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Abstract
*****

The focus in this thesis was on the approaches that seek to compare two study arms
in the absence of randomisation when the interclass correlation coefficient is greater
than zero. Many reports on performance of learners in Grade 12 have used ordinary
regression models (such as logistic regression model and linear regression models)
which ignore clustering effect, and descriptive statistics (e.g., averages and standard
deviations for continuous variables, and proportions expressed as percentages and
frequencies). These models do not only bias point estimates but also give falsely
narrow confidence intervals. The study was applied to two of the nine provinces of
South Africa: Gauteng Province and Western Cape Province in 2008, 2009 and 2010
academic years.

Causal models, and in particular, hierarchical models (or disaggregated approach),
unlike descriptive analyses, are more powerful as they are able to adjust for individual
covariates. For the analysis of continuous variables; Western Cape Province was
expected to significantly score higher marks than Gauteng Province in 2008 (Crude
estimate: 0.782) and 2009 (Crude estimate: 0.957 ) while Gauteng Province was
expected to score higher marks than Western Cape Province in 2010 (Crude estimate:
−0.302). Adjusted models indicate that Western Cape Province performed better
than Gauteng Province in 2008 and 2009 but not in 2010 where Gauteng Province
performed better than Western Cape Province after adjusting for gender. In case of
binary outcome; the crude estimates favoured Western Cape Province than Gauteng
Province in 2008 (Odds ratio = 1.16) and 2009 (Odds ratio = 1.19). Otherwise, the
crude estimates favoured Gauteng Province in 2010 (Odds ratio = 0.11).

The proportion of female learners in Gauteng Province ranged between 54.48% and
54.99%, while in Western Cape Province it ranged between 56.78% and 57.16%, in
2008 through 2010 academic years. Proportion of female learners in Western Cape
Province were found to be higher than those in Gauteng during this period. At least
70.42% of learners in Gauteng and at least 73.96% of learners in Western Cape
Province passed Grade 12 during the years 2008 to 2010.

Through the application of causal model we have learned that although gender is
not a significant predictor of the overall learner performance in Grade 12, the effect
of gender gave the mixed findings depending on the nature of the outcome. The
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effect of gender on continuous endpoint (marks) suggests that a model of single-sex
classrooms or single-sex schools may be adopted so as to mitigate the inherent
perceptions and stereotype regarding learner-gender. However, the results based on
binary endpoint (pass/not pass) suggest that coeducation system is the best bet.

A school quintile is a significant predictor of the overall learner performance in the two
provinces. The resourceful schools are more likely to produce learners with higher
marks. Also, the resourced schools than the less or under resourced schools are
more likely to produce the favourable results (higher marks (%) or/and pass) in the
two provinces.

Key words: Hierarchical models, Learner performance, Nonrandomisation, Intra-
class correlation coefficient, School quintile, Single-sex education



List of Acronyms
*****

ACE Adverse childhood experience

AHRB Adoption of health risk behaviour

ANCOVA Analysis of Covariates

ATE Average Treatment Effect

CART Classification and regression tree analysis

CRD Completely randomised experiment

DBE Department of Basic Education

DDSP Disease, disability and social problems

DETE Department of Education and Employment

DHET Department of Higher Education and Training

EPBR Equal-percent bias reducing

FET Further Education and Training

FM Full Matching

GEE Generalised estimating equation

GFET General and Further Education and Training

GLL Generalised log-likelihood

GP Gauteng Province

HC Higher Certificate

ICC Intracluster Correlation Coefficient

LD Learning disability

LME Linear mixed-effects model



xiii

MECs Members of executive council

MES Ministry of Education Singapore

NDoE National Department of Education

NID Normally and Independently Distributed

NNM Nearest Neighbour Matching

NLME Nonlinear mixed-effects model

NPME Nonparametric mixed-effects

NQF National Qualifications Framework

NSC National Senior Certificate

OTL Opportunity to Learn

OR Odds Ratio

PSM Propensity Score Matching

QA Quality Assurance

RCT Randomised Controlled Trial

RIE Randomised Impact Evaluations

RSA Republic of South Africa

SC Senior Certificate

SIP School Improvement Plan

SECI Social, emotional, and cognitive impairment

SES Socio-Economic Status

SUTVA Stable unit treatment value assumption

TUT Tshwane University of Technology

WCP Western Cape Province



Contents
*****

List of Figures xviii

List of Tables xx

1 Orientation to the Study 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Equal Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Factors Affecting Learners’ Academic Performance . . . . . . . . . . . 4

1.3.1 Learner Background . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Impact of Divorce . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Socio-Economic Status . . . . . . . . . . . . . . . . . . . . . . 6

1.3.4 Child and Drug Abuses, and Neglect . . . . . . . . . . . . . . . 7

1.3.5 Parenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.6 Parents’ Education Level . . . . . . . . . . . . . . . . . . . . . 9

1.3.7 School Quintile . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.8 Class or School Attendance . . . . . . . . . . . . . . . . . . . . 12

1.3.9 Age and Gender . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Measuring Learners’ Academic Performance . . . . . . . . . . . . . . 15

1.4.1 Grade 12 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Research Approach and Design . . . . . . . . . . . . . . . . . . . . . 19

1.6 Aim of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7.1 The Null and Alternative Hypotheses . . . . . . . . . . . . . . . 21

1.7.2 Type I and Type II Errors . . . . . . . . . . . . . . . . . . . . . . 22

1.7.3 Hypothesis Testing: The P-value . . . . . . . . . . . . . . . . . 24

1.8 The Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . 26

1.9 Ethical Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.10 Arrangements of the Chapters in the Thesis . . . . . . . . . . . . . . . 28

2 Problem of Causality in Observational Studies 30
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Description of Causal Inference Problem . . . . . . . . . . . . . . . . . 32



CONTENTS xv

2.3 Rubin Causal Model: The Potential-Outcomes Framework for Causal
Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 The Fundamental Problem of Causal Inference . . . . . . . . . 39
2.3.2 The Assignment Mechanism . . . . . . . . . . . . . . . . . . . 43
2.3.3 Causal Effects in Randomised Experiments . . . . . . . . . . . 45
2.3.4 Causal Effects in Observational Studies . . . . . . . . . . . . . 48
2.3.5 Motivation for Matching . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Propensity Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.1 How Matching Methods are Implemented . . . . . . . . . . . . 58
2.4.2 How to Estimate Propensity Score . . . . . . . . . . . . . . . . 59

2.5 Diagnostics for the Propensity Score: Goodness-of-Fit . . . . . . . . . 61

3 Clustered Observations 64
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 The Mean Function and Variance Function . . . . . . . . . . . 66
3.1.2 Linear Regression: Model Interpretation . . . . . . . . . . . . . 67

3.1.2.1 Simple Linear Regression . . . . . . . . . . . . . . . . 67
3.1.2.2 Multiple linear regression . . . . . . . . . . . . . . . . 68

3.1.3 Logistic Regression: Model Interpretation . . . . . . . . . . . . 69
3.1.3.1 Simple logistic regression . . . . . . . . . . . . . . . . 70
3.1.3.2 Multiple logistic regression . . . . . . . . . . . . . . . 73

3.2 Mixed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.1 Model Specification in Stata . . . . . . . . . . . . . . . . . . . . 74
3.2.2 Estimation using Stata’s xtreg . . . . . . . . . . . . . . . . . . . 75

3.3 Multilevel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Modeling Clustered Data: Linear Mixed-Effects and Nonlinear Mixed-

Effects Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.1 Linear Mixed-Effects Models . . . . . . . . . . . . . . . . . . . 81
3.4.2 Nonlinear Mixed-Effects Models . . . . . . . . . . . . . . . . . 84

3.5 The Unit of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.6 Transmission of Information: Spill-Over Effects . . . . . . . . . . . . . 88

4 Data Analysis and Interpretation 94
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2 Descriptive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3 Inferential Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Analysis of Categorical Variables . . . . . . . . . . . . . . . . . 98
4.3.2 Application of Causal Models or Hierarchical Models . . . . . . 100

4.3.2.1 Continuous Outcome: Marks (%) . . . . . . . . . . . 101



xvi CONTENTS

4.3.2.2 Binary outcome: Final (Fail [not promoted] or Pass
[promoted]) . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Conclusion and Recommendations 128
5.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 The Grade 12 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.2 Statistical Estimates . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3.2.1 Effect of Gender . . . . . . . . . . . . . . . . . . . . . 131

5.3.2.2 Effect of Quintile . . . . . . . . . . . . . . . . . . . . . 133

5.3.2.3 Effect of Gender and Quintile . . . . . . . . . . . . . . 133

5.3.2.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.1 Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4.2 Creation of Database . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.3 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.4 Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.4.1 Gender . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4.4.2 School Quintile . . . . . . . . . . . . . . . . . . . . . . 136

5.4.5 Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4.6 Further Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A Grade 12 Dataset, and Stata Commands and Summary Statistics 141
A1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A2 Hierachical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A3 Dataset: Data Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A4 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B Logistic Regression Model 146
B1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B11 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . 146

B11 Newton-Raphson Procedure . . . . . . . . . . . . . . . . . . . 147

B11 Fisher scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B11 Iteratively Reweighted Least Squares . . . . . . . . . . . . . . 149

C Some Issues Regarding Causality 152
C1 Assignment Mechanism as Locally Independent . . . . . . . . . . . . 152

C2 Unbiased Estimator of the Average Difference between Study Arms . 153



CONTENTS xvii

D Steps in Implementing Matching Methods 156

Index 165



List of Figures
*****

1.1 Provinces of RSA before and since 1994, and language distribution
Source:http://www.southafrica.info/about/geography/provinces.htm . . 2

1.2 Adverse childhood experience model. DDSP = Disease, disability and
social problems, AHRB = Adoption of health risk behaviour, SECI=
Social, emotional, and cognitive impairment, ACE = Adverse childhood
experience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Links between Environmental and Educational Outcomes. Source:
Lackney (1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 The 2012 Provincial Pass Rates in RSA Source: Department of Basic
Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Randomisation Trial Source: Letsoalo (2004, Page 15) . . . . . . . . . 45

2.2 Randomisation Process. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Relationship of a Binary Outcome, y (1 =Success, 0 = Failure) With a
Continuous Predictor, x Scores . . . . . . . . . . . . . . . . . . . . . . 70

3.2 Hypothetical/example of clustered data Note: Clusters need not be of
equal sizes. A cluster may represent a learner while atoms/balls repres-
ent subjects enrolled. Figure 3.3 gives a typical example of clustered
data. Source: http://www.texample.net/tikz/examples/clusters-of-atoms/ 76

3.3 A hypothetical clustered data in education setting. Learner perform-
ances in different learning areas. . . . . . . . . . . . . . . . . . . . . . 77

3.4 Tributaries of multilevel analysis Source: Letsoalo (2004, Page 34) . . 79

3.5 Contamination occurs when individuals randomised or allocated to
the study conditions, A or B, are exposed to the wrong condition
through having contact with each other. Contamination can occur
either inadvertently or intentionally as people discuss their experiences.
The cost to internal validity is that people in the “control” condition
receive part of the intervention. Note PAc and PBc are contaminated
arm A and contaminated arm B participants, respectively. Likewise,
PA and PB are pure participants in arm A and arm B, respectively. . . 89

3.6 AB/BA Randomisation model . . . . . . . . . . . . . . . . . . . . . . . 90



LIST OF FIGURES xix

4.1 Proportions of Assessment Outcome by Province: 2008 GP = Gauteng
Province and WCP = Western Cape Province . . . . . . . . . . . . . . 99

4.2 Proportions of Assessment Outcome by Province: 2009 . . . . . . . . 99
4.3 Proportions of Assessment Outcome by Province: 2010 . . . . . . . . 100



List of Tables
*****

1.1 The National and Provincial Breakdown of the Quintiles: National
Poverty Table for 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Elements related to the terms of learning performance . . . . . . . . . 15

1.3 Relationship between the H0 and H1 . . . . . . . . . . . . . . . . . . . 23

1.4 Statistical significance . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Approaches of hypothesis testing . . . . . . . . . . . . . . . . . . . . 25

2.1 Hypothetical complete data: Illustration of what the complete data
might look like, if it were possible to observe both potential outcomes
on each unit. For each pair, the observed outcome is displayed in
boldface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Illustration of the fundamental problem of causal inference. For each
unit, we have observed some pre-treatment inputs, and then the treat-
ment (Zi = 1) or control (Zi = 0) is applied. We can then observe one
of the potential outcomes, (Y(C), Y(T)). As a result, we cannot observe
the treatment effect, Y(T) - Y(C), for any of the units. . . . . . . . . . . 41

2.3 The fundamental problem of causal inference . . . . . . . . . . . . . . 41

2.4 Bias in observational studies of treatment . . . . . . . . . . . . . . . . 49

2.5 Propensity score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Values of the Logistic Regression Model for Dichotomous Covariate.
(Hosmer and Lemeshow, 2000, Page 49) . . . . . . . . . . . . . . . . 72

3.2 Interpretation of OR: Values of OR farther from 1.0 in a given direction
represent stronger association . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Distributions of learners by gender and provinces: 2008, 2009 and 2010
academic years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Pass rates by provinces: 2008, 2009 and 2010 academic years. . . . . 96

4.3 Average performances per provinces: 2008, 2009 and 2010 academic
years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Cross Classification of Assessment Outcome by Province Note: Pro-
portions [%] in Parentheses . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Comparison of Provinces in 2008 . . . . . . . . . . . . . . . . . . . . . 102



LIST OF TABLES xxi

4.6 Comparison of Provinces in 2009 . . . . . . . . . . . . . . . . . . . . . 103
4.7 Comparison of Provinces in 2010 . . . . . . . . . . . . . . . . . . . . . 103
4.8 Comparison of Provinces : 2008 Adjusting for Quintile . . . . . . . . . 105
4.9 Comparison of Provinces : 2008 Adjusting for Gender . . . . . . . . . 106
4.10 Comparison of Provinces : 2008 Adjusting for Quintile and Gender . . 107
4.11 Comparison of Provinces : 2009 Adjusting for Quintile . . . . . . . . . 108
4.12 Comparison of Provinces : 2009 Adjusting for Gender . . . . . . . . . 109
4.13 Comparison of Provinces : 2009 Adjusting for Gender and Quintile . . 111
4.14 Comparison of Provinces : 2010 Adjusting for Quintile . . . . . . . . . 112
4.15 Comparison of Provinces : 2010 Adjusting for Gender . . . . . . . . . 113
4.16 Comparison of Provinces : 2010 Adjusting for Quintile and Gender . . 114
4.17 Comparison of Provinces : 2008 Crude Estimates . . . . . . . . . . . . 116
4.18 Comparison of Provinces : 2009 Crude Estimates . . . . . . . . . . . . 116
4.19 Comparison of Provinces : 2010 Crude Estimates . . . . . . . . . . . . 117
4.20 Comparison of Provinces : 2008 Adjusting for Quintile . . . . . . . . . 118
4.21 Comparison of Provinces : 2008 Adjusting for Gender . . . . . . . . . 119
4.22 Comparison of Provinces : 2008 Adjusting for Quintile and Gender . . 120
4.23 Comparison of Provinces : 2009 Adjusting for Quintile . . . . . . . . . 121
4.24 Comparison of Provinces : 2009 Adjusting for Gender . . . . . . . . . 122
4.25 Comparison of Provinces : 2009 Adjusting for Quintile and Gender . . 123
4.26 Comparison of Provinces : 2010 Adjusting for Quintile . . . . . . . . . 125
4.27 Comparison of Provinces : 2010 Adjusting for Gender . . . . . . . . . 126
4.28 Comparison of Provinces : 2010 Adjusting for Quintile and Gender . . 126

A.1 Distributions of gender by Provinces: 2008, 2009 and 2010 academic
years. Note: Overall indicates the frequency that includes replicates or
duplicates and Between is the count that excludes repeatition. Table
4.1 is a portion of this table. . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2 Distributions of Pass rates by Provinces: 2008, 2009 and 2010 aca-
demic years. Note: Overall indicates the frequency that includes
repeatitions and Between is the count that excludes repeatition. Table
4.2 was generated from this table. . . . . . . . . . . . . . . . . . . . . 145



1

C
ha

pt
er

Orientation to the Study
*****

Absenteeism is a significant problem at many institutions of (higher)
learning.

Romer (1993)

Chapter Preview

This chapter exposes the shortcomings of the use of descriptive statistics
when analysing Grade 12 results. It also explains some of the factors, such as
SES, parents’ education level, and child and drug abuse, that affect learners’
performance, and how learners’ performances should be measured. The
study’s setting is briefly explained in terms of the South African setup. The
definitions of hypotheses and the types of statistical errors are explained. A
brief discuss regarding the testing of hypotheses in terms of point estimates
and confidence intervals is outlined. The significance of this study is discussed
and the chapter concludes by explaining how the thesis is arranged.

1.1 Introduction

The Republic of South Africa (RSA) has nine provinces, each with its own legislature,
premier and executive council – and distinctive landscape, population, economy and
climate. They are Eastern Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo,
Mpumalanga, Northern Cape, North West and Western Cape. That is, under South
Africa’s new democratic constitution, the country was demarcated into nine provinces
(see Figure 1.1).

Before 1994, South Africa had four provinces: the Transvaal and Orange Free State,
previously Boer republics, and Natal and the Cape, once British colonies. Scattered
about were also ”homelands”, some form of states to which black South Africans were
forced to have citizenship. Figure 1.1 shows how South Africa has been demarcated



2 Orientation to the Study

into nine provinces from four pre-democratic provinces, and the distribution of the
eleven official languages across the country.

(a) Before 1994 (b) Since 1994

(c) Distribution of Official Languages

Figure 1.1: Provinces of RSA before and since 1994, and language
distribution

Source:http://www.southafrica.info/about/geography/provinces.htm

Each of South Africa’s nine provinces has its own provincial government, with legislat-
ive power vested in a provincial legislature and executive power vested in a provincial
premier and exercised together with the other members of a provincial executive
council.

The provincial legislature has between 30 and 80 members elected for a five-year
term based on the province’s portion of the national voters’ roll. The legislature is
empowered to pass legislation within its functional areas.
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The premier is elected by the legislature and, as with the President at national level,
is limited to two five-year terms in office. The premier appoints the other members
of the executive council (MECs). The executive council functions as a cabinet at
provincial level. The members of the executive council are accountable individually
and collectively to the legislature.

Presently, the responsibility for education is shared by two ministries, namely the
Department of Basic Education (DBE) and the Department of Higher Education and
Training, formed in 2009 when the former National Department of Education was
split into two separate departments. That is, since 2009, the national Department of
Education has been split into two ministries: Basic Education, and Higher Education
and Training. The Department of Basic Education deals with all schools from Grade
R to Grade 121, and adult literacy programmes, while the Department of Higher
Education and Training deals with universities and other post-school education and
training, as well as coordinating the Human Resource Development Strategy for
South Africa.

1.2 Equal Education

In this era of globalisation and technological revolution, education is considered
as a first step for every human activity; it plays a vital role in the development of
human capital and is linked with an individual’s well-being and opportunities for better
living (Farooq, Chadhry, Shafiq and Berhanu, 2011; Kyei and Nemaorani, 2014). It
ensures the acquisition of knowledge and skills that enable individuals to increase
their productivity and improve their quality of life (Farooq et al., 2011). The quality of
education and resources to support the education in South Africa prior 1994 were
not distributed equally among citizens. In particular, majority of the citizens (Black
South Africans) received inferior education.

It was acknowledged in the White-Paper (1995) that education like other commodities
in RSA is not equally accessible to all citizens. The White-Paper (1995) states that
”for the first time in South Africa’s history, a government has the mandate to plan
the development of the education and training system for the benefit of the country
as a whole and all its people. The challenge the government faces is to create a
system that will fulfil the vision to open the doors of learning and culture to all . The
paramount task is to build a just and equitable system which provides good quality
education and training to learners, young and old, throughout the country”.

1In South Africa, Grade 12 is the final year of high school. It is more commonly referred to as matric,
which is itself short for matriculation. At the end of Grade 12, students are said to be matriculated.
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Kyei and Nemaorani (2014) lament that despite the attempts by the South African
government to make education accessible to all by introducing free food and free
textbooks, amongst others at the primary school level, the effects are not commen-
surate; for there is still a high failure rate (over 30%) and low retention rate, 44%, of
high school learners in South Africa.

Ideally, it follows that the performances of learners in the provinces are expected to
differ insignificantly if the distribution of resources is equitable; unless there is/are
some other significant factor(s) that the authorities cannot account for.

1.3 Factors Affecting Learners’ Academic

Performance

The term ‘academic performance’ has been described as the scholastic standing of
a learner at a given moment. It refers to how an individual is able to demonstrate his
or her intellectual abilities. This scholastic standing could be explained as the grades
obtained in a course or groups of courses taken (Adeyemi, 2008).

The performance of learners in national tests and national examinations is broadly
used as an indicator of the effectiveness of the school. The results thereof have
become such an acceptable indicator of school performance that for many, a school
with high (weighted) examination or test scores is regarded as a good school (Barnard,
1999; Naidu, Joubert, Mestry, Mosoge and Ngcobo, 2008). However, there are many
factors that contribute towards the learners’ performance (Barnard, 1999; Karande
and Kulkarni, 2005; Naidu et al., 2008).

For many years, schools and educators in South Africa have focused almost ex-
clusively on learner performance. The educating community has been focusing on
cognitive factors since more emphasis was paid to this aspect. Examples of cognitive
factors are memory, verbal abilities and aptitudes for reasoning. These can be
measured using performance and achievement tasks, where the answers given can
be grouped as correct or incorrect (Johnson, 2000).

Among others, Johnson (2000) and Fan and Chen (2001) highlight that the educating
community’s focus is now on noncognitive factors because the realisation of these
factors is evidenced. Here, we highlight some factors that affect learner performances.
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1.3.1 Learner Background

Learner2 background or family background plays a huge role in the process of learning.
Family background includes factors such as socio-economic, parents’ marital status
(single, divorced or cohabit), family size, maternal characteristics, neighbourhood and
parenting style (Marjoribanks, 1996). All these factors constitute the so-called home
environment. It follows that home environment plays a crucial role in the learning
process of individuals.

1.3.2 Impact of Divorce

Marital status of parents affects the performance of learners in school. In particular,
divorce as one of several types of family problems, causes the distraction in the
family structure - and this may cause the learner not to complete assignments or
homeworks. Also, rumination about the divorce could cause lapses in a learner’s
concentration in the classroom (Schaffer and Schffer, 1997). Therefore, parents
going through divorce may have children who experience increased likelihood for
problems with social skills, behaviour issues, and academic achievement (Akanbi,
2014).

Children who are nine- to twelve-years old somewhat understand the divorce and are
generally able to keep both their feelings and behaviour manageable. For this age
group, anger is often the most powerful emotion. Children may physically act out their
emotions and imitate family dynamics during play in order to cope with their feelings
(Hughes, 2008; Akanbi, 2014). Smith (1999) reiterates that teenagers are generally
a high-risk group during a family divorce. Teenagers are susceptible because they
mourn as children; however, they are beginning to gain an understanding of the
adult world and sometimes are conflicted in how they should show their emotions.
In essense, learners’ reaction to their parents’ divorce varies based on the learner’s
age (Smith, 1999; Akanbi, 2014).

”When a baby is mirroring their parents’ laughter or smiles, it is
possible that babies can mimic similar sadness and anxiety when
their parents feel those emotions also.”

Akanbi (2014, Page 106)

2The terms learner and student are used interchangeably. Likewise, educator and teacher.
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1.3.3 Socio-Economic Status

Socio-economic status (SES) is mostly determined by combining the education
level of parents, parents’ occupational status and family income. SES has been
found to be strongly associated with learner performances. Also, Gnanamoorthy
(2014) found that there is a positive relationship between the SES of the parents
(calculated in terms of family income, either by father, mother or both) and the
academic achievements of their children. In other words, low-SES learners have
fewer cognitive-enrichment opportunities (Jensen, 2009).

Figure 1.2, as given by Jensen (2009, Page 9) (read from the base to the vertex
[bottom-up]), shows how adverse children experiences can set off an avalanche
of negative life experiences, including social, emotional, and cognitive impairment;
adoption of risky behaviours, disease, disability and social problems; and in worst
cases, early death.

Figure 1.2: Adverse childhood experience model.
DDSP = Disease, disability and social problems,

AHRB = Adoption of health risk behaviour,
SECI= Social, emotional, and cognitive impairment,

ACE = Adverse childhood experience.

ACE

SECI

AHRB

DDSP

Death

Common issues in low-income families include depression, chemical dependence,
and hectic work schedules - all factors that interfere with healthy attachment that
foster children’s self-esteem, sense of mastery of their environment, and optimistic
attitudes (Jensen, 2009).

Instead, poor children often feel isolated and unloved, feeling that kick off a downward
spiral of unhappy life events, including academic performance (Jensen, 2009). In
another words, low-SES learners score lower test scores and are more likely to drop
out of school (Hochschild, 2003; Eamon, 2005). Arguably, SES dictates the quality of
home life for children.

To be precise, poor learners bring many problems to school that more affluent
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learners usually avoid, all of which affect their readiness to learn and their ability to
take advantage of what they are taught. These problems include poor health and
nutrition, greater family instability, more frequent moves, less safe communities, fewer
books and educational resources in the home or neighbourhood, a greater likelihood
of having parents or other caretakers who have little formal education and/or speak
little English, and anxieties about racial or ethnic discrimination (Hochschild, 2003).

Poor children are more likely to impose costs on society by consuming more health
budget, more education resources, and more government economic aid. Because
their chances of success are lower, they are also more likely to grow up to be poor
themselves, thus perpetuating poverty into the next generation (Mayer, 2002).

1.3.4 Child and Drug Abuses, and Neglect

Child abuse refers to any recent act or failure to act on the part of a parent or care-
taker which results in death, serious physical or emotional harm, sexual abuse or
exploitation; or an act or failure to act which presents an imminent risk of serious
harm (Christoffel, Scheidt, Agran, Kraus, McLoughlin and Paulson, 1992). In another
words, child maltreatment refers to any non-accidental behaviour by parents, care-
givers, other adults or older adolescents that is outside the norms of conduct and
entails a substantial risk of causing physical or emotional harm to a child or young
person. Such behaviours may be intentional or unintentional and can include acts of
omission (i.e., neglect) and commission (i.e., abuse) (Christoffel et al., 1992; Corby,
2006). The terms child abuse and neglect, and child maltreatment are usually used
interchangeably.

At birth, the brain is the most immature organ in the human body and will continue
to develop as a result of nature or genetics and through environmental experiences.
These events can have positive or negative consequences for healthy development
(Terr, 1991).

Cognitive implications of child abuse include difficulties in learning and in school
performance (Vondra, Barnett and Cicchetti,1990). Many studies have consistently
stressed that abused, maltreated, or neglected children on the average score lower
on cognitive measures and demonstrate lower school achievement when compared
with their nonabused peers of similar socio-economic backgrounds (Vondra et al.,
1990; Barnett, 1997).

The detrimental characteristics of abusive or neglectful parenting often lead to loss
of self-esteem and a lack of motivation to succeed at school. At a very early age,
maltreated children exhibit difficulties in self-esteem, behaviour, and adaptation
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to their environments. Abused toddlers respond more negatively, in contrast with
nonabused peers, to their mirror images and make fewer positive statements about
themselves (Barnett, 1997).

Substance abuse has negative effect on academic learning process (Schweinsburg,
Brown and Tapert, 2008). In particular, marijuana’s or dagga’s negative effects on
attention, memory, and learning can last for days or weeks after the acute effects of
the drug wear off (Schweinsburg et al., 2008). Consequently, someone who smokes
marijuana daily may be functioning at a reduced intellectual level most or all of the
time. Not surprisingly, evidence suggests that, compared with their nonsmoking
peers, students who smoke marijuana tend to get lower grades and are more likely to
drop out of high school (Fergusson and Boden, 2008). Early drug or alcohol use may
have potentially long-lasting consequences (Grant, 1998; Cleaver, Unell and Aldgate,
2011). Early onset of alcohol or other drug use is one of the strongest predictors of
later alcohol dependence (Grant, 1998).

The effect of alcohol abuse is captured by Cleaver et al. (2011, Page 13) as follows:

”There is no doubt that alcohol misuse is associated with a wide range
of problems, including physical health problems such as cancer and
heart disease; offending behaviours, not least domestic violence; suicide
and deliberate self-harm; child abuse and child neglect; mental health
problems which co-exist with alcohol misuse; and social problems such
as homelessness”.

1.3.5 Parenting

Parental effort is consistently associated with higher levels of achievement, and the
magnitude of the effect of parental effort is substantial (Houtenville and Conway,
2008). Supportive and attentive parenting practices positively affect learners’ aca-
demic achievement (Eamon, 2005). Parents from a more advantaged environment
exert more effort, and this influences positively the educational attainment of their
children (De Fraja, Oliveira and Zanchi, 2010). By the same token, the parents’
background also increases the school’s effort, which (in turn) increases the school
achievement (De Fraja et al., 2010).

Family involvement is one of the most important contributors to school completion
and success. The most accurate predictor of a learner’s school achievement is the
extent to which his/her family encourages learning. Success is more likely if the
family communicates high, yet reasonable expectations for the student’s education
and future career and becomes involved in his/her education. Middle school and high
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school learners whose parents remain involved tend to (Clark, 1993; Henderson and
Mapp, 2002; Mapp, 2004):

a) make better transitions,

b) maintain the quality of their work,

c) develop realistic plans for their future,

d) have higher graduation rates, and

e) advance to postsecondary education.

1.3.6 Parents’ Education Level

Parents’ education level plays a very important role in the performance of learners
at school. Through multiple studies, the mother’s educational level was a predictor
of school completion for all middle adolescents participating in the studies (Halpern-
Felscher, Connell, Spencer, Aber, Duncan, Clifford, Crichlow, Usinger, Cole, Allen and
Seidman, 1997; Lacour and Tissington, 2011). In particular, the mother’s education
level has an effect on student academic achievement (Halpern-Felscher et al., 1997;
Lacour and Tissington, 2011). In many studies, mother’s education had a more
significant effect on children’s scores than income (Lacour and Tissington, 2011). In
quantifying the effect of mothers’ education level on learner achievement, Peters and
Mullis (1997) found that the mother’s education level had a 20% higher affect or effect
than the father’s education level on the academic outcomes of adolescents.

1.3.7 School Quintile

Learners in different classes and different schools do not have equal opportunities
to learn: some learners may have unqualified educators, be in a school with limited
resources, or possibly in poorly managed schools. These factors may contribute
towards poor academic performance by learners (Stols, 2013). According to Stols
(2013) quoting Kilpatrick, Swafford and Findell (2001); opportunity to learn (OTL3)
is the most important predictor of learner achievement. Also, OTL remains the best
explanation of the relationship between teaching and learning (Kilpatrick et al., 2001;
Stols, 2013).

3The concept of OTL is used in different studies to determine or to quantify conditions within a
school or classroom that promote or hamper learning. Some studies that measure OTL include factors
like educator qualification, curriculum and materials, educators’ professional development, safety
and security of the learning environment, non-discriminatory policies, school financing, instructional
practices, etc (Gillies and Quijada, 2008; Stols, 2013).
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All South African public ordinary schools are categorised into five groups, called
quintiles, largely for purposes of the allocation of financial resources. There are two
steps in the classification of schools. First, a national poverty table, prepared by the
Treasury, determines the poverty ranking of areas based on data from the national
census including income levels, dependency ratios and literacy rates in the area.

Provinces then rank schools from quintile 1 to 5, according to the catchment area
of the school. stricktly speaking, these poverty rankings are determined nationally
according to the poverty of the community around the school, as well as, certain
infrastructural factors. Schools in quintile 1, 2 and 3 have been declared no-fee
schools, while schools in quintiles 4 and 5 are fee-paying schools.

The idea of free schooling is primarily about removing the financial barriers to educa-
tion. Table 1.1 gives the National and Provincial breakdown of the quintiles. Each
national quintile contains 20% of all learners, with quintile 1 representing the poorest
20% and quintile 5 the wealthiest 20% or the ’least poor’. However, provincial inequal-
ities mean that these quintiles are unevenly distributed across provinces. The quintile
ranking of a school is important because it determines the no-fee status of the school.

Table 1.1: The National and Provincial Breakdown of the Quintiles:
National Poverty Table for 2014

Province National Quintiles
One Two Three Four Five

Eastern Cape 27.3% 24.7% 19.6% 17.0% 11.4%
Free State 20.5% 20.9% 22.4% 20.8% 15.4%
Gauteng 14.1% 14.7% 17.9% 21.9% 31.4 %
KwaZulu-Natal 22.1% 23.2% 20.2% 18.7% 15.8%
Limpopo 28.2% 24.6% 24.2% 14.9% 8.0%
Mpumalanga 23.1% 24.1% 21.5% 17.7% 13.5%
Northen Cape 21.5% 19.3% 20.7% 21.4% 17.1%
North West 25.6% 22.3% 20.8% 17.6% 13.7%
Western Cape 8.6% 13.3% 18.4% 28.0% 31.7%

South Africa 20.0% 20.0% 20.0% 20.0% 20.0%

Source: http://wced.pgwc.gov.za/comms/press/2013/74 14oct.html

Table 1.1 shows that 8.6% of learners in the Western Cape Province fall into the
category of learners in the poorest 20% in South Africa. It also explains why in the
Western Cape Province, only just over 40% of schools are no-fee schools in quintiles
1, 2 and 3 when the average for South Africa as a whole is 60%. Similarly, 14.1% of
learners in Gauteng Province fall into the category of learners in the poorest 20%
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in South Africa. Also, only just over 46% of schools in Gauteng Province are no-fee
schools in quintiles 1,2 and 3.

The quintile category of a school is a variable that is under the control of policy makers
to alleviate the poverty status in schools, and therefore is a proxy for socioeconomic
status or community characteristics. The policy context of this variable is viewed as
the amount of money given to schools per learner, provision of nutrition programmes
and non- payment of fees by parents.

Massive differentials on achievement tests and examinations reflect South Africa’s
divided past. Educational quality in historically black schools (quintiles 1 and 2) –
constituting 80% of enrolment – has not improved since political transition, despite
large resource transfers to such schools. Studies have found that school quintile is
significantly associated with learner performance. For example, Van der Berg (2007)
found that very poor schools (quintiles 1 and 2) were negative and significant in low
performing schools and yielded different insignificant results elsewhere. Quintiles 3 to
5 were significant determinants of pass rates for low and middle performing schools,
and were significantly strong to increase the dispersion on pass rates.

Also, Van der Berg (2007) showed that matriculation pass rates of schools were
associated with pupil socio-economic background as measured by school fees, teach-
ing resources (pupil/teacher ratio and average teacher salary), provincial location
and the race category of schools. Socio-economic differentials play a major role in
educational outcomes (at the primary school level) in South Africa (Van der Berg,
2008). More resources did not necessarily or without qualification improve school
performance, although some resources (e.g. equipment at the school) appeared to
play a role (Kurdziolek, 2011; Van der Berg, 2008). As in much of the educational
production function literature, the message from Van der Berg (2008) study appeared
to be not that resources did not matter, but rather that resources mattered only
conditionally.

“Educators and policy makers believed that by providing more
resources they could directly improve student-learning outcomes. To
their frustration, this turns out not to be entirely true. Resources may
be necessary but they are not sufficient. Resources themselves are
not self-enacting, that is, they do not make change inevitable.
Differences in their effects depend on differences in their use.”

(Kurdziolek, 2011)
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1.3.8 Class or School Attendance

The Department of Education, Taining and Employment (DETE) of Queensland
undertook a study to establish the relationship between school attendance and
learners’ SES. Generally, many research outcomes confirm a strong link between
attendance and learner SES. Compared to more affluent learners, children living in
poverty are 25% more likely to miss three or more days of school per month (Ready,
2010).

While some learner absences are unavoidable and understandable due to illness
and the like, or enforced through school disciplinary absences, many are not. These
could be unexplained or unauthorised absences4.

Poor school attendance can be linked to a number of related short term adverse
outcomes and long term adverse outcomes for learners including lower academic
outcomes, early school leaving, substance use, poverty, unemployment and negative
health outcomes (DETE, 2013). However these factors may be interrelated in complex
ways and factors that lead to low levels of attendance may also independently lead to
some of these adverse outcomes.

A learner’s regular absence from school may be a critical indicator in disengagement,
leading directly to some of these adverse outcomes (DETE, 2013). Regardless of the
nature of the relationship, poor school attendance, particularly with a high number of
unexplained absences or unauthorised absences, is a readily observable warning
sign for potential longer-term adverse outcomes.

The relationship exists between SES and school attendance, and this relationship
is such that on average, learners from lower SES areas (neighbourhood) exhibit
lower attendance rates (Ready, 2010; DETE, 2013). In particular, learners from
lower SES backgrounds tend to exhibit higher levels of unauthorised and unexplained
attendance (DETE, 2013).

There is a correlation between learners’ attendance rates at school and academic
performance. In particular, every day absent may be impacting on learner perform-
ance - thus, for school attendance, every day counts. However, this relationship does
not subscribe to the notion of cause-and-effect, since the relationship is likely to be
complex and impacted upon by the range of other factors (Balfanz and Byrnes, 2012;
DETE, 2013).

4Classification of absence types: a) authorised - Illness, undertaking a medical procedure or
attending a funeral, b) unauthorised - Bunking off classes, or c) unexplained - When no information
has been provided by parents/carers or learners and the absence is pending the school’s own
investigations.
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Learners miss school for a variety of reasons. By and large, however, these reasons
fall into three broad categories (Balfanz and Byrnes, 2012):

1. Sometimes learners cannot come to school because circumstances or obliga-
tions compel them to be somewhere else during the school day.

2. On other occasions, learners will not attend school because they are actively
avoiding interactions or events in school or on the way to or from school.

3. Finally, sometimes learners just do not go to school, not because there is
something preventing or compelling them to stay away, but because they decide
not to attend because they would prefer to be elsewhere, or just do not want to
make the effort required to get to school.

1.3.9 Age and Gender

Demographic variables are thought to be having some effect on learner achievement.
Studies have shown that as a learner gets older, the correlation between age and
school achievement diminishes (Jabor, Machtmes, Kungu, Buntat and Nordin, 2011).
The school provides an equalising experiences because the longer a learner stays in
the school process, the more the effect of age on learner achievement is diminished
(White, 1982; Jabor et al., 2011). This implies that the act of delaying school entry
with the purpose of giving certain advantages to some learners is an exercise in self
deception and it should be discouraged, for it could be a futile effort.

Okoro, Ekamen and Udoh (2012) highlighted that many studies have been conducted
to investigate the effect of gender on learner performance. Gender of a learner plays
a significant part in learner performance (Okoro et al., 2012). Awodun, Oni and
Oyeniyi (2015: Page 73) lamented that a phenomenon in the school system that
has been rather disturbing is the fact that despite the clamour for gender equality
treatment, boys and girls do not seem to exhibit the same level of academic achieve-
ment. Depending on learning area for example, the overall science performance
favours males (Jovanovic and King, 1998; Hedges and Newell, 1999; Demirbas and
Demirkan, 2007; Nuzhat, Salem, Hamdan and Ashour, 2013). However, Hedges and
Newell (1999) found that female learners had an advantage in reading and writing
i.e., female learners had an advantage in fundamental learning areas (Jovanovic
and King, 1998; Demirbas and Demirkan, 2007; Nuzhat et al., 2013; Awodun et al.,
2015). The issue of gender comparisons should be treated with causion. Demirbas
and Demirkan (2007) and Sunday and Zaku (2013) warn that findings on gender
are inconclusive since different researchers have different opinions based on their
findings regarding gender effect on learners’ academic performance.
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The effects of the educator and the gender of educator cannot be ignored. Bansilal,
James and Naidoo (2010) have shown that the effect of an educator can be negative
or positive depending on the space and time it happens. Example of the effect of
educator on the learning process of learners (Bansilal et al., 2010):

“Most of the Grade 11 mathematics learners in the study conducted by
Moodley (2008) indicated that their mathematics teachers displayed a
negative attitude towards them. For example, 91% (29/32) of her sample
indicated that the teacher ignored them when they asked questions and
93% (30/32) indicated that the teacher made them feel silly when they
asked questions in the maths class.

Some of the learners’ comments include: ”He tries to be funny but he
doesn’t know that he actually embarrasses and hurts people” and ”You
know you afraid to ask questions. Maybe the teacher will make you feel
stupid” and further, ”I hate being looked down upon”. These comments
support the contention made by the learners in our study that some
teachers sometimes make negative comments to learners and when this
happens, they are embarrassed and feel belittled by these disparaging
comments.”

Okoro et al. (2012) assert that with the presence of male educator diminishing globally
it was important to investigate the effect of male educator on the performance of
learners in Nigeria. Okoro et al. (2012) investigated the following questions:

a) To what extent do male learners taught by male educator differ from those taught
by female educators in their academic performance?

b) To what extent do female learners taught by male educators differ from those
taught by female educators in their academic performance?

c) To what extent do learners taught by male educators differ from those taught by
female educators in their academic performance?

Okoro and Uwah (2013) found that educator gender has a significant influence
on the academic performance of learners. Specifically, male learners taught by
male educators perform significantly differently from male learners taught by female
educators. Similarly, boys taught by male educators have a more positive attitude to
schooling than boys taught by female educators (Okoro and Uwah, 2013), which (in
a way) may translate into better learner performance.

Disparity also exists in the performance of female learners taught by male educator
and those taught by female educator (Okoro et al., 2012).



1.4 Measuring Learners’ Academic Performance 15

1.4 Measuring Learners’ Academic Performance

Student learning performance is influenced by, among other things, the facilities
provided, see Figure 1.3. Learning performance not only focuses on learner results,
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Figure 1.3: Links between Environmental and Educational Outcomes.
Source: Lackney (1999)

but it is also related to the other contributions. Therefore, the terms of learning
performance have a very broad definition. Table 1.2 gives elements that are related
to the terms of learning performance (Castaldi, 1982; Mendell and Heath, 2005).

Table 1.2: Elements related to the terms of learning performance

Social Development Individual Differences and Group
Similarities

Multi-stimuli Instruction Attending and Learning

High Transfer of Learning Nurturing Readiness

Promoting Motivation Anomalous Students
Reducing Fatigue and Improving
Learning

Promoting Activity Programmes
and Meaningful Learning

Effective Group Instruction Incidental Learning

The elements stated in Table 1.2 have contributed to the students’ learning perform-
ance. Hence, it is important to provide effective facilities to the students for their
learning activities, in order to increase their performance.

Evaluating what learners have learned throughout the course can be accomplished
in many ways, depending on the course objectives and how learner performance
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will be measured. Measuring performance and achievement is a significant part of
the education process and informs educators of learner ability and progress toward
educational goals. It is also the primary gauge used by educators to guide the
advancement of learners through the education process.

Methods for measuring learner performances are diverse (Mushtaq and Khan, 2012).
Formal tests, quizzes, and examinations are the traditional methods for assessing
learner achievement. The choice of method depends on the focus of the study
or investigation (Mushtaq and Khan, 2012). The most common method used by
researchers is the use of test results or previous year results since they are studying
performance for the specific subject or year (Hijazi and Naqvi, 2006). Similarly,
educational services are often not tangible and are difficult to measure because
they result in the form of transformation of knowledge, life skills and behaviour
modifications of learners (Farooq, Chaudhry, Shafiq and Berhanu (2011). So there is
no commonly agreed upon definition of quality that is applied to education field since
it varies from culture to culture (Farooq et al., 2011, Page 2).

“Today’s school-reform initiatives often center on using measures of
student learning to gauge school and educator effectiveness. This
focus on accountability has in some ways been taken away from the
more basic purpose of assessment: to figure out what students or
learners know and need to learn”

http://blogs.edweek.org/teachers/teaching ahead/what-are-the-best-
ways-to-measure-student-learning/

Learner performance is influenced by many factors. Broadly, these factors may
be categorised as environmental factors and intervening factors (Lackney, 1999;
Farooq et al., 2011). Intervening factors are mostly embodied by a learner while
environmental factors are those that a learner happened to find himself/herself in
e.g., social and physical contexts. In essence, as highlighted by Lackney (1999),
intervening variables are mostly and directly affected by environmental variables while
educational outcomes (learner performances) are directly affected by intervening
variables. Figure 1.3 attempts to simplify this explanation and summarises Section
1.3 and Section 1.4.

Assessment and evaluation are essential components of teaching and learning.
Without an effective evaluation programme it is impossible to know whether students
have learned, whether teaching has been effective, or how best to address student
learning needs. The quality of the assessment and evaluation in the educational
process has a profound and well-established link to student performance. The terms
‘Evaluation’ or ‘Assessment’ are both in common usage in educational circles and
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sometimes are being used interchangeably. Taras (2005) clarifies the process of
assessment.

Assessment or evaluation is of central importance in education (Carr, McGee, Jones,
Mckinley, Bell, Barr and Simpson, 2004). Assessment is the process of gathering
information on student learning. Evaluation is the process of analysing, reflecting
upon and summarising assessment information, and making judgements and/or
decisions based on the information collected (Taras, 2005). Reporting involves
communicating the summary and interpretation of information about student learning
to various audiences who require it. Bansilal et al. (2010, Page 155) quoting Carr
et al. (2004) emphasise the purposes of assessment as follows:

”Assessment is an integral part of the learning process and has both
formative and summative functions. These two sets of functions are
mainly a matter of when they occur in relation to their purpose, and not
a differentiation of rigour or quality. Formative assessment is an on-
going informed interaction between the teacher and student designed to
enhance student learning. Therefore it provides feedback to the teacher
and to the student about present understanding and skill development in
order to determine a way forward.”

1.4.1 Grade 12 Results

In South Africa, the National Senior Certificate (NSC) examinations are written after
twelve years of formal schooling and signify the end of the Further Education and
Training (FET) band. Grade 12 results are used to measure the competency of
learners and the effectiveness of schools. However, the authorities rely on results
from descriptive analysis to make inference.

The Grade 12 pass rate.

Grade 12 results should be treated with caution, even though the pass rate5 can
serve as a measure of opportunities open to the youths. It is noted that the ”Grade 12
pass rate on its own is not a good measure of academic achievement in the schooling
system, nor was the pass rate ever designed for this”, concedes the Department
of Basic Education (DBE) of South Africa. However, the pass rate can serve as a
measure of the opportunities open to our youths. If these opportunities increase,
then we should celebrate.

5Pass rate refers to the proportion (converted to percentage) of learners who have passed Grade
12 in a particular academic year.
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Figure 1.4: The 2012 Provincial Pass Rates in RSA
Source: Department of Basic Education

”Matric results, which have been getting better for several years, are
still improving. The national pass rate in 2012 rose to 73.9%, up by
more than 13% points from the 60.6% who achieved a pass in 2009
and by more than three percentage points from the 70.2% who did
so in 2011”.
https://africacheck.org/reports/minister-wrong-to-say-better-results-show-

sa-education-is-improving/

Clearly, from the extract given above it cannot be seen how confounding was ac-
counted for, and reliance only on descriptive statistics is not encouraged. Figure 1.4
presents summary statistics on 2012 pass rates, according to provinces.

It can be seen from Figure 1.4 that Gauteng Province and Western Cape Province
performed marginally higher than the rest of the provinces. These two provinces
have consistently been performing marginally higher or better than all other provinces
over the years, hence this study focused on them (Gauteng Province and Western
Cape Province).

To celebrate the marginal differences between the provinces is an exercise in self-
deception, especially when the results are only based on descriptive statistics. The
only time we should celebrate is when we acknowledge the methods used to analyse
the data, and justify in our methodology and statistical approaches that the analysis
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accounts for interrelatedness of our observations. Also, if the chosen analytical
technique account for confounding effects. Chapter 4 demostrates the statistical
approaches for dealing with clustered data (such as Grade 12 results).

1.5 Research Approach and Design

This is a special study in that it is mainly a methodological study. It proposes an
approach towards the analysis of Grade 12 results in the South African Education
system. This orientation makes it a challenge to follow a traditional design in which
issues pertaining to literature review, research methodology and research findings
are distinct and clearly demarcated into separate chapters. In the current case, an
integrated approach was found more appropriate.

This study followed a quantitative approach, the one in which the investigator primarily
uses post-positivist claims for developing knowledge (i.e., cause and effect thinking,
reduction to specific variables and hypotheses and questions, use of measurement
and observation, and the testing of theories), employs strategies of inquiry such as
experiments and surveys, and collects data on predetermined instruments that yield
statistical data (Creswell, 2003). In particular, population-averaged models, which
are computer intensive, were employed to compare the performances of Gauteng
Province and Western Cape Province.

A combination of computer softwares packages, Excel (data management) and Stata
(data analysis), was used to accomplish this task.

This research approach was implemented on the secondary data, Grade 12 data as
supplied by Umalusi6. Therefore, no data collection instrument, such as a validated
questionnaire or data faxing, was used to collect the data.

1.6 Aim of the Study

Grade 12 examination is regarded as the crucial step as it is used as a yard stick for
deciding whether or not a learner is ready or prepared for tertiary education. It is the
Grade 12 results that generate more interest to the public such that at the minute
(micro) level - schools are compared, at local level - regions are compared, and at

6Umalusi is the quality assurer in the general and further education and training bands of the
national qualifications framework (NQF). The Council ensures that the providers of education and
training have the capacity to deliver and assess qualifications and learning programmes and are doing
so to expected standards of quality. Umalusi is guided by the General and Further Education and
Training Act, Act 58 of 2001, published in December 2001.
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(macro or) national level - provinces are compared in terms of how their respective
learners performed.

Therefore, there is a need to have a reliable method(s) for comparing the perform-
ances of provinces given that the intervention (which is the teaching of learners) was
not targeted, and that the setup was not controlled. The possibility of spill-over of
the intervention effect between provinces is highly likely. Thus, the groupings are not
randomised, and controlled.

The study is aimed at proposing the method that will plausibly be used to analyse
the Grade 12 results, and (the method used) to compare performances of learners
between provinces of the Republic of South Africa.

The researcher intends to employ causal models for comparing performances of
nonrandomised study groups in South Africa. Such analysis was never performed
as the South African government, like other states in Africa e.g., Tanzania (Kassile,
2014), Zimbabwe (Nyagura, 1991) and Botswana (BEC, 2011), and other states
outside Africa e.g., Singapore (MES, 2014) and United Kingdom (DFE, 2010) relied on
descriptive analyses. Therefore, these studies used descriptive statistics (proportions
expressed as percentages) as a measure of school performance, e.g., see Figure
1.4, which most of the time the analyses ignored the intracluster correlation coefficient
(ICC), a measure of the relatedness of clustered data. It accounts for the relatedness
of clustered data by comparing the variance within clusters with the variance between
clusters.

It is in the public domain that education is one of the present South African govern-
ment’s priorities - the distribution of resources e.g., quality educators (high effective
educators) and infrastructure (well-funded instructional materials), among schools
will be in such a way that it is properly distributed (equitable); for this study will have
provided the authorities with supporting evidence. Therefore, the issue of school
quintile will be revisited, probably this concept may be phased-off in the near future.

In this study we (attempt to) address the following research questions:

• What insights are revealed through the application of causal models in analysing
the effect of gender and school quintile in the performance of learners?

• How do we apply the population average model in case of nonrandomisation
studies in educational setting?
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1.7 Hypothesis

In this study we (attempt to) test the hypothesis that the performances of learners in
the two provinces, Gauteng and Western Cape, are not significantly different, and
the interpretation is performed at 95% confidence limit (2-sided).

A hypothesis7 is a tentative statement about the relationship between two or more
variables. In another words, a hypothesis is a specific conjecture (statement) about
a property of a population of interest. A hypothesis is a specific, testable prediction
about what one expects to happen in one’s study. While the hypothesis predicts
what the researchers expect to see, the goal of research is to determine whether this
guess is right or wrong.

When trying to come up with a good hypothesis for one’s own research or study, one
needs to take heed of the following questions:

• Is one’s hypothesis based on one’s research topic?

• Can the stated hypothesis be tested?

• Does the hypothesis include independent and dependent variables?

Clearly, hypothesis is highly related to literature review, study design and the nature
of the collected data and the methods to be used for data analysis.

1.7.1 The Null and Alternative Hypotheses

In designing a study it is important to have a clear research question and to know the
outcome variable to be compared. Once the research question has been stated, the
null and alternative hypotheses can be formulated (Julious, 2010). In another words,
in order to determine if the results of the study are significant, it is essential to also
have a null hypothesis (Larson, 1982; Julious, 2010). The null hypothesis (H0) is the
prediction that one variable will have no association to the other variable. In other
words, the null hypothesis is usually of the form of no difference in the outcome of
interest between the study groups (Larson, 1982). The study or alternative hypothesis,
(H1), would then usually state that there is a difference between the study groups
(Julious, 2010).

7 Definition: A simple hypothesis H is any statement that completely specifies the probability law
for a random variable X. A hypothesis that is not simple is called composite. A test of hypothesis, H, is
any rule that tells us whether to accept H or reject H, for every possible observed random sample of X
(Larson, 1982).
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The null hypothesis is assumed to be valid unless contradicted by the results. The
experimenters can either reject the null hypothesis in favour of the alternative hy-
pothesis or not reject8 the null hypothesis. To say that you are accepting the null
hypothesis is to suggest that something is true simply because you did not find any
evidence against it. This represents a logical fallacy9 that should be avoided in
scientific research (Gunderman and Sistrom, 2006).

1.7.2 Type I and Type II Errors

Two types of errors occur when testing hypotheses. If the null hypothesis is rejected
when it is true, then a Type I error has occured. If the null hypothesis is not rejected
when it is false, then a Type II error has been made. The probabilities of Type I error
and Type II error are called alpha (α) and beta (β), respectively (Altman, 1991, Page
169; Zhou, Obuchowski and McClish, 2011, Page 21).

The probabilities of making Type I and Type II errors are given as, for example (Larson,
1982, Page 414; Chow and Liu, 2000, Page 127; Zhou et al., 2011, Page 22) :

α = P (Type I error)

= P (reject H0|H0 true)
(1.7.1)

β = P (Type II error)

= P (accept H0|H1 true)
(1.7.2)

The probability of making Type I error, α, is called the level of significance. Table 1.3 ,
as given by Julious (2010, Page 11), summarises the relationship between the two
types of errors. Power of the statistical test is the probability of correctly rejecting the
null hypothesis H0 when H0 is false; that is,

8It is important to remember that not rejecting the null hypothesis does not mean that you are
accepting the null hypothesis.

9There are many different types of logical fallacy including:

• Formal Fallacy: These are also called deductive fallacies. In deductive fallacy arguments, all
premises must be accurate and impossible to be proven otherwise. When this is the case, there
is no way that the conclusion can be false.

• Informal Fallacy: This is an inductive argument.

• Logical and Factual Errors: Any argument in which premises or inferences are poor will result
in a fallacious conclusion.
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Power = 1− β

= P (reject H0|H0 false)
(1.7.3)

On the other hand, the power of a study reflects the probability that the study will
be able to detect a true effect of a specified size. So, given that an effect exists, the
power of the study is the likelihood that an effect will be found in the study’s results. It
is the probability of rejecting the null hypothesis when it is in fact false.

We note that statistical power is affected by three factors (Suresh and Chandrashekara,
2012):

i) The difference in outcome rates between the two groups. A smaller
difference requires exponentially more power.

ii) The level of significant difference one hopes to show (e.g. p < 0.05
or < 0.001). Chasing after a small p value takes more study power.

iii) The frequency of the outcome in the two groups. Imagine an ex-
posure that increases incidence by a third: it is easier to show a
difference between 30 and 45 percent than between 10 and 15 per
cent. Maximum power is reached when roughly half of the people
studied have the outcome of interest.

Table 1.3: Relationship between the H0 and H1

If H0 is
True False

Fail to reject No error Type II error
Reject Type I error No error

The following criteria are commonly used as a rule of thumb for choosing the null
hypothesis (Chow and Liu, 2000, Page 129):

(a) Choose H0 based on the importance of Type I error. Under this rule, it is believed
that a Type I error is more important and serious than Type II error. We would
like to control the change of making a Type I error (i.e., α) at a tolerable limit.
Thus, H0 is chosen so that the maximum probability of making a Type I error [i.e.,
P(reject H0 when H0 is true)], will not exceed α level.

(b) Choose the hypothesis we wish to reject as H0. The aim, here, is to establish the
alternative hypothesis H1 by rejecting H0.
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1.7.3 Hypothesis Testing: The P-value

A P-value10 is the probability of obtaining the study results (or results more extreme)
if the null hypothesis is true (Altman, 1991, Page 167). In practice, what happens in a
research study is that the null hypothesis of no difference between the two study arms
is stated, that is, µA = µB. The study is then conducted, and a particular difference
∆ is observed such that ∆ = µ̂A − µ̂B. Here, µA and µB are averages in study arms
A and B, respectively, and µ̂A and µ̂B are mean estimates in study arms A and B,
respectively.

Due to pure randomness even if the two study arms are truly the same we would
seldom actually observe ∆ = 0 but some random difference (Julious, 2010). If ∆ is
small then the probability of seeing this difference under the null hypothesis could
be very high. If a larger difference is observed, then the probability of seeing this
difference by chance is reduced. As the difference increases, the P-value decreases
(Julious, 2010).

A small P-value indicates that the results obtained are unlikely when the null hypo-
thesis is true, and the null hypothesis is rejected. Conventionally the cut-off value
or two-sided significant is set at 0.05 or 5% (Altman, 1991). Table 1.4, as given by
Julious (2010, Page 9), attempts to summarise this information.

Table 1.4: Statistical significance

P-value < 0.05 P-Value ≥ 0.05
Result is Statistically significant Not statistically significant

Decision Sufficient evidence to re-
ject the null hypothesis

Insufficient evidence to re-
ject the null hypothesis

In summary:

Hypothesis testing is a scientific process to examine whether or not a
hypothesis is plausible. In general, hypothesis testing follows the next five
steps.

1) State the null and alternative hypotheses clearly (one-tailed or two-
tailed test).

2) Determine a test size (significance level). Pay attention to whether
a test is one-tailed or two-tailed to get the right critical value and
rejection region.

10Since the P-value is the probability - its values vary between 0 and 1. That is, 0 ≤ P-value ≤ 1.
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3) Compute a test statistic and P-value or construct the confidence
interval, depending on testing approach.

4) Decision-making: reject or do not reject the null hypothesis by com-
paring the subjective criterion in 2) and the objective test statistic or
p-value calculated in 3).

5) Draw a conclusion and interpret substantively.

There are three approaches to hypothesis testing: namely Test statistic approach,
P-value approach and Confidence interval approach (as presented by Table 1.5).
Each approach requires different subjective criteria and objective statistics but ends
up with the same conclusion (Larson, 1982).

Table 1.5: Approaches of hypothesis testing

Step Test Statistic Approach P-Value Approach Confidence Interval Ap-
proach

1 State H0 and H1 State H0 and H1 State H0 and H1

2
Determine test size
α and find the crit-
ical value.

Determine test size
α.

Determine test size
α or 1 − α, and the
hypothesised value.

3 Compute a test statistic Compute a test statistic. Construct the (1 − α)∗
100% confidence interval.

4 Reject H0 if TSa > CV b Reject H0 if p-value < α.
Reject H0 if a hypothes-
ised value does not exist
in confidence interval.

5 Interpretation Interpretation Interpretation

a TS = Test statistic
b CV = Critical value

The hypotheses in this study are:

a) A case of averages:

• H0: The average performances of learners in the two provinces are not
statistically different (µ1 = µ2).

• H1: The average performances of learners in the two provinces are statistic-
ally different (µ1 6= µ2).

b) A case of proportions:

• H0: The proportion of learners who passed Grade 12 to the proportion of
learners who failed Grade 12 in the two provinces are not statistically different
(p1 = p2).
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• H1: The proportion of learners who passed Grade 12 to the proportion of
learners who failed Grade 12 in the two provinces are statistically different
(p1 6= p2).

We note that µi∈{1,2} and pi∈{1,2} are the the true mean and true proportion, re-
spectively.

1.8 The Significance of the Study

An informed decision requires relevant and useful information. For example, de-
cisions about major consumer purchases are often preceded by reviews of Consumer
Reports or similar compilations of ratings or measures of features and characteristics
of the product to be purchased (Brown, Wohlstetter and Liu, 2008). The issue of
school choice or province choice, with regard to learner performances, is no different.
Decisions about choosing which province is most appropriate, best performing, or
more desirable within a given community also require a collection of relevant and
useful information that best reflects the important features and characteristics of the
province (Brown et al., 2008).

A lot of research has been done on factors affecting academic performance of
learners (basic education) and college/university students; for example Mushtaq and
Khan (2012). However there is scarce information about proper comparisons of
performances of learners according to their respective strata. In the South African
setting - the strata will refer to provinces, regions, and schools. The study will enable
the researcher to make recommendations to South African DBE policy makers
especially those that deal with issues regarding quality assurance (QA), and the
Ministry of Education on what policies and strategies can be employed to improve
academic performances of learners in the provinces.

This study should be particularly significant, as it is the first cross-sectional study to
be conducted that employs causal models to compare performances of provinces in
terms of Grade 12 results in RSA. The importance of conducting this research is to
demonstrate the method that is suitable for comparisons of nonrandomised groups.
In particular, the researcher will demonstrate the use of causal models in the analysis
of clustered data such that:

(i) The educational authorities, e.g. curriculum advisors, circuit managers and/or
monitoring support groups draw a better conclusion with regard to Grade 12
performance.
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(ii) Concerned authorities will understand and appreciate these approaches and
possibly come up with the intervention strategies to be implemented in improving
the academic performance at their schools, regions and provinces.

(iii) It will also be a contribution to the body of knowledge in the field of application
of causal models in the evaluation of interventions in nonrandomised groups or
social science settings.

(iv) This study will also serve as a basis for other related research that may af-
fect academic performance in centers of learning i.e., schools, and tertiary
institutions.

In another words, currently the approach to the analysis of Grade 12 results in South
Africa is limited to the use of descriptive statistics. The purpose of this study is to use
the potential power of causal models (in particular, population average models) to
better explain Grade 12 results. Consequently, this will provide a better platform upon
which strategic interventions can be developed. The study also seeks to demonstrate
how inference is drawn in case of nonrandomisation studies in educational setting.

1.9 Ethical Consideration

Research ethics refers to the application of moral standards to decisions made
in planning, conducting, and reporting the results of research results (McNabb,
2010, Page 69). Research ethics provides guidelines for the responsible conduct of
(biomedical) research (Welman, Kruger and Mitchell; 2008). In addition, research
ethics educates and monitors scientists conducting research to ensure a high ethical
standard. Ethical considerations, which range from plagiarism, respect for human
rights when data is collected to honesty in reporting research results, have become
an intergral element of every research proposal and study (Welman et al., 2008;
Drake and Heath, 2011, Page 47).

Plagiarism is the use of others’ data or sources or ideas without due acknowledge-
ment or permission (Welman et al., 2008, Page 182).Therefore, in this study all
sources used were duly acknowledged.

As highlighted by Welman et al. (2008, Page 181); there are three stages that should
be observed when dealing with respect for human rights during the data collection
process; namely:

• when participants are recruited,
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• during the intervention and/or measurement procedure to which they are sub-
jected, and

• in the release of results obtained.

In this project secondary data was used. Therefore, no data collection tool such as
questionnaire was used and as such no participants were recruited.

McMillan and Schumacher (1993) maintained that it is imperative for researchers
to obtain permission to enter any particular field and ensure the confidentiality and
anonymity of the participants, thus encouraging the latter’s free choice of participation.
This required a full description and disclosure to the participants of how the data that
was collected was intended to be used by the researcher. The confidentiality and
anonymity of participants or learners was guaranteed by not revealing their names,
student numbers, examination numbers or any data against their will. In particular,
psuedo-identifiers were used to blind the researcher. The statistical results were
reported objectively.

The ethics clearance (Project No.: TREC/135/2015: PG) for this project was granted
by Turfloop Research Ethics Committee (TREC).

1.10 Arrangements of the Chapters in the Thesis

This thesis is sub-divided into 5 chapters with Chapter 1 providing the background to
the setting wherein the study will be focused. This chapter outlines how South Africa
and its population is distributed, and as such the issue of comparisons of learner
performances come into effect. Factors that affect the performances of learners are
discussed, the research design and research approach to this study is discussed.
Some pointers with regard to the significance of this study are outlined and how the
hypothesis are set in this study is entertained in details.

Chapter 2 deals with challenges that one faces when dealing with the concept of
causality in observational studies. In particular, the description of problem of causal
inference is discussed, and the Rubin causal model is introduced. The fundamental
of causal problem is discussed together with assignment mechanism. The discussion
of causal effect in both randomised and nonrandomised studies is then outlined.
The importance of matching and how matching methods are implemented, and
the introduction of propensity score and how it (propensity score) is estimated are
introduced.

Chapter 3 introduces the concept of clustered data, and how statistical models are
implemented in analysing such data. Ordinary regression models, linear and logistic
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regression models, are introduced and how the point estimates from these models are
determined and interpreted. Mixed models and hierarchical models are introduced
and discussed in this chapter. How clustered data are statistically modeled using
linear mixed-effects models and nonlinear mixed-effects models is outlined; as the
theoretical background to these models is presented. The challenges posed by
spill-over effects or contamination are discussed since social science experiments
are not controlled experiments.

Chapter 4 presents data analysis and interpretation of the results. The results are
based on descriptive analysis and application of crude models and adjusted models.
The results are presented in tabular and graphical formats, and Chapter 5 presents
the conclusion and recommendations.

Chapter Summary

The need for review of the approaches to analysis of Grade 12 results was
described; for in RSA - Grade 12 results are used to measure the competency
of learners and the effectiveness of regions and schools.

A discussion of factors that affect learners’ performances was detailed and
learned how educational outcomes (educator instructional performance and
learner pro-social development) are related to intervening variables (behavi-
oural factors, attitudinal factors and physiological factors) and environmental
variables (physical environment and social environment).

The justification for the choice of quantitative study design has been given,
and in particular the Ex Post Facto design, as adopted in this thesis. We have
become acquainted with statistical hypothesis testing, Types I and II errors, and
power of study. Finally, the definition of causal model was given: a statistical
tool for evaluating the effect of ‘intervention’. A precise outline for the need to
apply causal models in the analysis of clustered data such as Grade 12 results
was supplied.
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Problem of Causality in
Observational Studies

*****

“We may define a cause to be an object, followed by another, ...
where, if the first object had not been, the second had never existed.”

Hume (1748)

Chapter Preview

Chapter 2 discusses causality in observational studies. The problem of causal
inference is highlighted given the baseline covariates in the study arms. Then
the challenges that researchers face when dealing with causality in observa-
tional studies are highlighted. The potential-outcomes framework for causal
inference together with assignment mechanism are discussed. The importance
of matching and how matching methods are implemented are detailed. Finally,
the technique of propensity score and how propensity score is estimated are
discussed.

2.1 Introduction

An observational study, a study that draws inferences about the possible effect of a
treatment on subjects where the assignment of subjects into a treated group versus
a control group is outside the control of the investigator, entails a crucial handicap for
estimating causal treatment effects in comparison to a randomised controlled trial
(RCT). Obviously, observational study lacks the random assignment of treatment and
therefore it is often referred to as a nonexperimental or a quasi-experiment (Rubin,
1974).

The random treatment assignment assures that, in expectation, the distributions of
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covariates are similar between treated and untreated individuals such that they are
comparable (Shadish, Cook and Campbell, 2002; Rosenbaum, 2005). In another
words, one of the key benefits of randomised experiments for estimating causal
effects is that the study groups are guaranteed to be only randomly different from
one another on all background covariates, both observed and unobserved (Shadish
et al., 2002; Rosenbaum, 2005; Stuart, 2010). Differences in effect estimates are
hence completely attributable to the treatment. It can be expected that both covari-
ates measured at baseline, i.e., measured before treatment assignment, and those
remaining unmeasured are all balanced between treatment groups such that overt as
well as hidden bias can be avoided in RCTs. Due to numerous reasons, e.g., financial,
ethical or temporal, RCTs are not always feasible or they are not the appropriate
study type such that observational studies are used to investigate causal treatment
effects (Rosenbaum, 2005).

Since the treatment assignment is not (at) random but depends on participants‘
covariates, observational studies always require an adjustment for imbalances in
covariate distributions between treatment groups. This is often done, e.g., by using
traditional regression techniques or matching by relevant covariates (Rubin, 1979;
Robins, 2005). However, this is not free of trouble when there is a large set of
covariates for which it has to be adjusted for and for which matching should be done
(Rosenbaum, 1989).

Also, only overt bias, i.e., bias induced by measured covariates, can be accounted
for in observational studies independent of the method preferred for imbalance
adjustments. Hidden bias, i.e., bias caused by covariates remaining unmeasured,
cannot be controlled such that additional assumptions need to be met to still obtain
reliable causal treatment effect estimates in observational studies (Rosenbaum,
1991). Additionally, the distinction between causal and associational parameters and
their way of estimation have to be kept in mind.

In consequence of a discussion about the validity of observational studies regarding
the estimation of causal effects in comparison to RCTs, Rubin (1974) investigated
both study types comparatively from the causal point of view. He concluded that
both observational studies and RCTs are suitable to estimate causal effects, but he
also highlighted that one study type’s advantage is another study type’s drawback:
that there is no clear answer to the question which study type should be preferred to
estimate causal effects (Rubin, 1974).

The generalisation of results from observational studies is more obvious due to its
non-experimental design compared to RCTs. D’Agostino (2007) agreed and stated
that RCTs provide rather efficacy (treatment effects estimated in an RCT setting, e.g.,
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restricted by inclusion and exclusion criteria) than effectiveness (effect of treatment
which would be measured in circumstances more similar to a real world setting) due
to its limited circumstances. However, the apparent benefit of observational studies,
i.e., the generalisability of their results, can be substantially reduced if there is only
an erroneous or even missing control for bias, especially for hidden bias.

The discussion about the ability of observational studies to estimate reliable causal
effects has been ongoing (McKee, Britton, Black, McPherson, Sanderson and
Bain, 1999; Pocock and Elbourne, 2000; Ioannidis, Pantazis, Kokori, Tektonidou,
Contopoulos-Ioannidis and Lau, 2001; Shadish, Clark and Steiner, 2008). The focus
has been on the comparison of empirical results from observational studies and
RCTs rather than theoretical considerations, as indicated in the literature (Ioannidis
et al., 2001, for example). On the one hand, results in favour of observational studies
were published (Concato, Shah and Horwitz, 2000): no systematic bias of results
from observational studies could be substantiated compared to those from RCTs
(Britton, McPherson, McKee, Sanderson, Black and Bain, 1998, for example), similar
effect estimates were found, and the results were found to be less heterogeneous
than those from RCTs (Concato et al., 2000).

On the other hand, Ioannidis et al. (2001) showed in an empirical evaluation that
discrepancies beyond chance may occur and differences in estimated treatment
effects are very common. In the effort to evaluate possible reasons for discrepant
effect estimates between observational studies and RCTs other than randomisation,
observational data were analysed by mimicking the design of a similar RCT as
close as possible (Hernan, Alonso, Logan, Grodstein, Michels, Willett, Manson, and
Robins, 2008) or the design of the study was chosen similar to the doubly randomised
preference trial (Shadish et al., 2008).

The challenge arises in case where the model cannot account for all possible vari-
ations (Britton et al., 1998; McKee et al., 1999; Pocock and Elbourne, 2000). In
another words as long as the uncertainty about missing or incompletely measured
important covariates is existent or the representativeness of a study is not warranted,
neither RCTs nor observational studies can properly clarify whether that what we
estimate as the causal effect of intervention in the study is exactly that what we had
in mind to estimate (Britton et al., 1998; Hernan et al., 2008).

2.2 Description of Causal Inference Problem

Among others, Schafer and Kang (2008) describe the problem of causal inference as
follows: Consider a treatment that is either present or absent for each participant. The
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objective is to assess the average effect of the treatment on a subsequently measured
outcome. We are likely to have a pretest (baseline) measure of the outcome and
perhaps other variables that have been measured prior to treatment.

We assume for simplicity that there are no missing values in the baseline measures,
that there is no dropout prior to final outcome, that the treatments have been car-
ried out as intended with full compliance, and that there is no interference among
participants in the sense that the treatment received by one has no effect on the
outcome of any other. Scientists widely agree that to establish a causal link, it is
not sufficient to show a significant difference in average response for treated and
untreated persons at the end of the study. One must also rule out the possibility that
the discrepancy is due to systematic differences between the groups at baseline.

If the treatment was randomly assigned as part of a designed experiment, that
conclusion would be immediate, because randomisation will, on average, eliminate
those differences. If the assignment was beyond the researchers’ control, however,
the groups may not have been equivalent at the outset, and ruling out alternative
explanations is challenging and controversial. In another words, in the absence
of randomisation, as in observational studies, one needs to be careful about the
potential confounders in estimating the treatment effects (Lu, 2005).

Schafer and Kang (2008) reiterated the fact that popular strategy for ruling out
alternatives is to measure as many confounders, pre-treatment variables that may be
related to both the treatment and the response, as possible and then estimate what
the difference in average response between treated and untreated persons would be
if the average values of the confounders in both groups were equal. This idea, which
underlies classical analysis of covariance (ANCOVA) and regression, still prevails in
many areas of biomedical sciences, and social and behavioural sciences.

To appreciate how these methods work, it is helpful to understand the connections
between causal inference and missing data. Notions of causality pertain to how an
intervention would have changed individuals’ results. With two different treatments,
we can imagine two possible responses for each participant. Causal effects may be
defined as differences between these so-called potential outcomes (Rubin, 1974;
Letsoalo and Lesaoana, 2012). Because only one outcome can be observed for any
participant, techniques for causal inference are, in essence, missing-data methods
(Gourieroux and Monfort, 1981).

Here the focus is on the effect of a binary treatment on the mean of a numeric
outcome. In practice, a treatment variable may be nominal, ordinal, or numeric, and
the response could be any of these types as well. We also make the simplifying
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assumption that all confounders have been measured and are available to the analyst
(Schafer and Kang, 2008). This assumption may approximately hold if an extensive
set of measures known by subject-matter experts to be predictive of the treatment
has been collected at the pretest (Schafer and Kang, 2008).

In other applications, this assumption will be highly questionable, especially if only a
few demographic variables are present. Even under the assumption of unconfoun-
dedness, causal inference is not trivial; many solutions have been proposed, and
there is no consensus among statisticians about which methods are best (Schafer
and Kang, 2008). We note that the best available answers under an assumption of no
unmeasured confounders will establish useful benchmarks and points of departure
for sensitivity analyses (Rosenbaum, 2005).

2.3 Rubin Causal Model: The Potential-Outcomes

Framework for Causal Inference

Consider the classic case of a person who is treated at time t and, the outcome or
response to the treatment is observed at time t+ k (k > 0). How does one conclude
that the treatment is effective or not? In another words, how do we measure the
possible causal effect of the treatment? Donald Rubin’s answer to estimating the
causal effect of treatments in randomised and nonrandomised studies is based on a
counterfactual proposition. A simple illustration would be if an hour ago I had taken
two aspirins instead of just a glass of water, my headache would now be gone (Rubin,
1974). Following Rubin’s notation, if T represents taking two aspirins and C drinking
just a glass of water, the potential outcomes Y relating to these two treatments may
be written as two random variables, namely Y (T ) and Y (C). The causal effect of the
T versus C treatment on Y for a particular subject j observed or treated at time t and
observed at time t+ k is then defined as Yj(T )− Yj(C), i.e. the differential headache
response to taking the aspirins or not taking them (Letsoalo and Lesaoana, 2012).

A researcher who wishes to estimate the effect of a treatment that she or he can
control in an outcome of interest typically designs an experiment in which subjects
are randomly assigned to alternative treatment and control groups. We note that
other types of experiments are possible but randomised experiments are the most
common research designs when researchers have control over the assignment of
the treatments. After randomisation process, the experiment is run and the values yj
of observations in the treatment arms are recorded.

The mean difference in the observed outcomes across the study arms is called the
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estimated average effect (Hernan, 2004), and any ensuing debate then moves on to
the particular features of the experimental protocol and the degree to which the pool
of study participants reflect the target population for which one would wish to know
the average treatment effect (Morgan and Whinship, 2007).

The definition of causal effect, (Morgan and Whinship, 2007; Letsoalo and Lesaoana,
2012) is given as:

Definition Causal effect of one treatment, say exposure T , over another, say control
C, for a particular unit and an interval of initial time t1 to final time t2 is the difference
between what would have happened at time t2 if the unit had been exposed to T

initiated at t1 and what would have happened at time t2 if the unit had been exposed
to C initiated at time t1.

The assumptions are that

(a) a time of initiation of treatment can be ascertained for each unit exposed to T

and C, and

(b) T and C are exclusive of each other in the sense that a treatment cannot simul-
taneously be a T and a C treatment.

If Y (T ) and Y (C) are the values of Y measured at time t2 on the units, given that the
units received T and C, respectively, initiated at t1 then the difference Y (T )− Y (C)
is called the causal effect (Letsoalo and Lesaoana, 2012).

In the actual world, one never observes both Y (T ) and Y (C) at the same time for the
same individual. The subject either takes (or is assigned to) T or C. Thus one can
never observe for the same individual j the causal effect Yj(T )− Yj(C). In general,
people are assigned either to T or to C but not to both at the same time. Well,
the outcome under treatments not assigned can be regarded as missing, and the
problem is one of drawing inferences about these missing values with the observed
data. Basically, the absolute difference between treatments, measuring Y (T )− Y (C),
as well as the relative difference, measuring Y (T )/Y (C), can be compared.

Given that it is impossible to calculate individual-level causal effects, then the attention
is directed to the estimation of aggregated or average causal effects (see Tables 2.2
and 2.3). We need the stable unit treatment value assumption (SUTVA); and this
assumption assumes that (Gelman and Hill, 2007, Page 178):

(a) the treatment status of any study unit j does not affect the potential outcomes of
the other units (non-interference), and
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(b) the treament for all units are comparable (no variation in treatments).

That is, we require that the [potential outcome] observation on one unit should be
unaffected by the particular assignment of treatments to the other units. SUTVA
implies that Y(T) and Y(C) (the potential outcomes for unit j) are in no way dependent
on the treatment status of any other unit in the dataset. We immediately note that
SUTVA is not just statistical independence between units!

Under SUTVA, the average treatment effect in the population is given by the expecta-
tion of the quantity δi as:

E(δ) = E[Y (T )− Y (C)]

= 1
N

∑
1≤j≤N

[
Yj(T )− Yj(C)

] (2.3.1)

where E[·] is the expectation from probability theory.

Also, we note that the expectation of the difference equals the difference of the two
expectations (Hollard, 1986; Morgan and Whinship, 2007). Equation (2.3.1) reveals
that information on different units (individuals) that can be observed can be used to
gain knowledge about the average causal effect E[δ]. The subscripting on j for δj has
been dropped for (2.3.1). But this does not necessarily imply that σ is constant in the
population, as is a random variable just like Y (t), t = C or T . The subscript j can be
dropped in (2.3.1) because the causal effect of a randomly selected individual from
the population equals the average causal effect across individuals in the population.
The average causal effect is the most common subject or quantity of investigation
in biomedical sciences. Two conditional average treatment effects are of particular
interest. The average treatment effects for those who specifically take the treatment
and those who typically do not take the treatment.

Rubin’s (1974) solution is often called the potential outcome (or response) model. The
two potential outcomes being in this simple case Yj(T ) and Yj(C) for each j. Note
that the causal effect may differ from one individual to the other, thus a typical causal
effect is obtained as above by taking the average (or any other summary measure) of
the individual causal effects. The potential outcome approach to causal inference
extends the conceptual apparatus of randomised experiments to the analysis of non-
experimental data, with the goal of explicitly estimating causal effects of particular
treatments of interest (Rubin, 1974).

In a setup especially clinical trial (as an example of a controlled experiment), where
one wishes to measure the use-effectiveness of device versus some other interven-
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tion on some condition’s outcome (e.g., pregnancy outcome). Usually, N
2 participants

would be assigned to either intervention, and their effects of interventions are com-
pared. The differential responses would then be Y (T ) and Y (C) versus Y (T ) or
Y (C) in addition to Y (T ) versus Y C).

Following Rubin (1974), suppose there are only two subjects under study, denoted by
1 and 2. The typical causal effect (as defined above in the counterfactual situation)
would then be

1
2
[
Y1(T )− Y1(C) + Y2(T )− Y2(C)

]
(2.3.2)

In the actual world, one would observe in a single study either

Y1(T )− Y2(C) (2.3.3)

or

Y2(T )− Y1(C) (2.3.4)

depending on whether subject 1 or subject 2 is assigned to T , and vice versa (subject
2 or subject 1 to C).

If treatments are randomly assigned to subjects, we are equally likely to observe the
difference as given by (2.3.3) or (2.3.4). The expected difference in the outcome Y
is then the average of equations (2.3.3) and (2.3.4):

1
2
[
Y1(T )− Y2(C)

]
+ 1

2
[
Y2(T )− Y1(C)

]
(2.3.5)

It is easily seen that under randomisation, Equation 2.3.5 is equal to Equation 2.3.3.
In other words, Equation 2.3.5 is an unbiased estimate of Equation 2.3.3.

Suppose now that subjects 1 and 2 respond similarly to the treatments T and C. In
that case

Y1(T )− Y2(C) = Y2(T )− Y1(C)

and furthermore
Y1(T )− Y2(C) = Y1(T )− Y1(C)

or
Y2(T )− Y1(C) = Y2(T )− Y2(C)

In the situation of perfectly matched subjects with respect to the effects of the treat-
ments, the observed causal effect is equal to the counterfactual causal effect. Results
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under randomisation or perfect matching can be extended from two subjects to N
subjects. Randomisation and matching are therefore two approaches to measuring
the causal effect in experimental and nonexperimental studies, though randomisation
cannot often be used in the social sciences and perfect matching is hardly possible
in practice.

In many actual situations in nonexperimental research, the assignment of units to the
case and control groups is based on self-selection. Thus the assignment procedure
is often not ignorable, in the sense that the likelihood of treatment on the one hand
and the outcome on the other hand are not independent.

For example, if the sickest opts for the new treatment and the healthier for the older
or standard one, the outcome (e.g. recovery) in the treatment group will be due both
to the new drug and to the characteristics of the patients at onset. In this case, one
must control as best as possible for the assignment factors which have an impact on
the outcome. In the above example, one would try to control for the state of health of
both groups at the beginning of the trial.

Morgan and Whinship (2007) state that early work of counterfactual model was on
experimental design by Neyman (1923), and the counterfactual model for causal
analysis of observational data was formalised by Rubin since early 70s (see Rubin,
1974). The counterfactual model is often referred to as the potential outcomes
framework .

There are several primitives, concepts that are basic and on which we must build. The
fundamental notion underlying our view of causality is tied to an action or treatment
or intervention applied to a unit. Here follows definition of treatment.

Definition A treatment1 or intervention2 is an action that can be applied or withheld
from that unit. Here, a unit is a physical object, firm, or person, or collection of
persons such as a classroom or a market, at a particular point in time.

Associated with each unit and each treatment there are two potential outcomes,
the values of an outcome variable Y when the treatment is applied and when it is
withheld. The objective is to learn about the causal effect of the application of the
treatment relative to its being withheld on the outcome.

The core of the counterfactual model for observational data is: Suppose that each
experimental unit or individual in a target population can be exposed to two alternative

1The application of an agent, surgery, psychotherapy, etc, to a study unit.
2Intervention comes from the Latin intervenire, and it is the act of inserting one thing between

others, like a person trying to help. Often an intervention is intended to make things better.
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states of a cause. By experimental unit we mean a particular unit of study (e.g.,
learner) at a particular time, since the effect of the treatment on a unit may depend
on when treatment is applied. Only a finite number of experimental units need
be considered since no treatment will be applied into the infinite future (Rubin,
1978). Each state is characterised by a distinct set of conditions, exposure to which
potentially affects an outcome of interest. These alternative causal states are referred
to as alternative treatment. Therefore, by treatment we mean a series of well-defined
distinct actions that can be applied to a unit of study. The typical examples of
treatments are medical or surgical interventions on patients with health condition or
disease such as coronary artery disease (Rubin, 1978).

The key assumption of the counterfactual framework is that each study subject in
the target population has a potential outcome under each treatment state, even
though each individual can be observed in only one treatment state at any point in
time (Morgan and Whinship, 2007). Thus, counterfactuals are possible outcomes in
different hypothetical states of the world.

From the definition of causal effect we note that

(a) the definition does not depend on which outcome is actually measured, and

(b) the causal effect is the comparison of outcomes at the same moment of time,
where the time of application of the treatment precedes that of outcome.

2.3.1 The Fundamental Problem of Causal Inference

The definition of “cause” is complex and challenging (Rubin, 1991), but for empirical
research, the idea of causal effect of an agent or treatment seems more straightfor-
ward and practically useful. To define a causal effect in an individual study subject i,
let us assume that we want to assess the effect of an index treatment or exposure
level (active arm) as compared to another treatment or exposure level (control arm)
on an outcome of interest (which can be discrete or continuous; qualitative or quantit-
ative). In counterfactual inference it is assumed (Greenland and Brumback, 2002)
that:

(a) at the fixed time point of assignment, the individual i could have been assigned
to both treatment levels; and

(b) the outcome of interest exists under both treatment levels.

Causal comparisons entail contrasts between outcomes in possible states defined so
that only the presence or absence of the treatment varies across the states. Since
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Table 2.1: Hypothetical complete data: Illustration of what the complete
data might look like, if it were possible to observe both potential outcomes
on each unit. For each pair, the observed outcome is displayed in

boldface.

Unit, i
Pre-treatment Treatment Potential Treatment

Inputs Indicator Outcomes Effect
Xij Zi Y(C) Y(T) Y (T )− Y (C)

1 x1j 0 69 75 6
2 x2j 1 111 108 -3
...

...
...

...
...

...
n− 1 x(n−1)j 1 112 111 -1
n xnj 0 92 102 10

Y (T ) and Y (C) exist in theory for each study subject, an individual-level causal
effect can be defined as some contrast between Y (T ) and Y (C), usually the simple
difference Y (T )− Y (C), as indicated by Table 2.1. A formal definition of treatment
effect as given by, among others, Hofler (2005) and Gelman and Hill (2007) follows:

Definition The treatment effect 3 ∆ = Y (T ) − Y (C) indicates that unit i gains the
increase/decrease in the response variable by ∆ due to treatment. That is, the causal
effect of one treatment relative to another for a particular experimental unit is the
difference between the results; if instead, the unit had been exposed to a second
treatment.

A major failing of the potential outcome model is that it cannot take attributes into
account, e.g., gender is a cause of initial salary discrimination in many countries,
ethnicity is a cause of differential HIV prevalence in Sub-Saharan Africa (Rubin,
1986). These attributes are not only associated with their respective effects - they are
part of the causal mechanism itself. Any explanatory framework, especially in social
sciences, that cannot take attributes into account is therefore necessarily flawed
(Rubin, 1986).

Clearly, both observed and unobserved random variables are relevant. Causal effects
cannot be observed or directly calculated at the individual-level since it is impossible
to observe both Y (T ) and Y (C) for any study subject (Hollard, 1986; Gelman and Hill,
2007; Morgan and Whinship, 2007). Accordingly, Y (T ) and Y (C) are unobserved
counterfactual outcome for each individual i in the control and treatment groups,
respectively. Table 2.2 attempts to make this explanation more explicit, and Table

3Simply put - the causal effect of a treatment on an outcome for an observational or experimental
unit i can be defined by comparing between the outcomes that would have occured under each of the
different treatment possibilities.
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Table 2.2: Illustration of the fundamental problem of causal inference.
For each unit, we have observed some pre-treatment inputs, and then
the treatment (Zi = 1) or control (Zi = 0) is applied. We can then
observe one of the potential outcomes, (Y(C), Y(T)). As a result, we

cannot observe the treatment effect, Y(T) - Y(C), for any of the units.

Unit, i
Pre-treatment Treatment Potential Treatment

Inputs Indicator Outcomes Effect
Xij Zi Y(C) Y(T) Y (T )− Y (C)

1 x1j 0 y1c ? ?
2 x2j 1 ? y2t ?
...

...
...

...
...

...
n− 1 x(n−1)j 1 ? y(n−1)t ?
n xnj 0 ync ? ?

2.3 as given by Letsoalo and Lesaoana (2012), is a presentation of this information
in a more compact format. Among others, Hollard (1986) describes this challenge as
the fundamental problem of causal inference 4.

Table 2.3: The fundamental problem of causal inference

Intervention Potential Counterfactual Causal
Outcome Outcome Effect

Treatment Y (T ) Y (C)
Y (T )− Y (C)

Control Y (C) Y (T )

For a binary case with two causal states, labeled treatment and control, and as-
sociated potential outcome variables Y (T ) and Y (C) we define a causal exposure
variable, D, which takes on two values such that (Morgan and Whinship, 2007, Page
35):

D =


1 : Treatment

0 : Control.

Then, the observable outcome Y is given by:

Y =


Y (T ) : D = 1

Y (C) : D = 0.

This pair definition is written compactly as:

4That is, the so-called fundamental problem of causal inference is that atmost one of these potential
outcomes, Y (C) and Y (T ), can be observed for each study unit i.
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Y = D·Y (T ) + (1−D)·Y (C). (2.3.6)

Equation (2.3.6) says one can never observe the potential outcome under the treat-
ment state for those observed in the control state, and one can never observe the
potential outcome under the control state for those observed in the treatment state
(Morgan and Whinship, 2007).

Estimating causal effects requires one or some combination of the following (Green
and Aronow, 2011; Gelman and Hill, 2007, Page 171):

(a) close substitutes for the potential outcomes,

(b) randomisation, and/or

(c) statistical adjustment.

In theory, the simplest solution to the fundamental problem of causal inference is to
randomly sample a different set of units for each treatment group assignment from
a common population, and then apply the appropriate treatment to each group. An
equivalent approach is to randomly assign the treatment conditions among a selected
set of units (Gelman and Hill, 2007).

Either of these approaches ensures that, on average, the different treatment groups
are balanced or that the average observations in the different treatment conditions
from the sample are estimating the average outcomes under control and treatment
for the same population (Gelman and Hill, 2007).

In practice, however, we often work with observational data since observational
studies can be more practical to conduct and can have more realism with regard to
how the program or treatment is likely to be ‘administered’ in practice (Gelman and
Hill, 2007, Page 181). However, results of clinical trials or experiments are subject
to dispute, and in observational studies one basis for dispute is that since the study
subjects were not randomly assigned to treatments, subjects at greater risk may be
over-represented in some treatment groups.

We note that in observational studies treatments are observed rather than assigned,
and it is reasonable to consider the observed data under treatment conditions as
nonrandom samples from a common population. Therefore, in an observational
study, there can be systematic differences between groups of study units that receive
different treatments - differences that are outside the control of the practitioner who
performs the experiment or trial5 - and they can affect the outcome, say y. In this case

5 Trial, experiment, test imply an attempt to find out something or to find out about something.
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we need to rely on more data than just treatments and outcomes and the envisaged
strategy for analysis has to rely upon stronger assumptions (see assumption (2.3.7)
on Page 53).

2.3.2 The Assignment Mechanism

The four formal modes of causal inference that are considered conceptually distinct
in Rubin (1990) are:

(1) Randomisation-based tests of sharp null hypotheses;

(2) Bayesian predictive inference for causal effects or, more descriptively, perhaps-
full probability modelling for causal effects;

(3) Repeated-sampling randomisation-based inference; and

(4) Repeated-sampling model-based inference.

Detailed discussion of these modes is in Rubin (1990). A more important message
than their differences, however, is that all modes share a common conceptual frame-
work in which causal inferences can be drawn, and that a clear formulation of this
framework is an essential ingredient of a valid statistical inference in a practical prob-
lem (Rubin, 1990). In particular, this common framework requires the specification
of a posited assignment mechanism describing the process by which treatments
were assigned to units; it is required for each mode of inference in the sense that
causal answers generally change if the posited assignment mechanism is changed
(Rubin, 1990, 1991). Rubin (1991, Page 1214) emphasised that the major source
of uncertainty in the analysis of an observational study is generally not the mode of
inference but rather the specification of this assignment mechanism.

Central to the potential outcomes framework is the assignment mechanism, the
mechanism that determines which units get which treatment (Rubin, 2000, 2004).

Formally, the assignment mechanism is defined as a function assigning probabilities
to all possible N -vectors of binary assignment Z given the N -vectors of potential
outcomes Y (C) and Y (T ) and the N × K matrix of covariates, X, with ith row
equals Xi = (X1i, · · · , X1K), a K-vector of background variables which encodes
characteristics of unit i (Rubin, 1991; Imbens and Rubin, 2000; Mattei, 2004). Mattei
(2004, Page 7) provided the following definition:

Definition Given a population of N units, the assignment mechanism is a row-
exchangeable function Pr

(
Z|X,Y(C),Y(T )

)
taking on values in {0, 1}N satisfying

∑
Z
Pr(Z|X,Y(C),Y(T )) = 1,
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for all X,Y(C), and Y(T ).

Randomised trial is an obvious example of an assignment mechanism (Rubin, 1991;
Austin, 2011). It is an assignment mechanism such that

(i) it is ignorable, which means that it does not depend on the missing outcomes;

(ii) it is probabilistic, that is,

0 < Pr(Zi = T |X, Y (C), Y (T )) < 1

for all i, and for all X,Y(0), and Y(T ), where

Pr(Zi = T |X,Y(T ) =
∑
Z:Zi

Pr(Z|X,Y(C),Y(T ))

is the unit assignment probability for unit i; and

(iii) it is a known function of its arguments. Here, we are mainly concerned with
a special case of randomised experiments, classical randomised experiments,
which in addition to the conditions required for randomised experiments assume
local independence. This assumption requires the assignment mechanism to be
separable in the unit assignment probabilities, at least conditional on (Z,X).

Moreover, it requires the unit assignment probability for unit i to be a function of
outcomes and covariates for unit i only, free of the values of outcomes and covariates
for other units other than through the dependence of the joint assignment probabilities
on these outcomes (Mattei, 2004). Appendix C1 on Page 152 explains assignment
as locally independent [see (Rubin, 1991, Page 1220)].

The assignment mechanism is fundamental to causal inference because it tells
us how we got to see what we saw. Causal inference is basically a missing data
problem6 because at least half of the potential outcomes are not observed, and hence
missing (Rubin, 1977, 2007; Mattei, 2004). Without understanding the process that
creates missing data, we have no hope of inferring anything about them (Hernan,
2004). Without a model for how treatments are assigned to individuals, formal causal
inference, at least using probabilistic statements, is impossible (Rubin, 1991). This
does not mean that we need to know the assignment mechanism, but rather that
without positing one, we cannot make any statistical claims about causal effects,
such as unbiasedness of estimates, confidence coverage of intervals for effects,
significance levels of tests, or coverage of Bayesian posterior interval (Mattei, 2004;
Morgan and Rubin, 2012).

6Carter (2006) discusses solutions for missing data in structural equation modeling (SEM).
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2.3.3 Causal Effects in Randomised Experiments

A randomised controlled trial (RCT) randomises who receives a program (or service)
– the study Arm1 (say treatment group) - and who does not – the study Arm 2 (say,
the control). It then compares outcomes between those two groups; this comparison
gives us the impact of the program. Figure 2.1 attempts to explain this process .

Randomised experiments provide the analyst with the opportunity to achieve un-
biased estimation of causal effects. Figure 2.1 is a schematic representation of
two-arms study. Unbiasedness is an important statistical property, entailing that the
expected value of an estimator is equal to the true parameter of interest. Randomised
experiments are often justified by the fact that they facilitate unbiased estimation of
the average treatment effect (ATE) (Aronow and Middleton, 2013).

However, one of the major constraints to any quantitative impact evaluation – not
just RCTs – is sample size. In the case of RCTs, a concern is with sample size
along two dimensions: the unit of analysis, and the unit of randomisation. Both the
unit of analysis and the unit of randomisation are integral in determining statistical
significance and statistical power.

Random Process (See Figure 2.2)

Treatment A Treatment B

Participants
Allocated
to Arm 1

Participants
Allocated
to Arm 2

Comparisons of Results

Figure 2.1: Randomisation Trial
Source: Letsoalo (2004, Page 15)

This unbiasedness is undermined when the analyst uses an inappropriate analyt-
ical tool (Suresh, 2011; Aronow and Middleton, 2013). Randomisation is usually
associated with trial blindness (Saghaei, 2011; Aronow and Middleton, 2013).

Randomisation process eliminates the selection bias, balances the study groups with
respect to many known and unknown confounding or prognostic variables, and forms
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the basis for statistical tests, a basis for an assumption of free statistical test of the
equality of treatments. In general, a randomised experiment is an essential tool for
testing the efficacy of the intervention (Saghaei, 2011; Suresh, 2011).

The gold standard for the estimation of causal effects is to conduct randomised
experiments, such as clinical trials (Trojano, Pellegrini, Paolicelli, Fuiani and Di Renzo,
2009; Morgan and Rubin, 2012; Fives, Russell, Kearns, Lyons, Eaton, Canavan and
O’Brien, 2013). Simply put - Randomised controlled trials (RCTs), or randomised
impact evaluations (RIE), are a type of impact evaluation which uses randomised
access to social programs as a means of limiting bias and generating an internally
valid impact estimate.

In another words, the randomised controlled trials are widely accepted as the most
powerful research methods for minimising bias when evaluating interventions e.g.,
health technologies (Morgan and Rubin, 2012; Fives et al., 2013). Randomisation is
an assignment mechanism that allows particulary straightforward estimation of causal
effects (Suresh, 2011; Suresh and Chandrashekara, 2012; Aronow and Middleton,
2013).

Randomisation is the process of making something random; in
various contexts. This involves, for example, generating a random

permutation of a sequence (such as when shuffling cards, flipping a coin
or rolling a pair of [balanced] dice). Randomisation is usually associated

with trial blindness (Saghaei, 2011; Aronow and Middleton, 2013).

Figure 2.2: Rolling of a pair of balanced dice:
Generating an assignment process

Therefore, simple randomised experiments form the basis for inference for causal
effects in more complicated situations, such as when the assignment probabilities
depend on covariates or when there is noncompliance with the assignment mech-
anism (Mattei, 2009). In addition, an unconfounded assignment mechanism, which
essentially is a set of randomised experiments, forms the basis for the analysis of
an observational nonrandomised study by using the randomised experiment as a
template (Mattei, 2009).



2.3 Rubin Causal Model: The Potential-Outcomes Framework for
Causal Inference 47

Proper randomisation ensures no a priori knowledge of group assignment (i.e.,
allocation concealment). That is, researchers, subject or patients or participants,
and others should not know to which group the subject will be assigned. Knowledge
of group assignment creates a layer of potential selection bias that may taint the
data (Suresh, 2011). An attempt to answer the question concerning the benefits of
randomisation in determining the causal effect of the active treatment versus control
treatment on an outcome Y is entertained. Therefore, suppose that a randomised
experiment with N trials has been performed to estimate the typical causal effect of
the active versus control treatment on Y for some population of units (assuming no
pre-treatment covariates have been recorded).

Mattei (2004) argues that randomisation can never assure us that we are correctly
estimating the causal effect of one treatment versus another for the N trials under
study, but it provides important benefits besides the intuitive ones that follow from
making all systematic source of bias into random ones. Randomisation provides a
mechanism to derive probabilistic properties of estimates without making other as-
sumptions (Rubin, 1974). For example, a special case of randomisation is application
in randomised controlled trials. Randomised controlled trials are the most rigorous
way of determining whether a cause-effect relation exists between treatment and
outcome and for assessing the cost effectiveness of a treatment. RCTs have several
important features:

i. Random allocation to study groups,

ii. Study participants and trialists should remain unaware of which treatment was
given until the study is completed-although such double blind studies are not
always feasible or appropriate,

iii. All intervention groups are treated identically except for the experimental treat-
ment,

iv. Study participants are normally analysed within the group to which they were
allocated, irrespective of whether they experienced the intended intervention
(intention to treat analysis), and

v. The analysis is focused on estimating the size of the difference in predefined
outcomes between interventionb or study groups.

The two important properties of randomisation are (Mattei, 2004; Aronow and
Middleton, 2013):
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(1) the average difference between the treatment and control group is an unbiased
estimate of τ , the typical causal effect for the N units in the study, as given or
defined by Equation (2.3.1); and

(2) precise probabilistic statements can be made indicating how unusual the ob-
served average difference between the treatment and control group would be
under specific hypothesised causal effects.

Given that all study participants are randomly allocated to their respective study arms
does not guarantee representativity or representativeness of the study participants.
This implies that there is a challenge with regard to statistical inference7. Rubin
(1974) urges analysts to make subjective random sampling assumption - in order
to believe their findings are useful. The justification for the two study arms to be
comparable is given by Appendix C2.

2.3.4 Causal Effects in Observational Studies

A major issue is that observational studies are more exposed and prone to biases than
RCTs (Trojano et al., 2009). Many studies in social science that aim to estimate the
effect of an intervention suffer from treatment selection bias (Klein-Geltink, Rochon
and Dyer, 2007), where the units who receive the treatment may have different
characteristics from those in the control condition (Stuart and Rubin, 2008). The
fundamental criticism of observational studies, attempting to estimate the effect of a
treatment by comparing outcomes for nonrandomised subjects, is that either known
or unknown confounding factors8 may influence the measured association between
an exposure of interest and a given outcome. Table 2.4 presents a summarised
source of bias as given by Trojano et al. (2009).

Differences in outcomes can be due to differences between the study groups, in
ascertainment of outcomes, unintended differences in other treatment factors, or to
the treatment factor being studied and even the outcome measures (Klein-Geltink
et al., 2007; Trojano et al., 2009; Green and Aronow, 2011).

Bias9 can also be a problem in observational studies when there is a difference in the
reliability of the data collected on treatment exposure between cases that have the

7Trying to reach conclusions that extend beyond the immediate data alone - Inferential statistics
8Confounding variable (also confounding factor, a confound, or confounder) is an extraneous

variable in a statistical model that correlates (directly or inversely) with both the dependent variable
and the independent variable.

9Bias is an error in design or execution of a study, which produces results that are consistently
distorted in one direction because of nonrandom factors. Bias can occur in randomised controlled
trials but tends to be a much greater problem in observational studies. Selection bias is a distortion
in the estimate of association between risk factor and disease (or condition) that results from how
the subjects are selected for the study. Selection bias could occur because the sampling frame is
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Table 2.4: Bias in observational studies of treatment

Source Explanation

Confounding

Systematic error due to the failure to account for the ef-
fect of one or more variables that are related to both the
causal factor being studied and the outcome and are not
distributed the same between the groups being studied.
Confounding occurs when a factor is associated with the
use (confounding by indication) or avoidance (confound-
ing by contraindication) of the treatment, but independently
influences the risk of the outcome of interest.

Recall bias
Systematic error that occurs when the reliability of recall of
treatment exposure differs between those who develop an
adverse outcome and those who do not.

Detection bias
Systematic error that occurs when, because of the lack of
blinding or related reasons, the measurement methods are
consistently different between groups in the study.

charecteristic of interest and controls that do not. Among others, Klein-Geltink et al.
(2007) underlined that important issues related to confounding are often not clearly
addressed, from the reader’s perspective, in published observational studies. Failure
to recognise the limitations of observational studies in the assessment of treatment
effects may have serious consequences, including both the use of ineffective or dan-
gerous treatments and the inappropriate abandonment, or insufficiently widespread
use of effective treatments (Klein-Geltink et al., 2007; Trojano et al., 2009).

An important problem of causal inference is how to estimate treatment effects in
observational studies. It is well recognised that the estimate of causal effect obtained
by comparing a treatment group with a nonexperimetal comparison group could be
biased because of problems such as self-selection or some systematic judgements
by the researcher in selecting units to be assigned to the treatment (Dehejia and
Wahba, 2002). That is, the effect of variables not explicitly controlled is usually more
serious in nonrandomised than in randomised studies; secondly, the applicability
or generalisation of the results to a population of interest is often more serious in
nonrandomised than in randomised studies. In the statistical analysis of observational
data, propensity score matching (PSM) is a methodology attempting to provide

sufficiently different from the target population or because the sampling procedure cannot be expected
to deliver a sample that is a mirror image of the sampling frame. Information bias is a distortion in
the estimate of association between risk factor and disease that is due to systematic measurement
error or misclassification of subjects on one or more variables, either risk factor or disease status. It is
important to realise that these errors are part of being human and they are not occurring because the
physicians or researchers are not being sufficiently careful. It is not so much the random mismeasure
or misdiagnosis of an individual that is problematic (although random errors in diagnosis will tend to
bias the association toward a relative risk of 1.0, because the true association is diluted with noise). It
is the method of measurement or classification that is the greater problem, because it systematically
exerts an effect on each of the individual measurements in the sample.
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unbiased estimation of treatment-effects. The possibility of bias arises here because
the effectiveness of a treatment may depend on characteristics that are associated
with whether or not a participant in an observational study chooses, or is chosen, to
receive a given treatment.

The point about using randomisation is that it avoids any possibility of selection
bias in a trial. The test that randomisation has been successful is that different
treatment groups have same characteristics at baseline. In another words, in ran-
domised experiments, the results in the two treatment groups may often be directly
compared because their units are likely to be similar, whereas in nonrandomised
experiments, such direct comparisons may be misleading because the units exposed
to one treatment generally differ systematically from the units exposed to the other
treatment (Rosenbaum and Rubin, 1983b; D’Agostino, 1998). Specifically, whereas
in experimental situations one can obtain a control and treatment group which are
homogeneous with respect to the observable characteristics, X, this is not possible
in nonexperimental studies since it is likely that the decision to be assigned to a
treatment is in this case not independent from the observable as well as unobservable
characteristics (Mattei, 2009). Note that with random assignment, homogeneity of
the control and treatment group with respect to the unobservable characteristics is
also guaranteed if the size of the groups is sufficiently large (Donner and Klar, 2000).

2.3.5 Motivation for Matching

Matching is a common technique used to select control study participants who
are matched with the treated study participants on background covariates that the
researcher believes need to be controlled. Although the idea of finding matches
seems straightforward, it is often difficult to find study participants who ae similar
(that is, can be matched) on all important covariates, even when there are only a few
background covariates of interest (D’Agostino, 1998).

Matching methods are commonly used in two types of settings which are the situation
in which the outcome values are not yet available and matching is used to select
subjects for follow-up and the second setting is the one in which all the outcome data
is already available (Stuart, 2010). In this case the goal of the matching is to reduce
bias in the estimation of the intervention effect (Kuehl, 2000; Stuart, 2010).

The effectiveness of the intervention is evaluated by the use of acceptable methods
for comparing study groups. The usual research paradigm consists of the following
method (Kuehl, 2000; Seeger and Walker, 2007):

(a) Form treatment and experimental groups, sometimes with a single group serving
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as its own control, such as in pre intervention and post intervention studies or
crossover studies.

(b) Map treatments to groups.

(c) Analyse group differences.

(d) Generalise the findings based on groups to tendencies among future individuals.

Defining the groups is a critical first step. It is important to properly form groups, as
research question/s might not be addressed adequately if groups are not comparable.
Once the groups are defined, one would want the composition of the groups to be
identical. Short of that ideal, statistical adjustments, often in the form of blocking
variables or covariate analysis, could be used to adjust for the pre-treatment group
differences (Kuehl, 2000; Seeger and Walker, 2007).

In a randomised drug trial, the allocation of subjects to treatment and control groups
at random leads to groups that are similar with respect to both measured and
unmeasured baseline characteristics10. This baseline comparability supports the
conclusion that any differences between groups in the occurrence of outcomes during
follow-up must be due to the one characteristic that differs between the two groups
by design or allocation strategy (Seeger and Walker, 2007). As highlighted by Stuart
(2010, Page 1), one of the key benefits of randomised experiments for estimating
causal effects is that the study groups are guaranteed to be only randomly different
from one another on all background covariates, both observed and unobserved.

In an observational setting, matching groups of patients or participants (cohorts) on
the characteristics that are part of the prescribing decision creates a balance with
respect to measured characteristics that are even more complete than what results
from randomisation, so that treatment and control groups are identical at the start of
follow-up (Kuehl, 2000).

By forming treated and untreated groups that are individually matched in this way, an
observational study of intervention effect, e.g. educational intervention, is possible
given two considerations:

(a) that the list of matching characteristics is complete (it includes all variables that
actually went into the prescribing decision so that no unmeasured predictor of
treatment is present), and

10A formal expression for consequences of random allocation is that treatment allocation, being
based on a random number, is uncorrelated with any possible study participant characteristic. At
least in expectation and in fact with large numbers, treatment allocation being uncorrelated with
participant characteristics means that the distribution of characteristics is the same in all treatment
groups (Seeger and Walker, 2007).
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(b) that there is a control individual with each collection of attributes that can be
matched to each individual who received the drug.

In a real-world setting, this form of exhaustive matching is difficult because these
considerations are in conflict. Many characteristics can plausibly enter into the pre-
scribing decision, leading to such a large number of combinations of characteristics
that it becomes impossible to find a control individual with exactly the same charac-
teristics as each treated individual. This problem is called curse of dimensionality
(Seeger and Walker, 2007). Therefore, conditioning on all relevant covariates is
limited in case of a high dimensional vector (X, say).

There are two main approaches to allocation of study units to interventions in research
or clinical trials. These are unrestricted allocations and restricted allocations. Under
unrestricted allocation we have (completely) randomised allocation, in which study
units from a single pool, with no pre-stratification or matching according to baseline
characteristics, are allocated to treatment groups. We define treatments as set of
circumstances created for the experiment in response to the research hypothesis,
and they are the focus of research (Kuehl, 2000).

Under restricted11 allocation, study units are first divided into strata according to
baseline characteristics and then allocated to groups within the designated strata.
The aim of restricted allocation, stratification or matching, is to provide groups that
are more homogeneous or evenly balanced with respect to baseline characteristics
(Kuehl, 2000). Statistical power will also be increased provided the baseline charac-
teristics selected as stratifying factors are strong predictors of the outcome of interest
(Pocock, Assmann, Enos and Kasten, 2002).

Matching techniques have origins in experimental work from the first half of the
twentieth century. In the 1980s, matching techniques were advanced in a set of
papers that offered solutions to a variety of practical problems that had limited
matching technique to very simple applications in the past (Kuehl, 2000; Morgan and
Whinship, 2007).

An alternative to random assignment is a matched-pairs design12. Each member of
the first group is matched with a member of the second group on all the factors the
researcher considers to be feasible and relevant. In a well-matched pair, it is as if we

11Any procedure used with random assignment to achieve balance between study groups in size or
baseline characteristics (Kuehl, 2000). Blocking is used to ensure that comparison groups will be of
approximately the same size.

12A matched pairs design is a special case of a randomised block design. It can be used when the
experiment has only two treatment conditions; and subjects can be grouped into pairs, based on some
blocking variable. Then, within each pair, subjects are randomly assigned to different treatments.
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are using the same individual twice. When matching is adequate, the variables used
for matching that might cause confounding problems are controlled (Pocock et al.,
2002).

The approach falls apart when one matches on too few or irrelevant covariates
(matching variables), as the match is not necessarily a good one. Matching on many
covariates is difficult, especially if one is trying to obtain an exact match when some
of the covariates are continuous.

In the methodological literature, matching is usually introduced in one of the two ways
(Morgan and Whinship, 2007, Page 88):

(a) as a method to form quasi-experimental contrasts by sampling comparable
treatments and control cases from among two larger pools of such cases, or

(b) as a nonparametric method of adjustment for treatment assignment patterns
when it is feared that ostensibly simple parametric regression estimators cannot
be trusted.

A possible way to address this complication in nonexperimental studies or in ob-
servational studies, is to consider the randomised experiment as a template for the
analysis of an observational or nonrandomised study (Murry, Varnell and Blitstein,
2004). Having the template of a randomised experiment means having to think
about the underlying randomised experiment that could have been done (Murry et al.,
2004), where in the randomised experiment underlying an observational study, the
probabilities of assignment to treatments are not equal, but are rather functions of the
covariates, and so the template is actually an unconfounded assignment mechanism
(Mattei, 2009).

Imbens (2004) recommended that the strong ignorability or unconfoundedness as-
sumption is (highly) needed to accomplish this task. According to Imbens (2004)
unconfoundedness assumption was first presented in this form, as given by Ex-
pression (2.3.7), by Rosenbaum and Rubin (1983b), who refered to it as “ignorable
treatment assignment”. Generally, it is said treatment assignment is strongly ignorable
given a vector of covariates X if (Rosenbaum and Rubin, 1983b):

(Y (C), Y (T ))⊥Z|X (2.3.7)

and
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0 < Pr(Z = T |X) < 1, (2.3.8)

for all X.

The strong ignorability assumption asserts that the probability of assignment to
a treatment does not depend on the potential outcomes conditional on observed
covariates. Simply put: the distribution of the potential outcomes is the same across
levels of the treatment Z once we condition on confounding covariates X (Mattei,
2004). In another words, within subpopulations defined by values of the covariates,
we have random assignment. The ignorability of treatment assignment is the so-
called in statistics literature and selection on observables in econometrics (Mattei,
2004).

The ignorability assumption rules out the role of the unobservable variables (Manski,
Sandefur, McLanahan and Powers, 1992). The issue of unobserved covariates
should be addressed using models for sensitivity analysis (Rosenbaum and Rubin,
1983a) or using nonparametric bounds for treatment effects (Manski, 1990; Manski
et al., 1992).

Clearly, the strong ignorability assumption may be controversial. It requires that all
variables that affect both outcomes and the likelihood of receiving the treatment are
observed. Although this is not testable, it clearly is a very strong assumption, and
one that need not generally be applicable. We view it as a useful starting point for
two reasons (Mattei, 2009).

First, even if these attempts are not completely successful the assumption that all
relevant variables are observable may be a reasonable approximation, especially if
much information about pre-treatment outcomes is available. Second, any alternative
assumption that does not rely on unconfoundedness while allowing for consistent
estimation of the average treatment effects must make alternative untestable as-
sumptions, such as the instrumental variable technique (Angrist, 1990; Angrist and
Krueger, 1991). Whereas the unconfoundedness assumption13 implies that the best
instrument variable technique matches units that differ only in their treatment status,
but otherwise are identical. Alternative assumptions implicitly match units that differ
in the pre-treatment characteristics.

The unconfoundedness assumption therefore may be a natural starting point after

13Unconfoundedness assumption implies that adjusting for differences in observed pretreatment
variables removes biases from comparisons between treated and control units. This assumption is not
directly testable (Imbens, 2004).
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comparing average outcomes for treated and control units to adjust for observable
pre-treatment differences (Hirano and Imbens, 2001). The unconfoundedness as-
sumption validates the comparison of treated and control units with the same value
of covariates. The treatment effect for the subpopulation with X = x can be written
as (Imbens, 2004):

σ(X) = E(Y (T )− Y (C)|X = x)

= E(Y (T )|Z = T,X = x)− E(Y (C)|Z = C,X = x)

= E(Y |Z = T,X = x)− E(Y |Z = C,X = x)

(2.3.9)

where both terms on the right-hand side of Equation (2.3.9) can be estimated from
a random sample of (X,Z,Y). The average treatment effect can then be estimated
using the equality

σ = E(σX). (2.3.10)

2.4 Propensity Score

Several possible methodological improvements (regression adjustment, stratification
and matching) have been proposed and are available to deal with confounding
(Murry,Varnell and Blitstein, 2004) and to improve validity when randomisation is
absent (Murry et al., 2004; Trojano et al., 2009; Austin, 2011).

(a) Regression analyses estimate the association of each independent variable
(baseline characteristics and the intervention) with the dependent variable (out-
come of interest) after adjusting for the effects of all the other variables, so that
they provide an adjusted estimate of the intervention effect (Trojano et al., 2009).

(b) Stratification consists of grouping subjects into strata determined by observed
background characteristics believed to confound the analysis. Treated and control
subjects in the same strata are compared directly. Stratification creates subgroups
that are more balanced in terms of confounders than the total population which
can result in less biased estimates of the intervention effect. The comparisons
from different strata are then combined to give a final estimate of intervention
effect (Gelman and Hill, 2007).

(c) Matching techniques allow to match individual cases (i.e. treated patients) with
individual controls that have similar confounding factors in order to reduce the
effect of these on the association being investigated in analytical studies. This
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is most commonly seen in case-control studies and when there are only limited
numbers of treated patients and a much larger number of untreated (or control)
patients (Kuehl, 2000; Trojano et al., 2009).

However, these traditional methods of adjustment are often limited since they can
only use a small number of covariates for adjustment or if there is extreme imbalance
in the background characteristics (D’Agostino, 2007).

Typically, there are many background characteristics that need to be controlled for
estimating the average causal effect σ, and adjusting the estimation for all these
covariates can be actually infeasible (curse of dimensionality) (Rubin, 1997). To
overcome this challenge, the use of the balancing scores b(X), i.e. functions of
the relevant observed covariates X such that the conditional distribution of X given
b(X) is independent of assignment into treatment was suggested (Rubin, 1997;
Rosenbaum and Rubin, 1983b).

One possible balancing score is propensity score technology, introduced by Rosen-
baum and Rubin (1983b). Propensity score reduces the entire collection of back-
ground characteristics to a single composite characteristic that appropriately sum-
marises the collection (Rosenbaum and Rubin, 1983b). It is an alternative way of
dealing with confounding caused by nonrandomised assignment of treatments in
cohort studies. The following is the definition of propensity score, as given by among
others, Rosenbaum and Rubin (1983a,b).

Definition Propensity Score e(X) is the conditional probability of receiving a treat-
ment given pre-treatment characteristics such that e(X) = Pr(Z = T |X).

All pre-intervention or pre-treatment covariates need to be controlled; for they are all
confounding covariates. Table 2.5 attempts to make the definition of propensity score
more explicit. The propensity score is a balancing score, that is treatment assignment
and observed covariates are conditionally independent given the propensity score:

X⊥Z|e(X). (2.4.1)

In particular, the propensity score is the coarsest balancing score, i.e., any balan-
cing score b(X) must satisfy the relation e(X) = f(b(X)), for some function f(·)
(Rosenbaum and Rubin, 1983a).

Among others, Rosenbaum and Rubin (1983a,b); Ichimura and Taber (2001); Imbens
(2004); Mattei (2004); Dehejia (2005); Abadie and Imbens (2006); Morgan and
Whinship (2007); Austin (2009) and Mattei (2009) have stressed the fact that the
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Table 2.5: Propensity score

Definition Device for balancing numerous observed
covariates

Formal The conditional probability of exposure to
a treatment given observed covariates.

Intuitive The likelihood that a person would have
been treated using only their covariate
scores.

Comment Collection of covariates is collapsed into
a single variable; the probability (or
propensity) of being treated.

Limitation Does not control for unobserved variables
that may affect subjects that have received
treatment.

key feature of propensity score methodology is that, given the strong ignorability
assumption, treatment assignment and the potential outcomes are independent:

(Y (C), Y (T ))⊥Z|e(X), (2.4.2)

and
0 < Pr(Z = T |e(X)) < 1. (2.4.3)

The advantage of adjusting for propensity score lies in the fact that it removes the bias
associated with differences in the observed covariates in the study arms (D’Agostino,
1998). As a result, given the strong ignorability assumption, if the propensity score
e(X) is known, then Imbens (2004, Page 9) provided a proof that:

σ = E(Y (T )− Y (C))

= E(E(Y (T )− Y (C)|e(X)))

= E
(
E(Y (T )|Z = T, e(X))− E(Y (C)|Z = C, e(X)))

(2.4.4)

where the outer expectation is over the distribution of e(X).

The propensity score is a potential matching variable because it does not depend on
response information that will be collected after matching (Rosenbaum and Rubin,
1985). Since exact matching for a known propensity score will on average remove all
the bias in X (D’Agostino, 1998), the propensity score e(X) is in a sense the most
important scalar matching variable (Rosenbaum and Rubin, 1985).
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Matching on e(X) balances the observed covariates X; however, unlike randomisa-
tion, matching on e(X) does not balance unobserved covariates except to the extent
that they are correlated with X: we need the strong ignorability assumption14.

In practice, several issues need to be addressed before the propensity score can
be used as a matching variable. First, the functional form of e(X) is rarely if ever
known, and therefore e(X) must be estimated from the available data. Second,
exact matches will rarely be available, and so issues of closeness on e(X) must
be addressed. Third, adjustment for e(X) balances X only in expectation, that is,
averaging over repeated studies (Rosenbaum and Rubin, 1985). In any particular
study, further adjustments for X may be required to control chance imbalances in X.
Such adjustments, for example, by covariance analysis, are often used in randomised
experiment to control chance imbalances in observed covariates.

2.4.1 How Matching Methods are Implemented

The goal of matching15 is to create a dataset that looks closer to one that would
result from a perfectly blocked (and possibly randomised) experiment (Kuehl, 2000;
Stuart, 2010). A crucial part of any matching procedure is, therefore, to assess how
close the (empirical) covariate distributions are in the two groups, which is known
as balance (Ho, Imai, King and Stuart, 2011). Because the outcome variable is not
used in the matching procedure, any number of matching methods can be tried and
evaluated, and the one matching procedure that leads to the best balance can be
chosen (Ho et al., 2011).

Matching methods have four key steps, with the first three representing the design
and the fourth the analysis (Stuart, 2010, Page 5). The four key steps used for
matching methods when estimating causal effect are (Stuart and Rubin, 2008; Stuart,
2010):

1. Defining “closeness”: the distance measure used to determine whether an
individual is a good match for another,

2. Implementing a matching method, given that measure of closeness,

3. Assessing the quality of the resulting matched samples, and perhaps iterating
with Steps (1) and (2) untill well-matched samples result, and

14Rosenbaum and Rubin (1983a) and Rosenbaum (1984) discuss methods for addressing the
possible effects of unobserved covariates in observational studies.

15Stuart and Rubin (2008) refer to matching as a quasi-experimental design. Matching is a special
form of stratification in which there are constraints on the number of observed treated and control
units in each stratum.
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4. Analysis of outcome and estimation of the treatment effect, given the matching-
done in Step 3.

Appendix D on Page 156 provides further information with regard to each of the
mentioned steps.

2.4.2 How to Estimate Propensity Score

This section gives a brief description of how to estimate and use propensity score
methodology in practical applications.

In general, exact matches on propensity score is impossible to obtain, so methods
which seek approximate matches must be used (Mattei, 2004). Here follow some
properties of some matching methods based on the propensity score.

Mattei (2004) gives the mean bias or expected difference in X prior and after to
matching, respectively as

E(X|Z = T )− E(X|Z = C), (2.4.5)

and
E(X|Z = T )− EM(X|Z = C), (2.4.6)

where EM(X|Z = C) is the expected value of X in the matched control group.
Generally, EM (X|Z = C) depends on the matching method used, whereas E(X|Z =
T ) and E(X|Z = C) depend only on population characteristics (Mattei, 2004). A
matching method is equal-percent bias reducing (EPBR) if the reduction in bias is the
same for each coordinate of X (Rubin, 1976; Rosenbaum and Rubin, 1983b), that is,
if

E(X|Z = T )− EM(X|Z = C) = γ(E(X|Z = T )− E(X|Z = C)) (2.4.7)

for some scalar 0 ≤ γ ≤ 1 (Rubin, 1976). If a matching method is not EPBR, then
matching actually increases the bias for some linear functions of X. If little is known
about the relationship between X and the response variables that will be collected
after matching, then EPBR matching methods are attractive, since they are the only
methods that reduce bias in all variables having linear regression on X. Rosenbaum
and Rubin (1983b) showed that matching on the population propensity score alone
is EPBR whenever X has a linear regression on some scalar function of e; that is,
whenever E(X|e) = α + γ′g(e) for some scalar function g(·).
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Matched samples can be constructed by using several different methods that matched
treated units to control units. Two standard techniques are the nearest available
matching on the propensity score and “subclassification on the propensity score”
(Austin, 2011). Subclassification method consists of dividing experimental and control
units on basis of e(X) into subclasses or strata such that within each subclass treated
and control units have on average the same propensity score. Then, within each
stratum in which both treated and control units are present, the average outcomes of
the treated and control units are compared (Rosenbaum and Rubin, 1983b).

The average treatment effect of interest is finally obtained as an average of the
subclass-specific comparisons. One of the pitfalls of the subclassification method
is that it discards observations in strata where either treated or control units are
absent (Mattei, 2004). This observation suggests an alternative way to match treated
and control units, which consists of taking each treated unit and searching for the
control unit with the closest propensity score, i.e., the nearest available matching
on the propensity score (Mattei, 2004). Although it is not necessary, the method is
usually applied with replacement, in the sense that a control unit can be a best match
for more than one treated unit. Once each treated unit is matched with a control
unit, the difference between the outcome of the treated units and the outcome of the
matched units is computed. The average treatment effect of interest is then obtained
by averaging these differences (Mattei, 2004).

Usually we do not actually know the propensity scores, and so we must estimate
them. Propensity scores can be estimated in a number of different ways, including
discriminant or CART analysis. Propensity scores can be estimated using standard
models such as logistic regression, where the outcome is the treatment indicator
and the predictors are all the confounding covariates (Gelman and Hill, 2007, Page
207). Then matches are found by choosing for each treatment observation the control
observation with the closest propensity score (Gelman and Hill, 2007, Page 207).
In principle, any standard probability model can be used to estimate the propensity
score. For instance,

Pr(Z = T |X) = F (h(X)), (2.4.8)

where F (·) is the normal or the logistic cumulative distribution function and h(X) is a
function of covariates with linear or higher order terms.

The outcome variable plays no role in the estimation of the propensity score (Green-
land, 2004), as such estimating propensity scores only involves the covariates.
Greenland (2004) stress that the success of the propensity score estimation must be
assessed by the resultant balance of the observed distribution of covariates across
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study groups. Therefore, the fit of the models used to create estimated propensity
scores is discouraged if it is to be used for evaluation for success of the process of
propensity score estimation (Greenland, 2004).

The goal of propensity score matching is not to ensure that each pair of matched
observations is similar in terms of all their covariate values, but rather that the matched
groups are similar on average across all their covariate values. Thus, the adequacy
of the model used to estimate propensity score can be evaluated by examining the
balance that results on average across the matched groups (Gelman and Hill, 2007,
Page 207).

Models for the data, Pr(X, Y (C), Y (T )), can be an important adjunct to propensity
score methods, just as covariance adjustment can be an important adjunct in ran-
domised experiments. Estimation can be improved when models are used to refine
estimation, however it must be remembered that such modeling is a supplement to
modeling the assignment mechanism, and is essentially adding a Bayesian compon-
ent to the structure as in Rubin (1978).

2.5 Diagnostics for the Propensity Score:

Goodness-of-Fit

Standardised differences for comparing means and prevalences between groups

Normand, Landrum, Guadagnoli, Ayanian, Ryad, Cleary and McNei (2001), Austin
and Mamdani (2006), and Austin, Grootendorst and Anderson (2007) have proposed
that standardised differences16 be used to compare the mean of an observed baseline
covariate between treated and untreated subjects in a propensity-score matched
sample. The standardised difference (or bias) is defined as (Austin et al., 2007;
Austin, 2008):

Bias = 100 · x̄t − x̄c√
0.5 ·

(
s2
t + s2

c

) (2.5.1)

for continuous variables, and as

Bias = 100 · p̂t − p̂c√
0.5 ·

(
p̂t
(
1− p̂t

)
+ p̂c

(
1− p̂c

)) (2.5.2)

16Standard difference is a convenient way to quantify the bias between treatment and control
samples (Normand et al., 2001).
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for dichotomous variables.

In formula (2.5.1), x̄t and x̄c denote the mean of continuous variable in treated and
untreated or control subjects, respectively. The s2

t and s2
c denote the variances of the

continuous variable in the treated and control subjects, respectively.

In formula (2.5.2), p̂t and p̂c denote the proportion of treated and untreated or control
subjects, respectively, for whom the condition denoted by the dichotomous variables
is present.

The standardised difference compares the difference in means in units of the pooled-
standard deviation (Austin, 2008). Unlike t-tests and other statistical tests of hypo-
thesis, the standardised difference is not influenced by sample size. Thus, the use
of the standard difference can be used to compare balance in measured variables
between treated and untreated subjects in the unweighted sample with that in the
weighted sample (Austin, 2009). Furthermore, it allows for the comparison of the
relative balance of variables measured in different units (e.g. age in years with systolic
blood pressure in mm Hg). It has been suggested that a standardised difference
of greater than 10% represents meaningful imbalance in a given variable between
treatment groups (Normand et al., 2001).

A two-sample t-test is used to check if there are significant differences in covariate
means for both groups. Before matching differences are expected, but after matching
the covariates should be balanced in both groups and hence no significant differences
should be found. This test might be preferred if the analyst is concerned with the
statistical significance of the results (Caliendo, 2006). The shortcoming here is that
the bias reduction before and after matching is not clearly visible (Caliendo, 2006).

The standardised difference provides a framework for comparing the mean or pre-
valence of a baseline covariate between treatment groups in the propensity score
matched sample (Austin, 2009). However, a thorough examination of the compar-
ability of treated and untreated subjects in the propensity score matched sample
should not stop with a comparison of means and prevalences. The true propensity
score is a balancing score: within strata matched on the true propensity score, the
distribution of observed baseline covariates is independent of treatment status. Thus,
the entire distribution of baseline covariates, not just means and prevalences, should
be similar between treatment groups in the matched sample. Therefore, higher order
moments of covariates and interactions between covariates should be compared
between treatment groups (Austin, 2009).

Researchers may want to compare the distribution of a continuous variable between
treated and untreated subjects in the matched sample. To accomplish this, research-
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ers can use side-by-side boxplots, empirical cumulative distribution functions or
nonparametric estimates of the probability density function. While standardised
differences compare the difference in means between treated and untreated sub-
jects, these graphical methods permit a broader comparison of the distribution of a
continuous variable between two groups (Austin, 2008).

Stuart (2010) commented that matching methods are not themselves methods for
estimating causal effects. Therefore, after the matching has created the comparable
study groups, the researcher can move to the (outcome) analysis stage which may
involve regression adjustments using the matched samples.

Chapter Summary

This chapter dealt with the issues regarding problem of causal inference under
the counter-factual theory. The four formal modes of causal inference that are
considered to be distinct were highlighted. Also, the discussion of sources of
bias in observational studies and how matching is used to reduce it (bias) in the
estimation of the intervention effect, and how it is introduced as a nonparametric
method of adjustment for treatment assignment and as a method to form quasi-
experimental contrasts was discussed.

A discussion of how matching is carried out in the absence of randomisation
process (as in CRTs) was detailed. An overview of the methods to improve
validity when randomisation is absent, which are regression analysis, stratific-
ation and matching techniques was given. These methods are often limited.
We then introduced a balancing score called propensity score, the conditional
probability of receiving treatment given pre-treatment covariates, together with
its key feature that given a strong ignorable assumption, treatment assignment
and the potential outcomes are independent. Finally, a discussion regarding
how propensity score is estimated and evaluated was supplied.
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The simplest argument, then, for multilevel modeling techniques is
this: Because so much of what we study is multilevel in nature, we
should use theories and analytic techniques that are also multilevel.
If we do not do this, we can run into serious problems.

Luke (2004)

Chapter Preview

Chapter 3 looks at the models that are commonly used to predict and (or)
compare groups when the outcome of interest is continuous (linear regression
model), and when the outcome is binary (logistic regression model). Then a
description of models that incorporate the correlateness of the observations is
given i.e., the models for clustered data are studied. Mixed-effect models are
discussed and the description of how these models are implemented in Stata
is outlined.

The distinction between linear mixed and nonlinear mixed effects models is
discussed. Then a discussion of the concepts of the unit of analysis and unit
of observation given that in multilevel analysis observations can be at micro-
level (level-1) or macro-level (level-2) is given. Finally, issues of spill-over in
terms of the study design (here, crossover design), data contamination and
(non)-adherence are addressed.
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3.1 Introduction

At the heart of studies of causality is the notion of paradox1. In particular, researchers
have to be more vigilant of Simpson’s paradox (or Yule-Simpson effect). Formally,
Yule-Simpson effect is not a paradox, because it does not lead to a contradiction.
Nothing says in probability theory a statistical relationship cannot be reversed. Among
several ways - this so-called paradox is addressed by fiiting a model that account for
significant covariates.

One of the most important issues in statistical science is the construction of probabil-
istic models that represent, or sufficiently approximate, the true generating mechan-
ism of a phenomenon under study (Larson, 1982; Ntzoufras, 2009). Usually models
are constructed in order to assess or interpret causal relationship between response
variable y and various characteristics expressed as variables called covariates or
explanatory variables2 (Ntzoufras, 2009).

Regression is the study of dependence (i.e. the process of finding the function
satisfied by the points on the scatter diagram; and regression analysis3, a statistical
technique for investigating and modeling the relationship between variables, is a
central part of many research projects (Montgomery and Peck, 1982; Weisberg,
2005). In another words, regression is a statistical method by which one variable is
explained or understood on the basis of one or more other variables (Hilbe, 2009).
As such, regression analysis4 is a central part of many research projects.

The variable that is being explained is called the outcome, dependent or response,
variable; the other variables used to explain or predict the response are called
regressors, independent variables, covariates or predictors (Hilbe, 2009; Ntzoufras,

1A paradox is something that on the surface seems contradictory. Paradoxes help to reveal
underlying truth beneath the surface of what appears to be absurd. For example, suppose we
are observing several groups, and establish a relationship or correlation for each of these groups.
Simpson’s paradox says that when we combine all of the groups together, and look at the data in
aggregate form, the correlation that we noticed before may reverse itself. This is most often due to
lurking variables that have not been considered, but sometimes it is due to the numerical values of the
data (http://statistics.about.com/od/HelpandTutorials/a/What-Is-Simpsons-Paradox.htm).

2Explanatory or predictor variable: A variable which is used in a relationship to explain or to predict
changes in the values of another variable is called the dependent variable

3Formal assumptions of regression analysis are:

a) The errors all have expected value zero; E(εi) =0 for all i.

b) The errors all have the same variance; V ar(εi) = σ2
i for all i.

c) The errors are independent of each other.

d) The errors are all normally distributed; εi is normally distributed for all i.

4Regression analysis is used when two or more variables are thought to be systematically connec-
ted by a linear relationship.
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2009).

The important instance of regression methodology is called linear regression (Nath-
ans, Oswald and Nimon, 2012), and this method is the most commonly used in
regression, and virtually all other regression methods build upon an understanding of
how linear regression works (Hosmer and Lemeshow, 2000; Weisberg, 2005).

Linear regression attempts to model the relationship between two variables by fitting
a linear equation to observed data (Nathans et al., 2012). Before attempting to fit a
linear model to observed data, one should first determine whether or not there is a
relationship between the variables of interest. This does not necessarily imply that
one variable causes the other, but that there is some significant association between
the two variables.

A scatter plot can be a helpful tool in determining the strength of the relationship
between two variables. Weisberg (2005) gives full account with regards to scatter
diagrams. If there appears to be no association between the proposed explanatory
and dependent variables (i.e., the scatter plot does not indicate any increasing or
decreasing trends), then fitting a linear regression model to the data probably will not
provide a useful model (Weisberg, 2005).

In a regression problem wherein only one predictor variable, generically called
X and one response variable called Y , the data consist of values (xi, yi) where
i = 1, · · · , n, of (X, Y ) observed on each of n units or cases. The goal of regression
is to understand how the values of Y change as X is varied over its range of possible
values. A first look at how X is varied is available from a scatter diagram.

3.1.1 The Mean Function and Variance Function

One important distribution of how Y changes as X is varied is the mean function,
which is defined by E(Y |X = x), and this is read as the expected value of the
response when the predictor is fixed at the value of X = x; and this function depends
on the values of x. The mean function depends on the problem, but generally the
mean function is of the form

E(Y |X = x) = β0 + β1x (3.1.1)

This particular mean function is a (straight) line and has two parameters, an intercept
β0 and a slope β1, which is the rate of change in E(Y |X = x) for a unit change in X.
The mean function would be completely specified if all βi were known. Usually these
constants need to be estimated from the data.
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Another characteristic of the distribution of the response given the predictor is the
variance function, see Fox (1997), defined as the variance of response distribution
given that the predictor is fixed at X = x; symbolically written as

V ar(Y |X = x). (3.1.2)

A frequent assumption in fitting linear regression model is that the variance function
is the same for every value of x. This is usually written as

V ar(Y |X = x) = σ2 (3.1.3)

where σ2 is a generally unknown constant (Fox, 1997; Weisberg, 2005).

3.1.2 Linear Regression: Model Interpretation

3.1.2.1 Simple Linear Regression

The simple linear regression consists of the mean function

E(Y |X = x) = β0 + β1x (3.1.4)

and the variance function
V ar(Y |X = x) = σ2 (3.1.5)

Since the variance σ2 > 0, the observed value of the ith response will typically not
equal its expected value E(Y |X = xi). To account for this difference between the
observed data and expected value, a quantity called a statistical error (εi) for case i
is used; and this quantity is defined implicitly as (Weisberg, 2005):

yi = E(Y |X = xi) + εi (3.1.6)

or explicitly as

εi = yi − E(Y |X = xi) (3.1.7)

The errors are unobservable quantities, and are random variables, as they depend
on unknown parameters. Therefore, the errors correspond to the vertical distance
between the point yi and the mean function E(Y |X = xi). If the assumed mean
function is incorrect, then the difference between the observed data and the incorrect
mean function will have a nonrandom component (Fox, 1997).

There are two (important) assumptions about the errors. First, it is assumed that
E(εi|xi) = 0 , so a scatterplot of the εi versus the xi would be null, with no patterns.
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The second assumption is that the errors are all independent. Errors are often
assumed to be normally distributed.

3.1.2.2 Multiple linear regression

Multiple linear regression generalises the simple linear regression model by allowing
for many terms in the mean function rather than one intercept and one slope. Suppose
the mean function of a simple linear regression is given. That is, we start with
E(Y |X1 = x1) = β0 + β1x1; and we wish to add the second variable X2 with which to
predict the response. The mean function that depends on both the value of X1 and
the value of X2 is given by

E(Y |X1 = x1, X2 = x2) = β0 + β1x1 + β2x2 (3.1.8)

Weisberg (2005) commented that the inclusion of X2 in a model attempts to explain
the part that has not already been explained by X1. Strickly speaking, the objective
of multiple regression analysis is to use the covariates whose values are known
to predict the single dependent value selected by the researcher or analyst (Hair,
Anderson, Tatham and Black, 1998).

The normal (multivariate) linear model (Larson, 1982; Weisberg, 2005; Alexopoulos,
2010),

yi = β1x1i + β2x2i + · · ·+ βpxpi + εi,

= εi +
p∑
j=1

βjxji,

εi ∼ NID(0, σ2)

(3.1.9)

or simply

E(Y |X) = β0 +
p∑
i=1

βiXi (3.1.10)

has one random effect, the error term εi. The parameters of the model are the
regression coefficients, β1, β2, · · · , βp, and the error variance, σ2. Usually, x1i = 1
[see equation (3.1.9)], and so β1 is a constant or intercept.

The symbol X in E(Y |X) (3.1.10) means that we are conditioning on all terms on the
right side of the equation. Similarly, when we are conditioning on specific values for
the predictors x1, · · · , xp that are collectively called, we write:

E(Y |X = x) = β0 +
p∑
i=1

βixi (3.1.11)
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As in simple linear regression, the βi’s are unknown parameters that need to be
estimated. In particular, the regression coefficient represents the amount of change
in the dependent variable for a one-unit change in the independent variable. In the
multiple predictor model such as Y = β0 +∑p

i=1 βiXi, the regression coefficients are
partial coefficients because each takes into account not only the relationship between
Y and Xi, i = 1, · · · , p, but also between Xi and Xj for all i 6= j (Hair et al., 1998,
Page 149). The linear model is usually written in matrix form as,

y = Xβ + ε,

ε ∼ Nn(0, σ2In)
(3.1.12)

where y = (y1, y2, · · · , yn)′ is the response vector; X is the model matrix, with typical
row x′

i = (x1i, x2i, · · · , xpi); β = (β1, β2, · · · , βp)′ is the vector of regression coefficients;
ε = (ε1, ε2, · · · , εn)′ is the vector of errors; Nn represents the n-variable multivariate-
normal distribution; 0 is an n × 1 vector of zeroes; and In is the order-n identity
matrix.

3.1.3 Logistic Regression: Model Interpretation

Many educational research problems call for the analysis and prediction of a dicho-
tomous outcome: whether a student will succeed in school, whether a child should
be classified as learning disabled (LD), whether a teenager is prone to engage in
risky behaviours, voter opinions (“Yes” vs “No”), test results (“Pass” vs “Fail”) and so
on.

Logistic regression5 sometimes called the logistic model or logit model, analyses the
relationship between multiple independent variables and a categorical dependent
variable, and estimates the probability of occurrence of an event by fitting data to a
logistic curve (Hosmer and Lemeshow, 2000; Agresti, 2002; Hilbe, 2009).

There are two models of logistic regression, binary logistic regression and multinomial
logistic regression. Binary logistic regression is typically used when the dependent
variable is dichotomous and the independent variables are either continuous or
categorical. When the dependent variable is not dichotomous and is comprised of
more than two categories, a multinomial logistic regression can be employed (Agresti,
1996; Hilbe, 2009).

5In logistic regression, instead of predicting the value of the dependent variable Y from a predictor
variable Xi or several predictor variables (Xs), we predict the probability of Y occurring given known
values of X (or Xs).
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3.1.3.1 Simple logistic regression

Simple logistic regression analysis refers to the regression application with one
dichotomous outcome (or one binary response) and one independent variable. For a
binary response Y and a quantitative explanatory variable X, let

π(x) = P (Y = 1|X = x),

= 1− P (Y = 0|X = x)
(3.1.13)

denote the “success” probability when X takes values x. This probability is the
parameter for the binomial distribution. The logistic regression model has linear form
for the logit of this probability,

logit[π(x)] = log

(
p

1− p

)
= β0 + β1x. (3.1.14)

Here, logit[π(x)] = g(x). This formula (3.1.14) implies that π(x) increases or de-
creases as an S-shaped function of x, see Figure 3.1, (Agresti, 1996; Hosmer and
Lemeshow, 2000; Agresti, 2002). An alternative formula for logistic regression refers
directly to the success probability and it is given as (Agresti, 1996, Page 103):

π(x) = e{β0+β1x}

1 + e{β0+β1x}
. (3.1.15)

Figure 3.1: Relationship of a Binary Outcome, y (1 =Success, 0 =
Failure) With a Continuous Predictor, x Scores

The parameter β1 determines the rate of increase or decrease of the S-shaped curve.
In particular, the sign of β1 indicates whether the curve ascends or descents, and the
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rate of change increases as |β1| increases. When the model holds with β1 = 0, the
right-hand side of Equation (3.1.15) simplifies to a constant. Then, π(x) is identical
at all x. This implies that the binary outcome Y is independent of X (Agresti, 1996).
In cases where β1 6= 0 then the steepest level of the curve occurs at median effective
level6 (EL50), where x = −β0/β1. EL50 represents the level at which each outcome
has 50% chance (Agresti, 1996).

If we assume that the independent variable is dichotomous such that

x =


1, if success

0, otherwise ,

then the difference in the logit (or logit difference) for subject with x = 1 and x = 0 is
g(1)− g(0) = β1.

The result β1 is better interpreted through odds ratio (OR)7. Presenting the possible
values of logistic probabilities in a 2 × 2 tabular format as shown in Table 3.1, we
define the odds8 of the outcome being realised among participants with x = 1 as:

Ω1 = π(1)
1− π(1) (3.1.16)

Also, the odds of outcome being realised among participants with x = 0 is

Ω0 = π(0)
1− π(0) . (3.1.17)

Odds are obtained by dividing the number of times an outcome of interest does
happen by the number of times when it does not happen (Warner, 2013, Page 1013).
The odds Ω are nonnegative, with Ω > 1.0 when a success is more likely than a
failure (Agresti, 2002, Page 44). In another words, the minimum value of odds is 0;
this occurs when the frequency of the event in the numerator is zero (Warner, 2013).

The OR is defined as the ratio of the odds for x = 1 to the odds for x = 0, and is given
by the expression (with proper substitution of entries of Table 3.1).

6For all values of x = −β0/β1, we have π(x) = 0.5.
7An odds ratio (OR) is a measure of association between an exposure and an outcome. The OR

represents the odds that an outcome will occur given a particular exposure, compared to the odds of
the outcome occurring in the absence of that exposure.

8We note that for a probability π of the outcome of interest (e.g., success), the odds are defined to
be Ω = π/(1− π) (Agresti, 2002, Page 44).
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OR = Ω1

Ω0

= π(1)
1− π(1) ×

1− π(0)
π(0)

= eβ1

(3.1.18)

Table 3.1: Values of the Logistic Regression Model for Dichotomous
Covariate.

(Hosmer and Lemeshow, 2000, Page 49)

Outcome (Y )
Independent Variable (X)
x = 1 x = 0

y = 1 π(1) = e{β0+β1}

1+e{β0+β1} π(0) = e{β0}

1+e{β0}

y = 0 1− π(1) = 1
1+e{β0+β1} 1− π(0) = 1

1+e{β0}

Table 3.2 summarises the possible interpretation of ORs. Odds ratios are most
commonly used in case-control studies9, however they are also being used in cross-
sectional and cohort study designs as well (with some modifications and/or assump-
tions). ORs are used to compare the relative odds of the occurrence of the outcome
of interest (e.g. disease or disorder), given exposure to the variable of interest (e.g.
health characteristic, aspect of medical history). The OR can also be used to de-
termine whether a particular exposure is a risk factor for a particular outcome, and to
compare the magnitude of various risk factors for that outcome.

An important part of most observational studies is the choice of control variables. In
studying the effect of X on Y , one should control any covariate that can influence
that relationship. When a non-casual association is observed between a given
exposure and outcome is as a result of the influence of a third variable, it is termed
confounding, with the third variable termed a confounding variable. A confounding
variable is causally associated with the outcome of interest, and non-causally or
causally associated with the exposure, but is not an intermediate variable in the
causal pathway between exposure and outcome. Stratification and multiple regression
techniques are two methods used to address confounding, and produce “adjusted”
ORs (Lee, 2011). Among others, Lewallen and Courtright (1998), Hosmer and

9Case-Control study is a retrospective study that has been designed to help determine if an
exposure is associated with an outcome (Lewallen and Courtright, 1998)
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Lemeshow (2000), Agresti (2002) and Lee (2011) provide detailed explanation, and
discussions with regard to interactions and confounding.

Table 3.2: Interpretation of OR: Values of OR farther from 1.0 in a given
direction represent stronger association

Odds Ratio (OR) Interpretation

Less than 1 (OR < 1) Exposure associated with
lower odds of outcome

Equals 1 (OR = 1) Exposure does not affect
odds of outcome

Greater than 1 (OR > 1) Exposure associated with
higher odds of outcome

3.1.3.2 Multiple logistic regression

The strength of a modeling technique lies in its ability to model many variables,
some of which may be on different measurement scales (Hosmer and Lemeshow,
2000). A case in which more than one independent variables is generalised in logistic
regression is referred to as the multivariable case. We consider a collection of p
covariates denoted by x′ = (x1, x2, · · · , xp).

If we define the conditional probability that the outcome is present as (Hosmer and
Lemeshow, 2000):

P (Y = 1|x) = π(x) (3.1.19)

then the logit of the multiple logistic regression model is given by the equation

g(x) = β0 + β1x1 + β2x2 + · · ·+ βpxp, (3.1.20)

in which case the logistic regression model is

π(x) = eg(x)

1 + eg(x) . (3.1.21)

The parameter βi refers to the effect of Xi on the log odds that Y = 1, controlling
for other Xs. In another words, eβi is the multiplicative effect on the odds of a 1-unit
increase in Xi, at fixed levels of the other Xs (Agresti, 1996, 2002).

A collection of design variables, also known as dummy variables is recommended for
discrete and nominal independent variable, and as such discrete or categorical inde-
pendent variables are not supposed to be treated as if they were continuous variable
(Hosmer and Lemeshow, 2000, Page 32) and (Agresti, 2002, Page 183). Hosmer and



74 Clustered Observations

Lemeshow (2000) provide a very detailed description of logistic regression analysis
and its applications.

3.2 Mixed Models

Mixed-effect models (or just mixed models) include additional random-effect terms,
and are often appropriate for representing clustered data, dependent data or cor-
related data – arising, for example, when data are collected hierarchically (Murray,
1998).

In many applications, multiple measurements are made on the same experimental
units (Bergsma, Croon and Hagenaars, 2009). In another words, in applied sciences,
one is often confronted with the collection of correlated data (Abrahantes, Molen-
berghs, Burzykowski, Shkedy, Abad and Renard, 2004; Letsoalo and Lesaoana,
2010). This generic term embraces a multitude of data structures, such as multivari-
ate observations, clustered data, repeated measurements, longitudinal data, and
spatially correlated data (Abrahantes et al., 2004). When measurements are made
over a period of time then such data are called repeated measures or clustered data.

The design for repeated measures could be one of the standard designs, e.g., a com-
pletely randomised design or a randomised complete block design. Correlated data
originate in situations where observations in a sample are not selected independently
of each other. This may happen in various settings, most of which are common to
demographers and biomedical scientists. However, it is usually assumed that the
repeated measurements from different study subjects (participants) are independent
and correlated only when they come from the same subject (Wu and Zhang, 2006,
Page 19).

3.2.1 Model Specification in Stata

The observations yij of participant j on occasion i can be modeled as

yij = β + γj + εij (3.2.1)

where γj is the difference between the overall mean β and participant j′s mean
measurement (over hypothetical population of measurement occasions), and εij is
the measurement error for participant j on occasion i (Rabe-Hesketh, Skrondal
and Pickles, 2002). The difference between the overall mean and the participant’s
mean γj has zero mean over participants and εij has zero mean over occasions and
participants. The model in (3.2.1) looks like a one-way ANOVA model with participant
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as a factor (categorical predictor). However, instead of fitting an ANOVA by estimating
the γj as fixed effects, we assume that γj are random effects or random intercepts
that are normally distributed (Rabe-Hesketh et al., 2002; Skrondal and Rabe-Hesketh,
2004),

γj ∼ N(0,Φ)

and independent of the εij which are also specified as normal:

εij ∼ N(0, θ).

The εij represent the effects of the occasions nested in particpants, as well as any
other error (Skrondal and Rabe-Hesketh, 2004; Rabe-Hesketh, 2005).

3.2.2 Estimation using Stata’s xtreg

The parameters of the variance-components model (3.2.1) can be estimated using
xtreg command with mle option. Here, mle stands for ‘maximum likelihood estimation’
(Rabe-Hesketh, 2005, Page 9).

In Stata’s commands for regression models the first variable name after the command
name is the response variable. In xtreg, the fixed part of the model is specified next.
For variance-components models, the fixed part is just intercept β, but this is included
by default, so we need not specify any variables. The random part includes a random
intercept γj whose cluster identifier is specified in the i( ) option. The level-1 residual
εij need not be specified because it is always included (Skrondal and Rabe-Hesketh,
2003; Rabe-Hesketh, 2005). Here, the command therefore is

• xtreg marks province, i(candidate) mle.

We note that xtreg is applicable when dependent variable is a continuous variable.
In case of a binary outcome - xtlogit with pa (population average) option is used
(Skrondal and Rabe-Hesketh, 2003).

3.3 Multilevel Models

Many kinds of data, including observational data collected in the human and biological
sciences, have hierarchical, nested, or clustered structure (Sullivan, Dukes and
Losina, 1999; Ukoumunne, Gulliford and Chinn, 2004; Letsoalo and Lesaoana, 2010;
Goldstein, 2011; Letsoalo and Lesaoana, 2012). Figure 3.2 presents a hypothetical
example of clustered data.
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Cluster 3

Cluster 1

Cluster 2

Cluster 4

Figure 3.2: Hypothetical/example of clustered data
Note: Clusters need not be of equal sizes.

A cluster may represent a learner while atoms/balls represent subjects
enrolled. Figure 3.3 gives a typical example of clustered data.

Source: http://www.texample.net/tikz/examples/clusters-of-atoms/

A hierarchy consists of units grouped at different levels (Ukoumunne et al., 2004).
Schooling systems present an obvious example of hierarchical structure, with learners
clustered within schools, which themselves may be clustered within education au-
thorities. Learners may be the level-1 units clustered or nested within schools that
are the level-2 units (Goldstein, 2011, Page 3). Figure 3.3 attempts to explain or
presents a hypothetical example of clustered data in education setting. The goal of a
multilevel model is to predict values of some dependent variable based on a function
of predictor variables at more than one level (Luke, 2004).

Multilevel models (also called hierarchical linear models, nested models, mixed
models, random coefficient, random-effects models, random parameter models or
split-plot designs) are statistical models of parameters that vary at more than one
level. These models can be seen as generalisations of linear models (in particular,
linear regression), although they can also extend to non-linear models. Multilevel
modeling has been developed as a technique for analysing data arranged in a
variety of hierarchies of clusters or groups (Hox, 1995; Langford, Bentham and
McDonald, 1998), that is, multilevel analysis is a methodology for the analysis of
data with complex patterns of variability, with a focus on nested sources of variability
(Langford et al., 1998; Snijders and Bosker, 1999). Therefore, a widely used approach
to handling dependencies in the data is by means of random coefficient models
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Figure 3.3: A hypothetical clustered data in education setting.
Learner performances in different learning areas.
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Life Sciences
Geography
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(Bergsma et al., 2009).

Multilevel analysis is a stream that has two tributaries (Snijders and Bosker, 1999,
Page 1):

(a) Contextual analysis10, which was developed in social sciences, focused on the
effect of the social context on individual behaviour.

10Contextual analysis is an analytical approach originally used in sociology to investigate the effect
of collective or group characteristics on individual level outcomes. In contextual analysis, group level
predictors (often constructed by aggregating the characteristics of individuals within groups) are
included together with individual level variables in standard regressions with individuals as the units of
analysis (contextual effects models). This approach permits the simultaneous examination of how
individual level and group level variables are related to individual level outcomes (Diez Roux, 2002).
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According to Smith (2011), human behaviour can be conceptualised as being
influenced by three factors, namely

(i) a person’s prior personal disposition;

(ii) the impingement of social environment on that person; and

(iii) the interaction between the predisposing and environmental factors.

Accordingly, these factors imply a multilevel analysis of at least two levels, level-1
and level-2. A contextual study exemplifies a multilevel analysis because it in-
cludes variables in individual (level-1) and on the environment (level-2) (Smith,
2011). Contextual effects are the cross-level interactions between the personal
and environmental variables, and the study of these interactions defines contex-
tual analysis.

(b) Mixed effect models11, which are statistical models in the analysis of variance
and in regression analysis where it is assumed that some of the coefficients are
fixed and others are random.

According to Snijders and Bosker (1999) contextual modeling until about 1980 fo-
cused on the definition of appropriate variables to be used in ordinary least squares
regression analysis. The main focus in the development of statistical procedures
for mixed models up to the1980s was on random effects (i.e., random differences
between classes in some classification system) rather than on random coefficients
(i.e., random effects of numerical variables). The two streams, mixed models and
contextual modeling came together to form multilevel analysis. Figure 3.4 attempts to
make this explanation more explicit.

In investigating the relationship between the study participants and society, generally
individuals interact with the social contexts to which they belong, meaning that
individual persons are influenced by the social groups to which they belong, and that
the properties of those groups are in turn influenced by the individuals who make up
that group (Hox, 1995).

In biomedical setting - It is intuitive that people from the same area may be more
similar to each other in relation to their health status than to people from other areas.
In other words, persons with similar characteristics may have different degrees of
health according to whether they live in one area or another because of differing

11The term mixed model refers to the use of both fixed and random effects in the same analysis.
Fixed effects have levels that are of primary interest and would be used again if the experiment were
repeated. Random effects have levels that are not of primary interest, but rather are thought of as a
random selection from a much larger set of levels. Subject effects are almost always random effects,
while treatment levels are almost always fixed effects.
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Contextual
Analysis

Mixed Effect
Model

Multilevel Analysis

Figure 3.4: Tributaries of multilevel analysis
Source: Letsoalo (2004, Page 34)

cultural, economic, political, climatic, historical, or geographical contexts. Similarly,
in educational setting - data are often organised at learner, classroom, school, and
school district levels. This contextual phenomenon expresses itself as clustering of
individual health status within areas. It follows that nested data or hierarchical data
present problems for analysis.

People or creatures that exist within hierarchies tend to be more similar to each
other than people randomly sampled from the entire population. Similarly, repeated
measure observations on individual study participant (as an example of clustered
data) tend to be correlated. In another words, the distinguishing feature of hierarchical
or grouped data is that observations within a cluster may be correlated, and the
degree of similarity among responses within a cluster is measured by a parameter
called intracluster or intraclass correlation coefficient (ICC) (Donner, Piaggio and
Villar, 2003; Letsoalo and Lesaoana, 2010).

The ICC may be interpreted as the standard Pearson correlation coefficient between
any two responses in the same cluster (Donner et al., 2003). If the assumption
that the ICC cannot be negative is added, then ICC may also be interpreted as the
proportion of overall variation in response that can be accounted for by the between-
cluster variation (Donner and Klar, 2000; Letsoalo and Lesaoana, 2010). A positive
ICC implies that the variation between observations in different clusters exceeds the
variation within clusters, hence it can be claimed that the design is characterised by
‘between-cluster variation’ (Donner et al., 2003; Donner and Klar, 2000).
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In multilevel research, variables can be defined at any level of the hierarchy, and
some of these variables may be measured directly at their natural level (Hox, 1995).
In these schemes, individuals usually form micro-level, the lowest level or level-1,
whereas groups (or clusters) form macro-level or level-2 (Letsoalo and Lesaoana,
2010).

A more general way to look at multilevel data is to investigate a cross-level hypothesis,
or multilevel problem (Hox, 1995). A multilevel problem concerns the relationship
between variables that are measured at a number of different hierarchical levels.
Thus, multilevel models are designed to analyse variables from different levels simul-
taneously, using a statistical model that includes the various dependencies. Multilevel
statistical models are always needed if a multi-stage sampling design has been
employed (Levy and Lemeshow, 1999; Snijders and Bosker, 1999).

The main statistical model of multilevel analysis is the hierarchical linear model, an
extension of the multiple linear regression model to a model that includes nested
random coefficients. The multilevel regression model is also known as random
coefficient model, mixed linear model, nested model or variance component model,
due to the fact that these models have historically been used in educational research
where hierarchies occur naturally (Hox, 1995; Sullivan et al., 1999; Letsoalo and
Lesaoana, 2010).

3.4 Modeling Clustered Data: Linear Mixed-Effects

and Nonlinear Mixed-Effects Models

In clustered data analysis and longitudinal studies, data from individuals are collected
repeatedly over time whereas cross-sectional studies12 only obtain one data point
from each individual subject. Therefore, the key difference between clustered and
cross-sectional data is that clustered data are correlated within a study participants
(study subject) and independent between participants, while cross-sectional data are
often independent (Wu and Zhang, 2006). Figure 3.3 on Page 77 presents a typical
example of clustered data; where a learner was observed at least once.

A challenge for clustered data analysis is how to account for within-subject correla-
tions. The results obtained from a standard statistical analysis which assumes all
observations to be independent in clustered data, may be misleading. Such analysis
is referred to as naı̈ve pooling (Burton, Gurin and Sly, 1998). Therefore, standard

12Cross-sectional studies (also known as cross-sectional analyses, transversal studies, prevalence
studies) are one type of observational study that involve data collection from a population, or a
representative subset, at one specific point in time.
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analysis, which ignores an important correlation structure, may well be misleading.
One way of solving this problem is to create a single summary statistic such as the
mean, for each cluster. This approach, referred to as data resolution, automatically
avoids any over-inflation in the apparent size of the dataset (Burton et al., 1998;
Letsoalo and Lesaoana, 2010).

Parametric mixed-effects models or random-effects models are powerful tools for
clustered data analysis (Vaida, Meng and Xu, 2004); and linear and nonlinear mixed-
effects models (including generalised linear and nonlinear mixed-effects models)
have been widely used in many longitudinal studies13 (Wu and Zhang, 2006, Page
17).

In particular, linear mixed-effects (LMEs) and nonlinear mixed-effects (NLMEs) mod-
els14 are powerful tools for handling situations where one has to account for ICC
when proper parametric models are available to relate a longitudinal or clustered
response variable to its covariates (Vaida et al., 2004; Wu and Zhang, 2006, Page 2).

3.4.1 Linear Mixed-Effects Models

Linear mixed-effect models are used when the relationship between a clustered
response variable and its covariates can be expressed via a linear model. LME
models are also known as multilevel models, linear mixed-effects models, random-
effects models, random-coefficient models, or hierarchical linear models. LME models
handle unequal ni’s, time-varying covariates, and unequally spaced responses. LME
models were first proposed as (for example, see Laird and Ware (1982)):

yij = xTijβ + zTijbi + εij,

bi ∼ N(0,D), εi ∼ N(0,Ri),

j = 1, 2, · · · , ni; i = 1, 2, · · · , n,

(3.4.1)

where εi = [εi1, · · · , εini]T , yij and εij denote the response and the measurement error
of the j th measurement of the ith subject, the unknown parameters β : p× 1 and bi
are usually called the fixed-effects vector and random-effects vectors, respectively,
and x and z are the associated fixed-effects and random-effects covariate vectors,
and D and Ri, i = 1, 2, · · · , n are variance components of the LME model (Wu and
Zhang, 2006, Page 18).

13A longitudinal survey is a correlational research study that involves repeated observations of the
same variables over long periods of time - often many decades. It is a type of observational study.

14A mixed model is a statistical model containing both fixed effects and random effects, that is mixed
effects.
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The LME model (3.4.1) can be generally written as

yi = Xiβ + Zibi + εi,

bi ∼ N(0,D), εi ∼ N(0,Ri),

i = 1, 2, · · · , n,

(3.4.2)

where yi and εi are, respectively, the vectors of responses and measurement errors
for the ith subject, β and bi are respectively, the vectors of fixed-effects (population-
parameters) and random-effects (individual parameters), and Xi and Zi are the
associated fixed-effects and random-effects design matrices, respectively (Wu and
Zhang, 2006; Goldstein, 2011).

The mean and covariance matrix of yi is given by:

E(yi) = Xiβ,

Cov(yi) = ZiDZT
i + Ri, i = 1, 2, · · · , n.

(3.4.3)

In matrix notation (or compactly), the general LME model (3.4.2) can be further
written as:

y = Xβ + Zb + ε,

b ∼ N(0, D̃), εi ∼ N(0,Ri),

i = 1, 2, · · · , n,

(3.4.4)

where

y = [yT1 , · · · ,yTn ]T ,

b = [bT1 , · · · ,bTn ]T ,

ε = [εT1 , · · · , εTn ]T ,

X = [XT
1 , · · · ,XT

n ]T ,

Z = diag(Z1, · · · ,Zn),

D = diag(D1, · · · ,Dn),

R = diag(R1, · · · ,Rn).

(3.4.5)

Based on the general LME model (3.4.4), we have Cov(y) = diag(Cov(y1), · · · , Cov(yn))
and the covariance matrix Cov(yi) for repeated or clustered measurement vector yi
for the ith subject is given in Equation (3.4.3).

Wu and Zhang (2006) state that the inference for β and bi, i = 1, 2, · · · , n for the
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general LME model (3.4.2) can be based on the likelihood method or generalised
least square method. For known D and Ri, i = 1, 2, · · · , n, the estimates of β
and bi, i = 1, 2, · · · , n may be obtained by minimising the following twice negative
logarithm of the joint density function of yi and bi, i = 1, 2, · · · , n (up to a constant):

GLL(β,bi|yi) =
n∑
i=1
{[yi −Xiβ − Zibi]TR−1

i [yi −Xiβ − Zibi]

+ bTi D−1bi + log|D|+ log|Ri|}.
(3.4.6)

But bi, i = 1, 2, · · · , n are random-effects parameter vectors, the expression (3.4.6) is
not a conventional log-likelihood (Wu and Zhang, 2006), however, (3.4.6) is called a
generalised log-likehood (GLL) of the mixed-effects parameters (β,bi, i = 1, 2, · · · , n).

For given D and Ri, i = 1, 2, · · · , n, minimising the GLL criterion (3.4.6) is equivalent
to solving the so-called mixed model equations:

XTR−1X XTR−1Z

ZTR−1X ZTR−1Z + D̃−1


β

b

 =

XTR−1y

ZTR−1y

 ,
where y,b,X,Z, D̃ and R are defined in (3.4.5). The respective estimates of β and
bi are given by:

β̂ = (XTV−1X−1)XTV−1y (3.4.7)

and
b̂i = DZT

i V−1
i (yi −Xiβ̂), i = 1, 2, · · · , n, (3.4.8)

where Vi = ZiDZT
i + Ri, i = 1, 2, · · · , n and V = diag(V1, · · · , Vn). The covariance

matrices of β̂ and b̂i are, respectively:

Cov(β̂) = (XTV−1X)−1 =
 n∑
i=1

XT
i V−1

i Xi

−1

D, (3.4.9)

Cov(b̂i − bi) = D−D
(
ZT
i V−1

i Xi

)
D + D

(
ZT
i V−1

i Xi

)
×

 n∑
j=1

XT
j V−1

j Xj

−1 (
XT
i V−1

i Zi

)−1
D,

i = 1, 2, · · · , n.

(3.4.10)
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3.4.2 Nonlinear Mixed-Effects Models

Nonlinear mixed-effects models15 are used when the relationship between a clustered
response variable and its covariates can be expressed via a nonlinear model, which
is known except for some parameters (Zhang, Lin and Sowers, 2007). The NLME
models are fully parametric and model the within-subject covariance structure more
explicitly (Azzimonti, Ieva and Paganoni, 2013). NLME model may be written as (Wu
and Zhang, 2006; Zhang et al., 2007; Azzimonti et al., 2013):

yi = f(Xi, βi) + εi, βi = d(Ai,Bi, β,bi)

bi ∼ N(0,D),

εi ∼ N(0,Ri), i = 1, 2, · · · , n,

(3.4.11)

where f(Xi, βi) = [f(xi1, βi), · · · , f(xini
, βi)]T with f(·) being unknown function,

Xi = [xi1, · · · ,xini
]T a design matrix and βi a subject-specific parameter for the

ith subject. Here, d(·) is a known function of the design matrices Ai and Bi, the
fixed-effects vector β and random-effects vector bi.

The successful application of a LME model or a NLME model to longitudinal data
analysis or clustered data analysis strongly depends on the assumption of a proper
linear or nonlinear model for the relationship between response variable and the
covariates. In cases where the assumption does not hold - the relationship between
the response variable and the covariates has to be modeled nonparametrically.

The clustered or longitudinal dataset can be expressed in the form (Wu and Zhang,
2002, 2006):

(tij, yij), j = 1, 2, · · · , ni; i = 1, 2, · · · , n, (3.4.12)

where tij denotes the design time points (occasions), yij the responses observed at
tij, ni the number of observations for the nth subject, and n is the number of subjects.

For such dataset, we do not assume a parametric model for the relationship between
the response variable and covariate occasion. Instead, we assume that the individual
and population mean functions are smooth functions of time t, and let the data
themselves determine the form of the underlying functions (Wu and Zhang, 2006).

Wu and Zhang (2002, 2006) introduced a nonparametric mixed-effects (NPME) model
as:

yi(t) = η(t) + vi(t) + εi(t), i = 1, 2, · · · , n, (3.4.13)

15Nonlinear mixed-effects NLME models are mixed-effects models in which at least one of the fixed
or random effects appears nonlinearly in the model function (Azzimonti et al., 2013)
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where η(t) models the population mean function of the clustered or longitudinal
dataset, called fixed-effect function, vi(t) models the departure of ith individual function
from the population mean function η(t), called the ith random-effect function, and εi(t)
the measurement errors that cannot be explained by both the fixed-effect and the
random-effect functions.

The NLMEs model is a natural generalisation from the LME model. Suppose (µ,Ω)
denotes distribution with mean vector µ and covariance matrix Ω. Then a NLME
model can be written into a two-stage hierarchical form as:

Stage 1. Intra-subject variation

yi = f(Xi, βi) + εi|β

∼ (0,Ri(βi, ξ)),

i = 1, 2, · · · , n,

(3.4.14)

where yi and εi are (n × 1) vectors of the responses and measurement errors
for subject i, respectively; the vector function f(Xi, βi) = [f(xi1, βi), · · · , f(xin, βi)]T

where f(·) is a known function, βi : p × 1 is an unknown parameter vector, and
the design matrix Xi = [xi1, · · · , xin]T ; and the covariance matrix Ri(·) is a known
function with ξ being an unknown parameter vector (Wu and Zhang, 2006; Zhang
et al., 2007).

Stage 2. Inter-subject variation

βi = d(ai, β,bi),

bi ∼ (0,D),

i = 1, 2, · · · , n,

(3.4.15)

where d(ai, β,bi) is a known p-dimensional function of the between-subject covariate
vector ai, with the population parameter vector (known also as fixed-effects parameter
vector) β and the random-effects vector bi. The function d(·) may be linear or
nonlinear. Wu and Zhang (2006; Page 27) gives details with regard to two-stage
methods.
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3.5 The Unit of Analysis

One of the most important ideas and/or aspects in any research project is what
is regarded as the major entity that a researcher is analysing, the unit of analysis,
because this has an impact on the analysis to be carried out. As such, the phrase
unit of analysis is the source of much confusion in the context of group-randomised
trials (Murray, 1998).

Almost anything can be the unit of analysis in a social research, yet the branch
of social science mostly delimit, albeit not severely, the possibilities of the unit of
analysis of a scientific study. In educational research, the most common units of
analysis are students, parents, teachers, classes, schools or school districts.

Murray (1998) indicates that part of the confusion arises from the fact that there are
often so many units from which to choose that analysts may easily and unknowingly
choose badly. It is sometimes not clear what is the appropriate level of analysis. For
instance, persons are in groups (e.g., learners in classrooms), and either person or
group could be the unit of analysis. Therefore, the group would be the unit of analysis
by computing a mean of those persons who are members of the group. Another
source of confusion is that there are many different ways to conduct the analysis
(Murray, 1998; Silverman and Solmon, 1998).

Therefore, the unit of analysis is the basic entity or object about which generalisations
are to be made based on an analysis, and for which data have been collected. The
unit of analysis is fundamental to data and statistical inference, to statistical data
structures, and to secondary data analysis. The unit of analysis is the level at which
data are used to represent one data point in an analysis (Silverman and Solmon,
1998).

The unit of analysis can be artifacts, areas, groups, individuals or social interactions
such as divorces, marriages, etc. In choosing the unit of analysis the researcher
should be aware of the possibility of the following fallacies, or errors of reasoning
based on mistaken assumptions:

(a) The ecological fallacy also called ‘Robinson effect’ occurs when one makes
conclusions about individuals based only on the analyses of group data. That is,
interpreting aggregated data at the individual level. The ecological fallacy arises
because association between two variables at the group level (or ecological
level) may differ from associations between analogous variables measured at the
individual level (Hox, 1995; Diez Roux, 2002).

(b) An exception fallacy occurs when one reaches a cluster/group conclusion on the



3.5 The Unit of Analysis 87

basis of exceptional cases.

(c) Atomistic fallacy , an error committed when one draws inference at a higher level
from analyses performed at a lower level. In another words, this fallacy arises
because association between two variables at the individual level may differ from
association between analogous variables measured at the group level (Diez Roux,
2002).

The unit of inference in group randomisation trials or clustered data analysis may
be directed either at the group level or at the level of the individual study participant,
and an interest in group-level inferences leads investigators to collect data only at the
group level (Donner and Klar, 2000). The investigator faced with analysing individual-
level data must account for the lack of statistical independence among observations
within a group. The proper unit of analysis is determined entirely by the design of
the study, including the selection and allocation schemes for group and members
(Murray, 1998, Page 105).

Donner and Klar (2000, Page 81) suggests as a method of simplifying the problem,
to collapse the data in each cluster, followed by the construction of a meaningful
summary measure to serve as the unit of analysis so that the standard statistical
methods can be directly applied to the collapsed measures. This approach is called
aggregated analysis. Challenges in identifying and distinguishing the unit of inference,
the unit of analysis and the impact of clustering are not unique to cluster randomisation
trials, since Donner and Klar (2000) reported that many of the ideas presented in
cluster randomisation trials are based on discussions of methods for the analysis of
longitudinal or repeated-measures data.

Group-level analyses can be used for more complex summary scores and, more
generally, for any study outcome. These analyses (group-level) are most obviously
appropriate when the primary questions of interest are more concerned with the
randomised unit as a whole, than with the individual cases/subjects (Murray, 1998).

Donner and Klar (1994) emphasise the fact that the primary advantage of using the
cluster as the unit of analysis is that standard techniques are generally applicable for
any one of the three designs. There are, however, disadvantages to this approach.
Tests of significance using the cluster as the unit of analysis will, in general, have
less power than methods using the individual as the unit of analysis. That is, the
statistical power of group-randomised trials is greatly reduced in comparison with
similar sized individually randomised trial (Murray, 1998). However, Donner and Klar
(1994) quoting Shirley and Hickling (1981) point out that simulation studies have
demonstrated that the loss in power is small, and using weighted least squares could
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increase the efficiency of these procedures.

Questions concerning the appropriate unit of analysis are more challenging when
the primary target of inference is at the level of the individual subjects, with the
choice of randomisation unit then largely a matter of convenience or other practical
considerations. Particular care must be taken when conducting individual-level
analysis to properly adjust for the effect of clustering (Donner and Klar, 2000, Page
81). Using an inappropriate unit of analysis may lead to results that are erroneous
(Silverman and Solmon, 1998). Luke (2004) emphasised that fallacies are a problem
of inference, not of measurement. That is, it is perfectly admissible to characterise
a higher-level collective using information obtained from lower-level members. The
types of fallacies described in this thesis come about when relationships discovered
at one particular level are inappropriately assumed to occur in the same fashion at
some other (higher or lower) level (Silverman and Solmon, 1998; Luke, 2004).

Generally, the unit of analysis chosen has consequences for research design, the
number of participants or number of classes needed, and the faith we can place in
the results and concIusions (Murray, 1998; Silverman and Solmon, 1998). Several
strategies can be used to obtain valid analyses of cluster randomised experiments.
The simplest is to treat the clusters as units of analysis by computing the mean scores
on the outcome (and all other variables that may be involved in the analysis) for each
cluster (e.g., classroom or school) and carrying out the statistical analysis as if the
cluster means were the data (see the definition of naı̈ve-pooling). Abrahantes et al.
(2004) discuss the choice of unit of analysis and modeling strategies in clustered
data analysis.

3.6 Transmission of Information: Spill-Over Effects

Randomisation is sometimes used to limit the possibility of transmission of information
or data. Thus, randomisation is widely used when individual allocation is possible but
there is concern over spill-over of information. Depending on the nature of the study,
transmission of data or information can occur between or within clusters (or study
groups).

There are three related concepts which have to do with transmission of information
provided in one study arm to participants in the other study arm:

a) Contamination

The Contamination16 involves an intervention intended for one study arm being
16Contamination refers to a situation where at least some of the information provided in one arm of
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actively received without official knowledge or intention (and often incompletely, or
incorrectly) by some participants in the other arm (Hayes and Moulton, 2009). It
mostly happens where an intervention is easily transferred (such as information
or tablets), when participants do not lose anything by passing on their treatment,
or where there exists social/physical proximity between participants. Figure (3.5)
attempts to makes this explanation more explicit. Contamination cannot occur
when the intervention is highly targeted, e.g. injections (Briggs, 2003).

Researcher
or analyst

Condition
A or Arm

A (PA)

Condition
B or Arm

B (PB)

Participants
interactions
(PA ∗ PB)

PA

PB

PBcPAc

Figure 3.5: Contamination occurs when individuals randomised or alloc-
ated to the study conditions, A or B, are exposed to the wrong condition
through having contact with each other. Contamination can occur either
inadvertently or intentionally as people discuss their experiences. The
cost to internal validity is that people in the “control” condition receive

part of the intervention.
Note PAc and PBc are contaminated arm A and contaminated arm B
participants, respectively. Likewise, PA and PB are pure participants in

arm A and arm B, respectively.

Another setting in which contamination is minimised is in group randomised con-
trolled trials. These trials are attractive in settings in which individual randomisation
is difficult or impossible (Isaakidid and Loannidid, 2003). Justification for adopting
a group randomisation design rests on practical considerations such as the desire
to control costs or attempting to minimise experimental contamination, and ethical
considerations and should always be stated explicitly (Donner and Klar, 2000;
Hayes and Moulton, 2009). Hayes and Moulton (2009) discuss ways in which
contamination can occur in clinical randomised controlled trials.

b) Cross-Over

Cross-over is used to refer to a participant who is randomised to one trial arm, but

a trial is transmitted via informal pathways to participants in the other study arm.
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receives (with official knowledge) the treatment from the other arm. In a cross-over
trial, each participant gets both treatments being tested. A cross-over design is a
modified, randomised block design in which each block, which may be a subject or
a group of subjects, receives more than one formulation of a drug or treatment at
different time periods. A cross-over design is called a complete cross-over design
if each sequence contains each of the formulations (Chow and Liu, 2000).

Cross-over trials are trials in which patients are allocated to sequences of treat-
ment with the purpose of studying differences between individual treatments
(Sindrup, Andersen, Madsen, Smith, Brosen and Jensen, 1999). In another words,
cross-over trials allow the response of a subject to treatment A to be contrasted
with the same subject’s response to treatment B. Sibbald and Roberts (1998)
emphasise that removing patient variation in this way makes cross-over trials
potentially more efficient than similar sized, parallel group trials in which each
subject is exposed to only one treatment. In theory treatment effects can be
estimated with greater precision given the same number of subjects (Jones and
Kenward, 1989; Sibbald and Roberts, 1998).

Sindrup et al. (1999) give an example of a cross-over trial:

”A cross-over trial was run to compare the effect of tramadol to
placebo in painful polyneuropathy. Forty-five patients were randomised
to one of two sequences, tramadol followed by placebo or placebo
followed by tramadol. Each treatment was delivered for four weeks.
Using 10-point numeric scales, patients rated pain, paresthesia and
touch-evoked pain.”

Randomisation
process

Placebo Intervention

Intervention Placebo

Washout period

Washout period

Figure 3.6: AB/BA Randomisation model
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This is an example of the most common sort of cross-over, often loosely referred
to as a two-period design, but more accurately described by referring explicitly to
the sequences as an AB/BA design (Chow and Liu, 2000). In this case we have A
as placebo and B as tramadol. Randomisation for a 2× 2 cross-over design can
be carried out by using either a table of random numbers or some procedures as
embedded in some statistical software packages such as PROC PLAN in SAS.

To produce valid results, the effect of the first drug must end before the second
drug is taken, and vice-versa; and this phenomenon is called carry-over effect
(Stone, 1986; Jones and Kenward, 1989; Chow and Liu, 2000; Patterson and
Jones, 2006). This requirement can be hard to satisfy, and is one reason cross-
over trials are not often used. A washout period17 between the two treatments
might minimise the effects of the carry-over. Figure 3.6 attempts to make this
explanation more explicit.

Carry-over effects can be avoided with a sufficiently long wash-out period between
treatments. In another words, when an adequate wash-out period is included,
carry-over effects are generally considered to be negligible (Patterson and Jones,
2006, Page 22). However, the planning for sufficiently long wash-out periods
does require expert knowledge of the dynamics of the treatment, which often is
unknown. Jones and Kenward (1989) and Chow and Liu (2000) give detailed
discussions and statistical models for cross-over designs.

When carry-over effects are present, a standard 2× 2 cross-over design may not
be admirable, for it may not provide estimates for some fixed effects. To overcome
such a challenge, a higher-order cross-over design, a design in which either the
number of periods is greater than the number of formulations to be compared,
or the number of sequences is greater than the number of formulations to be
compared, may be useful (Chow and Liu, 2000). An in-depth discussion with
regards the higher-order designs can be found in Jones and Kenward (1989).

Similar principle that is employed in psychology and social science studies is
called counterbalancing, a method of controlling for order effects in a repeated
measure design by either including all orders of treatment or randomly determining
the order for each subject (Cozby, 2009). In essense, countebalancing principle
or cross-over principle follows the within participants design or repeated measure
design.

17The washout period is the rest period between two treatment periods for which the effect of one
formulation administered at one treatment period does not carry over to the next (Chow and Liu, 2000,
Page 38).
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c) Non-adherence

Non-adherence (or non-compliance) refers to participants not fully receiving the
treatment allocated, for instance, not taking all the medication as per prescription,
not turning up for follow-up inspection, or not reading the information leaflet.
Many factors are involved in participant non-adherence; factors related to the
characteristics of the disease, medication side effects, duration of treatment,
frequency of expected intake, complexity of treatment, and severity of the condition
or disease. It has been demonstrated, for example, that people are less likely
to continue their medication regimen over long periods and are less likely to be
adherent when the daily doses increase from 1 pill to 4 pills (Kramer, 1995).

The problem of non-adherence to treatments, interventions or medications is
serious, but not insurmountable. With each passing day, tremendous progress
is being made to understand the core reasons for non-adherence and design
programs that will address these issues. Also, there has been a realisation by all
concerned stakeholders that they need to stop viewing non-adherence as either
’my problem’ or ’their problem’ and treat it as ’our problem’ (Haynes, 2001).

The effects of these concepts or phenomena on the value of trial-data are similar –
they bias the study results, tending to reduce the apparent size of any real difference
in treatment effects, and increasing the chance of Type II error, also known as a false
negative. The circumstances in which these phenomena are major problems are
likely to be different, as are the measures to minimise them.

Learners tend to share study materials, for example; they can share study notes, or
text books, also they tend to interact in study groups to share their learning experience.
It is in these kinds of interactions that information from one school is filtered into
another school especially when schools are under different authorities and/or are
in different provinces, hence contamination or spill-over effect. For example, an
intervention might target only poor children (the target group) within a locality (the
local setting). In many cases, the local nontarget population may also be indirectly
affected by the treatment through social and economic interaction with the treated
individuals. These possible interactions are what we define as spill-over effects.

Also, nonadherence biases the results when learners do not comply with rules,
conditions, or instructions from educators. Nonadherence occurs when learners do
not hand in homeworks and/or assignments, and at times it happens when learners
start bunking off classes or school.
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Chapter Summary

Field experiments often assign entire intact groups (such as regions,
classrooms or schools) to the same treatment group, with different intact
groups assigned to different treatment. A common mistake in analysis of
such data (clustered data) is to ignore the effect of clustering and analyse
the data as if each study arm were a simpe random sample or observations
were independent; for this may lead to an overstatement of the precision and
anticonservative conclusions about the precision and statistical significance of
intervention effects. It was shown or highlighted that a choice of unit of analysis
assists in the interpretation of results; so as to avoid some fallacies. Spill-over
effects can biase the outcome of the trial. Implementation of mixed models or
causal models in Stata accounts for clustering effect.
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Randomisation by group accompanied by an analysis appropriate to
randomisation by individual is an exercise in self-deception, however,
and should be discouraged.

Cornfield (1978)

Chapter Preview

Up to now we have seen the theoretical background to analysis of clustered
data, and the limitations of ordinary regression models that assume observa-
tions to be independent. Also, we outlined the limitations of descriptive statistics
in the analysis not only of clustered data but of group randomised trials; for
descriptive statistics cannot adjust for other covariates. This chapter presents
the results of the application of causal models (hierarchical models) using Stata.
We present summary statistics, results from unadjusted models, and finally the
results from adjusted models. The data used in the analysis is called Grade
12 data, supplied by Umalusi, a Council for quality assurance in General and
Further Education and Training (GFET).

4.1 Introduction

This study follow the quantitative approach; as such the results in this study are based
on statistics. In another words, only statistical results are interpreted. And where
inference is performed - the interpretation of results is performed at 95% confidence
limit or the interpretation is performed at 0.05 error rate. Therefore, the results that
emanated from the application of causal models to the Grade 12 data are declared
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significant if the probability value (p-value) is less than 0.05. The analysis was
performed in two parts. First, descriptive analysis is performed. Second, inferential
statistics is performed through the application of causal models.

Grade 12 data are the observations about the learners who sat for Grade 12 examina-
tions in 2008, 2009 and 2010. Appendix A3 on Page 142 presents the definitions of all
variables contained in the dataset (Data Dictionary). This dataset is a standardised
set because “adjustment methods” were applied on the data. Thus, the dataset
contains about 95% of the total learners who wrote the examination1.

Umalusi Council sets and monitors standards for GFET in South Africa in accordance
with the National Qualifications Framework Act No 67 of 2008 and the General and
Further Education and Training Quality Assurance Act No 58 of 2001.

The Council is tasked with the development and management of a sub-framework
of qualifications for GFET and for the attendant quality assurance. Among others,
Umalusi is responsible for the certification of:

a) Senior Certificate (SC) - continues as a revised qualification for adults.

b) National Senior Certificate (NSC) - replaced the SC in 2008.

4.2 Descriptive Analysis

This section presents the results from the descriptive analysis. First, it provides the
distribution of learners according to gender and academic year in terms of frequencies
and proportions between the two provinces. Secondly, the distribution of learners in
the two provinces is presented in terms of the binary outcome (pass or not pass) per
academic year. Finally, the average performances (generated from the continuous
outcome marks), between the two provinces are presented for academic years 2008
through 2010.

As depicted by Table 4.1, the proportion of female learners in Gauteng Province
ranged between 54.48% and 54.99%, while in Western Cape Province it ranged
between 56.78% and 57.16%, in 2008 through 2010 academic years. During the period
under study, proportions of female learners in Western Cape Province are higher
than those in Gauteng Province, hence for male learners, the opposite is the case.

1The sample size depends entirely on ”date-stamp”. That is, the sample keeps changing depending
on when the data were downloaded; since some learners opt to combine their results after having
re-written the examinations.
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Table 4.1: Distributions of learners by gender and provinces:
2008, 2009 and 2010 academic years.

20
08

Gender Gauteng Province Western C. Province
Frequency Percent Frequency Percent

Male 44940 45.44 19268 42.84
Female 53954 54.56 25709 57.16
Total 98894 100.00 44977 100.00

20
09

Male 45315 45.52 19930 43.11
Female 54234 54.48 26304 56.89
Total 99549 100.00 46234 100.00

20
10

Male 42475 45.01 20232 43.22
Female 51893 54.99 26584 56.78
Total 94368 100.00 46816 100.00

Table 4.2 shows that at least 70.42% of learners in Gauteng Province and at least
73.96% of learners in Western Cape Province passed Grade 12 during the years 2008
to 2010. Gauteng Province recorded proportions of learners who passed Grade 12
as 74.33%, 70.42% and 76.90% in 2008, 2009 and 2010, respectively. Similarly Western
Cape Province recorded proportions of learners who passed Grade 12 as 77.08%,
73.96% and 74.43% in 2008, 2009 and 2010, respectively.

Table 4.2: Pass rates by provinces:
2008, 2009 and 2010 academic years.

20
08

Result Gauteng Province Western C. Province
Frequency Percent Frequency Percent

Fail 25381 25.67 10309 22.92
Pass 73512 74.33 34668 77.08

20
09 Fail 29443 29.58 12040 26.04

Pass 70106 70.42 34194 73.96

20
10 Fail 21797 23.10 11974 25.57

Pass 72580 76.90 34856 74.43

The proportion of learners who passed Grade 12 was marginally higher for Gauteng
Province than for Western Cape Province in 2010 (76.90% [n = 72580] vs. 74.43%
[n = 34856]). Otherwise, marginal proportions of learners who passed Grade 12
favoured Western Cape Province in 2008 (77.08% [n = 34668] vs.74.33% [n = 73512])
and in 2009 (73.96% [n = 34194] vs.70.42% [n = 70106]). Detailed information is given
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by Table A.2 on Page 145.

Table 4.3 shows that the average performances for Gauteng Province and Western
Cape Province in 2008, 2009 and 2010 are 49.52%, 49.23% and 51.24%, and 50.37%,
50.24 and 50.96%, respectively. Therefore, the marginal average performances
favoured the Western Cape Province in 2008 and 2009, while Gauteng Province had
marginally higher average score than Western Cape Province in 2010.

Table 4.3 indicates that within standard deviations for marks, as expressed in per-
centages, over the years are different from zero. This is because, within each learner,
the values of this variable (do) vary, i.e. for each of the records the learner has, the
values of this variable are different. Also, the between subjects standard deviation is
different from 0. This is because all learners have different set of values on marks.

Table 4.3: Average performances per provinces:
2008, 2009 and 2010 academic years

G
au

te
ng

2008 2009 2010
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

overall 49.5203 17.91434 49.22978 18.15893 51.24318 17.70470
between 12.54402 12.16406 12.25954
within 12.75883 13.48440 12.82948

W
es

te
rn

C
ap

e

overall 50.36789 17.58325 50.23749 17.72550 50.96452 17.88011
between 13.34398 12.77441 12.86035
within 11.51861 12.30528 12.42091

In 2008 and 2010 the within and between standard deviations are almost the same for
Gauteng Province. This implies that the variation in marks across learners is nearly
equal to that observed within a learner over different study subjects (learning areas).
That is, if one was to draw two learners randomly from the data, the difference in
marks is expected to be nearly equal to the difference for the same learner in two
randomly selected any other learning subjects. Similarly are within and between
standard deviations for Gauteng Province in 2010, and the within and between
standard deviations for Western Cape Province in 2009, and in 2010.

The proportions of female learners were marginaly higher in Western Cape Province
than in Gauteng Province in 2008 (57.16%− 54.56% = 2.6%), 2009 (56.89%− 54.48% =
2.41%) and in 2010 (56.78%− 54.99% = 1.79%).

The marginal differences of proportions of learners who passed Grade 12 favoured
Western Cape Province in 2008 (77.08% − 74.44% = 2.75%) and 2009 (73.96% −
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70.42% = 3.54%). The difference of 2.47% favoured Gauteng Province in 2010.

The marginal average differerences of 0.84759 and 1.00771 favoured the Western
Cape Province in 2008 and 2009 academic years, respectively. However, the mar-
ginal average difference of 0.27866 favoured Gauteng Province than Western Cape
Province in 2010.

4.3 Inferential Statistics

This section presents the results of the inferential statistics. The interpretations were
performed at 95% confidence limit (2-sided). The unadjusted and adjusted models
were fitted to compare the two provinces. Where Pearson’s chi-square test was used
- the analysis was performed at α = 0.05 error rate.

4.3.1 Analysis of Categorical Variables

The Pearson chi-square statistic tests whether the two categorical variables are
independent (Bergsma et al., 2009, Page 17). That is, we use Pearson chi-square
test to test for association between two categorical variables (Field, 2005, Page 689),
which are Assessment Outcome and Province. The results are declared significant if
p < 0.05. The null and alternative hypotheses are:

H0: Assessment outcome and province are not significantly associated.

H1: Assessment outcome and provice are significantly associated.

What we mean by association is that the pattern of responses (i.e. the proportion
of learners in Gauteng Province to the proportion of learners in the Western Cape
Province) in the categories of Assessment outcome is significantly different (Field,
2000; Agresti, 2002; Field, 2005).

Figure 4.1 shows the distribution of proportions for learners by Province and Assess-
ment outcome for the academic year 2008. The proportions favoured the Western
Cape Province than Gauteng Province in the categories Bachelor (32.40% vs. 29.46%),
Diploma (28.58% vs. 27.53%), and NSC (0.05% vs. 0.04%). Otherwise, the propor-
tions favoured Gauteng Province than Western Cape Province in the categories Fail
(25.67% vs. 22.92%) and Higher Certificate HC (17.31% vs. 16.04%).

Figure 4.2 indicates that the proportions favoured the Western Cape Province than the
Gauteng Province in the categories Bachelor (31.10% vs. 28.58%) and HC (15.24% vs.
14.04%). The proportions favoured Gauteng Province than Western Cape Province in
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Figure 4.1: Proportions of Assessment Outcome by Province: 2008
GP = Gauteng Province and WCP = Western Cape Province

the categories Diploma (27.78% vs. 27.57%) and Fail (29.58% vs. 26.04%). Otherwise,
the proportions were at par at 0.06% under the category of NSC in 2009.
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Figure 4.2: Proportions of Assessment Outcome by Province: 2009

Figure 4.3 shows that the proportions favoured the Western Cape Province than
Gauteng Province in the categories Fail (25.57% vs. 23.10%), HC (14.85% vs. 13.02%),
and NSC (0.06% vs. 0.05%). Otherwise, the proportions favoured Gauteng Province
than Western Cape Province in the categories Bachelor (33.17% vs. 30.19%) and
Diploma (30.66% vs. 29.33%).
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Figure 4.3: Proportions of Assessment Outcome by Province: 2010

The results from Pearson’s chi-square tests, as presented by Table 4.4, were found
to be highly significant (p-value < 0.001). Therefore, there is enough evidence that
the proportions of learners from Gauteng Province to the proportion of learners
from Western Cape Province were significantly different in the levels of Assessment
Outcome. Therefore, the provinces performed significantly differently in 2008 (χ2

(4) =
225.2713, p < 0.001), 2009 (χ2

(4) = 240.3896, p < 0.001) and in 2010 (χ2
(4) = 261.8518, p <

0.001).

The null hypotheses of no significant association between Assessment outcome and
Province for 2008 through 2010 are not accepted.

4.3.2 Application of Causal Models or Hierarchical Models

A classical method for estimating parameters of statistical models is maximum
likelihood (Baum, 2006). In particular, we estimate the parameter of the variance-
component model using Stata’s xtreg with mle option. The fixed-effect model2 will be
applied to Grade 12 data in order to predict the final marks. The choice of utilising
fixed-effects models is due to the fact that there is a lot of within-subject variability or
conversely, fixed effect models do not work well when subjects change little across
time or occasions (Baum, 2006).

2A fixed effects model is a statistical model that represents the observed quantities in terms of
explanatory variables that are treated as if the quantities were nonrandom.
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Table 4.4: Cross Classification of Assessment Outcome by Province
Note: Proportions [%] in Parentheses

20
08

Province Assessment Outcome Total
Bachelor Diploma Fail HC NSC

Gauteng 29134 27223 25381 17118 37 98893
(29.46) (27.53) (25.67) (17.31) (0.04 ) (100.00)

Western Cape 14572 12856 10309 7216 24 44977
(32.40) (28.58) (22.92) (16.04) (0.05) (100.00)

Total 43706 40,079 35690 24,334 61 143870
(30.38) (27.86) (24.81) (16.91) (0.04) (100.00)

(Pearson χ2
(4) = 225.2713; Pr = 0.000)

20
09

Gauteng 28417 27654 29443 13980 55 99549
(28.58) (27.78) (29.58) (14.04) (0.06) (100.00)

Western Cape 14377 12745 12040 7044 28 46234
(31.10) (27.57) (26.04) (15.24) (0.06) (100.00)

Total 42794 40339 41483 21024 83 145783
(29.35) (27.71) (28.46) (14.42) (0.06) (100.00)

(Pearson χ2
(4) = 240.3896; Pr = 0.000)

20
10

Gauteng 31301 28938 21797 12290 51 94377
(33.17) (30.66) (23.10) (13.02) (0.05) (100.00)

Western Cape 14138 13734 11974 6955 29 46830
(30.19) (29.33) (25.57) (14.85) (0.06) (100.00)

Total 45439 42672 33771 19245 80 144207
(32.18) (30.22) (23.92) (13.63) (0.06) (100.00)

(Pearson χ2
(4) = 261.8518; Pr = 0.000)

4.3.2.1 Continuous Outcome: Marks (%)

The section tests the null hypothesis that the average marks (%) between the two
provinces are not different. First, the unadjusted models were considered. Secondly,
the adjusted models were fitted to check the effect of gender, quintile, then gender
and quintile.

The null hypothesis (H0) and alternative hypothesis (H1) are given as:

H0 : µ̂GP = µ̂WCP

H1 : µ̂GP 6= µ̂WCP

where µ̂GP and µ̂WCP are estimated averages for Gauteng Province and Western
Cape Province, respectively.

A. Unadjusted Model

The hypotheses that the average marks in the two provinces are not different are
tested agains the alternative hypotheses that the average marks are different.
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The results from unadjusted models for academic years 2008, 2009 and 2010 are
given by Table 4.5, Table 4.6 and Table 4.7, respectively. The estimates from
unadjusted models are crude estimates.

The crude estimate, as depicted by Table 4.5, indicates that Western Cape
Province performed significantly better than Gauteng Province in 2008. In par-
ticular, for every percentage increase in marks obtained, learners in Western
Cape Province were expected to score 0.782% more than the learners in Gauteng
Province.

Table 4.5: Comparison of Provinces in 2008

Variables marks sigma u sigma e

Western Cape Province 0.782***
(0.0727)

Constant 49.41*** 11.71*** 13.38***
(0.0406) (0.0260) (0.0102)

Observations 1, 003, 954 1, 003, 954 1, 003, 954
Number of candidate 143, 870 143, 870 143, 870

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Gauteng Province is a Reference Province

Therefore, the hypothesis of no average difference between the study provinces
was not accepted in favour of alternative hypothesis that the average marks
between the two provinces were different. Thus, Western Cape Province per-
formed significantly better than Gauteng Province in 2008 academic year.

The unadjusted estimate as shown in Table 4.6 indicates that Western Cape
Province performed significantly better than Gauteng Province in 2009. For every
percentage increase in marks obtained, learners from Western Cape Province
are expected to score 0.957% more than the learners from Gauteng Province.

The hypothesis of no average difference is not accepted in favour of alternative
hypothesis that the average marks between the two provinces are different. Thus,
Western Cape Province performed significantly better than Gauteng Province in
2009 academic year.

Table 4.7 presents the results of the unadjusted regression model. The crude
estimate indicates that the performance of the Western Cape Province was signi-
ficantly different from Gauteng Province. In particular, Western Cape Province
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Table 4.6: Comparison of Provinces in 2009

Variables marks sigma u sigma e

Western Cape Province 0.957***
(0.0694)

Constant 49.13*** 11.08*** 14.17***
(0.0391) (0.0254) (0.0107)

Observations 1, 018, 728 1, 018, 728 1, 018, 728
Number of candidate 145, 783 145, 783 145, 783

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Gauteng Province is a Reference Province

was expected to score a significant final mark of 0.302 less than Gauteng Province,
with every 1% increase in marks obtained.

Table 4.7: Comparison of Provinces in 2010

Variables marks sigma u sigma e

Western Cape Province −0.302***
(0.0701)

Constant 51.10*** 11.23*** 13.72***
(0.0404) (0.0258) 0.0105)

Observations 985, 956 985, 956 985, 956
Number of candidate 141, 207 141, 207 141, 207

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Gauteng Province is a Reference Province

Therefore, the hypothesis of no average difference is not accepted in favour of
alternative hypothesis that the average marks between the two provinces are
different. Thus, learners from the Western Cape Province performed significantly
better than learners from the Gauteng Province in 2010 academic year.

The (null) hypotheses that the average performances between the two provinces
were not significantly different in 2008 through 2010 academic years are not
accepted. The average differences favoured the Western Cape Province. In
other words, learners from Western Cape Province were expected to significantly
score higher marks than learners from Gauteng Province in 2008, 2009 and 2010
academic years.

B. Adjusted Models
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This section deals with the comparisons of the two provinces after controlling for
other covariates. That is, we want to check or determine how provinces differed
after adjusting for quintile, gender, and quintile and gender.

a) Adjusted Models for 2008

The comparisons between the two provinces is determined after adjusting for
quintile, gender, and quintile and gender. In another words, we compare the
average marks (%) between the two provinces after controlling for the said
covariates.

i) Adjusting for Quintile

The hypothesis of no average differences between the two provinces after
adjusting for quintile is tested. To be precise, the null hypothesis and
alternative hypothesis are:

(H0): µ̂GP = µ̂WCP given that quintile is constant.

(H1): µ̂GP 6= µ̂WCP given that quintile is constant.

The result indicates that learners from Western Cape Province were ex-
pected to significantly score higher marks than learners from Gauteng
Province. Strictly speaking, Western Cape Province is expected to signi-
ficantly score 2.091 final marks more than Gauteng Province given that
quintile was constant. Table 4.8 summarises the output of regression
model, and makes this explanation more explicit.

Therefore, there is a significant difference in average marks between
Gauteng Province and Western Cape Province when the Quintile is kept
constant. In particular, the average difference favoured Western Cape
Province after adjusting for quintile.

Therefore, hypothesis of no average difference between the two provinces
was not accepted. Thus, we accepted (H1), the hypothesis that Gauteng
Province and Western Cape Province performed significantly differently
after adjusting for Quintile.”

ii) Adjusting for Gender

The null hypothesis is stated as: There is no significant average difference
in marks (%) between the two provinces after adjustibg for gender. To be
precise, we state the null hypothesis (H0) and alternative hypothesis (H1)
as:

(H0): µ̂GP = µ̂WCP given that Gender is constant.
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Table 4.8: Comparison of Provinces : 2008
Adjusting for Quintile

variable marks sigma u sigma e

Western Cape Province 2.091***
(0.0645)

quintile 2 −0.154
(0.127)

quintile 3 1.864***
(0.116)

quintile 4 4.093***
(0.114)

quintile 5 15.75***
(0.108)

Constant 42.06*** 9.617*** 13.38***
(0.102) (0.0231) (0.0102)

Observations 994, 353 994, 353 994, 353
Number of candidate 142, 483 142, 483 142, 483

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

Gauteng Provive is a Reference Province
Quintile 1 is a Reference quintile

(H1): µ̂GP 6= µ̂WCP given that Gender is constant.

The result from adjusted model, as presented by Table 4.9, indicates that
learners from Western Cape Province have significantly performed better
than learners from Gauteng Province after controlling for gender. That is,
learners from Western Cape Province were expected to significantly score
0.746 more final marks than learners from Gauteng Province when gender
was kept constant.

The hypothesis that the difference between the two provinces was not sig-
nificant was rejected. Therefore, the two provinces performed significantly
different. In particular, the Western Cape Province performed significantly
better than Gauteng Province after adjusting for gender.

iii) Adjusting for both Gender and Quintile

The hypothesis that Western Cape Province and Gauteng Province did not
performe significantly different after adjusting for both gender and quintile
was tested. The null and alternative hypotheses are:
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Table 4.9: Comparison of Provinces : 2008
Adjusting for Gender

Variables Marks sigma u sigma e

Western Cape Province 0.746***
(0.0726)

Gender 1.391***
(0.0677)

Constant 48.65*** 11.69*** 13.38***
(0.0548) (0.0260) (0.0102)

Observations 1, 003, 954 1, 003, 954 1, 003, 954
Number of candidate 143, 870 143, 870 143, 870

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

Gauteng Provive is a Reference Province

(H0): µ̂GP = µ̂WCP given that both learner gender and school quintile
are constant.

(H1): µ̂GP 6= µ̂WCP given that both learner gender and school quintile
are constant.

The results are presented by Table 4.10. It can be read that learners from
Western Cape Province significantly performed better than learners from
Gauteng Province. After controlling for gender and quintile; we expected
learners from Western Cape Province to score 2.051 marks more than
learners from Gauteng Province (p < 0.01).

The hypothesis of insignificant differences between the two provinces after
adjusting for both quintile and gender was rejected, and the Western Cape
Province performed significantly better than Gauteng Province.

Summary

The Western Cape Province performed significantly better than Gauteng
Province in 2008. Both unadjusted and adjusted models (here, adjusting
for gender, quintile, and gender and quintile) indicated that Western Cape
Province performed significantly better than Gauteng Province. The adjusted
models indicate that Western Cape Province was expected to score at least
0.7 points more than Gauteng Province with every 1% increase in final mark.

We note that if schools had same resources (belonged to the same quintile)
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Table 4.10: Comparison of Provinces : 2008
Adjusting for Quintile and Gender

Variables marks sigma u sigma e

Western Cape Province 2.051***
(0.0643)

Female 1.700***
(0.0579)

quintile 2 −0.157
(0.127)

quintile 3 1.889***
(0.116)

quintile 4 4.091***
(0.114)

quintile 5 15.80***
(0.108)

Constant 41.11*** 9.580*** 13.38***
(0.107) (0.0231) (0.0102)

Observations 994, 353 994, 353 994, 353
Number of candidate 142, 483 142, 483 142, 483

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

Gauteng Province is a Reference province
Quintile 1 is a Reference quintile

then learners from the Western Cape Province would significantly perform
better than learners from Gauteng Province. Also, if learners from Gauteng
Province and Western Cape Province belonged to the same gender-category
(same sex) then one would expect learners from Western Cape Province to
perform significantly better than learners from Gauteng Province. Similarly, if
all schools were equally resourced and learners belonged to the same gender-
category then one would expect learners from Western Cape Province to
perform significantly better than learners from Gauteng Province.

Therefore, there is a sufficient evidence to support the fact that Western
Cape Province performed significantly better than Gauteng Province in 2008
academic year.

b) Adjusted models for 2009

This section presents the results of the adjusted models as fitted to the 2009
data. The average marks (%) between the provinces are compared after
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adjusting for Quintile, Gender, Gender and Quintile.

i) Adjusting for Quintile

The hypothesis of no average differences between the two provinces
after adjusting for quintile is tested. Here, the null hypothesis (H0) and
alternative hypothesis (H1) are:

(H0): µ̂GP = µ̂WCP given that quintile is constant.

(H1): µ̂GP 6= µ̂WCP given that quintile is constant.

Table 4.11 presents the results of the regression model adjusting for
Quintile. The learners from Western Cape Province had significantly
performed better than learners from Gauteng Province (p < 0.01). With
every 1% increase in marks obtained learners from Western Cape Province
were expected to score 2.268 marks more than the learners from Gauteng
Province.

Table 4.11: Comparison of Provinces : 2009
Adjusting for Quintile

Variables marks sigma u sigma e

Western Cape Province 2.268***
(0.0631)

quintile 2 0.814***
(0.126)

quintile 3 2.048***
(0.113)

quintile 4 3.869***
(0.112)

quintile 5 14.70***
(0.105)

Constant 41.98*** 9.276*** 14.17***
(0.0994) (0.0232) (0.0108)

Observations 1, 005, 222 1, 005, 222 1, 005, 222
Number of candidate 143, 828 143, 828 143, 828

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

Gauteng Province is a Baseline province
Quintile 1 is a Baseline quintile

The hypothesis that the average marks (%) between the provinces after
adjusting for quintile are not different isrejected. Thus, there is a signific-
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ant difference in marks between Gauteng Province and Western Cape
Province after controlling for quintile; and the difference favoured the
Western Cape Province.

ii) Adjusting for Gender

The hypothesis of no average differences between the two provinces after
adjusting for gender is tested. The null hypothesis (H0) and alternative
hypothesis (H1) are:

(H0): µ̂GP = µ̂WCP given that gender is constant.

(H1): µ̂GP 6= µ̂WCP given that gender is constant.

Table 4.12 indicates that learners from Western Cape Province had per-
formed significantly better than learners from Gauteng Province (p < 0.01).
For every 1% increase in marks obtained one would expect learners from
Western Cape Province to score 0.921 marks more than the learners from
Gauteng Province.

Table 4.12: Comparison of Provinces : 2009
Adjusting for Gender

Variables marks sigma u sigma e

Western Cape Province 0.921***
(0.0693)

Gender 1.488***
(0.0649)

Constant 48.32*** 11.06*** 14.17***
(0.0526) (0.0254) (0.0107)

Observations 1, 018, 728 1, 018, 728 1, 018, 728
Number of candidate 145, 783 145, 783 145, 783

Standard errors in parentheses
*** p< 0.01, ** p< 0.05, * p< 0.1

Gauteng Province is a Baseline province

Therefore, the hypothesis (H0) is rejected, and we conclude that there is
enough evidence that learners from Western Cape Province performed
significantly better than learners from Gauteng Province given that gender
is constant.

iii) Adjusting for Gender and Quintile

The hypothesis that Gauteng Province and Western Cape Province did
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perform differently after controlling for gender and quintile is tested against
the alternative hypothesis that the average performances between the two
provinces are different.

In another words, the null hypothesis (H0) and the alternative hypothesis
(H1) are:

(H0): µ̂GP = µ̂WCP given that learner gender and school quintile are
constant.

(H1): µ̂GP 6= µ̂WCP given that learner gender and school quintile are
constant.

Learners from Western Cape Province scored significantly higher marks
than learners from Gauteng Province (p < 0.01). In particular, as depicted
by Table 4.13, for every 1% increase in marks obtained one would expect
learners from Western Cape Province to significantly score 2.231 marks
more than the learners from Gauteng Province.

There is sufficient evidence that learners from Western Cape Province
performed significantly better than learners from Gauteng Province. There-
fore, the null hypothesis was rejected.

Summary

As in 2008, the Western Cape Province performed significantly better than
Gauteng Province in 2009. Both the crude and adjusted models indicate that
Western Cape Province performed significantly better than Gauteng Province.
The adjusted models indicate that Western Cape Province was expected to
score at least 2% points significantly more than Gauteng Province with every
1% increase in final mark.

We note that if all schools were resourced equally then learners from the
Western Cape Province would perform significantly better than learners from
Gauteng Province. Also, if learners from Gauteng Province and Western Cape
Province belonged to the same gender-category (same sex) then one would
expect learners from Western Cape Province to perform significantly better
than learners from Gauteng Province.

Similarly, if all schools were equally resourced and learners belonged to the
same gender-category then one would expect learners from Western Cape
Province to perform significantly better than learners from Gauteng Province.

Therefore, there is a sufficient evidence to support the fact that Western
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Table 4.13: Comparison of Provinces : 2009
Adjusting for Gender and Quintile

Variables marks sigma u sigma e

Western Cape Province 2.231***
(0.0629)

Gender 1.765***
(0.0568)

quintile 2 0.805***
(0.126)

quintile 3 2.071***
(0.113)

quintile 4 3.869***
(0.112)

quintile 5 14.75***
(0.104)

Constant 40.99*** 9.235*** 14.17***
(0.104) (0.0232) (0.0108)

Observations 1, 005, 222 1, 005, 222 1, 005, 222
Number of candidate 143, 828 143, 828 143, 828

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

Gauteng Provice is a reference province
Quintile 1 is a reference quintile

Cape Province performed significantly better than Gauteng Province in 2009
academic year.

c) Adjusted models for 2010

This section gives the results of the adjusted models for 2010 academic year.
We compare the average marks between the two provinces after controlling
for gender, quintile, and gender and quintile.

i) Adjusting for Quintile

We test the null hypothesis (H0) against the alternative hypothesis (H1)
which are stated as:

(H0): The average marks between the two provinces are not different
given that quintile is constant,

(H1): The average marks between the two provinces are significantly
different given that quintile is constant.



112 Data Analysis and Interpretation

Learners from Western Cape Province had significantly higher scores
than learners from Gauteng Province (p < 0.01) after adjusting for school
quintile. In another words, learners from Western Cape Province are
expected to significantly score about 1.30 more than the learners from
Gauteng Province with every 1% increase in marks obtained (p < 0.01).
Table 4.14 summarises the output of the fitted model.

Table 4.14: Comparison of Provinces : 2010
Adjusting for Quintile

Variables marks sigma u sigma e

Western Cape Province 1.290***
(0.0650)

quintile 2 0.545***
(0.129)

quintile 3 1.633***
(0.116)

quintile 4 3.265***
(0.114)

quintile 5 13.67***
(0.106)

Constant 44.37*** 9.656*** 13.71***
(0.100) (0.0238) (0.0107)

Observations 965, 114 965, 114 965, 114
Number of candidate 138, 189 138, 189 138, 189

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1

Gauteng Provice is a reference province
Quintile 1 is a reference quintile

The hypothesis that the average marks between the two provinces are not
different after adjusting for school quintile is rejected. Therefore, there is a
sufficient evidence that learners from Western Cape Province performed
significantly better than learners from Gauteng Province after controlling
for school quintile.

ii) Adjusting for Gender

The null hypothesis of no average differences between the two provinces
after adjusting for gender is tested. The null hypothesis (H0) and alternative
hypothesis (H1) are:

(H0): µ̂GP = µ̂WCP given that gender is constant.
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(H1): µ̂GP 6= µ̂WCP given that gender is constant.

Learners from Western Cape Province had significantly lower scores than
learners from Gauteng Province after adjusting for gender. In another
words, learners from Western Cape Province were expected to significantly
score about 0.33 marks less than the learners from Gauteng Province when
gender is kept constant (p < 0.01). Table 4.15 presents the summarised
results.

Table 4.15: Comparison of Provinces : 2010
Adjusting for Gender

Variables marks sigma u sigma e

Western Cape Province −0.326***
(0.0700)

Female 1.335***
(0.0663)

Constant 50.37*** 11.21*** 13.72***
(0.0543) (0.0257) (0.0105)

Observations 985, 817 985, 817 985, 817
Number of candidate 141, 184 141, 184 141, 184

Standard errors in parentheses
*** p< 0.01, ** p< 0.05, * p< 0.1

Gauteng Provice is a reference province
Male is a reference level of gender

The hypothesis that the average marks between the two provinces are not
statistically different is rejected. Therefore, we have sufficient evidence to
conclude that after adjusting for gender - learners from Gauteng Province
performed sgnificantly better that learners from Western Cape Province in
2010.

iii) Adjusting for Gender and Quintile

We test the null hypothesis of no average differences between the two
provinces after adjusting for gender and school quintile. The null hypo-
thesis (H0) and alternative hypothesis (H1) are stated as:

H0: µ̂GP = µ̂WCP after adjusting for gender and school quintile.

H1: µ̂GP 6= µ̂WCP after adjusting for gender and quintile.

The result from adjusted model indicates that learners from Western
Cape Province were significantly different from those in Gauteng Province
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(p < 0.01). Adjusting for both Gender and Quintile, (see Table 4.16), the
learners from Western Cape Province were expected to score about 1.27
marks more than learners from Gauteng Province.

Table 4.16: Comparison of Provinces : 2010
Adjusting for Quintile and Gender

Variables marks sigma u sigma e

Western Cape Province 1.268***
(0.0648)

Female 1.648***
(0.0593)

quintile 2 0.550***
(0.129)

quintile 3 1.669***
(0.116)

quintile 4 3.284***
(0.114)

quintile 5 13.72***
(0.106)

Constant 43.43*** 9.621*** 13.71***
(0.106) (0.0238) (0.0107)

Observations 964, 994 964, 994 964, 994
Number of candidate 138, 169 138, 169 138, 169

Standard errors in parentheses
*** p< 0.01, ** p< 0.05, * p< 0.1

Gauteng Provice is a reference province
Male is a reference level of gender

Quintile 1 is a reference quintile

The hypothesis that the average marks between the two provinces were
not statistically different is rejected. Therefore, we have sufficient evidence
to conclude that after adjusting for gender and quintile then learners from
Western Cape Province performed significantly better than learners from
Gauteng Province in 2010.

Summary

All adjusted models indicated that learners from Western Cape Province per-
formed significantly better than learners from Gauteng Province with the exception
of when the adjustment was made for only gender.

Therefore, if all schools were equally resourced and all learners were of the
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same gender then learners from Western Cape Province would score significantly
higher marks than learners from Gauteng Province. Similarly, if all schools were
equally resourced then one would expect learners from Western Cape Province
to score significantly higher marks than learners from Gauteng Province. The
adjustment for gender only suggests that learners from Gauteng Province would
score significantly higher marks than learners from Western Cape Province.

4.3.2.2 Binary outcome: Final (Fail [not promoted] or Pass [promoted])

The two provinces, Western Cape and Gauteng, are compared over the dicho-
tomous outcome, final, which indicates whether or not a learner passed Grade
12. The likelihood of observing a pass (promoted) or not pass (not promoted)
between the two provinces is determined. The parameter of interest is odds ratio
(OR). The logistic regression models were fitted for 2008, 2009 and 2010 datasets.
The models account for ICC.

A) Unadjusted Models

The section tests the null hypothesis that the average marks (%) between
the two provinces are not different. Firstly, the unadjusted models were
considered. Secondly, the adjusted models were fitted to check the effect of
gender, quintile, and gender and quintile.

The null hypothesis which says that the proportions in the two provinces are
not different (H0) and alternative hypothesis which says that the proportions
in the two provinces are significantly different (H1) are given as:

H0 : p̂GP = p̂WCP

H1 : µ̂GP 6= p̂WCP

where p̂GP and p̂WCP are estimated proportions for Gauteng Province and
Western Cape Province, respectively.

a) Unadjusted Model: 2008

We test the hypothesis that the proportions in the two provinces are not
significantly different (H0) against the hypothesis that the proportions are
significantly different (H1).

The two provinces are significantly different since learners from Western
Cape Province were about 1.16 more likely than learners from Gauteng
Province to pass Grade 12 in 2008. As depicted by Table 4.17, the
parameters of interest are given as p < 0.01, OR = 1.161126, and 95%
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CI = (1.131252 − 1.191788). Therefore, the odds of passing Grade 12
increased by a factor of 1.16 for learners in the Western Cape Province
over that of learners in Gauteng Province.

Table 4.17: Comparison of Provinces : 2008
Crude Estimates

Final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Western Cape
Province 1.161126 .0154412 11.23 0.000 1.131252 1.191788
cons 2.897499 .0209761 146.95 0.000 2.856677 2.938904

Gauteng Provice is a reference province

Therefore, the hypothesis that the proportion of learners who passed Grade
12 to those who failed Grade 12 in the two provinces is the same is rejected.
We have sufficient evidence that learners in the Western Cape Province
were significantly more likely than learners in Gauteng Province to pass
Grade 12 in 2008 academic year.

b) Unadjusted Model: 2009

We test the hypothesis that the proportions in the two provinces are not
significantly different (H0) against the hypothesis that the proportions are
significantly different (H1).

Learners from Western Cape Province than learners from Gauteng Province
were about 1.19 more likely to pass Grade 12 (p < 0.01, OR = 1.192776, 95%
CI : 1.163649− 1.222632). In another words, the odds of passing Grade 12
increased significantly by a factor of about 1.19 for learners from Western
Cape Province over that of learners from Gauteng Province, as can be
seen from Table 4.18.

Table 4.18: Comparison of Provinces : 2009
Crude Estimates

Final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Western Cape
Province 1.192776 .0150453 13.98 0.000 1.163649 1.222632
cons 2.381737 .0164666 125.52 0.000 2.349681 2.414231

Gauteng Provice is a reference province

Therefore, the hypothesis that the proportion of learners who passed Grade
12 to the proportion of learners who failed Grade 12 in the two provinces
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was the same is rejected. We have sufficient evidence that learners in
the Western Cape Province were significantly more likely than learners in
Gauteng Province to pass Grade 12 in 2009 academic year.

c) Unadjusted Model: 2010

The unadjusted model was fitted to test for difference in proportions
between the two provinces. In particular, the null hypothesis of no dif-
ference in proportions was tested against the alternative hypothesis that
the proportions between the two provinces are significantly different.

Learners from Western Cape Province than learners from Gauteng Province
were about 0.87 less likely to pass Grade 12 (p < 0.01, OR = 0.8741196, 95%
CI : 0.8520777− 0.8967317). In another words, the odds of passing Grade
12 decreased by a factor of about 0.87 for learners from Western Cape
Province over that of learners from Gauteng Province (as can be seen
from Table 4.19).

Table 4.19: Comparison of Provinces : 2010
Crude Estimates

Final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Western Cape
Province .8741196 .0113903 −10.32 0.000 .8520777 .8967317
cons 3.331823 .0255799 156.76 0.000 3.282063 3.382338

Gauteng Provice is a reference province

The hypothesis of no difference in proportions between the two provinces is
rejected. That is, the proportion of learners who passed Grade 12 in West-
ern Cape Province was significantly lower than that of those in Gauteng
Province. Therefore, learners in Gauteng Province were significantly more
likely than learners in Western Cape Province to pass Grade 12 in 2010.

Summary

The crude estimates indicate that learners from Western Cape Province were
significantly more likely than learners from Gauteng Province to pass Grade 12
in 2008 and in 2009. However, the odds of passing Grade 12 favoured learners
from Gauteng Province than learners from Western Cape Province in 2010.

B) Adjusted Model

This section presents the results of adjusted models when the outcome is
a binary outcome, final. First, the model will adjust for quintile then adjust
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for gender before adjusting for both gender and quintile. The results are
presented in tabular formats, as in the preceding sections.

a) Adjusted model for 2008

This section presents the results of the adjusted models as fitted to the
2008 data. The proportions of learners who passed Grade 12 to those who
did not pass Grade 12 in the two provinces are compared after adjusting
for Quintile, Gender and then both Gender and Quintile.

i) Adjusting for Quintile

The hypothesis that the proportions in the two provinces are not dif-
ferent after controlling for school quintile (H0) is tested against the
alternative hypothesis that the proportions in the two provinces are
significantly different after adjusting for quintile (H1). Symbolically,

H0: p̂GP = p̂WCP after controlling for school quintile.

H1: p̂GP 6= p̂WCP after controlling for school quintile.

Table 4.20 presents the estimates after adjusting for school quintile.
The result indicates that learners from Western Cape Province had
significantly more chances than learners from Gauteng Province of
passing Grade 12 in 2008 (p < 0.001).

To be precise, learners from Western Cape Province than learners
from Gauteng Province were about 1.509 more likely to pass Grade
12 in 2008 (OR = 1.499607, 95% CI : 1.457− 1.544). Thus the odds of
passing Grade 12 increased by a factor of about 1.50 for learners in
the Western Cape Province over that of learners in Gauteng Province.

Table 4.20: Comparison of Provinces : 2008
Adjusting for Quintile

Final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Western Cape
Province 1.499607 0.0222416 27.32 0.000 1.456642 1.54384
quintile 2 1.039562 0.0246533 1.64 0.102 0.992349 1.089022
quintile 3 1.506394 0.0333945 18.48 0.000 1.442344 1.573289
quintile 4 2.086933 0.0463103 33.15 0.000 1.998112 2.179703
quintile 5 9.23663 0.2274573 90.28 0.000 8.801409 9.693372
cons 1.144073 0.0224871 6.85 0.000 1.100837 1.189007

Gauteng Provice is a reference province
Quintile 1 is a reference quintile
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There is sufficient evidence to support the alternative hypothesis. In
another words, we reject the null hypothesis. Therefore, the two
provinces performed significantly differently. Hence, learners from
Western Cape Province than learners from Gauteng Province had
significantly better chances of passing Grade 12.

ii) Adjusting for Gender

The hypothesis that the proportions in the two provinces are not dif-
ferent after controlling for gender (H0) is tested against the alternative
hypothesis that the proportions in the two provinces are significantly
different after adjusting for gender (H1). These hypotheses may be
stated as:

H0: p̂GP = p̂WCP after controlling for gender.

H1: p̂GP 6= p̂WCP after controlling for gender.

Learners from Western Cape Province than learners from Gauteng
Province were 1.16 more likely to pass (p < 0.01, OR = 1.161375, 95%CI :
1.131487− 1.192053 ). The odds of passing Grade 12 increased by a
factor of about 1.16 for learners from Western Cape Province over that
of learners from Gauteng Province. Table 4.21 makes this explanation
more explicit.

Table 4.21: Comparison of Provinces : 2008
Adjusting for Gender

final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Western Cape
Province 1.161375 0.015449 11.25 0.000 1.131487 1.192053
Female 0.991784 0.012109 −0.68 0.499 0.9683313 1.015804
constant 2.910582 0.028658 108.51 0.000 2.854953 2.967295

Gauteng Provice is a reference province
Male is a reference gender

The hypothesis of no difference is rejected. Therefore, there is a
sufficient evidence that learners from Western Cape Province than
learners from Gauteng Province had better chances of passing Grade
12 after adjusting for gender.

iii) Adjusting for Gender and Quintile

The hypothesis that the proportions in the two provinces are not differ-
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ent after controlling for gender and school quintile (H0) is tested against
the alternative hypothesis that the proportions in the two provinces are
significantly different after adjusting for gender and school quintile (H1).
These hypotheses may be stated as:

H0: p̂GP = p̂WCP after controlling for gender.

H1: p̂GP 6= p̂WCP after controlling for gender.

Learners from Western Cape Province than learners from Gauteng
Province were 1.50 more likely to pass Grade 12 (p < 0.01, OR =
1.498202, 95% CI : 1.455254−1.542419). After adjusting for both gender
and quintile, as can be seen from Table 4.22, the odds of passing
Grade 12 increased by a factor of about 1.50 for learners from Western
Cape Province over that of learners from Gauteng Province.

Table 4.22: Comparison of Provinces : 2008
Adjusting for Quintile and Gender

final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Western Cape 1.498202 .0222332 27.24 0.000 1.455254 1.542419
gender 2 1.023837 .0132263 1.82 0.068 .9982391 1.050091
quintile 2 1.039447 .0246515 1.63 0.103 .9922362 1.088903
quintile 3 1.506705 .0334028 18.49 0.000 1.442639 1.573617
quintile 4 2.086581 .0463038 33.14 0.000 1.997772 2.179337
quintile 5 9.240944 .2275759 90.29 0.000 8.805497 9.697925
constant 1.129395 .0235943 5.82 0.000 1.084085 1.176599

Gauteng Provice is a reference province
Male is a reference gender

Quintile 1 is a reference quintile

There is sufficient evidence that after controlling for gender and school
quintile then the proportion of learners who passed to the proportion of
learners who did not pass in the two provinces is significantly different.
In particular, learners from Western Cape Province than learners from
Gauteng Province had better chances to pass Grade 12 when school
quintile and learner gender are kept constant. Therefore, the null
hypothesis was rejected.

Summary

Both crude estimates and adjusted estimates indicated that learners in the
Western Cape Province than learners from Gauteng Province were more
likely to pass Grade 12 in 2008.
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b) Adjusted models for 2009

This section presents the adjusted models as fitted to the 2009 dataset.
As with adjusted models for 2008, Quintile, Gender, and then both Quintile
and Gender will be adjusted when determining the estimates (in particular,
the odds ratios).

i) Adjusting for Quintile

The hypothesis that the proportion of learners who passed to those who
did not pass in the two provinces are not different is tested against the
hypothesis that the proportion of learners who passed to those who did
not pass in the two provinces are significantly different after adjusting
for school quintile. The null (H0) and alternative (H1) hypotheses may
be stated as:

H0: p̂GP = p̂WCP after controlling for school quintile.

H1: p̂GP 6= p̂WCP after controlling for school quintile.

The learners from Western Cape Province than learners from Gauteng
Province were about 1.51 more likely to pass Grade 12 (p < 0.01, OR =
1.508262, 95%CI : 1.467188 − 1.550486 ). As indicated by Table 4.23,
the odds of passing Grade 12 increased by a factor of about 1.51
for learners from Western Cape Province over that of learners from
Gauteng Province after keeping quintile constant.

Table 4.23: Comparison of Provinces : 2009
Adjusting for Quintile

final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Western Cape
Province 1.508262 .0212471 29.17 0.000 1.467188 1.550486
quintile 2 1.207525 .0286442 7.95 0.000 1.152669 1.264993
quintile 3 1.460334 .0313882 17.62 0.000 1.400092 1.523168
quintile 4 1.86023 .0399798 28.88 0.000 1.783499 1.9402634
quintile 5 7.748586 .1760387 90.12 0.000 7.411126 8.101413
cons .9581361 .0183191 −2.24 0.025 .9228957 .9947222

Quintile 1 is a reference quintile
Gauteng Province is a reference province

The hypothesis that the proportions in the two provinces are not signi-
ficantly different (H0) is rejected. Therefore, we accept the alternative
hypothesis that the proportions in the two provinces are significantly
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different. We have sufficient evidence to say after controlling for school
quintile in 2009 - learners in the Western Cape Province than learners
in Gauteng Province were significantly more likely to pass Grade 12.

ii) Adjusting for Gender

The hypothesis that the proportion of learners who passed to those
who did not pass in the two provinces are not different is tested against
the hypothesis that the proportion of learners who passed to those
who did not pass in the two provinces are significantly different after
adjusting for gender. The null (H0) and alternative (H1) hypotheses
may be stated as:

H0: p̂GP = p̂WCP after adjusting for gender.

H1: p̂GP 6= p̂WCP after adjusting for gender.

The odds of passing Grade 12 in 2009 significantly favoured the learners
from Western Cape Province than learners from Gauteng Province.

Table 4.24 indicates that learners from Western Cape Province than
learners from Gauteng Province were about 1.19 more likely to pass
Grade 12 (p < 0.01, OR = 1.193263, 95% CI: 1.164117 − 1.223139).
However, gender is not a significant predictor of whether or not a
learner will pass (p = 0.148).

Table 4.24: Comparison of Provinces : 2009
Adjusting for Gender

final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Western Cape Province 1.193263 .0150553 14.00 0.000 1.164117 1.223139
Gender .9833113 .0114418 −1.45 0.148 .9611397 1.005994
cons 2.40371 .0225791 93.36 0.000 2.35986 2.448374

Gauteng Province is a reference province

We reject the null hypothesis that the proportions in the two provinces
are the same. Therefore, we have sufficient evidence that learners
from Western Cape Province than learners from Gauteng Province
had significantly better chances to pass Grade 12 after adjusting for
gender in 2009 academic year.

iii) Adjusting for Quintile and Gender

The hypothesis that the proportion of learners who passed to those
who did not pass in the two provinces are not different is tested against
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the hypothesis that the proportion of learners who passed to those
who did not pass in the two provinces are significantly different after
adjusting for both school quintile and gender.

The null (H0) and alternative (H1) hypotheses may be stated as:

H0: p̂GP = p̂WCP after adjusting for both school quintile and gender,
and

H1: p̂GP 6= p̂WCP after adjusting for both school quintile and gender.

Table 4.25 indicates that learners from Western Cape Province than
learners from Western Cape Province were about 1.51 more likely to
pass Grade 12 in 2009 after adjusting for Quintile and Gender (p < 0.01,
OR = 1.507618, 95% CI : 1.466547− 1.549838).

In another words, the odds of passing Grade 12 increased by a factor
of about 1.51 for learners from Western Cape Province over that of
learners from Gauteng Province. We note that Quintile is a signific-
ant predictor of pass or not pass (p < 0.001), while gender is not a
significant predictor (p = 0.263).

Table 4.25: Comparison of Provinces : 2009
Adjusting for Quintile and Gender

final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Werstern Cape
province 1.507618 .0212455 29.13 0.000 1.466547 1.549838
gender 1.01388 .0124875 1.12 0.263 .9896975 1.038652
quintile 2 1.207417 .0286422 7.95 0.000 1.152564 1.26488
quintile 3 1.460517 .031393 17.62 0.000 1.400265 1.52336
quintile 4 1.86013 .0399781 28.88 0.000 1.783402 1.940159
quintile 5 7.750707 .1760974 90.13 0.000 7.413135 8.103652
cons .9508886 .0192914 −2.48 0.013 .9138201 .9894607

Quintile 1 is a reference quintile
Gauteng Province is a reference province

The null hypothesis is rejected, and we conclude that the proportions
in the two provinces are significantly different. Therefore, learners from
Western Cape Province than learners from Gauteng Province were
more likely to pass Grade 12 after adjusting for both gender and school
quintile.

Summary
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Learners from Western Cape Province than learners from Gauteng Province
were more likely to pass Grade 12 in 2009. All adjusted models indicate
that the chance for learners from Western Cape Province increased by a
factor of about 1.50 over that of Gauteng Province.

Precisely, if all learners belonged to the same gender-category (i.e., all
learners were males or all learners were females) and all schools were
equally resourced then the odds of passing Grade 12 would favour learners
from Western Cape Province than learners from Gauteng Province. There-
fore, the evidence to support the fact that learners from Western Cape
Province would have better chances of passing Grade 12 than learners
from Gauteng Province is sufficient.

c) Adjusted models for 2010

This section presents the adjusted models as fitted to the 2010 dataset. As
with adjusted models for 2008 and 2009, Quintile, Gender, and then both
Quintile and Gender will be adjusted when determining the estimates.

i) Adjusting for Quintile

We test the hypothesis that after adjusting for school quintile - the
proportion of learners who passed Grade 12 to the proportion of those
who did not pass Grade 12 in the two provinces are not different
(H0) againt the hypothesis that the proportion of learners who passed
Grade 12 to the proportion of learners did not pass Grade 12 in the two
provinces are significantly different (H1).

We may state the null hypothesis and alternative hypothesis as follows:

H0: p̂GP = p̂WCP after adjusting for school quintile , and

H1: p̂GP 6= p̂WCP after adjusting both school quintile.

The odds of passing Grade 12 in 2010 favoured learners from Western
Cape Province over learners from Gauteng Province. As shown in
Table 4.26, after adjusting for Quintile, learners from Western Cape
Province than learners from Gauteng were about 1.1 more likely to
pass Grade 12 (p < 0.01, OR = 1.090165, 95% CI: 1.060064− 1.12112).
Thus, the odds of passing Grade 12 increased by a factor of about 1.1
for learners from Western Cape Province over that of learners from
Gauteng Province.

The hypothesis of no difference in proportions between the two provinces
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Table 4.26: Comparison of Provinces : 2010
Adjusting for Quintile

final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Western Cape
Province 1.090165 0.0155739 6.04 0.000 1.060064 1.121120
quintile 2 1.145699 0.0276478 5.64 0.000 1.092772 1.201190
quintile 3 1.373247 0.0301596 14.44 0.000 1.315389 1.433649
quintile 4 1.749544 0.0383364 25.53 0.000 1.675996 1.826318
quintile 5 5.890063 0.1346791 77.55 0.000 5.631924 6.160034
cons 1.486703 0.0284356 20.73 0.000 1.432002 1.543494

Quintile 1 is a reference quintile
Gauteng Province is a reference province

isrejected. Therefore, we have sufficient evidence to conclude that
learners from Western Cape Province were more likely than learners
from Gauteng Province to pass Grade 12 after adjusting for school
quintile.

ii) Adjusting for Gender

We test the hypothesis that after adjusting for gender - the proportion
of learners who passed Grade 12 to the proportion of those who did
not pass Grade 12 in the two provinces are not different (H0) against
the hypothesis that the proportion of learners who passed Grade 12 to
the proportion of learners did not pass Grade 12 in the two provinces
are significantly different (H1).

We may state the null hypothesis and alternative hypothesis as follows:

H0: p̂GP = p̂WCP after adjusting for gender and

H1: p̂GP 6= p̂WCP after adjusting for gender.

Table 4.27 presents the results of the adjusted model (after adjusting
for Gender). It can be seen that learners from Western Cape Province
than learners from Gauteng Province were 0.87 less likely to pass
Grade 12 (p < 0.01, OR = 0.8749709, 95% CI : 0.852898− 0.8976151).
Clearly, the odds of passing Grade 12 is about 13% significantly lower
for learners from Western Cape Province as compared to those for
learners from Gauteng Province. Gender is a sigificant predictor of the
binary outcome (p = 0.006).

We fail to accept the null hypothesis and we conclude that learners
in the Western Cape Province were less likely than learners from



126 Data Analysis and Interpretation

Table 4.27: Comparison of Provinces : 2010
Adjusting for Gender

final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Western Cape
Province .8749709 .0114064 −10.25 0.000 .852898 .8976151
Gender .9663287 .0120824 −2.74 0.006 .9429355 .9903023
cons 3.396634 .0351391 118.20 0.000 3.328456 3.466208

Gauteng Province is a reference province

Gauteng Province to pass Grade 12 after adjusting for gender in 2010.

iii) Adjusting for Quintile and Gender

The null hypothesis that the proportions in the two provinces are not
different is tested against the alternative hypothesis that the proportions
in the two provinces are significantly different after controlling for both
gender and school quintile.

Table 4.28 indicates that after adjusting for both school quintile and
gender, learners from Western Cape Province than learners from
Gauteng Province were about 1.10 more likely to pass Grade 12 in
2010 (p < 0.01, OR = 1.09095, 95% CI : 1.060811− 1.121946). In other
words, the odds of passing Grade 12 is significantly 10% more favouring
learners from the Western Cape Province than for learners in Gauteng
Province.

Table 4.28: Comparison of Provinces : 2010
Adjusting for Quintile and Gender

final Odds Ratio Std. Err. z P > |z| [95% Conf. Interval]
Western Cape
Province 1.090950 .0155938 6.09 0.000 1.060811 1.121946
Gender 1.000559 .0130953 0.04 0.966 .9752185 1.026557
quintile 2 1.146124 .0276609 5.65 0.000 1.093172 1.201641
quintile 3 1.374181 .0301852 14.47 0.000 1.316275 1.434635
quintile 4 1.751001 .0383735 25.56 0.000 1.677383 1.827851
quintile 5 5.898432 .1349267 77.58 0.000 5.639821 6.168901
cons 1.485563 .0304666 19.30 0.000 1.427034 1.546493

Quintile 1 is a reference quintile
Gauteng Province is a reference province

There is sufficient evidence to conclude that after adjusting for both
gender and school quintile; learners from Western Cape Province than
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learners from Gauteng Province were more likely to pass Grade 12 in
2010 academic year.

Summary

Learners from Western Cape Province than learners from Gauteng Province had
better chances of passing Grade 12. The results from adjusted models indicated
that the Western Cape Province learners than the Gauteng Province learners were
significantly more likely to pass Grade 12 in 2010, except when the adjustment was
made for gender only.

Chapter Summary

The adjusted and unadjusted causal models were fitted for 2008, 2009 and
2010 datasets. The results favoured the Western Cape Province over Gauteng
Province. In other words, when we adjusted for quintile (and/or gender) the
odds of passing Grade 12 favoured the Western Cape Province than Gauteng
Province. However, adjusting for gender only shows that the odds of passing
Grade 12 favoured Gauteng Province only if the outcome was binary and the
academic year was 2010. Thus, if learners in the two provinces were all of
the same gender-group then learners from Gauteng Province would have had
better chances of passing Grade 12 than learners from Western Cape Province
in 2010 academic year. In the event that all schools in the two provinces were
equally resourced (and that all learners belonged to the same gender-group)
then the odds of passing Grade 12 favoured learners from Western Cape
Province.
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Recommendations
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“In a coeducational school, boys and girls learn together, converse
together and grow into adulthood together. They’re at ease with one
another and, in my personal experience, more at ease with
themselves.”

http://www.telegraph.co.uk/education/educationopinion/11476686/Are-
single-sex-or-mixed-schools-the-way-forward.html

Chapter Preview

This chapter summarises the major findings of this study and outlines some
recommendations. Section 5.1 emphasises the importance of utilising stat-
istical sofware when dealing with clustered data since clustered data require
computer-intensive methods. Section 5.2 highlights the importance of collecting
all significant covariates when forming or creating database for learners. Sec-
tion 5.3 summarises the results in terms of the effects of all available covariates.
Finally, Section 5.4 makes some general recommendations.

5.1 Statistical Models

Regression analyses, in particular multiple linear regression (MLR) analyses [see
Chapter 3, Page 64], are commonly employed in social sciences (Montgomery and
Peck, 1982; Fox, 1997; Weisberg, 2005). These models are extension of simple linear
regression models. MLRs are popular because they allow an investigator, researcher
or analyst to answer questions that consider the role(s) that multiple independent
covariates play in accounting for variance in a single predictor variable (Montgomery
and Peck, 1982; Weisberg, 2005, Page 47). We note that aggregated analyses
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and/or descriptive analyses are unable to adjust for individual covariates (Donner
and Klar, 2000). The drawback of MLR methods is the fact that they are unable to
adjust or account for ICC.

The aim of the study was to highlight the methods for analysing clustered data in
nonrandomisation studies. The aim was achieved with the application of hierarchical
models, also called causal models. The researcher applied these models to the
Grade 12 data as supplied by Umalusi. Grade 12 data is a typical clustered data since
it contains data on learners’ results per learning subject (area). Thus, learners were
observed more than once even though this study is cross-sectional (see hypothetical
examples as depicted by Figure 3.2 on Page 76 and Figure 3.3 on Page 77).

With the development of (new) statistical techniques, such as GEE and random
coefficient analysis, it has become possible to analyse clustered or longitudinal
relationships (Skrondal and Rabe-Hesketh, 2004) using all available clustered data,
without performing data resolution (Twisk, 2003; Letsoalo and Lesaoana, 2012).

Popular methods for analysis of binary response data include the probit model,
discriminant analysis, and logistic regression (Hailpern and Visintainer, 2000; Hilbe,
2009). Logistic regression is the method of choice since it makes no assumption
about the variable distribution, and it is a direct probability model because it is stated
in terms of Pr{Y = 1|X} (Hosmer and Lemeshow, 2000; Hilbe, 2009). Its added
advantage is its ability to provide valid estimates, regardless of study design (Hailpern
and Visintainer, 2000). However, caution must be adhered to when observations of
interest are not independent (Letsoalo and Lesaoana, 2012).

Correlated or clustered data are common in social sciences especially in observa-
tional studies. Standard statistical methods, such as student’s t-test and classical
regression models are inappropriate for clustered data due to their assumption of
independence between study units (Skrondal and Rabe-Hesketh, 2004; Letsoalo and
Lesaoana, 2012).

This study took note of the existence of ICC in the analysis of the data. It was not
assumed that ICC = 0 since that would have biased the point estimates, hence
leading to falsely narrow confidence intervals (Osborne, 2000; Twisk, 2003; Wu and
Zhang, 2006; Gelman and Hill, 2007; Letsoalo and Lesaoana, 2012).

Cluster randomised studies are more applicable in controlled settings. There are
two main reasons to randomise at a level larger than the individual. First, it can
address contamination: where treated individuals mix and chat and potentially “share”
treatment with individuals in the comparator group. This would “contaminate” the
impact, and comparator group would no longer be a good comparison. Randomising
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at the higher level may minimise the risk of this happening. Second, randomisation
might be applied at the intervention level, i.e. the level that the intervention would
actually be implemented.

When randomising at the cluster level, the unit of randomisation is the unit at which
we will randomly roll out the program or intervention. The unit of analysis, defined as
the unit at which we will collect data and compare outcomes, is usually the individual -
for example, individual learners’ test or examination scores. This distinction is crucial
when determing sample size. Among other things, sample size is affected by ICC,
which refers to how similar or dissimilar individuals within a cluster are (Donner and
Klar, 2000; Jonh, 2013). Application of standard sample size approaches to cluster
randomisation trials or designs may lead to an underpowered study ( Type II error),
and on ther other hand the application of standard statistical methods to clustered
data generally tends to bias p-values downwards, i.e. could lead to spurious statistical
significance (Type I error) (Donner, 1998; Donner and Klar, 2000; Jonh, 2013).

5.2 The Grade 12 Data

The Grade 12 dataset did not have all predictor variables such as parents’ attributes,
family attributes, learners’ background and learners’ age. From other studies, see
Chapter 1, we know that these covariates significantly predict learners’ performance.
It would have been very useful to test if these variables would yield similar results in
the South African setting. In particular, we could not test for the significance of these
covariates since they were not contained in our dataset (see Appendix A, Section A3,
Page 142). It may be of great importance that Umalusi collect all (possible) covariates
such as the gender of educators, parent’s SES, qualifications of educators, education
level of parents and so on, for further studies and analyses.

5.3 Results

This section comments on the findings in this study. The discussion of results is
given in two parts; namely the discussion of descriptive statistics and discussion of
estimates as given by the fitted causal models. The estimates are generated from
the unadjusted models and the adjusted models.

5.3.1 Descriptive Statistics

The use of descriptive statistics assists the researchers with identification of measures
of cental tendencies and summary statistics. Descriptive statistics gives the so-called
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“overall picture” with regard to the data distribution. The descriptive analysis’ results
show that the pass rates favoured Western Cape Province in 2008 (77.08% vs. 74.33%)
and 2009 (73.96% vs. 70.42%) academic years. Otherwise the pass rates favoured
Gauteng Province only in 2010 (76.90% vs. 74.43%).

5.3.2 Statistical Estimates

The results from the both crude and adjusted models gave a better insight. The
presented results showed the effect of gender, school quintile, and gender and
quintile. Essentially, Western Cape Province performed better than Gauteng Province
upon adjustment for these covariates, with the exception of the academic year 2010
when adjustment was made only for gender.

5.3.2.1 Effect of Gender

The current practice emphasises the comparisons of the proportion of male learners
who passed Grade 12 to the proportion of female learners who passed Grade 12.
This study goes beyond just proportions. Through the use of causal models it has
been shown that gender has a significant effect on overall learner performance. That
is, with this insight the department of education can factor in gender in its intervention
strategies.

The models for predicting final marks (%) indicated that the two provinces per-
formed significantly differently after controlling for gender. Also, the models indicate
that gender is a significant predictor of overall performances of learners in the two
provinces. Therefore, male learners performed significantly different from female
learners in the two provinces (p < 0.01).

This result suggests that single-sex schooling system may be encouraged in the
two provinces. At single-sex schools, males and females can explore educational
opportunities without being constrained by expectations, stereotypes (e.g. female
learners are regarded as being weak in mathematics and science). For example,
girls at single-sex schools are more likely to explore nontraditional subjects and are
encouraged to be daring and invest in subjects they might otherwise not try if they
were in mixed-sex schools.

Okoro et al. (2012) indicated that male and female learners do not seem to exhibit the
same level of academic achievement. Also, as emphasised by Herr and Arms (2004)
part of the rationale for single-sex schooling is the view that adolescents create a
culture in school that is at odds with academic performance and achievement. In
coeducational settings, the culture is one of socialisation where for some, academics
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might not be a priority. For these individuals, single-sex classes or single-sex schools
might be a better choice. Also, with single-sex classes or schooling, the more targeted
teaching is possible.

The same cannot be said in cases where the outcome is binary (pass or not pass).
The results indicate that gender is not a significant predictor of whether or not a
learner will pass Grade 12 in the two provinces. Therefore, the single-sex mode of
schooling cannot be encouraged in the two provinces especially when the interest
of the authorities is binary outcome. Generally speaking, the main claims for co-
education are to do with personal and social development. It has been argued that the
sexes growing up together, including in school, brings a number of benefits including:

1) greater happiness, better behaviour and fuller emotional development;

2) smoother transition to the mixed environment of university and life generally;

3) and hence, parents and pupils prefer it.

There is a confounding factor that can be thought of as highly significant contributor
in determining whether or not a learner can perform better, and that factor is the
ability of a learner. Therefore learner ability and learner background are thought of as
essential and should be taken into account in province, region or school comparisons.
If a fitted model can adjust for ability, SES, school quintile, learners’ first language,
settlement type (rural, semi-rural, urban, etc) and ethnicity then apparent advantages
to single-sex or co-education can emerge. It is difficult to prove that the so-called
good girls’ school or good boys’ school are good enough because are single-sex. On
the other hand, it is equally difficult to prove that the so-called bad boys’ schools and
bad girls’ schools are so because they are single-sex schools.

“Although single-sex is often treated as one category, it cannot be
assumed that all-girls and all-boys schools are the same. If it is true,
as it is sometimes claimed, that girls can achieve more in their own
schools because the boys are not there to dominate, disrupt or
distract, one has to wonder about the effects of doubling the number
of disruptors and distracters as would be the case in all-boys
schools - unless it is further claimed that this behaviour is only
elicited in the presence of girls. You cannot have an educational
system in which single-sex education is just for the one sex.”

Unknown Source



5.3 Results 133

“As educators, and as people, we tend to assume that females and
males are different — are indeed “opposite sexes.” We see
someone’s sex as an important predictor of their abilities and
interests and assume that if we know someone is a girl or a boy, we
know a lot about them. That assumption is wrong! Knowing
someone’s sex may tell us a lot about them biologically but it tells us
very little about them in other ways.”

Unknown Source

5.3.2.2 Effect of Quintile

The findings in this thesis indicate that the two provinces performed significantly
different after adjusting for quintile. Also, quintile was found to be a significant
predictor of the final mark (%) in the two provinces. In particular, better resourced
schools performed better than less resourced schools. This may suggests that the-
how-resourceful the school is might determine how the learners will perform in the
provinces.

In case where the outcome is dichotomous (Pass/Not Pass); the two provinces
performed differently, and school quintile was found to be significantly predicting the
outcome. The resourceful schools are more likely than the less resourced schools to
produce the Pass result. In another words, learners in the resourceful schools are
more likely than learners in the less resourced schools to pass Grade 12.

In the South African context, the less resourced schools are more likely to be in rural
areas or townships. Schools in rural areas lack infrastructure, quality educators, and
parents in such areas are more likely to be “uneducated” or less educated. The
education of parents plays a significant role in the learning process of their children.
More so that the education level of parents is tightly linked to the SES of the parents
(and or family). The relationship between SES and learner performance was found to
be positive (Gnanamoorthy, 2014). Simply put - learners who come from high SES
families than those who come from low SES are more likely to perform better. Mayer
(2002) states that poor learners have less chance of performing well or have more
chances of performing poorly. Better performance may mean obtaining higher marks
(%) or obtaining pass results rather than ‘not pass’ results.

5.3.2.3 Effect of Gender and Quintile

The Western Cape Province performed significantly better than Gauteng Province
after adjusting for gender and quintile in 2008, 2009 and 2010 academic years. This
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statement is valid for the continuous endpoint (marks [%]) . However, it is worth
noting that both gender and quintile are significant predictors of the overall learner
performances. If the authorities are interested in the overall marks (%) then a
single-sex classroom or single-sex schooling with resourced schools is encouraged.

Gender is not a significant predictor of the binary endpoint (pass or not pass) after
adjusting for Province and Quintile, e.g., Tables 4.22 and 4.22. Therefore, a mixed-sex
schooling is favoured if the stakeholders are interested only in the binary outcome
(pass or not pass) in the two provinces.

The results in this thesis do not only indicate the difference between the two provinces
but quantify these differences. This (observation or) conclusion cannot be achieved
by the use of descriptive statistics since it (descriptive statistics) concerns itself only
with the measure of central tendencies and proportions (Donner and Klar, 2000;
Osborne, 2000; Gelman and Hill, 2007; Hayes and Moulton, 2009; Nathans et al.,
2012).

5.3.2.4 Hypothesis

The hypothesis that the proportions in two study provinces were not significantly
different was not accepted. Also, the hypothesis that the average performances in
the two provinces were the same was not acceptated. In another words, it has been
established through the use of causal models that there was a sufficient evidence to
conclude that the two study provinces were significantly different.

5.4 Recommendations

5.4.1 Statistical Models

The results of the study have shown that causal models are plausible in the analysis
of clustered data, and that these models must be adopted as the tools for analysis
of Grade 12 results or in the investigation of school effectiveness, and hence their
performances. With the application of these models; the researcher took heed of the
correlatedness or dependencies in the data. Also, these models are able to adjust for
other covariates. Hence, dealing with confounding effects.

The argument in this thesis is that the use of summary statistics is flawed - a
necessary exercise in self-deception. Causal models provide schools with good
quality comparative information (interpretation of results) about their effectiveness
and performances; for the effectiveness of schools will provide the Department of
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Basic Education and other relevant stakeholders with the knowledge of how and
when to implement their interventions.

To be precise, causal models - if used to analyse clustered data such as Grade
12 data - enable researchers to identify the highly significant or important predictor
variables over a period of time. As such, these models are helpful since stakeholders
will be in a know of the important covariates and be able to put suitable intervention
strategies in place. In other words, causal models may be found to be helpful in terms
of long term planning since they are able to quantify and identify significant predictors
of outcome variables.

5.4.2 Creation of Database

The creation of database with all covariates which are suspected to be significantly
associated with outcome, e.g. SES, learner ability and educator’s gender are believed
to be associated with learner performance, would be helpful. To be precise, the
recommendation is that based on the findings from different studies (although mixed);
Umalusi is encouraged to start collecting and creating database of learners’ attributes
(e.g. family SES, mothers’ education, parents’ occupation etc.) and schools attributes
(e.g. school quintile, location, teacher gender, teacher quilification and so on.); for it
is desirable to test (for the effect of) these variables in South African setting.

5.4.3 Summary Statistics

Descriptive statistics or summary statistics offers no way of justifying if the (observed)
marginal differences between the study arms are significant. Strictly speaking, de-
scriptive statistics offers no (sufficient) evidence to conclude whether or not the
difference one observes is significant. For example, in this study we have no (suffi-
cient) evidence that the (observed) marginal differences, 1.75%, 3.54% and 2.47%, are
significant. Therefore, descriptive statistics should not be treated as the beginning
and the end; for the researchers are more likely to commit an error in reasoning,
especially if extrapulations are to be made based on the results.

5.4.4 Estimates

The effects of all covariates contained in the Grade 12 dataset were examined through
the adjusted models and unadjusted models.
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5.4.4.1 Gender

The effect of gender gave mixed results in that when the outcome of interest was
categorical (binary) then the effect of gender did not significantly predict the outcome.
However gender significantly predict the overall total marks.

In their planning and intervention strategies - it can be explicitly mentioned that author-
ities and (or) stakeholders need to be precise with the objective of the intervention;
for:

a) if the outcome is continuous marks then the issue of learner gender becomes
crucial. That is, if the authorities are interested in producing the learners who will
score relatively higher marks (say), then they (authorities) should factor in the
issue of learner gender. For example, male learners perform significantly better
than when they are being taught by female educator. Similarly, female learners
perform better when they are being taught by a female educator than when they
are being taught by male educator [for example, see Okoro and Uwah (2013)].
Therefore, learner gender becomes a significant pointer when the outcome is
continuous or when authorities are interested in relatively higher scores.

b) if the outcome is binary (pass or otherwise) then learner gender is not a significant
issue. In another words, though learner gender is important, it is not a significant
predictor of the outcome. Even though it could not be proven statistically that
learner gender predicts whether a learner will pass or not pass Grade 12 in the
two study provinces, learner gender remains an important covariate to consider
(at least) from social point of view.

The employ of causal model on clustered Grade 12 data revealed that learner gender
is crucial in the planning of the interventions by the stakeholders. The intervention
strategies cannot afford to ignore the effect of gender especially when the authorities’
interest is on learners achieving or scoring higher overall marks.

5.4.4.2 School Quintile

It is common knowledge that better resourced schools have the ability to produce
better performing learners. This has been captured through the comparisons of
proportions between the school quintiles. The application of causal models provided
sufficient evidence of the effect of school quintile.

School quintile significantly predicts the outcome irrespective of the nature of the
outcome, binary or continuous. Since less resourced schools are more likely to be in
poor communities or rural settlements - the authorities may be advised to redistribute
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resources in such a way that rural schools attract quality educators by introducing
the so-called rural incentives for educators, and start investing in the infrastructure in
those areas.

We note that resources are not directly linked or associated with improvement of learn-
ing outcome; for resources may be necessary but they are not sufficient. Differences
in their effects depend on differences in their use Kurdziolek (2011).

Stakeholders (authorities, educators and community at large) in under-resourced
schools must engage in school improvement plan (SIP) so that these schools progress
towards whole-school development; for if stakeholders do not get involved in the
planning process, and the SIP1 does not contain specific and measurable targets and
there is no proper analysis of educators’ and learners’ performance and attendance
and the monitoring of these issues is not systematic then these schools (under-
resourced) will remain poor-performing schools (Van Der Voort and Wood, 2014). It is
noted, as highlighted by Van der Berg (2008), that more resources did not necessarily
or without qualification improve school performance, although some resources (e.g.
equipment at the school) appeared to play a role. As in much of the educational
production function literature, the message from Van der Berg (2008) appeared to be
not that resources did not matter, but rather that resources mattered only conditionally.

The vast majority of mainly black african learners enrolling at secondary or high
schools come from rural areas or township school where a lack of resources and
educator training create an environment of rote learning where learners leave with
only a superficial understanding of some of the linguistic and numeracy concepts
needed to successfully pass Grade 12.

5.4.5 Design Issues

The effect of education on learners’ performance has proven to have suffered severely
due to clustered nature of educational data. An attempt to perform aggregated data
analysis has proved to be misleading [as sample size is reduced - leading to loss
of information (Letsoalo and Lesaoana, 2010)]. This being the case, the effects of
education can exist both between and within the units at each level of the educational
system; the majority of studies of educational effects have restricted attention to either
overall between-student, between-class, or between-school analyses. Therefore, the
majority of studies, of educational effects carried out conceal more than they reveal,
and as such ordinary regression methods and descriptive statistics reported have

1”The school improvement plan forms the basis for the continuous school improvement, as well
as acting as a monitoring instrument to measure progress towards specific areas of whole-school
development” (Van Der Voort and Wood, 2014).
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most likely generated unreliable conclusions in many studies wherein the analysed
data was clustered.

5.4.6 Further Studies

Statistical analysis is a foundation of all controlled studies e.g. biological research.
Various methods exist to test whether there is a difference in the response between
study arms. Observations are generally made across a series of independent
experiments to ensure that a result is reproducible. It is noted that results from a
single experiment lack reproducibility. Statistically significant differences between
groups (typically, p < 0.05) indicate that the observed difference is unlikely to have
occurred by chance, suggesting a “real” difference between groups. Research
outcomes rely on the presentation of statistically valid conclusions, and thus the
approach used for statistical analysis is critical.

Clustered data arise when the data from the whole study can be classified into a
number of different groups, referred to as clusters. Each cluster contains multiple
observations, giving the data a “nested” or “hierarchical” structure, with individual
observations nested within the cluster. The key feature of clustered data is that
observations within a cluster are “more alike” than observations from different clusters
(Hox, 1995; Sullivan et al., 1999; Donner and Klar, 2000; Gelman and Hill, 2007;
Letsoalo and Lesaoana, 2010, 2012).

Although social sciences are mainly characterised by nonrandomisation designs -
causal model (applied with propensity score technique) may find its application in
educational setting wherein the effectiveness of the intervention is to be measured.
Here, one may need to determine the effect of matric results in the performance of
university students in the junior degree programmes; for student will be observed at
several time points or the observed data will be clustered. Therefore, causal models
may be applicable in the areas of monitoring and evaluation.

Also, causal model may find its application in situations where a researcher is to
validate the effect or impact of the intervention. For example, in a counterbalancing
design or crossover design, a repeated measurements design such that each experi-
mental unit (learner) receives different treatments during the different time periods,
i.e., the learner cross over from one teaching and learning approach (A) to another
(B) during the course of the trial. In another words, experimental design in which all
possible orders of presenting the variables are included. For example, if you have two
groups of participants (group 1 and group 2) with each member of the group being
observed at least once, and two levels of an independent variable, Level a and Level
b (Cozby, 2009). The objective of counterbalancing design is to determine whether
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the two interventions yield equivalent effects (e.g. bioequivalence trials).

The reason to consider a counterbalancing design when planning a social science
study is that it could yield a more efficient comparison of treatments than a parallel
design, i.e., fewer participants might be required in the counterbalancing design in
order to attain the same level of statistical power or precision as a parallel design.
Intuitively, this seems reasonable because each participant or learner serves as
his/her own matched control (Cozby, 2009). Causal models may be plausible if each
participant was observed more than once under each treatment condition. Therefore,
the ICC between the observation for individual participant is more likely to exceed
zero - justifying the use of HLMs (in particular, the causal models).

The order in which treatments or interventions are given can actually affect the
behaviour of the participants or elicit a false response, due to fatigue or outside
factors changing the behaviour of many of the participants. To counteract this,
researchers often use a counterbalanced design, which reduces the chances of the
order of treatment or other factors adversely influencing the results (Cozby, 2009);
for counterbalancing design or crossover design is mainly a controlled design.
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Chapter Summary

The importance of fitting hierarchical models or causal models (disaggregated
analysis) to clustered data was emphasised. It was noted that causal models
are plausible for long term planning as they are able to determine the estimate
of the effect of individual covariates. All important covariates were discussed
such that effect of gender gave rise to controversial social issues. While it
may be suggested that single-sex schooling can be encouraged- the argument
could not be sustained over mixed-sex schooling. These findings will always
remain elusive if one uses aggregated approach to data analysis - in particular,
descriptive statistics. Causal models may yield reasonable results in the areas
of validating the approaches and in the areas wherein a researcher is to
measure the effect of the intervention (monitoring process).
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Grade 12 Dataset, and Stata
Commands and Summary

Statistics
*****

A1 Descriptive Statistics

a) Categorical Variables (gender and final)

• bys province year: xttab gender, i(candidate)
generates Table 4.1 on page 96.

• bys province year: xttab final, i(candidate)
generates Table 4.2 on page 96.

• bys year: tab province assess if identifier==1, chi2 row
generated Table 4.4 on Page 101.

b) Continuous Variable

• bys province year : xtsum marks, i(candidate)
generates Table 4.3 on page 97.

A2 Hierachical Models

a) Categorical Outcome [Binary (Pass or Not Pass)]

• bys province year: xi: xtlogit final i.province [iweight = weight], i(candidate)
pa

• bys province year: xi: xtlogit final i.province i.gender [iweight = weight],
i(candidate) pa
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• bys province year: xi: xtlogit final i.province i.quintile [iweight = weight],
i(candidate) pa

b) Continuous Outcome [marks (%)]

• bys province year: xi: xtreg marks i.province [iweight = weight], i(candidate)
mle

• bys province year: xi: xtreg marks i.province i.gender [iweight = weight],
i(candidate) mle

• bys province year: xi: xtreg marks i.province i.gender i.quintile [iweight =
weight], i(candidate) mle

• bys province year: xi: xtreg marks i.province i.quintile [iweight = weight],
i(candidate) mle

A3 Dataset: Data Dictionary

The dataset contains variables:

a) School Number (school) which is a dummy school identifier,

b) Centre Type (centre) that idicates whether a school was a public, independent or
special,

c) Quintile (quintile) - indicates the resourcefulness of the school (1 stands for least
resourced and 5 stands for mostly resourced),

d) Candidate-Exam-Number (candidate) - dummy learner number,

e) Exam-Date (year) - indicates the year in which a learner wrote Grade 12 examina-
tion,

f) Gender (gender) which indicates whether a learner was a male or female

g) Subject-Code (subject) is the abbreviation/accronym for subject name

h) Percentage (marks) - the final mark (%) obtained by a learner in a particular
learning subject,

i) Higher-Education-Assessment (assess) is the final outcome or recommendation
that indicates the overall learner achievement, and

j) Province (province) which indicates the province in which a learner wrote grafe
12 examination.
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The binary variable final that indicates whether or not a learner passed Grade 12
was generated from the variable assess.
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A4 Summary Statistics

Tables A.1 and A.2 give the detailed distributions of learners in the two provinces ac-
cording to gender and pass rates for academic years 2008, 2009 and 2010, respectively.
The tables indicated the occasion or repetition within each learner.

Table A.1: Distributions of gender by Provinces:
2008, 2009 and 2010 academic years.

Note: Overall indicates the frequency that includes replicates or duplic-
ates and Between is the count that excludes repeatition. Table 4.1 is a

portion of this table.

20
08

Gauteng Overall Between W. Cape Overall Between
Freq. Percent Freq. Percent Freq. Percent Freq. Percent

Male 313796 45.48 44940 45.44 Male 134738 42.91 19268 42.84
Female 376166 54.52 53954 54.56 Female 179254 57.09 25709 57.16
Total 689962 100.00 98894 100.00 Total 313992 100.00 44977 100.00

(n = 98894) (n = 44977)

20
09

Male 317163 45.58 45315 45.52 Male 139375 43.16 19930 43.11
Female 378640 54.42 54234 54.48 Female 183550 56.84 26304 56.89
Total 695803 100.00 99549 100.00 Total 46234 100.00 46234 100.00

(n = 99549) (n = 46234)

20
10

Male 297274 45.09 42475 45.01 Male 141393 43.30 20232 43.22
Female 361997 54.91 51893 54.99 Female 185153 56.70 26584 56.78
Total 659271 100.00 94368 100.00 Total 326546 100.00 46816 100.00

(n = 94368) (n = 46816)
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Logistic Regression Model
*****

In linear regression with continuous outcome variable yi, a model of the form

E(yi) = β0 +
p∑
j=1

βjxji, i = 1, 2, · · · , n (B0.1)

could be fitted. However, one encounters a problem with expressing E(yi) = πi where
π is the probability (Binomial distribution), and 0 ≤ πi ≤ 1. Employing a tranformation
function g of πi that maps (0, 1) onto (−∞,∞) then g(πi is expressed as a linear
combination of the predictor variables

g(πi) = β0 +
p∑
j=1

xjiβj, i = 1, 2, · · · , n (B0.2)

One such transformation is the logit,

g(πi) = ln πi
1− πi

= β0 +
p∑
j=1

xjiβj, i = 1, 2, · · · , n (B0.3)

= ηi, (B0.4)

B1 Estimation

Detailed works on estimation procedures are given by, among others, McCullagh and
Nelder (1989) and Hardin and Hilbe (2001).

B11 Likelihood function

The coefficients β0 to βp can be estimated by maximising the likelihood function. For
individuals with yi = 0, the contribution to the likelihood is (1− πi)1−yi. If yi = 1 then
the contribution is πyi

i . The contribution of any observation is thus πyi
i (1− πi)1−yi . The

likelihood function for n observations is thus

L(β)) =
n∏
i=1

πyi
i (1− πi)1−yi , i = 1, 2, · · · , n. (B1.1)
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The likehood depends on the πi which in turn depends on β.

Maximum likelihood estimates β̂i are obtained by finding the values which maximise
L, or equivalently `nL.

`nL(β) =
n∑
i=1

[yi`nπi + (1− yi)`n(1− πi)]

=
n∑
i=1

[
yi`n

πi
1− πi

+ `n(1− πi)
]

=
n∑
i=1

yiηi + `n

(
1− eηi

1 + eηi

)
=

n∑
i=1

[
yiηi − `n (1 + eηi)

]

where

ηi = `n
πi

1− πi
= β0 +

p∑
j=1

βjxji. (B1.2)

Taking partial derivatives

∂`nL

∂β0
=

n∑
i=1

yi −
n∑
i=1

eηi(1 + eηi)−1

∂`nL

∂βj
=

n∑
i=1

yixji −
n∑
i=1

eηi(1 + eηi)−1xji, j = 1, · · · , p

Equatinf these p+ 1 equations to zero gives a set of p+ 1 non-linear equations which
have to be solved.

B11 Newton-Raphson Procedure

The score of the j th parameter is ∂`nL/∂βj. Denote the (p+ 1)× 1 vector of scores
by U(β). A (p+ 1)× (p+ 1) matrix of secons order partial derivatives can be formed
with (i, j)-j th element

∂2`nL

∂βi∂βj
, i = 0, · · · , p; j = 0, · · · , p (B1.3)
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This matrix is called the Hessian matrix, denoted by H(β). Near β̂, at βm, the Taylor’s
expansion of the scores vector gives

U(β̂) ≈ U(βm) +H(βm)(β̂ − βm). (B1.4)

The maximum likelihood estimates of the β′s must satisfy

∂`nL

∂βj
= 0.

so
U(β̂) = 0

and from B1.4

U(βm) +H(βm)(β̂ − βm) = 0. (B1.5)

Thus
β̂ ≈ βm −H−1(βm)U(βm) (B1.6)

which suggests an iterative scheme for estimating β̂ such that

β̂m+1 = β̂m −H−1(β̂m)U(β̂m) (B1.7)

B11 Fisher scoring

An alternative method of solving the likelihood equations is the Fisher scoring method.
In here the Hessian matrix is replaced by the the matrix of expected values of second
order partial derivatives. The information matrix I has (i, k)th element

− E
[

∂2L

∂βj∂βk

]
. (B1.8)

The iterative scheme is then

β̂m+1 = β̂m + I−1(β̂m)U(β̂m). (B1.9)

In the case of linear logistic regression model I−1(β̂) = −H−1(β̂) so the two al-
gorithms will not only converge to the maximum likelihood estimate of β, but will give
the same standard errors of the parameter estimates (the square root of the diagonal
elements of −H−1 and I−1).
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B11 Iteratively Reweighted Least Squares

To fit linear logistic model using Fisher scoring, we need expressions for U(β) and
I(β). From (B1.1) the log-likelihood function for n observations is given by

`nL =
n∑
i=1

[yi`nπi + (1− yi)`n(1− πi)] (B1.10)

Thus

∂`nL

∂βj
=

n∑
i=1

∂`nL

∂πi

∂πi
∂ηi

∂ηi
∂βj

(B1.11)

where

∂`nL

∂πi
=

n∑
i=1

yi
πi
− 1− yi

1− πi
=

n∑
i=1

yi − πi
πi(1− πi)

(B1.12)

∂ηi
∂βj

= xji (B1.13)

∂πi
∂ηi

= ∂η−1
i

∂πi
= g′(πi) = 1

πi(1− πi)
(B1.14)

Therefore, from (B1.15), (B1.13) and (B1.14)

∂`nL

∂βj
=

n∑
i=1

yi − πi
πi(1− πi)

1
g′(πi)

xji. (B1.15)

If ei = (yi − πi)g′(πi) and

wi = 1
πi(1− πi)[g′(πi)]2

= πi(1− πi) (B1.16)

then

∂`nL

∂βj
=
∑

xjiwiei (B1.17)

therefore,

U(β) = X ′We (B1.18)

where X is the n × (p + 1) matrix of p predictor variables plus the intercept term,
W the n × n diagonal matrix of weights wi, and the e is the n × 1 vector with i-th
component ei.

To obtain the (i, j)th element of the information matrix we use
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− E
(
∂2`nL

∂βj∂βk

)
= E

(
∂`nL

∂βj

∂`nL

∂βk

)
. (B1.19)

If i 6= i′ then

E[(yi − πi)(yi′ − πi′)] = Cov(yi, yi′) = 0. (B1.20)

If i = i′ then

E[(yi − πi)2] = V ar(yi) = πi(1− πi) (B1.21)

Therefore,

−E
(
∂2`nL

∂βj∂βk

)
=

n∑
i=1

πi
[πi(1− πi)]2

(1− πi)[
g′(πi)

]2xjixki
=

n∑
i=1

1
πi(1− πi)

1[
g′(πi)

]2xjixki
=

n∑
i=1

xjiwixki

so that

I(β) = X ′WX. (B1.22)

From (B1.9) β̂m+1 = β̂m + I−1(β̂m)U(β̂m). Thus

β̂m+1 = β̂m + (X ′WmX)−1X ′Wmem

= (X ′WmX)−1[X ′Wm(Xβ̂m + em)]

= (X ′WmX)−1X ′Wm(η̂ + em)

= (X ′WmX)−1X ′Wmzm

where subscript m denotes the values obtained from the mth iteration. β̂m+1 is
thus obtained by regressing (using weighted least squares) the adjusted dependent
variable zm, with ith element

η̄im + (yi − πi)g′(πi) = η̄im + (yi − πi)
πi(1− πi)

(B1.23)

on the p predictor variables using weights wim where

wim = 1
πi(1− πi)

[
g′(πi)

]2 = πi(1− πi) (B1.24)



B1 Estimation 151

As initial estimates of πi, π̄i0 = (yi + 0.5)/2 can be used, from which initial values
for the weights and adjusted dependent variable can be calculated. By performing
weighted least squares regression on the adjusted dependent variable, estimates of
β̂ are obtained which lead to revised estimates of η̂ and π̂, the weights and adjusted
dependent variable. The deviance, of which its details are given by (McCullagh and
Nelder, 1989), is used to decide whether iteration should stop.
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Some Issues Regarding
Causality

*****

C1 Assignment Mechanism as Locally Independent

An assignment mechanism is locally independent if (Rubin, 1991; Mattei, 2004):

Pr(Z|X,Y(C),Y(T ) = g(Z,X)
N∏
i=1

(Pr(Zi = T |X,Y(C)),Y(T ))I[Zi=T ]

× (1− Pr(Zi = T |X,Y(C)),Y(T ))(1−I[Zi=T ])

and

Pr(Z|X,Y(C),Y(T )) = Pr(Zi = T |Xi, Yi(C), Yi(T )) (C1.1)

for all i; where g(Z,X) must be such that

∑
Z
Pr(Z|X,Y(C),Y(T )) = 1. (C1.2)

An example of such assignment mechanisms is a completely randomised experiment
(CRD) where M out of N units (M<N ) are randomly chosen to receive the treat-
ment. Rubin (1991, Page 1220) gives an example of an application of assignment
mechanism or a simplified assignment mechanism. For this assignment mechanism

Pr(Z|X,Y(C),Y(T )) =


(
M
N

)I{Z1=T}(
N−M
N

)I{Z1=C}
,
∑
I{Zi = T} = M

0 , Otherwise.

(C1.3)

Most often M = N/2, so that half the units receive the active treatment and half
receive the control treatment.

Being ignorable and locally independent, a classical randomised experiment is also
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unconfounded, that is, it does not depend on the potential outcomes (Rubin, 1991;
Mattei, 2004; Stuart, 2010):

Pr(Z|X,Y(C),Y(T )) = Pr(Z|X) (C1.4)

With an unconfounded assignment mechanism, at each set of values of Xi that has
a distinct probability of Zi = T , there is effectively a randomised experiment.

C2 Unbiased Estimator of the Average Difference

between Study Arms

Mattei (2004, Page 10) provided the following argument to prove that τ̂ is an unbiased
estimator for the typical causal effect τ over the randomisation set .

“Let τ̂ be the observed average difference between the treatment and control group:

τ̂ = Ȳ obs
T − Ȳ obs

C =
∑N
i=1 I{Zi = T}Y obs

i∑N
i=1 I{Zi = T}

−
∑N
i=1 I{Zi = C}Y obs

i∑N
i=1 I{Zi = C}

(C2.1)

This is an unbiased estimator for the typical causal effect τ over the randomisation
set.

To show this, first we define the randomisation set to be the set of r allocations that
were equally likely to be observed given the randomisation plan. For instance, in
a completely randomised experiment with M < N units assigned to treatment, the

randomisation set is the collection of r =
(
N

M

)
equally likely possible allocations.

For each of the r possible allocations in the randomisation set, there is a correspond-
ing average difference r̂ that would be calculated had that allocation been chosen. If
the expectation of these r possible differences equals τ , the average difference τ̂ is
called unbiased over the randomisation set for estimating τ . We now show that given
randomly assigned treatments, the average difference τ̂ is an unbiased estimate of τ ,
the typical causal effect for the N units.

By definition of random assignment each unit has a known probability of receiving
the active treatment, here assumed constant and equal to p. Hence, the contribution
of the ith unit (i = 1, · · · , N ) to the average difference τ̂ in p of the r allocations in the
randomisation set is Yi(T )/(Np) and in the other (1− p) is −Yi(C)/((1− p)N). The
expected contribution of the ith unit to the average difference τ̂ is therefore

p
Yi(T )
pN

+ (1− p) −Yi(C)
(1− p)N . (C2.2)
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Summing over all N units we have the expectation of the average difference τ̂ over
the r allocations in the randomisation set as

1
N

N∑
i=1

(Yi(T )− Yi(C)), (C2.3)

which is the typical causal effect for the N units in the trial, τ .

The unbiasedness of the τ̂ estimator for τ , that follows from the random assignment
of treatments, is a desirable property because it indicates that on average we tend to
estimate the correct quantity, however it hardly solves the problem of estimating the
typical causal effect. As yet we have no indication whether to believe τ̂ is close to τ
or to any ability to adjust for important information we may possess.

Consider now the other formal advantage of randomisation. We show that random-
isation provides a mechanism for making probabilistic statements indicating how
unusual the observed difference τ̂ would be under specific hypotheses.

Suppose that the researcher hypothesises exactly what the individual causal effects
are for each of the N units and these hypothesised values are τ̃i, i = 1, · · · , N . The
hypothesised typical causal effect for the N units is thus

τ̃ = 1
N

N∑
i=1

τ̃i. (C2.4)

Having the τ̃i and the observed Yi(T ), i ∈ {i : Zi = T}, and Yi(C), i ∈ {i : Zi = C},
we can easily calculate hypothesised values, say Ỹi(T ) and Ỹi(C) for all the N units,
and using these, we can calculate an hypothesised average difference between
the treatment and control group for each of the r allocations of the N units in the
randomisation set (Mattei, 2009).

Since the average of the r average differences between the treatment and control
group is the hypothesised typical causal effect, τ̃ , and the r allocations are equally
likely, we can make the following probabilistic statement:

Under the hypothesis that the causal effects are given by the τ̃i, i = 1, · · · , N , the
probability that we would observe an average difference between the treatment and
control group that is as far or farther from τ̃ than the one we have observed is h/r,
where h is the number of allocations in the randomisation set that yield average
differences between the treatment and control group that are as far or farther from τ̃

than τ̂ (Rubin, 1974).

If this probability - also called the significance level for the hypothesised τ̃i - is very
small, we either must admit that the observed value is unusual in the sense that it
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is in the tail of the distribution of the equally likely differences, or we must reject the
plausibility of the hypothesised τ̃i.

The ability to make precise probabilistic statements about the observed τ̂i under
various hypotheses without additional assumptions is a tremendous benefit of ran-
domisation especially since τ̂ tends to estimate τ . However, one must realise that
these simple probabilistic statements refer only to the N study subjects used in the
study and do not reflect additional information that we may also have measured.

In order to make an intelligent adjustment for extra information, we cannot be guided
only by the concept of unbiasedness over the randomisation set. We need some
model for the effect of prior variable in order to use their value in an intelligent manner.
The point of this statement is that when trying to estimate the typical causal effect
in the N trial experiment, handling additional variables may not be trivial without a
well-developed causal model that will properly adjust for those prior variables that
causally affect Y and ignore other variables that do not causally affect Y even if
they are highly correlated with the observed values of Y . Without such a model, the
researcher must be prepared to ignore some variables he or she feels cannot affect
Y and use a somewhat arbitrary model to adjust for those variables that he feels are
important.
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Steps in Implementing
Matching Methods

*****
This section provides an overview of approaches on steps to consider in implementing
matching methods as given by Stuart and Rubin (2008) and Stuart (2010)

1. Choosing the covariates to be used in the matching process

An underlying assumption when estimating causal effects using nonexperi-
mental data is that treatment assignment is unconfounded (Rosenbaum and
Rubin, 1983a) given the covariates used in the matching process. To make
this assumption plausible, it is important to include in the matching procedure
any covariates that may be related to treatment assignment and the outcome
(D’Agostino, 2007); the most important covariates to include are those that are
related to treatment assignment because the matching will typically be done
for many outcomes. It is important to include a large set of covariates in the
matching procedure.

Another consideration is that the covariates included in the matching must be
proper covariates in the sense of not being affected by treatment assignment
(Stuart and Rubin, 2008). It is well-known that matching or subclassifying on a
variable affected by treatment assignment can lead to substantial bias in the
estimated treatment effect (Stuart and Rubin, 2008; Stuart, 2010). All variables
should thus be carefully considered as to whether they are proper covariates.
This is especially important in fields such as epidemiology and political science,
where the treatment assignment date is often somewhat undefined (Reinisch,
Sanders, Mortensen and Rubin, 1996). If it is deemed to be critical to control
for a variable potentially affected by treatment assignment, it is better to exclude
that variable in the matching procedure and include it in the analysis model
for the outcome (Reinisch et al., 1996; Stuart and Rubin, 2008) and hope for
balance on it, or use principal stratification methods (Frangakis and Rubin,
2002) to deal with it.
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2. Defining a distance measure, used to assess whether units are similar in
terms of their covariate values. We note that the distance measure will not
necessarity be a proper full-rank distance in the mathematical sense (Stuart
and Rubin, 2008). One extreme distance measure is that of exact matching,
which groups units only if they have the same values of all the covariates.
Because limited sample sizes (and large numbers of covariates) make it very
difficult to obtain exact matches, distance measures that are not full rank and
that combine distances on individual covariates, such as propensity scores, are
commonly used in practice (Stuart and Rubin, 2008).

Two measures of the distance between units on multiple covariates are the
Mahalanobis distance (Morozova, Elizarova, and Pleteneva, 2013), which is
full rank, and the propensity score distance, which is not (Stuart and Rubin,
2008). The Mahalanobis distance [see Morozova et al. (2013)], on covariates
X between treated and untreated individuals depends on their observable
characteristics X(T ) and X(C), respectively, and can be expressed as

d
(
X(T ), X(C)

)
=
(
X(T )−X(C)

)′

Σ−1
(
X(T )−X(C)

)
(D0.1)

where Σ can be the true or estimated variance-covariance matrix in the treated
group, the control group, or a pooled sample; the control group variance-
covariance matrix is usually used. The propensity score distance is defined as
the absolute difference in (true or estimated) propensity scores between two
units (Stuart, 2010).

Comparison of the performance of matching methods based on Mahalanobis
metric matching and propensity score matching was performed by Gu and
Rosenbaum (1993) and Rubin and Thomas (2000), and the findings were
that the two distance measures perform similarly when there are a relatively
small number of covariates, but propensity score matching works better than
Mahalanobis metric matching with large numbers of covariates (greater than
5). One reason for this is that the Mahalanobis metric is attempting to obtain
balance on all possible interactions of the covariates (which is very difficult
in multivariate space), effectively considering all of the interactions as equally
important (Stuart and Rubin, 2008). In contrast, propensity score matching
allows the exclusion of terms from the propensity score model and thereby the
inclusion of only the important terms (e.g., main effects, two-way interactions)
on which to obtain balance.

These distance measures can be combined or used in conjunction with exact



158 Steps in Implementing Matching Methods

matching on certain covariates. Combining these distance measures with exact
matching on certain covariates sets the distance between two units equal to
infinity if the units are not exactly matched on those covariates (Stuart and
Rubin, 2008). Some of the common matching methods (Stuart, 2010):

(a) Nearest Neighbour Matching (NNM) which generally selects k matched
controls for each treated unit (often, k = 1). The simplest nearest neighbour
matching uses a greedy algorithm, which cycles through the treated units
one at a time, selecting for each the available control unit with the smal-
lest distance to the treated unit. A more sophisticated algorithm, optimal
matching, minimises a global measure of balance (Rosenbaum, 2002).

Rosenbaum (2002) argues that the collection of matches found using op-
timal matching can have substantially better balance than matches found us-
ing greedy matching, without much loss in computational speed. Generally,
greedy matching performs poorly with respect to average pair differences
when there is intense competition for controls and performs well when there
is little competition. In practical situations, when assessing the matched
groups’ covariate balance, Gu and Rosenbaum (1993) find that optimal
matching does not in general perform any better than greedy matching in
terms of creating groups with good balance but does better at reducing the
distance between pairs.

When there are large numbers of control units, it is sometimes possible to
get multiple good matches for each treated unit, which can reduce sampling
variance in the treatment effect estimates. Although one-to-one matching
is the most common, a larger number of matches for each treated unit are
often possible (Ho et al., 2011). Unless there are many units with the same
covariate values, using multiple controls for each treated unit is expected
to increase bias because the second, third, and fourth closest matches
are, by definition, further away from the treated unit than is the first closest
match, but using multiple matches can decrease sampling variance due to
the larger matched sample size (Stuart, 2010; Ho et al., 2011). Of course,
in settings where the outcome data have yet to be collected and there are
cost constraints, researchers must balance the benefit of obtaining multiple
matches for each unit with the increased costs. Examples using more than
one control match for each treated unit are found in (Rubin and Thomas,
2000).

Another key issue is whether controls can be used as matches for more than
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one treated unit - whether the matching should be done “with replacement”
or “without replacement.” Matching with replacement can often yield better
matches because controls that look similar to many treated units can be
used multiple times (Kuehl, 2000; Stuart, 2010). In addition, like optimal
matching, when matching with replacement, the order in which the treated
units are matched does not matter. However, a drawback of matching with
replacement may be that only a few unique control units will be selected as
matches; the number of times each control is matched should be monitored
and reflected in the estimated precision of estimated causal effects (Stuart,
2010).

(b) Limited Exact Matching

Rosenbaum and Rubin (1985) illustrate the futility in attempting to find
matching treated and control units with the same values of all the covariates
and thus not being able to find matches for most units. However, it is often
desirable (and possible) to obtain exact matches on a few key covariates,
such as race or sex. Combining exact matching on key covariates with
propensity score matching can lead to large reductions in bias and can
result in a design analogous to blocking in a randomized experiment (Stuart,
2010).

(c) Mahalanobis Metric Matching on Key Covariates Within Propensity Score
Calipers

Stuart (2010) highlights that caliper matching selects matches within a
specified range (caliper c) of a one-dimensional covariate X (which may
actually be a combination of multiple covariates, such as the propensity
score):

∣∣∣Xtj −Xcj

∣∣∣ ≤ c (D0.2)

for all treatment/control matched pairs, indexed by j.

Stuart (2010) indicates that with a normally distributed covariate, a caliper
of 0.2 standard deviations can remove 98% of the bias due to that covariate,
assuming all treated units are matched. Althauser and Rubin (1970) find
that even a looser matching (1.0 standard deviations of X) can still remove
approximately 75% of the initial bias due to X. Rosenbaum and Rubin
(1985) show that if the caliper matching is done using the propensity score,
the bias reduction is obtained on all of the covariates that went into the
propensity score. They suggest that a caliper of 0.25 standard deviations of
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the logit transformation of the propensity score can work well in general.

For situations where there are some key continuous covariates on which
particularly close matches are desired, Mahalanobis matching on the key
covariates can be combined with propensity score matching, resulting in par-
ticularly good balance (Rosenbaum and Rubin, 1985; Rubin and Thomas,
2000). The Mahalanobis distance is usually calculated on covariates that
are believed to be particularly predictive of the outcome of interest or of
treatment assignment (Stuart, 2010).

(d) Subclassification

Rosenbaum (1984) discusses reducing bias due to covariate imbalance
in observational studies through subclassification on estimated propensity
scores, which forms groups of units with similar propensity scores and thus
similar covariate distributions. For example, subclasses may be defined
by splitting the treated and control groups at the quintiles of the propensity
score in the treated group, leading to five subclasses with approximately
the same number of treated units in each.

According to Stuart and Rubin (2008) that work builds on the work by
Cochran (1968) on subclassification using a single covariate; when the
conditional expectation of the outcome variable is a monotone function of
the propensity score, creating just five propensity score subclasses removes
at least 90% of the bias in the estimated treatment effect due to each of
the observed covariates. Thus, five subclasses are often used, although
with large sample sizes more subclasses are often desirable. This method
is clearly related to making an ordinal version of a continuous underlying
covariate (Stuart, 2010).

Subclassification on the propensity score without subsequent within-strata
model adjustment can lead to biased answers due to residual imbalance
within the strata (Lunceford and Davidian, 2004).

(e) Full Matching (FM) is an extension of subclassification (Small, Gastwirth,
Krieger and Rosenbaum, 2009). It is in FM where the matched sample is
composed of matched sets, where each matched set contains either one
treated unit and one or more controls, or one control unit and one or more
treated units (Stuart and Rubin, 2008; Small et al., 2009). Full matching is
optimal in terms of minimising a weighted average of the distances between
each treated subject and each control subject within each matched set, or
stratum (Austin, 2011).
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Because subclassification and full matching place all available units into
one of the subclasses, these methods may have particular appeal for
researchers who are reluctant to discard some of the control units. However,
these methods are not relevant for situations where the matching is being
used to select units for follow-up (Stuart and Rubin, 2008).

(f) Weighting Adjustments

Another method that utilises all units is weighting, where observations
are weighted by their inverse propensity score (Lunceford and Davidian,
2004). Weighting can also be thought of as the limit of subclassification
as the number of observations and subclasses go to infinity. Weighting
methods are based on Horvitz-Thompson estimation (Stuart, 2010), used
frequently in sample surveys. A drawback of weighting adjustments is that,
as with Horvitz-Thompson estimation, the variance can be very large if the
weights are extreme (if the propensity scores are close to 0 or 1). Thus, the
subclassification or full matching approaches, which also utilise all units,
may be more appealing since the resulting weights are less variable (Stuart
and Rubin, 2008).

Another type of weighting procedure is that of kernel weighting adjustments,
which average over multiple persons in the control group for each treated
unit, with weights defined by their distance from the treated unit. Heckman
et al. (1998a,b) describe a local linear matching estimator that requires spe-
cifying a bandwidth parameter. Generally, larger bandwidths increase bias
but reduce variance by putting weight on units that are further away from the
treated unit of interest. A complication with these methods is that one needs
to define a bandwidth or smoothing parameter that does not generally have
an intuitive meaning; Imbens (2004) provides some guidance on that choice
(Stuart, 2010). With all of these weighting approaches it is still important
to clearly separate the design and analysis stages. The propensity score
should be carefully estimated, using either logistic regression, Classification
And Regression Tree (CART) discriminant analysis, or generalised boosted
models, and the weights set before any use of those weights in models of
the outcomes (Stuart and Rubin, 2008; Stuart, 2010).

3. Diagnosing the matches obtained

Diagnosing the quality of the matches obtained from a matching method is
of primary importance. Extensive diagnostics and propensity score model
specification checks are required for each dataset, as discussed by Dehejia
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(2005). Matching methods have a variety of simple diagnostic procedures that
can be utilised, most based on the idea of assessing balance between the
treated and control groups. Although we would ideally compare the multivariate
covariate distributions in the two groups that are difficult when there are many
covariates, and so generally comparisons are done for each univariate covariate
separately, for two-way interactions of covariates, and for the propensity score,
as the most important multivariate summary of the covariates.

At a minimum, the balance diagnostics should involve comparing the mean
covariate values in the groups, sometimes standardised by the standard devi-
ation in the full sample - ideally other characteristics of the distributions, such
as variances, correlations, and interactions between covariates, should also be
compared. Common diagnostics include t-tests of the covariates, Kolmogorov-
Smirnov tests, and other comparisons of distributions (Austin and Mamdani,
2006). Ho et al. (2007) and Stuart (2010) provide a summary of numerical and
graphical summaries of balance, including empirical quantile-quantile plots to
examine the empirical distribution of each covariate in the matched samples.
Rosenbaum (1984) examines F-ratios from a two-way analysis of variance
performed for each covariate, where the factors are treatment/control and
propensity score subclasses. Rubin (2001) presents diagnostics that relate to
the conditions that indicate when regression analyses are trustworthy. These
diagnostics include assessing the standardised difference in means of the
propensity scores between the two treatment groups, the ratio of the variances
of the propensity scores in the two groups, and for each covariate, the ratio
of the variance of the residuals orthogonal to the propensity score in the two
groups. The standardised differences in means should generally be less than
0.25 and the variance ratios should be close to one, certainly between 0.5 and
2.

4. Estimating the effect of the treatment on the outcome

The analysis of the outcome should proceed only after the observational study
design has been set in that the matched samples have been chosen, and
it has been determined that the matched samples have adequate balance
(Stuart and Rubin, 2008). In keeping with the idea of replicating a randomised
experiment, the same methods that would be used in an experiment can be
used in the matched data. In particular, matching methods are not designed to
“compete” with modeling adjustments such as linear regression, and in fact the
two methods have been shown to work best in combination (Stuart and Rubin,
2008). Many authors discuss the benefits of combining matching or propensity
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score weighting and regression adjustment, for example, Robins and Rotnitzky
(1995), Heckman et al. (1997), Rubin and Thomas (2000), (Ichimura and Taber,
2001) and Abadie and Imbens (2006).

The intuition for this is the same as that behind regression adjustment in
randomised experiments, where the regression adjustment is used to “clean up”
small residual covariate imbalance between the treatment and control groups
(Heckman et al., 1997; Ichimura and Taber, 2001). The matching method
reduces large covariate bias between the treated and control groups, and the
regression is used to adjust for any small residual bias and to increase efficiency
(McNamee, 2005). These “bias-corrected” matching methods have been found
in Abadie and Imbens (2006) to work well in practice, using simulated and
actual data. Ho et al. (2007) show that models based on matched data are
much less sensitive and more robust than are models fit in the full datasets.

Some slight adjustments to the analysis methods are required with particular
matching methods. With procedures such as full matching, subclassification, or
matching with replacement, where there may be different numbers of treated
and control units at each value of the covariates, the analysis should incorporate
weights to account for these varying distributions (Stuart and Rubin, 2008).
When subclassification has been used, estimates should be obtained separately
within each subclass and then aggregated across subclasses to obtain an
overall effect (Rosenbaum, 1984).

Estimates within each subclass are sometimes calculated using simple dif-
ferences in means, although empirical (Lunceford and Davidian, 2004) and
theoretical (Abadie and Imbens, 2006) work has shown that better results are
obtained if regression adjustment is used in conjunction with the subclassifica-
tion. When aggregating across subclasses, weighting the subclass estimates by
the number of treated units in each subclass estimates the average treatment
effect for the units in the treated group; weighting by the overall number of
units in each subclass estimates the overall average treatment effect for the
population of treated and control units.
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One of the goals of the social sciences is to understand social phenomena, that is to
exhibit the mechanism underlying and bringing them about. This task goes beyond
description: to exhibit this mechanism requires identifying causal relations between
variables of interest. Causation is one of the most important and contentious issues
in social science.

Causal models model the properties of a social system. In particular, they model
the relations between the properties or characteristics of the system, which are
represented by variables. Social system simply means a given population which is a
set of units such as schools, classrooms or social clubs.

In causal modelling, to model the properties of a social system means to give the
scheme, or the skeleton, of how these properties relate to each other. In other words,
the causal model models the causal mechanism governing the social system. Simply
- causal models attempt to explain the variability of the effect variable by means of
appropriate covariates.

Causal Model
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