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Abstract

The world is under threat from the devastating effects of the contin-

ued depletion of the Ozone layer. Increased global warming is caus-

ing catastrophic ecological damage and imbalance due to accelerated

melting of glaciers, rampant runaway veld fires, widespread floods and

other extreme events. The delegates to the Cop26 Climate Change

Summit were reminded that the continued burning of fossil fuels is

releasing carbon into the atmosphere at an unprecedented pace and

scale and that the world is already in trouble. Complete substitution

of fossil fuels with clean energy sources is the only solution through

which the world can be saved from the deleterious effects of global

warming. However, total dependence on renewable energy sources

can only be possible through novel technology that enables efficient

energy utilization and conservation. For instance, the evolution of

advanced techniques in manufacturing processes has led to the re-

duction in the size of various industrial and engineering designs that

consume reduced amounts of energy. Efficient energy utilization in

thermo-fluid flow systems can be achieved through entropy generation

minimization. Entropy is a thermodynamic quantity that represents

the unavailability of a system’s thermal energy for conversion into

mechanical work.

In this study, thermodynamic analysis of reactive variable properties

third-grade fluid flow in channels with varied geometries and subjected



to different physical effects was investigated with the second law of

thermodynamics as the area of focus. Entropy generation and inher-

ent irreversibility analysis were the main focus of the study where the

sensitivities of these quantities to the embedded parameters were nu-

merically and graphically described and analysed. The semi-analytic

Adomian decomposition method, the semi-implicit finite difference

scheme and the spectral quasilinearisation method were employed to

solve the nonlinear differential equations modelling the flow systems.

The results reveal that the effects of the parameters on flow veloc-

ity, fluid temperature, entropy generation and inherent irreversibility

cannot be neglected. In particular, conditions for entropy generation

minimization were successfully established and documented.
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Chapter 1

Introduction and Basic Concepts

Chapter Abstract

In this chapter, we outline the basic concepts, important definitions applicable to

the study and other preliminary information. The problem statement, the aim

and objectives of the study as well as the research methodology and analytical

procedures are also presented in this chapter. The chapter is concluded with an

outline of the structure of the thesis.

1.1 General Introduction

Fluid mechanics is concerned with understanding, predicting, and controlling the

behaviour of a fluid. It deals with the study of fluids either in motion (fluid dy-

namics and kinematics) or at rest (fluid statics) and the subsequent effects of the

fluids upon the boundaries which may be either solid surfaces or interfaces with

other fluids [9]. Fluid mechanics has a wide range of applications in mechanical

and chemical engineering, biological systems, and astrophysics. Fluid mechanics

plays a vital role in the human body. The heart is constantly pumping blood
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to and from all parts of the human body through the arteries and veins, and

the lungs are the sites of airflow in alternating directions. Fluid statics embraces

the study of the conditions under which fluids are at rest in stable equilibrium

and is contrasted with fluid dynamics, the study of fluids flow. Fluid kinematics

deals with fluids in motion, particularly the space−time relations of velocities

and accelerations without considering forces associated with them.

A fluid is a substance that continually deforms (flows) under applied shear

stress regardless of the magnitude of the applied stress. In contrast, a solid can

resist an applied force by static deformation. Deformation is caused by shearing

forces − forces that act tangentially to the surfaces to which they are applied

[10].

Fluid dynamics is vital to almost all sciences and engineering and touches ev-

ery aspect of human daily life. Fluid dynamics impact, in a single way or another

on defence, transportation, manufacturing, environment, medicine, and energy,

among others. It is also used to predict the aerodynamic behaviour of moving ve-

hicles, the movement of biological fluids in the human body, cooling of electronic

components, and performance of micro−fluidic devices. Weather predictions are

also based on fluid dynamics. Due to the complexity of the field and the broadness

of its applications, fluid dynamics has proven to be a highly exciting and chal-

lenging subject of modem sciences. The goal for a deeper understanding of the

subject has not only inspired the development of the field itself but has also put

forward the progress in the supporting areas, like, applied mathematics, numerical

computing and experimental techniques [11]. Several technical and scientific ap-

plications include heating and flow control in metal processing, power generation

from two-phase mixtures or seeded high-temperature gases, magnetic confine-

ment of high-temperature plasmas and dynamos that create magnetic fields in

planetary bodies [12].
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Various terms have been used in reference to the broad field of electromagnetic

effects in conducting fluids. Commonly used terms include magneto−fluid−mechanics,

magneto−gas−dynamics, and magnetohydrodynamics (MHD). MHD devices have

been in use since the early part of the 20th century. For instance, an MHD pump

prototype was built as early as 1907 [13]. Heat transfer fluids such as mineral oils,

water, and ethylene glycol play a significant role in numerous industrial sectors

including power generation, chemical production, transportation, microelectron-

ics, and air conditioning [14; 15; 16; 17]. Due to unresolved high demands of

modern technology for process intensification and device miniaturization, new

types of fluids that are more effective in terms of heat exchange performance are

of more importance to be introduced.

Viscosity is the term that describes the degree of the resistance of the fluid to

shear stress. There are different categories of fluids depending on properties and

also the behavior within the same atmospheric conditions. These are as follows:

• Newtonian fluid - any fluid that obeys Newton’s law of viscosity.

• Non-Newtonian fluid - any fluid that does not obey Newton’s law of viscos-

ity.

• Real fluids - all fluids that have viscosity.

• Ideal fluid - an imaginary fluid that is assumed to have no viscosity.

In this study, the fluid of importance is the third-grade fluid which is belongs to

the class on non-Newtonian fluids.

1.1.1 Newtonian Fluid

A Newtonian fluid is best described as a fluid that exhibits a linear relationship

between the shear stress and the shear rate, that is, the shear stress between
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adjacent fluid layers is directly proportional to the value of the velocity gradient

between two layers at constant pressure and temperature [18].

The relationship is described by

τ = µ
du

dy
, (1.1)

where τ is shear stress and µ is fluid viscosity. Newtonian fluids are widely

employed in many natural and industrial applications [19; 20; 21]. Some classic

samples of fluids that show Newtonian characteristics include water, alcohol, and

gasoline [22; 23].

1.1.2 Non-Newtonian Fluid

Non-Newtonian fluids exhibit a nonlinear relationship between the shear stress

and the shear rate, as shown in Fig.1.1[1]. This type of fluid is more complex than

the Newtonian fluid. No one relation exist that can predict the characteristics

of all the non-Newtonian materials. Non-Newtonian Rheology is complex. Some

classical examples of non-Newtonian fluids include biological fluids (blood, syn-

ovial fluids, saliva), dairy products (ice cream, cheese, yoghurt), pharmaceutical

products, foodstuffs (sauces, marmalades, jam), etc. Depending on the com-

plexity and the kind of constitutive relations required to explain non-Newtonian

behaviour, non-Newtonian fluids could also be classified into four broad categories

[24].

(i) Rheopetic: Fluids that become more viscous as they are stressed over some

time. For instance, cream viscosity increases over a while.

(ii) Thixotropic: Fluids that become less viscous as they are stressed over a

while. For instance, honey viscosity decreases over a while.
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Figure 1.1: Kinds of time-independent non-Newtonian fluids (Image source: [1]).

(iii) Dilatant: These fluids become more viscous when more force is applied, as

an example, wet cement viscosity increases with the increase of stress.

(iv) Pseudoplastic: Fluids become less viscous when more force is applied, as

an example, tomato ketchup viscosity decreases with the increase of stress.

Although significant research has been done on both forms of fluids, in recent

times more attention is being directed towards non-Newtonian fluids [25].

1.1.3 Channel Flow

Channel flow signifies a vital important class of flows in fluid mechanics due to

its varied applications in biological, industrial, and engineering systems. It is

important to determine the properties of this type of flow with particular interest

in how the effects of changing viscosity modify the flow pattern. Channel flow is

an internal flow in which the confining walls change the fluid dynamic structure

of the flow from an arbitrary state at the channel inlet to a certain state at the
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outlet. Channel flow is either close or open as shown in Fig.1.2 and Fig.1.3.

Figure 1.2: Example of closed channel flow (Image source: antranik.org/blood-
vessels)

Flows in closed conduits or channels, like pipes or air ducts are completely

in contact with rigid boundaries of the conduits. Almost all closed conduits in

engineering applications are either circular or rectangular in cross-section. Open

channel flows, on the other hand, are those whose boundaries do not seem to be

entirely a solid and rigid material. The other part of the boundary of such flows

could also be another fluid or nothing at all. Examples of open channel flows

are rivers, irrigation canals, or sheets of water running across the ground surface

after a rain. However, the most important difference is that the flow in a closed

conduit is influenced by the pressure within the line, whereas flow within the

open channel is influenced only by gravity. Unlike flows within an open channel,
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Figure 1.3: Example of open channel flow(Image source: civiltoday.com)

flow within a closed conduit does not come in contact with the atmosphere.

1.2 Definition of Terms

1.2.1 Density

The density of a fluid is its mass per unit volume [26]. This property helps

the classification of fluids as either compressible or incompressible. A fluid is

termed compressible if its density varies and increases nearly proportionally to

the pressure level. Otherwise, it is termed incompressible [27]. The unit of density

is kgm−3.

1.2.2 Temperature

Temperature is a measure of the internal energy of a fluid. If the temperature

differences are strong, heat transfer may be important. The unit for temperature
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is degree Celsius (◦C).

1.2.3 Pressure

Pressure is defined as a normal force per unit area existing in the fluid [28]. The

gradient in pressure typically drives fluid flow, particularly in ducts. The unit for

pressure is Nm−2.

1.2.4 Buoyancy

The buoyancy or the upthrust is a force that is exerted by a fluid on an object,

opposing the objects weight [29]. Buoyancy force acts upwards through the centre

of gravity of the displaced volume of fluid, referred to as centre of buoyancy. When

the object has a lower density than the fluid, buoyancy force will exceed weight,

and the object will float. Otherwise, if the object is denser than the fluid, it will

sink. Buoyancy has numerous engineering applications, some of which are in the

design of boats and ships as well as in aerodynamics.

1.2.5 Internal Energy

In thermo-statics, the only energy in a substance is that which is kept in a sys-

tem by molecular activity and molecular bonding forces [28]. This is commonly

denoted as internal energy. An identified mass of viscous fluid may be seen as a

thermodynamic system that stores various forms of energy. Whenever any form

of this fluid is being deformed, it causes an irreversible transformation of mechan-

ical energy into internal or thermal energy. The internal energy of gas includes

the energies of translation, rotation, and vibration of the molecules as well as

the energy of molecular dissociation and energy of electronic excitation of the

molecules. The unit for internal energy is Jmol−1.
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1.2.6 Specific Heat Capacity

Specific heat capacity refers to the measure of the heat energy needed to extend

the temperature of one gram of a substance by one degree Celsius [28]. Specific

heat capacity is measured under two different experimental conditions. It is

measured either below constant pressure conditions or under constant volume

conditions. Typical values of particular heat capacities of gases are not a lot

completely different from those of liquids. The unit for specific heat capacity is

Jmol−1K−1.

1.2.7 Viscosity

Viscosity refers to fluid thickness. It is the resistance to the sliding motion of

one fluid layer over the other [30]. Alternatively, it is defined as a fluid property

that determines its resistance to shearing stresses [31]. For Newtonian fluids the

relationship between the shear stress and viscosity is described by the linear re-

lationship in equation (1.1) The viscosity property of fluids aids the classification

of fluids as either Newtonian or non- Newtonian fluids.
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Table 1.1: Viscosities of different materials at various temperatures

Fluid Viscosity
(mPa.s)

Temperature
(°C)

Water 1.5182 5
Water 0.89 25
SAE 10W-40 Oil 37.147 60
SAE 10W-40 Oil 15.093 90
Honey 14095 20
Honey 6303.6 26
Hydrogen 0.00084 0
Hydrogen 0.00104 100
Nitrogen 0.00189 50
Yoghourt 150 40
Shampoo 3000 20
Transformer oil 75 10
Soft cheese 30000 60
Olive oil 40 40
Water varnish 900 20
Oxygen 18.1 0
Soya bean oil 60 20

Viscosity is related to collective flows that transfer momentum from one region

of the fluid to another. Consider a fluid where there is, in addition to thermal

tension of the molecules, a collective movement or current of the whole fluid,

for example, water running in a channel under a pressure difference. Usually,

viscosity is regarded as the most important material property and any practical

study that requires the knowledge of fluid response would automatically turn

to the basic understanding of viscosity. Overall, the Newtonian model defines

the rheological behaviour of fluids. The Newtonian model is simply a special

case with constant viscosity. Accurate knowledge of viscosity is very useful for

the computation of the pressure, velocity, and temperature within the channels.

Viscosity also helps to describe the flow behaviour of shear stress concerning the

rate of deformation of the fluid.
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1.2.8 Temperature Dependent Viscosity

The impact of increasing the temperature of a fluid is to decrease the cohesive

forces, whereas at the same time increasing the rate of molecular interchange.

The former impact tends to cause a decrease in shear stress, while the latter

causes it to increase. For example, engine oil thickens appreciably on cold days

and may significantly affect the performance of cars and other machinery during

the cold periods. Table 1.1 shows the viscosities of some selected fluids at a given

temperature. Models that describe the dependence of viscosity on temperature

have been proposed, see [32; 33; 34; 35; 36]. One of the common models is the

Arrhenius-type equation, [37],

µ(T ) = µ0e
E
RT , (1.2)

where µ0 is the initial fluid dynamic viscosity, E is the activation energy, R is

the universal gas constant, and T is the fluid temperature. The other common

temperature dependent viscosity model is approximated by the Arrhenius rela-

tionship, [38],

µ = µ0e
−b(T−T0), (1.3)

where T0 is the fluid initial temperature and b is a viscosity variation parameter.

There is a wide range of practical applications in the industry for heat and mass

transfer problems for reacting fluids [39; 36; 40]. In Table 1.2 we list some of the

most commonly used temperature dependent viscosity models.
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Table 1.2: Various models of temperature dependent viscosity [7; 8]

Name Equation

Power Law µ = ( T
T0

)n

Reynolds µ = be−aT

Sutherland µ =

(
T
T0

)3/2
(T0+C)

T+C

Williams, Landel, Ferry log µ
µ0

= −C1(T−T0)
C2+T−T0

Arrhenius Type µ = µ0

(
T
T0

)n
e

(
E
RT

)

Vogel µ = ae
b

T−C

Walther µ = µ0 + bd1/T
C

1.2.9 Porous Medium

A porous medium is defined as a material that contains a solid matrix with

interconnected pores [41]. The solid material is either rigid or goes through small

deformation. The interconnected pores allow the flow of single or several fluids.

In a single system, the pore spaces of the porous medium are filled with a single

fluid (or by several fluids completely miscible with each other). In a multiphase

system, the pore spaces are filled with two or more fluids that are immiscible with

each other. Some typical examples of natural porous media are sand, limestone,

sandstone, wood, and human lungs [42].
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Figure 1.4: Different kinds of porous media (Image source: [2])

Porosity ϕ and permeability k are the most important properties of a porous

medium. Porosity is the ratio of the pore volume to the total volume (matrix

volume) [3]. The porosity of a porous medium is determined mathematically by

the following generalized relationship that is described in Fig.1.5.

ϕ =
pore volume

matrix volume
= 1− grain volume

matrix volume
,

where matrix volume = grain volume + pore volume. The permeability measures

the capacity and the ability of the fluid to flow through the porous medium. It

is a quantity that depend on the geometry of the porous medium only.
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Figure 1.5: Microscopic Image of a Porous Medium (Image source: [3])

1.2.10 First Law of Thermodynamics

The first law of thermodynamics states that energy is always conserved [43]. This

implies that energy can neither be formed nor destroyed, it just changes form.

Schetz and Fuhs [44] further state that the amount of work done by a system

equals the product of the external force acting on the system and the component

of the displacement parallel to the force. The first law of thermodynamics defines

internal energy as a state function and gives a formal statement of the conser-

vation of energy. However, it gives no information about the direction wherein

processes can occur, that is, the reversibility aspects of thermodynamic processes.

For instance, it cannot say how cells can perform work although existing in an

isothermal environment. It offers no information about the inability of any ther-

modynamic processes to transform heat into mechanical work with full efficiency,

or any perception into why mixtures cannot spontaneously separate, or unmix

themselves. An experimentally derived principle to describe the availability of

energy is necessary to do this. That is precisely the role of the second law of

thermodynamics to be defined subsequently.
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1.2.11 Second Law of Thermodynamics.

The second law of thermodynamics points to the differences in quality between

different forms of energy and describes why some processes can naturally occur,

whereas others cannot. The second law of thermodynamics states that as energy

is transferred or transformed, more and more of it is wasted [43]. It also states

that there is a natural tendency for the entropy of a closed system to increase.

Entropy generation is a thermodynamic quantity representing the unavailability

of a system’s thermal energy for conversion into mechanical work [45]. This is

often referred to as the degree of disorder or randomness in the system.

1.3 Heat Transfer

Figure 1.6: Heat transfer illustration (Image source: dreamstime.com)

Heat transfer describes the flow of heat due to temperature differences and the

subsequent temperature distribution and changes [46]. The term convective heat

transfer in engineering is used to describe the combined effects of heat conduction

and fluid flow, and is observed as a third mechanism of heat transfer. There are
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three ways in which heat is transferred in fluids, namely, conduction, convection,

and radiation. Fig. 1.6 illustrates these three forms of heat transfer.

1.3.1 Conduction

On a microscopic scale, conduction happens as hot, quickly moving, or vibrating

atoms and molecules interacting with neighbouring atoms and molecules, transfer

a variety of their energy (heat) to the neighbouring atoms [47]. Heat is always

transferred from regions of higher energy to regions of lower energy levels. This

is in accordance with the second law of thermodynamics. The rate of heat trans-

fer through conduction is a function of the temperature difference, the material

concerned, and its thickness [48]. In an insulator, the heat flux is carried nearly

entirely by phonon. The governing heat conduction equation along a body of

length (thickness) L is

q =
kA∆T

L
, (1.4)

where q is energy transferred per unit time, k is the thermal conductivity, A is

the wall area and ∆T is the temperature difference.

1.3.2 Convection

Convection refers to the mechanism of heat transfer through a fluid in the pres-

ence of bulk fluid motion. There are three types of convection, known as free

convection, forced convection, and mixed convection [49]. Irrespective of the

nature of the convection, the rate of heat transfer is given by Newton’s law of

cooling

q′′ = h(Tw − T∞), (1.5)

where q′′ is the rate at which heat is transferred, h is the convection heat transfer

coefficient, T∞ is the bulk temperature of the fluid, and Tw is the temperature of

16



the fluid at the wall.

1.3.2.1 Natural Convection/Free Convection

Natural convection is a mechanism of mass and heat transport in which the fluid

motion is generated only by density differences in the fluid occurring due to

temperature gradients, not by any external source [50]. A standard example of

natural convection is the movement of smoke from a hearth. It is seen in a pot of

boiling water within which the less dense heated water on the lowest part moves

upwards in plumes to replace the cooler and denser water at the top of the pot

that sinks, down to the bottom.

1.3.2.2 Forced Convection

Forced convection is a mechanism of transport in which fluid motion is generated

by an external source such as a fan or pump [51]. Forced convection is usually

used to increase the rate of heat exchange. Many types of mixing also utilise

forced convection to mix one substance with another. Forced convection also

appears as a by-product of other procedures, such as the action of a propeller

in fluid or aerodynamic heating. Fluid radiator systems, heating and cooling

of parts of the body by blood circulation are other familiar examples of forced

convection [52].

1.3.2.3 Mixed Convection

Mixed convection is a combination of natural convection and forced convection

[53]. In other words, mixed convection takes place when natural convection and

forced convection mechanisms act together to transfer heat. The mixed convec-

tion process occurs when the effect of the buoyancy force in forced convection or

the effect of forced flow in free convection becomes significant.
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1.3.3 Radiation

Thermal radiation is the only form of heat transfer that can occur in the absence

of any form of medium. It occurs through a vacuum. Thermal radiation is a

direct result of the movement of atoms and molecules in a material. Consider-

ing the fact that those atoms and molecules are composed of charged particles

(protons and electrons), their movement result in the emission of electromagnetic

radiation, that emits energy away from the surface. At the same time, the sur-

face is constantly attacked by radiation from the surroundings, resulting in the

transfer of energy to the surface.

1.4 Fluids of the Differential Type

Non-Newtonian fluids cannot fit right into a single constitutive version. As

such, numerous constitutive models have been proposed for different categories

of non-Newtonian fluids. The flow behavior of these fluids cannot be properly

defined based on the classical linearly viscous model. Numerous constitutive

equations that have been suggested try to characterize the deviation of relevant

non-Newtonian behavior from the classical theory. They are models that describe

the relationship between shear stress and the shear rate of non-Newtonian fluids,

namely, Bird-Carreau fluid, Power-law fluid, Carreau fluid, Couple stress fluid,

fluids of the differential type, etc. Fluids of the differential type, also known

as Rivlin-Ericksen fluids are fluids where stress is just a function of the velocity

gradient and some number of its higher time derivatives as well as constitutively

indeterminate pressure [54]. Fluids of the differential type fall into numerous

grades depending on the constitutive structure of the fluid’s Cauchy stress. Suf-

ficiently, we have fluids of differential type of first grade, second grade , third

grade, etc.
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1.4.1 First Grade Fluid

First grade fluids are taken into consideration to be Newtonian fluids. The viscos-

ity of a first grade fluid is constant and does not change with time. The Cauchy

stress tensor T for a first grade fluid is given as [54]

T = pI + µA1, (1.6)

where p denotes the pressure, I is the identity tensor, µ is the coefficient of

viscosity and A1 is a Rivlin-Ericksen tensor.

1.4.2 Second Grade Fluid

One of the most popular models for non-Newtonian fluids is referred to as the

second grade fluid. Second grade fluids are the most effective subclass due to the

fact that exact solutions can be found for their constitutive equations. Examples

of second grade fluids consist of blood, butter, starch suspension, coconut oil,

shampoo, and paints. For a second grade fluid, the Cauchy stress tensors are of

the form [55]

T = −pI + µA1 + α1A2 + α2A1
2, (1.7)

where T, p, I and µ are as defined earlier, α1 and α2 denote the elasticity and

cross-viscosity, while A1 and A2 are Rivlin-Ericksen tensors defined by

A1 = L + LT ,

A2 =
d

dt
A1 + A1L + LTA1,

(1.8)

where L is the velocity gradient,
d

dt
denotes the material derivative and the

superscript T indicates the transpose operation.
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1.4.3 Third Grade Fluid

It has been observed that second grade fluids do not show the shear thinning

and shear thickening behaviour. However, the model for third grade fluids is

capable of describing such behavior. Polymeric-paints, DNA fluids, bio-organic

solutions, and alternative synthetic materials, are examples of third grade fluids

The Cauchy stress tensor T for a third grade fluid is given as [56]

T = −P I+µA1+α1A2+α2A
2
1+β1A3+β2(A1A2+A2A1)+β3(trA2

1)A1, (1.9)

where αi, βj for i = 1, 2 and j = 1, 2, 3 are the material parameters of a third

grade fluid, tr is the trace operator, and Ai for i = 1, 2, 3 are the first three

Rivlin-Ericksen tensors defined by

A1 = (∇V ) + (∇V )T , (1.10)

An+1 =
dAn

dt
+ An(∇V ) + (∇V )TAn n = 1, 2, (1.11)

where ∇ is the gradient operator and the other terms are as previously defined.

Using the thermodynamic compatibility conditions when the fluid is locally at

rest, the Clausius-Duhem inequality holds and the assumption that the Helmholtz

free energy is a minimum at equilibrium provides the following restrictions [57]:

µ ≥ 0, α1 ≥ 0, β1 = β2 = 0, β3 ≥ 0, −
√

24µβ3 ≤ α1 + α2 ≥
√

24µβ3 (1.12)

Thus, equation (1.9) reduces to

T = µA1 + α1A2 + α2A
2
1 + β1A3. (1.13)
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1.5 Magnetohydrodynamics(MHD)

The concept of magnetohydrodynamics (MHD) was first introduced by Hannes

Alfven (1908-1995). Magneto refers to magnetic field, hydro refers to fluids, and

dynamics refers to forces and the laws of motion. MHD is the mathematical

model for the low frequency interaction that occurs between electrically conduct-

ing fluids and electromagnetic fields [58]. In other words, MHD can be described

as the study of the interaction between magnetic fields and moving, electrically

conducting fluids [59]. The synonyms of MHD are hydromagnetic and magneto

fluid dynamics. The main work of Hartmann [60] is viewed as the origin of MHD

flow in a channel. Examples of electrically conducting fluids are liquid metals

(such as mercury, gallium, molten magnesium, molten antimony, liquid sodium

etc.), and plasmas.

1.5.1 MHD Equations

The important concept behind MHD is that the interaction of a conducting fluid

and a magnetic field causes an electromotive force to develop. This will induce

electrical current with density of order σ(u × B), where σ is the electrical con-

ductivity of the fluid, B is the magnetic field intensity and u is the velocity field.

The current will induce another magnetic field that gets added to the original

magnetic field and the fluid them flows along with magnetic field lines. The com-

bined magnetic field (that is both the imposed and induced) then interacts with

the induced current density, J, giving rise to a Lorentz force, J × B [61]. The

governing equations of MHD, in differential form, are summarised as follows:
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(i) Navier-Stokes equations with Lorentz force

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u+ J ×B + ρg (1.14)

(ii) Continuity equation
∂ρ

∂t
+∇ · ρu = 0 (1.15)

(iii) Faraday’s Law

∇× E =
∂B

∂t
(1.16)

(iv) Ampere’s Law

∇× E = µmj (1.17)

(v) Ohm’s law

j = σ(U + E ×B) (1.18)

where u is the fluid velocity, p is the fluid pressure, µm is the magnetic perme-

ability, σ fluid electrical conductivity, µ is the fluid dynamic viscosity, E is the

electrical field, B is the magnetic field intensity, j is the current density, and ρ is

the fluid density.

1.5.2 Applications of MHD

The applications of MHD are very wide, they include metallurgically application,

MHD pumps, MHD propulsion, MHD generators, and MHD flow meters, etc.

1.5.2.1 MHD Flow Meter

The idea is that a conducting fluid flowing through a magnetic field produces an

electromotive force. MHD flow meter is an electromagnetic flow measurement
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method that is based on exposing a flow to a magnetic field and measuring the

force acting on the magnetic field generating system.

Figure 1.7: SmCo permanent magnet flowmeter: (a) photograph, (b) 3D drawing
[4].

1.5.2.2 MHD Pumps and Generators

MHD generator or pump is compact and simple, and has a high power density.

As such, it is notably interesting for military applications. In principle, the

relationship between MHD generator and pump is related to an electrical motor

being driven and operated like a generator [6]. MHD power generator or dynamo

is any device that transforms electric power by means of the interaction of a

moving fluid (usually an ionized gas or plasma) and a magnetic field [62]. MHD

power generators are different from traditional electric generators in that they

can function at high temperatures without moving parts.
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Figure 1.8: Principle of the MHD generator [5].

Figure 1.9: MHD pump components [6].

1.6 Entropy Generation

Entropy generation is a thermodynamic quantity representing the unavailabil-

ity of a system’s thermal energy for conversion into mechanical work. Entropy

production determines thermal machines’ performance like power plants, heat
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engines, refrigerators, heat pumps, and air conditioners. It is a measure of the

irreversibility that is related to the real processes. Entropy generation is usually a

positive quantity or zero if the process is reversible. As entropy generation takes

place, the amount of energy decreases. Thus, to preserve the quality of energy,

entropy generation within the fluid flow system should be minimised.

According to Bejan [63], the general equation for the entropy generation (EG)

per unit volume is given by

EG =
k

T 2
0

(∇T )2 +
µ

T0

Φ, (1.19)

where k is the thermal conductivity, T0 is the initial fluid temperature, T is

the absolute temperature, µ is the temperature dependent viscosity, ∇ is the

Laplacian operator, and Φ is the irreversibility ratio which is given by

Φ =
viscous dissipation irreversibility

Heat transfer irreversibility
.

The first term in equation (1.19) is the entropy generation due to heat transfer

while the second term is the viscous dissipation irreversibility.

1.7 Fluid Parameters

1.7.1 Prandtl Number

The Prandtl number (Pr) is a dimensionless number, named after the German

physicist Ludwig Prandtl (1875 - 1953), defined as the ratio of momentum dif-

fusivity to thermal diffusivity [64]. In this way, a low Prandtl number indicates

strong conductive heat transfer whereas a high Prandtl number indicates strong
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convective heat transfer. Mathematically, it can be stated as

Pr =
ν

k
, (1.20)

where ν is the kinematic viscosity and k is the thermal diffusivity.

1.7.2 Brinkman Number

The Brinkman number (Br) is a dimensionless number used to quantify the

relationship between the heat generated by dissipation and the heat exchanged

at the wall [65]. It is named after the Dutch mathematician and physicist Henri

Brinkman (1908 - 1961). It is defined as

Br =
µ3

0E

a2ρ2kRT 2
0

, (1.21)

where µ0 is the initial fluid viscosity, E is the activation energy, a is a channel

width, T0 is the initial fluid temperature, ρ is the fluid density, R is the universal

gas constant, and k is the thermal conductivity.

1.7.3 Grashoff Number

In fluid dynamics and heat transfer, Grashof number (Gr) is a dimensionless

number that approximates the ratio of the buoyancy to viscous force acting on

a fluid [66]. It is named after German engineer Franz Grashof (1826 - 1893). In

natural convection it plays the same role that is played by the Reynolds number

in forced convection. When Gr >> 1, the viscous force is negligible compared to

the buoyancy and inertial forces which means the fluid movement is high. The
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Grashof number is defined as

Gr =
ρ2gβa3RT 2

0

µ2
0E

, (1.22)

where ρ is the fluid density, g is the gravitational acceleration, β is the thermal

expansion coefficient, a is a channel width, T0 is the initial fluid temperature, R is

the universal gas constant, µ0 is the initial fluid viscosity, and E is the activation

energy.

1.7.4 Frank-Kamenetskii Number

Frank-Kamenetskii number, named after a Russian scientist, David A. Frank-

Kamenetskii (1910 - 1970), explains the thermal explosion of a homogeneous

mixture of reactants, kept inside a closed channel with constant temperature

walls [64]. The Frank-Kamenetskii parameter (λ) is given by

λ =
Q

k

E

RT 2
0

a2cαe
− E
RT0 (1.23)

where c is the concentration of the reactant, α the frequency factor and E the

energy of activation of the reaction, T0 is the initial fluid temperature, a denotes

the distance measured from the centre of the configuration and R is the universal

gas constant.

1.7.5 Darcy Number

In fluid dynamics, the Darcy number (Da) represents the relative impact of the

porosity of the porous medium versus its cross-sectional area square [67]. Darcy

number is named after French engineer Henry Darcy (1803 - 1858) and is found
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from nondimensionalizing the differential form of Darcy’s Law. It is defined as

Da =
K

a2
, (1.24)

where K is the permeability of the porous medium and a is the characteristic

length.

1.7.6 Biot Number

The Biot number (Bi ) is used in transient heat transfer calculations and provides

a simple index of the ratio of the heat transfer resistances within and at the surface

of a body. It is named after French physicist Jean-Baptiste Biot (1774-1862) [68].

The Biot number is used in unsteady state (transient) heat transfer conditions.

It is defined as

Bi =
hLc
Kb

, (1.25)

where, h is Heat transfer coefficient characteristic dimension, which is commonly

defined as the volume of the body (Vb) divided by the surface area (As) of the

body, such that Lc = Vb
As

and Kb is thermal conductivity of the body.

1.8 Problem Statement

Industrial productivity, sustainability and competitiveness are all dependent on

engineering solutions. On the other hand, engineering systems designs and per-

formance are heavily reliant on mathematical models. For instance, in almost all

thermo-fluid systems efficient energy utilization can be achieved through entropy

generation minimization, and this falls within mathematical modelling. Entropy

is a thermodynamic quantity that represents the unavailability of a systems ther-

mal energy for conversion into mechanical work. The thermo-fluid systems ef-
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ficiency is thus a function of heat irreversibilities within a flow domain under

working conditions. Thus, the second law of thermodynamics can be applied to

investigate the irreversibility regarding the entropy generation rate ([69]).

Ecological and economic systems that are responsible for the sustenance of

life are severely threatened by the ever-increasing greenhouse gas emissions that

are worsening global warming. The deleterious effects of the melting of glaciers,

runaway fires, floods and other extreme events call for urgent solutions to global

warming. The only workable solution to this global quagmire lies in the cur-

tailment of the burning of fossil fuels from which energy is derived. Thus, tech-

nologies to fast pace the replacement of fossil fuels by clean energy sources like

wind and solar systems must continue to be discovered and implemented. In this

transition then, energy conservation and efficient utilization must be priorities as

wastages will slow down the replacement processes. If ways of reducing or elim-

inating energy losses can be found, then complete dependence on clean energy

sources can be achieved and the world can be saved from imminent demise. In

particular, contemporary devices and systems are getting technologically minia-

turized for many advantages, including minimal energy consumption. One other

way to achieve efficiency, in thermo-fluid systems as pointed to earlier, is through

systems regulation to minimize entropy generation.

In this study we carry out a thermodynamic analysis of variable properties

third-grade fluid flow in channels with varied geometries and subjected to different

physical effects. The rate of entropy generation and irreversibility ratio within

the flow regions will be calculated using the second law of thermodynamics. The

response of the fluid velocity, the temperature, the entropy generation rate and

the irreversibility ratio to the various thermophysical parameters embedded in

the flow systems will be analysed to inform desirable thermal regulation criteria.
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1.9 Aim of the Study

The aim of this study is to analyse the flow and heat transfer characteristics of

hydromagnetic third-grade fluid with variable properties.

1.10 Objectives of the Study

The objectives of the study are to:

(i) Formulate the mathematical models for third-grade fluid flow with variable

properties.

(ii) Examine the combined effect of magnetic field and Joule dissipation on

the entropy generation rate in a third-grade fluid flow through a horizontal

channel with infinite parallel plates.

(iii) Investigate the inherent irreversibility in a hydromagnetic third-grade fluid

flow through a vertical channel filled with saturated porous media and asym-

metric convective boundary conditions.

(iv) Investigate the inherent irreversibility in a third-grade fluid flow through an

inclined channel filled with saturated porous media and exposed to constant

heat flux and convective boundary conditions.

(v) Simulate and describe the variation of important thermophysical parame-

ters embedded in the flow systems on the fluid velocity, temperature distri-

bution, entropy generation rate and irreversibility ratio.
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1.11 Computational Approach

For nonlinear equations, numerical solutions are of specific interest because of the

fact that analytical solutions might not exist in closed form. In this study, we

will use analytical techniques and / or numerical methods to solve the modelling

equations. The partial differential equations which will be formulated are coupled

and nonlinear. We describe the methods that we anticipate to employ.

1.11.1 Adomian Decomposition Method

The Adomian decomposition method (ADM) was developed by George Adomian

in 1980’s. It is a semi-analytic approximation technique that achieves rapidly con-

vergent series solution with minimal volume of computational work. It achieves

solutions without any discretisation, linearization or any restrictive assumption

and is mostly free from round-off errors. ADM does not require an initial guess.

One other advantage of ADM is that it may be coded in symbolic computer pack-

age for successive iteration of the computation ensuring that human error is fully

eliminated. Linearization bears the chance of losing the physical meaning of the

problem.

Consider the generalized nonlinear differential equation of the form

Ly +Ry +Ny = g, (1.26)

where L is the highest order differential operator which is invertible, R is a

linear differential operator, N is the nonlinear operator and g is an inhomogeneous

source term. Apply L−1 on both sides of equation (1.26) to obtain

y = h− L−1(Ry)− L−1(Ny), (1.27)
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where h represents the terms coming from integrating the source term g.

Generally

L =
dn

dxn
(.) (1.28)

for the nth order ordinary differential equations, and thus its inverse L−1 follows

as the nth order definite integration operator from 0 to x. The decomposition

method represnts the solution y(x, t) as a series of the form,

y(x, t) =
∞∑
n=o

yn(x, t). (1.29)

The nonlinear term Ny is decomposed as

Ny =
∞∑
n=o

An, (1.30)

where An’s are the Adomian polynomials generated for each nonlinearity, and are

obtained from the formula

An =
1

n!

dn

dtn

(
N

n∑
i=0

tiyi

)
t=0

, n = 0, 1, 2, 3, 4 . . . (1.31)

Substituting equations (1.28), (1.29) and (1.30) into equation (1.27),

∞∑
n=o

yn(x, t) = y0 − L−1R
∞∑
n=o

un − L−1N
∞∑
n=o

An. (1.32)

The zeroth component is written as

y0 = h (1.33)
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and the recursive relation is

y1 = −L−1(Ry0)− L−1(A0),

y2 = −L−1(Ry1)− L−1(A1),

y3 = −L−1(Ry2)− L−1(A2),

y4 = −L−1(Ry3)− L−1(A3),

...

yn+1 = −L−1(Ryn)− L−1(An).

(1.34)

We write the first four Adomian polynomials as

A0 = N(y0)

A1 = y1N
′(y0)

A2 = y2N
′(y0) +

1

2!
y2

1N
′′(y0)

A3 = y3N
′(y0) + y1y2N

′′(y0) +
1

3!
y3

1N
′′′(y0)

...

The solution for the n− term approximation is

φn =
n−1∑
i=0

yi, (1.35)

where

y(x, t) = lim
n→∞

φn(x, t) =
∞∑
i=0

yi(x, t). (1.36)

1.11.2 Finite Difference Method

The finite difference method (FDM) is a numerical approximate method for solv-

ing partial differential equations by geometry for which analytical solutions may
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not exist. It can be applied to solve a wide range of problems. The problems

include linear and non-linear, dependent and time-dependent problems. The

FDM can be useful to problems with different boundary shapes, different kinds

of boundary conditions, and for a region containing several different materials.

We follow [61].

1.11.2.1 Numerical differential of functions of a single variable

Let y = y(x) and ∆x = h. Using the Taylor series expansion around the point

x = x0, and ignoring higher order terms (since they vanish to 0), we obtain the

following finite difference aproximations:

• The forward difference approximation

y′i =
1

h
(yi+1 − yi) + O(h2). (1.37)

• The backward difference approximation

y′i =
1

h
(yi − yi−1) + O(h2). (1.38)

• The central difference approximation

y′i =
1

2h
(yi+1 − yi−1) + O(h3). (1.39)

• The second derivative

y′i =
1

h2
(yi+1 − 2yi + yi−1) + O(h3). (1.40)
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1.11.2.2 Functions of two variables

Let u = u(x, t), where (x, t) belongs to some two dimensional area. Expansion in

Taylor series around a point (i, j) results in the following approximations:

• The central difference approximations for the two first order partial deriva-

tives

(ux)i,j =
1

2∆x
(ui+1,j − ui−1,j) + O(∆x3), (1.41)

(ut)i,j =
1

2∆t
(ui+1,j − ui−1,j) + O(δt3). (1.42)

• The approximation for the second order partial derivatives

(uxx)i,j =
1

2∆x2
(ui+1,j − 2ui,j + ui−1,j) + O(∆x3), (1.43)

(utt)i,j =
1

2∆t2
(ui+1,j − 2ui,j + ui−1,j) + O(δt3). (1.44)

The equations that govern the flow are going to be resolved numerically using the

FDM. In this study, we rely on MAPLE to simulate solutions of the nonlinear

partial differential equations that govern our flow system.

1.11.3 Spectral Quasi-linearisation Method

Bellman and Kalaba [70] where the first to introduce the quasi-linearisation

method (QLM) as a generalization of the Newton-Raphson method to provide

lower and upper bound solutions of nonlinear differential equations. The advan-

tage of quasi-linearisation is that the algorithm is straightforward to understand

and also typically converges quickly if the initial guess is close to the actual

solution. Maleknejad and Najafi [71] developed the first proof of quadratic con-

vergence to restrictive conditions of little step size and convexity or concavity of

nonlinear functions. These conditions were afterwards relaxed and the technique
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was also generalised to be applied to a wider category of problems, see for exam-

ple the papers by Mandelzweig [72; 73] and Lakshmikantham [74]. Tuffuor and

Labadie [75] noted that the disadvantage of quasi-linearisation is the instability of

the method whenever a poor initial guess is chosen. To develop the accuracy and

convergence of the quasi-linearisation method for all initial guesses, Motsa and

Sibanda [76] introduced the QLM algorithm at intervals of the spectral method

to get a sequence of integration schemes within higher-order convergence. This

method gives excellent results in terms convergence and accuracy of solutions.

Motsa et al. [77] used the SQLM successfully to solve nonlinear equations that

govern the fluid flows in bounded domains.

1.11.3.1 Quasi-linearisation

Consider a system of nth order nonlinear differential equations of the form

G(y(x)) = 0, x ∈ [a, b], (1.45)

subject to given boundary conditions. If we expand equation (1.45) in Taylor

series about

f(x) =

(
f(x),

df(x)

dx
, . . . ,

dn−1f(x)

dxn−1
,
dnf(x)

dxn

)
, (1.46)

and rearranging terms upon neglecting higher order terms in equation (1.45) we

get

∇G(f) · y = ∇G(f) · f− G(f), (1.47)

which is a linear differential equation in y. If we replace f and y with ap-

proximations yr and yr+1 of y at r and r + 1 iteration levels respectively, we
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get

∇G(yr(x)) · yr+1(x) = ∇G(yr(x)) · yr(x)− G(yr(x)), (1.48)

which expands to

n∑
k=0

dkyr+1

dxk
∂G(yr)

∂y
(k)
r

=
n∑
k=0

dkyr
dxk

∂G(yr)

∂y
(k)
r

− G(yr), r = 0, 1, 2, 3, 4, . . . (1.49)

Provided y0(r) is known, solving equation (1.49) for each r = 0, 1, 2, 3, 4, . . .

yields a sequence

{y1(x), y2(x), y3(x) . . . }, (1.50)

of approximations to actual solution y(x) of a system of differential equations

(1.45). We expect that yr(x)→ y(x) as r →∞ at each x ∈ [a, b]. The basic idea

behind SQLM is the introduction of a Chebyshev differenatial matrix which is

used to approximate the deivatives of the unknown variables at the collocation

points as the matrix vector.

1.11.3.2 Chebyshev Differenatial

It is convenient to use the linear transformation

x(η) =
1− η

2
a+

1 + η

2
b, −1 ≤ η ≤ 1, (1.51)
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to migrate from the physical domain [a, b] on the x-axis to the computational

domain [−1, 1] on the η-axis. Consequently, equation (1.49) becomes

n∑
k=0

dkyr+1(η)

dηk

(
2

b− a

)k
∂G(yr)

∂y
(k)
r

=
n∑
k=0

dkyr(η)

dηk

(
2

b− a

)k
∂G(yr)

∂y
(k)
r

− G(yr(η)),

r = 0, 1, 2, 3, 4, . . .

(1.52)

We let

−1 = ηN < ηN−1 < · · · < η1 < η0 = 1

where ηi = cos(πi
N

) with i = 0, 1, 2, 3, 4, . . . , N are Gauss-Lobatto collocation

points. We approximate the derivatives of the unknown y(η) at the collocation

points using the formula

dp

dηp
yr(ηi) =

N∑
j=0

[Dp]ijyr(ηj), i = 0, 1, 2, 3, 4, . . . , N, (1.53)

where the (N + 1) × (N + 1) matrix D is called the Chebyshev differential

matrix given by the following theorem [78].

Theorem 1.11.1 For each N ≥ 1, let the rows and columns of each (N + 1)×

(N + 1) Chebyshev spectral differention matrix DN be indexed from 0 to N . The

entries of the matrix are:

(DNN)00 =
2N2 + 1

6
, (DN)NN = −2N2 + 1

6
,

(DNN)ij =
−xj

2(1− x2
j)
, j = 1, 2, . . . , N − 1,

(DN)ij =
cj(−1)i+j

cj(xi − xj)
, i 6= j, j = 1, 2, . . . , N − 1,

where
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ci =

 2, i = 0 or N,

0 otherwise

This process is called Chebyshev differentiation.

Evaluating equation (1.52) at η = ηi, (i = 0, 1, 2, 3, 4, . . . , N) and applying for-

mula (1.53) gives the linear system

[
bn,rD

n + bn−1,rD
n−1 + ...+ b1,rD + b0,rI

]
yr+1 = Rr, (1.54)

where

bn,r = diag{bn,r(η0), bn,r(η1), bn,r(η2), . . . , bn,r(ηN)}

=


bn,r(η0)

. . .

bn,r(ηN)

 ,

is an (N + 1)× (N + 1) diagonal matrix,

yr+1 = [yr+1(η0), yr+1(η1), yr+1(η2), . . . , yr+1(ηE)]T ,

I is (N + 1)× (N + 1) identity matrix,

and

Rr =
[
bn,rD

n + bn−1,rD
n−1 + ...+ b1,rD + b0,rI

]
yr − F (yr),

is a residual error. We can write equation (1.54) as

Ayr+1 = Rr (1.55)

where

A = bn,rD
n + bn−1,rD

n−1 + ...+ b1,rD + b0,rI
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Note that before we solve the linear system (1.55), we need to specify initial guess

y0(η). We choose it so that it satisfies the boundary conditions as prescribed.

1.12 Thesis Outline

The organization of the thesis is as follows:

Chapter One

In chapter one, the focus is on the introduction and the basic concepts of fluid

mechanics. We defined and elaborated the most important terminology and ex-

pressions used in the study. The problem statement, the aim and objectives of

the study, and the research methodology are also presented in this chapter.

Chapter Two

In this chapter, we present the literature review, motivation of the study and

significance of the study.

Chapter Three

In this chapter, we investigate combined effects of applied transverse magnetic

field, variable linear viscosity and thermal conductivity on the entropy generation

rate in a steady third-grade fluid flow in a horizontal channel with infinite parallel

plates. Objectives (i), (ii) and (v) are achieved in this chapter.

Chapter Four

In this chapter, a steady incompressible reactive third grade fluid flow in an

inclined channel filled with porous media with Navier-slip and convective bound-
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ary conditions is investigated. The numerical solution is obtained using SQLM.

Specific research objectives (i), (iv) and (v) are achieved in this chapter.

Chapter Five

This chapter investigates combined effects of magnetic field, buoyancy, porous

media, variable viscosity and asymmetric convective boundary conditions on en-

tropy generation in an unsteady incompressible third-grade fluid flow with vari-

able properties. Objectives (i), (ii) and (v) are achieved in this chapter.

Chapter Six

General discussion, conclusions, recommendations and envisaged future work are

presented in chapter six.
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Chapter 2

Literature Review

Chapter Abstract

An overarching literature review, a statement of motivation for the study and the

significance of the study are presented in this chapter.

2.1 Literature Review

In recent times, studies related to the flow of electrically conducting fluid have

attracted the attention of many researchers due to its numerous applications in

thermal sciences, engineering and technology. For instance, Abro and Khan [79]

investigated the double convection MHD flow of a Casson fluid using the Fabrizio

Caputo derivatives. Khan et al. [80] introduced the new chemical reaction model

in MHD using the Homotopy analysis method. Their results show that the veloc-

ity distribution decreases for higher estimation of magnetic parameter whereas

the temperature distribution increases. Ramandevi et al. [81] studied the MHD

flow and heat transfer of two distinct non-Newtonian fluids using the Cattaneo

Christov heat flux model. Ullah et al. [82] investigated the impact of slip condi-
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tion on MHD free convective flow of non-Newtonian fluid over a stretching sheet

saturated in a porous medium.

In all the studies cited above and indeed in most other related studies, vari-

ations of some important fluid properties with temperature were neglected. In

reality, fluid thermal conductivity and viscosity are very sensitive to temperature

changes, and more accurate and useful results could be obtained by taking these

variations into consideration. For instance, it is well known that the viscosity of

engine oil decreases by 24 times when the fluid temperature is increased from 200

C to 800 C, the viscosity of water reduces by 2.7 times and the viscosity of air

drops by 1.4 times in the same temperature range. Based on these facts, several

studies have been conducted on fluid flow and heat transfer by taking variable

fluid properties into consideration. Alam et al. [83] examined the impact of vari-

able fluid properties and thermophoresis on unsteady forced convective permeable

stretching/shrinking boundary layer. Mosayebidorcheh et al. [84] studied the hy-

brid approach to unsteady Couette flow and heat transfer. Siddiga et al. [85]

analyzed the variable parameters for the natural convection flow along a vertical

wavy cone in a thermally radiating fluid via the finite difference method. Latif

et al. [86] studied the impact of temperature-dependent viscosity on MHD third

order peristaltic fluid flow in a channel. Rashidi et al. [87] studied the convective

non-Newtonian third grade fluid flow over a linearly stretching sheet. Imtiaz et al.

[88] investigated third-grade fluid flow with Cattaneo Christov heat flux. Hayat

et al. [89] analyzed MHD mixed convection flow of a third grade fluid over an

exponentially stretching sheet.

Meanwhile, entropy generation minimization is important as it informs ther-

momechanical designs that have optimal energy utilization efficiency. In such

designs, as thermal energy is converted into useful mechanical work, irreversibil-

ities that result in loss of energy are minimized. For this reason, the research
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community has continued focus on inherent irreversibility analysis on thermo-

fluid flows. Such studies are important as they have a direct desirable impact

on contemporary technology and modernity. For instance, the transition from

reliance on energy derived from fossil fuels to clean energy sources like wind and

solar power requires technology that conserves and optimizes energy utilization.

If this is not done, cleaner energy sources may not be able to sustain the worlds

energy demand. On the other hand, continued increased burning of fossil fuels is

releasing carbon into the atmosphere at a rate that has reached unprecedented

levels. Because of the exacerbation of global warming, the world is witnessing

the melting of glaciers, uncontrolled runaway fires, devastating floods and other

extreme events that are negatively impacting on natural and artificial ecosystems

from which life depends on.

Through the advancement of technology in industrial and manufacturing pro-

cesses, we are witnessing increased miniaturization of devices and processes that

require less energy to power them. For thermo-fluid flow systems, entropy gen-

eration minimization, as already referred to, also helps in optimizing the use of

energy. Entropy generation in a third-grade fluid flow with variable properties was

studied by Adesanya [90]. Adesanya and Falade [91] analyzed the entropy gen-

eration rate of MHD third grade fluid flow and heat transfer between horizontal

parallel plates saturated with porous materials. Kareem et al. [92] investigated

the magnetic field and Ohmic heating effects on the entropy generation rate of

couple stress fluid flow through a porous channel. Mansour et al. [93] studied en-

tropy generation analysis for unsteady MHD Casson fluid flow and heat transfer

over a stretching sheet.

Inherent irreversibility analysis and entropy generation studies in thermo-fluid

flow systems with variable properties have not been fully exhausted. As men-

tioned, studies have tended to concentrate on unrealistic assumptions of constant
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fluid properties. This study contributes to ongoing scientific debates and litera-

ture on inherent irreversibility analysis and entropy generation in non-Newtonian

fluid flows by investigating third grade fluid flow in channels of varied configu-

rations subjected to various physical effects. On the one hand, we analyse the

combined effects of buoyancy, porous media, Navier slip, constant heat flux and

convective boundary conditions on entropy generation and irreversibility ratio in

a steady incompressible flow of third grade fluid in an inclined channel. On the

other hand we carry out a thermodynamic analysis on a steady MHD third-grade

fluid flow with variable properties in a horizontal channel with infinite parallel

plates. Combined effects of an applied transverse magnetic field and variable

linear viscosity and thermal conductivity on entropy generation and irreversibil-

ity are investigated. On the third modification, combined effects of buoyancy,

porous media, variable viscosity, magnetic field and convective boundary condi-

tions are investigated in an unsteady flow of the same working fluid in a vertical

channel filled with saturated porous media. Succinct analysis of the effects of the

embedded thermophysical parameters on the flow variables, entropy generation

and irreversibility ratio will be carried out with the aid of a graphical approach,

quantitative and qualitative descriptions. The analysis may influence parameter

regulation criteria that are useful for designs that optimize energy consumption.

The relationships in the problems to be studied in the following chapters

are clear, and the problems are deliberately formulated as such to constitute a

smooth flowing study. The inclusion of one non-MHD problem is so that MHD

effects can be compared and contrasted with non-MHD effects. Each problem

is preceded by an introduction that carries a focused literature review directly

related to that problem. In this way, a comprehensive systematic study of each

problem is achieved.
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2.2 Motivation for the Study

While several numerical methods can be applied to solve nonlinear ordinary and

partial differential equations, in this study ADM, FDM and SQLM were chosen

because of their desirable attributes that have been documented in the previous

chapter. It is only through the application of the methods that refinement of

solution techniques can be achieved. This is a significant part of the focus of

researchers because ultimately it is efficient numerical methods that give rise to

reliable solutions. The focus on non-Newtonian fluid is informed by the fact that

non-Newtonian fluids dominate industrial applications. The novelty of this study

mainly stems from the realistic assumptions of fluid variable properties. Exam-

ples of industrial fluid flow systems with engineering relevance and on which MHD

analysis is applicable are a flow of molten steel, iron ore, volcanic eruptions, com-

bustible fluids, crude oil at refineries and much more. The significance of Lorentz

forces in a moving fluid coupled with the magnetic field is well documented [94].

For instance, this phenomenon is encountered in the following industrial appli-

cations: MHD generators, pumps, cooling of nuclear reactors, geothermal energy

extractors, thermal insulators, nuclear waste disposal, heat exchangers, petroleum

and polymer technology, and heat transfers involving metallurgical processes and

many more. With such wide applications, our proposed study is justifiable. Fur-

ther motivation stems from the contemporary energy dynamics that we cited in

the literature survey. A survey of literature revealed that the scope of our study

herein has not been fully accounted for in the previous models.

2.3 Significance of the Study

There is a growing demand for economical and maintainable systems across the

globe. Most industrial and engineering flow processes and thermal systems are
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unable to work at an optimal level due to entropy generation. The determina-

tion of entropy generation (EG) is thus extremely vital for upgrading the system

performance since EG is the measure of the destruction of accessible work of the

system. Through our research study, the factors (or parameters) that contribute

to entropy generation can be identified so that their effects can be minimized

through intelligent regulation and that the flow system efficiency can be max-

imised. Moreover, with the global technological advancements on non-Newtonian

fluids, the results from the study will help in improving, conserving and upgrading

several designs in industrial thermo-fluid systems.
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Chapter 3

Thermodynamic Analysis of

Magnetohydrodynamic Third

Grade Fluid Flow with Variable

Properties

Chapter Abstract

In this chapter we computationally study entropy generation in a MHD third grade

fluid flow in a horizontal channel with impermeable walls. The fluids viscosity and

thermal conductivity are assumed to be dependent on temperature. The flow is

driven by an applied uniform axial pressure gradient between infinite parallel plates

and is considered to be incompressible, steady and fully developed. ADM is used

to obtain series solutions of the nonlinear governing equations. Thermodynamic

analysis is done by computing the entropy generation rate and the irreversibility

ratio (Bejan number). The effects of the various pertinent embedded parameters

on the velocity field, temperature field, entropy generation rate and Bejan number
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are analysed through vivid graphical manipulations. The analysis shows that an

appropriate combination of thermophysical parameters efficiently achieves entropy

generation minimization in the thermomechanical system.The analysis shows that

entropy generation minimization is achieved by increasing the magnetic field and

the third grade material parameters, and therefore designs and processes incor-

porating MHD third grade fluid flow systems are far more likely to give optimum

and efficient performance.

3.1 Introduction

Behavioural features and characteristics of industrial fluids such as hydrocarbon

oils, synthetic esters, polyphenylethers, oil and greases, clay coating and suspen-

sions, paper products, some food stuffs and slurries cannot be modelled by the

classical Navier-Stokes constitutive model [95; 96; 97; 98] . These fluids belong

to a larger class of non-Newtonian fluids whose complex rheological properties

cannot be adequately described by any single constitutive model. They find a

diversity of applications in geothermal engineering, petrochemical engineering,

lubricants, polymer technology, pharmaceutical applications and many others.

This, and their inherent complexity is stimulus to the apparent interest of re-

searchers in the sphere of non-Newtonian fluid flow. One model that describes

non-Newtonian character is the fluids of the differential type that was observed

to have the ability to represent shear thickening and shear thinning properties

of such fluids. The third grade fluid model that is under consideration herein is

an example of the fluids of the differential type. In [99] and [100], the mechan-

ics of the fluids of the differential type are described in detail. To date, several

investigations on third grade fluid flow in varied flow configurations and condi-

tions have been carried out. Makinde et al. [98] examined thermal effects in an
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unsteady flow of a reactive variable viscosity third grade fluid in porous satu-

rated medium with asymmetrical convective boundary conditions. Rundora and

Makinde [101; 102] investigated the effects of suction/injection and the effects

of Navier slip, respectively, on the same type of flow as in [98]. An increase in

the suction/injection Reynolds number was observed to retard the velocity and

temperature fields, increase the wall shear stress, diminish the wall heat transfer

rate and increase the thermal criticality values of the Frank-Kamenetskii param-

eter. On the other hand, increasing the slip parameters was observed to enhance

heat production in the reactive flow. More recently, Chinyoka and Makinde [103]

investigated the unsteady, non-isothermal, pressure driven channel flow of a vari-

able viscosity third grade liquid subjected to convective cooling. Other recent

studies are in [104; 105; 106; 107].

Meanwhile analysis of electrically conducting fluids in channels in the presence

of externally applied magnetic field has also dominated the research landscape.

This is owing to pertinent applications of such flows in thermo-electrical systems

like heat exchangers, cooling of electronic devices, electromagnetic processing

of materials, metal purification and astrophysics applications [108]. When an

external magnetic field is imposed onto a moving electrically conducting fluid,

current is induced into the fluid, which in turn polarizes the fluid and a drag-like

force (Lorentz force) is formed. This MHD phenomenon, following the ground

breaking work of Hartmann [60], has contributed to research that continues to

improve technological advancement. Hayat et al. [109] studied Soret and Dufour

effects on MHD flow of a Cason fluid. Unsteady MHD Poiseuille flow between

two infinite parallel plates in an inclined magnetic field with heat transfer was

investigated by Idowu and Olabode [110]. Bolarin et al. [111] investigated the

natural convection of a one-dimensional heat generation and viscous dissipation

model of a MHD third grade fluid in an inclined cylindrical pipe with radiation.
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Other recent MHD investigations are in [112] and [113].

Apart from heat and mass transfer, it is beneficial to optimize the efficiency

of thermal devices, thermomechanical systems and processes. This is achieved

through entropy generation minimization. Entropy is a thermodynamic quantity

representing the unavailability of a systems thermal energy for conversion into

mechanical work, often interpreted as the degree of disorder or randomness in the

system [114]. Flow and heat transfer processes inevitably undergo changes over

time due to energy loses, and such changes are irreversible. This, in a nutshell,

is the second law of thermodynamics. Since these changes (processes) increase

entropy, entropy generation rate is thus a standard metric used to study the irre-

versibility effects [115; 116]. In this way, the work lost, usually due to heat trans-

fer, viscous dissipation and conduction, is determined by entropy generation [117].

In a parametric study, a combination of geometrical and physical parameters must

be chosen in order to minimize entropy generation. Pursuit, by researchers, for

entropy generation minimization conditions in devices and processes is ongoing.

Ibáñez [118] studied the combined effects of hydrodynamic slip, magnetic field,

suction/injection and convective boundary conditions on the global entropy gen-

eration in steady flow of an incompressible electrically conducting fluid through

a channel with permeable plates. The results indicated that an appropriate com-

bination of geometrical and physical parameters in the system achieves entropy

generation minimization. Adesanya and Falade [91] investigated entropy gener-

ation rate in the flow and heat transfer of hydromagnetic third grade fluid in a

horizontal channel saturated with porous materials. They obtained their solution

using a regular perturbation method. Eegunjobi and Makinde [119] investigated

the combined effects of buoyancy and Navier slip on the entropy generation rate

in a vertical porous channel with wall suction/injection. Entropy generation anal-

ysis for a reactive couple stress fluid flow through a channel saturated with porous
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materials was carried out by Adesanya [120]. Analysis of entropy generation for

MHD flow of third grade nanofluid over a nonlinear stretching surface embedded

in a porous medium was investigated by Hayat et al. [121]. Ijaz Khan et al.

[122] studied entropy optimization in MHD flow of a third grade nanofluid with

viscous dissipation and chemical reaction.

To date, only a few authors have investigated third grade fluid flow with

variable fluid properties. For instance, constant fluid viscosity and thermal con-

ductivity is a simplification that may produce results that may be divorced from

reality. It is a practical reality that viscosity and thermal conductivity are affected

by fluid temperature. Flow models where fluid viscosity and thermal conductiv-

ity are dependent on temperature can adequately mimic real life models. In

the studies [98; 101; 102] referred to earlier, the third grade fluid viscosity was

assumed to vary exponentially with temperature. There are not many studies

on entropy generation for third grade fluid with variable properties. Adesanya

[90] studied the entropy generation rate in a third grade fluid with viscosity and

thermal conductivity depending linearly on temperature. The present study is a

computational analysis of entropy generation in an MHD third grade fluid where

the fluid viscosity and thermal conductivity have a linear dependence on fluid

temperature as in [90]. To the best of the author’s knowledge, combined effects

of magnetic field, variable linear viscosity and thermal conductivity on third grade

fluid flow has not been studied. In the sections to follow we present the physics

of the problem, entropy generation analysis, the Adomian decomposition method

of solution (ADM) and results and discussion of the results.
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3.2 Mathematical Model Formulation

We consider a steady fully developed flow of an incompressible third-grade fluid

in a channel with infinite plates placed at y=-h and y=h as shown in Fig. 3.1.

The fluid is assumed to have variable viscosity and thermal conductivity.

Figure 3.1: Schematic diagram of the problem

We further assume that the fluid is reactive and internal heat generation of the

fluid is a linear function of temperature. The independent variables x’, y’ and h

denote the horizontal distance along the plates, the vertical distance and the half

of the channel width, respectively. The plates are considered to be impermeable

and the no-slip condition applies at the plates. A uniform transverse magnetic

field B0 is imposed externally onto the channel plates. Following [123] and [124],

the momentum and energy balance equations for the fully developed flow can be

written as
du′

dx′
+
dv′

dy′
= 0 (3.1)

0 = −dP
dx′

+
d

dy′

(
µ′(T )

du′

dy′

)
+ 6β3

d2u′

dy′2

(
du′

dy′

)2

− σeB2
0u
′, (3.2)

0 =
d

dy′

(
k′(T )

dT

dy′

)
+µ′(T )

(
du′

dy′

)2

+2β3

(
du′

dy′

)4

+Q0(T −T0)+σeB
2
0u
′2, (3.3)
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with appropriate boundary conditions

u′ = 0, T = T0, on y′ = ±h,
du′

dy′
= 0,

dT

dy′
= 0, on y′ = 0.

(3.4)

The temperature dependent viscosity and thermal conductivity take the form [90]

µ′(T ) = µ− η0(T − T0),

k′(T ) = k + η1(T − T0),
(3.5)

where P is the fluid pressure, u′ is the fluid velocity, T is the fluid temperature,

β3 is the material coefficient, k′ is the thermal conductivity, µ′ is the dynamic

viscosity, η0, η1 are the viscosity and thermal conductivity variation parameters,

Q0 is the heat generated internally, σe is the electrical conductivity, B0 is the

magnectic field, T0 and T1 are the referenced fluid temperatures. Here, we intro-

duce the following dimensionless variables, wherein the prime letters designate

the dimensional physical quantities and the lowercase letters as the corresponding

non-dimensional quantities:

x =
x′

h
, y =

y′

h
, u =

u′

U
, v =

v′

U
, γ =

β3U
2

h2µ
, θ =

T − T0

T1 − T0

, α =
η0(T1 − T0)

µ
,

Ω =
T1 − T0

T0

, G = − h2

µU

dP

dx
, δ =

Q0h
2

k
,Br =

µU2

k(T1 − T0)
, λ =

η1(T1 − T0)

k
,

H2 =
σeB

2
0h

2

µ
,

(3.6)

where α is a viscosity variation parameter, γ is the third grade material parame-

ter, G is the pressure gradient, θ is the dimensionless fluid temperature, λ is the

thermal conductivity variation parameter, Br is the Brinkman number, H2 is the
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Hartman number, δ is the internal heat generation parameter, Ω is the param-

eter that measures the temperature difference between the two heat reservoiors,

and U represents characteristic velocity. The following non-dimensional nonlinear

equations arise:
du

dx
+
dv

dy
= 0, (3.7)

d2u

dy2
= α

(
θ
d2u

dy2
+
dθ

dy

du

dy

)
− 6γ

d2u

dy2

(
du

dy

)2

+H2u−G, (3.8)

d2θ

dy2
= −λ

(
θ
d2θ

dy2
+

(
dθ

dy

)2
)
−Br

(
dθ

dy

)2
(

1− αθ + 2λ

(
du

dy

)2
)
−δθ−BrH

2u2.

(3.9)

The related boundary conditions of the governing equations with dimensionless

variables are expressed as

u = 0 on y = ±1,

θ = 0 on y = ±1.
(3.10)

3.3 Entropy Generation Analysis

As stated earlier, in a thermomechanical system of the nature studied herein,

energy loses due to entropy generation arising from heat transfer and viscous

dissipation are inevitable. Entropy generation minimization should thus be an

important objective of the study, since it is through this that the efficiency of the

thermodynamic system is enhanced. Consequently, the local volumetric rate of

entropy generation for a viscous incompressible conducting third grade fluid in

the presence of magnetic field will be expressed as [125]:

EG =
k′

T 2
0

(
dT

dy′

)2

+
1

T0

(
du′

dy′

)2
(
µ′ + 2β3

(
du′

dy′

)2
)

+
σeB

2
0u
′2

T0

. (3.11)
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Here,

N ′H =
k′

T 2
0

(
dT

dy′

)2

is irreversibility due to heat transfer,

N ′F =
1

T0

(
du′

dy′

)2
(
µ′ + 2β3

(
du′

dy′

)2
)

is entropy generation from viscous dissipation for a third grade fluid and

N ′M =
σeB

2
0u
′2

T0

is local entropy generation owing to the effect of the externally applied mag-

netic field. Using the non-dimensional variables in equation (3.6) and the non-

dimensional entropy generation rate, Ns, defined as

Ns =
T 2

0 h
2EG

k(T1 − T0)2
,

the non-dimensional form of the entropy generation rate (equation (3.11)) be-

comes

Ns = (1 + λθ)

(
dθ

dy

)2

+
Br

Ω

[(
du

dy

)2(
1− αθ + 2γ

(
du

dy
)2

)
+H2u2

)]
. (3.12)

The corresponding components of equation (3.12) are NH-entropy generation due

to heat transfer, NF -entropy generation due to fluid friction and NM -entropy
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generation due to magnetic field, and they are given by:

NH = (1 + λθ)

(
dθ

dy

)2

,

NF =
Br

Ω

(
du

dy

)2
(

1− αθ + 2γ

(
du

dy

)2
)
,

NM =
Br

Ω

(
H2u2

)
.

(3.13)

The irreversibility ratio parameter denoted by the Bejan number (Be) can be

written as [115; 116]:

Be =
entropy generation due to heat transfer

entropy generation rate

=
NH

NS

=
NH

NH +NF +NM

=
1

1 + Φ
,

Φ =
NF +NM

NH

3.4 Adomian Decomposition Method of Solu-

tion

ADM consists of splitting the equation into linear and nonlinear parts.Writing

equation (3.8) and (3.9) in integral form and imposing initial conditions yields:

u(y) = a0 −
∫ y

0

∫ y

0

GdY dY +

∫ y

0

∫ y

0

α

(
θ
d2u

dY 2
+
dθ

dY

du

dY

)
dY dY

−
∫ y

0

∫ y

0

6γ
d2u

dY 2

(
du

dY

)2

dY dY +

∫ y

0

∫ y

0

H2udY dY,

(3.14)
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θ(y) = b0 −
∫ y

0

∫ y

0

λ

(
θ
d2θ

dY 2
+

(
dθ

dY

)2
)
dY dY −

∫ y

0

∫ y

0

δθdY dY −
∫ y

0

∫ y

0

BrH
2u2dY dY

−
∫ y

0

∫ y

0

Br

(
dθ

dY

)2
(

1− αθ + 2γ

(
du

dY

)2
)
dY dY,

(3.15)

where the constants a0 and b0 are to be determined later. The decomposition

method represents the solutions of equation (3.14) and (3.15) as a series form

[126]:

u(y) =
∞∑
n=0

un,

θ(y) =
∞∑
n=0

θn,

(3.16)

where the components un(y),n≥0 and θn(y),n≥0 are determined recursively. Sub-

stituting equation (3.16) into equation (3.14) and (3.15) yields the following al-

gorithm,

un = a0−
∫ y

0

∫ y

0

GdY dY+

∫ y

0

∫ y

0

αAndY dY−
∫ y

0

∫ y

0

6γBndY dY+

∫ y

0

∫ y

0

H2undY dY,

(3.17)

θn = b0 −
∫ y

0

∫ y

0

λCndY dY −
∫ y

0

∫ y

0

BrDn (1− αθ + 2γFn) dY dY −
∫ y

0

∫ y

0

δθdY dY

−
∫ y

0

∫ y

0

BrH
2IndY dY,

(3.18)
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where An, Bn, Cn, Dn, Fn and In are the nonlinear terms represented by,

An = θ
d2u

dY 2
+
dθ

dY

du

dY
,

Bn = 6γ
d2u

dY 2

(
du

dY

)2

,

Cn = θn
d2θn
dy2

+

(
dθn
dy

)2

,

Dn =

(
dθn
dy

)2

,

Fn =

(
d un
dy

)2

,

In = (un)2.

(3.19)

Equations (3.17) and (3.18) can be expressed recursively as:

u0 = a0 −
∫ y

0

∫ y

0

GdY dY,

un+1 =

∫ y

0

∫ y

0

(
αAn − 6γBn +H2un

)
dY dY,

(3.20)

θ0 = b0,

θn+1 =

∫ y

0

∫ y

0

(−λCn −BrDn (1− αθ + 2γFn)− δθ −BrH
2In)dY dY.

(3.21)

The nonlinear terms in (3.17) and (3.18) are decomposed into Adomian polyno-

mials as follows:

A0 = θ0
d2u0

dy2
− dθ0

dy

du0

dy

A1 = θ0
d2u1

dy2
+ θ1

d2u0

dy2
−
(
dθ0

dy

du1

dy
+
dθ1

dy

du0

dy

)
A2 = θ0

d2u2

dy2
+ θ1

d2u1

dy2
+ θ2

d2u0

dy2
−
(
dθ0

dy

du2

dy
+
dθ1

dy

du1

dy
+
dθ2

dy

du0

dy

)
...


(3.22)
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B0 =
d2u0

dy2

(
du0

dy

)2

B1 = 2
d2u0

dy2

du1

dy

du0

dy
+
d2u1

dy2

(
du0

dy

)2

B2 = 2
d2u0

dy2

du2

dy

du0

dy
+
d2u0

dy2

(
du1

dy

)2

+ 2
d2u1

dy2

du1

dy

du0

dy
+
d2u2

dy2

(
du0

dy

)2

...


(3.23)

C0 = θ0
d2θ0

dy2
+

(
dθ0

dy

)2

C1 = θ0
d2θ1

dy2
+ θ1

d2θ0

dy2

C2 = θ0
d2θ2

dy2
+ θ2

d2θ0

dy2
+

(
dθ1

dy

)2

...


(3.24)

D0 =

(
dθ0

dy

)2

D1 = 2
dθ0

dy

dθ1

dy

D2 =
dθ0

dy

dθ2

dy
+

(
dθ1

dy

)2

...


(3.25)

F0 =

(
du0

dy

)2

F1 = 2
du0

dy

du1

dy

F2 =
du0

dy

du2

dy
+

(
du1

dy

)2

...


(3.26)

I0 = u2
0

I1 = 2u0u1

I=2u0u2 + u2
1

...


(3.27)
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By truncating the solutions, we have the approximate solutions as:

u(y) =
m∑
n=0

un, (3.28)

θ(y) =
m∑
n=0

θn. (3.29)

3.5 Validation of Results

In the absence of magnetic field (B0 = 0), the results obtained are consistent with

the results reported by Adesanya [90].

3.6 Results and Discussion

In the ensuing discussion, we study the hydromagnetic third grade fluid flow in

a horizontal channel with impermeable walls. The fully developed flow is driven

by an applied uniform axial pressure gradient. A succinct theoretical analysis of

the effects of the thermophysical parameters on the flow velocity and temperature

field is carried out with the aid of vivid graphical simulations. The influence of the

embedded parameters on entropy generation is also analysed similarly. Unless a

parameter is being varied, we employ the default values: α = 0.1, γ = 0.1, G = 1,

λ = 0.1, Br = 0.5, H2 = 0.1, δ = 0.5, and Ω = 1.

3.6.1 Velocity Profiles

Figures 3.2 to 3.6 show the response of the fluid velocity profile to changes in

the values of the pertinent parameters embedded in the flow system. In Fig.3.2

the velocity profile is observed to increase with an increase in the variable vis-
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cosity parameter. This phenomenon is explained by the fact that as the variable

viscosity parameter α increases, the fluid viscosity decreases and the fluids resis-

tance to flow is diminished. An increase in the third grade material parameter

γ significantly decreases the velocity profile (Fig.3.3). Increasing γ means that

the non-Newtonian properties of the fluid are enhanced and the fluid gets thick-

ened in the processes. The thickened fluid inevitably has increased resistance to

flow. The effects of the magnetic field on the fluid velocity profiles is displayed

in Fig.3.4. As pointed out earlier, the magnetic field induces current that polar-

izes the fluid and a drag-like force (Lorentz force) is formed. This force tends to

agglomerate the fluid particles making them heavier leading to reduced velocity

as depicted in the figure. The Brinkmann number, Br = µU2

k(T1−T0)
, is a measure of

heat flux from the channel plates to the viscous fluid. It is the ratio between heat

produced by the viscous dissipation and heat transported by molecular conduc-

tion from the plates. Higher values of the Brinkmann number therefore signify

slower conduction of heat produced by viscous dissipation and hence the larger

the temperature rise. As the fluid temperature rises, the fluid viscosity decreases

and the fluid particles are thus freer to move faster. This explains the increasing

velocity profile (Fig.3.5) with an increase in the Brinkmann number. In Fig.3.6,

an increase in the pressure gradient parameter leads to an increase in the fluid

velocity. This is indeed not surprising since the fluid motion is driven by pres-

sure gradient. The fluid velocity profile is largely unaltered by the internal heat

generation parameter σ and the thermal conductivity variation parameter, λ.

These parameters only enter the velocity equation implicitly through the tem-

perature field and thus their effects on the fluid velocity are expected to be not

as noticeable as those on the temperature profile.
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Figure 3.2: Variation of the velocity profile with the variable viscosity parameter

Figure 3.3: Variation of the velocity profile with the third grade material param-
eter
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Figure 3.4: Variation of the velocity profile with the magnetic field parameter

Figure 3.5: Variation of the velocity profile with the Brinkmann number
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Figure 3.6: Variation of the velocity profile with the pressure gradient parameter

3.6.2 Temperature Profiles

Figure 3.7 shows that an increase in variable viscosity parameter α increases the

fluid temperature due to rise in the temperature difference. As explained earlier,

the variable viscosity parameter increases the fluid velocity. Now, the increased

velocity in turn increases the viscous heating source terms in the energy equa-

tion resulting in increased temperature. The effect of the third grade material

parameter γ on the fluid temperature is illustrated in Fig.3.8 and shows a sig-

nificant decrease of temperature with increasing values of the parameter. This

can be explained by the coupling effect since the fluid velocity was also seen to

decrease with the increasing non-Newtonian parameter. In Fig.3.9 and Fig.3.10,

the internal heat generation parameter δ and the Hartmann number are observed

to significantly increase the fluid temperature. The phenomenon in Fig.3.9 is not

surprising as increasing δ means that more heat is being generated in the bulk

of the fluid. In Fig.3.10, larger values of the Hartmann number correspond to
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an increase in the drag-like Lorentz force (resistive force) that has already been

referred to. This force is caused by the current that the magnetic field induces

into the conducting fluid and the passage of current produces heat through Joule

heating (Ohmic heating), also known as resistive heating. It is thus inevitable

that the fluid temperature rises with increasing magnitude of the magnetic field.

In Fig.3.11, higher values of the Brinkmann number causes significant increase in

the fluid temperature. This phenomenon has already been explained in attempt

to describe the variation seen in Fig.3.5 under section 3.6.1 In Fig.3.12 an increase

in the pressure gradient parameter increases the fluid temperature as it does to

fluid velocity. The fluid temperature profile was also observed to be marginally

decreased by an increase in the thermal conductivity variation parameter .

Figure 3.7: Effects of the variable viscosity parameter on fluid temperature
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Figure 3.8: Effects of the third grade material parameter on fluid temperature

Figure 3.9: Effects of the internal heat generation parameter on fluid temperature
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Figure 3.10: Effects of the magnectic field on fluid temperature

Figure 3.11: Effects of the Brinkmann number on fluid temperature
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Figure 3.12: Effects of the pressure gradient parameter on fluid temperature

3.6.3 Entropy Generation Profile

Figures 3.13 to 3.16 illustrate the variation of the entropy generation rate pro-

file as influenced by increasing values of the Brinkmann number, the Hartmann

number, the third grade material parameter and the pressure gradient parameter.

Fig.3.13 shows the entropy generation rate increasing with increasing values of

the Brinkmann number. In Fig.3.14, as we move closer to the walls of the channel

(0.4 ≤| y |≤ 1), the entropy generation rate decreases with increasing intensity

of the magnetic field. Closer to the centre of the channel, as the magnetic field

intensity increases, the entropy generation rate initially increases before stabiliz-

ing. This phenomenon can be explained by the fact that the externally applied

magnetic field damps the fluid flow more closer to the channel walls than at the

core region. In this way, the entropy generation rate closer to the channel walls

is bound to be mostly diminished near the walls than at the channel core region

where fluid velocity is maximum. Increasing the values of the third grade ma-
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terial parameter (non-Newtonian parameter) diminishes the entropy generation

rate within the channel (see Fig.3.15), while in Fig.3.16 the effect of the pres-

sure gradient parameter almost mirrors that of the Brinkmann number. It was

also observed that the internal heat generation parameter has a marginal effect

on entropy generation and both the thermal conductivity variation parameter

and the variable viscosity parameter showed no influence on the rate of entropy

generation

Figure 3.13: Effects of the Brinkmann number on entropy generation rate
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Figure 3.14: Effects of the Hartmann number on entropy generation rate

Figure 3.15: Effects of the third grade material parameter on entropy generation
rate
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Figure 3.16: Effects of the pressure gradient parameter on entropy generation
rate

3.6.4 Bejan Number Profile

The Bejan number profile in response to the various parameters is displayed in

Figures 3.17 to 3.21. What comes out prominently within the figures is the

observation that the irreversibility ratio at the centre of the channel is stable at

value Be=0. This shows that at the centre of the channel the irreversibilities due

to fluid friction effects and magnetic field dominate. Elsewhere within the channel

and towards the channel walls, the figures show that heat transfer irreversibilities

are dorminant. Figs. 3.17, 3.18, 3.19 and 3.21 show the dominance effects of

heat transfer irreversibility increasing with increasing values of the Brinkmann

number, the Hartmann number, the internal heat generation parameter and the

pressure gradient parameter respectively. In Fig.3.20 the third grade material

parameter has the opposite effect. The irreversibility ratio was also observed to

be marginally affected by variable viscosity parameter.
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Figure 3.17: Effects of the Brinkmann number on irreversibility ratio

Figure 3.18: Effects of the Hartmann number on irreversibility ratio
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Figure 3.19: Effects of the internal heat generation parameter on irreversibility
ratio

Figure 3.20: Effects of the third grade material parameter on irreversibility ratio
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Figure 3.21: Effects of the pressure gradient parameter on irreversibility ratio

3.7 Conclusion

In this chapter, a computational study of entropy generation in a fully developed

incompressible variable properties MHD third grade fluid flow in a horizontal

channel with impermeable walls has been achieved. The Adomian decomposition

method was used to compute series solutions of the fluid velocity and temper-

ature profiles. The influence of the various parameters embedded in the flow

system on the velocity, temperature, entropy generation rate and Bejan number

were analysed through the use of graphical simulations. The following findings

manifested:

• The fluid velocity profile is enhanced by the viscosity variation parameter

and Brinkmann number, while the third grade material parameter and the

magnetic field have a flow dampening effect.

• The viscosity variation parameter, the internal heat generation parameter,
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the magnetic field and the Brinkmann number increase fluid temperature

but the third grade material parameter has the opposite effect.

• Towards the channel walls, the magnetic field reduces the entropy genera-

tion rate, while at the centre of the channel it increases it before stabilizing.

• The Brinkmann number increases the entropy generation rate, while the

third grade material parameter has a diminishing effect.

• At the center of the channel, the irreversibility ratio is stable at value Be=0

signifying dominance of irreversibilities due to fluid friction effects and mag-

netic field. Towards the channel walls heat transfer irreversibilities domi-

nate.

• The Brinkmann number, the magnetic field and the internal heat generation

parameter increase the dominance effect of the heat transfer irreversibility

but the third grade material parameter has the opposite effect.

• Since entropy generation minimization is achieved by increasing the mag-

netic field and the third grade material parameters, designs and processes

incorporating MHD third grade fluid flow systems are far more likely to

give optimum and efficient performance.
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Chapter 4

Entropy Generation Analysis in a

Steady Flow of a Reactive

Variable Viscosity Third Grade

Fluid Through a Porous

Saturated Medium with

Navier-Slip and Convective

Boundary Conditions

Chapter Abstract

This chapter investigates the combined effects of Navier slip, convective bound-

ary conditions, porous medium permeability and variable viscosity on a reactive

third-grade fluid flow through an inclined channel filled with a saturated porous
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medium. The flow is assumed to be driven by combined effects of an applied axial

constant pressure gradient and buoyancy. The lower plate is subjected to convec-

tive heat exchange with the ambient while the upper plate is kept at a constant

heat flux. We employ the SQLM to numerically solve the coupled nonlinear flow

governing equations. Fluid velocity and temperature profiles, entropy generation

rate and irreversibility ratio are computed graphically and analysed quantitatively

and qualitatively regarding the effects of the parameters embedded in the flow sys-

tem. A residual error analysis demonstrated high accuracy and convergence of the

numerical method. The results on flow velocity and temperature distribution, en-

tropy generation rate and Bejan number revealed fascinating manifestations that

have profound implications in designing of thermomechanical systems. In parti-

cular, the results on entropy generation and irreversibility ratio computations are

pertinent to optimal designs of systems that achieve efficient energy utilization.

4.1 Introduction

In recent years, many researchers have paid renewed interest and attention to

the flow of reactive fluids because of the evolution of advanced techniques in

manufacturing processes, which has led to the reduction in the size of various

industrial and engineering designs. In particular, energy transfer and variable

viscosity property of a fluid have been of vast interest among researchers [98;

127; 128; 129; 130; 131; 132; 133]. Industrial and technological applications are

found in areas such as atmospheric flows, thermal regulation, cooling of electronic

devices, nuclear reactors, thermal hydraulics and many others. Flow devices that

involve the manipulation of fluid flow in various geometries have proliferated

owing to improvements in science and technological innovation.

Meanwhile, entropy generation minimization in thermo-fluid flows is critically
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important in improving efficiency of machines and processes. Bejan [115] de-

fines entropy as a thermodynamic quantity that represents the unavailability of a

systems thermal energy for conversion into mechanical work. Efficient energy uti-

lization during the convection in any fluid flow system is one of the fundamental

problems in engineering. In the industry, issues like productivity, sustainability

and competitiveness require engineering solutions, and such solutions are heavily

reliant on mathematical models. Modern economies are being urged to curtail

their energy dependence on fossil fuels in order to mitigate the continuous deple-

tion of the ozone layer that is causing the acceleration of global warming. The

deleterious consequences of global warming like runaway fires, rising sea levels

and melting of glaciers are occurring at unsustainable rates in the present day.

As more clean renewable energy forms are being sought to replace fossil fuels, it

has become more and more urgent for economic systems to conserve more and

more energy for continued sustainability. Thus, the need for continued research

on entropy generation minimization cannot be over-emphasized.

The problem of the slip flow regime is very important in this era of modern

science and rapid industrialization. In many practical applications, the fluid

adjacent to a solid surface does not take the velocity of the surface. The fluid

at the surface has a finite tangential velocity, it slips along the surface. The

assumption of the no-slip boundary condition has been the norm in most studies

despite the fact that the no-slip boundary condition is a hypothesis rather than a

condition deduced from any principle. Evidences of slip of a fluid on a solid surface

were reported by several authors including Mathews and Hill [134] and Zhu and

Granick [135]. Rundora and Makinde [102; 136] reported on the computational

effects of Navier slip on unsteady flow of a reactive variable viscosity third-grade

fluid through a porous saturated medium with asymmetric convective boundary

conditions. Das et al. [137] studied the combined effects of magnetic field, Navier
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slip and convective cooling on the entropy generation in an unsteady MHD flow

through a channel. This chapter aims to investigate the combined effects of Navier

slip, variable viscosity, porous medium permeability and convective boundary

conditions on entropy generation in a steady flow of a reactive third-grade fluid

through an inclined channel filled with a porous saturated medium.

4.2 Mathematical Formulation

Consider a steady flow of an incompressible variable viscosity, reactive third grade

fluid through an inclined channel filled with a homogeneous and isotropic porous

medium as shown in Fig.4.1

Figure 4.1: Schematic diagram of the problem

The lower wall of the channel is subjected to convective heat exchange with

the surrounding medium, while the upper wall is subjected to a constant heat

flux. It is assumed that the convective heat exchange with the ambient follows

Newton’s law of cooling. The flow is assumed to be induced by an applied axial

constant pressure gradient and buoyancy force. Neglecting the reacting viscous

fluid consumption, the model equations emanating from the momentum and heat
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balance can be written as [138; 139; 102]:

0 = −dP̄
dx̄

+
d

dȳ

(
µ̄(T )

dū

dȳ

)
+6β3

d2ū

dȳ2

(
dū

dȳ

)2

− µ̄(T )ū

K
+ρgβ(T−T0)sin(ω), (4.1)

0 = k
d2T

dȳ2
+

(
dū

dȳ

)2
[
µ̄(T ) + 2β3

(
dū

dȳ

)2
]

+
µ̄(T )ū2

K
+QC0A

(
hT

vl

)m
e
−
E

RT ,

(4.2)

with appropriate boundary conditions

ȳ = −a : λ1ū = µ̄(T )
dū

dȳ
, −kdT

dȳ
= h1[T − T0],

ȳ = a : λ2ū = µ̄(T )
dū

dȳ
, −kdT

dȳ
= qw.

(4.3)

P̄ is the modified fluid pressure, x̄ and ȳ are the axial and normal coordinates

to the inclined channel, ū is the fluid velocity, h1 is the heat transfer coefficient

at the lower plate, T0 is the fluid initial temperature, T is the fluid tempera-

ture, g is the acceleration due to gravity, ω is the angle of inclination, β3 is the

third-grade material coefficient, k is the thermal conductivity, K is the Porous

medium permeability, µ̄ is the fluid dynamic viscosity, ρ is the density, Q is the

heat generated internally, C0 is the initial concentration of the reactant species,

A is the reaction rate constant, λ1 and λ2 are the slip coefficients at the lower and

upper channel walls respectively, qw is the constant heat flux, E is the activation

energy, h is the Boltzmann’s constant, l is the Planck’s number, R is the universal

gas constant, v is the vibration frequency, β is the volumetric thermal expansion

coefficient, m is the numerical exponent such that the three values represent nu-

merical exponents for sensitised, Arrhenius and biomolecular kinetics respectively

as m ∈ {−2, 0, 0.5}[140; 141]. The temperature dependent viscosity µ̄(T ) can be

expressed as

µ̄(T ) = µ0e
−b(T−T0) (4.4)
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where µ0 is the initial fluid viscosity at temperature T0 and b is the viscosity

variation parameter. Introducing the following non-dimensional variables into

equations (4.1) - (4.4),

y =
ȳ

a
, x =

x̄

a
, f =

ūρa

µ0

, α =
bRT 2

0

E
, G = −dP

dx
, Ω =

β3µ0

ρ2a4
, Da =

K

a2
,

P =
a2ρP̄

µ2
0

, ε =
RT0

E
, θ =

E(T − T0)

RT 2
0

, Gr =
ρ2gβa3RT 2

0

µ2
0E

, Br =
µ3

0E

a2ρ2kRT 2
0

,

δ2 =
1

Da
, β1 =

µ0

λ1a
, β2 =

µ0

λ2a
, Bi =

ah1

k
, λ =

QEAa2C0

kRT 2
0

(
hT0

νl

)m
e
− E
RT0 ,

(4.5)

we obtain the non-dimensional governing equations

e−αθf ′′ + 6Ωf ′′f ′2 − αe−αθf ′θ′ − δe−αθf +GrθSin(ω) +G = 0, (4.6)

θ′′ +Brf ′2(e−αθ + 2Ωf ′2) + δBre−αθf 2 + λ(1 + εθ)mexp

(
θ

1 + εθ

)
= 0, (4.7)

with corresponding non-dimensional boundary equations

y = −1 : f = β1e
−αθf ′, θ′ = −Biθ,

y = 1 : f = β2e
−αθf ′, θ′ = −Biθ,

(4.8)

where Ω is the third grade fluid material parameter, P is the fluid pressure, G

is the pressure gradient, α is the variable viscosity parameter, ε is the activation

energy parameter, Gr is the Grashof number, Br is the Brinkman number, β1, β2

are the lower and upper wall slip parameters respectively, Bi is the Biot number,

Da is the Darcy number, δ is the porous medium shape parameter, λ is the Frank-

Kamenetsikii parameter, θ is the non-dimensional fluid temperature, x and y are

the non-dimensional axial and normal coordinates to the inclined channel and f

is the non-dimensional fluid velocity.
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4.3 Entropy Generation Analysis

The local volumetric rate of entropy generation for a viscous incompressible third

grade fluid in the presence of porous media will be expressed as

EG =
k

T0

d2T

dȳ2
+
µ̄(T )

T0

(
dū

dȳ

)2
(

1 +
2β3

µ̄(T )

(
dū

dȳ

)2
)

+
µ̄(T )ū2

KT0

, (4.9)

where the first term is the heat transfer irreversibility, the second term is the en-

tropy generation due to third grade fluid viscous dissipation, and the last term is

the irreversibility due to the presence of porous media. Using the non−dimensional

parameters and variables (4.5), we get the equation for the non−dimensional en-

tropy generation rate as

Ns = θ′′ +Bre−αθ
[
f ′2(1 + 2Ωeαθf ′2) + δ2f 2

]
. (4.10)

The non-dimensional entropy generation rate, Ns = EGa
2E

kRT0
, is the ratio of the

volumetric entropy generation rate to the characteristic entropy generation rate.

Equation (4.10) can be broken down into

Ns = Nh +Nf ,

Nh = θ′′,

Nf = Bre−αθ
[
f ′2(1 + 2Ωeαθf ′2) + δ2f 2

]
,

(4.11)

where Nh is the entropy generation due to heat transfer irreversibility and Nf is

the entropy generation due to the combined fluid viscous dissipation and porosity

of the porous medium. The Bejan number (Be) is used to evaluate the irreversibil-
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ity distribution and defined as

Be =
Nh

Nh +Nf

. (4.12)

According to Bejan [63], the Bejan number varies from 0 to 1, where Be = 0 tells

us that the irreversibility due fluid viscous dissipation and porosity dominate,

Be = 1
2

indicates that the irreversibility due fluid viscous dissipation and porosity

is equal to irreversibility due heat transfer in the entropy production, and Be = 1

reveals that irreversibility due to heat transfer dominates.

4.4 Method of Solution

The system of nonlinear ordinary differential equations (4.6) - (4.7), with bound-

ary conditions (4.8) is solved numerically by the SQLM. Firstly, quasilinearisation

iteration scheme is applied to linearize the system. Bellman and Kalaba [70] in-

troduced this QLM which is a generalisation of the Newton-Raphson method for

solving nonlinear boundary value problems. The quasilinearisation technique is

utilised to linearise the equations before they are solved using the SQLM. We let

F = e−αθf ′′ + 6Ωf ′′f ′2 − αe−αθf ′θ′ − δe−αθf +GrθSin(ω) +G = 0, (4.13)

H = θ′′+Brf ′2(e−αθ+2Ωf ′2)+δBre−αθf 2+λ(1+εθ)mexp

(
θ

1 + εθ

)
= 0. (4.14)

Reducing the non-linear equations (4.13) and (4.14) to linear equations using

QLM, we let fr, θr be an approximate current solution and fr+1, θr+1 be an

improved solution of the system of equations. Assuming |fr+1 − fr| � 1 and

|θr+1 − θr| � 1, we linearise the equations by expanding F and H using Taylor
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series expansion. We have

a2,rf
′′
r+1 + a1,rf

′
r+1 + a0,rf + b1,rθ

′
r+1 + b0,rθr+1 = R1,r, (4.15)

c2,rθ
′′
r+1 + c1,rθ

′
r+1 + c0,rθ + d1,rf

′
r+1 + d0,rfr+1 = R2,r, (4.16)

with new non−dimensional boundary conditions

y = −1 : fr+1 = β1e
−αθrf ′r, θ′r+1 = −Biθr,

y = 1 : fr+1 = β2e
−αθrf ′r, θ′r+1 = −Biθr,

(4.17)

where

a2,r =
∂F

∂f ′′r
= e−αθr + 6Ωf ′2r ,

a1,r =
∂F

∂f ′r
= −αe−αθrθ′r + 12Ωf ′′r f

′
r,

a0,r =
∂F

∂fr
= −δe−αθr ,

b1,r =
∂F

∂θ′r
= −αe−αθrf ′r,

b0,r =
∂F

∂θr
= −αe−αθrf ′′r + α2e−αθrf ′rθ

′
r − αδe−αθrfr +GrSin(ω),

c2,r =
∂H

∂θ′′r
= 1,

c1,r =
∂H

∂θ′r
= 0,

c0,r =
∂H

∂θr
= −αBre−αθrf ′2r − αδBre−αθrf 2

r + λ(1 + εθ)m−2exp

(
θ

1 + εθ

)
(mε(1 + εθ) + 1),

d1,r =
∂H

∂f ′r
= 2Bre−αθrf ′r + 8BrΩf ′3r ,

d0,r =
∂H

∂f ′r
= 2δBre−αθrfr,
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R1,r = e−αθrf ′′r − αe−αθrθ′rf ′r + 6Ωf ′′r f
′2
r − δe−αθrfr,

R2,r = Brf ′2r (e−αθr + 2Ωf ′2r ) + δBre−αθrf 2
r + λ(1 + εθr)

mexp

(
θ

1 + εθr

)
.

(4.18)

The QLM iteration scheme (4.15) and (4.16) is solved using the Chebyshev spec-

tral collocation method. The approximations for the unknown functions are done

by using Chebyshev interpolating polynomials in such a way that they are collo-

cated at the Gauss-Lobatto points defined as

τi = cos

(
πi

N

)
, i = 0, 1, 2, ..., N, (4.19)

where N is the number of collocation points. The functions fr+1 and θr+1 at the

collocation points are represented by

fr+1(τ) =
N∑
k=0

fr+1(τk)Tk(τi),

θr+1(τ) =
N∑
k=0

θr+1(τk)Tk(τi), i = 0, 1, 2, ..., N,

(4.20)

where Tk is the kth Chebyshev polynomial defined by

Tk(τ) = cos(kcos−1τ). (4.21)
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The derivatives of fr+1 and θr+1 at the collocation points are represented as

dpfr+1

dyp
=

N∑
k=0

Dp
kifr+1(τk),

dpθr+1

dyp
=

N∑
k=0

Dp
kiθr+1(τk),

(4.22)

where p is the order of differentiation and D is the Chebyshev spectral differential

matrix of order (N + 1) × (N + 1). We substitute equations (4.19) - (4.22) into

equations (4.15) - (4.16) to obtain

[
a2,rD

2 + a1,rD + a0,rI
]
Fr+1 + [b1,rD + b0,rI] Θr+1 = R1,r, (4.23)

[d1,rD + d0,rI] Fr+1 +
[
c2,rD

2 + c1,rD + c0,rI
]
Θr+1 = R2,r, (4.24)

where I is (N + 1)× (N + 1) identity matrix.

Putting equations (4.23) and (4.24) in a matrix form we get

A11 A12

A21 A22

Fr+1

Θr+1

 =

R1,r

R2,r,

 (4.25)

where

A11 = a2,rD
2 + a1,rD + a0,rI,

A12 = b1,rD + b0,rI,

A21 = d1,rD + d0,rI,

A22 = c2,rD
2 + c1,rD + c0,rI,

Fr+1 = [fr+1(τ0), fr+1(τ1), fr+1(τ0), ..., fr+1(τi−1), fr+1(τi)]
T ,

Θr+1 = [θr+1(τ0), θr+1(τ1), θr+1(τ0), ..., θr+1(τi−1), θr+1(τi)]
T .

(4.26)
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The approximate solutions for F and Θ are obtained by solving the matrix system

(4.25), Fr+1

Θr+1

 =

A11 A12

A21 A22

−1 R1,r

R2,r

 (4.27)

and we use a suitable initial approximation that satisfies the boundary conditions

of equations (4.6) and (4.7) as

f0(y) = −1

2
Gy2 − G(β1 + β2)y

β1 − β2 + 2
− 1

2

G(4β1β2 − 3β1 + 3β2 − 2)

β1 − β2 + 2
, (4.28)

θ0(y) = 0. (4.29)

4.5 Results and Discussion

Combined effects of temperature-dependent viscosity, porous media permeability,

Navier slip and convective boundary conditions on the flow of a reactive third

grade fluid in an inclined channel have been studied. In the following discussion,

we carry out a detailed thermodynamic analysis of the dependence of the fluid

velocity and temperature profiles, the entropy generation and the irreversibility

ratio on the various thermophysical parameters embedded in the flow system. We

present the SQLM graphical solutions and provide a qualitative description of the

simulated variations. Unless otherwise stated, the following parameter values are

employed: α = 0.1, Ω = 0.1, δ = 0.1, Gr = 0.8, ω = π/4, G = 1, Br = 0.5,

λ = 0.1, ε = 0.1, β1 = 0.1, β2 = 0.1, Bi = 5.0, and m = 0.5. Where a parameter

is not varied, these will be the default values used.
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4.5.1 Residual Analysis

The accuracy and convergence of the SQLM were validated by performing a

residual error analysis. The residual errors were calculated to gain understanding

of the accuracy, as defined by

||Res(f)||∞ = ||e−αθf ′′ + 6Ωf ′′f ′2 − αe−αθf ′θ′ − δe−αθf +GrθSin(ω) +G||,

||Res(θ)||∞ = ||θ′′ +Brf ′2(e−αθ + 2Ωf ′2) + δBre−αθf 2 + λ(1 + εθ)mexp

(
θ

1 + εθ

)
||.

The error infinity norms, which are used to confirm the convergence of the SQLM

approximations are defined by

Error(f) = max
0≤i≤N

‖ Fr+1,i − Fr,i ‖∞,

Error(θ) = max
0≤i≤N

‖ Θr+1,i −Θr,i ‖∞ .

We note that the accuracy of order 10−5 for residual errors were attained after two

iterations for f(y) and θ(y) as shown in Table 4.1, and this shows that the method

is highly accurate with a good convergence rate. To have a clearer picture of the

convergence rates, we plot the residual errors against the number of iterations in

Fig.4.2. Figure 4.2 shows that an increase in the number of iterations results in a

decrease in the error infinity norm and the method converges after two iterations.
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((a)) ((b))

Figure 4.2: (a) Error infinity norm for f(y) and (b) Error infinity norm for θ(y)

4.5.2 Velocity Profile

Figure 4.3: Variation of the velocity profile with the variable viscosity parameter
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Table 4.1: Residual errors when α = 0.1, Ω = 0.1, δ = 0.1, Gr = 0.8, Br = 0.5,
λ = 0.1, ω = (π/4), G = 1,ε = 0.1, β1 = 1, β2 = 0.1, Bi = 5.0, m = 0.5

Iterations (i) Error norm for
f(y)

Error norm for
θ(y)

1.0000 3.4440509 2.9974374
2.0000 0.0029493302 0.0045507285
3.0000 7.4336997× 10−06 4.5201419× 10−06

4.0000 6.3871925× 10−10 7.9216664× 10−11

5.0000 1.2640627× 10−14 6.8049385× 10−16

6.0000 3.977× 10−20 4.9541979× 10−21

7.000 2.5233673× 10−25 3.4350721× 10−26

8.0000 4.63× 10−30 4.332× 10−30

9.0000 1.01× 10−30 2.85× 10−30

10.0000 1.87× 10−30 1.52× 10−30

11.0000 1.60× 10−30 2.993× 10−30

12.0000 2.21× 10−30 2.25× 10−30

13.0000l 1.25× 10−30 8.91× 10−30

14.0000 1.38× 10−30 4.777× 10−30

15.0000 3.83× 10−30 2.637× 10−30

16.0000 2.40× 10−30 5.093× 10−30

17.0000 1.10× 10−30 6.264× 10−30

18.0000 1.91× 10−30 4.164× 10−30

29.0000 3.54× 10−30 5.028× 10−30

20.0000 3.72× 10−30 6.960× 10−30

Figure 4.4: Variation of the velocity profile with the Brinkman number
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Figure 4.5: Variation of the velocity profile with the activation energy parameter

Figure 4.6: Variation of the velocity profile with the Grashof number
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Figure 4.7: Variation of the velocity profile with the Frank-Kamenetsikii param-
eter

Figure 4.8: Variation of the velocity profile with the third grade material param-
eter
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Figure 4.9: Variation of the velocity profile with porous medium shape factor
parameter

The response of the fluid velocity profile to the various flow parameters is dis-

played in Figs. 4.3 − 4.9. The figures reveal parabolic velocity profiles where the

maximum velocity is recorded at the centre of the channel. Figure 4.3 reveals

that from the centre of the channel towards the lower wall, the velocity profile

decreases with increasing values of the variable viscosity parameter α. On the

other hand, towards the upper channel wall, the figure shows the profile increas-

ing with the variable viscosity parameter. Bearing in mind that increasing values

of the variable viscosity parameter means that the fluid viscosity is reduced, this

observation is to be expected since the lower wall is subjected to convective heat

exchange with the ambient and on the upper wall there is a constant heat flux.

As the fluid emits heat into the ambient the fluid viscosity increases resulting in

velocity retardation. In Fig.4.4 the Brinkmann number Br is observed to affect

the fluid velocity in a way similar to the variable viscosity parameter, although
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its effect is less pronounced as compared to the effect of the variable viscosity pa-

rameter. Since the Brinkmann number is a measure of heat flux from the channel

plates to the viscous fluid, the observed similarity is to be expected.

In Fig.4.5 we see that the activation energy parameter ε has no significant

effect on the fluid velocity. This is explained by the fact that the activation

energy parameter only enters the velocity equation implicitly through the tem-

perature/viscosity coupling. In this way, its effects on the velocity can at best be

marginal. An increase in the Grashof number Gr, Fig.4.6, is observed to increase

the fluid velocity. Variations in the Grashof number explain the buoyancy effects

on the flow. Higher Grashof numbers point to increased buoyancy source terms

that result in the corresponding increase in the fluid velocity as illustrated in

Fig.4.6. The variation of the fluid velocity in response to increasing values of the

Frank-Kamenetsikii parameter (chemical reaction parameter λ) is displayed in

Fig.4.7. An increase in the chemical reaction parameter means that the rate of

chemical reaction increases, and so are the heating source terms. Fig.4.7 shows

that towards the lower channel wall, the reaction parameter retards the velocity,

whereas towards the upper wall the velocity is enhanced. At the lower wall, as

explained earlier, convective heat emitted out into the ambient means that the

reaction rate is suppressed and so the fluid particles have less energy to move.

At the upper wall, a constant heat flux into the fluid boosts the rate of chemical

reaction that results in increased excitation of the fluid particles.

Figures 4.8 and 4.9 show the flow damping effects of the third grade material

parameter and the porous medium shape parameter δ, respectively. An increase

in the third grade material parameter Ω results in corresponding increases in the

non-Newtonian properties of the fluid, like the visco-elastic effects and others,

that induce increased resistance to flow. On the other hand, increasing the porous

medium shape parameter means that the pore spaces in the porous matrix are
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reduced, resulting in reduced porosity and hence damping the flow.

4.5.3 Fluid Temperature Distribution

Figure 4.10: Variation of the temperature distribution with the variable viscosity
parameter
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Figure 4.11: Variation of the temperature distribution with the Brinkmann num-
ber

Figure 4.12: Variation of the temperature distribution with the activation energy
parameter
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Figure 4.13: Variation of the temperature distribution with the Grashof number

Figure 4.14: Variation of the temperature distribution with the Frank-
Kamenetsikii parameter
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Figure 4.15: Variation of the temperature distribution with the third grade ma-
terial parameter

Figure 4.16: Variation of the temperature distribution with the porous medium
shape parameter
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Figures 4.10 − 4.16 display variations of the fluid temperature profile in response

to various flow governing parameters. A common feature that is revealed by all

these graphs is the dipping of the fluid temperature to very low levels as we

move closer to and at the lower channel wall. This is attributed to the high Biot

number (Bi = 5.0) at the lower channel wall that was set as the default value in

all the computations. In general, high values of the Biot number render increased

convective heat loss from the wall to the ambient, leading to a decrease in the

wall temperature. Higher degrees of convective cooling at the lower wall induces

a significant temperature drop in the bulk of the fluid closer to the wall.

Except for Fig.4.12, where the activation energy parameter shows only marginal

effects on the fluid temperature, and Fig.4.15, where the third grade material pa-

rameter retards the fluid temperature, all the other figures show the fluid temper-

ature increasing with an increase in the values of the variable viscosity parameter,

the Brinkmann number, the Grashof number, the chemical reaction parameter,

and the porous medium shape parameter. The Brinkmann number and the chemi-

cal reaction parameter are observed to cause the most significant increase in fluid

temperature. As alluded to earlier in the discussion, increasing values of the

variable viscosity parameter means that the fluid viscosity is reduced, and this

diminishes the fluids resistance to flow. The resultant increased fluid velocity

increases the viscous heating source terms in the temperature equation, leading

to the elevation of fluid temperature as depicted in Fig.4.10. In Fig.4.11, the

Brinkmann number, a measure of heat flux from the channel wall into the fluid,

is observed to increase the fluid temperature significantly as pointed to earlier. In

Fig.4.13, increasing buoyancy forces lead to an increase in fluid temperature. The

heat flux from the upper channel wall into the fluid leads to a volumetric thermal

expansion of the fluid which induces some overturning instability in the fluid that

causes the fluid particles to move faster. Due to coupling, the increased veloc-
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ity increases the heating source terms in the temperature equation, resulting in

enhanced fluid temperature. Figure 4.14 shows the fluid temperature increasing

significantly with an increase in the values of the chemical reaction parameter.

This phenomenon has been explained earlier in section 4.5.2

In section 4.5.2, we explained the reduction of fluid velocity due to increasing

non-Newtonian character as measured by the third grade material parameter.

The reduced velocity in turn decreases the viscous heating source terms in the

temperature equation which leads to a drop in fluid temperature as shown in

Fig.4.15. In Fig.4.16, except very close to the upper wall, elsewhere in the channel

an increase in the porous medium shape parameter values cause a slight increase

in the fluid temperature. This can be attributed to the frictional forces caused

by the fluid particles as they force their way into reduced pore spaces. Close to

the upper wall, reduced porosity is seen to decrease the fluid temperature. This,

again, can be explained by the coupling effect via damped velocity.

4.5.4 Entropy Generation

Figure 4.17: Variation of the entropy generation with the Brinkmann number
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Figure 4.18: Variation of the entropy generation with the activation energy pa-
rameter

Figure 4.19: Variation of the entropy generation with the Grashof number
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Figure 4.20: Variation of the entropy generation with the Frank-Kamenetsikii
parameter

Figure 4.21: Variation of the entropy generation with the third grade material
parameter
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Figure 4.22: Variation of the entropy generation with the porous medium shape
parameter

Figure 4.23: Variation of the entropy generation with the variable viscosity pa-
rameter
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Analysis of the entropy generated in the flow is carried out with the aid of

Figs.4.17 to 4.23. The figures depict parabolic entropy profiles with minimum

entropy rate Ns = 0 at the channel core region. Except for Fig.4.20, all the

other figures show that the entropy generation at the channel core region remains

unaffected by the parameter variations. Figures 4.17 − 4.20 show the entropy

generation rate increasing with increasing values of the Brinkmann number, the

activation energy parameter, the Grashof number and the chemical reaction pa-

rameter, respectively. The most significant effects are in Figs 4.17 and 4.20, due

to the Brinkmann number and the chemical reaction parameter. In Fig.4.20, the

rate of entropy generation is increased throughout the entire channel including

the core region. In Figs. 4.21 and 4.22 the third grade material parameter and

the porous medium shape parameter have a retardation effect on the entropy

generation rate. In the lower half of the channel, Fig.4.23, an increase in the

variable viscosity parameter enhances the entropy generation rate, while in the

upper half of the channel the variable viscosity parameter has the opposite effect.

Comparing Fig.4.23 and Fig.4.3, we observe that in the region where the variable

viscosity parameter decreases the fluid velocity, it enhances the rate of entropy

generation. In the region where the variable viscosity parameter increases the

fluid velocity, it retards the entropy generation rate.
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4.5.5 Bejan Number

Figure 4.24: Variation of the Bejan number with the variable viscosity parameter

Figure 4.25: Variation of the Bejan number with the Brinkmann number
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Figure 4.26: Variation of the Bejan number with the activation energy parameter

Figure 4.27: Variation of the Bejan number with the Grashof number
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Figure 4.28: Variation of the Bejan number with the Frank−Kamenetsikii pa-
rameter

Figure 4.29: Variation of the Bejan number with the third grade material param-
eter

108



Figure 4.30: Variation of the Bejan number with the porous medium shape factor
parameter

Figures 4.24 − 4.30 demonstrate the irreversibility ratio trends in response to

variation of the flow governing parameters. A striking feature displayed by all

these 7 graphs is that the irreversibility ratio is maximum at the channel core

region. This shows that in this flow, irreversibility due to heat transfer dominates

in the core region. Elsewhere within the channel, the graphs reveal the combined

irreversibility due to viscous dissipation and porous medium porosity dominating

the heat transfer irreversibility at the centre of the lower half of the channel (at

y = −0.5) and the centre of the upper half (at y = 0.5). Figure 4.24 shows that

as the variable viscosity parameter is increased, from y = −1 to y = −0.5 the

Bejan number increases and in the next quarter of the channel the opposite effect

happens. From the centre of the channel to y = 0.5 the Bejan number increases

and in the last quarter of the channel it is retarded. An interesting observation

in Fig.4.25 is that the irreversibility ratio is constant at Be=1 throughout the
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channel when Br = 0. The same observation is made in Fig.4.26 when ε = 0. As

the Brinkmann number increases, the Bejan number increases in the lower quarter

of the channel in Fig.4.25. In the same graph, from y = −0.5 to y = 0.5, the

Bejan number decreases with the Brinkmann number, and in the upper quarter,

it is enhanced. In Fig.4.26, increasing values of the activation energy parameter

diminishes the Bejan number in both the lower half and the upper half of the

channel.

The effects of the Grashof number on the irreversibility ratio, Fig.4.27, mirrors

those of the Brinkmann number, albeit at a less pronounced intensity. In Fig.4.28,

an increase in the chemical reaction parameter reveals effects that are exactly

opposite of the effects of the activation energy parameter described in Fig.4.26.

In Fig.4.29, an increase in the non-Newtonian properties of the fluid decreases

the Bejan number in the lower half of the channel, whereas in the upper half of

the channel it is enhanced. Figure 4.30 shows that increasing the porous medium

shape parameter retards the Bejan number at the centre of the channel, enhances

it at the centre of both halves of the channel and retards it again as we approach

the channel walls.

4.6 Conclusions

In this article, entropy generation analysis of a steady flow of a reactive variable

viscosity third grade fluid through a porous saturated medium with Navier slip

and convective boundary conditions was successfully carried out with the aid of

SQLM. The numerical method was found to be highly accurate and convergent.

Graphical analysis of the response of the velocity and temperature distributions,

entropy generation rate and irreversibility ratio to the various parameters em-

bedded in the flow system revealed that:
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• The temperature-dependent viscosity, the Brinkmann number and the chem-

ical reaction parameter have a retardation effect on the fluid velocity in the

lower half of the channel that is subjected to convective heat exchange with

the ambient, while the opposite effect is observed in the upper half of the

channel that is subjected to a constant heat flux.

• The non-Newtonian properties of the fluid and the porous medium shape

factor parameter were observed to have a damping effect on the fluid veloc-

ity, while the buoyancy forces were observed to have the opposite effect.

• The fluid temperature profile was observed to increase with an increase

in the Brinkmann number, the buoyancy force, and the chemical reaction

parameter, whereas the variable viscosity parameter and the third grade

material parameter had a retardation effect.

• A parabolic entropy generation rate profile was observed with minimum

entropy Ns = 0 at the centre of the channel.

• Parameters either increase or decrease the entropy generation rate elsewhere

in the channel but at the centre of the channel it remained unaffected by

all the parameters except the chemical reaction parameter.

• The irreversibility ratio was observed to be maximum at the centre of the

channel indicating the dominance of heat transfer irreversibility over the

combined viscous dissipation and porosity irreversibility.

• Elsewhere in the channel parameters revealed varied effects on the Bejan

number but in general irreversibility due to viscous dissipation and porosity

was found to dominate heat transfer irreversibility at the middle of either

half of the channel.
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These observed interesting manifestations will no doubt inform optimal designs

of thermomechanical systems to achieve energy utilization efficiency.
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Chapter 5

Inherent Irreversibility Analysis

of an Unsteady Reactive

Hydromagnetic Third Grade

Fluid Flow in a Vertical Channel

through a Porous medium with

Asymmetrical Convective

Cooling

Chapter Abstract

This chapter numerically investigates the inherent irreversibility of unsteady MHD

reactive flow of a third grade fluid through a porous saturated medium with asym-

metric convective boundary conditions. The convective heat transfer between the
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walls of the channel and the immediate surrounding follows Newton’s law of cool-

ing. To approximate the entropy generation rate and the Bejan number, the

non-dimensional governing equations are solved numerically by utilizing the finite

difference method. The effects of the Brinkmann number, the Frank-Kamenetskii

parameter, the Hartman number and other flow parameters on velocity, temper-

ature, entropy generation rate and Bejan number are analyzed graphically and

discussed qualitatively and quantitatively.

5.1 Introduction

The hydromagnetic flow in a channel is a classical problem whose solutions

have drawn the attention of many researchers because of its applications in

engineering and industrial processes exemplified by mechanical designing pro-

cesses, atomic control engineering, astrophysical plasmas, aerodynamic heating,

and MHD pumps and generators. VeeraKrishna and Reddy [142] presented a

transient unsteady MHD reactive flow of a second-grade fluid through a porous

medium in a rotating parallel plate channel. Reza-E-Rabbi et al. [143] and Das

et al. [144] studied the heat and mass transfer analysis of MHD flow with thermal

radiation and chemical reaction effects. In the work of [145], the heat transfer

and entropy generation characteristics of an unsteady MHD flow of a viscous

incompressible electrically conducting Casson nano-fluid over a moving infinite

vertical plate was investigated. There is plenty of literature available on the flow

and heat transfer of MHD non-Newtonian fluid in channels with different config-

urations. Additionally, recent discoveries on fluid flow in channels subjected to

symmetrical or asymmetrical convective cooling cannot be neglected. Examples

of such studies are found in [146; 147; 148; 131].

The foremost priority of the research community in the current time is to
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find techniques for controlling the wastage of useful energy in thermomechan-

ical processes. Energy loses result in productivity inefficiency that leads to

wastage of resources. As defined in chapters 3 and 4, entropy is a thermody-

namic quantity representing the unavailability of a system’s thermal energy for

conversion into mechanical work, often interpreted as the degree of disorder or

randomness in the system. When the rate of entropy generation enhances in

any thermal system, it can destroy the useful work and reduce the efficiency of

the system. Physically, entropy generation is associated with thermodynamical

irreversibility, which is a common phenomenon in all kinds of heat and mass

transfer systems. Therefore, it is necessary to minimize the entropy generation

to prevent any irreversibility losses that can affect system performance. The

first and second law of thermodynamics are used to characterize and optimize

a system [115]. Bejan [115; 149] was the first researcher to undertake theoret-

ical work on thermodynamic irreversibility in fluid flow and heat transfer. He

demonstrated that the efficiency of a thermal system could be improved by min-

imizing entropy generation. Following his ground breaking work, several authors

[150; 151; 152; 153; 138; 154; 155; 156; 157], mentioning a few, have analyzed

aspects of the irreversibility problems under different flow conditions. Adesanya

et al. [120] investigated the inherent irreversibility in a couple stress fluid flow

through a horizontal channel. Salawu and Fatunmbi [138] investigated inherent

irreversibility of a reactive incompressible third-grade fluid poiseuille flow with

variable viscosity and convective cooling under the influence of an externally ap-

plied magnectic field.

Meanwhile, fluid flow through porous saturated media plays an important role

in various engineering and industrial processes. Examples include transpiration

cooling processes, material drying, porous coatings, fuel cells and textiles. There

are many different technologies that depend on porous media. Among the im-
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portant technology that depend on the properties of porous media is hydrology,

which relates to water movement in the earth and sand structures. Researchers

who have shown interest in porous media flow include [91; 136; 158; 159; 160; 161].

The analysis of a reactive hydromagnetic fluid flow in a channel filled with a

porous medium subjected to convective boundary conditions was investigated by

Hassan and Maritz [162]. Rundora and Makinde [102] and Makinde et al. [98]

examined the thermal effects in an unsteady MHD third grade fluid flow through

a porous saturated medium with asymmetrical convective boundary conditions.

In this work, we extend the work of [163] by examining entropy generation of

an unsteady hydromagnetic flow of a reactive variable viscosity, electrically con-

ducting third grade fluid through a porous saturated medium with asymmetrical

convective boundary conditions.

5.2 Mathematical Formulation

Consider an unsteady flow of an incompressible electrically conducting, variable

viscosity, reactive third grade fluid through a vertical channel filled with a homo-

geneous and isotropic porous medium. The flow is assumed to be induced by the

action of an applied axial pressure gradient and buoyancy force and is subjected

to the influence of an externally applied homogeneous magnetic field as shown in

Fig. 4.1.
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Figure 5.1: Schematic diagram of the problem

The fluid is assumed to have small electrical conductivity so that the elec-

tromagnetic force produced is very minimal. The channel walls are subjected

to asymmetric convective heat exchange with the ambient due to unequal heat

transfer. The x-axis is parallel to the gravitational acceleration g but in the op-

posite direction while the y-axis is perpendicular to the vertical parallel plates.

Following Rundora and Makinde [163], and taking into account the buoyancy

effects in a vertical channel, the governing equations for the momentum and heat

balance can be written as

ρ
∂u′

∂t′
= −∂P

∂x′
+

∂

∂y′

(
µ′(T )

∂u′

∂y′

)
+ α1

∂3u′

∂y′2∂t
+ 6β3

∂2u′

∂y′2

(
∂u′

∂y′

)2

− µ′(T )u′

ρK
− σ0B

2
0u
′ + ρgβ(T − T0),

(5.1)
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∂y′

)2
[
µ′(T ) + 2β3

(
∂u′

∂y′

)2
]

+
µ′(T )u′2

K
+ σ0B

2
0u
′

+QC0A

(
hT

vl

)m
e
−
E

RT .

(5.2)

The corresponding boundary conditions are given as

u′(y′, 0) = 0, T (y′, 0) = T0,

u′(0, t′) = 0, −k∂T
′

∂y′
(0, t′) = h1[Ta − T (0, t′)],

u′(a, t′) = 0, −k∂T
′

∂y′
(a, t′) = h2[T (a, t′)− Ta],

(5.3)

where cp is the specific heat at constant pressure, T is the fluid temperature,

A is the reaction rate constant, P is pressure, ρ is the fluid density, α1, β3 are

the material coefficients, k is the thermal conductivity, K is the Porous medium

permeability, Q is the heat of the reaction, B0 is the uniform transverse mag-

netic field, C0 is the initial concentration of the reactant species, m ∈ {−2, 0, 0.5}

are the numerical exponents for sensitized, Arrhenius and bimolecular kinetics

respectively, E is the activation energy, h is the Boltzmann’s constant, l is the

Planck’s number, R is the universal gas constant, σ0 is the fluid electrical conduc-

tivity, v is the vibration frequency, and h1, h2 are the heat transfer coefficients at

the lower and upper plates, respectively. The temperature dependent viscosity,

µ′, can be expressed as

µ′(T ) = µ0e
−b(T−T0), (5.4)

where b is a viscosity variation parameter, µ0 is the initial fluid dynamic viscosity

and T0 is the fluid initial temperature. Introducing the following dimensionless
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variables
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a
, y =
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E(T − T0)
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(
hT0

vl

)m
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,

(5.5)

where x and y are the non-dimensional axial and normal coordinates to the in-

clined channel, u is the non-dimensional fluid velocity, t is the non-dimensional

time, θ is the non-dimensional fluid temperature, δ is the material parameter, γ

is the viscous heating parameter, α is the variable viscosity parameter, Ω is the

third grade fluid material parameter, λ is the Frank-Kamenetskii parameter, Ha

is the Hartmann number, Pr is the Prandtl number, Gr is the Grashoff number,

ε is the activation energy parameter, Bi1 and Bi2 are the Biot numbers at the

left and right-hand side channel plates, respectively, G is the pressure gradient

parameter, θa is the ambient temperature parameter, Da is the Darcy number,

S is the porous medium shape parameter and Ns is the nondimensional entropy

generation rate.

Substituting equation (5.5) into governing equations (5.1), (5.2) and boundary

conditions (5.3), the following non-dimensional nonlinear equations

∂u

∂t
= G−αe−αθ ∂θ

∂y

∂u

∂y
+e−αθ

∂2u

∂y2
+δ

∂3u

∂y2∂t
+6Ω

∂2u

∂y2

(
∂u

∂y

)2

−(S2e−αθ+Ha2)u+Grθ,

(5.6)
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Pr
∂θ

∂t
=
∂2θ

∂y2
+ λ

{
(1 + εθ)me

θ
1+εθ + γ

[(
∂u

∂y

)2
(
e−αθ + 2Ω

(
∂u

∂y

)2
)]

+ γ(S2u2e−αθ +Ha2u)

}
,

(5.7)

are obtained, with corresponding initial and boundary conditions

u(y, 0) = 0, θ(y, 0) = 0, (5.8)

u(0, t) = 0,
∂θ

∂y
(0, t) = −Bi1[θa − θ(0, t)], (5.9)

u(1, t) = 0,
∂θ

∂y
(1, t) = −Bi2[θ(1, t)− θa]. (5.10)

5.3 Entropy Generation Analysis

The local volumetric rate of entropy generation for a viscous incompressible con-

ducting third grade fluid in the presence of porous media will be expressed as

EG =
k

T0

∂2T

∂y′2
+
µ′(T )

T0

(
∂u′

∂y′

)2
[

1 +
2β3

µ′(T )

(
∂u′

∂y′

)2
]

+
µ′(T )u′2

T0K
+
σ0B

2
0u
′2

T0

, (5.11)

where the first term is the heat transfer irreversibility, the second term is the

entropy generation due to third grade fluid viscous dissipation, and the last two

terms are the irreversibility due to the presence of porous media and magnetic

field respectively. Using the dimensionless quantities and parameters, as defined
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in equation (5.5), the equation for the dimensionless form of (5.11) emerges as

Ns =
∂2θ

∂y2
+ λγ

{(
∂u

∂y

)2
[
e−αθ + 2Ω

(
∂u

∂y

)2
]

+
(
Ha2 + S2e−αθ

)
u2

}
. (5.12)

The dimensionless entropy generation number, Ns, is the ratio of the volumet-

ric entropy generation rate to the characteristic entropy generation rate. We

breakdown the right hand side of (5.12) into Nh, Nf , where

Nh =
∂2θ

∂y2

is the irreversibility due to heat transfer, and

Nf = λγ

{(
∂u

∂y

)2
[
e−αθ + 2Ω

(
∂u

∂y

)2
]

+
(
Ha2 + S2e−αθ

)
u2

}
.

is the irreversibility due to combined effect of third grade fluid viscous dissipation,

porous media and magnetic field. The Bejan number (Be) is used to evaluate the

irreversibility distribution and is defined as

Be =
Nh

Ns

=
Nh

Nh +Nf

. (5.13)

From equation (5.13), the Bejan number is in the range 0 ≤ Be ≤ 1. When

Be = 0, Nf dominates Nh. When Be = 0.5 both Nf and Nh contribute equally

to the entropy generation in the flow process, i.e., Nf = Nh. Lastly, when Be = 1,

Nh dominates Nf .
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5.4 Numerical Method of Solution

The governing system (5.6)−(5.7) with initial and boundary conditions (5.8)−(5.10)

is solved numerically following the semi-implicit finite difference scheme given in

Chinyoka [164]. In Chinyoka [165; 166], implicit terms are taken at the interme-

diate time level (N + ξ), where 0 ≤ ξ ≤ 1. The discretization of the equations

is based on a linear cartesian mesh and uniform grid on which finite differences

are taken. Both first and second spatial derivatives are approximated by second

order central differences. The governing equations corresponding to the first and

the last grid points are modified to incorporate the boundary conditions. The

semi-implicit scheme for both velocity and temperature components are

∂

∂t

(
u− δ∂

2u

∂y2

)
= G− S2e−αθ

(N)

u(N+ξ) −Ha2u(N+ξ) + e−αθ
(N) ∂2

∂y2
u(N+ξ)

−
(
αe−αθ

∂θ

∂y

∂u

∂y

)(N)

+ 6Ω

(
∂

∂y
u(N)

)2
∂2

∂y2
u(N+ξ) +Grθ(N),

(5.14)

Pr
θ(N+1) − θ(N)

∆t
=

∂2

∂y2
θ(N+ξ) + λ

[
(1 + εθ)mexp

(
θ

1 + εθ

)](N)

+λγ[Ha2u2 + S2u2e−αθ + γ̇2(e−αθ + 2Ωγ̇2](N).

(5.15)

In equation 5.14, it is understood that
∂]

∂t
:=

](N+1) − ](N)

∆t
. The equation for

u(N+1) then becomes

−r1u
(N+1)
j−1 + r2u

(N+1)
j−1 − r1u

(N+1)
j+1 = ∆tG+ (u+ δuyy)

(N) − α∆t(e−αθθyγ̇)(N)

−∆tS2e−αθ
(N)

(1− ξ)u(N) −∆tHa2(1− ξ)u(N) + ∆t(1− ξ)(e−αθ + 6γγ̇2)u(N)
yy ,

(5.16)
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where

r1 =
1

∆y2

(
δ + ξ∆t(µ+ 6Ωγ̇2)(N)

)
,

r2 = (1 + ξ∆tS2µ(N) + ξ∆tHa2 + 2r1),

µ = e(−αθ),

γ̇ = uy.

Similarly, the equation for θ(N+1) becomes

− rθ(N+1)
j−1 + (Pr + 2r)θ

(N+1)
j − rθ(N+1)

j+1 = θ(N) + ∆t(1− ξ)θ(N)
yy

+ λ∆

[
(1 + εθ)mexp

(
θ

1 + εθ

)](N)

+ λΩ∆[Ha2u2 + S2u2e−αθ

+ γ̇2(e−αθ + 2Ωγ̇2)](N),

(5.17)

where r = ξ∆t
∆y2

. The solution procedure for u(N+1) and θ(N+1) thus reduces to in-

version of tri-diagonal matrices, which is an advantage over a full implicit scheme.

The scheme (5.16) and (5.17) where checked for consistency. Chinyoka [164]

have ξ = 1
2

which improves the accuracy in time to second order. Rundora and

Makinde [163] used ξ = 1 so that larger time steps could be chosen but still

obtain convergence to the steady solutions. In this study we use ξ = 1.

5.5 Results and Discussion

In the following discussion, we investigate an unsteady MHD reactive flow of

a third grade fluid in a vertical channel filled with a saturated porous medium

with asymmetric convective boundary conditions. The semi-implicit finite differ-

ence scheme is coded into symbolic package MAPLE for easy computation of the

graphical solutions. The effects of the various parameters embedded in the flow

123



system on the flow velocity, temperature field, the entropy generation rate and

the irreversibility ratio will be carried out with the aid of simulated graphs. The

default parameter values G = 1, Pr = 10, δ = 0.000001, λ = 0.1, γ = 1, Ω = 0.1,

ε = 0.1, α = 0.1, Ha = 1, S = 1, Bi1 = 0.1, Bi2 = 1, m = 0.5, Gr = 1 and

θa = 0.1 will be employed. Where a parameter is not varied, it will be assumed

to take the stated default value.

5.5.1 Steady State Velocity and Temperature Profiles

Figure 5.2: Steady state velocity profile
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Figure 5.3: Steady state temperature profile

Figures 5.2 and 5.3 demonstrate the convergence of the solution. The figures

illustrate a transient increase in the velocity and temperature profiles until steady

state is attained.
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5.5.2 Fluid Velocity and Temperature Profiles

Figure 5.4: Effects of the Hartmann number on velocity profile

Figure 5.5: Effects of the variable viscosity parameter on velocity profile
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Figure 5.6: Effects of the Grashof number on velocity profile

Figure 5.7: Effects of the Frank Kamenetskii parameter on velocity profile
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Figure 5.8: Effects of the third grade fluid material parameter on velocity profile

Figure 5.9: Effects of the porous medium shape parameter on velocity profile
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Figure 5.10: Effects of the Hartmann number on temperature profile

Figure 5.11: Effects of the activation energy parameter for m = 0.5 on tempera-
ture profile
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Figure 5.12: Effects of the activation energy parameter for m = 0 on temperature
profile

Figure 5.13: Effects of the activation energy parameter for m = −2 on tempera-
ture profile

130



Figure 5.14: Effects of the variable viscosity parameter on temperature profile

Figure 5.15: Effects of the Biot number Bi2 on temperature profile
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Figure 5.16: Effects of the Grashof number on temperature profile

Figure 5.17: Effects of the Frank Kamenetskii parameter on temperature profile
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Figure 5.18: Effects of the parameter m on temperature profile

Figure 5.19: Effects of the third grade fluid material parameter on temperature
profile

133



Figure 5.20: Effects of the Prandtl number on temperature profile

Figure 5.21: Effects of the porous medium shape parameter on temperature profile

134



Figure 5.22: Effects of the viscous heating parameter on temperature profile

In Figs. 5.4, 5.8 and 5.9 the fluid velocity is observed to decrease with increasing

values of the Hartmann number, the third grade fluid material parameter and the

porous medium shape parameter, respectively. On the other hand, Figs. 5.5, 5.6

and 5.7 show the velocity profile increasing with the variable viscosity parameter,

the Grashof number and the Frank Kamenetskii parameter (reaction parameter),

respectively. The Hartmann number measures the effect of the externally applied

magnetic field intensity on the flow system, and the effects of the porous medium

are measured by the porous medium shape parameter. Figs. 5.4 and 5.9 show

that as these two parameters are increased, the fluid flow is damped. Thus the

magnetic field intensity and the porous matrix have a damping effect on the fluid

flow. An increase in the variable viscosity parameter, α, means a reduction in

the fluid viscosity. Thus, as Fig. 5.5 shows, a reduction in fluid viscosity leads

to an increase in the velocity field. Figures 5.6 and 5.7 are mirror images of each

other showing the flow enhancement effects of buoyancy, as measured by the

Grashof number, and the reaction parameter. The Grashof number represents

135



the effects of the buoyancy source terms on the flow system. As Fig. 5.6 shows,

an increase in the buoyancy source terms enhances the flow rate. On the other

hand, Fig. 5.7, an increase in the reaction rate leads to the reduction of fluid

viscosity which in turn leads to an increase in the flow velocity. An increase

in the reaction rate increases the fluid temperature which in turn reduces the

fluid viscosity. In this work velocity is assumed to be temperature dependent, an

assumption which captures physical reality. In Fig. 5.8, an increase in the non-

Newtonian properties of the third grade fluid, e.g. viscoelastic effects, renders

the fluid’s resistance to flow. The variation of the fluid temperature profile in

response to the various flow field parameters is displayed in Figs. 5.10 to 5.22.

In Fig. 5.10 an increase in the magnetic field intensity reduces the temperature

of the fluid. This phenomenon can be explained by the coupling effect. The

reduction in velocity due to the damping effect of the magnetic field reduces the

heating source terms in the temperature equation, resulting in fluid temperature

drop. In Fig. 5.11, increasing the activation energy parameter enhances the fluid

temperature in the case of a bimolecular type of reaction (m = 0.5). This is

consistent with expectation. On the other hand, in Figs. 5.12 and 5.13 the fluid

temperature is retarded by the activation energy parameter for the cases m = 0

(the Arrhenius reaction type) and m = −2 (the sensitized reaction type). This is

consistent with the temperature equation where the heating source terms clearly

decrease as epsilon increases when m is less or equal to 0. Figure 5.14 shows

the fluid temperature increasing, albeit marginally, with increasing values of the

variable viscosity parameter. This behavior can be explained by the coupling

effect where an increase in fluid velocity with increasing α enhances the heating

source terms in the temperature equation. The significant reduction in fluid

temperature due to an increase in the Biot number, Fig. 5.15, is consistent

with expectation. As explained in the previous chapter, high values of the Biot
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number result in increased convective heat loss from the channel wall to the

ambient, leading to convective cooling at the wall and in the bulk of the fluid.

In Fig. 5.16 an increase in the fluid temperature with increasing values of the

Grashof number can again be explain by the coupling effect. A significant increase

in the fluid temperature with an increase in the Frank-Kamenetskii parameter,

λ, is consistent with expectation as well. Increasing the exothermic reaction

rate obviously results in temperature rise. As the exponent m increases from

m = −2 (sensitized reaction type) to m = 0.5 (bimolecular reaction type), the

fluid temperature is seen to rise significantly. The internal heat generated in the

fluid by a bimolecular reaction type is significantly higher than that generated

under an Arrhenius or the sensitized type of reaction. In this way, the trend

depicted in Fig. 5.18 cannot be surprising. Fig. 5.19 shows that the third grade

material parameter has no significant effect on the fluid temperature. Figure 5.20

shows that the influence of the Prandtl number on the fluid temperature is to

decrease it. A decrease in fluid temperature following an increase in the porous

medium shape parameter, Fig. 5.21, is explained by the coupling effect that has

been alluded to earlier on. The retardation of the flow velocity as a result of

decreasing porosity also leads to a drop in temperature due to the corresponding

decrease in the heating source terms. In Fig. 5.22, as expected, the viscous

heating parameter increases the fluid temperature.
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5.5.3 Entropy Generation Rate

Figure 5.23: Effects of the variable viscosity parameter on entropy generation
rate

Figure 5.24: Effects of the Biot number on entropy generation rate
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Figure 5.25: Effects of the viscous heating parameter on entropy generation rate

Figure 5.26: Effects of the Grashof number on entropy generation rate
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Figure 5.27: Effects of the Hartmann number on entropy generation rate

Figure 5.28: Effects of the Frank-Kameneskii parameter on entropy generation
rate
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Figure 5.29: Effects of the chemical kinetics on entropy generation rate

Figure 5.30: Effects of the third grade fluid material parameter on entropy gen-
eration rate
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Figure 5.31: Effects of the porous medium shape parameter on entropy generation
rate

The variation of the rate of entropy generation in the flow system is described

in Figs. 5.23 − 5.31. Parabolic profiles are observed with minimum entropy

generation rate along the core region of the channel and maximum at the channel

walls. In Fig. 5.23, the rate of entropy generation is seen to increase with an

increase in the variable viscosity parameter. Thus, as the fluid viscosity decreases,

the entropy generation rate increases. The effect of the Biot number, Fig. 5.24,

is exactly the opposite of the effect of the variable viscosity parameter. Entropy

generation rate diminishes with increasing Biot number. Figure 5.25 displays the

relationship between the viscous heating parameter and the entropy generation

rate. The figure shows an increase in the viscous heating parameter significantly

raising the rate of entropy generation. The Grashof number is observed to have

the same effect as that of the viscous heating parameter (see Fig. 5.26). Thus,

buoyancy has the effect of increasing the rate of entropy generation. Figures 5.27
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and 5.31 depict similar variation of the entropy generation rate as the Hartmann

number and the porous medium shape parameter are increased. At the channel

core region, as the parameters are increased, the entropy generation rate increases

from 0 and thereafter stabilizes. Towards the channel walls, the magnetic field

and the porous medium retard the entropy generation rate significantly. In Fig.

5.28, the rate of exothermic chemical reaction has the same effects as the viscous

heating parameter and buoyancy. The figure shows that an increase in the rate

of chemical reaction significantly enhances the rate of entropy generation. Figure

5.29 shows that the entropy generation rate is not sensitive to the nature of

the chemical reaction. The figure shows the entropy generation rate remaining

the same regardless of whether the chemical reaction is Arrhenius, sensitized or

bimolecular. In Fig. 5.30, the third grade material parameter marginally retards

the entropy generation rate. Thus the non-Newtonian properties of the fluid,

e.g. viscoelasticity, have the effect of marginally reducing the rate of entropy

generation.

5.5.4 Irreversibility Ratio

Table 5.1 shows that the Bejan number remains unaltered at level Be = 0 by

varying any parameter embedded in the flow system. This tells us that in this

flow system the combined irreversibility due to the third grade fluid viscous dis-

sipation, porous medium porosity and magnetic field is dominant over the heat

transfer irreversibility.
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Table 5.1: Variation of Bejan number in a response to the parameters

α Bi2 γ Gr Ha λ m Ω S Be

0 0
1 0
2 0
3 0

0.1 0
0.2 0
0.3 0
0.4 0

-2 0
0 0

0.5 0
0.1 0
0.15 0
0.2 0
0.25 0

0 0
1 0
2 0
3 0

0 0
1 0
2 0
3 0

0.3 0
0.5 0
0.8 0
1 0

1 0
2 0
3 0
4 0

0.1 0
0.3 0
0.5 0
0.8 0
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5.6 Conclusion

In this chapter, entropy generation analysis of an unsteady flow of a reactive

variable viscosity third grade fluid through a vertical channel filled with porous

saturated medium and asymmetric convective boundary conditions was success-

fully investigated using a semi-implicit finite difference scheme. The flow was

assumed to be driven by the combined effects of an axial pressure gradient and

buoyancy, and was subjected to an externally applied transverse magnetic field.

Graphical analysis of the response of the velocity and temperature distributions,

entropy generation rate and irreversibility ratio to the various parameters embed-

ded in the flow system was performed. The analysis revealed that the effects of

the parameters on the thermo-fluid flow cannot be neglected. The flow velocity

field is enhanced by the variable viscosity parameter, the Grashof number and

the exothermic chemical reaction parameter, while the magnetic field, the porous

medium and the third grade material parameter retard it. The variable viscosity

parameter, the viscous heating parameter, the Grashof number, the exothermic

chemical reaction parameter and the parameter m, where m = −2 represent sen-

sitized reaction type, m = 0 represent the Arrhenius type of reaction and m = 0.5

represent the bimolecular type of reaction, increase the temperature field. On the

other hand, the fluid temperature is decreased by the Biot number, the Prandtl

number, the magnetic field and the porous medium. The entropy generation

rate is enhanced by the variable viscosity parameter, the viscous heating param-

eter, the Grashof number and the exothermic chemical reaction parameter. The

Biot number, the Hartmann number, the third grade material parameter and the

porous medium have a retardation effect on the rate of entropy generation. It

is also observed that the irreversibility ratio for this flow remained constant at

Be = 0 irrespective of any value of any parameter. This phenomenon shows the

dominance of the irreversibility due to the combined effects of the third grade fluid
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viscous dissipation, the porous medium porosity and the magnetic field over the

irreversibility due to heat transfer. It can also be concluded that, due to coupling,

the fluid velocity and the fluid temperature increase and decrease together, and

parameters that increase (decrease) the fluid velocity and the fluid temperature

increase (decrease) the rate of entropy generation. These observations play an

important role in the designs of thermo-fluid devices and processes that minimize

entropy generation and ultimately achieving energy utilization efficiency.
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Chapter 6

General Discussion, Conclusion
and Recommendations

Chapter Abstract

In this chapter, a general discussion, a succinct summary of the results, recom-

mendations and envisaged future work are outlined.

6.1 General Discussion

In this thesis, three problems focusing on second law analysis for reactive third

grade fluid flow with variable properties have been studied. Different channel

geometries and physical effects were considered. The semi-analytic ADM, the

semi-implicit FDM and the SQLM were applied to solve the coupled nonlinear

flow governing equations. The effects of the important thermophysical parameters

on the flow velocity field, the temperature distribution, the entropy generation

rate and the irreversibility ratio were investigated with the aid of graphical sim-

ulations.

Entropy generation analysis in a steady flow of a reactive variable exponential

viscosity third grade fluid through an inclined channel filled with a saturated

porous medium with Navier slip and convective boundary conditions was studied.

147



Combined effects of Navier slip, porous medium, variable viscosity, convective

boundary conditions and constant heat flux were studied.

Inherent irreversibility analysis of an unsteady reactive hydromagnetic third

grade fluid flow in a vertical channel filled with a porous medium with asym-

metric convective boundary conditions was carried out. Combined effects of the

porous medium, convective cooling, variable viscosity and magnetic field were

investigated.

Combined effects of magnetic field, variable linear viscosity and thermal con-

ductivity on a fully developed incompressible hydromagnetic third grade fluid

flow in a horizontal channel with infinite plates was investigated.

The rate of entropy generation and Bejan number were successfully computed

in all the three flow systems.

6.2 Conclusions

Some important results from the studied theoretical models can be summarized

as follows:

Velocity Profiles

In the inclined channel flow with convective cooling at the lower plate and con-

stant heat flux on the upper plate:

• Parabolic velocity profiles are observed with the maximum velocity at the

channel core region.

• Closer to the lower plate the velocity is retarded by increasing values of the

variable viscosity parameter and the Brinkmann number, whereas towards

the upper wall the velocity is enhanced. The chemical reaction parameter

has similar effects.
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• The third grade material parameter and the porous medium shape param-

eter retard the velocity, while buoyancy effects increase the flow rate.

In the MHD flows:

• Parabolic velocity profiles are also observed with maximum velocity at the

channel core region as well.

• The velocity profiles are enhanced by the variable viscosity parameter, the

Brinkmann number, the Grashof number, and the exothermic chemical re-

action parameter.

• The magnetic field, the porous medium and the third grade material pa-

rameter have a damping effect on the flows.

Fluid Temperature Profiles

In the inclined channel flow with convective cooling at the lower plate and con-

stant heat flux on the upper plate:

• The temperature profiles are increased by the Grashof number, the Brinkmann

number and the reaction parameter.

• The variable viscosity parameter, the porous medium and the third grade

material parameter significantly decreases the fluid temperature.

In the MHD flow without porous media:

• The variable viscosity parameter, the Hartmann number, the Brinkmann

number and the internal heat generation parameter enhance the fluid tem-

perature.

• The third-grade material parameter diminishes the fluid temperature.

In the MHD flow with porous media:
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• Fluid temperature is boosted by the variable viscosity parameter, the ac-

tivation energy parameter, the Grashof number, the exothermic chemical

reaction parameter and the reaction exponent m, where m = −2 represents

a sensitized chemical reaction type, m = 0 represents an Arrhenius type of

chemical reaction and m = 0.5 represents a bimolecular type of chemical

reaction.

• The Biot number, the magnetic field and the porous media decrease the

fluid temperature.

• The third grade material parameter displays no significant effect on the

fluid temperature.

Entropy Generation Rate and Irreversibility Ratio

• In all the three problems, parabolic entropy generation profiles are observed

where, in general, entropy is more pronounced near the channel walls and

less significant along the core region of the channel.

• Entropy generation is enhanced by the Brinkmann number, the activation

energy parameter, the exothermic chemical reaction parameter, the Grashof

number, and the variable viscosity parameter.

• The third grade material parameter, the porous medium, the magnetic field

and the Biot number retard the entropy generation rate.

• In the inclined channel flow with convective cooling at the lower plate and

constant heat flux on the upper plate, the heat transfer irreversibility is

dominant in the channel core region while at the centre of either half of the

channel the irreversibility due to the combined effects of the third grade

fluid viscous dissipation and porous medium porosity dominate.
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• In the MHD flow without porous media, the irreversibility due to the com-

bined effects of the third grade fluid viscous dissipation and the magnetic

field is dominant at the core region of the channel, whereas at the centre re-

gion of each half of the channel heat transfer irreversibility is dominant. The

dominance of the heat transfer irreversibility is enhanced by the Brinkmann

number, the Hartmann number, the internal heat generation parameter and

the pressure gradient. The third grade material parameter diminishes the

dominance of the heat transfer irreversibility.

• In the MHD flow with porous media, the Bejan number is identically 0

irrespective of the value of any parameter, indicating the dominance of the

irreversibility due to the combined effects of the magnetic field, the third

grade fluid viscous dissipation and the porous medium porosity over the

irreversibility due to heat transfer.

General Observation:

• Due to coupling, fluid velocity and fluid temperature decrease (increase)

together in most situations.

• An interesting phenomenon that has been observed is that parameters that

increase (decrease) the fluid velocity and the fluid temperature increase

(decrease) the rate of entropy generation.

6.3 Recommendations

Sensitivity analysis of the flows has revealed that the effects of the embedded

parameters on the thermo-fluid flows cannot be neglected. Thus, efficient and

appropriate regulation of the parameters such as the Hartmann number, the

Brinkmann number, the porous medium shape parameter, the third grade ma-
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terial parameter, the variable viscosity parameter and the exothermic chemical

reaction parameter, inevitably results in significant entropy generation minimiza-

tion that would lead to optimal performance of thermomechanical systems.

6.4 Future Research

The future is pregnant with multiple possibilities. This work considered one

dimensional laminar flow. Future work may involve:

• Modification of the studied problems to two and three dimensional laminar

flow of third grade fluid or other non-Newtonian fluids like the couple stress

fluid, the Casson fluid, power law fluid, and so on.

• As we have considered only Poiseuille flow, in future Couette flow can be

considered.

• Application of other different solution techniques like the Hamotopy anal-

ysis method, the Finite element method, and others.
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Appendix A
SQLM code
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with(LinearAlgebra): 

with(plots): 

read "CHEB.txt": 

Digits := 32: 

Nx := 50: # Number of collocation points. 

a := -1: b :=1: # eta in [0,10], domain of eta. 

Leta := b-a: # Length of the domain of eta 

D1 := d(Nx)[1]: # Original Chebychev differentiation matrix 

x := d(Nx)[2]: # Guess Labato points 

y := (1/2)*Leta*x+(a+b)*(1/2): #We transform the interval from [0,10] to [-1,1]  

                                #for which we can implement spectral method 

y := Transpose(y):      

D1 := 2*D1/Leta:   #Scaled Chebychev differentiation matrix. 

D1 := convert(D1, Matrix): # convert the vector to matrix, just for coding purpose. 

D2 := MatrixPower(D1, 2): #Second derivative of the scaled Chebychev differentiation matrix 

#Define the variables now 

alpha:=0.1: 

Omega:=0.1: 

delta:=0.1: 

#Gr:=0.5: 

omega:=evalf(Pi/4): 

G:=1: 

Br:=0.5: 

lambda:=0.1: 

epsilon:=0.1: 

beta[1]:=0.1: 

beta[2]:=0.1: 

Bi:=5.0: 

m:=0.5: 
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CODE := [0.2,0.4,0.6]: 

COL:=["Red", "Black", "Blue", "Green"]: 

#LS := [dot, dash, dashdot, solid, longdash]: 

LS := [solid, solid, solid, solid, solid]: 

ones := Vector[column](Nx+1, fill = 1): #a unit column vector need during coding 

ID := IdentityMatrix(Nx+1): # #Identity matrix need during coding 

iterations := 10: # Number 

 

#start the iteration  

for j from 1 to nops(CODE) do    

 Gr:=CODE[j]: 

 ur:=y->  -(1/2)*G*y^2-G*(beta[1]+beta[2])*y/(beta[1]-beta[2]+2) 

   -(1/2)*G*(4*beta[1]*beta[2]-3*beta[1]+3*beta[2]-2)/(beta[1]-beta[2]+2): 

 thetar:=y-> 0: 

 #Next convert the initial guesses into pointwise functions 

  F[1] := Array([seq(ur(y[i]), i = 1 .. Nx+1)]): 

  T[1] := Array([seq(thetar(y[i]), i = 1 .. Nx+1)]): 

  F[2] := MatrixMatrixMultiply(D1, F[1]): 

  F[3] := MatrixMatrixMultiply(D2, F[1]): 

  T[2] := MatrixMatrixMultiply(D1, T[1]): 

  T[3] := MatrixMatrixMultiply(D2, T[1]): 

  for  n from 1 to iterations do  

   #Define the coeffificents, i.e the alpha's 

   fprev := F[1]: 

   tprev := T[1]: 

   p[1, n] := exp~(-alpha*T[1])+6*Omega*F[2]^~2: 

   p[2, n] := 12*Omega*F[3]*~F[2]-alpha*exp~(-alpha*T[1])*~T[2]: 

   p[3, n] := -delta*exp~(-alpha*T[1]): 

   p[4, n] := -alpha*exp~(-alpha*T[1])*~F[2]: 
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   p[5, n] := -alpha*exp~(-alpha*T[1])*~F[3]+alpha^2*exp~(-

alpha*T[1])*~F[2]*~T[2] 

              +delta*alpha*exp~(-alpha*T[1])*~F[1]+Gr*sin(omega)*ones: 

   p[6, n] := 2*Br*F[2]*~(exp~(-

alpha*T[1])+2*Omega*F[2]^~2)+4*Br*F[2]^~3*Omega: 

   p[7, n] := 2*delta*Br*exp~(-alpha*T[1])*~F[1]: 

   p[8,n]  := 1*ones: 

   p[9, n] := -Br*F[2]^~2*alpha*~exp~(-alpha*T[1]) -delta*Br*alpha*exp~(-

alpha*T[1])*~F[1]^~2 

   +exp~(T[1]/~(epsilon*T[1]+1*ones))*lambda*~((epsilon*T[1]+1*ones)^~(m-

1)*epsilon*m+(epsilon*T[1]+1*ones)^~(m-2)): 

 

   #Define the ODEs in pointwise form as follows 

   ODE[1]:= exp~(-alpha*T[1])*~F[3]+6*Omega*F[3]*~F[2]^~2-alpha*exp~(-

alpha*T[1])*~F[2]*~T[2] 

            -delta*exp~(-alpha*T[1])*~F[1]+Gr*T[1]*sin(omega)+G*ones: 

   ODE[2]:=T[3]+Br*F[2]^~2*~(exp~(-

alpha*T[1])+2*Omega*F[2]^~2)+delta*Br*exp~(-alpha*T[1])*~F[1]^~2 

           +lambda*(epsilon*T[1]+1*ones)^~m*~exp~(T[1]/~(epsilon*T[1]+1*ones)): 

 

   #Now we define the vector on the RHS's 

   RHS_F:= (p[1, n]*~F[3]+ p[2, n]*~F[2] + p[3, n]*~F[1]+ p[4, n]*~T[2] + p[5, 

n]*~T[1])  - ODE[1]: 

 

       RHS_T:= (p[6, n]*~F[2] + p[7, n]*~F[1]+ p[8, n]*~T[3] + p[9, n]*~T[1])  - ODE[2]: 

 

       #Next we define the bigger matrix 

       A11 := MatrixMatrixMultiply(DiagonalMatrix(p[1, n]), D2) 

     +MatrixMatrixMultiply(DiagonalMatrix(p[2, n]), D1) 

+MatrixMatrixMultiply(DiagonalMatrix(p[3, n]), ID): 

   A12 :=  MatrixMatrixMultiply(DiagonalMatrix(p[4, n]), D1) + 

MatrixMatrixMultiply(DiagonalMatrix(p[5, n]), ID): 
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   A21 := MatrixMatrixMultiply(DiagonalMatrix(p[6, n]), D1) 

+MatrixMatrixMultiply(DiagonalMatrix(p[7, n]), ID): 

   A22 := MatrixMatrixMultiply(DiagonalMatrix(p[8, n]), D2) 

+MatrixMatrixMultiply(DiagonalMatrix(p[9, n]), ID): 

 

   #Imposing boundary conditions 

 

   A11[Nx+1 .. Nx+1, 1 .. -1] := beta[1]*exp~(-alpha*A12[Nx+1 .. Nx+1, 1 .. -

1])*~(D1[Nx+1 .. Nx+1, 1 .. -1])-ID[Nx+1 .. Nx+1, 1 .. -1]: 

   A12[Nx+1 .. Nx+1, 1 .. -1] := 0: 

   #A12[Nx+1 .. Nx+1, 1 .. -1] := -beta[1]*alpha*exp~(-alpha*A12[Nx+1 .. Nx+1, 1 .. 

-1])*~(D1[Nx+1 .. Nx+1, 1 .. -1]): 

   RHS_F[Nx+1] := 0: 

    

   A21[Nx+1 .. Nx+1, 1 .. -1] := 0: 

   A22[Nx+1 .. Nx+1, 1 .. -1] := D1[Nx+1 .. Nx+1, 1 .. -1]+Bi*ID[Nx+1 .. Nx+1, 1 .. -1]: 

   RHS_T[Nx+1] := 0: 

 

   A11[1 .. 1, 1 .. -1] := beta[2]*exp~(-alpha*A12[1 .. 1, 1 .. -1])*~(D1[1 .. 1, 1 .. -1])-

ID[1 .. 1, 1 .. -1]: 

   A12[1 .. 1, 1 .. -1] := 0:   

   #A12[1 .. 1, 1 .. -1] := -beta[1]*alpha*exp~(-alpha*A12[1 .. 1, 1 .. -1])*~(D1[1 .. 1, 

1 .. -1]):   

   RHS_F[1] := 0: 

    

   A21[1 .. 1, 1 .. -1] := 0: 

   A22[1 .. 1, 1 .. -1] := D1[1 .. 1, 1 .. -1]+Bi*ID[1 .. 1, 1 .. -1]: 

   RHS_T[1] := 0: 

 

   #Put all the RHS as a single column vector 
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    RR := Matrix([seq(RHS_F[i], i = 1 .. Nx+1), seq(RHS_T[i], i = 1 .. Nx+1)]): 

    RR := convert(RR, Vector): 

    #Put the bigger matrix entries into it 

   AA := Matrix([[A11, A12], [A21, A22]]): 

   #Solve the system of equation AA*unknows = RR 

   SOL := LinearSolve(AA, RR): 

 

   #Extract the solution for the F, G,Theta and Phi 

   F[1] := Vector[column]([seq(SOL[i], i = 1 .. Nx+1)]): 

   F[2] := MatrixMatrixMultiply(D1, F[1]): 

       F[3] := MatrixMatrixMultiply(D2, F[1]):  

   

   T[1] := Vector[column]([seq(SOL[i], i = (Nx+1)+1 .. 2*(Nx+1))]); 

   T[2] := MatrixMatrixMultiply(D1, T[1]); 

   T[3] := MatrixMatrixMultiply(D2, T[1]); 

  od:#End of iteration 

 NY:= [ seq(y[i],i=1..Nx+1)]:  

 Vel[j]:= [ seq(F[1][i],i=1..Nx+1)]:  

 VelPlot[j]:=plot(NY,Vel[j],color=COL[j],legend  = CODE[j] ,axes=box,labels=["y","u(y)"] ,linestyle=LS[j]) :   

 Tem[j]:= [ seq(T[1][i],i=1..Nx+1)]:  

 TemPlot[j]:=plot(NY,Tem[j],color=COL[j],legend  =CODE[j] ,axes = box,labels=["y","theta(y)"] 

,linestyle=LS[j]) :  

od: 

display(seq(VelPlot[i], i = 1 .. nops(CODE))); 

display(seq(TemPlot[i], i = 1 .. nops(CODE))); 
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