B, 6B, (11A)3)-generated. Since (11A)3 = 11A, the group G will become

(6B, 6B, 6B, 11A)-generated. Hence rank(G : 6B) = 3.

Proposition 5.3.10. Let nX ∈ T := {4B, 4C, 5B, 6A, 6C, 6D, 6E, 7A, 8A, 9A, 10A, 11A, 11B,

12A, 12B, 12C, 14A, 15A, 15B, 20A, 21A, 21B} then rank(G : nX) = 2.

Proof. From Table 5.2 we see that M6 (or M7) (two non-conjugate copies) is the only maximal

subgroup containing elements of order 11. The non-empty intersection of conjugacy classes

in M6 with those in M7 gives us a subgroup of G which is isomorphic to 11:5. The value

of h for each contributing subgroup of G is 1. In Table 5.4, we listed we list the values

of ∆G(nX, nX, 11A), h, h
∑

M6
(nx, nx, 11a), h

∑
M7

(nx, nx, 11a), h
∑

11:5(nx, nx, 11a) and

ΘG(nX, nX, 11A). Since ∆∗G(nX, nX, 11A) ≥ ΘG(nX, nX, 11A) > 0 in Table 5.4, it follows

that G is (nX, nX, 11A)-generated where nX ∈ T. This proves that rank(G : nX) = 2 for all

nX ∈ T.
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The following Table 5.4 gives information on partial structure constants of G computed using

GAP and the relevant information required to calculate ΘG(nX, nX, 11A). We give some infor-

mation about ∆G(nX, nX, 11A), h,
∑

M6
(nx, nx, 11a),

∑
M7

(nx, nx, 11a) and
∑

11:5(nx, nx, 11a).

The last column ΘG(nX, nX, 11A) = ∆G(nX, nX, 11A)− h
∑

M6
(nx, nx, 11a)−

h
∑

M7
(nx, nx, 11a) + h

∑
11:5(nx, nx, 11a) establishes each generation of G by its triples

(nX, nX, 11A) because ∆∗G(nX, nX, 11A) ≥ ΘG(nX, nX, 11A), that is ∆∗G(nX, nX, 11A) > 0

then the group G is (nX, nX, 11A)-generated.

Table 5.4: Some information on the classes nX ∈ T

nX ΘG(nX, nX, 11A) h h
∑
M6

h
∑
M7

h
∑
11:5

ΘG(nX, nX, 11A)

4B 1320 1 77 77 - 1166

4C 2640 1 - - - 2640

5B 31680 1 297 297 22 31108

6A 55 1 - - - 55

6C 3960 1 - - - 3960

6D 8800 1 - - - 8800

6E 55220 1 154 154 - 54912

7A 825 1 - - - 825

8A 318780 1 429 429 - 317922

9A 221760 1 - - - 221760

10A 11880 1 - - - 11880

11A 147600 1 35 35 3 147533

11B 162000 1 80 80 3 161843

12A 8085 1 - - - 8085

12B 31680 1 - - - 31680

12C 139260 1 - - - 139260

14A 23265 1 - - - 23265

15A 6160 1 - - - 6160

15B 8976 1 - - - 8976

20A 44748 1 - - - 44748

21A 44880 1 - - - 44880

21B 44880 1 - - - 44880
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The rank for each conjugacy class of elements for the alternating group A11 will be summarized

as follows:

• rank(G : 2A) = rank(G : 3A) = 5, results are in Propositions 5.3.2 and 5.3.4,

• rank(G : 2B) = rank(G : 3B) = rank(G : 4A) = rank(G : 5A) = rank(G : 6B) = 3,

results are in Propositions 5.3.3, 5.3.5, 5.3.7, 5.3.8 and 5.3.9,

• rank(G : nX) = 2 if nX /∈ {1A, 2A, 2B, 3A, 3B, 4A, 5A, 6B}, results are in Propositions

5.3.6 and 5.3.10.
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Appendix

A.1 Tables of the symplectic group Sp(6, 2)

Tables A.1 to A.8 give the partial structure constants of Sp(6, 2) computed by Gap [26] that

will be used in our calculations.

Table A.1: Structure constants ∆Sp(6,2)(2A, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(2A, 2A, pX) 0 0 2 0 3 0 0 0 0

∆G(2A, 2B, pX) 0 0 1 1 0 0 0 0 0

∆G(2A, 2C, pX) 30 3 0 3 0 0 0 0 0

∆G(2A, 2D, pX) 0 12 12 3 0 0 0 0 0

∆G(2A, 3A, pX) 32 0 0 0 0 0 0 0 0

∆G(2A, 3B, pX) 0 0 0 0 0 0 0 0 0

∆G(2A, 3C, pX) 0 0 0 0 0 0 0 0 0

∆G(2A, 5A, pX) 0 0 0 0 0 0 0 0 0

∆G(2A, 7A, pX) 0 0 0 0 0 0 0 0 14

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table A.2: Structure constants ∆Sp(6,2)(2B, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(2B, 2B, pX) 0 18 8 0 0 0 3 0 0

∆G(2B, 2C, pX) 15 24 6 3 0 0 0 0 0

∆G(2B, 2D, pX) 60 0 12 15 0 0 0 0 0
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Table A.2:Continued

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(2B, 3A, pX) 0 0 0 0 0 0 0 0 0

∆G(2B, 3B, pX) 0 0 0 0 0 0 0 0 0

∆G(2B, 3C, pX) 0 128 0 0 0 0 27 0 7

∆G(2B, 5A, pX) 0 0 0 0 0 0 0 15 7

∆G(2B, 7A, pX) 0 0 0 0 0 0 108 30 70

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table A.3: Structure constants ∆Sp(6,2)(2C, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(2C, 2C, pX) 0 18 34 6 45 0 9 5 0

∆G(2C, 2D, pX) 180 36 24 21 0 0 0 0 0

∆G(2C, 3A, pX) 0 0 32 0 45 0 0 5 0

∆G(2C, 3B, pX) 0 0 0 0 0 27 0 0 0

∆G(2C, 3C, pX) 0 0 128 0 0 0 54 20 14

∆G(2C, 5A, pX) 0 0 256 0 360 0 72 140 14

∆G(2C, 7A, pX) 0 0 0 0 0 0 216 60 210

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table A.4: Structure constants ∆Sp(6,2)(2D, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(2D, 2D, pX) 180 180 84 12 180 108 36 15 7

∆G(2D, 3A, pX) 0 0 0 32 0 0 0 0 0

∆G(2D, 3B, pX) 0 0 0 64 0 0 0 0 7

∆G(2D, 3C, pX) 0 0 0 128 0 0 54 30 28

∆G(2D, 5A, pX) 0 0 0 192 0 0 108 90 98

∆G(2D, 7A, pX) 0 0 0 384 0 648 432 420 560

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table A.5: Structure constants ∆Sp(6,2)(3A, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(3A, 3A, pX) 0 0 32 0 46 0 2 5 0

∆G(3A, 3B, pX) 0 0 0 0 0 12 2 0 0

∆G(3A, 3C, pX) 0 0 0 0 40 12 20 20 7

∆G(3A, 5A, pX) 0 0 256 0 360 0 72 120 7
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Table A.5:Continued

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(3A, 7A, pX) 0 0 0 0 0 0 108 30 133

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table A.6: Structure constants ∆Sp(6,2)(3B, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(3B, 3B, pX) 0 0 64 0 40 28 20 10 7

∆G(3B, 3C, pX) 0 0 0 0 40 120 4 10 7

∆G(3B, 5A, pX) 0 0 0 0 0 216 36 30 77

∆G(3B, 7A, pX) 0 0 0 384 0 648 108 330 245

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table A.7: Structure constants ∆Sp(6,2)(3C, qY, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(3C, 3C, pX) 0 1152 768 192 400 24 500 150 203

∆G(3C, 5A, pX) 0 0 1024 384 1440 216 540 690 441

∆G(3C, 7A, pX) 0 4608 3072 1536 2160 648 3132 1890 2289

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

Table A.8: Structure constants ∆Sp(6,2)(5A, qY, rZ) and ∆Sp(6,2)(7A, 7A, rZ)

pX 2A 2B 2C 2D 3A 3B 3C 5A 7A

∆G(5A, 5A, pX) 0 2304 7168 1152 8640 648 2484 3998 1379

∆G(5A, 7A, pX) 0 4608 3072 5376 2160 7128 6804 5910 7483

∆G(7A, 7A, pX) 46080 46080 46080 30720 41040 22680 35316 32070 30595

|CG(pX)| 23040 4608 1536 384 2160 648 108 30 7

A.2 Tables of the sporadic simple group M23

Tables A.9 to A.12 give the partial structure constants ofM23 that were used in the calculations.
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Table A.9: Structure constants ∆M23(2A, qY, rZ)

pX 2A 3A 5A 7A 7B 11A 11B 23A 23B

∆G(2A, 2A, pX) 98 30 5 0 0 0 0 0 0

∆G(2A, 3A, pX) 448 180 65 35 35 11 11 0 0

∆G(2A, 5A, pX) 896 780 605 364 364 253 253 138 138

∆G(2A, 7A, pX) 0 450 390 301 462 308 308 184 184

∆G(2A, 7B, pX) 0 450 390 462 301 308 308 184 184

∆G(2A, 11A, pX) 0 180 345 392 392 341 341 391 391

∆G(2A, 11B, pX) 0 180 345 392 392 341 341 391 391

∆G(2A, 23A, pX) 0 0 90 112 112 187 187 161 230

∆G(2A, 23B, pX) 0 0 90 112 112 187 187 230 161

|CG(pX)| 688 180 15 14 14 11 11 23 23

Table A.10: Structure constants ∆M23(3A, qY, rZ)

pX 2A 3A 5A 7A 7B 11A 11B 23A 23B

∆G(3A, 3A, pX) 2688 1681 855 511 511 275 275 138 138

∆G(3A, 5A, pX) 11648 10260 6550 5124 5124 3795 3795 2438 2438

∆G(3A, 7A, pX) 6720 6570 5490 4886 4886 4136 4136 3312 3312

∆G(3A, 7B, pX) 6720 6570 5490 4886 4886 4136 4136 3312 3312

∆G(3A, 11A, pX) 2688 4500 5175 5264 5264 5126 5379 5129 5129

∆G(3A, 11B, pX) 2688 4500 5175 5264 5264 5379 5126 5129 5129

∆G(3A, 23A, pX) 0 1080 1590 2016 2016 2453 2453 3082 2714

∆G(3A, 23B, pX) 0 1080 1590 2016 2016 2453 2453 2714 3082

|CG(pX)| 688 180 15 14 14 11 11 23 23

Table A.11: Structure constants ∆M23(5A, qY, rZ) and ∆M23(7X, qY, rZ)

pX 2A 3A 5A 7A 7B 11A 11B 23A 23B

∆G(5A, 5A, pX) 108416 78600 61058 54320 54320 45287 45287 37582 37582

∆G(5A, 7A, pX) 69888 65880 58200 52584 52584 48576 48576 44160 44160

∆G(5A, 7B, pX) 69888 65880 58200 52584 52584 48576 48576 44160 44160

∆G(5A, 11A, pX) 61824 62100 61755 61824 61824 62238 61479 61893 61893

∆G(5A, 11B, pX) 61824 62100 61755 61824 61824 61479 62238 61893 61893

∆G(5A, 23A, pX) 16128 19080 24510 26880 26880 29601 29601 32706 32706

∆G(5A, 23B, pX) 16128 19080 24510 26880 26880 29601 29601 32706 32706

∆G(7A, 7A, pX) 88704 62820 56340 51948 60412 48400 48400 52992 52992

∆G(7A, 7B, pX) 57792 62820 56340 51948 51948 56496 56496 45264 45264

∆G(7A, 11A, pX) 75264 67680 66240 71904 61600 64416 64416 67712 67712

∆G(7A, 11B, pX) 75264 67680 66240 71904 61600 64416 64416 67712 67712
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Table A.11:Continued

pX 2A 3A 5A 7A 7B 11A 11B 23A 23B

∆G(7A, 23A, pX) 21504 25920 28800 27552 32256 32384 32384 32384 32384

∆G(7A, 23B, pX) 21504 25920 28800 27552 32256 32384 32384 32384 32384

∆G(7B, 7B, pX) 88704 62820 56340 60412 51948 48400 48400 52992 52992

∆G(7B, 11A, pX) 75264 67680 66240 61600 71904 64416 64416 67712 67712

∆G(7B, 11B, pX) 75264 67680 66240 61600 71904 64416 64416 67712 67712

∆G(7B, 23A, pX) 21504 25920 28800 32256 27552 32384 32384 32384 32384

∆G(7B, 23B, pX) 21504 25920 28800 32256 27552 32384 32384 32384 32384

|CG(pX)| 688 180 15 14 14 11 11 23 23

Table A.12: Structure constants ∆M23(11X, qY, rZ) and ∆M23(23X, qY, rZ)

pX 2A 3A 5A 7A 7B 11A 11B 23A 23B

∆G(11A, 11A, pX) 83328 88020 83835 81984 81984 87485 88520 81029 81029

∆G(11A, 11B, pX) 83328 83880 84870 81984 81984 87485 87485 79994 79994

∆G(11A, 23A, pX) 45696 40140 40365 41216 41216 38258 38753 42067 42067

∆G(11A, 23B, pX) 45696 40140 40365 41216 41216 38258 38753 42067 42067

∆G(11B, 11B, pX) 83328 88020 83835 81984 81984 88520 87485 81029 81029

∆G(11B, 23A, pX) 45696 40140 40365 41216 41216 38753 38258 42067 42067

∆G(11B, 23B, pX) 45696 40140 40365 41216 41216 38753 38258 42067 42067

∆G(23A, 23A, pX) 26880 21240 21330 19712 19712 20119 20119 17646 18222

∆G(23A, 23B, pX) 18816 24120 21330 19712 19712 20119 20119 17646 17646

∆G(23B, 23B, pX) 26880 21240 21330 19712 19712 20119 20119 18222 17646

|CG(pX)| 688 180 15 14 14 11 11 23 23

A.3 Tables for the alternating group A11

Tables A.13 to A.16 give the partial structure constants of A11 that were used in the calcula-

tions.

Table A.13: Structure constants ∆A11(2X, qY, rZ)

pX 2A 2B 3A 3B 3C 5A 5B 7A 11A 11B

∆G(2A, 2A, pX) 44 6 84 9 0 5 0 0 0 0

∆G(2A, 2B, pX) 105 24 0 0 0 0 0 0 0 0

∆G(2A, 3A, pX) 28 0 24 0 0 5 0 0 0 0

∆G(2A, 3B, pX) 168 0 0 39 0 30 0 14 0 0

∆G(2A, 3C, pX) 0 0 0 0 45 0 0 0 0 0
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Table A.13:Continued

pX 2A 2B 3A 3B 3C 5A 5B 7A 11A 11B

∆G(2A, 5A, pX) 56 0 168 18 0 95 0 14 0 0

∆G(2A, 5B, pX) 0 0 0 0 0 0 90 0 44 44

∆G(2A, 7A, pX) 0 0 0 180 0 300 0 175 0 0

∆G(2A, 11A, pX) 0 0 0 0 0 0 100 0 110 220

∆G(2A, 11B, pX) 0 0 0 0 0 0 100 0 220 110

∆G(2B, 2B, pX) 420 84 1260 165 54 225 25 42 0 0

∆G(2B, 3A, pX) 0 24 0 0 0 0 0 0 0 0

∆G(2B, 3B, pX) 0 176 0 180 0 0 25 28 0 0

∆G(2B, 3C, pX) 0 384 0 0 216 0 100 84 110 110

∆G(2B, 5A, pX) 0 144 0 0 0 0 0 28 0 0

∆G(2B, 5B, pX) 0 1152 0 1080 648 0 825 504 660 660

∆G(2B, 7A, pX) 0 576 0 360 162 600 150 644 55 55

∆G(2B, 11A, pX) 0 0 0 0 1620 0 1500 420 2145 1320

∆G(2B, 11B, pX) 0 0 0 0 1620 0 1500 420 1320 2145

|CG(pX)| 20160 1152 60480 1080 162 1800 25 84 11 11

Table A.14: Structure constants ∆A11(3X, qY, rZ)

pX 2A 2B 3A 3B 3C 5A 5B 7A 11A 11B

∆G(3A, 3A, pX) 8 0 25 2 0 5 0 0 0 0

∆G(3A, 3B, pX) 0 0 112 32 3 30 0 7 0 0

∆G(3A, 3C, pX) 0 0 0 20 21 0 0 0 0 0

∆G(3A, 5A, pX) 56 0 168 18 0 40 0 7 0 0

∆G(3A, 5B, pX) 0 0 0 0 0 0 30 0 11 11

∆G(3A, 7A, pX) 0 0 0 90 0 150 0 63 0 0

∆G(3A, 11A, pX) 0 0 0 0 0 0 25 0 110 55

∆G(3A, 11B, pX) 0 0 0 0 0 0 25 0 55 110

∆G(3B, 3B, pX) 728 192 1792 440 42 380 25 168 0 0

∆G(3B, 3C, pX) 0 0 1120 280 390 600 100 224 66 66

∆G(3B, 5A, pX) 336 0 1008 228 54 540 0 140 0 0

∆G(3B, 5B, pX) 0 1152 0 1080 648 0 1080 504 704 704

∆G(3B, 7A, pX) 3360 384 5040 2160 432 3000 150 1428 33 33

∆G(3B, 11A, pX) 0 0 0 0 972 0 1600 252 3212 2332

∆G(3B, 11B, pX) 0 0 0 0 972 0 1600 252 2332 3212

∆G(3C, 3C, pX) 5600 1536 7840 2600 1198 2000 900 840 660 660

∆G(3C, 5A, pX) 0 0 0 360 180 0 100 168 22 22

∆G(3C, 5B, pX) 0 4608 0 4320 5832 7200 4400 5376 4928 4928

∆G(3C, 7A, pX) 0 1152 0 2880 1620 3600 1600 3024 990 990

∆G(3C, 11A, pX) 0 11520 0 6480 9720 3600 11200 7560 12760 12760

∆G(3C, 11B, pX) 0 11520 0 6480 9720 3600 11200 7560 12760 12760

|CG(pX)| 20160 1152 60480 1080 162 1800 25 84 11 11
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Table A.15: Structure constants ∆A11(5X, qY, rZ)

pX 2A 2B 3A 3B 3C 5A 5B 7A 11A 11B

∆G(5A, 5A, pX) 1064 0 1344 324 0 428 2 112 0 0

∆G(5A, 5B, pX) 0 0 0 0 648 144 456 336 440 440

∆G(5A, 7A, pX) 3360 384 5040 1800 324 2400 100 1092 11 11

∆G(5A, 11A, pX) 0 0 0 0 324 0 1000 84 1892 1804

∆G(5A, 11B, pX) 0 0 0 0 324 0 1000 84 1804 1892

∆G(5B, 5B, pX) 72576 38016 72576 46656 28512 32832 33984 32256 31680 31680

∆G(5B, 7A, pX) 0 6912 0 6480 10368 7200 9600 8736 9504 9504

∆G(5B, 11A, pX) 80640 69120 60480 69120 72576 72000 72000 72576 76032 69696

∆G(5B, 11B, pX) 80640 69120 60480 69120 72576 72000 72000 72576 69696 76032

|CG(pX)| 20160 1152 60480 1080 162 1800 25 84 11 11

Table A.16: Structure constants ∆A11(7A, qY, rZ) and ∆A11(11X, qY, rZ)

pX 2A 2B 3A 3B 3C 5A 5B 7A 11A 11B

∆G(7A, 7A, pX) 42000 8832 45360 18360 5832 23400 2600 11996 825 825

∆G(7A, 11A, pX) 0 5760 0 3240 14580 1800 21600 6300 29700 29700

∆G(7A, 11B, pX) 0 5760 0 3240 14580 1800 21600 6300 29700 29700

∆G(11A, 11A, pX) 403200 138240 302400 228960 187920 295200 158400 226800 147600 162000

∆G(11A, 11B, pX) 201600 224640 604800 315360 187920 309600 172800 226800 147600 147600

∆G(11B, 11B, pX) 403200 138240 302400 228960 187920 295200 158400 226800 162000 147600

|CG(pX)| 20160 1152 60480 1080 162 1800 25 84 11 11
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