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Abstract 
 

Our discussion starts with the study of convergence and clustering of filters initiated in 

pointfree setting by Hong,  and  then  characterize  compact and  almost  compact  frames 

in terms of these filters. We consider the strict extension and show that tQL is a zero- 

dimensional compact frame, where Q denotes the set of filters in L. Furthermore, we study 

the notion of general filters introduced by Banaschewski and characterize compact frames 

and almost compact frames using them. For filter selections, we consider F−compact and 

strongly F−compact frames and show that lax retracts of strongly F−compact frames are 

also strongly F−compact. We study further the ideals Rs(L) and RK(L) of the ring of real-

valued continuous functions on L, RL. We show that Rs(L) and RK(L) are improper ideals 

of RL if and only if L is compact. We consider also fixed ideals of RL and show that L 

is compact if and only if every ideal of RL is fixed if and only if every maximal ideal of 

RL is fixed. Of interest, we consider the class of isocompact locales, which is larger that the 

class of compact frames. We show that isocompactness is preserved by nearly perfect localic 

surjections. We study perfect compactifications and show that the Stone-Čech  

compactifications  and  Freudenthal  compactifications  of  rim-compact  frames are perfect. 

We close the discussion with a small section on Z−closed frames and show that a basically 

disconnected compact frame is Z−closed. 
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Chapter 1 
 

Introduction and preliminaries 
 
 
1.1 Synopsis of the dissertation 

 
The notion of compactness is one of the most studied concepts both in classical and point- 

free topology.  The formal definition of compactness in spaces was brought by Fréchet (see 

[28]), and in frames compactness was studied by several authors namely Banaschewski, 

Mulvey, Hong, and Baboolal just to name a few. The purpose of this dissertation is to collate 

and study variants of compactness in pointfree setting. 

 
 
The dissertation consist of 7 chapters, and is structured as follows: In the first chapter, we 

give some preliminary definitions, notations and basic results to be used in the upcoming 

chapters.  Chapter 2 introduces the concept of compactness in frames and is characterised 

in terms of convergence and clustering of filters. This idea was introduced by Hong in [30]. 

We also discuss the concept of almost compactness and show that in a regular frame, these 

two concepts coincide. 
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In chapter 3, we first discuss strict extensions of frames and give some of the properties of 

strict extensions. In the second section of this chapter we use the paper by Banaschewski 

and Hong [9] to construct strict extensions of frames related to a set of filters. This con- 

struction was first introduced by Hong in [30] where he also constructed a zero-dimensional 

compactification of a zero-dimensional frame. We end this chapter with a constructive com- 

pactification of completely regular frames. 

 
 
The work in chapter 4 is based on the papers [16] and [12]. The focus is mainly about general 

filters on frames, which were introduced by Banaschewski in [7]. Just as in [30], we use 

general filters to characterise compactness and almost compactness. The third section in this 

chapter is based on the paper by Banaschewski and Hong in [12], where the notion of F-

compactness is introduced. 

 
In chapter 5 we study ideals in RL, the ring of real-valued continuous functions on a regular 

frame L. The concept of weakly spatial frames is introduced and we show that fixed and 

strongly fixed ideals are equivalent in the case of weakly spatial frames. 

The work in chapter 6 is based on the paper [23]. Dube, Naidoo and Ncube introduced the 

concept of isocompactness in the category of locales. In chapter 7, we first discuss perfect 

compactifications of frames. This work was introduced by Baboolal in [2]. 
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1.2 Definitions and preliminary results 
 
Definition 1.2.1. A partially ordered set is a set P with a binary relation ≤ such that for 

all x, y, z ∈ P , the following conditions are satisfied: 

i. Reflexivity: x ≤ x; 

ii. Antisymmetry: if x ≤ y and y ≤ x; then x = y; 

iii. Transitivity: if x ≤ y and y ≤ z; then x ≤ z. 

Definition 1.2.2. Let A and B be partially ordered sets.  Monotone increasing maps 

f : A → B and g : B → A are said to be (Galois) adjoint if f (y) ≤ x if and only if g(x) 

≤ y.  This condition is equivalent to fg(y) ≤ y and gf (x) ≥ x for all x ∈ A,  y ∈ B. We say 

f is the left adjoint of g and g is the right adjoint of f . 
 

The lower bound of a nonempty subset S  of a partially ordered set P  is an element l ∈ 

P such that l ≤ s for all s ∈ S. Similarly, the upper bound of a subset S of a partially 

ordered set P is an element u ∈ P such that u ≥ s for all s ∈ S. A partially ordered set 

P is called a lattice if every pair of elements has a unique least upper bound (supremum) 

and a unique greatest lower bound (infimum). A lattice L is called a complete lattice if 

every subset S of L has a supremum and infimum in L. 
 
Definition 1.2.3. A frame is a complete lattice L satisfying the distributive law 

 

a ∧ (
V 

S) =  
V

{a ∧ s  | s ∈ S}, where a ∈ L and S ⊆ L. 

We denote the bottom element of a frame L by 0 (or 0L), and the top element by 1 (or 

1L). 
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One example of a frame comes from the lattice of open subsets of a topological space X, 

denoted O(X) and ordered by set inclusion ⊆ with finite meets and arbitrary joins given 

by intersection and union of sets, respectively. 

Definition 1.2.4. Let L and M be frames. Then a map h : L → M is called a frame 

homomorphism if h preserves finite meets (including 1) and arbitrary joins (including 0). 

That is : 

 
i. h(a ∧ b) = h(a) ∧ h(b) for all a, b ∈ L; 

ii. h(
V 

S) = 
V 

h(S) for any S ⊆ L; 

iii. h(0) = 0 and h(1) = 1. 
 

For any topological spaces X and Y , a continuous map f : X → Y induces a frame 

homomorphism of O(f ): O(Y ) → O(X) which maps U ∈ O(Y ) to f −1(U ) ∈ O(X). 

For any frame homomorphism h : L → M , we say h is dense if h(a) = 0 implies a = 0 and 

we say h is codense if h(a) = 1 implies a = 1. 
 
Definition 1.2.5. For any frame homomorphism h : L → M there exists a map h∗ : M → 

L, called the right adjoint of h, defined by h∗(b) = 
V

{a ∈ L : h(a) ≤ b}. 

The right adjoint of a frame homomorphism is not necessarily a frame homomorphism, 

but it preserves arbitrary meets. We observe that h is onto if and only if hh∗ = idM . 

Definition 1.2.6. An element p in a frame L is said to be prime if p < 1 and a ∧ b ≤ 

p implies a ≤ p or b ≤ p. 

 
Denote by ΣL, the set of all prime elements of L. The set ΣL is called the spectrum of L. 

 
Definition 1.2.7. A frame L is spatial if for all a, b ∈ L such that a 1 b, there exists 

p ∈ ΣL such that a ≤ p but b 1 p. 
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V 

Definition 1.2.8. Let L be a frame. A nucleus is a map j : L → L such that for all 

a, b ∈ L : 
 

1. a ≤ j(a); 

2. j(a ∧ b) = j(a) ∧ j(b); 

3. j2(a) = j(a). 

The set Fix(j) = {x ∈ L | j(x) = x} is a frame with meet as in L and join j(  S) for each 

S ⊆ Fix(j). Furthermore, j : L  → Fix(j)  is  a  quotient  map  with  the  inclusion Fix(j) '→ 
L as its right adjoint. 

Definition 1.2.9. The pseudocomplement of an element a in a frame L is the element 

given by a∗ = 
V

{ x ∈ L | x ∧ a = 0}. 

If a∗ = 0 in a frame L , we say a is a dense element, and we shall denote by D(L) the set 

of all dense elements in the frame L. Furthermore; for a frame L, the set BL = {a ∈ L | 

a∗∗ = a} is called the Booleanization of L. In fact, BL forms a frame. 

Definition 1.2.10. We call an element a in a frame L complemented if there exists an 

element aI ∈ L such that a ∧ aI = 0 and a ∨ aI = 1. 

Throughout this work, we shall denote by C(L) the set of all complemented elements of a 

frame L. 

 
Well below, rather below and completely below relations 

 
Definition 1.2.11. In a frame L, we say an element a is well below b ∈ L, written a « b, 

if for any S ⊆ L with b ≤ 
V 

S, there exists a finite T ⊆ S such that a ≤ 
V 

T . 
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Definition 1.2.12. In a frame L, we say an element a ∈ L is rather below an element 

b ∈ L, written a ≺ b, if a∗ ∨ b = 1 or equivalently, 

a ≺ b if and only if there exists c ∈ L such that a ∧ c = 0 and c ∨ b = 1 (c is called the 

separating element ). 
 

Lemma 1.2.1. In a frame L, the following properties are satisfied for ≺: 
 

1. a ≺ b implies a ≤ b. 

2. 0 ≺ a ≺ 1 for all a ∈ L. 

3. x ≤ a ≺ b ≤ y implies x ≺ y. 

4. If a ≺ b then b∗ ≺ a∗. 

5. If a ≺ b then a∗∗ ≺ b. 

6. If a1, a2 ≺ b1, b2, then a1 ∨ a2 ≺ b1 ∨ b2 and a1 ∧ a2 ≺ b1 ∧ b2. 

Definition 1.2.13. Let L be a frame. Then we say an element a is completely below 

an element b, written a ≺≺ b, if there are ar  ∈ L (r rational, 0 ≤ r ≤ 1) such that a0 

= a,  a1 = b and ar ≺ as for r < s. 

 

Lemma 1.2.2. In a frame L, the following properties are satisfied for ≺≺: 
 

1. a ≺≺ b implies a ≺ b. 

2. a ≺≺ b implies a ≤ b. 

3. 0 ≺≺ a ≺≺ 1 for all a ∈ L. 

4. x ≤ a ≺≺ b ≤ y implies x ≺≺ y. 

5. If a ≺≺ b then b∗ ≺≺ a∗. 
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U 

U 

6. If a ≺≺ b then a∗∗ ≺≺ b. 

7. If a1, a2 ≺≺ b1, b2, then a1 ∨ a2 ≺≺ b1 ∨ b2 and a1 ∧ a2 ≺≺ b1 ∧ b2. 

Proposition 1.2.1. The relation ≺≺ is interpolative, that is, for all a ∈ L : a ≺≺ 

b implies there exists c ∈ L such that a ≺≺ c ≺≺ b. 
 
≺≺ is the largest interpolative relation contained in ≺. 

Definition 1.2.14. We say a frame L is : 
 

1. continuous if a = 
V

{x ∈ L | x « a} for all a ∈ L. 

2. regular if a = 
V

{x ∈ L | x ≺ a} for all a ∈ L. 

3. completely regular if a = 
V

{x ∈ L | x ≺≺ a} for all a ∈ L. 

Ideals and filters 
 

For an element a in a frame L, set ↑a = {x ∈ L | x ≥ a} and ↓a = {x ∈ L | x ≤ a}. Then 

we say a subset U ⊆ L is an up-set if ↑U = {↑a | a ∈ U } = U and we say D ⊆ L is a down-

set if ↓D =  {↓a | a ∈ D} = D. We shall denote by DL the set of all down-sets of a frame 

L. 
 
Definition 1.2.15. An ideal in a frame L is a subset I ⊆ L such that : 

 
i. 0 ∈ I; 

ii. a, b ∈ I implies a ∨ b ∈ I; 

iii. b ≤ a and a ∈ I implies b ∈ I. 
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Proposition 1.2.2. The set I(L) of all ideals in a frame L, ordered by the inclusion, is a 

frame. 

 
Proof. Let (Ij)j∈J be a collection of ideals in L. 

i. 0 ∈ Ij for all j ∈ J implies 0 ∈ 
n

j∈J Ij; 

ii. a, b ∈ 
n

j∈J Ij implies a, b ∈ Ij for all j ∈ J which implies a ∨ b ∈ Ij for all j ∈ J and 

thus a ∨ b ∈ 
n

j∈J Ij; 

iii. a ≤ b and b ∈ 
n

j∈J Ij implies b ∈ Ij for all j ∈ J which implies a ∈ Ij for all 

j ∈ J and thus a ∈ 
n

j∈J Ij. 

Hence the intersection of ideals is an ideal. Now for the join of a collection of ideals (Ij)j∈J , 

define 

V
j∈J Ij = {

V 
X | X finite, X ⊆ 

U
j∈J Ij}. We show that this set is an ideal. 

Take 
V 

X, 
V 

Y ∈ 
V

j∈J Ij, then 

(
V 

X) ∨ (
V 

Y ) = 
V

{x ∨ y | x ∈ X, y ∈ Y } ∈ 
V

j∈J Ij. Since {x ∨ y | x ∈ X, y ∈ Y } is a 

finite subset of 
U

j∈J Ij. Now, let a ≤ 
V 

X for some a ∈ L and 
V 

X ∈ 
V

j∈J Ij. Then 

a = a ∧ (
V 

X) = 
V

{a ∧ x | x ∈ X}, and {a ∧ x | x ∈ X} is a finite subset of 
U

j∈J Ij, hence 

a ∈ 
V

j∈J Ij. 

If K is an ideal containing all of the Ij, then 
V 

X ∈ K for any finite X ⊆ 
U

j∈J Ij. 

Now let (Ij), K  be ideals in L. If a ∈ (
V

j∈J Ij) ∩ K,  then a  =  
V 

X  for some finite 
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V
 
u 
V
 
u 
V 

X ⊆ 
U

j∈J Ij. But X ⊆ 
U

j∈J (Ij ∩ K), hence a = 
V 

X ∈ 
V

j∈J (Ij ∩ K). Conversely, 

V
(Ij 

n 
K) = {

V 
X | X finite, X ⊆ 

u
(Ij ∩ K)} 

j∈J j∈J 

= { X | X finite, X ⊆ ( Ij) ∩ K} 
j∈J 

⊆ { X | X finite, X ⊆ Ij} ∩ K 
j∈J 

 

= ( Ij) ∩ K. 
j∈J 

 
Hence I(L) is a frame. 

 
Definition 1.2.16. A filter in a frame L is a subset F ⊆ L such that : 

 
i. 1 ∈ F  and 0 ∈/ F ; 

ii. a, b ∈ F implies a ∧ b ∈ F ; 

iii. b ≥ a and a ∈ F implies b ∈ F . 

Definition 1.2.17. We say a filter F in a frame L is : 
 

1. prime if x ∨ y ∈ F implies x ∈ F or y ∈ F for each x, y ∈ L; 

2. completely prime if 
V 

S ∈ F implies S ∩ F /= ∅ for each S ⊆ L; 

3. Boolean if for each x ∈ F , there is y ∈ F ∩ C(L) such that y ≤ x; 

4. an ultrafilter if whenever G is a filter in L with F ⊆ G, then F = G. 
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Lemma 1.2.3. If F is a filter in a frame L, then the set 
 

secF = {x ∈ L | x ∧ a /= 0 for all a ∈ F } is also a filter. 
 
Proof.  Since 0 ∧ a = 0 for all a ∈ F , then 0 ∈/  secF  and 1 ∈ secF  since 1 ∧ a /= 0 for all 

a ∈ F . Now let x, y ∈ secF , then x ∧ a /= 0 and y ∧ a /= 0 for all a ∈ F . Therefore 

 
(x ∧ y) ∧ a = (x ∧ a) ∧ (y ∧ a) 

/= 0 for all a ∈ F implies x ∧ y ∈ secF. 

 
 
Lastly, if x ∈ secF and x ≤ y for some y ∈ L, then x ∧ a ≤ y ∧ a for all a ∈ F . But 

x ∧ a /= 0 which implies that y ∧ a /= 0 and hence y ∈ secF . Thus, secF is a filter. 

Furthermore, we observe that F ⊆ secF since x ∧ y /= 0 for all x, y ∈ F . 
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Chapter 2 

Compactness in frames 

In this chapter we study convergence and clustering of filters and characterise compact 

frames and almost compact frames in terms of these filters. Compactness plays an im- 

portant role both in classical topology and pointfree topology. Our interest is to focus on 

compactness in the area of pointfree topology. 

 
 
2.1 Background 

 
While  Fréchet  [28]  introduced  the  definition  of  compactness  in  spaces,  Alexandroff  and 

Urysohn [1] generalized this definition in terms of open covers in spaces. This generalization 

then gave rise to the study of compactness in frame setting, and several authors have since 

studied and expanded this concept (see [7], [30], [12], [20]). 

Definition 2.1.1. A cover of a frame L is a subset A ⊆ L such that 
V 

A = 1. 

Definition 2.1.2. A frame L is said to be compact if every cover of L has a finite subcover. 

That is, L is compact if for every subset A ⊆ L with 
V 

A = 1, there exists a finite subset 

B ⊆ A with 
V 

B = 1. 
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V 

The following example is taken from [35] on page 131. 
 
Example 2.1.1. [35] The set I(L) of all ideals in a frame L is compact. Let (Ij)j∈J be a 

cover of I(L).  Then 1 ∈ L = 1I(L) = 
V

j∈J Ij. Hence there exists a finite X ⊆ 
U

j∈J Ij such that 

1 = 
V 

X. But since X is finite, X ⊆ 
U

j∈J0 
Ij for some finite J0 ⊆ J. Hence 

1 = 
V 

X ∈ 
V

j∈J0 
Ij =⇒ 1I(L) = L = 

V
j∈J0 

Ij. 

Proposition 2.1.1. If L is a compact frame, then the up-set ↑a of any element a in L is 

compact. 

Proof. Suppose L is compact and let a ∈ L. Take any cover A of ↑a, then A = 1↑a = 1L. This 

means that A is a cover of L, and since L is compact there exists a finite B ⊂ A such that 
V 

B = 1L = 1↑a. Hence ↑a is compact. 

Observation 2.1.1. If a ≤ b and ↑a is compact in a frame L, then ↑b is compact. To see this, 

we note that ↑a ⊇↑b and a cover for ↑a is also a cover for ↑b. 

Lemma 2.1.1. [19] Let a and b be elements of a frame L. If ↑a and ↑b are both compact, 

then ↑(a ∧ b) is compact. 

Proof. Let C be a cover of ↑(a∧b). Then {a∨x | x ∈ C} is a cover of ↑a and {b∨x | x ∈ C} is 

a cover of ↑b.    By compactness of ↑a and ↑b, there exists finite S, T   ⊆ C such that 

a ∨ 
V 

S = 1 and b ∨ 
V 

T = 1. Therefore 

(a ∨ 
V 

S) ∧ (b ∨ 
V 

T ) = 1. 

Applying the distributivity law repeatedly we arrive at 
 

(a ∧ b) ∨ (b ∧ 
V 

S) ∨ (a ∧ 
V 

T ) ∨ (
V 

S ∧ 
V 

T ) = 1. 

Each of the terms in the brackets is below 
V

(S ∪ T ), consequently 
V

(S ∪ T ) = 1 
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i=
 

i=
 

i=
 

If the codomain of a codense frame homomorphism h : L → M is compact, then we know 

that the source is also a compact frame. We capture this nice result in the following theorem. 

Theorem 2.1.1. Let h : L → M be a codense frame homomorphism. If M is compact, then 

L is also compact. 

Proof. Let A be a cover of L, then 
V 

A = 1L and since frame homomorphisms preserve top 

elements, it follows that 
V 

h(A) = h(
V 

A) = h(1L) = 1M . This means that h(A) is a cover 

of M .  M is compact, therefore there exists a finite B ⊆ h(A) such that 
V 

B = 1M ; say 

B = {h(a1), ...,  h(an)}.  Now, 1M = 
V

{h(a1), ...,  h(an)} = 
Vn h(ai) = h(

Vn ai) which 

implies 
Vn ai = 1L  since h is codense.  Thus {a1, ...,  an} is a finite subcover of A, and 

hence L is compact. 
 
 
 
 

2.2 Convergence of filters in frames 
 
In this section, we define the convergence and clustering of a filter introduced in [30] by 

S.S Hong. 
 
Definition 2.2.1. A filter F in a frame L is said to be: 

 
 

1. convergent if F meets every cover C of L. 
 

2. clustered if secF meets every cover C of L. 
 

Lemma 2.2.1. [30] Let F be a filter in a frame L. 
 

1. If F is completely prime, then F is convergent; 
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2. If F is convergent, then F is clustered; 
 

3. A filter containing a completely prime filter is convergent; 
 
 
 
Proof. 1. Suppose F is a completely prime filter in L, then for any cover C  of L, 

V 
C ∈ F implies C ∩ F /= ∅ since F is completely prime and hence F is convergent. 

2. Suppose F  is convergent filter in L,  then for any cover C  of L,  C ∩ F  /= ∅.  Hence 

C ∩ secF /= ∅ since F ⊆ secF . Therefore F is clustered. 

3. Suppose F is a filter in L containing a completely prime filter G, then for any cover 

C  of L, 
V 

C ∈ G implies C ∩ G /= ∅ and hence C ∩ F  /= ∅. 
 

 
 

Lemma 2.2.2. [30] If F is a maximal filter in a frame L, then F is convergent if and 

only if it is clustered. 

 

Proof. (⇒): Let F be a convergent maximal filter in a frame L and C be any cover of L. 

Then C ∩ F  /= ∅, since F  is convergent.  But F  is maximal and therefore F  = secF  implies 

secF ∩ C /= ∅, and hence F  is clustered. 

(⇐):   Suppose F is a clustered maximal filter in L. Then for any cover C of L, secF ∩ C /= 

∅ implies C ∩ F /= ∅ since F = secF . Hence, F is convergent. 
 
Recall that in a frame L, we say A ⊆ L refines B ⊆ L if for any a ∈ A, there exists 

b ∈ B such that a ≤ b.  It is also worth noting that If C is a cover of L that refines B, then B 

is also a cover of L. 
 

Proposition 2.2.1. [30] A filter F in a frame L is clustered if and only if 
 

V
{x∗ | x ∈ F } = 1. 



15 
 

V 

V 

V 

V
 
V 

Proof. (⇒): Suppose F is a clustered filter in the frame L, then secF meets every cover of 

L. If {x∗ | x ∈ F } = 1, then there exists xI ∈ L such that xI ∈ secF ∩{x∗ | x ∈ F } which 

implies that xI ∈ secF and xI ∈ {x∗ | x ∈ F }.  But xI ∈ secF  implies xI = x∗ such that x 

∈ F and this implies that xI = x∗ ∈ secF and x ∈ F implies xI ∧ x = x∗ ∧ x /= 0 which is 

a contradiction. 

(⇐) :    Suppose     {x∗ | x ∈ F } /= 1.  If C  is a cover of L such that secF ∩ C = ∅, then for 

any c ∈ C there exists x ∈ F such that c ∧ x = 0. Which implies c ≤ x∗ meaning C refines 

{x∗ | x ∈ F } and since C is a cover of L , this means that {x∗ | x ∈ F } is also a cover of 

L, contrary to the assumption {x∗ | x ∈ F } 
= therefore F is clustered. 

1. Thus secF meets every cover of L, and 
 

 
Theorem 2.2.1. [20] A frame is compact if and only if each of its prime up-sets converges. 

 

Proof. (⇒): Suppose L is a compact frame, U ⊆ L a prime upset and C ⊆ L a cover of L. 

Then there exists a finite K ⊆ C such that  K = 1. But 1 ∈ U implies   K ∈ U which implies 

K ∩ U  /= ∅, and hence C ∩ U  /= ∅. 

(⇐): Suppose that each prime upset in the frame L converges and let C be a cover of L. 

If C has no finite subcover, then 

U = {x∗ ∈ L | x 1 
V 

S for any finite S ⊆ C} 

is an upset and U ∩ C = ∅ which is a contradiction. 
 

Next we consider the class of almost compact frames, we start with the following definition. 
 
Definition 2.2.2. A frame L is almost compact if for any cover C of L, there is a finite 

T ⊆ C with (
V 

T )∗ = 0. 

In the definition above, we observe that (
V 

T )∗ = 0 which implies that (
V 

T )∗∗ = 1, that 

is, 
V 

T is dense. 
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V
 
V 

V 

V 

i=
 

i i=
 

i 

Remark 2.2.1. Compactness implies almost compact since for any cover C of L with a 

finite subcover T ,    T = 1.  Then (   T )∗ = 0 and hence almost compact.  Therefore the class 

of compact frames is contained in the class of almost compact frames. 

Proposition 2.2.2. [30] A frame L is almost compact if and only if for any filter F in L, 
V

{x∗ | x ∈ F } = 1 . 
 
Proof. (⇒): Suppose L is almost compact and let F be any filter in L. If i∈I {xi

∗ | xi ∈ 

F } = 1,  then there exists {x∗
i   | xi ∈ F,  i = 1, 2, . . . , n} ⊆ {xi

∗   | xi ∈ F, i ∈ I} such that 

(
Vn x∗)∗ = 0  which implies that  

  n x∗∗ = 0 implying 0 ∈ F , which is a contradiction. 

(⇐):  Suppose that for any filter F  in L, 
V

{x∗ | x ∈ F } = 1.  Then by Proposition 2.2.1 

F  is clustered.  Thus for any cover S  of L, we have secF ∩ S /= ∅.  Pick a finite number of 

elements xs1 ,  xs2 , ..., xsn  ∈ secF ∩ S.  Then for each xsi  ∈ secF ∩ S, there is x∗
si   such that 

xsi  ∧ x∗
si  = 0 and xsi  ∨ x∗

si   is dense.  Now T  = {xsi  ∨ xs
∗
i  | i = 1, 2, ..., n} is a finite set such 

that (
V 

T )∗ = 0. Thus L is almost compact. 

Corollary 2.2.1. [30] For a frame L, the following are equivalent : 
 
 

1. L is almost compact; 
 

2. every filter in L is clustered; 
 

3. every maximal filter in L is convergent. 
 

Proof. (1) ⇒ (2): Suppose L is almost compact and F is a filter in L. If F does not 

cluster, then by Proposition 2.2.1, {x∗ | x ∈ F } = 1 which implies that {x∗ | x ∈ F } is a 

cover of L, and since L is almost compact, there exist {x∗1, x∗2,  . . . , x∗
n} ⊆ {x∗ | x ∈ F } such 

that  x∗1
∗  ∧ x∗2

∗  ∧ . . . ∧ x∗
n

∗   =  0.   But  x  ≤ x∗∗  for  all  x  ∈ F  and  therefore  x∗∗  ∈ F  which 

implies that x∗1
∗  ∧ x∗2

∗  ∧ . . . ∧ x∗
n

∗  ∈ F , contrary to 0 ∈/ F .  Hence, F  clusters. 

(2) ⇒ (3): This follows immediately from Lemma 2.2.2. 
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V 
(3) ⇒ (1): If every maximal filter filter F in L converges. Then F ∩ C /= ∅ for any cover 

C ⊆ L. By Lemma 2.2.2 F is clustered and so {x∗ | x ∈ F } /= 1. Then by Proposition 

2.2.2 L is almost compact. 
 
 
 

Corollary 2.2.2. [30] For a regular frame L, the following are equivalent : 
 
 

1. L is compact; 
 

2. every filter in L is clustered; 
 

3. every maximal filter in L is convergent. 
 

Proof. It follows immediately from Proposition 2.2.2. 
 
 

We show below that in a regular frame, compactness and almost compactness coincide. 
 

Proposition 2.2.3. [30] A regular almost compact frame is compact. 
 

Proof. Suppose a regular frame L is almost compact and let 
( V

{xi ∈ L | i ∈ I}
  

= 1. Since 

L is regular, xi = 
V

{yji ≺ xi, ji ∈ Ji} and therefore 
V

{yji ≺ xi, ji ∈ Ji, i ∈ I} = 1. L is 

almost compact, therefore there exists a finite K ⊆ 
U

{Ji | i ∈ I} such that 
( V

{yk | k  ∈ 

K}
 ∗∗  = 1.  Clearly, 

( V
{yk | k  ∈ K}

 ∗∗   ≺ 
( V

{xi | k  ∈ Ji for k  ∈ K}
 
, that is, 

V
{xi | k 

∈ Ji for k ∈ K} = 1 and hence L is compact. 

Next we consider maps that transport filters, in particular we consider these maps which 

will map filters in the domain to filters in the codomain. These maps have been considered 

by Hong in [30]. 

Lemma 2.2.3.  [30]Let h : L → M be a frame homomorphism. 

 
1. For any filter F in M , h−1(F ) is again a filter in L. 
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2. If h is dense, then for any filter F in L, h(F ) is a filter base in M . 
 

3. If h is dense, onto and F is a filter in L, then h(F ) is a filter in M . 
 

Proof.     1. For any frame homomorphism, h(1) = 1 ∈ F so that 1 ∈ h−1(F ).    Let h(x), 

h(y) ∈ F . Since F is a filter, it follows that h(x) ∧ h(y) ∈ F which implies that h(x 

∧ y)  ∈ F  so that x ∧ y  ∈ h−1(F ).   That is,  x ∧ y  ∈ h−1(F ) whenever h(x) ∧ h(y) 

∈ F . Furthermore, if x ∈ h−1(F ) and x ≤ y for some y ∈ L, then there exist a ∈ F 

such that x = h−1(a) which implies that a ≤ h(y) and since F is a filter, then h(y) ∈ F 

. Hence y ∈ h−1(F ), and h−1(F ) is a filter. 

2. Let a = h(x), b = h(y) for some x, y ∈ F so that a, b ∈ h(F ). Since x, y ∈ F and F  

is a filter, it follows that x ∧ y  ∈ F  and so that x ∧ y  /= 0.  By denseness of h, h(x ∧ 

y) = h(x) ∧ h(y) /= 0 and h(x ∧ y) ≤ h(x), h(x ∧ y) ≤ h(y) ∈ h(F ). Therefore h(F ) is 

a filter base in M . 
 

3. Since  1 ∈ F ,  h(1) = 1  and  therefore  1M  ∈ h(F )  and  0M  = h(0) ∈/ h(F ) since h is 

dense. Next, let a, b ∈ h(F ); then there exists x, y ∈ F  such that a = h(x) and b 

= h(y). Therefore a ∧ b = h(x) ∧ h(y) = h(x ∧ b) ∈ h(F ) since x ∧ y ∈ F . Lastly, 

let a ≤ b and a ∈ h(F ). Since h is onto, there exists x, y ∈ L such that a =  h(x) 

and b  =  h(y),  that is,  h(x)  ≤ h(y).  Again by ontoness of h,  we have h∗h(x) ≤ h∗h(y) 

implying x ≤ y which implies y ∈ F since x ∈ F . Thus h(y) ∈ h(F ). Therefore h(F ) is 
a filter in M whenever F is a filter in L. 

 

 
 
The next two propositions show that convergent filters and clustered filters are preserved 

and reflected under the suitable mappings. 

Proposition 2.2.4.  [30] Let h : L → M be a frame homomorphism. 
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1. If F is a convergent filter in M , then h−1(F ) is also convergent in L. 
 

2. Assume that h is dense, codense and onto, and a filter F in L is convergent,then 

h(F ) is also convergent. 
 

Proof.   1. Take any cover C of L, then h(C) is a cover of M . Since F is convergent, we  

have  F  ∩ h(C) =/    ∅.  Take  x ∈ C  with  h(x) ∈ F ,  then  x ∈ h−1(F ) ∩ C.  Hence h−1(F 

) is convergent. 
 

2. Suppose C is a cover of M , then h−1(C) is again a cover of L since h is onto and codense. 

Therefore, there exists x ∈ h−1(C) ∩ F , which implies that h(x) ∈ C ∩ sec h(F ), 

and hence h(F ) is convergent. 
 

 
Proposition 2.2.5. [30] Let h : L → M be a frame homomorphism. 

1. If F is a clustered filter in M , then h−1(F ) is also clustered in L. 
 

2. Assume that h is dense, codense and onto, and a filter F in L is clustered, then 

h(F ) is also clustered. 
 

Proof.      1. Take any cover C of L, then h(C) is a cover of M . Since F is clustered, we have  

secF  ∩ h(C)  =/    ∅.  Take  x  ∈ C  with  h(x)  ∈ secF ,  then  x  ∈ sec  h−1(F ) ∩ C. Hence 

sec h−1(F ) is clustered. 

2. Suppose C is a cover of M , then h−1(C) is again a cover of L since h is onto and codense.   

Therefore, there exists x ∈ h−1(C) ∩ sec F , which implies that h(x) ∈ C ∩ h(F ), 

and hence sec h(F ) is clustered. 
 

 
Proposition 2.2.6. [16] A filter F  in a frame L is clustered if and only if for every cover 

C  of L, there exists x ∈ C  such that x∗ ∈/ F . 
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V 

V 

Proof.  (⇒) :   Assume that F  clusters and let C be any cover of L.  If x∗ ∈ F  ∀x ∈ C, then 

x∗∗ ∈ {y∗ | y ∈ F } and since x ≤ x∗∗, we have 

 
1 = 

V 
C 

= 
V

{x | x ∈ C} 

≤ 
V

{x∗∗ | x ∈ C} 

≤ 
V

{a∗ | a ∈ F },  where a = x∗, 

hence {a∗ | a ∈ F } = 1 and by Proposition 2.2.1, this contradicts the fact that F clusters. 

(⇐): Suppose that for any cover C of L and any filter F  in L there exists x ∈ C  with x∗ 

∈/ F .  Let F  be a filter in L.  If F  does not cluster, then    {x∗ | x ∈ F } = 1 which means 

{x∗  | x ∈ F } is a cover of L.  Now, let a ∈ {x∗  | x ∈ F } such that a∗  ∈/ F .  But a = x∗  for 

some x ∈ F , which implies that a∗ = x∗∗ ∈/ F , a contradiction. 
 
 

2.3 Compactness and separation in frames 
 
We know that regularity does not imply normality and normality does not imply regularity 

in classical topology. This is indeed the case in pointfree setting. We show below that a 

compact frame is normal if the frame is regular. 

Definition 2.3.1. A frame L is normal if for all a, b ∈ L with a ∨ b  = 1, there exists 

u, v ∈ L such that u ∧ v = 0 and a ∨ u = 1 = b ∨ v. 

Theorem 2.3.1. [35] A regular compact frame is normal. 
 

Proof. Suppose L is a regular compact frame and let a, b ∈ L such that a ∨ b = 1. Since 
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V 

  

(     

  (   

  

(     

  (   

L is regular, we have a = 
V

i∈I {xi ∈ L | xi ≺ a} and b = 
V

i∈I {yi ∈ L | yi ≺ b}. Now 

1 = a ∨ b 

=
  V

{xi ∈ L | xi ≺ a}
 

∨
 V

{yi ∈ L | yi ≺ b}
 
 

= {xi ∨ yi ∈ L | xi ≺ a, yi ≺ b}. 
i∈I 

 
Then {xi ∨ yi ∈ L | xi ≺ a, yi ≺ b} is a cover of L and since L is compact, there exists 

{xk ∨ yk ∈ L | k ∈ K} ⊆ {xi ∨ yi ∈ L | i ∈ I} where xk ≺ a and yk ≺ b for some finite 

K ⊆ I 

such that 
V

k∈K (xk ∨ yk) = 1 which implies that 
( V

k∈K (xk ∨ yk)
 ∗  = 1∗ = 0 implies 

 
k∈K x∗

k ∧ yk
∗  = 0 implies 

(  
k∈K x∗

k 
  

∧ 
(  

k∈K yk
∗  = 0. 

Put u = 
 

k∈K x∗
k  and v = 

 
k∈K yk

∗, then u ∧ v = 0   and 

u ∨ a = x∗
k    ∨ a 

k∈K 

= x∗
k ∨ a 

k∈K 

= (1) = 1. 
k∈K 

 
Similarly, 

 
 

v ∨ b = yk
∗     ∨ a 

k∈K 

= yk
∗  ∨ a 

k∈K 

= (1) = 1. 
k∈K 

 
Hence L is a normal frame. 

i∈
I 

i∈
I 
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i=
 

In the presence of regularity, normal frames are completely regular just as in the classical 

case. 

Proposition 2.3.1. [35] A regular normal frame is completely regular. 
 
Proof. Let L be a regular normal frame and a ∈ L. Take any x ≺ a, then x∗ ∨ a = 1 and 

since L is normal there exists u, v ∈ L such that u ∧ v = 0 and x∗ ∨ v = 1 = a ∨ u. But u 

∧ v = 0 implies that v∗ ≤ u, therefore a ∨ v∗ ≤ a ∨ u = 1, which implies a ∨ v∗ = 1 and hence 

v ≺ a. Also, x∗ ∨ a = 1 implies that x ≺ v. That is, x ≺ v ≺ a. Continuing the process we 

can interpolate infinitely many elements which are between a and x that are rather below 

them. Therefore a sequence indexed by rationals between 0 and 1 is formed. Thus, x ≺≺ a 

as desired. 
 
Remark 2.3.1. [35] Let L be a regular frame. Then each codense frame homomorphism 

h : M → L is one-one. 

Proposition 2.3.2. [35] Let L be a compact frame and M a regular frame. Then each 

dense frame homomorphism h : M → L is one-one. 

Proof. By the previous remark, it suffices to prove that h is codense. Suppose h is dense 

and let h(a) = 1 for some a ∈ M . But a = 
V

{x ∈ M | x ≺ a}, therefore 

1 = h(a) 

= h
 V

{x ∈ M | x ≺ a}
 
 

= 
V

{h(x) | x ≺ a}. 

Which implies that {h(x) | x ≺ a} is a cover of L and since L is compact, there exists 
 

x1,  x2,  . . . ,  xn ≺ a such that 
Vn

 

 
h(xi) = 1. 
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Now, let u = x1 ∨ x2 ∨ . . . ∨ xn, then u ≺ a implies u∗ ∨ a = 1, and h(u) = 1. Now, 

h(u∗) ≤ (h(u))∗ = 0 enforcing h(u∗) = 0 and since h is dense, u∗ = 0. 

Then from u∗ ∨ a = 1, we have a = 1. 
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Chapter 3 
 

Strict extensions of frames 
 
 
In this chapter we consider strict extensions and show that dense frame homomorphisms are 

strict extensions on a regular frame. The notion of strict extensions of frames was introduced 

by Hong [30]. Strict extensions were further considered by Banaschewski and Hong in 

terms of filters and general filters, see [9] and [11]. 

 
 
3.1 Strict extensions 

 
In this section, we give the definition of a strict extension and show that dense frame 

homomorphisms act as examples in regular frames. 

Definition 3.1.1. A frame homomorphism h : L → M is called: 

 
i. an extension if h is dense and onto. 

 
ii. strict if L is generated by h∗(M ). 

 
If h satisfy i. and ii., then we say h is a strict extension of M . 
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i∈
I 

u 

u V 

Now let us look at one of the basic examples of a strict extension of frames. 
 
Example 3.1.1. [9] Consider the frame DL of all non-empty downsets of a frame L, with 

union as join and intersection as meet. Define the map h : DL → L by h(U ) = 
V 

U . 

1. We note that 0DL = {0L} and 1DL = L. Therefore 

h(L) = 
V 

L = 1L and h({0}) = 
V

{0} = 0L. 

2. For any U, V  ∈ DL, we have 

h(U ) ∧ h(V ) =
  V 

U 
  

∧ 
  V 

V 
 
 

= 
V

(U ∩ V ) 

= h(U ∩ V ) 

= h(U ∧ V ) 
 
 

3. Let S ⊆ DL, then 

h
 V 

S
  

= h
  u

{Ui | Ui ∈ S}
 
 

= 
V u

{Ui | Ui ∈ S}
 
 

= { Ui | Ui ∈ S} 
i∈I 

= {h(Ui) | Ui ∈ S} 
i∈I 

= 
V 

h(S) 

i∈
I 
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V 

hence h is a frame homomorphism with the right adjoint h∗ : L → DL, defined by 

 

h∗(a) = 
V

{U ∈ DL | h(U ) ≤ a} = 
V

{U ∈ DL | 
V 

U ≤ a} =↓a. Also, 

h∗(L) = 
u
{↓a | a ∈ L} 

= DL since for any U ∈ DL, U = 
V

{↓a | a ∈ U } 

therefore h is strict.  We also observe that h(U ) = 0L implies that   U = 0L if and only if 

U = {0}, and h is dense. Lastly, since for all x ∈ L there exists ↓x ∈ DL such that h(↓x) 

= 
V

(↓x) = x, h is onto. Thus, h is a strict extension of L. 

The following lemma is a property stated after Definition 1 in [9]. 
 

Lemma 3.1.1. [9] For a regular frame L, any dense frame homomorphism h : L → M is 

strict. 

 
Proof. Let a ∈ L and take any x ≺ a in L, then x ≤ a. Since x ≤ h∗h(x), we need 

only to prove that h∗h(x) ≤ a. We do this by showing that h∗h(x) ≺ a. Since x ≺ a, x∗ 

∨ a = 1 and we observe that 

h∗(h(x)) ∧ x∗ = 
V

{y ∈ L | h(y) ≤ h(x)} ∧ 
V

{z ∈ L | z ∧ x = 0} 

= 
V 

{y ∈ L | h(y) ≤ h(x)} ∧ {z ∈ L | z ∧ x = 0}
 
 

= 
V

{y ∧ z ∈ L | h(y) ≤ h(x), z ∧ x = 0} 

 
Since h is a frame homomorphism, h(x)∧h(z) = h(x∧z) = 0. Now h(y) ≤ h(x) implies that 

h(y)∧h(z) ≤ h(x)∧h(z) = 0 which implies that h(y)∧h(z) ≤ 0, and hence h(y)∧h(z) = 0. 
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V 

But 0 = h(y) ∧ h(z) = h(y ∧ z) and since h is dense, then y ∧ z = 0. Therefore 

h∗(h(x)) ∧ x∗ = 
V

{y ∧ z ∈ L | h(y) ≤ h(x), z ∧ x = 0} 

= {0} 

= 0. 
 
 
Which implies that x∗ is a separating element for h∗h(x) and a, and hence h∗h(x) ≺ a. 

Thus for any x ≺ a, x ≤ h∗h(x) ≤ a and hence a = 
V

{h∗h(x) | h∗h(x) ≺ a}. 

The following lemma is extracted before Lemma 1 in [9]. 
 

Lemma 3.1.2. [9] For any strict extension h : M → L, there exists an onto frame homo- 

morphism h̃ : DL → M  such that hh̃ = 
V

, as in the commutative diagram below 
 

DL 
  

     L 
h̃ 

\t h 
M 

 

Proof. Since h is strict, a  =  
V

{h∗(x)  | h∗(x)  ≤ a} for all a  ∈ M . Therefore define 

h̃ : DL → M  by h̃(U ) = 
V
{h∗(x) | x ∈ U } for any U  ∈ DL.  Then for any a ∈ L, 

 
h̃(↓a) = 

V
{h∗(x) | x ∈↓a} 

= 
V

{h∗(x) | x ≤ a} 

= h∗(a). 
 
We now show that h̃  is a frame homomorphism. 
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V 

V 

V 

i. 
 
 
 
 
 
 
 
 
 
 
 
 
 

ii. 

h̃(↓0) = h∗(0) 

= 
V

{x ∈ L | h(x) ≤ 0} 

= 
V

{x ∈ L | h(x) = 0} 

= {0} since h is dense, x = 0. 

= 0. 
 
 

h̃(↓1) = h∗(1) = 
V
{x ∈ L | h(x) ≤ 1} = 1 since h(1) ≤ 1. 

 
iii. Let U, V ∈ DL, then 

h̃(U ) ∧ h̃(V ) = 
V

{h∗(x) | x ∈ U } ∧ 
V

{h∗(y) | y ∈ V } 

= 
V

{h∗(x) ∧ h∗(y) | x ∈ U, y ∈ V } 

= 
V

{h∗(x ∧ y) | x ∈ U, y ∈ V } 

= 
V

{h∗(z) | z ∈ U ∩ V } 

= h̃(U ∩ V ). 
 
 

iv.  
 

h̃
  u 

Ui

  
= 
V

{h∗(x) | x ∈ 
u 

Ui} 
i∈I i∈I 

= {h∗(x) | x ∈ Ui} 
i∈I 

= h̃(Ui) 
i∈I 
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Hence h̃  is a frame homomorphism.  To show that h̃  is onto, take any a ∈ M , then 

a = 
V

{h∗(x) | x ∈ L}, since h is strict 

= 
V

{h∗(x) | h∗(x) ≤ a} 

= 
V

{h̃(↓x) | h̃(↓x) ≤ a},  since h̃ = h∗ 

= h̃
( V

{↓x | h̃(↓x) ≤ a}
 
,  since h̃  is a frame homomorphism. 

 
 
 

 

Lemma 3.1.3. [9] If h : M → L is a strict extension of L such that h = f ◦ g, where g 

: M  → N is onto and f : N  → L is any frame homomorphism; then f∗ = g ◦ h∗ and f is a 

strict extension. 
 

Proof. We start by proving that f∗ = g ◦ h∗. We show that for x ∈ N and y ∈ L, x 

≤ f∗(y) if and only if x ≤ gh∗(y). Suppose x ≤ gh∗(y), then f (x) ≤ fgh∗(y) implies thatf 

(x) ≤ hh∗(y) since fg = h and hh∗(y) = y since h is dense and therefore f (x) ≤ y  

which implies that x  ≤ f∗(y).  Conversely,  suppose that  x  ≤ f∗(y),  then f (x)  ≤ y. Since g  

is onto,  we have x  =  gg∗(x) therefore f (gg∗(x))  ≤ y.   But fg =  h therefore hg∗(x) ≤ y 

implies g∗(x) ≤ h∗(y). Then gg∗(x) ≤ gh∗(y) and hence x ≤ gh∗(y) since gg∗(x) = x.  We 

now prove that f  is a strict extension.   For any a ∈ N , there exists x ∈ M such that a 

= g(x) because g is onto. Then since h is strict, then h∗(L) generates M therefore x = 
V

{h∗(y) | h∗(y) ≤ x where y ∈ L} and 

a = g(x) 

= g
   V

{h∗(y) | h∗(y) ≤ x}
 
 

= 
V

{gh∗(y) | h∗(y) ≤ x} 

= 
V

{f∗(y) | h∗(y) ≤ x} 
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Which implies that f∗(L) generates M and hence f is strict. Now, if y ∈ L then since h is 

onto, there exists x ∈ M such that h(x) = y implies fg(x) = y where g(x) ∈ N and hence f 

is onto. To prove that f is dense, suppose f (a) = 0 for some a ∈ N . Since g is onto, there 

exists x ∈ M such that a = g(x) implies thatfg(x) = 0 which implies h(x) = 0 implies that 
x = 0 implies that y = g(x) = 0 and hence f is dense. 

 
 
 

3.2 Filters and strict extensions 
 
Let L be a frame and Q denote a set of filters in L and P (Q) be the power set lattice. 

Furthermore, we let 
 
 
 

sQL = {(x, Σ) ∈ L × P (Q) | for any F ∈ Σ, x ∈ F } 

and let s : sQL → L be the restriction of the first projection to sQL. Then sQL is a subframe 

of the product frame of L and P (Q) and s is an open dense onto frame homomorphism, 

which is called the simple extension of L with respect to Q, see [[9], [30], and [31]] for 

details. Let s∗ denote the right adjoint of s, then s∗(x) = (x, Σx) for any x ∈ L, where 

Σx = {F ∈ Q | x ∈ F }. Clearly s∗(L) is closed under finite meets in sQ. We present this 

as a lemma below. 
 

Lemma 3.2.1. [30] s∗(L) is closed under finite meets in sQL. 

 
Proof. Let x, y ∈ L. Then s∗(x) = (x, Σx) ∈ sQL and s∗(y) = (y, Σy) ∈ sQL. Now 

 
s∗(x) ∧ s∗(y) = (x, Σx) ∧ (y, Σy) 

= (x ∧ y, Σx ∩ Σy) 

= (x ∧ y, Σx∧y) 
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U 

U 

Indeed, if x and y are elements of a filter F , then x ∧ y ∈ F and hence s∗(L) is closed 

under finite meets in sQL. 

 
Let tQL be the subframe of sQL generated by s∗(L). Then 

tQL = {
V

{(x, Σx) | x ∈ A} | A ⊆ L}. 

Let t : tQL → L be the restriction of s to tQL, which is clearly a dense onto frame homo- 

morphism. 

We now define in line with the above notation the following. 
 

Definition 3.2.1. The frame homomorphism t : tQL → L is called the strict extension of 

L with respect to Q. 
 
 
The next example is given by Banaschewski and Hong in [9]. 

 
Example 3.2.1. [9] Let L be a frame, Q a set of filters on L, and O(Q) be the topology 

on Q generated by the sets Qa = {F  ∈ Q | a ∈ F }, where a ∈ L.  Define the map h 

: DL → O(Q) by h(U ) = QU = a∈U Qa, that is, each downset U ∈ DL is mapped to the 

union of all the filters in Q containing elements of U . Now, h(U ) =   a∈U Qa = {F ∈ Q | F 

∩ U /= ∅}. We show that h is a frame homomorphism.  Firstly, we observe that h(↓0) = ∅ 

because ↓0 ∩ F = ∅ for all F ∈ Q and h(↓1) = Q since 1 ∈ F for all F ∈ Q. 

Now, let U, V ∈ DL. Then 

 
h(U ∩ V ) = {F ∈ Q | F ∩ (U ∩ V ) /= ∅} 

= {F ∈ Q | (F ∩ U ) ∩ (F ∩ V ) /= ∅} 

= {F ∈ Q | (F ∩ U ) /= ∅} ∩ {F ∈ Q | (F ∩ V ) /= ∅} 

= h(U ) ∩ h(V ). 

 
And for some S ⊆ DL, we have 



 

u 

u 

V 

V 

 
 

h
 V 

S
 

= h
  u

{U | U ∈ S}
 
 

= {F ∈ Q | F ∩ 
u

{U | U ∈ S} /= ∅} 

= {F ∈ Q | {F ∩ U | U ∈ S} /= ∅} 
U ∈S 

= {F ∈ Q | F ∩ U /= ∅} 
U ∈S 

= 
u
{h(U ) | U ∈ S} 

= 
V 

h(S). 

hence h is a frame homomorphism.  Now consider the join map    : DL → L which is a 

frame homomorphism (by Example 3.1.1), then the map η : DL → L × O(Q), U   → (
V 

U, QU ), is a frame homomorphism. Now let η(DL) = τQL and τ : τQL → L be defined 
by τ (

V 
U, QU ) = 

V 
U .  Then the composition  DL τ  L L is a factorisation of      η τ    

 

and hence by Lemma 3.1.3, τ is a strict extension of L with respect to Q with right 

adjoint τ∗(a) = (a, Qa). 

 
3.3 Compactification of frames 

 
Recall that in a frame L, an element x ∈ L is complemented if there is an element xI ∈ 

L such that x ∧ xI = 0 and x ∨ xI = 1. We denote by C(L) the set of all complemented elements 

in L. A frame L is zero-dimensional if C(L) is a base for L. In this section, L is a zero-

dimensional frame and Q is the set 
 

{F | F is a non-convergent maximal Boolean filter}. 

By a maximal Boolean filter we mean a Boolean filter which is maximal in the collection 

of Boolean filters in a given frame. 32 

Q 
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Proposition 3.3.1. [30] For a zero-dimensional frame L, the following are equivalent : 
 
 

1. L is compact; 
 

2. Every Boolean filter in L is clustered; 
 

3. Every maximal Boolean filter in L is convergent. 
 

Proof. (1) ⇒ (2):  It is immediate from Corollary 2.2.1. 

(2) ⇒ (3): We note that a Boolean filter in L is maximal if and only if sec F ∩ C(L) ⊆ F . Thus 

the implication follows from 5) of Remark 1.2 in [30], for C(L) is a base for L. 

(3) ⇒ (1):    Suppose that there is a cover C of L which does not have a finite subcover. Let 

T  = {t ∈ C(L) | t ≤ c for some c ∈ C},  then T  is a cover of L,  which does not have a 

finite subcover. Thus {xI | x ∈ T } generates a Boolean filter, which is denoted by F . Let 

G be a maximal Boolean filter containing F . By the assumption, G is convergent, so 

G ∩ T  /= ∅.  Pick t ∈ G ∩ T , then t, tI ∈ G which is a contradiction. 
 

 
 

Here we show that tQL is a zero-dimensional compact frame and hence t : tQL → L is a 

zero-dimensional compactification of L. Before presenting this result, we need a series of 

lemmas. 

Lemma 3.3.1. [16] In any zero-dimensional frame, every completely prime filter is Boolean. 

Proof. Suppose that L is a zero-dimensional frame and P is a completely prime filter in 

L with x ∈ P . Then x = T for some T ⊆ C(L). Since P is completely prime, t ∈ P for 

some t ∈ T . Thus t ∈ P ∩ C(L) with t ≤ x. Hence, P is Boolean. 

Lemma 3.3.2. If a, b ∈ C(L), then a ∧ b ∈ C(L). 
 
Proof. Let a, b ∈ C(L). Then there exists aI, bI ∈ L such that a ∧ aI = 0 and a ∨ aI = 1, 
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  (       

also b ∧ bI = 0 and b ∨ bI = 1. Now, we claim that aI ∨ bI is a complement for a ∧ b. 

 
 

(a ∧ b) ∧ (aI ∨ bI) = (a ∧ b ∧ aI) ∨ (a ∧ b ∧ bI) 

= 0 ∨ 0 

= 0. 
 
 
Now let aI ∨ bI = q, therefore 

 
 

(a ∧ b) ∨ q = (a ∨ q) ∧ (b ∨ q) 

= (a ∨ aI ∨ bI) ∧ (b ∨ aI ∨ bI) 

= 1 ∧ 1 

= 1. 
 
 
 

 

Lemma 3.3.3. [30] s∗
(
C(L)

 
is contained in C(tQL) and is closed under finite meets in 

tQL. Furthermore, s∗
(
C(L)

 
generates tQL. 

Proof.  Let (x,    x) ∈ s∗  C(L)  .  Then (x,    x) ∈ tQL and x ∈ C(L).  Since     x  = {F  ∈ 

Q | x ∈ F } and F is a maximal Boolean filter, it follows that either x ∈ F or xI ∈ F . 

Since x ∈ C(L), so xI  ∈ C(L).  If x ∈ F , then xI  ∈/  F  but xI  ∈ G where G is a maximal 
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(     

(     

Boolean filter in Q. In other words (xI, 
  

x ) ∈ tQL, therefore 

(
x, 

        
∧ 

(
xI, 

    
= 

(
x ∧ xI,  

    
∩ 
   

 
x x  x x  

= x ∧ xI, 
x∧x  

= 
(
0, 
   

 
 

= (0, ∅) 
 
 
and 

(
x, 

        
∨ 

(
xI, 

    
= 

(
x ∨ xI,  

     
∪ 
   

 
x x  x x  

= x ∨ xI, 
x∨x  

= 
(
1, 
   

 
 

= (1, Q). 
 

Hence 
(
x, 

  
x
  
∈ C

(
tQL

 
, which implies that s∗

(
C(L)

   
⊆ C(tQL). Now let 

(x,
 

x), (y,
 

y ) ∈ s∗
(
C(L)

 
, therefore x, y ∈ C(L) 

and by Lemma 3.3.2, x ∧ y ∈ C(L). Then 

(
x ∧ y,  

        
= 

(
x ∧ y,  

    
∩ 
   

 

= 
(
x, 

        
∧ 

(
y, 

    
∈ s∗

(
C(L)

 
 

  
 

and hence s∗
(
C(L)

 
is closed under finite meets. To show that s∗

(
C(L)

 
generates tQL, 

note that for any a ∈ L, a = 
V

{x ∈ L | x ∈ C(L)} since L is zero-dimensional and 

x y 

x∧
y 

0 

1 

x y 
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since Q consists of maximal Boolean filters, we have a ∈ F ∈ Q implies there exists 

x ∈ C(L) such that x ≤ a which implies that x ∈ C(L)∩ ↓a.  Therefore (a, 
  

a) = 
V

{(x,  
  

x) | x ∈ C(L)∩ ↓a}, thus tQL is generated by s∗
(
C(L)

  
. 

Lemma 3.3.4. [30] For any maximal Boolean filter Ψ in tQL, t(Ψ) is also a maximal 

Boolean filter in L. 

 
Proof. Let x ∈ t(Ψ). Since t is onto, there exists (x,  

  
x) ∈ Ψ such that t(x,  

  
x) = x. Since Ψ 

is a maximal Boolean filter, it follows that there is a complemented (y, 
 
y )  ∈ Ψ such that 

(y,
 

y ) ≤ (x,
 

x). Therefore there is (z,
 

z ) ∈ C(tQL) such that 

(
y, 

        
∧ 

(
z,

    
= 

(
y ∧ z, 
   

 
y z y∧z 

= 
(
0, 
   

 
 

= (0, ∅) 
 
 
and 

(
y, 

        
∨ 

(
z,

    
= 

(
y ∨ z, 
   

 
y z y∨z 

= 
(
1, 
   

 
 

= (1, Q). 
 
 
Now, t(y,     y ) = y and t(z,     z ) = z.   Furthermore, (y,     y ) ≤ (x,     x) implies y  ≤ x. Also, 

y ∧ z = 0 and y ∨ z = 1 shows that y is complemented in L and y ∈ t(Ψ). Hence t(Ψ) is 

a Boolean filter in L. To show that t(Ψ) is maximal, note the following: 

t(Ψ) = {x ∈ L | (x, 
  

x) ∈ Ψ} and sec t(Ψ) = {y ∈ L | for all x ∈ t(Ψ), x ∧ y /= 0}. 

0 

1 
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Therefore 
 

s∗
(
sec t(Ψ)

 
= {s∗(y) | y ∈ sec t(Ψ)} 

= {
(
y, 

        
∈ tQL | for all x ∈ t(Ψ), x ∧ y /= 0} 

= {
(
y, 
    

∈ tQL |  for all 
(
x, 
    

∈ Ψ, 
(
x ∧ y, 
    

/= (0, ∅)} 
y 

 
= sec Ψ. 

x x∧y 

 
 
Now 

s∗
(
sec t(Ψ) ∩ C(L)

   
= s∗

(
sec t(Ψ)

   
∩ s∗

(
C(L)

 
 

⊆ s∗
(
sec t(Ψ)

   
∩ C

(
tQL

 
 

= sec Ψ ∩ C
(
tQL

 
 

 
 
 
 
then we have 

s∗
(
sec t(Ψ) ∩ C(L)

   
⊆ sec Ψ ∩ C

(
tQL

   
⊆ Ψ 

 
since Ψ is a maximal Boolean filter, and hence sec t(Ψ) ∩ C(L) ⊆ t(Ψ) which implies that 

t(Ψ) is a maximal Boolean filter. 
 

Theorem 3.3.1. [30] tQL is a zero-dimensional compact frame and hence t : tQL → L is 

a zero-dimensional compactification of L. 

 
Proof. Take any maximal Boolean filter Ψ in tQL and suppose t(Ψ) is convergent in L. 

Let 

Φ = 
  

(x,  
  

x) ∈ tQL | (y,  
   

y ) ≤ (x,  
   

x) for some (y,  
   

y ) ∈ t−1(t(Ψ)) ∩ C(tQL)
,
, 

y 
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V 

V 

then Φ is a Boolean filter in tQL containing Ψ, hence Φ = Ψ.   By Proposition 2.2.4, 

t−1(t(Ψ)) is convergent and since tQL is a zero-dimensional frame, Ψ = Φ is also convergent 

in tQL. Now suppose that t(Ψ) is not convergent, then t(Ψ) ∈ Q. Take any cover S of 

tQL with S ⊆ s∗
(
C(L)

   
which generates tQL. Let p : tQL → P (Q), defined by p((x,  

   
x)) = 

 
x. Then p is a frame homomorphism, hence p(S) is a cover of P (Q); t(Ψ) ∈ p((x,  

  
x)) = 

 
x for some (x, 

  
x) ∈ S. Hence there is (y,  

  
y ) ∈ Ψ with t(y,  

  
y ) = x so that 

(y, 
  

y ) ≤ t∗(x) = (x,  
  

x) 

implies (x, x) ∈ S ∩ Ψ, and therefore Ψ is convergent in tQL. Thus by Proposition 3.3.1, 

tQL is compact. 
 
 
 
3.4 Some constructive results 

 
In this section we give a constructive compactification of completely regular frames. These 

results will show that the category RegKFrm of regular compact frames is a coreflection 

of the category CRegFrm of completely regular frames. 

Proposition 3.4.1. [35] Let L be a frame and define the following maps v : I(L) → L and 

α : L → I(L) by I →  I and a →↓a, respectively, for all I ∈ I(L) and for all a ∈ L. Then 

v is a dense onto frame homomorphism. 

 
Proof. We observe that for all I ∈ I(L) and for all a ∈ L we have 

 
 

v(α(a)) = v(↓a) 

= (↓a) 

= a 



39 

 

V 

V 

V 

V V
 V 

and 
α(v(I)) = α

  V 
I
 
 

=↓
 V 

I
 
 

⊇ I. 
 
 
Therefore v is a left Galois adjoint and hence preserves arbitrary joins. Now, for any 

I, J ∈ I(L) we have 
 

v(I) ∧ v(J) =
  V 

I
  

∧
  V 

J
 
 

= 
V

{a ∧ b | a ∈ I and b ∈ J} 

≤ 
V

{c | c ∈ I ∩ J} 

= v(I ∩ J). 

 
But v(I ∩ J) ≤ v(I) ∩ v(J) since      

  
I ∩ J

  
≤ 

     
I
  

∧ 
     

J
   

and hence v(I) ∧ v(J) = v(I 

∩ J). The map v preserves the top element since v(L) = L = 1. For any a ∈ L, there exists 

↓a ∈ I(L) such that v(α(a)) = v(↓a) =    (↓a) = a, hence v  is onto.  To show that v is 

dense, suppose v(I) = 0 for some I ∈ I(L). Then    I = 0 implies I = {0}. Hence v is a 
dense onto frame homomorphism. 

 

Definition 3.4.1. [35] An ideal I in a frame L is regular if for every a ∈ I, there exists 

b ∈ I such that a ≺≺ b. 
 
The following propositions are crucial in the sense that they play a vital role in Stone-Čech 

compactification of completely regular frames. 

Proposition 3.4.2. [35] The set of regular ideals in a frame L, denoted RL, is a subframe 

of I(L). Hence it is a compact frame. 
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U 

V
 
V 

Proof. Let I, J ∈ RL and a ∈ I ∩ J. This means that a ∈ I and a ∈ J but both I and 

J are regular, so there exists b1 ∈ I and b2 ∈ J such that a ≺≺ b1 and a ≺≺ b2 hence 

a = a ∧ a ≺≺ b1 ∧ b2 ∈ I ∩ J.  Now let (Iα)α∈Λ ∈ RL and F =    k∈K Ik for some finite 

K ⊆ Λ. For each ak ∈ Ik there exists bk ∈ Ik such that ak ≺≺ bk for all k ∈ K. Thus 

we have   k∈K ak ≺≺   k∈K bk ∈ F . Showing that RL is a subframe of I(L) and hence compact. 

 

Proposition 3.4.3. [35] Let L be a frame. Then for each a ∈ L, the set 
 

σ(a) = {b ∈ L | b ≺≺ a} is a regular ideal. 
 
Proof. To show that σ(a) is an ideal, let b1, b2 ∈ σ(a). Therefore b1, b2 ≺≺ a implies that b1 

∨ b2 ≺≺ a and hence b1 ∨ b2 ∈ σ(a). Now, suppose that b1 ≤ b2 and b2 ∈ σ(a) for some b1 ∈ 

L. Then b1 ≤ b2 ≺≺ a implies b1 ≺≺ a which implies b1 ∈ σ(a) and hence σ(a) is an ideal. 

σ(a) is regular since the relation ≺≺ is interpolative. 

Lemma 3.4.1. [35] If b ≺≺ a in a frame L, then σ(b) ≺ σ(a) in the frame RL. 
 
Proof. Suppose b ≺≺ a in the frame L. Since the relation ≺≺ is interpolative, there exists 

x, y ∈ L such that b ≺≺ x ≺ y ≺≺ a. Since b∗ ∧ b = 0, we have σ(b∗) ∩ σ(b) = {0} and b 

≺≺ x implies x∗ ≺≺ b∗ which implies that x∗ ∈ σ(b∗) ⊆ σ(b)∗ therefore 

σ(b)∗ ∨ σ(a) = 1RL = L implies σ(b) ≺ σ(a). 

Proposition 3.4.4. [35] If L is a completely regular compact frame, then v : RL → L, I → 
V 

I and σ : L → RL, a → {b ∈ L | b ≺≺ a} are mutually inverse isomorphisms. 

Proof. Let I ∈ RL and a ∈ I. Since L is completely regular, 

a = 
V

{b ∈ L | b ≺≺ a} ≺≺ 
V 

I since I is regular. 
 
This implies that 
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(   V
 V 

a ∈ {b ∈ L | b ≺≺ 
V 

I} implies a ∈ {b ∈ L | b ≺≺ v(I)} which implies a ∈ σ
(
v(I)

 
and 

hence I ⊆ σ
(
v(I)

 
. 

On the other hand, if a ∈ σ v(I)   then a ≺ I and a∗ ∨ ( I) = 1. Since L is compact, 

there exists xk ∈ I where k ∈ K for some finite K such that 

a∗ ∨ 
( V

k∈K xk
  

= 1. Let x = 
V

k∈K xk ∈ I and hence σ
(
v(I)

  
⊆ I. 

 
 

 
 
 

3.5 Compactifications of completely regular frames 
 
The following lemma is a property stated in [35], page 133 (4.4). 

 
Lemma 3.5.1. Let h : L → M be a frame homomorphism. If I ⊆ L is a regular ideal, 

then the following conditions are satisfied : 

 
1. a ∨ b ∈ h(I) for all a, b ∈ h(I); and 

2. for each a ∈ h(I), there exists b ∈ h(I) such that a ≺≺ b. 
 
Proof.  1. Let a, b ∈ h(I), then there exists x, y ∈ I such that a = h(x) and b = h(y). 

Therefore a ∨ b = h(x) ∨ h(y) = h(x ∨ y) implies a ∨ b ∈ h(I) since x ∨ y ∈ I. 

2. Let a ∈ h(I), then there exists x ∈ I such that a = h(x). Since I is regular, there 

exists y ∈ I such that x ≺≺ y. Put b = h(y), and hence a ≺≺ b. 
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V 

Theorem 3.5.1. [35] Let L be a completely regular frame and define vL : RL → L by 

vL(I) =     I  and vM : RM → M by vM (J) =     J. If M is a compact frame and h : L → 
M is a frame homomorphism, then there exists a functor 

 
R : CRegFrm → KRegFrm 

 
such that the following diagram commutes: 

 

  Rh  
RL RM 

 

vL vM 
 

L M 
h 

 

Proof. Consider the categories CRegFrm and KRegFrm of completely regular frames 

and compact regular frames, respectively, and define R : CRegFrm → KRegFrm by 

L → RL for all L ∈ CRegFrm and R(h : L → M ) = Rh : RL → RM,  h(I)  →↓h(I) 

for any frame homomorphism h : L → M in CRegFrm. Firstly note that, in line with 

the previous lemma, Rh(I) =↓h(I) extends h(I) into a regular ideal for each regular ideal 

I in L. Next we prove that R is a functor. Let h : A → B and g : B → C be frame 

homomorphisms in CRegFrm, then 
 

(Rg) ◦ (Rh)(I) = Rg
( 

↓h(I)
 
 

=↓g
( 

↓h(I)
 
 

=↓gh(I) 

= R(gh)(I). 
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( V   

(   

Now take any A ∈ CRegFrm and its identity morphism idA : A → A, a → a. Then 

RidA : RA → RA, RidA(I) =↓idA(I) =↓I = I and hence R is a functor. 

Lastly, vM ◦ Rh(I) = vM (↓h(I)) = 
V 

↓h(I) = 
V 

h(I) and h ◦ vL(I) = h(
V 

I) = 
V 

h(I). 
 

 

vM ◦ (Rh ◦ σL)(a) = vM ◦ 
(
Rh ◦ σL(a)

 
 

= vM

  
↓h

(
σL(a)

  
 

= 
V  

↓h
(
σL(a)

  
 

= 
V 

h σL(a) 

= h σL(a) 
 

= h(a). 
 
 
 

 
 
Hence the category RegKFrm is coreflective in CRegFrm. 

An
 



44 

 

denote by 2 = {0, 1} the two-element frame.  The characteristic function of a set K ⊆ L is 

 
 
 
 
 
 
 
 

Chapter 4 
 

General filters on frames 
 
 
General filters on frames were introduced by Banaschewski to address the deficiency of 

classical filters in frames to describe the notion of completeness. In [16] Bhattacharjee and 

Naidoo revisited the notion of general filters in a frame and introduced the concepts of 

clustering of general filters, maximal general filters and general ultrafilters. Using these 

concepts the authors then characterised almost compact frames and Boolean frames. 

 
 
4.1 Convergence of general filters on frames 

 
To address the deficiency of classical filters in frames on the notion of compactness, Ba- 

naschewski [7] introduced general filters on a frame as follows. Let L be a frame, and 

 

 
the mapping χK 

 
: L → 2 defined by χK (a) = 

 1   if a ∈ K, 

 0   if a ∈/ K. 
A subset F ⊆ L is a filter in a frame L if and only if χF is a meet-semilattice homomor- 

phism. Replacing 2 with an arbitrary frame T , Banaschewski defined a T −valued filter on a 

frame L to be a 0−meet semilattice homomorphism ψ : L → T . If T is unspecified, one speaks 

of a general filter on L. 
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Definition 4.1.1. [16] A general filter on a frame L is any bounded meet semilattice 

homomorphism ϕ : L → T from L into any arbitrary frame T . 

Definition 4.1.2. [16] Let ϕ : L → T be a general filter. We say ϕ is : 

 
1. prime if ϕ is a lattice homomorphism; 

 
2. completely prime if ϕ preserves all joins if and only if ϕ is a frame homomorphism; 

3. regular if ϕ(a) = 
V

{ϕ(x) | x ≺ a} for all a ∈ L; 

4. convergent if ϕ takes covers to covers; 
 

5. strongly convergent if h ≤ ϕ for some frame homomorphism h : L → T . 

Proposition 4.1.1. [16] A convergent regular (classical) filter is completely prime. 
 

Proof. Let F be a convergent regular filter in a frame L, and 
V 

S ∈ F for some S ⊆ L. 

Then there exists y ∈ F such that y ≺ 
V 

S. The set {y∗} ∪ S is a cover of L, which implies 

that  F  ∩ ({y∗} ∪ S) /= ∅.  Now,  since  y∗  ∈/  F ,  we  must  have  F  ∩ S  /= ∅,  and  hence  F  is 

completely prime. 
 

Proposition 4.1.2. [16] A convergent regular general filter is a frame homomorphism. 
 

Proof. Let ϕ :   L → T be a convergent regular general filter, we show that ϕ preserves all joins. 

For any A ⊆ L, we have ϕ(
V 

A) ≥ 
V

{ϕ(a) | a ∈ A}. Since ϕ is regular, 

ϕ(
V 

A) ≥ 
V

{ϕ(x) | x ≺ 
V 

A}. For any x ≺ 
V 

A, {x∗} ∪ A is a cover for L, 

and since ϕ is convergent, we have ϕ(x∗) ∨ 
V

{ϕ(a) | a ∈ A} =  1 which implies that ϕ(x) 

≤ 
V

{ϕ(a) | a ∈ A} since ϕ(x) ∧ ϕ(x∗) = 0. Thus ϕ(
V 

A) = 
V

{ϕ(x) | x ≺ 
V 

A} ≤ 
V

{ϕ(a) 
| a ∈ A} which implies that 

ϕ(
V 

A) ≤ 
V

{ϕ(a) | a ∈ A} hence ϕ(
V 

A) = 
V

{ϕ(a) | a ∈ A}. 
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Recall the following characterization of clustering in terms of covers : A classical filter F in 

a frame L is clustered if and only if for every cover C of L there exists c ∈ C such that 

c∗ ∈/ F .  Given a general filter ϕ : L → T , we denote by ϕ←(1) the classical filter 
 

ϕ←(1) = {x ∈ L | ϕ(x) = 1}. 
 
The following lemma shows that the convergence of classical filters is stronger than the 

convergence of general filters. 

Lemma 4.1.1. [16] Given a general filter ϕ : L → T , if ϕ←(1) is convergent, then ϕ is also 

convergent. 

Proof. Suppose the classical filter ϕ←(1) is convergent and let C be a cover of L, then ϕ←(1) 

∩ C  /= ∅.  Say a ∈ ϕ←(1) ∩ C  implies a ∈ ϕ←(1) and a ∈ C  with ϕ(a) = 1.  Hence 
V 

ϕ(C) 

= 1 and ϕ is convergent. 

The converse is however not true, for, the identity map idL : 4 → 4 (4 = {0, a, a∗, 1}), 

which is a convergent general filter. The subset {a, a∗} is a cover of 4 so idL({a, a∗}) = 

{a, a∗} which  is  still  a  cover  for  4.   But  {a, a∗} ∩ id←
L (1)  =  ∅ since  idL(a)  =  a 

idL(a∗) = a∗ /= 1, hence id←
L (1) is not convergent. 

1 and 

 

Definition 4.1.3. [16] A general filter ϕ : L → T is said to be clustered if for every cover 

C of L, there exists c ∈ C such that ϕ(c∗) /= 1. 
 
We note that if ϕ←(1) clusters, then for any cover C  of L,  there exists c  ∈ C  with 

c∗ ∈/ ϕ←(1) implies ϕ(c∗) /= 1.  Hence ϕ←(1) clustered implies ϕ clusters. 

Proposition 4.1.3. [16] A convergent general filter clusters. 
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Proof. Let ϕ : L → T be a convergent general filter.  If ϕ is not clustered, then there exists 

a cover C of L such that ϕ(c∗) = 1 for every c ∈ C. Since ϕ is a semilattice homomorphism, 

we have 0 = ϕ(c) ∧ ϕ(c∗) = ϕ(c) for every c ∈ C, which implies that ϕ(C) is not a cover 

of T , contrary to the hypothesis that ϕ is convergent. 

 
We show that almost compactness can be characterised in terms of general filters. Hong [30] 

characterized almost compactness in terms of maximal filters in a frame L and compactness 

in terms of maximal filters in a regular frame L. We have included the results as Corollary 

2.2.1 and Corollary 2.2.2. We start with the following lemma. 
 

Lemma 4.1.2. [16] Every general filter on a frame is below a maximal one. 
 
Proof. Let ϕ : L  → T  be a general filter on L,  and S  =  {µ : L  → T  | ϕ  ≤ µ}.   Let 

C  ⊆ S  be a chain, and define a map ψ : L → T  by ψ(a) =     {γ(a) | γ  ∈ C}.  We show that 

ψ is a general filter on L. It is obvious that ψ(0) = 0 and ψ(1) = 1. To show that ψ 

preserves binary meets, take any a, b ∈ L, then 

ψ(a) ∧ ψ(b) = 
V

{γ(a) | γ ∈ C} ∧ 
V

{µ(b) | µ ∈ C} 

= 
V

({γ(a) | γ ∈ C} ∧ {µ(b) | µ ∈ C}) 

= 
V

{γ(a) ∧ µ(b) | γ, µ ∈ C} 

since C is a chain, for any γ, µ ∈ C, 

either γ(a) ∧ µ(a) ≤ γ(a) ∧ γ(b) = γ(a ∧ b) or γ(a) ∧ µ(a) ≤ µ(a) ∧ µ(b) = µ(a ∧ b). 

 
ψ(a) ∧ ψ(b) = 

V
{γ(a) ∧ µ(b) | γ, µ ∈ C} 

≤ 
V

{δ(a ∧ b) | δ ∈ C} 

= ψ(a ∧ b) 
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and hence ψ(a) ∧ ψ(b) = ψ(a ∧ b). Thus, ψ is an upper bound for C, and by Zorn’s lemma 

S has a maximal element. 
 

Observation 4.1.1. ([16], after Lemma 2.4) A general filter that is below a clustered 

one is clustered. To see this, suppose that ψ ≤ ϕ and ϕ is clustered. Then there exists 

c ∈ C such that ϕ(c∗) /= 1. So indeed ψ(c∗) ≤ ϕ(c∗) /= 1. Hence ψ(c∗) /= 1. 

Proposition 4.1.4. [16] The following are equivalent in a frame L. 
 

1. L is almost compact. 
 

2. Every general filter on L clusters. 
 
 
 

3. Every maximal general filter on L clusters. 
 

Proof. (1) ⇒ (2): Suppose that L is almost compact and let ϕ : L → T be a general 

filter on L. Let C be a cover of L, then since L is almost compact there exists a finite 

{c1,  c2,  . . . ,  cn} ⊆ C such that (c1 ∨ c2 ∨ . . . ,  ∨cn)∗ = 0.  Then c∗1 ∧ c∗2 ∧ . . . ,  ∧c∗
n  = 0, and 

hence 
 

0 = ϕ(c∗1 ∧ c∗2 ∧ . . . ,  ∧c∗
n) = ϕ(c∗1) ∧ ϕ(c∗2)∧, . . . ,  ∧ϕ(cn

∗ ) 

since ϕ is a meet-semilattice homomorphism.  If ϕ(c∗
i ) = 1 for all i = 1,  2,  . . . ,  n,  then 

this  contradicts  the  previous  equation.   Thus  for  some  i  =  1,  2,  . . . ,  n,  ϕ(c∗
i ) 

hence ϕ clusters. 

(2) ⇒ (3): This is trivial. 

1 and 

(3) ⇒ (1): Let F ⊆ L be a classical filter, and consider the general filter χF : L → 2. By 

Lemma 4.1.2, there is a maximal filter τ : L → 2 with χF  ≤ τ .  By the present hypothesis, 

τ clusters, which implies χF clusters, and hence F clusters. It therefore follows from 

Corollary 2.2.1 that L is almost compact. 
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We give the following lemma without proof. 
 

Lemma 4.1.3. [16] A classical filter F in a frame L is an ultrafilter if and only if for any 

x ∈ L, either x ∈ F or x∗ ∈ F . 

Definition 4.1.4. [16] We say a general filter ϕ : L → T is : 
 

1. an ultrafilter if for all x ∈ L, ϕ(x) ∨ ϕ(x∗) = 1; 

2. balanced if ϕ(x) /= 0 for any x ∈ D(L). 

 
The following proposition and its proof is found in [18], here we leave out the proof. 

 
Proposition 4.1.5. [18] Every filter in a frame is the intersection of prime filters con- 

taining it. 

 
The proposition below is culled in [16] and the proof is found in [18]. 

 
Proposition 4.1.6. [16] A classical filter F is an ultrafilter if and only if it is prime and 

balanced. 

 
In accordance with the above Proposition 4.1.6, the necessary part also holds in the case 

of general filters. 

Theorem 4.1.1. [16] Every general ultrafilter is prime and balanced. 
 

Proof. Let ϕ : L → T be a general ultrafilter. To show that ϕ is balanced, let x ∈ L be dense, 

then x∗  = 0 and ϕ(x∗) = 0.  Since ϕ is an ultrafilter, 1 = ϕ(x)∨ϕ(x∗) = ϕ(x) implies ϕ(x) /= 0 

and hence ϕ is balanced. Now, to show that ϕ is prime let a, b ∈ L. Since ϕ is 



50 

 

an ultrafilter, we have ϕ(z) ∨ ϕ(z∗) = 1. Therefore 

ϕ(a ∨ b) = ϕ(a ∨ b) ∧
 

ϕ(a) ∨ ϕ(a∗)
] 

∧
 

ϕ(b) ∨ ϕ(b∗)
]
 

= ϕ(a ∨ b) ∧
 

ϕ(a) ∨ ϕ(a∗)
] 

∧ ϕ(a ∨ b) ∧
 

ϕ(b) ∨ ϕ(b∗)
]
 

=
 
ϕ(a ∨ b) ∧ ϕ(a) ∨ ϕ(a ∨ b) ∧ ϕ(a∗)

] 
∧

 
ϕ(a ∨ b) ∧ ϕ(b) ∨ ϕ(a ∨ b) ∧ ϕ(b∗)

]
 

=
 

ϕ
(
(a ∨ b) ∧ a

 
∨ ϕ

(
(a ∨ b) ∧ a∗

 ] 
∧

 
ϕ
(
(a ∨ b) ∧ b

 
∨ ϕ

(
(a ∨ b) ∧ b∗

 ]
 

=
 
ϕ(a) ∨ ϕ(b ∧ a∗)

] 
∧

 
ϕ(b) ∨ ϕ(a ∧ b∗)

]
 

≤
 

ϕ(a) ∨ ϕ(b)
] 

∧
 

ϕ(b) ∨ ϕ(a)
]
 

= ϕ(a) ∨ ϕ(b), 

 
whence we deduce that ϕ(a) ∨ ϕ(b) = ϕ(a ∨ b) as the opposite inequality holds by virtue 

of ϕ being an increasing map. Therefore ϕ is a prime filter. 

 
In [16] an example is given which shows that the converse of the above theorem is not true. 

 
Proposition 4.1.7. [16] Every general ultrafilter is maximal. 

 

Proof. Let ϕ : L → T be a general ultrafilter on L, and consider any general filter τ : L → 

T with ϕ ≤ τ . For any x ∈ L, we have ϕ(x∗) ≤ τ (x∗). Since ϕ is an ultrafilter, 

1 = ϕ(x) ∨ ϕ(x∗) ≤ ϕ(x) ∨ τ (x∗) 

which implies that τ (x) ≤ ϕ(x) since τ (x) ∧ τ (x∗) = 0. Thus τ ≤ ϕ implies ϕ = τ . 
 

Combining Proposition 4.1.7 and Proposition 4.1.4, the following corollary is immediate. 
 

Corollary 4.1.1. [16] A frame is almost compact if and only if every general ultrafilter 

on it clusters. 

Definition 4.1.5. [16] A general filter ϕ : L → T on a frame L is Boolean if for every 

a ∈ L with ϕ(a) = 1, there is a complemented element c ∈ L with c ≤ a such that ϕ(c) /= 0. 
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Lemma 4.1.4. [16]On a zero-dimensional frame, every completely prime general filter is 

Boolean. 

 

Proof. Let ϕ : L → T be a completely prime general filter on a zero-dimensional frame L. 

Suppose that x ∈ L and ϕ(x) = 1. Since L is zero-dimensional, there exists A ⊆ C(L) such 

that x = A, and since ϕ is completely prime, we have 1 = ϕ( A) = {ϕ(a) | a ∈ A}. Hence 

ϕ(a) /= 0 for some a ∈ A, and a ≤ x since a ∈ C(L). 
 

Theorem 4.1.2. [16] The following are equivalent for a frame L : 
 
 

1. L is Boolean. 
 

2. Every general filter on L is regular. 
 

3. The general filter bL : L → BL is regular. 

4. Every general filter in L is Boolean. 
 

5. Every general prime filter on L is an ultrafilter. 
 

Proof. (1) ⇒ (2): Assume that L is Boolean, and let ϕ : L → T be a general filter on L. 

For any a ∈ L, a ≺ a, so that ϕ(a) = {ϕ(x) | x ≺ a}, and hence ϕ is regular. 

(2) ⇒ (3): Trivial. 

(3) ⇒ (4): Assume that bL : L → BL is regular. Then, for any a ∈ L we have 

 
a ≤ a∗∗ 

= bL(a) 

= 
V

{bL(x) | x ≺ a} 

= 
V

{x∗∗ | x ≺ a} 

≤ a, 
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which says that a = a∗∗. Therefore L is Boolean. 

(1) ⇔ (4): If L is Boolean, ϕ : L → T is a general filter on L, and a ∈ L such that ϕ(a) = 1, 

the c = a is a complemented element of L such that c ≤ a and ϕ(c) /= 0. Therefore ϕ is 

Boolean. Conversely, let 0 /= b ∈ L. Consider the general filter χF : L → 2 on L, where F 

is the classical filter F =↑b in L. By the present hypothesis, χF is Boolean.  Since χF 

(b) = 1, there exists some complemented c ≤ b such that χF (c) /= 0. This in turn implies 

that χF (c) = 1, that is, c ∈↑b, meaning that c ≥ b.  Consequently, c = b and hence L is 
Boolean. 

(5) ⇔ (1): If L is Boolean and ϕ : L → T is a prime general filter on L, then for any a 

∈ L we have a ∨ a∗ = 1, which, by primeness, implies that 1 = ϕ(a ∨ a∗) = ϕ(a) ∨ ϕ(a∗), 

thus showing that ϕ is an ultrafilter. Conversely, suppose, by way of contradiction, that 

L is not Boolean. Take a ∈ L such that a ∨ a∗ < 1. By the dual version of the Stone’s 

separation lemma, there is a prime filter F  ⊂ L such that a ∨ a∗  ∈/  F .  The general filter 

χF : L → 2 is prime, so, by the present hypothesis, it is an ultrafilter. In consequence, 

χF (a) ∨ χF (a∗) = 1, which implies that a ∈ F or a∗ ∈ F , neither of which is possible since a 

∨ a∗ ∈/ F .  Therefore L is Boolean. 
 

 
 
 

4.2 A stronger variant of clustering 
 
The notion of a strong variant of clustering was introduced to address the deficiency re- 

garding clustering of classical filters. In any Boolean frame without atoms, the classical 

filter ↑a (a /= 0) clusters but is not contained in a convergent filter. There is no similar 

situation for these in topological spaces. Dube and Naidoo [24] defined a classical filter 

F in a frame L to be strongly clustered in an effort to address the situation.  The definition 

is as follows. 
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Definition 4.2.1. A filter F in a frame L strongly clusters if  {x∗ | x ∈ F } ≤ p for some 

p ∈ ΣL. 

Theorem 4.2.1. [16] A filter F in a frame L strongly clusters if and only if there is a 

completely prime filter P ⊆ L such that P ⊆ secF . 

Proof. (⇒): Suppose that F strongly clusters. Then {x∗ | x ∈ F } ≤ p for some p ∈ ΣL. Then 

P = {x ∈ L | x 1 p} is completely prime. If x ∈ P , x ∧ y = 0 for some y ∈ F , then x ≤ y∗ 

≤ {x∗ | x ∈ F } ≤ p which is a contradiction. Thus for each x ∈ P , x ∧ y /= 0 for each y ∈ 

F . Thus x ∈ secF so that S ⊆ secF . 

(⇐):  If Q ⊆ secF for some completely prime filter Q in L, then p =   (L\Q) ∈ ΣL.  If 

{x∗ | x ∈ F } ∈ Q, since Q is completely prime, x∗ ∈ Q for some x ∈ F . Then x∗ ∈ 

secF  which is a contradiction.  Thus     {x∗  | x ∈ F } ∈/  Q and hence     {x∗  | x ∈ F } ≤ p. 

Hence F strongly clusters. 

 
Motivated by the results of Dube and Naidoo in [24], that a classical filter in a regular frame 

strongly clusters if and only if it is contained in a convergent filter, Bhattacharjee and 

Naidoo formulated the following definition: 

Definition 4.2.2. A general filter ϕ : L → T strongly clusters (or is strongly clustered) if there 

is a convergent general filter τ : L → T such that ϕ ≤ τ . 

The relationship of strong clustering to other properties of general filters are given in the 

proposition below. 

Proposition 4.2.1. [16] The following properties hold. 
 

1. If a general filter strongly clusters, then it clusters. 
 

2. A maximal general filter (and, hence an ultrafilter) strongly clusters if and only if it 

converges. 
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3. A prime general filter on a regular frame strongly clusters if and only if it strongly 

converges. 

 

Proof.     1. Let ϕ : L → T be a strongly clustered general filter.   By definition, there is a 

convergent τ : L → T such that ϕ ≤ τ .  Let C be a cover of L.  We cannot have ϕ(c∗) 

= 1 for every c ∈ C as that would imply 

 
1 = ϕ(c∗) 

c∈C 

≤ τ (c∗) 
c∈C 

≤ τ (c)∗ 
c∈C 

= τ (c) ∗
 

= 0. 
 
 

We conclude therefore that ϕ is clustered. 
 

2. This is immediate. 
 

3. Since strong convergence implies convergence, which, in turn, implies strong cluster- 

ing, only one implication needs to be shown. So suppose that ϕ : L → T is a strong 

clustering prime filter on a regular frame L. Take a convergent τ : L → T such that 

ϕ ≤ τ . As shown in Banaschewski and Hong [10], the map τ ◦ : L → T defined by τ 

◦(a) =   {τ (x) | x ≺ a} is a frame homomorphism.  We show that τ ◦ ≤ ϕ.  Let b 

∈ L, and consider any x ≺ b. Then x∗ ∨ b = 1, which, by the primeness of ϕ, implies 1 

= ϕ(x∗) ∨ ϕ(b) ≤ τ (x∗) ∨ ϕ(b), whence τ (x) ≤ ϕ(b), consequently τ ◦(b) ≤ ϕ(b), by the 

regularity of L. Therefore strongly converges. 
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Corollary 4.2.1. [16] The following are equivalent for a regular frame L : 
 
 

1. L is compact. 
 

2. Every prime general filter on L strongly clusters. 
 

3. Every general ultrafilter on L strongly clusters. 
 

Proof. (1) ⇒ (2): Since every cover of a compact frame admits a finite cover, every prime 

general filter on a compact frame takes covers to covers, and therefore strongly clusters. 

(2) ⇒ (3): This follows from the fact that every general ultrafilter is prime (Theorem 

4.1.1 ). 

(3) ⇒ (1): If every general ultrafilter on L strongly clusters, then every general ultrafilter on 

L clusters, and so L is almost compact by Corollary 4.1.1.   Since L is regular, this means 

that L is compact. 
 
 
 

4.3 F-compactness 
 
In this section we consider compactness in terms of convergence of filters. In particular, we 

consider filters of certain type and require that all filters of that type be convergent. This 

exercise is briefly known as filter selection. 

Definition 4.3.1. [12] An object function F on the category of frames is called a filter 

selection if F(L) is a class of filters ϕ : L → T for each frame L such that: 

1. every frame homomorphism L → M belongs to F(L); 

2. F(L) is closed under composition, that is, for any ϕ : L → M in F(L) and ψ : M → 

N in F(M ), ψ ◦ ϕ belongs to F(L). 
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Definition 4.3.2. For any filter selection F of filters, a frame L is called an F−lax retract 

of a frame M if there exists a frame homomorphism h : L → M and a filter ϕ : M → L in 

F(M ) such that ϕ ◦ h ≤ idL. 

Definition 4.3.3. [12] For any filter selection F, a frame L is called F-compact if every ϕ 

∈ F(L) is convergent and we say L is strongly F-compact if every ϕ ∈ F(L) is strongly 

convergent. 
 

Proposition 4.3.1. [12] For any filter selection F, closed quotients of F-compact frames 

are F-compact. 

Proof. Let L be any F-compact frame, a ∈ L and v : L →↑a be defined by v(x) = x∨a for all 

x ∈ L. For any τ : ↑a → T in F(↑a), since F is a filter selection, we have τ ◦ v ∈ F(L) which 

implies that τ ◦ v is convergent since L is F-compact. Now, let C ⊆↑a be a cover of ↑a, therefore 

C is also a cover of L and x ≥ a for all x ∈ C. Then 

 
v(C) = {x ∨ a | x ∈ C} 

= a ∨ C 

= C since a is the bottom element in ↑a. Therefore 

τ ◦ v(C) = τ 
(
v(C)

  
= τ (C) 

which implies that τ (C) is a cover of T (by convergence of τ ◦ v) and hence τ is convergent. 

Hence ↑a is F-compact. 

Proposition 4.3.2. [12] For any filter selection F, F-lax retracts of F−compact frames 

are F−compact. 

Proof. Let M be an F−compact frame, h : L → M be any frame homomorphism such that 

ψ ◦ h ≤ idL for some ψ : M → L and ϕ : L → T in F(L). Then ϕ ◦ ψ ∈ F(M ), making it 
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convergent and hence also ϕ ◦ ψ ◦ h is convergent. 

Proposition 4.3.3. [12] This also holds for strong F-compactness, that is, closed quotients of 

strongly F-compact frames are strongly F-compact. 

Proof. Suppose that L is a strongly F-compact frame and consider any τ : ↑a → T  in F(↑a). 

Then τ ◦ v : L → T belongs to F(L) and since L is strongly F-compact, there exists a frame 

homomorphism h : L → T such that h ≤ τ ◦ v. Then 

 
h(a) ≤ τ ◦ v(a) 

= τ 
(
v(a)

 
 

= τ (a) since v(a) = a ∨ a = a 

= 0T since a = 0↑a 

 
therefore h(a) ≤ 0T =⇒ h(a) = 0T hence h factors through v, which means h = k ◦ v for 

some k : ↑a → T . Hence k ≤ τ , showing that ↑a is strongly F-compact. 

Proposition 4.3.4. [12] F-lax retracts of strongly F-compact frames are strongly F-compact. 

 
Proof. If M is strongly F−compact and h : L → M, ψ : M → L exhibit L as an F−lax retract 

of M , then for any ϕ : L → T  in F(L), again ϕψ ∈ F(M ) and hence k ≤ ϕψ for some frame 

homomorphism k : M → T by the present hypothesis. It follows that k ◦ h ≤ ϕ ◦ ψ ◦ h ≤ 

ϕ, the latter since ψ ◦ h ≤ idL, showing ϕ is strongly convergent which proves L is strongly 

F−compact. 

Lemma 4.3.1. [12] For any frame homomorphism h : L → T and any filter ϕ : L → T , if 

h | X ≤ ϕ | X for some generating set X of L, then h ≤ ϕ. 
 
Proof. Let M = {x ∈ L | h(x) ≤ ϕ(x)}. Then 0, 1 ∈ M and x ∧ y ∈ M for any x, y ∈ M . 

Further, for any subset S of M , h(
V 

S) = 
V

{h(t) | t ∈ S} ≤ 
V

{ϕ(t) | t ∈ S} ≤ ϕ(
V 

S) and 



 

 

V 

E
B 

 

hence S ∈ M . Thus M is a subframe of L, and since it contains the generating set X of 

L it is equal to L. 
 
 

For the next few results we first need the following definitions. 
 
Definition 4.3.4. In a category C, a coproduct of a collection of object Ai, i ∈ J, is a 

system of morphisms qi : Ai → A, i ∈ J such that for every system fi : Ai → X, i ∈ J, in 

C there is exactly one f : A → X such that fqi = fi for all i ∈ J. 

Definition 4.3.5. Let F : D → C be a functor and A ∈ Obj(C). A subset S ⊆ Obj(D) is 

a solution set for A with respect to F if for each B ∈ Obj(D) and for each β : A → F(B) in 

C there are S ∈ S,  α : S → B and β : A → F(S) such that the diagram 
 
 

  β  
A F(S) 

F(α) 
 

F(B) 
 

commutes. 
 
is a Solution set for A with respect to 

 
Proposition 4.3.5. [12] For any filter selection F, coproduct of strongly F−compact frames 

are strongly F−compact. 

Proof. For any strongly F-compact Lα, let L = Lα with coproduct maps iα : Lα → L and 

consider any ϕ : L → T in F(L). Then ϕ ◦ iα : Lα → T belongs to F(Lα) so that there exist 

frame homomorphisms hα : Lα → T below ϕ ◦ iα, and choosing such hα : Lα → T for each α 

we obtain a frame homomorphism h :  L → T  such that h ◦ iα = hα.  It then follows that h ◦ 

iα ≤ ϕ ◦ iα for each α, and since L is generated by the union of the Im(iα) and the previous 

lemma shows that h ≤ ϕ. 

Proposition 4.3.6. [12] For any filter selection F, the F-compact regular frames are core- 

flective in Frm. 58 
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Proof. Note that F−compactness = strong F−compactness and strong convergence is 

unique in this setting. Also, since the regular frames are coreflective in Frm it is enough to 

argue within the category RFrm of these frames. Now, since coequalizers in RFrm are 

closed quotients the previous two propositions show that the only thing left to check here is 

the existence of a Solution Set. We claim this is provided, for any frame L, by the 

set of all F−compact regular quotients of the down set frame DL of L.  To see this, let 

h : M → L be any frame homomorphism from an F-compact regular frame M into L and 

consider its dense-onto factorization 
 

h : M   v ↑s   k L 

where s = h∗(0),  v = (·) ∨ s, and k  such that k ◦ v = h.  Then ↑s is F−compact regular, 

as closed quotient of M , and k is dense. It follows that the right adjoint k∗ : L →↑s of k 

is a filter and hence induces a frame homomorphism l : DL →↑s such that l(↓a) = k∗(a). 

Furthermore,↑s is generated by Im(k∗) since it is regular and consequently l is onto. In 

all this shows ↑s is isomorphic to a quotient of DL which proves the claim. 
 

Remark 4.3.1. [12] The same proof leads to the corresponding result for completely regular 

and for zero-dimensional frames. 

 
For any frame L, F(L) determines a nucleus nFL defined by 

 

nFL(U ) = 
n

{ϕ∗ϕ(U ) | ϕ ∈ F(L)} 

where ϕ : DL → T is the frame homomorphism associated with the filter ϕ : L → T and 

ϕ∗  is its right adjoint so that ϕ∗ϕ is the nucleus determined ϕ.   Note that nFL(U ) ⊆↓ 

( U ) ( taken in L) because idL ∈ F(L) and hence nFL(U ) = U , showing that the 

homomorphism   : DL → L given by taking joins in L induces a frame homomorphism k 

: Fix(nFL) → L. Further, nFL(↓ a) =↓ a for each a ∈ L, and consequently we have 

↓: L → Fix(nFL).  In the following, set FL = Fix(nFL). 
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Proposition 4.3.7. [12] For any natural filter selection F, the following are equivalent. 

 
1. L is strongly F−compact. 

2. ↓: L → FL is strongly convergent. 

3. L is a lax retract of FL. 
 

Proof. (1) ⇒ (2): Immediate by definition of natural F. 

(2) ⇒ (3): By hypothesis, there exists a frame homomorphism h : L → FL such that h ≤↓, 

and for the homomorphism k : FL → L introduced above we then have k ◦ h ≤ idL. 

(3) ⇒ (1): By Proposition 4.3.4, it is enough to show that FL is strongly F−compact. 

Consider then any ϕ : FL → T in F(FL). Then ψ = ϕ◦ ↓: L → T belongs to F(L) by naturality 

of F and hence the corresponding homomorphism ψI : DL → T determines a homomorphism h 

: FL → T such that h ◦ nFL = ψI. Now 

h(↓a) = h ◦ nFL(↓a) = ψI(↓a) = ψ(a) = ϕ(↓a), 

and since the ↓a generates FL and by Lemma 4.3.1 implies that h ≤ ϕ, showing FL is 

strongly F−compact. 
 

Proposition 4.3.8. [12] All these filter selections are natural. 
 
Proof. We begin with a more general consideration. Let U be any collection of subsets of a 

frame L such that {a ∧ t | t ∈ S} ∈ U for each S ∈ U and a ∈ L, and call filter ϕ : L → T U- 

prime if ϕ(    S) =     ϕ(S) for all S  ∈ U.  Further, let C ⊆ DL be the closure system of all 

U ∈ DL such that S ⊆ U implies S ∈ U for all S ∈ U and l the corresponding closure 

operator on DL. Then l is a nucleus and C a frame, as is readily seen by the fact that the 

operator l0 on DL such that 

l0(U ) = U ∪ 
U

{↓(
V 

S) | S ⊆ U in U} 
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is a prenucleus with Fix(l0) = Fix(l) = C. For this, note that trivially U ⊆ l0(U ) and 

l0(U ) ⊆ l0(W ) whenever U ⊆ W , while l0(U ) ∩ W ⊆ l0(U ∩ W ) because a ≤   S for S 

⊆ U in U and a ∈ W implies that {a ∧ t | t ∈ S} ⊆ U ∩ W which belongs to U and has join 

a. 
 
 
Further, ↓a ∈ C for each a ∈ L so that we have the filter ↓: L → C, and since 

V
{↓t | t ∈ S} = l(

U
{↓t | t ∈ S}) =↓(

V 
S) 

for any S  ∈ U (where the first join is in C) this is U-prime.   Finally, for any U-prime filter 

ϕ : L → T , the induced frame homomorphism ϕI : DL → T has the property that ϕI(l0(U )) = 

ϕI(U ), as seen by straightforward calculation, and consequently also ϕI(l(U )) = 

ϕI(U ). It therefore follows that l(U ) ⊆ ϕI ◦ ϕI(U ) which shows that 
 

l(U ) = 
n
{ϕI ◦ ϕI(U ) | ϕ : L → T U − prime filter} 

 

equality since ↓: L → C is one of the ϕ and the term corresponding to it is actually l(U ). 

Now, if F is any of the above filter selection then, for any frame L, the condition assumed 

above for U clearly holds for the S ⊆ L specified in each of these cases.  It follows that 

↓: L → FL corresponds to the above ↓: L → C and hence belongs to F(L), showing F is 

natural, as claimed. 
 

Remark 4.3.2. [12] The above proof also identifies the corresponding FL for the different 

F involved here as follows: 

A − DL 

P − IL 

S the frame hL of σ-ideals 

D the frame GL of Scott closed downsets 
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Recall that a frame L is supercompact if each cover of L contains 1L. 
 

Proposition 4.3.9. [12] A frame L is : 
 

1. A-compact if and only if it is supercompact, 
 

2. P-compact if and only if it is compact, 
 

3. S-compact if and only if it is Lindelof. 

 
Proof.     1.  (⇒):  In particular, ↓: L → DL is convergent so that {↓s | s ∈ C} is a cover 

of DL for any cover C of L but {↓a | s ∈ C} =↓1 implies 1 ∈ C, showing L is 

supercompact. 

(⇐): Since any cover C of L contains 1 and the same holds for ϕ(C) where ϕ : L → 
T is any filter so that ϕ is trivially convergent. 

 
2. (⇒). Since ↓: L → IL is convergent, {↓s | s  ∈ C} is  a  cover  of  I(L)  for  any cover 

C  of L and hence the ideal generated by it is ↓1.  Consequently,  there exists s1, s2, . . 

. , sn ∈ C such that s1 ∨ s2 ∨ . . . ∨ sn = 1, showing L is compact. 

(⇐):  Any bounded lattice homomorphism ϕ : L → T  takes any finite cover to a 

cover, and for compact L this says it takes every cover to a cover, that is, it is 

convergent. 

3. (⇒): Again, since ↓: L → HL is convergent, {↓s | s ∈ C} is a cover of HL for any 

cover C of L and hence the σ−ideal generated by it is ↓1. Further, if the Axiom 

of Countable Choice is assumed this σ−ideal consists of all a ≤  X for countable 

X ⊆ C and hence C has a countable subcover. 

(⇐): This is the same as in 2. 
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Recall that an element a in a frame L is compact if for any S ⊆ L,  a ≤    S implies there exist 

a finite T ⊆ S  such that a ≤     T . We denote by K(L) the set of all compact elements of L. 

Thus L is called algebraic if for all a ∈ L,  a =   i∈I xi for some xi ∈ K(L) and L is called 

compact if its top element is compact. 
 
Definition 4.3.6. A coherent frame is a compact algebraic frame L such that a ∧ b ∈ 

K(L) for all a, b ∈ K(L). 

Proposition 4.3.10. [12] A frame L is : 
 

1. strongly A-compact if and only if it is supercompact, 
 

2. strongly P-compact if and only if it is a lax retract of a coherent frame, and 
 
 

3. strongly S-compact if and only if it is a lax retract of a σ−coherent frame. 
 
Proof.    1. It is immediate from the previous proposition together with the fact that 

A-compactness = strong A-compactness for supercompact frames. 
 

2. (⇒): By Proposition 4.3.7 and Proposition 4.3.8, L is a lax retract of its ideal lattice 

I(L) which is coherent. 

(⇐): By Proposition 4.3.4, it is enough to prove that any coherent frame M is strongly 

P−compact. Let ϕ : M → T then be any bounded lattice homomorphism. Then its 

restriction to the sublattice K ⊆ M of all compact elements induces a frame 

homomorphism f : IK → T such that f (↓c) = ϕ(c) for each c ∈ K. Further, if g : M  

→ IK is the inverse of the familiar isomorphism    : IK  → M  and h = f ◦ g : M 

→ T then 
 

h(c) = f ◦ g(c) = f (↓c) = ϕ(c) 
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for all c ∈ K, proving h ≤ ϕ by Lemma 4.3.1 since K generates M . 

3. The proof is the exact analogue of that of 2, with ideal lattices replaced by σ−ideal 

lattices and compact elements by Lindelöf elements, using the Axiom of Countable 

Choice in the appropriate places. 
 

 
 

Recall that a continuous frame L is stably continuous if L is compact and x « a∧b whenever 

x « a and x « b. 

Corollary 4.3.1.  1. Every stably continuous frame is strongly P-compact. 
 

2. Every stably σ-continuous frame is strongly S-compact. 
 

Proposition 4.3.11. The Prime Ideal Theorem holds iff every frame in which all classical 

prime filters are convergent is compact. 

Proof. We only need to show (⇐) and do this by proving that the hypothesis implies 

the Tychonoff Product Theorem for compact Hausdorff spaces, which is known to be 

equivalent to the Prime Ideal Theorem. For this, let Xα (α ∈ I) be any family of such spaces,  

X  =   Xα,  and  h :    OXα  → OX  the  homomorphism  induced  by  the  maps OXα → OX 

resulting from the product projections X → Xα. Now, for any classical prime filter ϕ : OX  

→ 2,  ϕ ◦ h strongly converges since      OXα is compact regular, saying that ξ ≤ ϕ ◦ h for 

some homomorphism ξ :    OXα → 2. On the other hand, h is known to be the reflection map 

to spatial frames; hence there exists a homomorphism ζ : OX → 2 such that ξ = ζ ◦ h, hence 

h is onto it follows that ζ ≤ ϕ. Now, the given hypothesis shows that OX, and hence X, is 

compact, as desired. 
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Chapter 5 
 
Ideals in RL and compact frames 
 
In this chapter we study fixed ideals and strongly fixed ideals in RL. In the ring C(X), 

the maximal ideals are precisely the fixed ones for a compact Hausdorff space X. On the 

other hand, if every maximal ideal is fixed, then X is compact. A Tychonoff space X is 

compact if and only if every proper ideal in C(X) is fixed.  Our goal here is to study these in 

the setting of pointfree topology. 
 
 
 

5.1 The cozero map 
 
Definition 5.1.1. The frame of reals, denoted L(R), is the frame generated by all ordered 

pairs (p, q) ∈ Q2 such that 

1. (p, q) ∧ (r, s) = (p ∨ r, q ∧ s); 

2. (p, q) ∨ (r, s) = (p, s), whenever p ≤ r < q < s; 

3. (p, q) = 
V

{(r, s) | p < r < s < q}; 

4. 1 = 
V

{(r, s) | p, q ∈ Q}; 
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A continuous real-valued function on L is a frame homomorphism L(R) → L. The elements 

of the ring RL are real-valued continuous functions on L, and the operation on RL is o 

∈ {+, ·, ∧, ∨} such that for α, β ∈ RL 

αoβ(p, q) = {α(r, s)∧β(u, w) | (r, s)o(u, w) ≤ (p, q)}, where (r, s)o(u, w) ≤ (p, q) means 

that for each r < x < s and u < y < w we have p < x o y < q. For any r ∈ R, define the 

constant map r L by r = 
1 for p < r < q,

 
0 otherwise 

 
Definition 5.1.2. The cozero map is the map coz : RL → L given by 

coz (α) = 
V

{α(p, 0) ∨ α(0, q) | p, q ∈ Q} = α(−, 0) ∨ α(0, −), where 

(0, −) = 
V

{(0, q) | q ∈ Q, q > 0} and 

(−, 0) = 
V

{(p, 0) | p ∈ Q, p < 0}. 

A cozero element of a frame L is an element of the form coz (α) for some α ∈ RL. And 

the cozero part of a frame L, denoted Coz L, is the sublattice of L consisting of all cozero 

elements of L. 
 

Lemma 5.1.1. [19] A frame L is completely regular if and only if Coz L generates L. 
 

Proof. (⇒): Suppose that L is completely regular and let a ∈ L. Then by complete 

regularity, a =   {x ∈ L | x ≺≺ a}. Thus for each x ≺≺ a, there is a c ∈ Coz L such that x 

≺≺ c ≺≺ a by [ [5], Proposition 2.1.4] thus a = {x ∈ L | x ≺≺ a} =   {x ∈ Coz L | x 

≺≺ a} and hence Coz L generates L. 

(⇐): Suppose that Coz L generates L and let a ∈ L. We assume without loss of generality 

that 0 /= a /= 1. Then there is an element x ∈ L such that x ≺ a. Then x∗ ∨ a = 1. By hypothesis 

we find c1 ≺≺ x∗  and c2 ∨ a such that c1 ∨ c2 = 1. By [[5] , Corollary 5.1.3] 

find bi ∈ Coz L such that bi ≺≺ ci and b1 ∨ b2 = 1. Thus a = 
V

{bi ∈ Coz L | bi ≺≺ a} = 
V

{bi ∈ L | bi ≺≺ a} and hence L is completely regular. 
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Proposition 5.1.1. [26] Let L be a frame. Then for any α, β ∈ RL, we have : 

 
1. coz (0) = 0 and coz (1) = 1 

 
2. coz (αβ) = coz (α) ∧ coz (β); 

3. coz (α + β) ≤ coz (α) ∨ coz (β); 

4. coz (α + β) = coz (α) ∨ coz (β), if α, β ≥ 0; 

5. coz (| α |) = coz (α); 

6. coz (α ∧ β) = coz (α) ∧ coz (β), if α, β ≥ 0; 
 
An element f of RL is said to be bounded if there exists n ∈ N such that f (−n, n) = 1. 

The set of all bounded elements of RL is denoted by R∗(L) which is a sub-f ring of RL. 

Notation 5.1.1. Let a ∈ L and α ∈ RL. Set L(a, α) = {r ∈ Q | α(−, r) ≤ a} and 

U (a, α) = {s ∈ Q | α(s, −) ≤ a} . Then for any a /= 1, we have r ≤ s for each r 

∈ L(a, α) and s ∈ U (a, α). 

Proposition 5.1.2. [27] Let L be a frame. If p ∈ ΣL and α ∈ RL, then U (a, α) = {s ∈ 

Q | α(s, −) ≤ a} is a Dedekind cut for a real number which is denoted by p̃(α). 

Proof. Since p is prime, using α(−, r) ∧ α(r, −) = 0 we get L(p, α) ∪ U (p, α) = Q. Since 
V

L(p,α) α(−, r)  ≤ p,  L(p, α) Q, and similarly, U (p, α) /= Q.  Obviously L(p, α) is a 

downset and U (p, α) is an upset. 
 

Proposition 5.1.3. [27] If p is a prime element of a frame L, then there exists a unique 
 

map p̃ :  RL  →  R  such  that  for  each  α  ∈  RL,  r  ∈  L(p, α)  and  s  ∈  U (a, α)  we  have 

r ≤ p̃(α) ≤ s. 



 

V 

Recall that an f -ring R is a lattice-ordered ring such that (a ∧ b)c = (ac) ∧ (bc) for all a, 

b ∈ R and c ∈ R+ = {x ∈ R | x ≥ 0}. Also, recall that a linear map between two vector spaces 

U and V  over a field F  is a map T : U → V  such that T (u + v) = T (u) + T (v) and T (αu) = 

αT (u) for all u, v ∈ U and α ∈ F . The proof of the following proposition is found in [27]. 

Proposition  5.1.4.  [27] If p  is a prime element of a frame L, then p̃ : RL  → R is an 

onto f -ring homomorphism. Also, p is a linear map with p̃(1) = 1. 
 
We say an element a of a frame L is small if whenever c ∈ Coz L and a ∨ c = 1, 

then ↑c is compact. Given a frame L, we set Rs(L)  = {ϕ ∈ RL  | coz  α  is small} and RK(L) 

= {ϕ ∈ RL |↑(coz α)∗ is compact}. It is shown  in  [19]  that  RK(L) ⊆ Rs(L)  and that they 

coincide for basically disconnected frames. 

Lemma 5.1.2. [19] A necessary and sufficient condition that a ∈ L be small is that, for 

each c ∈ Coz L, ↑c be compact whenever ↑(a ∨ c) is compact. Hence, the join of two small cozero 

elements is small. 

Proof. Clearly the condition is sufficient. To see necessity, it suffices , by complete regular- ity, 

to show that every cover of ↑c by cozero elements of L has a subcover. So suppose {xα | α ∈ 

A} ⊆ Coz L with xα ≥ c for each α and xα = 1. Then {a ∨ xα | α ∈ A} is a cover of the 

compact frame ↑(a ∨ c). Compactness yields finitely many indices α1, α2, . . . , αm such that a 

∨ xα1 ∨ xα2 ∨ . . . ∨ xαm   = 1. Since xα1 ∨ xα2 ∨ . . . ∨ xαm   ∈ Coz L and s is small, 

↑(xα1 ∨ xα2 ∨ . . . ∨ xαm ) is compact. Now, {(xα1 ∨ xα2 ∨ . . . ∨ xαm ) ∨ xα | α ∈ A} is a cover 

of the compact frame (xα1 ∨ xα2 ∨ . . . ∨ xαm ). There are therefore finitely many indices 

β1, β2, . . . , βk such that xα1 ∨ xα2 ∨ . . . ∨ xαm ∨ xβ1 ∨ xβ2 ∨ . . . ∨ xβk = 1, which shows that 

↑c is compact, as required. Now let c1, c2 be small cozero elements, and d be a cozero element 

with d ∨ (c1 ∨ c2) = 1. Then (d ∨ c1) ∨ c2 = 1, and hence ↑(d ∨ c1) is compact since c2 is small 

and d ∨ c1 ∈ Coz L. Thus ↑d is compact by the first part, and hence c1 ∨ c2 is small. 68 
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We show that Rs(L) is a proper ideal of RL if and only if L is not compact. 

Proposition 5.1.5. [19] Rs(L) is an ideal of RL which is improper if and only if L is 

compact. 

 
Proof. (⇒): Clearly, smaller than small is small. Therefore αϕ ∈ Rs(L) whenever ϕ ∈ 

Rs(L) and α ∈ RL. Next, if ϕ1, ϕ2 ∈ Rs(L), then coz α1 ∨ coz α2 is small, and hence 

coz (ϕ1 + ϕ2) is small, so that ϕ1 + ϕ2 ∈ Rs(L).  For the latter part, if Rs(L) is improper, then 

1 ∈ Rs(L), and since 0 ∈ Coz L and 0 ∨ coz 1 = 1, it follows that ↑0 = L is compact. (⇐): 

If L is compact, then every element of L is small and so 1 ∈ Rs(L). 

In a similar fashion, we show that RK(L) is a proper ideal of RL if and only if L is not 

compact. 
 

Proposition 5.1.6. [19] RK(L) is an ideal of RL which is improper if and only if L is 

compact. 

 
Proof. From Lemma 2.1.1, if a, b ∈ L such that ↑a and ↑b are compact then ↑(a ∧ b) is 

also compact. Now, let ϕ1, ϕ2 ∈ RK(L). Then ↑(coz ϕ1)∗ and ↑(coz ϕ2)∗ are compact. 

Therefore 

↑(coz ϕ1)∗∧ ↑(coz ϕ2)∗ =↑
(
(coz ϕ1)∗ ∧ (coz ϕ2)∗

   
=↑(coz ϕ1 ∨ coz ϕ2)∗ is compact. 

But  (coz ϕ1 ∨ coz ϕ2)∗  ≤ coz (ϕ1 + ϕ2)∗;  so  ϕ1 + ϕ2 ∈ RK(L).  Next,  if  ϕ ∈ RK(L)  and 

α ∈ RL, then ↑(coz αϕ)∗ is compact since (coz αϕ)∗ ≥ (coz ϕ)∗.  Lastly, since (coz 1)∗ = L, 

it follows immediately that RK(L) = RL if and only if L is compact. 

Proposition 5.1.7. [19] Rs(L) = 
n
{M ⊆ RL | M is a free maximal ideal}. 
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Proof.  Let ϕ ∈ Rs(L) and I be a point of βL with     I = 1.  We must show that r(coz ϕ) ≤ 

I.  If not, then r(coz ϕ) ≤ ∨I  = 1βL, and therefore there is a cozero element c in I such that 

c ∨ coz ϕ = 1. Thus, ↑c is compact since ϕ ∈ Rs(L).  But now the set II = I ∩ Coz L is a 

proper ideal of Coz  L such that c  ∈ II  and   II  =  1.   This violates the lemma,  and hence 

establishes the inclusion ⊆. On the other hand, let ϕ be in the stated intersection. 

Suppose,  for  contradiction,  that  ϕ ∈/  Rs(L).  Then there  is  a  cozero element  c  such  that 

c ∨ coz ϕ = 1 but ↑c is not compact. By the lemma, select a proper ideal J of Coz L such 

that c ∈ J  and     J  = 1.  Put Q = {α ∈ RL | coz α ∈ J}.  Clearly Q is a free proper ideal 

of RL, and so is contained in some free maximal ideal M . Take γ ∈ RL such that c = coz 

γ. Then M contains both γ and ϕ, and hence the invertible element γ2 + ϕ2, which 

is impossible. Therefore the inverse inclusion also holds. 
 

Corollary 5.1.1. [19] The following are equivalent : 
 

1. Rs(L) is a prime ideal. 

2. Rs(L) is a free maximal ideal. 

3. βL is a one-point compactification of L. 
 
Definition 5.1.3. An ideal Q of R(L) is a z-ideal if whenever α ∈ Q and coz α = coz β for 

some β ∈ R(L), then β ∈ Q. 

Lemma 5.1.3. [19] A z-ideal Q is prime if and only if whenever αβ = 0, then α ∈ Q or 

β ∈ Q. 
 
Proof. The forward implication is trivial. Conversely, let Q be a z−ideal with the stated 

property. Then coz [Q] is an ideal of Coz L such that whenever a ∧ b = 0 in Coz L, then a 

∈ coz [Q] or b ∈ coz [Q]. Thus, by Lemma 3.8 in [22], coz [Q] is a prime ideal of Coz L. Now, 

suppose αβ ∈ Q. 
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Then coz α ∧ coz β ∈ coz [Q]. We may assume that coz α ∈ coz [Q]. Since Q is a z−ideal 

it follows that α ∈ Q. Therefore Q is a prime ideal. 

Proposition 5.1.8. [19] RK(L) is prime if and only if L is a noncompact continuous 

frame, and whenever a ∧ b = 0 in Coz L, then ↑a∗ or ↑b∗ is compact. 

Recall that a frame L is nowhere compact if, for any a ∈ L, ↑ a compact implies a is dense. 

Proposition 5.1.9. [19] The following are equivalent for a frame L : 
 
 

1. L is nowhere compact. 
 

2. R∞(L) is the zero ideal. 

3. RK(L) is the zero ideal. 

4. Rs(L) is the zero ideal. 

5. For every nonzero J ∈ βL, there is a point I of βL with 
V 

I = 1 and I ∨ J = 1βL. 

Let R be a commutative ring with unit; then an ideal of R is pure if for every x ∈ I there 

exists y ∈ I such that x = xy. The operator m is defined on the lattice of ideals of R by 

mI  = {a ∈ R | a = ab for some b ∈ I}.  In general, the ideal mI  need not be pure, but in the 

case of RL, mQ is pure for every ideal Q. 

Given an ideal Q of RL, let aQ denote the element of L defined by aQ =   {coz α | α ∈ Q}. 

If we write aL = coz γn with coz γn ≺≺ coz γn+1 for each n. Then we have the following 

proposition. 
 

Proposition 5.1.10. [19] mRK(L) is finitely generated if and only if aL is compact. 
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Proof.  (⇒):   Suppose mRK(L) =   ϕk | k  ∈ Λ,  for some finite Λ  ,  then aL =   coz ϕk. Fix 

k. Since ϕk ∈ mRK(L), then there exists ϕ ∈ RK(L) such that coz ϕk ≺≺ coz ϕ ≤ aL. Since 

ϕk ∈ RK(L), then ↑(coz ϕk)∗ is compact. Consequently coz ϕk ≺≺ aL. Now suppose T ⊆ L 

such that a =    T , then since coz ϕk ≺≺ aL, there exists a finite Tk ⊆ T such that coz ϕk ≤    
Tk.  Now put S =    k∈Λ Tk, then S  is a finite subset of T  such that aL =     S, and hence a is 

compact. 

(⇐): If aL is compact, then there are finitely many elements α1, α2, ..., αn in mRK(L) such 

that aL = coz α1 ∨ coz α2 ∨ · · · ∨ coz αn = coz (α2 + α2 + · · · + α2 ). We show 

that mRK(L) = α1, α2, . . . , αn .  The one inclusion is trivial.  Let ϕ ∈ mRK(L), then there 

exists γ ∈ RK(L) such thatcoz  ϕ  ≺≺ coz  γ. Now take any τ  ∈ RL such that coz ϕ ≺≺ 

coz τ ≺≺ coz γ ≤ aL, we get 

coz ϕ ≺≺ coz τ ≺≺ coz (α2 + α2 + · · · + α2 ), 
 

showing that ϕ is a multiple of α2 + α2 + · · · + α2 , establishing the reverse inclusion. 
 
 
 

5.2 Weakly spatial frames 
 
Definition 5.2.1. A frame L is weakly spatial if for a ∈ L, a < 1 implies that Σa /= Σ1. 

Lemma 5.2.1. [26] A frame L is weakly spatial if and only if there is a prime element 

p ∈ L such that a ≤ p < 1 for every a < 1. 
 
Proof. Suppose that L is weakly spatial and a < 1 for some a ∈ L. Then Σa /= Σ1 = ΣL, 

which  implies  that  there  is  a  prime  element  p ∈ ΣL  such  that  p ∈/  Σa and  hence  a ≤ p. 

Conversely, let a < 1 and p ∈ ΣL such that a ≤ p. Then p ∈ ΣL\Σa and hence ΣL 

/=Σa which implies that L is weakly spatial. 
 

Observation 5.2.1. [26] We observe that if L is spatial, then it is weakly spatial. 
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The following example is due to Estaji [26]. 
 

Example 5.2.1. [26] Let L be a nonspatial frame and M = L ∪ {1M }, where the order 

of M is the same as in L for the elements of L and for every x ∈ L, x < 1M . The top 

element 1L is a prime element of M , so M is weakly spatial for all L. Now since ΣM = 

ΣL ∪ {1L}, M is nonspatial. 

Proposition 5.2.1. [26] Every compact frame is weakly spatial. 
 

Proof. Let L be a compact frame and a ∈ L such that a < 1. Since every ideal I can be 

written in the form I = {↓x | x ∈ I}, by the Axiom of Choice we can find a maximal ideal 

P ⊂ L such that a ∈ P . Let p = P , then by compactness of L, p < 1. Since P is maximal, then 

↓p = {x ∈ L | x ≤ p} = P . Also, P is a prime ideal and hence p is also prime and hence a 

≤ p implies Σa /= ΣL. 

Lemma 5.2.2. [26] Let L be weakly spatial and α ∈ RL. If Σcoz (α)=∅, then coz (α) = 0. 
 
Proof.  Let  r, s  ∈  Q  such  that  r  <  0  <  s  and  p  ∈  ΣL.   Suppose  Σcoz (α)   =  ∅,  then 

p ∈/ Σcoz (α)  which implies that coz (α) ≤ p.  Now, if α(r, s) ≤ p, then 

coz (α) ∨ α(r, s) =
 
α(0, −) ∨ α(−, 0)

] 
∨ α(r, s) 

= α(0, −) ∨ α(−, 0) ∨ α(r, s) 

= α (0, −) ∨ (−, 0) ∨ (r, s) 

= α(1) 
 

= 1. 
 
 
Which implies that coz (α) ∨ α(r, s) = 1 ≤ p implying p = 1, and this contradicts the fact 

that p < 1. Hence we must have α(r, s) 1 p, which implies that p ∈ Σα(r,s) implies ΣL ⊆ 
Σα(r,s) and hence ΣL = Σα(r,s). Since L is weakly spatial, we conclude that α(r, s) = 1. 
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On the other hand, 
 

0 = 
(
α(−, r) ∨ α(s, −)

 
∧ α(r, s) 

= 
(
α(−, r) ∨ α(s, −)

 
∧ 1 

= α(−, r) ∨ α(s, −). 
 

Therefore, coz (α) = 
V

{α(−, r) ∨ α(s, −) | r < 0 < s} = 0. 

Corollary 5.2.1. [26] In a compact frame L, for any α ∈ RL, if Σcoz (α)=∅, then coz (α) = 

0. 

 
Proof. This follows from the fact that every compact frame is weakly spatial. 

 
Definition 5.2.2. A frame L is conjunctive if for every a ∈ L with a 1 b, there exist 

c ∈ L such that a ∨ c = 1 and b ∨ c /= 1. 

 
For background information about conjunctive frames and separation Axioms, see [[33], 

[37], [35]], although the terminology is different, they call a sublift frame for what we call 

a conjunctive frame. 

Lemma 5.2.3. [26] A frame L is spatial if and only if for each a, b ∈ L with a 1 b, there exist 

a prime element p ∈ L such that a 1 p and b ≤ p. 

Proof. (⇒) Suppose that L is a spatial frame and a, b ∈ L with a 1 b.  Since a spatial frame 

is weakly spatial, then for every a < 1, there is a prime element p ∈ L such that a ≤ p 

< 1. Now a > b, so b < 1 and b ≤ p.  If a is a point of L, then a is a maximal element below 

the top, so a 1 p and b ≤ p. 

(⇐): This follows immediately from the definition. 
 

Proposition 5.2.2. [26] Let L be a conjunctive frame, then L is a spatial if and only if it 

is weakly spatial. 
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Proof. (⇒): This is immediate (see Observation 5.2.1). 

(⇐): Let a, b ∈ L such that a 1 b. Then there exists c ∈ L such that a ∨ c = 1, b ∨ c /= 1. Since 

L is weakly spatial frame, we conclude by Lemma 5.2.1 that there exists a prime element p 

∈ L such that c ∨ b ≤ p. If a ≤ p, then c ∨ a = 1 ≤ p, which is a contradiction. 

Hence a 1 p and b ≤ p, which follows that L is spatial. 
 

By [ [34], Proposition 1.5] every regular frame is conjunctive, so we have the following. 
 

Corollary 5.2.2. [26] For a regular frame L, the notion of spatiality and weak spatiality 

coincide. 

Lemma 5.2.4. [19] Let c ∈ CozL. Then ↑c is compact if and only if for any proper ideal 

I  of CozL with 
V 

I = 1, c ∈/ I. 

Proof. (⇐):  If I is a proper ideal of CozL with   I = 1, then {c ∨ x | x ∈ I} is a cover of the 

compact frame ↑c, and so c ∨ y = 1 for some y ∈ I. Since I is a proper ideal, it follows that c 

∈/ I . 

(⇒): Let A be a cover of ↑c, and put J = {u ∈ CozL | u ≤ a for some a ∈ A}.  Then 

J = 1 by complete regularity.  Put I = {v ∈ CozL | v ≤  S for some finite S ⊆ J}. 
Then I is an ideal of CozL containing c and such that S = 1. The current hypothesis 

therefore implies that 1 ∈ I, that is, S = 1 for some finite S ⊆ I. Hence   T = 1 for some 

finite T ⊆ A. 
 
 

5.3 Maximal, fixed and strongly fixed ideals of RL 

Definition 5.3.1. An ideal I of RL is called fixed if 
V
α∈I coz (α) < 1. 

Lemma 5.3.1. [25] The following are equivalent for a completely regular frame L : 
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1. L is compact. 
 

2. Every ideal of RL is fixed. 

3. Every ideal of R∗(L) is fixed. 

4. Every maximal ideal of RL is fixed. 

5. Every maximal ideal of R∗(L) is fixed. 

Proof. (1) ⇒ (2): Because 0 is a cozero element which belongs to every ideal of Coz L, and 

since ↑0 = L, a lattice reflection on Lemma 4.5 of [19] shows that 1 and 2 are equivalent. 

(2) ⇔ (3):  If (2) holds, then L is compact, and hence RL = R∗(L), so that (3) holds as 

well.  Conversely, let Q be a free ideal in RL.   For any ϕ ∈ Q, ϕ2(1 + ϕ2)−1 is an element of 

Q ∩ R∗(L) with the same cozero element at ϕ. Hence Q ∩ R∗(L) is a free ideal. 

Consequently, (3) implies (2). 

(2) ⇒ (4) and (3) ⇒ (5): These equivalences follow from the fact that every free ideal 

is contained in a free maximal ideal. 
 

 

Definition 5.3.2. Let L be a frame and α ∈ RL. A zero-set in L is defined by 
 

Z(α) = {p ∈ ΣL | α[p] = 0}. 
 
The collection of zero-sets in L will be denoted by Z[L]. 

 
Lemma 5.3.2. [26] Let p be a prime element of L. For α ∈ RL, α[p] = 0 if and only if coz 

(α) ≤ p. 

Proof. (⇒):  Suppose that α(p) /= 0.  If α[p] > 0, then there exist a rational number r 

such that α[p] ≥ r  > 0.  Thus, by Proposition 5.1.2, r  ∈ L(p, r), and by definition of L(p, 

r), α(−, r) ≤ p. Now, if coz (α) ≤ p, we have 1 = α(0, −) ∨ α(−, r) ≤ coz (α) ∨ p ≤ 
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p ∨ p = p and obtain a contradiction. Therefore coz (α) 1 p. In the case α[p] < 0, the case 

is similar. 

(⇐):  Suppose that α[p] = 0.  So by Proposition 5.1.2 for every two rational numbers 

r < 0 < s, we have r ∈ L(α, p) and s ∈ U (α, p), and hence α(−, r) ∨ α(s, −) ≤ p. Thus, 

coz (α) = 
V

{α(−, r) ∨ α(s, −)} ≤ p. 

Definition 5.3.3. Let I be any ideal in R(L) or R∗(L).  If 
n 

Z[I] /= ∅, we call I a strongly 

fixed ideal, and if 
n 

Z[I] = ∅ then I is a strongly free ideal. 
 

Lemma 5.3.3. [26] If ΣL ∅, then the zero ideal in RL or R∗(L) is strongly fixed. 
 

Proof.  If ΣL /= ∅, then there is a prime element p ∈ L such that Z(α) = {p ∈ L | α[p] = 

0} = ∅ and since Z(α) ∩ Z(β) = Z(| α | + | β |) = Z(α2 + β2), it follows that 
n 

Z[I] /= ∅ if 

I is a zero ideal, and hence I is strongly fixed. 
 
 

We omit the proofs of the following lemmas because they are immediate. 
 

Lemma 5.3.4. [26] If Z(α) /= ∅, then the principal ideal in (α) is strongly fixed. 

Lemma 5.3.5. [26] If L is a weakly spatial frame, then every strongly free ideal in RL or 

R∗(L) contains nonzero strongly fixed ideals. In fact, if I contains a nonzero function 

β whose zero set is nonempty, then I contains the nonzero strongly fixed ideals (β). 
 

Lemma 5.3.6. [26] No strongly fixed ideal can contain a strongly free ideal. Also, if 
 
 

∅ = S ⊆ ΣL, then {α | S ⊆ Z[α]} is strongly fixed. 
 

Proposition 5.3.1. [26] Every strongly fixed ideal in RL or R∗(L) is fixed. 
 

Proof. Let I be a strongly fixed ideal in RL or R∗(L), then 
n 

Z[I] 

then by Lemma 5.3.2, 
V
α∈I coz (α) ≤ p < 1,and hence I is a fixed. 

∅.  Let p ∈ 
n 

Z[I], 
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Example 5.3.1. [26] 
 

1. Let L be a completely regular frame such that ΣL = ∅.  Then, every ideal in RL or 

R∗(L) is strongly free. 

2. If α ∈ RL such that coz (α) < 1 and the ideal I of RL is generated by α, then 
V
β∈I coz (β) ≤ coz (α) < 1, and so I is a fixed ideal in RL. 

Proposition 5.3.2. [26] If L is a weakly spatial frame, then every fixed ideal in RL or 

R∗(L) is a strongly fixed ideal in RL or R∗(L). 

Proof. Let I be a fixed ideal in RL. Since L is a weakly spatial frame and 
V
α∈I coz (α) < 1, 

we conclude by Lemma 5.2.1 that there exists p ∈ ΣL such that 
V
α∈I coz (α) ≤ p < 1. 

Then by Lemma 5.3.2 , p ∈ 
n 

Z[I], that is, I is a fixed ideal in RL. 

Define Mp = {f ∈ RL | f [p] = 0} for every prime element p ∈ L. In the following proposition, 

we show that the strongly fixed maximal ideals are exactly the ideals Mp. We regard the 

Stone-Čech compactification of L, denoted by βL, as the frame of completely regular ideals 

of L.  We denote the right adjoint of the join map jL : βL → L by rL and recall that rL(a) = 

{x ∈ L | x ≺≺ a}. We define M I = {α ∈ C(L) | rL(coz (α)) ⊆ I}, for all 1βL /= I ∈ βL. 

If M I = M J , then I = J. 

Proposition 5.3.3. [26] Let L be a completely regular frame. 
 

1. The strongly fixed maximal ideals of RL are precisely the ideals Mp, for p ∈ ΣL. The 

ideals Mp are distinct for distinct p ∈ ΣL. For each p ∈ ΣL, RL/Mp is isomorphic 

with the real field R; in fact, the mapping α + Mp → α[p] is the unique isomorphism of 

RL/Mp onto R. 
 

2. The strongly fixed maximal ideals of R∗(L) are precisely the ideals Mp
∗ = {α ∈ 

R∗(L) | α[p] = 0} (p ∈ ΣL). The ideals Mp
∗ are distinct for distinct p ∈ ΣL. 
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For each p ∈ ΣL, R∗(L)/Mp
∗  is isomorphic with the real field R; in fact, the mapping 

α + Mp
∗  → α[p] is the unique isomorphism of R∗(L)/Mp

∗   onto R. 

Proof. Mp is the kernel of the homomorphism pI : RL → R. Since by Proposition 5.1.4, the 

homomorphism pI  is onto the field R, RL/Mp ∼= R.  Hence its kernel Mp is a maximal 

ideal. It is clear that Mp is a strongly fixed ideal for every prime p ∈ L. Therefore, Mp is 

a strongly fixed maximal ideal.  On the other hand, if M is any strongly fixed maximal ideal 

in RL, then there exists a point p ∈    Z[M ].   Evidently, M  ⊆ Mp, which has 

just been shown to be an ideal.  Hence since M  is maximal, M  = Mp.  Now, suppose 

that p, q ∈ ΣL and Mp = Mq. So, M rL(p) = Mp = Mq = M rL(q), that is rL(p) = rL(q). 

Therefore, we conclude that p = q. Thus the ideals Mp are distinct for distinct p ∈ ΣL. 

Corollary 5.3.1. [26] If L is a completely regular frame and M is a maximal ideal in RL, 

then M is a fixed maximal ideal in RL if and only if M is a strongly fixed maximal ideal 

in RL. 

Proof. As in Proposition 3.3 in [21], we have that the fixed maximal ideals in RL are 

precisely the ideals Mp for prime elements p ∈ ΣL. Now, by Proposition 5.3.3, the proof 

is complete. 
 

Lemma 5.3.7. [26] Every strongly fixed ideal of RL is contained in a strongly fixed max- 

imal ideal. 

 
Proof. Every ideal is contained in the maximal ideal, so any strongly fixed ideal in RL is 

contained in a strongly fixed maximal ideal. 
 

Proposition 5.3.4. [26] Let L be a completely regular frame. The following statements 

are equivalent : 

 
1. L is a spatial frame. 
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2. For every ideal I ∈ RL, I is a fixed ideal of RL if and only if I is a strongly fixed 

ideal of RL. 

3. Every fixed ideal of RL is contained in a fixed maximal ideal. 
 
Proof. (1) ⇒ (3): See Corollary 3.5 in [21]. 

(1) ⇒ (2): This follows from the fact that a spatial frame is weakly spatial together with 

Proposition 5.3.2. 

(2) ⇒ (1): Let 1 /= a ∈ L. Since L is a completely regular frame, we conclude that 

there exists {αj}j∈J ⊆ RL such that a = j∈J coz (α). Put I = αj | j ∈ J . Then 

α∈I coz (α) = a < 1, that is, I is a fixed ideal of RL. By hypothesis, I is a strongly 

fixed ideal of RL, and so there exists p ∈ ΣL such that p ∈ Z[I]. Thus by Lemma 5.3.2, 

a = α∈I coz (α) ≤ p < 1. Therefore, by Lemma 5.2.1, L is a weakly spatial frame. Now, 

by Corollary 5.2.2, the proof is complete. 
 

Proposition 5.3.5. [26] Let L be a weakly spatial frame. Then L is a compact frame if 

and only if ΣL is a compact space. 

 
Proof.  (⇐) :  Suppose that L is a compact frame, and    j∈J Σaj   = ΣL.  So Σ  aj   = Σ1 since 

L is weakly spatial,     aj = 1.  Hence,  by compactness of  L,  there exists j1,  j2, . . . ,  jn ∈ 
J  such that aj1  ∨ aj2 ∨, . . . , ∨ajn  = 1, and so Σaj1  

∪ Σaj2 
, . . . , ∪Σajn   = Σ1. 

(⇒) :   Suppose  that  ΣL  is  a  compact  space  and      aj  =  1.   Hence,      Σaj    =  Σ aj     
= 

Σ1 = ΣL.  Thus, by compactness of ΣL, there exists j1,  j2, . . . ,  jn ∈ J  such that Σaj1  
∪ 

Σaj2 
, . . . , ∪Σajn    =  Σ1.   So  Σaj1 ∨aj2 ∨,...,∨ajn    =  Σ1.   Hence,  since  L  is  weakly  spatial,  aj1  ∨ 

aj2 ∨, . . . , ∨ajn = 1. Therefore L is compact. 

Proposition 5.3.6. [26] If L is compact and M is a maximal ideal of RL, then there 

exists a prime element p ∈ L such that M = Mp. 



81 
 

U
 
V 

p
 

+ f p
 

V 

p
 

p
 

p
 

p
 

Proof. Assume that for every prime element p, M cJ Mp. We have that for every p ∈ 

L there exists fp ∈ Mp. So, by Lemma 5.3.2, coz (fp) 1 p, and hence p ∈ Σcoz (fp). There- 

fore, Σ 
p coz (fp) = p Σcoz (fp) = ΣL = Σ1. Hence by weak spatiality, p coz (fp) = 1. 

So, since L is compact, there are p1, p2, . . . , pn ∈ ΣL such that coz (fp1 )∨coz (fp2 )∨, . . . , ∨coz (fpn ) = 

1. Thus by the property of cozero map, coz (f 2 2 + . . . + f 2 ) = 1,  and hence 
 

h = f 2 + f 2 + . . . + f 2 ∈ M is invertible, which is a contradiction. Therefore, M ⊆ Mp for 

some p ∈ ΣL. Since M is maximal, we conclude that M = Mp. 

Proposition 5.3.7. [26] If L is compact and M is a maximal ideal in R∗(L), then there 

exists a prime element p ∈ L such that M  = Mp
∗. 

Proof. It is similar to Proposition 5.3.6. 
 

There is a homeomorphism τ : ΣL(R) → R such that r < τ (p) < s if and only if (r, s) 1 

p for all prime elements p of R and all r, s ∈ Q (see Proposition 1 of [[8], page 12]). 

Lemma 5.3.8. [26] Every prime (maximal) element of R is of the form px = {(−, r) ∨ (s, 

−) | r, s ∈ Q, r ≤ x ≤ s} for some x ∈ R, and τ (px) = x. In particular, for every r ∈ 

Q, pr = (−, r) ∨ (r, −) and τ 
(
(−, r) ∨ (r, −)

 
= r. 

Proof. Since R is a completely regular frame, the prime elements are precisely the maximal 

elements, and maximal elements are of the form px for some x ∈ R. 

Theorem 5.3.1. [26] Let L be a weakly spatial frame. Then the following statements are 

equivalent : 

 
1. L is a compact frame. 

 
2. Every proper ideal in RL is strongly fixed. 

3. Every maximal ideal in RL is strongly fixed. 
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4. Every proper ideal in R∗(L) is strongly fixed. 

5. Every maximal ideal in R∗(L) is strongly fixed. 

Proof. (1) ⇒ (2):   Let I  be a proper ideal in RL.  By Proposition 5.3.6, there exists a prime 

element p ∈ L such that I ⊆ Mp. So, p ∈ Z[Mp] ⊆  Z[I]. It follows that I is a strongly fixed 

ideal. 

(1) ⇒ (4): is similar to (1) ⇒ (2). 

(2) ⇒ (3) and (4) ⇒ (5) are trivial. 

First we show that ΣL is a compact space to prove (3) ⇒ (1). For this, we prove that every 

maximal ideal M in R(ΣL) is of the form Mx for some x ∈ ΣL. Define ϕ : RL → R(ΣL) by 

ϕ(f ) = τ ◦ Σf = τ ◦ f∗, where τ : ΣR → R is the homomorphism discussed in Lemma 5.3.8 

and f∗ : L → R is the right adjoint of f . By hypothesis, there is a prime element p ∈ L such 

that ϕ−1(M ) ⊆ Mp, so M ⊆ ϕ(Mp).  Hence 
n

{Z(f ) | f ∈ ϕ(Mp)} ⊂ 
n

{Z(f ) | f ∈ M }. 

Now, it is enough to show that 
n
{Z(f ) | f  ∈ ϕ(Mp)} = ∅.  Let f  ∈ Mp, then f [p] = 0 and 

by Lemma 5.3.2 coz (α) ≤ p, that is to say, f ((0, −) ∨ (−, 0)) ≤ p. So (0, −) ∨ (−, 0) ≤ 

f∗(p), thus since (0, −) ∨ (−, 0) is a maximal element of R and f∗(p) is a prime element, 

(0, −) ∨ (−, 0) = f∗(p). Now, by Lemma 5.3.8, we have 0 = τ ((0, −) ∨ (−, 0)) = τf∗(p) = 

ϕ(f ).  Therefore p ∈ {Z(f ) | f ∈ ϕ(Mp)} ⊂  {Z(f ) | f ∈ M }.  So M = Mx.  Hence every 

maximal ideal of C(ΣL) is fixed, thus ΣL is compact. Since L is weakly spatial, by 

Proposition 5.3.5, L is compact. (5) ⇒ (1) is similar to (3) ⇒ (1). 

Remark 5.3.1. Let M(RL) denote the set of all maximal  ideals  in RL.  We  make M(RL) 

into a topological space by taking, as a base for the closed sets, all sets of the form 

 
F(α) = {M ∈ M(RL) | α ∈ M } (α ∈ RL). 
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Define Θ: ΣL → M(RL) by Θ(p) = Mp. If L is a compact completely regular frame, then 

by Proposition 5.3.3 and Theorem 5.3.1, Θ is one-one and onto, respectively. Also, 

Θ−1(F(α)) = Z(α) and Θ(Z(α)) = F(α). Therefore, ΣL and M(RL) are isomorphic. 

Proposition 5.3.8. [26] Suppose that L and LI are two compact completely regular frames. 

Then the following statements are equivalent : 

1. L ∼= LI. 
 

2. ΣL and ΣLI are homeomorphic. 
 

3. RL and R(LI) are isomorphic. 

Proof. (1) ⇐⇒ (2): Since every compact completely regular frame is spatial, we conclude that 

L ∼= OΣL and LI ∼= OΣLI. 

(1) ⇒ (3): Is immediate. 

(3) ⇒  (2):  Let ϕ : RL → R(LI) be an isomorphism.  Consider τ : ΣL → M(RL) and 

ψ : ΣLI → M(R(LI)) to be the homeomorphism corresponding to L and LI given in Remark 

4.17 in [26]. It is clear that γ : M(RL) → M(R(LI)) with γ(Mp) = Mγ(p) is one-one and 

onto. Hence ψ−1γτ : ΣL → ΣLI is a homeomorphism. 
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Chapter 6 
 

Isocompactness in the category of 

locales 

In this chapter we study isocompactness in pointfree topology. A space X is said to be 

isocompact if every closed countably compact subset of X is compact. The class of 

isocompact spaces contains the class of compact spaces, the class of σ−compact spaces and 

the class of paracompact spaces, see [39]. The definition of isocompactness extends to 

locales easily by requiring that a locale to be isocompact if each of its countably compact 

closed sublocales is compact. Furthermore, this extension is conservative because closed 

sublocales are precisely its closed subspaces.  That is to say, a space X  is isocompact if and 

only if the locale Lc(X) of opens is isocompact. 
 
 
 

6.1 Isocompact locales 
 
Let f : X → Y be a continuous map of locales, and f ∗ : OY → OX be the frame homo- 

morphism defining it, and f∗ for the right adjoint of this frame homomorphism. Further, 

for a frame L; we shall denote by can , the nucleus on L sending x to a ∨ x. 



 

Definition 6.1.1. A locale X is countably compact if every increasing countable cover of 

X has a finite subcover. 
 

We omit the proof of the following lemma. 
 

Lemma 6.1.1. [23] A locale is countably compact if and only if every increasing countable 

cover contains the top element. 

 
The following definition extends easily from spaces. 

 
Definition 6.1.2. A locale is isocompact if every countably compact closed sublocale is 

compact. 

In [23], the authors observed that a closed sublocale of an isocompact locale is isocompact. 

To mimick their illustration, let X be a locale and take a ∈ OX. Then the closed sublocales 

of the locale ↑a are exactly the closed sublocales ↑b of X for b ≥ a. 

Definition 6.1.3. A filter F in a locale X clusters if 
V

{x∗ | x ∈ F } /= 1. F is σ−fixed if 

for any countable S ⊆ F , 
V

{s∗ | s ∈ S} = 1 
 

In the next definition, Xb denotes the smallest dense sublocale of a locale X. 
 
Definition 6.1.4. A locale X is said to be almost realcompact if any ideal in O(Xb) with 
V

OX I = 1 has a countable subset S with 
V

OX S = 1. 

The proof of the following lemma can be found in [17], Proposition 3.4. 
 

Lemma 6.1.2. [23] A locale X is almost realcompact if and only if ever σ−fixed ultrafilter 

in OX clusters. 

Recall in Corollary 4.2.1 that a regular locale is compact if and only if every ultrafilter in 

it clusters. Now, the following lemma is culled out in [23], it is taken together with its proof.
 85 
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Lemma 6.1.3. [23] A regular almost realcompact, countably compact locale is compact. 

Proof. Let X  be such a locale and suppose,  by contradiction,  that  X  is not compact. Then 

OX has an ultrafilter F which does not cluster. By the characterization of almost realcompact 

locales cited above, F is not σ − fixed, so there is a sequence (xn) ∈ F such that      x∗
n   =  

1.   Thus  {x∗
n   | n  ∈ N} is  a  countable  cover  of  X.   Since  X  is  countably compact, there 

are finitely many indicies n1, n2, . . . , nk such that xn
∗ 

1  ∨ x∗
n2  ∨ . . . ∨ x∗

nk  = 1. Since F  is an 

ultrafilter, it is prime, and so x∗
ni   ∈ F  for some i, which is a contradiction since F is a 

proper filter. Therefore X is compact. 

Corollary 6.1.1. [23] Every regular almost realcompact locale is isocompact. 

Proof. Let ↑a be a countably compact closed sublocale of such a locale. By [17], ↑a is almost 

realcompact, and hence, being regular, the lemma above implies that it is compact. 

 
Next, we recall that a subspace S of a topological space X is said to be extension-closed if 

every open cover of S extends to an open cover of X (see [29]). This notion was extended to 

sublocales and to arbitrary continuous maps of locales in [23] as in the following definition. 

We will also need the following definition: 

Definition 6.1.5. A continuous map of locales f : X → Y is extension-closed if f∗ : OY → OX 
preserves covers. 

If a sublocale inclusion j : S - X is extension-closed, we shall also say the sublocale is 

extension-closed. 

Definition 6.1.6. A continuous map of locales f : X → Y is said to be perfect if f∗ : OY → 

OX preserves directed joins. A proper map is a continuous map of locales which is closed and 

perfect. 

 
For the purpose of our study we will need the following definition which was introduced 

in [23]. 86 
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Definition 6.1.7. A continuous map of locales f : X → Y is nearly perfect if f∗ : OY → 

OX preserves directed covers. 

Proposition 6.1.1. [23] If f : X → Y is a nearly perfect localic surjection and X is 

isocompact, then Y is isocompact. 

 
Proof. Let ↑a be a countably compact closed sublocale of Y . We show that the closed 

sublocale ↑f ∗(a) of X is countably compact. Let {bn} be an increasing countable cover of 

↑f ∗(a).  Then f ∗(a) ≤ bn for every n, so that a ≤ f∗(bn) for every n.  Since     bn = 1 and 

the join is directed, we have     f∗(bn) = 1, since f  is nearly perfect, and so {f∗(bn)} is an 

increasing cover of the countably compact locale ↑a.  Thus, f∗(bm) = 1 for some index m, 

whence bm = 1, implying that ↑ f ∗(a) is countably compact. So ↑f ∗(a) is compact since 

X is isocompact. Now let C be a directed cover of ↑a. Then ↑f ∗[C] is a directed cover of 

↑f ∗(a). By compactness of this locale, there is a c ∈ C such that f ∗(c) = 1. Since f is a localic 

surjection, c = 1, which implies that ↑a is compact. Therefore Y is isocompact. 
 
If the codomain of the continuous map of locales is isocompact, we require a proper map 

to reflect the isocompactness of the domain 

Proposition 6.1.2. [23] If f : X → Y is a proper map of locales and Y is isocompact, then 

X is isocompact. 

 
Proof.  Let  ↑b  be  a  countably  compact  closed  sublocale  of  X.   We  show  that  ↑f∗(b)  is 

countably compact.  Let {an} be an increasing cover of ↑f∗(b).  Then the set 

{b ∨ f ∗(an) | n = 1, 2, . . .} 

is an increasing cover of ↑b. Since ↑b is countably compact, there is m ∈ N such that b 

∨ f ∗(am)  =  1.   Since  f  is  a  closed  map,  this  implies  that  f∗(b) ∨ am  =  1,  and  hence am 

=  1  since  f∗(b)  ≤ am.   There  ↑f∗(b)  is  countably  compact,  and  hence  compact  since Y is 

isocompact. 
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Now let C be a directed cover of ↑b, so that C is directed and   C = 1; whence   {f∗(c) | c  

∈ C} =  1  because  f∗  preserves  directed  joins.   Since  f∗(b)  ≤ f∗(c)  for  each  c  ∈ C,  it 

follows that f∗[C] is a directed cover of the compact locale ↑f∗(b).  Thus f∗(c) = 1 for some 

c ∈ C, which implies that 

1 = f ∗f∗(c) ≤ c, whence it follows that ↑b is compact. Therefore X is isocompact. 
 

Bacon in [[4], Theorem 2.1] showed that if a space X is the union of a countable collection 

of closed isocompact subsets, then X is isocompact. This result has been extended to 

pointfree setting by Dube [23] as in the proposition below. 

Proposition 6.1.3. [23] A locale which is a join of countably many closed isocompact 

sublocales is isocompact. 

Proof. Let X be such a locale. The hypothesis, in frame terms, says there are countably 

many elements  an in OX  such that  ↑an is isocompact  for each n,  and     ∞n=1 can   = idOX . 

Let ↑b be a countably compact closed sublocale of X. Let C be a cover of ↑b. For each n, 

↑(an ∨b) is a closed sublocale of the countably compact locale ↑b, and is therefore countably 

compact.   But now ↑(an ∨ b) is a countably compact closed sublocale of the isocompact locale 

↑an, so it is compact. The set {an ∨ b ∨ c | c ∈ C} is a cover of ↑(an ∨ b), so there is a 

finite C(n) ⊆ C such that (an ∨ b) ∨ C(n) = 1.   Now put D = C(1) ∪ C(2) ∪ . . ., and 

observe that D is countable and (an ∨ b) ∨   D  = 1 for every n.   Consequently, 
∞
n=1(an ∨ b ∨   D) =    ∞

n=1(an ∨(b ∨   D)) = 1.  But    ∞
n=1(an ∨ x) = x for each x ∈ L since 

∞
n=1 can   = idL, so b ∨    D = 1.  Since b ≤    D (Indeed, b ≤ d for each d ∈ D), it follows 

that D = 1. Therefore D is a countable cover of the countably compact locale ↑b, so it 

has a finite subcover, which is a finite subcover extracted from C. Therefore ↑b is compact, 

and hence X is isocompact. 

 
The following corollary is apparent from the definition of an Fσ−sublocale and also extends 

[[4], Theorem 2.2] to pointfree setting. 
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Recall that an Fσ−sublocale of a locale is one which is expressible as a join of countably 

many closed sublocales. 

Corollary 6.1.2. [23] Every Fσ−sublocale of an isocompact locale is isocompact. 

Recall that a countable cover {an} is shrinkable if there is a countable cover {bn} such that 

bn ≺ an for each n. Recall also that a locale X is countably paracompact exactly if every 

countable cover {an} is shrinkable. We have that dense extension-closed sublocales of iso- 

compact countably paracompact locales are isocompact. This is seen from the proposition 

below culled from [23]. The proof is taken verbatim. 
 

Proposition 6.1.4. [23] A dense extension-closed sublocale of a countably paracompact 

isocompact locale is isocompact. 

Proof. Let j : S → X be a localic inclusion of a dense extension-closed sublocale of an 

isocompact locale. Let ↑b be a countably compact closed sublocale of S. We show that 

↑j∗(b) is countably compact. Let {an} be an increasing cover of j∗(b). Since X is countably 

paracompact and {an} is increasing cover of X, there is a cover {dn} of X such that 

dn ≺ an for each n. The set {b ∨ j∗(dn) | n = 1, 2, . . .} is an increasing cover of ↑b, and so, 

by countable compactness of this locale, there is an index m such that b ∨ j∗(dm) = 1. Since 

j∗ takes covers to covers, j∗(b) ∨ j∗j∗(dn) = 1, so that j∗(b) ∨ an = 1 since j is dense and dm 

≺ am.  Thus, am = 1 because j∗(b) ≤ am.  Therefore ↑j∗(b) is compact since X is 

isocompact. From this it is easy to deduce (using the fact that j∗ takes covers to covers) 

that ↑b is compact. 

 
 

6.2 Closure-Isocompactness 
 

A variant of isocompactness called closure-isocompact was first considered in topological 

spaces by Sakai [36]. The concept of closure-isocompactness is stronger than the concept 

of isocompactness. 
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Definition 6.2.1. A locale is closure-isocompact (abbreviated cl-isocompact ) if the closure 

of every countably compact complemented sublocale is compact. It is fully cl-isocompact 

if the closure of every countably compact sublocale is compact. 

A locale X is said to be perfectly normal if it is normal and every element of OX is 

a cozero element. Examples of perfectly normal locales include metrizable locales and 

Boolean locales. 
 

Lemma 6.2.1. [23] A locale which has a dense pseudocompact sublocale is pseudocompact. 
 

Proof.  Let j : S  → X  be a dense pseudocompact sublocale of X.  Let {an} be a sequence in 

OX  with a1 ≺ a2, . . . and     an = 1.  Then j∗(an) ≺ j∗(an+1) in OS and     j∗(an) = 1. Then 

pseudocompactness of S yields an index n with j∗(an) = 1. By density of j, 
 

1OX = j∗j∗(an) ≤ an+1.  Therefore X is pseudocompact. 
 
 

 
 

For the next lemma, we recall from [23] that a sublocale S of a locale X is σ−compact if 

there are countably many compact sublocales Kn of X such that S = 
V

n Kn. 

Lemma 6.2.2. [23] A completely regular locale which is pseudocompact and σ-compact is 

compact. 

 

Proof. Let X be such a locale, and let {an} be a sequence in OX such that ↑an is compact 

for each n and    ∞
n=1 can  = idOX .  Let C be a cover of X by cozero elements.  By compactness 

of the frame ↑an, for each n there is a finite B(n) ⊆ C such that an ∨  B(n) = 1.  Put 

B =    n
∞
=1 B(n) and b =     B; then an ∨ b = 1 for each n, and hence    ∞

n=1(an ∨ b) = 1.  Thus, 

(   n
∞
=1 can )(b)  =  1,  which  implies  that      B  =  1.  Since  B  ⊆ Coz(OX)  and  is  countable, 

the pseudocompactness of X implies that  D = 1, for some finite D ⊆ B. Thus, C has a finite 

subcover for X. By complete regularity, it follows that X is compact. 
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If j : L → L is a nucleus on a frame L and a ∈ L, then the join j ∨ ca is the composite 

j ◦ ca [15]. We will need this result in the proof of the proposition below. 

Proposition 6.2.1. [23] A complemented Fσ−sublocale of a completely regular cl-isocompact 

locale is cl-isocompact. 

Proof. Let Y be a complemented Fσ-sublocale of a cl-isocompact completely regular lo- 

cale  X.   Write  Y   =     ∞n=1 Kn,  where  Kn   are  the  closed  sublocales  of  X .   Let  Z  be  the 

complemented countably compact sublocale of  Y .  Then Z  is a complemented sublocale 

of X, and hence Z is compact since X is cl-isocompact. We claim that each Z ∧ Kn is 

countably compact. Fix any n, and say OZ = Fix(z) and O(Kn) = Fix(ca), for some 

nucleus z on OX and some a ∈ OX. Let {an} be an increasing cover of Fix(z ∨ ca). Then (z(a 

∨ an)) is an increasing cover of the countably compact frame Fix(z), and hence there is an 

index m such that (z(a ∨ am)) = 1. But (z(a ∨ am)) = (z ∨ ca)(am) = am; thus Z ∧ Kn 

is countably compact. Since Z ∧ Kn is a complemented sublocale of X and X is cl-

isocompact, Z ∧ Kn is compact for each n.  Because Z is complemented in Sub(X), and Z 

≤ 
V

n Kn, we have 
 

Z = Z ∧ 
V

n Kn = 
V

n(Z ∧ Kn). 

Since, for each n, Z ∧ Kn ≤ Z ∧ Kn ≤ Z, the foregoing equality implies 

Z ≤ 
V∞

n=1 Z ∧ Kn ≤ Z̄, 

a consequence of which is that Z is dense in the sublocale     ∞n=1 Z ∧ Kn.  Since Z is count- 

ably compact, and hence pseudocompact, it follows from Lemma 6.2.1 that    ∞
n=1 Z ∧ Kn is 

pseudocompact. But It is σ-compact; so, by Lemma 6.2.2, it is commpact, and hence, by 

[[32], Proposition III 1.2] it is a closed sublocale of X. 
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Now taking closure across the inequality Z ≤ ∞
n=1 Z ∧ Kn ≤ Z̄ shows that Z = ∞

n=1 Z ∧ Kn, 

whence Z is compact. Since each Kn is closed, we have Z ∧ Kn ≤ Kn = Kn, and conse- 
quently Z = 

V∞
n=1 Z ∧ Kn ≤ Y , implying Z = Z ∧ Y  = Z, hence Z is compact. 

Y Y 
 
 

We show below that fully cl-isocompact locales are reflected by nearly perfect continuous 

maps. The proof is also taken verbatim. 

Proposition 6.2.2. [23] Let f : X → Y be a nearly perfect continuous map. 

 
1. If Y is fully cl-isocompact, then so is X. 

 
 
 

2. If Y is cl-isocompact, and f is a sublocale inclusion of a complemented sublocale, 

then X is cl-isocompact. 

 

Proof. (1): Let j : S → X be a sublocale inclusion with S countably compact. We then 

have the following commutative square 
 

f ∗ 

OY OX 

ϕ j∗ 

 

Im(j
t\ 
∗f ∗) 

i    O
t\ 
S 

in Frm, where j is the inclusion map and ϕ maps as j∗f ∗. We must show that ↑j∗(0) is 

compact.   Observe  that  ϕ∗(b)  =  f∗j∗(b)  for  every  b  ∈  Im(j∗f ∗).   Since  Im(j∗f ∗)  is  a 

subframe of OS, it is isomorphic to the frame of opens of a countably compact sublocale 

of T . Therefore ↑ϕ∗(0) is compact because Y is fully cl-isocompact. Let D be a directed cover 

of ↑ϕ∗(0). Since f is nearly perfect,  the set {f∗(d) | d ∈ D} is a cover of Y ,  and hence the 

set {f∗(d) ∨ j∗f∗(0) | d ∈ D} is a directed cover of ↑f∗j∗(0). 
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Therefore, by compactness of this frame, there is a d ∈ D such that f∗(d) ∨ j∗f∗(0) = 1OY . 

Thus, 

1OX = f ∗(f∗(d) ∨ j∗f∗(0)) ≤ d ∨ j∗(0) = d, Which shows that ↑j∗(0) is compact. 

(2) : Let j : S → X be a sublocale inclusion with S complemented and countably compact. 

Using the diagram 
 
 

OY 
 

Kf∗j∗(0) 

f ∗ 

     OX 

Kj∗(0) 

 
\t t\ 

↑f∗j∗(0) ↑j∗(0) 

as visual aid, we can complete the lines of the foregoing one, taking into account that S is 

complemented in Sub(X). 
 

Corollary 6.2.1. [23]A closed sublocale of a cl-isocompact locale is fully cl-isocompact. 
 
 
Next we recall the definition of a pullback in a category. 

 
f 

Definition 6.2.2. The pullback of a pair of morphisms (f, g) with B Y 
g 

A in 

a category C is a pair of morphisms (α, β) with  B α   X 
β 

   A such that: 
 
 

1. g ◦ β = f ◦ α; 

2. For any pair (h1, h2) of morphisms with B �..  h2  C  h1  A  and g ◦ h1 = f ◦ h2, there exists a 

unique morphism µ : C → X such that h1 = β ◦ µ and h2 = α ◦ µ, as in the commutative 

diagram 



94 

 

 

 
   

 

C | (.50)µ 
 
 
 
 

A 
 

g 
 

B      Y
t\
 

f 
 

Proposition 6.2.3. [23] Let f : X → Y be a proper surjection in Loc. 

 
1. If X is cl-isocompact, then Y is cl-isocompact. 

 
2. If X is fully cl-isocompact, then X is fully cl-isocompact. 

 

Proof. 1. Let j : S → Y be a countably compact complemented sublocale of Y . Consider 

the squares 
 
 
 
 

g 
P S 

 

k j 

f 
X Y 

 
and 

 
f ∗ 

OY OX 

j∗ k∗ 

O
t\ 
S 

g∗ 
   O

t\
P
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in Loc and Frm, respectively, where the one on the top depicts the pullback of f along j, 

and the on the bottom is its image under the functor O : Loc → Frm. By [[36], Proposition 

4.2], g is a proper map, and, in fact, a locale surjection.  Let (an) be an increasing cover 

of P . Then {g∗(an) | n ∈ N} is an increasing cover of S, and hence g∗(an) = 1, for some 

index n. Thus, an = 1, which implies that P is countably compact. But P is a sublocale of 

X (the ”inverse image” of S under f ), and, in fact, a complemented sublocale since inverse 

images of complemented sublocales are complemented. So, ↑k∗(0) is compact because X is 

cl-isocompact. Let D be a directed cover of ↑j∗(0). Then {f ∗(d) | d ∈ D} is a cover of X, 

and hence the set {k∗(0) ∨ f ∗(d) | d ∈D} is a directed cover of the compact frame ↑k∗(0), 

so that k∗(0) ∨ f ∗(d) = 1, for some d ∈ D.  Since f is closed (as it is proper), we have f∗k∗(0) 

∨ d = 1. Now, f ◦ k = j ◦ g implies that f∗k∗(0) = j∗g∗(0) = j∗(0), the latter in view of the 

fact that g∗(0) = 0, since g is a locale surjection. We deduce from f∗k∗(0) ∨ d = 1 that d = 

1X since j∗(0) ≤ d. Thus, ↑j∗(0) is compact, and hence Y is cl-isocompact. 
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Chapter 7 
 

Perfect compactifications of frames 
 

In this chapter we study perfect compactifications of frames. Perfect compactifications of 

topological spaces were introduced by Sklyarenko [38] as a compactification Y of a space 

X having the property that FrY O U = ClY FrX U for every open subset U of X. The set O 

U = Y \ClY (X\U ) is the largest open subset of Y  whose intersection with X gives the set 

U and Fr is the frontier (or boundary) operator. Perfect compactifications of frames were 

introduced by Baboolal [2] in 2010. 
 
 
 

7.1 Perfect compactifications 
 

Baboolal introduced the perfect compactification of frames and rim-compact frames. The 

author defined Freudenthal compactifications of rim-compact frames. The Freudenthal 

compactification  and  Stone-Čech  compactifications  are  examples  of  perfect  compactifi- 

cations. In this section, we study perfect compactifications in the context of pointfree 

topology. 
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Definition 7.1.1. Let h : M → L be a compactification of L, r : L → M be its right adjoint. 

Then (M, h) is said to be perfect with respect to an element u ∈ L if r(u ∨ u∗) = r(u) ∨ 
r(u∗). The compactification is said to be a perfect compactification of L if it is perfect with 
respect to every element of L. 

 
The pointfree Stone-Čech compactification was introduced by Banaschewski and Mulvey 

in [14]. In [2], the author erroneously indicated that the proof of the following Theorem 

”follows from the corollary to Lemma 5 in [3]”. There is no Lemma 5 in [3] and even 

Lemma 1.5 in [3] has no corollary. We have included the proof for this Theorem in our 

discussion. 

Theorem  7.1.1.  [2]  The  Stone-Čech  compactification  of  a  completely  regular  frame  is 

perfect. 

 

Proof.  Let L be a completely regular frame and h : M  → L be its Stone-Čech compactifi- 

cation with right adjoint r : L → M .  Take any u ∈ L, then u ∨ u∗  is dense in L and since 

h is onto, we have I, J ∈ M such that h(I) = u and h(J) = u∗. Now 

h(I ∧ J) = h(I) ∧ h(J) = u ∧ u∗ = 0 

and by denseness of h, I ∧ J = 0 in M . Now, I ≺ r(u) and J ≺ r(u∗) so that 

r(u ∨ u∗) = 
V

{k ∈ M | h(k) ≤ u ∨ u∗} 

≤ 
V

({k ∈ M | h(k) ≤ u} ∨ {k ∈ M | h(k) ≤ u∗}) 

= 
V

{k ∈ M | h(k) ≤ u} ∨ 
V

{k ∈ M | h(k) ≤ u∗} 

= r(u) ∨ r(u∗). 

 
On the other hand, u ∨ u∗ ≥ u and u ∨ u∗ ≥ u∗ so 

r(u ∨ u∗) ≥ r(u) and r(u ∨ u∗) ≥ r(u∗). 



98 

 

(   (   (   

Therefore r(u ∨ u∗) ≥ r(u) ∨ r(u∗) and hence r(u ∨ u∗) = r(u) ∨ r(u∗).  Thus the Stone-Čech 

compactification is perfect. 

 
The following lemma is due to Banaschewski (see [13]) and we take the proof verbatim. 

 
Lemma 7.1.1. [2] Let h : M  → L be dense onto, with r : L → M its right adjoint. Then 

 
1. r(a∗) = r(a)∗ for all a ∈ L, 

2. h(x∗) = h(x)∗ for all x ∈ M . 

Proof.     1.  h  r(a) ∧ r(a∗)   =  h  r(a)   ∧ h  r(a∗)   =  a ∧ a∗  =  0 implies r(a) ∧ r(a∗)  = 

0 since h is  dense,  and hence r(a∗) ≤ r(a)∗.  Furthermore,  r(a) ∧ r(a)∗  = 0 imlpies a 

∧ h
(
r(a)∗

 
= 0 which implies that h

(
r(a)∗

 
≤ a∗ and hence r(a)∗ ≤ r(a∗). 

2.  0 = x ∧ x∗ implies 0 = h(0) = h(x) ∧ (x∗) which implies h(x∗) ≤ h(x)∗. Furthermore, 

r
(
h(x)∗

   
= r

(
h(x)

 ∗  since x ≤ r
(
h(x)

 
.  Thus hr

(
h(x)∗

   
≤ h(x∗), that is h(x)∗ ≤ 

 

 

 

We shall say that in a frame L, the pair (u, v) disconnects w in L if w = u ∨ v, u ∧ v = 0 and 

u /= 0, v /= 0. We then have the following theorem: 

Theorem 7.1.2. [2] The following are equivalent for a compactification h : M → L of L, 

r being the right adjoint of h. 

 
1. h : M → L is a perfect compactification. 

2. if a pair (u, v) disconnects w in L, then the pair 
(
r(u), r(v)

 
disconnects r(w) in M . 

3. r preserves disjoint binary joins. 

∗h(x ). 
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Proof. (1) ⇒ (3): Take any u, v ∈ L, u ∧ v = 0. We shall show the non-trivial inequality r(u 

∨ v) ≤ r(u) ∨ r(v). Now u ∧ v = 0 implies v ≤ u∗ which implies u ∨ v ≤ u ∨ u∗ and thus 

implying r(u ∨ v) ≤ r(u ∨ u∗) = r(u) ∨ r(u∗). Similarly r(u ∨ v) ≤ r(v) ∨ r(v∗). Hence 

r(u ∨ v) ≤ 
(
r(u) ∨ r(u∗)

   
∧ 

(
r(v) ∨ r(v∗)

 
 

=
 (

r(u) ∨ r(u∗)
   

∧ r(v)
] 

∨
 (

r(u) ∨ r(u∗)
   

∧ r(v∗)
]
 

= 
(
r(u) ∧ r(v)

   
∨ 

(
r(u∗) ∧ r(v)

   
∨ 

(
r(u) ∧ r(v∗)

   
∨ 

(
r(u∗) ∧ r(v∗)

 
 

= r(u ∧ v) ∨ r(u∗ ∧ v) ∨ r(u ∧ v∗) ∨ r(u∗ ∧ v∗) 

= r(0) ∨ r(v) ∨ r(u) ∨ r
(
(u ∨ v)∗

 
 

= 0 ∨ r(v) ∨ r(u) ∨ 
(
r(u ∨ v)

 ∗
 

= r(v) ∨ r(u) ∨ 
(
r(u ∨ v)

 ∗
 

 
since h is dense and by virtue of Lemma 7.1.1 Thus r(u ∨ v) ≤ r(u) ∨ r(v) as required. 

(3) ⇒  (2):   Suppose  w  =  u ∨ v,  with  u ∧ v  =  0, u  /=  0, v  /=  0  in  L.    Then  r(w) = 

r(u) ∨ r(v) with r(u)  /=  0, r(v)  /=  0 and r(u) ∧ r(v)  =  r(u ∧ v)  =  r(0)  =  0. Thus 

r(u), r(u∗) disconnects r(w). 

(2) ⇒ (1): Take any u ∈ L.  Let w = u ∨ u∗.  If either u = 0 or u∗ = 0, then r(u) = 0 or 

r(u∗) = 0 by denseness of h, and the equality r(u ∨ u∗) = r(u) ∨ r(u∗) must certainly hold. 

If u /= 0 and u∗ 0, then (u, u∗) disconnects w, and thus the pair 
(
r(u), r(u∗)

   
disconnects 

r(w). Hence r(u ∨ u∗) = r(u) ∨ r(u∗). 
 

Next we recall the concept of strong inclusion introduced by Banaschewski [6]. 
 
Definition 7.1.2. A strong inclusion on a frame L is a binary operation <J on L such 

that: 

 
1. if x ≤ a <J b ≤ y then x <J y; 
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2. <J is a sublattice of L × L; 

3. a <J b =⇒ a ≺ b; 

4. a <J b =⇒ a <J c <J b for some c ∈ L; 

5. a <J b =⇒ b∗ <J a∗; 

6. for each a ∈ L, a = 
V

{x ∈ L | x <J a}. 

If a frame L is regular and continuous, then it has a smallest inclusion ◄ on L given by 

a ◄ b if and only if a ≺ b and either ↑ a∗ or ↑ b is compact. Let K(L) be the set of all 

compactifications of L, partially ordered by (M, h) ≤ (N, f ) if and only if there exists a 

frame homomorphism g : M → N making the following diagram commute: 
 
 
 
 

g 
M N 

 

h f 
 

L ..� L 
 

Also, let S(L) be the set of all strong inclusions on L, partially ordered by set in- clusion. 

Banaschewski [6] shows that K(L) is isomorphic to S(L) by exhibiting maps K(L) → S(L) 

and S(L) → K(L) which are order preserving and inverses of each other. The map K(L) 

→ S(L) is given as follows:   For a compactification (M, h) of L, let r : L → M be the 

right adjoint of h. Then for any x, y ∈ L define x <J y to mean that r(x) ≺ r(y). Then <J 

turns out to be a strong inclusion on L. For the map S(L) → K(L), let <J be any strong 

inclusion on L. Let γL be the set of all strongly regular ideals of L relative to <J, i.e. 

those ideals J of L for which x ∈ J implies there exists y ∈ J such that x <J y. Then 
V

: 

γL → L is dense, onto and γL is a regular subframe of Idl(L), the 



101 

 

frame of ideals of L, so that (γL, ∨) is a compactification of L. This is the compactification 

associated with the given <J. 

If (M, h) is a compactification of a frame L, it is of interest then to know what additional 

properties the associated strong inclusion must satisfy if (M, I) is a perfect compactifica- 

tion. This is given in the next 

Proposition 7.1.1. [2] Let h : M → L be a compactification of L, and <J the associated 

strong inclusion. If (M, h) is a perfect compactification, then <J satisfies 

for all x, y ∈ L, x ≤ y, x <J y ∨ y∗ implies x <J y. 

Proof. Suppose x ≤ y, and x <J y ∨ y∗ for some x, y ∈ L. Then r(x) ≺ r(y ∨ y∗) = r(y) 

∨ r(y∗), since (M, h) is a perfect compactification.  Let t ∈ L such that r(x) ∧ t = 0, and t ∨ 

r(y) ∨ r(y∗) = 1. Then 

r(x) ∧ 
(
t ∨ r(y∗)

  
= 

(
r(x) ∧ t

  
∨ 

(
r(x) ∧ r(y∗)

 
 

= 0 ∨ r(x) ∧ r(y∗) 

= r(x) ∧ r(y∗) 

≤ r(x) ∧ r(x∗) 

= r(x ∧ x∗) 

= r(0) 
 

= 0, by the denseness of h. 
 
 
Thus, r(x) ≺ r(y), with the separating element t ∨ r(y∗). Hence x <J y. 

Proposition 7.1.2. [2] Let <J be a strong inclusion on L, and (γL, ∨) the compactification 

associated with <J. If <J satisfies 

x ≤ y, x <J y ∨ y∗ implies x <J y for all x, y ∈ L 

then (γL, ∨) is a perfect compactification of L. 



102 

 

Proof. We recall first from Banaschewski [6] that the right adjoint k : L → γL of ∨: γL → L 

is given by k(a) = {x ∈ L | x <J a}. We have to show that k(a ∨ a∗) = k(a) ∨ k(a∗) for any 

a ∈ L. 

Suppose that x  ∈ k(a ∨ a∗),  then x  <J a ∨ a∗.   Further,  x  =  (x ∧ a) ∨ (x ∧ a∗).   Now 

x ∧ a ≤ a, x ∧ a ≤ x <J a ∨ a∗ implies x ∧ a <J a ∨ a∗, which by virtue of the condition satisfied 

by <J implies x∧ a <J a. Furthermore x <J a ∨ a∗ implies x <J a∗ ∨ a∗∗, since a ≤ a∗∗. Hence x ∧ 

a∗ <J a∗ ∨ a∗∗. Since x ∧ a∗ ≤ a∗, by the condition satisfied by <J again, we have x ∧ a∗ <J 

a∗. Thus x ∈ k(a) ∨ k(a∗). The reverse inclusion being clear, this proves that k(a ∨ a∗) = 

k(a) ∨ k(a∗). 
 
In view of the isomorphism between K(L) and S(L) mentioned above, the two propositions 

above imply the following: 

Proposition 7.1.3. [2] A compactification (M, h) of a frame L is perfect if and only if its 

associated strong inclusion <J satisfies 

x ≤ y, x <J y ∨ y∗ implies x <J y for all x, y ∈ L. 

Remark 7.1.1. [2] The above proof shows in effect that (M, h) is perfect with respect to 

y ∈ L if and only if whenever x ≤ y, x <J y ∨ y∗ then x <J y. 

Given an arbitrary compactification (M, h) of L, we do not in general expect its right adjoint 

r to preserve disjoint binary joins. However, if elements u, v ∈ L are not just disjoint but 

such that u <J v∗ then r(u ∨ u) = r(u) ∨ r(v) always holds as we show below. Of course we 

also end this section with the following proposition. 
 

Proposition 7.1.4. [2] Let h : M → L be a compactification of L, <J the induced strong 

inclusion. If u, v ∈ L and u <J v∗ then r(u ∨ v) = r(u) ∨ r(v). 
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Proof. Since u <J v∗, we have r(u) ≺ r(v∗) and hence r(u)∗∨r(v)∗ = 1. Thus r(u∗)∨r(v∗) = 

1, since r(u)∗ = r(u∗) by Lemma 7.1.1. Hence 
 

r(u ∨ v) = r(u ∨ v) ∧ 
(
r(u∗) ∨ r(v∗)

 
 

= 
(
r(u ∨ v) ∧ r(u∗)

 
∨ 

(
r(u ∨ v) ∧ r(v∗)

 
 

= r
(
(u ∨ v) ∧ u∗

 
∨ r

(
(u ∨ v) ∧ v∗

 
 

= r(v ∧ u∗) ∨ r(u ∧ v∗) 

≤ r(u) ∨ r(v) 

proving the non-trivial inequality. 

 

7.2 Rim-compact frames and Freudenthal compacti- 

fication 

Rim-compact spaces (also called peripherally (bi) compact spaces) are Hausdorff topolog- 

ical spaces having a basis for the topology consisting of open sets with compact frontiers 

(see [38]). Let X be a topological space. For U ∈ OX, FrXU = ClXU \U . Now for any 

V   ∈ OX,  ↑ V   ∼=  O(X\V )  as  frames.   Thus  we  have  that  ↑ U  ∪ U ∗  is  compact  if  and 

only if O X\(U ∪ U ∗)   is compact if and only if O (X\U ) ∩ (X\U ∗)   is compact if and only 

if O (X\U ) ∩ ClXU is compact if and only if O(FrXU ) is compact if and only if FrXU is 

compact. Therefore X is rim-compact as a topological space if and only if O(X) is rim-

compact as a frame. 
 
Definition 7.2.1. A regular frame L is called rim-compact if for each a ∈ L, a =   {u ∈ 

L |↑(u ∨ u∗) is compact}. 
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In [2] the author remarked that a topological space X is rim-compact if and only if the lattice 

OX of its open subsets is rim-compact. 

The functors Σ and O induce a dual equivalence between the category of spatial frames 

and the category of sober topological spaces. Since every rim-compact space is sober and 

the lattice OX is rim-compact for each space X, it follows that the functor O embeds the 

category of rim-compact spaces into the category of rim-compact frames.  Therefore the 

category of rim-compact frames is a wider class than the category of rim-compact spaces. 
 
Definition 7.2.2. Let L be a rim-compact frame. A π-compact basis B for L is a basis 

B for L such that: 
 

1. a ∈ B implies ↑(a ∨ a∗) is compact; 

2. a ∈ B implies a∗ ∈ B; 

3. a, b ∈ B implies a ∧ b, a ∨ b ∈ B. 

Example 7.2.1. [2] Let L be a rim-compact frame. Observe that L always has at least one 

π−compact basis:   Indeed, let B be the basis for L consisting of all elements b such that ↑(b 

∨ b∗) is compact. We have to show (2) and (3) in the above definition. Let a ∈ B. Since a ∨ a∗  

≤ a∗ ∨ a∗∗ , we have ↑(a∗ ∨ a∗∗) is compact since ↑(a ∨ a∗) is compact and this proves (2). 

For (3) let a, b ∈ B, then we have to show that ↑ (a ∧ b) ∨ (a ∧ b)∗    and 

↑ (a ∨ b) ∨ (a ∨ b)∗    are compact. By Lemma 2.1.1 ↑a and ↑b are compact if and only if 

↑(a ∧ b) is compact. Now, (a ∧ b) ∨(a ∧ b)∗ = a ∨(a ∧ b)∗ ∧ b ∨(a ∧ b)∗ ≥ (a ∨ a∗) ∧(b ∨ b∗). Hence 

↑ (a ∧ b) ∨ (a ∧ b)∗ is compact since ↑ (a ∨ a∗) ∧ (b ∨ b∗) is compact by the above note. Also 

 

(a ∨ b) ∨ (a ∨ b)∗ = (a ∨ b) ∨ (a∗ ∧ b∗) 

= (a ∨ b ∨ a∗) ∧ (a ∨ b ∨ b∗) 

≥ (a ∨ a∗) ∧ (b ∨ b∗) 



 

V
 
V 

V 

i=
 

i=
 

and so ↑
(
(a ∨ b) ∨ (a ∨ b)∗

 
is also compact. 

Lemma 7.2.1. [2] Let L be a rim-compact frame and B be a π-compact basis for L. If 

w ∈ L and u ∈ B with w ∨ u = 1, then there exists v ∈ B such that v ≺ u and w ∨ v = 1. 

Proof. Using regularity and the fact that B is a basis for L, we have w =  {x ∈ L | x 

≺ w, w ∈ B}.  Then u ∨  {x ∈ L | x ≺ w, x ∈ B} = 1 and hence u ∨ u∗ ∨   {x ∈ L | 

x ≺ w, x ∈ B} = 1.  Since ↑(u ∨ u∗) is compact, we can find xi ∈ B, xi ≺ w for 

i = 1, 2, . . . , n such that u ∨ u∗ ∨ 
Vn xi = 1. Put x = 

Vn xi, we have x ∈ B, x ≺ w and 

u ∨ u∗ ∨ x = 1. Let v = u ∧ x∗. Then v ∈ B, and furthermore 

 
w ∨ v = w ∨ (u ∧ x∗) 

= (w ∨ u) ∧ (w ∨ x∗) 

= 1 ∧ 1 

= 1. 
 
 
Also, v ≺ u : 

 
v ∧ (u∗ ∨ x) = (v ∧ u∗) ∨ (v ∧ x) 

= (u ∧ x∗ ∧ u∗) ∨ (v ∧ x) 

= 0 and u ∨ (u∗ ∨ x) = 1. 
 
 
 

 
Proposition 7.2.1. [2] Let B be a π-compact basis for a rim-compact frame L. Define 

<J on L by : a <J b ⇔ there exists u ∈ B such that a ≺ u ≺ b. Then <J is a strong inclusion 

on L. 

 
Proof. 1. x ≤ a <J b ≤ y ⇒ x <J y : Find u ∈ B such that a ≺ u ≺ b. Then, of course, 

x ≺ u ≺ y and so x <J y. 105 
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2. <J is a sublattice of L×L : Condition 3 together with 2 of the definition of π−compact 

basis gives us 0, 1 ∈ B, and then of course 0 <J 0, 1 <J 1. Furthermore, the implications 

x <J a, b implies x <J a ∧ b, and x, y <J a implies x ∨ y <J a follow from the properties 

of rather below relation ≺ and the fact that B is closed under finite meet and finite 
joins. 

 
3. x <J a implies x ≺ a trivially. 

4. Now suppose x <J y. Then there exists u ∈ B such that x ≺ u ≺ y. Now x∗ ∨ u = 1, and 

so by Lemma 7.2.1, there exists v ∈ B, v ≺ u such that x∗ ∨ v = 1. Hence x ≺ v  

≺ u ≺ y.  Similarly we can get w  ∈ B  such that x ≺ v  ≺ w  ≺ u ≺ y.  Thus x <J w 

<J y. 

5. Also, x <J a implies a∗ <J x∗ follows from the properties of ≺ and the fact that B is closed 

under pseudocomplementation. 

6. Now for any a ∈ L, a =  {x ∈ L | x ≺ a, x ∈ B}.  For x ∈ B and x ≺ a we have x∗ 

∈ B and a ∨ x∗ = 1. By Lemma 7.2.1, there exists v ∈ B, v ≺ x∗ and a ∨ v = 1. Hence 

x ≺ v∗ ≺ a with v∗ ∈ B. Thus x <J a and a = 
V

{x ∈ L | x <J a}. 
 

 
 
Let L be any rim-compact frame, and let B be any π-compact basis for L. Let γBL denote the 

compactification of L associated with the strong inclusion <JB given as in Proposition 7.2.1, 

that is, a <JB b ⇔ there exists u ∈ B such that a ≺ u ≺ b. We then have the 

following. 
 

Proposition 7.2.2. [2] Let γBL be the compactification associated with the π−compact 

basis B of a rim-compact frame L, and let (M, h) be any compactification of L such that (γBL, 

∨) ≤ (M, h). Then (M, h) is perfect with respect to every element of B. 
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Proof. By remark 7.1.1 we have to show that for each u ∈ B, whenever x ≤ u and 

x <J u ∨ u∗, then x <J u. Here <J is induced by (M, h). For x ≤ u, x <J u ∨ u∗, we have 

x ≺ u ∨ u∗ and thus x∗ ∨ u ∨ u∗ = 1. Hence x∗ ∨ u = 1, since x ≤ u. By Lemma 7.2.1 there 

exists v ∈ B, v ≺ u such that x∗ ∨ v = 1. Then x ≺ v ≺ u with v ∈ B. Thus x <JB u, and 

hence x <J u, since (γBL, ∨) ≤ (M, h). 

The author in [2] remarked that (γBL, ∨) is a compactification of a rim-compact frame 

L which is perfect with respect to every element of B. But it need not be perfect with respect 

to every element of L, and consequently need not be a perfect compactification. Call a 

compactification (M, h) of a rim-compact frame L a π-compactification of L if there 

exists  a  π−compact  basis  B  of  L  such  that  (M, h)  ∼=  (γBL, ∨).   We  show  in  the  next 

proposition that such compactification of L possesses a base intimately connected with the 

given π−compact base for L. 

Proposition 7.2.3. [2] Let (γBL, ∨) be the π−compactification of the rim-compact frame with 

π−compact basis B. Let k : L → γBL be the right adjoint of ∨: γBL → L, that is, k(a) = 

{x ∈ L | x <JB a}. Then k(B) = {k(u) | u ∈ B} is a basis for γBL. 

Proof.  For any J  ∈ γBL, J  =    {k(a) | a ∈ J}.  Since B  is a basis for L, we have for each 

a ∈ J,  a =  {u ∈ B | u ≤ a}.  We shall show that k(a) =   {k(u) | u ∈ B, u ≤ a}. Let 

x ∈ k(a). Then x <JB a and thus,  since <J interpolates,  there exists c  ∈ L such that x 

<JB c <JB a.   Hence we can find u, v ∈ B such that x ≺ u ≺ c ≺ v ≺ a.   Thus k(a) = 
V

{k(u) | u ∈ B, u ≤ a}. 

Following the discussion before Proposition 7.2.3, it would be nice if there were a π-compact 

basis B  for a rim-compact frame L for which γBL is perfect with respect to every element 

of L and not just to those elements in B. This is indeed the case, as we show below, if we 

take B to consist of the totality of all elements u of L such that ↑(u ∨ u∗) is compact. 
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Denote this compactification with the above mentioned basis by (γL, ∨). We call this the 

Freudenthal compactification of the rim-compact frame L. Much interesting is that this 

compactification is perfect as shown below. 

Proposition 7.2.4. [2] The Freudenthal compactification γL is perfect. 
 

Proof. Let u ∈ L be arbitrary, x ≤ u, x <J u∨ u∗, where <J is the strong inclusion associated 

with B mentioned above. We must show x <J u. Now find v such that ↑(u ∨ v∗) is compact and 

x ≺ v ≺ u ∨ u∗. Let w = v ∧ u. Then x ≺ w.  Indeed x ≤ u, x ≺ u ∨ u∗ implies x∗ ∨ u 

∨ u∗ =  1 and hence x∗ ∨ u  =  1.  Thus x  ≺ u,  and since  x  ≺ v  as well,  we have x ≺ u ∧ 

v = w. Furthermore w ≺ u : Find t such that v ∧ t = 0, t ∨ u ∨ u∗ = 1.  Then w ∧(t∨u∗) 

= (w ∧t)∨(w ∧u∗) = (v ∧u∧t)∨(v ∧u∧u∗) = 0. Thus w ≺ u, with a separating element t ∨ 

u∗. We claim that v ∨ v∗ ≤ w ∨ w∗ : Clearly v∗ ≤ w∗ since w ≤ v.   Hence v∗ ≤ w ∨ w∗. 

Also, v ≺ u∨ u∗ implies v = (v ∧ u)∨(v ∧ u∗) = w ∨(v ∧ u∗) ≤ w ∨ u∗ ≤ w ∨ w∗. Thus v ∨ v∗ ≤ 

w ∨ w∗ and hence ↑(w ∨ w∗) is compact. 
 
 

7.3 The two point compactification 
 
In this section we study a compactification for a class of regular continuous frames con- 

structed by Baboolal [3]. This is the analog of the two point compactification for locally 

compact Hausdorff spaces. 

Take L to be a regular continuous frame.  Suppose L has elements u and v with the property 

that u ∧ v = 0, ↑(u ∨ v) is compact, but neither ↑u nor ↑v is compact. Put 

N1 = {x ∈ L |↑(x ∨ u) is compact} and N2 = {x ∈ L |↑(x ∨ v) is compact}. 

Proposition 7.3.1. [3] Let L be a regular continuous frame and a ∈ L. Then a « 1 if 

and only if ↑a∗ is compact. 
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Proof. (⇒): Suppose a « 1 and 1 = C for some C ⊂ L with a∗ ≤ b for each b ∈ C. Since 

the relation « is interpolation, we can find x ∈ Lsuch that a « x « 1.  But 

x « 1 implies there exists finite K ⊆ C such that x ≤ 
V 

K.  Now since a∗ ∨ x = 1, we 

have a∗ ∨ 
V 

K = 1 and hence 
V 

K = 1. Thus ↑a∗ is compact. 

(⇐): Suppose ↑a∗ is  compact and let  
V 

C  = 1 for  some  C  ⊆ L.  Then  
V

{a∗ ∨ x | x ∈ C} 

= 1 and by compactness of ↑a∗, we have 1 = a∗ ∨ 
V 

K for some finite subset K ⊆ C. Thus 

a ≤ 
V 

K,and hence a « 1. 

Recall that a filter F in a frame L is said to be regular if x ∈ F implies that there exists 

y ∈ F such that x ≺ y. We show below that N1 and N2 are regular proper filters of L. 

Lemma 7.3.1. [3] N1 and N2 are regular proper filters of L. 

 
Proof.  Note that 0 ∈/  N1, N2 since ↑(0 ∨ u) =↑u and ↑(0 ∨ v) =↑v  are not compact.  Let 

x, y ∈ N1, therefore ↑(x ∨ u) and ↑(y ∨ u) are compact, and thus ↑(x ∨ u)∧ ↑(y ∨ u) is compact. 

But 

↑(x ∨ u)∧ ↑(y ∨ u) =↑
(
(x ∨ u) ∧ (y ∨ u)

 
=↑

(
(x ∧ y) ∨ u

   
is compact. 

Hence x ∧ y ∈ N1. Now let x ∈ N1 and x ≤ y for some y ∈ L. Then x ∨ u ≤ y ∨ u implies 

↑(y ∨ u) ⊆↑(x ∨ u) and by compactness of ↑(x ∨ u), we have ↑(y ∨ u) is compact and hence y 

∈ N1. Using the same argument for N2 shows that N1 and N2 are proper filters of L. To 

show regularity, let a ∈ N1. Now 1 =  {x ∈ L | x « 1}, so ↑(a ∨ u) compact implies there 

exists x « 1 such that a ∨ u ∨ x = 1. But x « 1 if and only if ↑x∗ is compact and thus x∗ 

∈ N1. 

Now, x ∨ u ∨ a = 1 implies (x ∨ u)∗∗ ∨ a = 1 which implies (x ∨ u)∗ ≺ a and hence implying 

x∗ ∧ u∗ ≺ a. Since u ∧ v = 0 implies v ≤ u∗, and since v ∈ N1 , we have u∗ ∈ N1. Thus x∗ 

∈ N1, u∗ ∈ N1 and hence x∗ ∧ u∗ ∈ N1. Thus N1 and N2 are regular. 
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Lemma 7.3.2. [3] For any a ∈ L, the up-set ↑a is compact if and only if a ∈ N1 ∩ N2. 
 
Proof. (⇒): Let a ∈ L and suppose ↑a is compact. Then ↑(a∨u) and ↑(a∨v) are compact 

and hence a ∈ N1 ∩ N2. 

(⇐): If a ∈ N1 ∩ N2, then ↑(a ∨ u) and ↑(a ∨ v) are compact. Hence 

↑(a ∨ u) ∧ (a ∨ v) =↑
(
(a ∨ u) ∧ (a ∨ v)

 
=↑(a ∨ u ∧ v) =↑a is compact. 

 
 

 
 

Now define a <J b in L by : a <J b ⇔ a ≺ b and for each i = 1, 2 either a∗ ∈ Ni or b ∈ Ni. 

Lemma 7.3.3. [3] The relation <J is a strong inclusion on L. 

 
Proof.   1. Assume x ≤ a <J b ≤ y. Now a ≺ b, so clearly x ≺ y. Take any Ni (i = 1, 2). If 

a∗ ∈ Ni, then x∗ ∈ Ni since a∗ ≤ x∗ and Ni is a filter.  If b ∈ Ni, then b ≤ y implies y ∈ 
Ni. Thus x <J y. 

2. 0 <J 0 since 0 ≺ 0 and 0∗ = 1 ∈ Ni for each i. Also 1 <J 1 since 1 ≺ 1 and 1 ∈ Ni. 

Then suppose x, y <J a. Then x ≺ a, y ≺ a, so x ∨ y ≺ a. Fix i. If a ∈ Ni, then x 

∨ y <J a. If x∗  ∈ Ni, y∗  ∈ Ni, then x∗ ∧ y∗  ∈ Ni, that is, (x ∨ y)∗  ∈ Ni.  Thus x ∨ 

y <J a. Now suppose x <J a, x <J b. Then x ≺ a, x ≺ b, so x ≺ a ∧ b. Fix i. If a ∧ 

b ∈ Ni, then x <J a ∧ b. If not, then either a lies outside Ni or b lies outside Ni. Thus x∗ 

∈ Ni and hence x <J a ∧ b. 

3. x <J a implies x ≺ a follows from the definition. 

4. Now suppose x <J a. Then x ≺ a. If either ↑x∗ or ↑a is compact, then x ◄ a in which case 

there exists y ∈ L such that x ◄ y ◄ a. Since ◄⊆<J this means x <J y <J a so that 

interpolation holds.   If ↑x∗   is not compact and ↑a is not compact then both x∗ and 

a lie outside N1 ∩ N2 by the above lemma. 
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There are two cases here : (a) x∗ ∈ N1 and a ∈ N2 and (b) x∗ ∈ N2 and a ∈ N1. 

Symmetry considerations make it sufficient to consider just one of these cases, say 

x∗ ∈ N1 and a ∈ N2. We seek y such that x <J y <J a. By the fact that ↑(x∗ ∨ u) is 

compact, x ≺ a and a =    {z ∈ L | z « a}, we can find z « a such that x∗∨u∨z = 1. 

Also from the fact that ↑(a ∨ v) is compact, x ≺ a and x∗ =    {t ∈ L | t « x∗}, we can 

find t « x∗  such that a ∨ v ∨ t = 1.  Now we have x ≺ u ∨ z and x ≺ t∗, and thus x 

≺ (u ∨ z) ∧ t∗ = (u ∧ t∗) ∧ (z ∧ t∗). We also have u ∧ t∗ ≺ a, since the element u ∨ t is 

such that a ∨ v ∨ t = 1 and 

(u ∧ t∗) ∧ (v ∨ t) = (u ∧ t∗ ∧ v) ∨ (u ∧ t∗ ∧ t) = 0. 
 

Also z ∧ t∗ ≤ z ≺ a. Hence (u ∧ t∗) ∨ (z ∨ t∗) ≺ a. Thus 
 

x ≺ (u ∧ t∗) ∨ (z ∧ t∗) = t∗ ∧ (u ∨ z) ≺ a. 
 

Put y = t∗ ∧ (u ∨ z). We claim that x <J y <J a. 

x <J y : Obviously x ≺ y, x∗ ∈ N1. We show that y ∈ N2. Now t « 1 implies ↑t∗ is 

compact and hence t∗ ∈ N1 ∩ N2 by the above lemma. Also u ∨ z ∈ N2 since u ∈ N2. 

Thus t∗ ∧ (u ∨ z) ∈ N2, that is, y ∈ N2. Hence x <J y. 

y <J a : Obviously y ≺ a and a ∈ N2. Now z « a implies z « 1 and so ↑z∗  is compact.  

Hence z∗  ∈ N1.  Also v ∈ N1,  v « u∗ implies u∗  ∈ N1.  Furthermore, z∗ ∧ u∗ « y∗ 
since 

z∗ ∧ u∗ ∧ y = z∗ ∧ u∗ ∧ (t∗ ∧ (u ∨ z)) = (z∗ ∧ u∗ ∧ t∗ ∧ u) ∨ (z∗ ∧ u∗ ∧ t∗ ∧ z) = 0. 

Hence y∗ ∈ N1 and thus y <J a. Thus <J interpolates. 

5. x <J a =⇒ a∗ <J x∗ : x <J a implies x ≺ a and hence a∗ ≺ x∗. Again if either ↑x∗ or 

↑a is compact, then a ◄ a and hence a∗ ◄ x∗ from which a∗ <J x∗. As in 4 we need 
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only consider the case x∗ ∈ N1, a ∈ N2. In this case a ≤ a∗∗ implies a∗∗ ∈ N2. Since 

also x∗ ∈ N1 we have then that a∗ <J x∗ as required. 

6. For each a ∈ L, a = {x ∈ L | x ◄ a}. But as remarked earlier, x ◄ a implies 

x <J a. Hence a = {x ∈ L | x <J a}. 

Thus <J is a strong inclusion on L. 
 
 

Recall that a congruence on a frame L is an equivalence relation on L which is also a 

subframe of L × L. The congruence lattice CL of L consists of all the congruences on L. 

Definition 7.3.1. For any compactification h : M → L, the remainder of L in the com- 

pactification is the quotient M/Θ where Θ = (ker  h)∗, the pseudocomplement of ker  h in the 

congruence lattice CL of M . 

Let ∨: αL → L be the least compactification corresponding to the least strong inclusion 

◄ on L and let k : L → αL be its right adjoint. Let J =  {k(x) ∈ αL | x « 1}, so that by 

Section 2 in [3], ↑J would be the remainder of L in αL.  Note further that J < L.  We then 

have the following: 
 

Lemma 7.3.4. [3] If w ∈ L, then ↑w is compact if and only if k(w) ∨ J = L. 
 
Proof. (⇒): Assume ↑w is compact. Now w∨ {x ∈ L | x « 1} = 1. Thus {w∨x | x « 

1} = 1, so by compactness of ↑w we have w ∨ x = 1 for some x « 1. Thus w ∨ x∗∗ = 1, 

whence x∗ ≺ w. Since ↑w is compact, this means x∗ ◄ w and hence x∗ ∈ k(w). Now 

J = 1 implies {x∗ ∨ y | y ∈ J} = 1, from which, since ↑x∗ is compact (as x « 1), we 

have x∗ ∨ y = 1 for some y ∈ J. Thus k(w) ∨ J = L. 

(⇐): Assume k(w) ∨ J = L. Then 1 = x ∨ y for some x ◄ w, y ∈ J. Now either ↑x∗ is 

compact or ↑w is compact.  If ↑x∗  is compact, then x « 1,  so that x « z  « 1 for some z 

∈ L. Hence x ◄ z « 1 so that x ∈ k(z) ⊆ J. Thus 1 = x ∨ y ∈ J which would imply J = 

L, a contradiction. Thus ↑w is compact. 
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As remarked in [3], the necessity of the above lemma was observed that ↑w compact implies 

k(w) ∨ J = L is in fact true for any strong inclusion <J on L, whether least or not, where 

as before k is the right adjoint of the join map and J = 
V

{k(x) ∈ αL | x « 1}. 

Theorem 7.3.1. [3] Let L be regular continuous. Suppose L has elements u and v with the 

property that u ∧ v = 0, ↑(u ∨ v) is compact, but neither ↑u nor ↑v is compact. Let N1 = 

{x ∈ L |↑(x∨ u) is compact} and N2 = {x ∈ L |↑(x∨v) is compact} . The compactification 

∨: γL → L arising from the strong inclusion <J given by : a <J b ⇔ a ≺ b and for each 

i = 1, 2 either a∗ ∈ Ni or b ∈ Ni is such that the remainder of L in it is disconnected. 

Proof. Let J = {k(x) ∈ αL | x « 1} where k : L → γL is the right adjoint of the join map. 

We show that the remainder ↑J in γL is disconnected. We claim that k(u ∨ v) = k(u) ∨ 

k(v): For this, obviously k(u) ∨ k(v) ⊆ k(u ∨ v). For the reverse, take s ∈ k(u ∨ v). Then s 

<J u ∨ v and hence s ≺ u ∨ v. Since u ∧ v = 0 we have that s ∧ u ≺ u and s ∧ v ≺ v. We have 

(s ∧ u)∗ ∨ u = 1, so ↑(s ∧ u)∗ ∨ u =↑1 is compact. Thus (s ∧ u)∗ ∈ N1. Also, since ↑(u ∧ v) 

is compact, we have u ∈ N2. Thus for each i we have either (s ∧ u)∗ ∈ Ni or u ∈ Ni, that is, 

s ∧ u <J u. Similarly s ∧ v <J v. Thus 

s = (s ∧ u) ∨ (s ∧ v) ∈ k(u) ∨ k(v), proving the claim. Since ↑(u ∨ v) is compact we have 

by the above remark that k(u ∨ v) ∨ J = L and hence that k(u) ∨ k(v) ∨ J = L. Thus 

(k(u) ∨ J) ∨ (k(v) ∨ J) = L, (k(u) ∨ J) ∧ (k(v) ∨ J) = J since 

k(u) ∧ k(v) = k(0) = 0.  Furthermore,  k(u) ∨ J  /= J  for otherwise k(u) ⊆ J  and hence k(v) 

∨ J = L. Since J = {k(x) ∈ αL | x « 1} we have by the compactness of γL that k(v)∨k(x) = 

L for some x « 1. Taking joins we then have v ∨x = 1. Hence ↑(v ∨x) =↑1 is compact so 

that x ∈ N2. Now since x « 1 we have ↑x∗ is compact and therefore x∗ ∈ N2. Thus 0 = x∧x∗ 

∈ N2 implying that ↑v is compact, a contradiction. Hence k(u)∨J /= J and similarly k(v) ∨ 

J /= J. Thus ↑J is disconnected. 
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Theorem 7.3.2. [3] Let L be regular continuous. Then every compactification h : M → 

L has a remainder which is compact and connected if and only if whenever ↑(u ∨ v) is 

compact and u ∧ v = 0 in L, then either ↑u is compact or ↑v is compact. 

Proof. We prove the sufficiency first. Let h : M → L be a compactification of L. To avoid 

unnecessary symbols let us simply denote the unique aL ∈ M  determining the remainder of 

L in M described earlier by a ∈ M . Now ↑a is compact, being a closed sublocale of 

compact M . Assume ↑a is not connected. Then there exists c, d ∈↑a, c, d /= a such that c 

∨ d  =  1 and c ∧ d  =  a.   Since M ,  being compact regular,  is normal there exists f, g ∈ 

M such that c ∨ f = 1, d ∨ g = 1, and f ∧ g = 0. Now (c ∨ f ) ∧ (d ∨ g) = 1 implies ((c ∨ f ) 

∧ d) ∨ ((c ∨ f ) ∧ g) = 1 which implies (c ∧ d) ∨ (f ∧ d) ∨ (c ∧ g) ∨ (f ∧ g) = 1 and thus implies 

a∨f ∨g = 1.  Consider the frame ↓a.  We claim that in this frame ↑↓a(f ∧a)∨(g∧a) is compact. 

For this consider the map ϕ : ↑(f ∨ g) →↑↓aa ∧ (f ∨ g) given by ϕ(x) = x ∧ a. We have ϕ(f 

∨ g) = a ∧ (f ∨ g), ϕ(1) = 1 ∧ a = a so ϕ preserves top and bottom. It is then clearly a 

frame map. Furthermore, ϕ(x) = ϕ(y) implies x ∧ a = y ∧ a which implies x = x ∧ (a ∨ f 

∨ g) = (x ∧ a) ∨ (x ∧ (f ∨ g)) = (y ∧ a) ∨ (f ∨ g) ≤ y ∨ y  = y, so that x = y, by 

symmetry. Thus ϕ is one to one.  Furthermore, ϕ is also onto.  Indeed, take y ∈ M, a ∧ 

(f ∨ g) ≤ y and y ≤ a. Then 

ϕ(y ∨ (f ∨ g)) = (y ∨ (f ∨ g)) ∧ a = (y ∧ a) ∨ ((f ∨ g) ∧ a) = y ∨ ((f ∨ g) ∧ a) = y. 

Thus ↑(f ∨ g) ∼=↑↓aa ∧ (f ∨ g), and since ↑f ∨ g is compact, being a closed sublocale of M , 

↑↓aa∧(f ∨g) must also be compact.  Thus ↑↓a(f ∧a)∨(g ∧a) is compact.  Since h :  ↓a → L is 

an isomorphism and ↑↓a(f ∧ a) ∨ (g ∧ a) is compact, we must have ↑h(f ) ∨ h(g) compact 

in L.  Since h(f ) ∧ h(g) = 0, we must have either ↑h(f ) compact or ↑h(g) compact, say h(g) 

compact. 
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V V
 V 

Now take any 0 /= z ≺ f . Then z∗ ∨ f = 1 and hence h(z∗) ∨ h(f ) = 1.  Now h(z∗) = 

{w ∈ L | w « h(z∗)}, and hence h(f )∨  {w ∈ L | w « h(z∗)} = 1, that is,   {h(f )∨ w | 

w « h(z∗)} = 1. Due to compactness of ↑h(f ) we can therefore find w « h(z∗) such that 

h(f ) ∨ w = 1.  Now w « h(z∗) implies w « 1 and hence r(w) ≤ a by the definition of a. Now 

h(f ∗) ≤  w since h(f )∨w = 1 and hence f ∗ ≤ r(w) ≤ a.  Thus since g ∧f  = 0, we have g ≤ f 
∗ ≤ a, and therefore 1 = d ∨ g ≤ d ∨ a = d since a ≤ d. Hence c = c ∧ 1 = c ∧ d = a, a 

contradiction since c /= a. Thus the remainder ↑a is connected. 

For necessity suppose every compactification h : M → L has a remainder which is compact and 

connected. Assume the condition on L is not satisfied.  Then there exists u, v ∈ L,  ↑ (u ∨ 

v) compact but neither ↑u nor ↑v is compact. It follows that u /= 0 and v /= 0. From 

Section 3 in [3] we can construct a compactification of L such that the remainder of L in 

it is disconnected. Thus the condition on L must be satisfied. 

 

We end this this section with the following theorem which is also the main result in this 

section. 

Theorem 7.3.3. [3] The following conditions are equivalent for non-compact regular con- 

tinuous frame L. 

 
1. The least compactification of L is perfect. 

 
2. Whenever ↑(u ∨ v) is compact, u, v ∈ L, u ∧ v = 0 then either k(u) ∨ J = L or k(v) 

∨ J = L where J L is the unique element in αL such that ↓J → L is an isomorphism, 

and k : L → αL is the right adjoint of ∨. 

3. Whenever ↑(u ∨ v) is compact, u, v ∈ L, u ∧ v = 0 then either ↑u is compact or ↑v is 

compact. 
 

4. For every compactification h : M → L the remainder of L in it is compact and 

connected. 
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Proof. (1) ⇒ (2):   Assume ∨: αL → L is perfect.   Take u, v ∈ L, u ∧ v = 0 with 

↑(u ∨ v) compact. By Lemma 7.3.4, k(u ∨ v) ∨ J = L. Since (αL, ∨) is perfect, we then have 

k(u) ∨ k(v) ∨ J = L. Now, we cannot have both k(u) ⊆ J and k(v) ⊆ J, otherwise J = L 

which is not possible. Thus either k(u) cJ J or k(v) cJ J. Hence, by the remarks at 

the end of Section 1 in [3] we have either k(u) ∨ J = L or k(v) ∨ J = L. 

 
(2) ⇒ (3):  Suppose ↑(u ∨ v) is compact, u ∧ v  =  0.   Then either k(u) ∨ J  =  L or 

k(v) ∨ J = L, and hence by Lemma 7.3.4, either ↑u is compact or ↑v is compact. 

 
(3) ⇒ (1): We recall from Proposition 7.1.3 that if h : M → L is a compactification of 

L with r : L → M the right adjoint of h, then h : M → L is perfect if and only if the following 

conditions are satisfied: x <J (u ∨ u∗), x ≤ u implies x <J u for all x, u ∈ L, where <J is 

the associated strong inclusion arising from h : M → L. In the present case 

∨:  αL → L with right adjoint k : L → αL, we have to show x ◄ (u ∨ u∗), x ≤ u implies 

x ◄ u. 

Consider first the case when ↑(u ∨ u∗) is compact. Then either ↑u is compact or ↑u∗ is 

compact. Now x ◄ u ∨ u∗ implies x ≺ u ∨ u∗, and x ≤ u implies x ≺ u : for, there exists v 

such that x ∧ v = 0, v ∨ u ∨ u∗ = 1.  Thus x ∧ (v ∨ u∗) = (x ∧ v) ∨ (x ∧ u∗) = 0 and v ∨ 

u∗ ∨ u = 1 with a separating element v ∨ u∗. If ↑u is compact then x ◄ u. If on the other 

hand, ↑u∗ is compact, then x ≺ u implies u∗ ≺ x∗ from which it follows that ↑x∗ is compact. 
This implies x ◄ u as well. 

Now consider the case where ↑(u ∨ u∗) is not compact. Take x ◄ u ∨ u∗, x ≤ u. As before, x 

≺ u. Also either ↑x∗ is compact or ↑(u ∨ u∗) is compact. Since the latter is not possible, we 

have ↑x∗ compact. Hence x ◄ u and thus (αL, ∨) is a perfect compactification. 



117 
 

 
 
 
 
 
 
 
 

Bibliography 
 
 

[1] P. Alexandroff and P. Urysohn, Sur les espaces topologiques compacts, Bull. Int. Acad. 

Pol. Sci. Lett. Ser. A, 1923, 5-8. 

[2] D. Baboolal, Perfect compactifications of frames, Czechoslovak mathematical journal, 

61.3 (2011), 845-861. 

[3] D. Baboolal, Conditions under which the least compactification of a regular continuous 

frame is perfect, Czechoslovak mathematical journal, 62.2 (2012), 505-515. 

[4] P. Bacon, The compactness of countably compact spaces, Pacific Journal of mathemat- 

ics, 32.3 (1970), 587-592. 

[5] R.N. Ball and J. Walters-Wayland, C-and C∗-quotients in pointfree topology, Disser- 

tation Mathematicae (Rozprawy Mat.) 412, 2002. 

[6] B. Banaschewski , Compactification of frames, Math.Nachr. 149.1 (1990), 105-115. 
 

[7] B. Banaschewski, Completion in pointfree topology, in: SoCat94, in: Lecture Notes in 

Math. and Appl. Math., vol.2, Univ. of CapeTown, 1996. 

[8] B. Banaschewski, The real numbers in pointfree topology, Vol. 12, Universidad de 

Coimbra, 1997. 

[9] B. Banaschewski and S.S. Hong, Filters and strict extensions of frames, Kyungpook 

Math. J, 39(1999), 215-230. 



118 
 

[10] B. Banaschewski and S.S. Hong, Extension by continuity in pointfree topology, 

Appl.Categorical Structures, 8, 39(2000), 475-486. 

[11] B. Banaschewski and S.S. Hong, General filters and strict extensions in pointfree 

topology, Kyungpook Math. J, 42(2002), 273-283. 

[12] B. Banaschewski and S.S. Hong, Variants of compactness in pointfree topology, Kyung- 

pook Math. J, 45(2005), 455-470. 

[13] B. Banaschewski and C.J. Mulvey, Stone-Čech compactification of locales I, Houston 
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