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Abstract 

The stead-fast demand for sustainable lithium-ion batteries (LIB) with competitive 

electrochemical properties, safety, reduced costs, and long-life cycle, calls for 

intensive efforts towards the development of new battery cathode materials. The 

layered transition metal oxides formulated LiMO2 (M: Mn, Ni and Co) have attracted 

considerable attention due to their capability to optimize the discharge capacity, 

cycling rate, electrochemical stability and lifetime. The transition metals Mn, Ni and Co 

(NMC) have been reported to contribute towards enhancement of the performance of 

NMC based lithium-ion batteries. 

In this work, the electronic properties of transition metal oxides LiMO2 (M: Mn, Ni and 

Co) as individual crystal structures are studied using density functional theory 

(DFT+U) in the local density and generalized gradient approximation (LDA and GGA). 

The Hubbard U values together with the low spin transition metal in 3+ charge state 

(Mn3+, Ni3+ and Co3+) predicts the electrical conductivity of the materials. The 

conductivity is associated predominantly with 3d states of the transition metals (Mn, 

Ni and Co) and 2d character in oxygen. The LiNiO2 material is high in conductivity, 

while both LiMnO2 and LiCoO2 are low in electrical conductivity. All independent elastic 

constants satisfy the mechanical stability criterion of orthorhombic materials implying 

stability of the materials. However, the phonon dispersion curves display imaginary 

vibration along high symmetry direction for LiCoO2. The heats of formations predict 

that the LiNiO2 is the most thermodynamically stable material while the LiMnO2 is the 

least thermodynamically stable material. 

The derived interatomic potentials produced NiO and CoO structures with a difference 

of less than 1% and 9% respectively, from the experimental structures. The structures 

were melted at temperatures close to their experimental values from molecular 

dynamics. The radial distribution curves and Nano architectures presented the melting 

point of NiO and CoO at 2250K and 2000K respectively. All independent elastic 

constants satisfy the mechanical stability criterion of cubic materials implying stability 

of the materials. The high electrical conductivity and thermodynamic favourability 

LiNiO2 suggests that the material can be the most recommendable material as a 

cathode material and further improved through doping. This will add the overall 

enhancement of the electrochemical performance while stabilizing structural stability 

of the cathode material in high energy density Li-ion batteries. 
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Chapter 1: Introduction and Background  

This chapter contains a detailed introduction to the research work, the background 

and the purpose of this work. The structural description and literature review of 

cathode materials being studied will be highlighted. Moreover, the objectives as well 

as the significance of this study are herein discussed.  

1.1. General Background  

The popularization of portable electronics and electric vehicles worldwide stimulates 

the development of energy storage devices, such as batteries which significantly 

depends upon the advancement of new materials used in these devices [1]. To 

achieve global clean and sustainable energy, a transformation of energy production 

and storage technologies is required. Hence, the discovery and optimisation of high-

performance materials are critical to future breakthroughs for the next generation of 

rechargeable batteries. These advances depend on exploring new classes of 

compounds and gaining a better understanding of the fundamental science of 

functional materials that underpin applied research [2]. Rechargeable lithium-ion 

batteries have emerged as the dominant energy storage source for consumer 

electronics, automotive, and stationary storage applications, due to their high energy 

density in contrast to all other secondary batteries [2].  

The lithium element tarnishes and oxidizes rapidly. Moreover, it reacts easily to water. 

However, the lithium element does not occur freely in nature; As such, the element 

has the highest specific heat of any solid element and is mainly used in heat transfer 

applications. Hence, many recent studies have carried out various methods to 

estimate whether lithium production can meet increasing demand, particularly in the 

transportation sector where lithium-ion batteries are the technology of interest for 

electric vehicles [2].  

 

Lithium-ion batteries are multi-component devices, with performance that has been 

reported to be significantly enhanced by restructuring the cathodes of the batteries 

from various materials [3]. As such layered materials have surfaced as a very 

promising family of materials [17, 18, 19]. However, the limiting factor of energy 

contents in Lithium-ion batteries is the cathode materials of the batteries. The positive 

electrode (cathode) plays a key role in the capacity, safety, and cycle life of the 
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batteries [4, 5]. That is, a lithium-ion battery with a Li metal oxide-based cathode and 

carbon-based anode which can exhibit a capacity of greater than 270mAh/gram (~1 

electron per metal utilization of material) with little or no capacity fade for hundreds of 

discharge/charge cycles is of great interest [5].  As such, mixing different transition 

metals (TM) in layered materials can be beneficial [13, 14] for improving these battery 

materials. For instance, in Ni-Co-Mn layered materials, Ni has been reported to 

provide favourable capacity, Co improves kinetics and Mn stability [15, 16].  

The transition metal oxides layered type cathodes have been attracting considerable 

attention to serve as a cathode material for Li-ion batteries due to their capability to 

optimize the capacity, cyclic rate, electrochemical stability, and lifetime [6, 7]. As such, 

more intense studies have been carried out with the LixNiyMnzO2 (x+y+z=1) compound 

being the state-of-art choice in the cathode materials for the ideal batteries. This 

compound incorporates characters of Mn, Ni and Co (NMC) transition metals, to 

improve the electrochemical performance while reducing the material cost [8, 9]. 

Moreover, the NMC rich compositions demonstrate high discharge capacity, maintain 

a better life cycle and thermal safety, and provide excellent rate capacity, respectively 

[8]. 

1.1.1. Brief Description of a Battery  

A battery is a device that converts chemical energy into electrical energy utilizing an 

electrochemical reaction called oxidation-reduction (redox). It is composed of one or 

more cells (basic electrochemical units), each containing a positive electrode 

(cathode; electrode being reduced), a negative electrode (anode; electrode 

undergoing oxidation), a separator and an electrolyte. The cells are divided into two 

major classes, namely: primary and secondary. Primary cells are not rechargeable 

and must be replaced once the reactants are depleted. However, the secondary cells 

are rechargeable and require a direct current charging source to restore reactants to 

their fully charged state [10]. The voltage rating is based on the number of cells 

connected in series and the nominal voltage of each. The ampere-hour (Ah) capacity 

available from a fully charged battery depends on its temperature, rate of discharge, 

and age. Moreover, the maximum power available from a battery depends on its 

internal construction [10].  
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Lithium-ion battery is constructed by connected basic lithium-ion cells in parallel (to 

increase current), in series (to increase voltage) or combined configurations.  A basic 

lithium-ion cell consists of a cathode (positive electrode) and an anode (negative 

electrode). These electrodes are contacted by an electrolyte containing lithium ions, 

and they are being isolated from each other by a separator (typically microporous 

polymer membrane) that allows the exchange of lithium ions between the two 

electrodes but not electrons. Figure 1.1 is the illustration of a basic operating principle 

of a typical lithium-ion battery cell. Consequently, the lithium-ion technology as the 

root in secondary lithium-ion batteries give rise to high power, high capacity, high 

charging rate, long life, improved safety, performance, and low-cost batteries [10]. 

 

Figure 1.1 The charge and discharge mechanism of the rechargeable lithium-

ion batteries [5]. 

1.1.2.  Operation of Lithium-ion Batteries  

The commercial cells of the lithium-ion batteries are typically assembled in a 

discharged state where the discharged cathode materials (e.g., LiCoO2) and anode 

materials (e.g., carbon) are stable in the atmosphere [11]. During the charging 

process, the two electrodes are connected externally to an external electrical supply. 

The electrons are forced to be released at the cathode and move externally to the 

anode. Simultaneously the lithium ions move in the same direction, but internally, from 
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cathode to anode through the electrolyte. In this way, the external energy is 

electrochemically stored in the battery in the form of chemical energy in the anode 

and cathode materials with different chemical potentials [11]. The opposite occurs 

during the discharging process, where the electrons move from anode to the cathode 

through the external load to do work, and Li ions move from anode to the cathode in 

the electrolyte [11]. The charge and discharge mechanism of the rechargeable lithium-

ion batteries are shown in figure 1.1.  

1.1.3.  Examples of Applications of Lithium-ion Batteries  

As another type of power source, lithium-ion batteries (LIBs) have received significant 

attention. As such the applications for lithium-ion batteries have currently expanded 

to a broader field such as electric vehicles and stationary energy storages. Moreover, 

the high specific capacity and relatively low cost of the batteries has made a 

breakthrough in electric transportation, such as plug-in hybrid electric vehicles 

(PHEVs) [12]. The typical representation of the lithium-ion batteries applications is 

depicted in figure 1.2.  

 

Figure 1.2 Representation of lithium-ion batteries' applications [12].  

1.2. Structural Properties  

The structures of LiTMO2 consists of a hexagonal sodium iron dioxide (α-NaFeO2) 

(𝑅3̅𝑚) cathode material containing lithium, oxygen and transition metals (TMs: 

manganese, nickel, and cobalt) wherein TMs occupy alternating atomic layers and 

transition metal elements residing at the centre of the oxygen octahedron [8]. The 

LiMO2 (M=3d transition metal) crystal structures can also be described as different 
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ordered superstructure arrangements of the Li and M cations on the LiMO2 (M= Mn, 

Ni, and Co) parent rock salt lattice [13]. The crystal structures of the materials have 

oxygen atoms in the close-packed FCC, and the cations filling all the octahedral 

interpositions in support of known active LiMO2 cathode materials. Moreover, the 

structures have an ordered cation, where the cations are arranged in an ordered 

superstructure that provides tunnels to allow the deintercalation and re-intercalation 

of lithium atoms. The unit cells of the LiMO2 (M: Mn, Ni, and Co) is illustrated in figure 

1.3 below. The structural properties of the structures are tabulated in table 1.1, and 

the vectors that describe the positions of atomic nuclei within the crystal structure are 

illustrated in table 1.2. 

Table 1.1 Lattice parameters and volume of LiMO2 (M: Mn, Ni, and Co) [138] 

Structures Lattice parameters Volume 

(Å3) 
a(Å) b(Å) c (Å) z 

LiMnO2  3.00  3.00  14.55  0.256  105.35  

LiNiO2  2.88  2.88  14.20  0.256  102.06 

LiCoO2  2.80  2.80  14.12  0.26           96.47  

 

 

Table 1.2 Fractional coordinates and atomic positions of LiMO2 (M: Mn, Ni, and 

Co) [190] 

Atoms  Positions  x  y  z  

Li  3b  0  0  1/2  

Mn  3a  0  0  0  

Ni  3a  0  0  0  

Co  3a  0  0  0  

O  6c  0  0  0.2584  
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Figure 1.3 Structural representation of (a) LiMnO2, (b) LiNiO2, and (c) LiCoO2 

bulk in 𝑅3̅𝑚 space group 

1.2.1.  LiMnO2 Structure  

The LiMnO2 structure has two competing ordered-rock salt structures, that are 

orthorhombic LiMnO2 (o-LiMnO2, 𝑃𝑚𝑛𝑚) and monoclinic LiMnO2 (𝑚-LiMnO2, 𝐶2/𝑚). 

The o-LiMnO2 has an ordered-rock salt structure in which MnO6 and LiO6 octahedral 

are arranged in corrugated layers. The m-LiMnO2 has a cation ordering structure in 

which Li ions are located in the layers of Oh sites between MnO2 sheets [14]. In the 

absence of a Jahn Teller (JT) effect, the LiMnO2 is expected to be stable in the α-

NaFeO2 structure (space group 𝑅3̅𝑚) [15]. Conversely, when the cooperative JT 

distortion is introduced by Mn3+ (t2g
3eg

1), the symmetry is reduced; to monoclinic 

(𝐶2/𝑚). The m-LiMnO2 is relatively unstable compared to the o-LiMnO2, which is 

attributed to the collective distortion of the octahedron in the corrugated-layer 

structure reducing the elastic energy and its 3d spin ordering caused by the interaction 

between these moments [16, 17].  

The o-LiMnO2 is synthesised by high-temperature methods [18], while the undoped 

m-LiMnO2 has only been prepared by metastable synthesis and hydrothermal 

reaction [18]. However, the doped LiMnO2 has been produced in the monoclinic 
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phase, such as the LiAlxMn1-xO2 which is attributed to the non-JT effect of Al3+ [19]. 

The properties of LiMnO2 structures used in this work are illustrated in table 1.1 above. 

1.2.2.  LiCoO2 Structure  

The LiCoO2 structure exhibits two forms, a hexagonal structure, and a cubic structure, 

which are the low temperature (LT-LiCoO2)-cubic form, and high temperature (HT-

LiCoO2) - hexagonal form. The hexagonal and cubic structures are based on the same 

oxide sublattice, and they are distinguished by the spatial arrangement of cations. The 

structure of LT-LiCoO2 is not ideally layered, and 6% of the cobalt ions reside in the 

octahedral (8a) sites of the lithium layers. LT-LiCoO2 adopts a spinel relate structure 

(space group 𝐹𝑑3𝑚) based on a cubic closed packed oxygen network with alternating 

cation layers of 0.75 Co, 0.25 Li, 0.75 Li, and 0.25 Co composition perpendicular to 

each of the four cubics [111] direction. The aspect ratio of the spinel (c/a in the range 

4.900–4.914) is close to that of the ideal cubic close packing oxygen array (c/a = 

4.899) [20]. The structure of HT-LiCoO2 belongs to the trigonal system (space group 

𝑅3̅𝑚, O3 phase) in which Co and Li planes alternate in the ABCABC oxygen stacking. 

The value of c/a ratio is in the range of 4.98–5.00 and is significantly larger than that 

of an ideal cubic closed packed lattice (c/a = 4.899) [20]. The properties of LiCoO2 

structures used in this work are illustrated in table 1.1 above. 

1.2.3. LiNiO2 Structure  

LiNiO2 is isostructural with LiCoO2, which crystallizes with a rhombohedral layered 

rock-salt structure. Metal ions occupy the octahedral sites of a cubic close-packed 

network of oxygen ions to form alternate ordered layers of Li and Ni ions parallel to 

the (111) plane of the cubic rock-salt structure [21]. The lithium nickel oxide (LiNiO2) 

has octahedron slaps formed by cobalt and oxygen atoms. Moreover, it is composed 

of lithium layers lying between the slaps where each oxygen in the slap coordinates 

both lithium and cobalt in an octahedral fashion [22]. The edge-sharing octahedrons 

have direct metal-metal interaction properties with a 90° angle amongst metal-

oxygen-metal interactions tilted relative to the layered structure [22]. The properties 

of LiNiO2 structures used in this work are illustrated in table 1.1 above.  

1.3. Literature Review  

A wide range of studies have been conducted on the layered lithium mixed metal 

oxides LiMO2 (M=Mn, Co, Ni) cathodes and much of the focus was on the structural 
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and electronic properties. The LiNi0.33Mn0.33Co0.33O2 was first proposed by Ohzuku et 

al. in 2001 [23]. Lee et al. in 2004 [24, 25] performed a synthesis optimization on the 

material in a similar DFT+u study. They reported high discharge capacity, good 

cycling ability and excellent thermal stability. It was later reported that at high current 

density, the rate capability and cycling performance were not satisfactory. The radius 

of the ions Ni2+ (0.63 Å) and Li+ (0.76 Å) [26], causes cation mixing and as a result, 

degrade the electrochemical performance of the material. The drawbacks of the 

material have reportedly been due to the nature and the reactions in the structures 

forming up the doped material.  

Similarly, a first-principles study was conducted on the electrochemical, thermal and 

mechanical properties of the material and reported that the material has a maximum 

theoretical specific energy (high capacity and high voltage) which yields a good 

electrochemical performance [22]. Furthermore, the LiCoO2 depicted a stable 

capacity during different cycles. However, the cobalt (Co) has been classified as being 

toxic and reported to be more reactive due to its state of being thermodynamically 

unstable [27, 22] at higher temperature operation (>130 °C) or during overcharging. 

That is, the LiCoO2 decomposition generates oxygen which as a result reacts 

exothermally with the organic materials in the cell. 

On the other hand, previous studies on Jahn–Teller Distortion in lithium nickel oxide 

(LiNiO2) delineated that the material crystallizes with rhombohedral layered rock-salt 

structure with alternate ordered layers of Li and Ni ions parallel to the (111) plane of 

the cubic rock-salt structure formed by the metal ions occupying the octahedral sites 

of the cubic closed packed network of oxygen [28]. The Ni atom in the compound is 

located at the 3b site of the 𝑅3̅𝑚 lattice with six oxygen atoms at equal Ni-O distances 

[28]. The compound has been reported to have a higher initial capacity (200 mAh/g) 

and more adventitiously its value is relatively low [27]. However, the material has been 

reported to suffer from poor cyclability and low reversible capacity. As a result, this 

makes it more difficult to synthesize it as a cathode material due to the Jahn-Teller 

(JT) effect of active Ni3+ ions in the lattice, which causes the poor structural stability 

of the LiNiO2 [27]. This effect is due to the presence of NiO6 distortion (two Ni-O bond 

lengths: two bonds at 2.09 Å and four bonds at 1.91 Å) in LiNiO2 [28].   
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The manganese-based oxides are comparatively less toxic, costs less, and have a 

high theoretical discharge capacity (258 mAh/g). However, the LiMnO2 undergoes a 

capacity fading, phase instability and structural transformation during cycling [29]. The 

solid-state reactions for preparing the LiMnO2 requires higher temperatures. Hence, 

it results in the formation of an O3 structure with a close-packed structure (ccp) from 

the stacked O atoms [29].  Moreover, it induces a formation of by-product, non-layered 

and stable spinel phase such as a spinel LiMn2O4.This is a result of a minor cationic 

rearrangement occurring during the first removal and intercalation of the Li atom. The 

process leads to the degradation of the electrode performance of the structure [29]. 

The structure as a result becomes unstable at high temperatures [29]. Hence, the 

LiMnO2 structure turns to be complex, which makes it difficult for practical applications 

[27]. The layered LixMnO2 with O2 structure and asymmetric hexagonal space group 

𝑃63/𝑚𝑚𝑐 to be thermodynamically metastable in comparison with the O3 –LiMnO2 

having the space group of 𝐶2/𝑚, and more reliable to be used in doping.  

1.3.1.  Doping the Lithium Transition Metal Oxides  

Considering the properties of the basic lithium transition metal oxide (LiCoO2, LiNiO2 

and LiMnO2) structures, much of the attention has been paid to the modification of the 

commercial cathode material LiCoO2. The LiCoO2 material is modified in the sense 

that the Co is partially substituted by the transition metals ions such as Ni or Mn, to 

improve the capacity and structural stability [27]. The main purpose of doping is to 

synthesise the material in a relatively short time and at low temperatures [29]. 

Previous studies reported that the result of the charge/discharge curve of the doped 

material has a similar shape to that of the spinel structure with two plateaus different 

from the ones of the existing layered LiNiO2, LiCoO2 and LiMnO2 [29]. Through the 

applications of solid-state chemistry and electrochemistry methods, research was 

performed to investigate the effects of Ni and Li doping where they mixed LiNiO2 with 

LiCoO2 at a unit cell level to form a solid solution phase of LiCo1-xNixO2 [29]. The 

method was experimentally shown to enhance the thermal stability and cycling 

performance since the Co replacement with Ni ions in LiCo1-xNixO2 suppress the JT 

distortion of Ni3+ [29]. Conversely, the stability and the capacity of LiNiO2 were also 

improved by replacing Ni with Mn and Co. This is effective, according to the theoretical 

studies which show that the JT distortion in LiNiO2 is suppressed by Co atoms that 

replace Ni atoms in the lattice [27], leading to LiNi0.5Mn0.5O2 to exhibit a reversible 
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capacity of 150mAh/g [30]. This comes from a reversible Ni2+/Ni4+ redox reaction, with 

Mn4+ in a fixed oxidation state [30]. 

In previous experimental research, LiNi0.6Co0.2O2 powder was prepared and heated 

at 750°C, 850°C and 950°C [31]. The sample according to the experiment showed a 

hexagonal layered structure above the 885 °C heating temperatures with an increase 

in the primary particles’ sizes. In addition, it was reported that LiNi0.6Co0.2O2 exhibits 

uniform particle size when calcined at 850 °C. Moreover, they added that increasing 

a heating temperature increases the particle size leading to higher crystallinity which 

as a result affect the uniformity of the material. However, the heating temperature of 

850 °C enhances the electrode reaction reversibility. This is because the utilization of 

the LiNi0.6Co0.2O2 material is increased by a uniform depth of charge (DOC) of each 

particle in the homogenous particle [31]. Each annealed cell of the material at 850 °C 

as a result delivers 148 mAh/g discharge capacity at 0.2C for the first cycle.   

1.3.2.  Structural Parameters  

The electrochemical properties of electrode materials depend significantly on the 

changes in structural parameters during cycling. The research based on the SCAN 

Metta-GGA density functional on LiNiO2, LiCoO2, and LiMnO2 predicted that a 

parameter changes slightly during delithiation, whereas the orthogonal vector, c, 

changes considerably [32]. This effect may be attributed to differences in the structure 

of LiMnO (orthorhombic), and LiNiO and LiCoO (rhombohedral). It was inferred in the 

study that a parameter represents the in-layer distance between two transition metals 

(TMs) in LiNiO2 and LiCoO2, and it decreases with delithiation since the ionic radius 

of the TMs decreases with an increasing oxidation state of the TMs [32]. Moreover, 

the study reported a systematic monotonous increase in the c lattice vector for LiNiO2 

and LiCoO2. The parameter represents the interlayer distance between two TM layers 

in LiNiO2 and LiCoO2, and it initially increases with delithiation due to electrostatic 

repulsion between adjacent O-layers, while close to the fully delithiated limit there is 

a decrease in interlayer slab distance [33]. The changes in volume with delithiation is 

a combined effect of a and c parameters, however, the c parameter provides a 

dominating effect. As such, the stability of a structure, and the capacity of a lithium-

ion battery cell depends significantly on the c parameter [33]. 
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1.3.3.  Band Gaps  

A bandgap is a distance between the valence band and the conduction band of 

electrons. It is a representation of the minimum energy that is required to excite an 

electron up to a state in the conduction band where it can participate in conduction 

[34]. The lower energy level is the valence band, and thus if a gap exists between this 

level and the higher energy conduction band, energy must be input for electrons to 

become free. The size and existence of this band gap allow one to visualize the 

difference between conductors, semiconductors, and insulators [35]. Figure 1.4 shows 

a band diagram that presents the distance between the valence and conduction 

bands. 

 

Figure 1.4 A bandgap diagram showing the different sizes of band gaps for 

conductors, semiconductors, and insulators [36] 

In conductors, the valence band overlaps with the conduction band. The overlapping 

causes the valence electrons to be essentially free to move into the conduction band 

and participate in conduction. Since it is not a full overlap, only a fraction of the valence 

electrons can move through the material, but this is still enough to make conductors 

conductivity [37].  

In semiconductors, the gap is relatively small enough that it can be bridged by some 

excitation. The gap is essentially some size that of a conductor or insulator. In this, a 
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finite number of electrons can reach the conduction processes to occur as a result of 

the electron-hole left behind [34]. 

In insulators, the electrons in the valence band are separated by a large bandgap from 

the conduction band. That is there is a large forbidden gap in conduction. This as a 

result provides a clear reason for insulators not conducting electricity [38]. 

1.3.4. Magnetic and Electronic Properties  

On the recent PBE work [30] the electronic and magnetic properties of LiNiO2 were 

examined considering both parallel and antiparallel configuration for the Ni ion. The 

total energy calculations presented that the ferromagnetic (parallel), configuration is 

energetically favourable by 16 meV per formula unit [30]. This was the case due to 

that in fully lithiated LiNiO2, all the Ni ions are in a 3+ oxidation state and the low-spin 

(LS) electronic configuration for Ni3+ 𝑡2
6

𝑔(| ↑↓ | ↑↓ | ↑↓ |)𝑒𝑔
1(| ↑ |). As such, the calculated 

local magnetic moment of Ni in LiNiO2 is expected to be ~1 µB [34, 37]. However, the 

presence of Ni4+, which has 𝑡2
6

𝑔 (| ↑↓ | ↑↓ | ↑↓ |) 𝑒𝑔0(|  |  |) configuration makes the 

local magnetic moments of Ni sites in partially and fully delithiated states different [37, 

34]. Conversely, the observation of hybridization between Ni-d and O-p states have 

been made, together with a finite density of states (DOS) at the Fermi level.  That is 

from the DOS it was discovered that both up and down t2g spin channels are 

completely occupied, while the up channel of eg is partially occupied, indicating that 

Ni3+ is in Low Spin. On the other hand, the experimental valence electron XPS for 

LiNiO2 showed that the band near the Fermi level (at ~ -1.4 eV) is composed of Ni-3d, 

while O-2p states were found at ~ -3.8 eV [30].   

Similar work disposed of that the local magnetic moment on Co sites in the fully 

lithiated. This is due to the Co3+ ions in a low-spin state (LS) with 𝑡2
6

𝑔 (| ↑↓ | ↑↓ | ↑↓ |) 

𝑒𝑔0(|  |  |) [30]. Moreover, the electronic structure (DOS) brought to attention a strong 

hybridization between Co-3d and O-2. Hence the t2g band of Co is completely occupied 

in both spin channels, while eg is unoccupied, reflecting more evidence of the LS state 

of Co. Esling et al. [38] performed valence XPS of LiCoO2 and noted a dominant 

contribution of Co-3d states in the upper valence band region (~ -1-3 eV). As a result, 

they suggested broadband near 2.5-7.5 eV has prevalent O-2p character, but with 

some Co 3d admixtures.   
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For the LiMnO2, the antiferromagnetic (AFM) spin configuration is energetically 

favourable [30]. That is, the difference of total energy between antiferromagnetic and 

ferromagnetic configurations per formula unit is 0.125 meV, and a local magnetic 

moment of Mn (~ 3.6 µB). This suggests that Mn is in a high spin state with 𝑡2
3

𝑔 (| ↑ | 

↑ | ↑ |) 𝑒𝑔0(| ↑|) configuration. On the other hand, strong hybridization between Mn-d 

and O-p near the Fermi level has been observed computationally and from 

experimental XPS [30, 39]  

1.3.5.  Challenges Encountered in Other Studies  

Commercial cathode materials in lithium-ion batteries are synthesized by conventional 

solid-state methods. However, it is difficult to control the morphology and element 

distribution of cathode materials synthesized by these methods [39]. On the other 

hand, it is difficult to attain nano-sized materials by traditional precipitation, due to 

quite a long precipitation time that is usually needed to synthesize materials [39]. It 

has been reported that the mixed oxide LiMO2 (M: Mn, Ni, and Co) inherits 

characteristics of mono metal oxide LiCoO2, LiNiO2 and LiMnO2. However, the LiMO2 

(M: Mn, Ni, and Co) mixed oxides introduce challenges such as low initial coulombic 

efficiency, poor rate capacity and poor cyclability [40]. The electrochemical behaviour 

of the material is extremely dependent on the synthesis method because the 

crystallinity, phase purity, grain size, and cation mixing in the structure all rely on the 

synthesis method and influences the electrochemical performance of this material. 

Conversely, it is hard to prepare the LiMO2 (M: Mn, Ni, and Co) mixed compound by 

solid-state methods, as it often results in a nonstoichiometric or impure product [40].  

High-temperature treatment of LiNiO2 leads to the decomposition from LiNiO2 to Li1-

xNi1+xO2 which has a partially disordered cation and it distributes at the lithium sites. 

The stoichiometry of LiNiO2 affects the electrochemical properties of the material. 

Hence, little information about factors influencing the LiNiO2 structure is yet been 

published [41]. 

It was reported that the existence of Ni2+ in the 3a site belonging to the lithium ions in 

the stoichiometric LiNi1xCoxO2 imposed difficulty in the preparation of the compound 

and the cycling stability of the material, thus in more cycles, it became an obstacle 

due to the appearance of Li-branch on the surface of Li anode after many cycles [39]. 

Furthermore, LiNiO2 as cathode material has been reported to be difficult to 

synthesize and suffers from poor cyclability. This is mainly due to the poor structural 
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stability of the LiNiO2 compound caused by the Jahn-Teller (JT) effect of active Ni3+ 

ions in the lattice [42, 43]. The activity of Mn3+ ions, however, poses challenges 

towards the full exploitation of these materials. This Jahn-Teller activity is responsible 

for distortions of the 𝑀𝑛𝑂2 octahedral in the orthorhombic and metastable layered 

dioxides of composition LiMnO2, resulting in crystallographic phase transformation of 

LiMnO2 to spinel structure during charge/discharge cycling, which imposes low 

reversible capacity and poor cyclability. The magnitude of the cooperative Jahn-Teller 

distortion varies widely and discontinuously at structural phase transitions, during the 

redox cycles that accompany Li insertion/extraction. These variations often cause a 

breakup of the material, which is detrimental to the capacity retention of a battery [42, 

43]. 

1.4. The rationale of the Study  

The NMC cathode materials are potential high energy density electrode materials that 

could penetrate the market and elevate functionality of lithium ion batteries at multiple 

scales of energy storage. However, there have been several challenges with their 

individual structural performances and attainment of the perfectly functional 

combination of a layered cathode material composed of all three transition metals i.e. 

manganese, cobalt and nickel. One of the key interests in the current study is to 

deduce the conductivity of LiMnO2, LiNiO2 and LiCoO2 materials, and to determine the 

stable material which may not undergo the structural change during cycling. 

Furthermore, the study is directed towards derivation of interatomic potentials to 

enable large scale atomistic simulations of the individual LiMO2 (M: Mn, Co, Ni) and 

later the microstructural evolution of doped LiMnO2 with co and Ni to enhance the 

performance and structural stability.  

Computational modelling including atomistic simulations and ab-initio techniques have 

shed critical insight on in-depth understanding of various material properties. As such, 

this work makes use of both computational approaches to investigate the electronic 

and atomistic level properties of these materials i.e.  structural and electronic 

properties, and stability of NMC cathode materials.   

1.4.1. Research Questions 

The layered transition-metal oxides LiMO2 [M: Ni, Mn and Co] exhibit rich defect 

physics emanating from the ability of the transition-metal ions to exist in different 
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charge and spin states; the strong coupling between charge, spin and local atomic 

structures [43]. These cathode materials exhibit two problems: the capacity fades on 

repeated cycling or holding in the charged state, particularly at elevated temperature, 

and they generate flammable gases during charging that create safety concerns [42]. 

The research is driven by the following questions:  

1. How does these materials behave in their parent bulk form? 

a. Electrically. 

b. Mechanically. 

2. Which elements of the structures affects mainly the performance of the 

structures at their bulk form? 

3. What are the new and possible ways to come up with in attempt to improve the 

materials? 

Limited studies have been carried out using atomistic simulations on the systems of 

interest hence the need to begin with understanding of individual systems in this study 

(LiMnO2, LiNiO2 and LiCoO2). Therefore, there is a high necessity for deriving such 

interatomic potentials to enable a future work of doping the LiMO2 (M: Mn, Ni, and Co) 

systems, validating the interactions, and utilising them to predict bulk and 

nanostructural properties of these materials. 

1.4.2. Aims      

The aim of the study is to investigate the structural and electrochemical performance 

of layered LiMnO2, LiNiO2 and LiCoO2 nanoarchitecture materials. 

1.4.3. Objectives 

The objectives of this study will be to: 

▪ generate nanoarchitectures of pure LiMO2 (M: Ni, Mn, Co) structures. 

▪ investigate their structural and electrochemical properties. 

▪ develop interatomic potentials for Li, Mn, Ni and Co interactions. 

▪ perform high temperature molecular dynamics simulations driven by the 

developed interatomic potentials. 
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1.4.4. Overview of the study 

The primary aim of the study is to probe the electronic properties of the LiMO2 (M: Mn, 

Ni, and Co). This is preceded by the determination of the Hubbard U parameters which 

produce comparable electronic structures to the experimental data. The band gaps 

are calculated from electronic band structures and their atomic contribution to the band 

gaps at the Fermi level are investigated for the systems. The electronic properties are 

important for enabling better understanding about the electronic contribution and 

electron valence states of the materials. Moreover, the ionic state and electrical 

conductivity of materials are essential for Li+ diffusion and electron transportation, 

respectively during the charge/discharge of the battery [44]. The conduction and 

electron contributions will be determined from the electronic band structures and 

density of states, respectively. The electronic band structures make it possible to 

determine the synthesizing routes LiMO2 (M: Mn, Ni, and Co). Furthermore, the 

bonding properties of the materials in the band structures are split by the ligand field 

(Fermi level, Ef at 0 eV) into upper antibonding eg bands and nonbonding t2g bands 

with distinct energy gap Δ0 which gives detail information about the conductivity of a 

material [45, 46, 47]. On the other hand, the density of states (DOS) describes the 

number of states per interval of energy at each available energy level. The DOS 

indicates how densely packed quantum states are in a system. They give detailed 

electron contributions particularly at the energy gap of a material to facilitate the 

conductivity of a material.  

The study also investigates the mechanical properties of LiMO2 (M: Mn, Ni, and Co). 

The mechanical properties of transition metal materials control the thermodynamic 

properties to determine their electrochemical performance. The crucial aspect of the 

mechanical properties in the study is the elastic constants. The elastic constants 

describe materials' response to the externally applied strain required to maintain a 

given deformation and provide useful information on the strength of the material. 

Another aspect of the mechanical properties is the stability criterion of a material. The 

stability criteria are a set of conditions on the elastic constants that are related to the 

second-order change in the internal energy of a crystal under formation. They help to 

prove information about the stability of a material. The stability of a material is 

determined from an indication of an excited state in the quantum mechanical 

quantization of the modes of vibrations of elastic structures of interacting particles by 
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phonon dispersion curves. The behaviour of phonon dispersion branches reflects 

specific features of the crystal structure and the interatomic interactions and, therefore, 

gives the most comprehensive and detailed information about the dynamical 

properties of crystals [48, 49]. Lastly, with respect to electronic scale simulations, the 

stability of the LiMnO2, LiNiO2, and LiCoO2 systems are investigated from the total 

density of states, phonon dispersion curves and elastic constants.  

The second aspect of interest is the derivation of interatomic potentials or force field 

for NiO and CoO. The derivation of model parameters is critical to molecular dynamics 

simulations. The approach is to adjust the parameters until they fit or are comparable 

to some parameters of experimental data. Simulations in the current study are based 

on atomistic technique which will employ empirically derived equations to describe the 

interatomic interactions. Atomistic simulation technique makes it is possible to 

simulate large systems with thousands of atoms and this renders it a desirable method 

for producing accurate statistical data from molecular dynamics simulations, to allow 

efficient use of large simulation cells and long simulation time. Moreover, the accuracy 

and reliability of the generated force fields rely on the quality of the interatomic 

potentials  

Procedurally, the DFT+U method will be deployed to investigate the thermodynamic, 

electronic and mechanical properties of LiMnO2, LiNiO2 and LiCoO2. Moreover, the 

interatomic potential interactions that can adequately model structural and 

thermodynamic properties of NiO and CoO systems are derived. The Co-Co, Co-O, 

Ni-Ni, and Ni-O interactions will be derived. Furthermore, the molecular dynamics 

(MD) simulations in conjunction with the derived interatomic potentials will be 

employed, to simulate the NiO and CoO systems at different temperatures. The 

transformation temperature is compared with the available experimental temperature 

in each structure to validate the newly derived interatomic potentials.   

1.5. Outline of the Study  

Chapter 1 is the general background of lithium-ion batteries and their applications. 

The structural aspects of the battery’s cathode materials, thus the LiMnO2, LiNiO2, 

and LiCoO2 structures are discussed in this chapter. Chapter 1 gives a detailed 

background of the study. The rationale and objectives of the study are outlined.  

Chapter 2 discusses the theoretical aspects and methodologies used in this study. 
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These include computational techniques such as energy minimisation, electronic 

structure methods, and molecular dynamics.  

In chapters 3, 4, and 5 we outline the results of the work and our conclusion. That is, 

chapter 3 is the structural and electronic properties calculations performed on the 

LiMnO2, LiNiO2, and LiCoO2 systems. Chapter 4 is the derivation of the interatomic 

potential model for NiO and CoO structures; and the validation of the potentials 

through molecular dynamics (MD). Lastly, in chapter 5 we give a summary of the main 

results presented in this work and recommendations for future research.   
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Chapter 2: Research Methodology 

This section provides a theoretical background of the methods used in this study. 

Computational simulations have become a reliable approach in science research and 

engineering-related problems. As such, the impact of computer simulations has shown 

potential growth in modern technical days.  We discuss in detail the molecular 

dynamics simulations and quantum mechanical density functional theory (DFT). 

2.1 Computer Modelling 

Computational modelling is the use of computers to simulate and study the behaviour 

of complex systems using mathematics, physics and computer science embodied in 

computer applications. Modelling is the representation of model construction and 

working of some system of interest [50]. It contains numerous variables that 

characterize the system being studied, yet it is but simpler than the system it 

represents. It offers a close approximation to the real system and incorporates most 

of its salient features. An important attribute in modelling is the simulation of a model 

under known input conditions and the comparison of the model output with the system 

output (model validity). The simulation is performed by adjusting each of the variables 

alone or in combination and observing how the changes affect the outcomes of the 

model [50]. 

Predominantly, a model intended for a simulation study is a mathematical model 

developed with the help of simulation software. A mathematical model classification 

includes deterministic (input and output variables are fixed values) or stochastic (at 

least one of the input or output variables is probabilistic); static (time is not taken into 

account) or dynamic (time-varying interactions among variables are taken into 

account). A simulation experiment is a test or a series of tests in which meaningful 

changes are made to the input variables of a simulation model [50]. They are used 

before an existing system is altered or a new system is built, to reduce the chances of 

failure to meet specifications, to eliminate unforeseen bottlenecks, to prevent under or 

over-utilization of resources and to optimize system performance. A good model is a 

judicious trade-off between realism and simplicity making it possible to understand and 

to perform experiments with. Hence, properties concerning the behaviour of the actual 

system or its subsystem can be inferred [50].  
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Computer simulations act as a bridge between microscopic length, time scales and 

the macroscopic world of the laboratory. Figure 2.1. shows the steps involved in 

developing a simulation model, designing a simulation experiment, and performing 

simulation analysis and figure 2.2 is a representation of simulations and real 

experiments. 

 

Figure 2.1. The steps in involved in developing a simulation model, designing 

a simulation experiment, and performing simulation analysis [50] 
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Figure 2.2 Schematic representation of simulation and experimental studies 

[50] 

2.2 Energy Minimization 

In molecular modelling, much of the interest is in the minimum points of the energy 

surfaces. The minimum energy configuration corresponds to the stable state of the 

system. Energy minimization (geometry minimization or energy optimization) is used 

to compute the equilibrium configuration of molecules and solids [51]. The stable 

states of molecular systems correspond to global and local minima on their potential 

energy surface. Hence, starting from a non-equilibrium molecular geometry, energy 

minimization employs the mathematical procedure of optimization to move atoms to 

reduce the net forces (the gradients of potential energy) on the atoms until they 

become negligible [51]. During the energy minimization process, the geometry is 

changed in a stepwise fashion so that the energy of the molecule is reduced. After 

several steps, a local or global minimum on the potential energy surface is reached. 

This final state of the system corresponds to a local minimum of potential energy, 
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where the temperature of the system is approximately zero. The procedure for energy 

minimization is shown in figure 2.3 below [51], 

 

Figure 2.3. The schematic representation of computational energy 

minimisation procedure [51] 

2.3 Ab Initio 

Ab initio is a group of methods in which properties of materials, that is the values of 

the fundamental constants and the atomic number of the atoms present can be 

calculated using the Schrodinger equation. These equations include density functional 

theory (DFT), Hartree-Fock (HF) methods and post-Hartree-Fock (PHF) methods [52]. 

The first principle ab initio methods for self-consistent calculations of electrons density 

distribution around moving ions, use electrons, nuclei, and their interactions to perform 

calculations. They do not require empirical input and therefore they can accurately 
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describe the interatomic interactions in a different environment. As such, they provide 

accurate modelling techniques [52]. The methods consider local chemical and 

magnetic effects to provide significant potential for predicting material properties. Ab 

initio calculations are used with success in applications where the properties are 

limited to the nanoscale [52].  

Several factors have contributed to the present success of ab initio calculations for 

exceptional materials systems. The first is the availability of modern high-speed 

computers. This has made it possible to carry out calculations on materials in complex 

situations with sufficient accuracy [53]. They provide a meaningful detailed comparison 

with experimental measurements. The second is the advert of density functional theory 

(DFT) and continuing development of approximations to the DFT formalism for 

electron exchange and correlation. The third is the refinement in the band structure 

calculation techniques and the invention of the ab initio pseudopotentials [53], which 

leads to rapid computation of total energies. The density functional methods have 

made it feasible to calculate the ground state energy and charge density with 

remarkably accurate results for real solids. Finally, there have been significant new 

developments in experimental technique and materials preparation that are making it 

possible to investigate the structure of matter. In advance is the ability to create high 

pressure and explore the properties of matter over a wide range of densities [54]. This 

is an ideal experimental tool to provide information that can be compared directly with 

current theoretical calculations. 

2.4 Density Functional Theory 

The density functional theory (DFT) is a quantum mechanical theory used mainly in 

physics, material sciences, and chemistry to probe electronic properties and ground-

state properties of many-body systems, particularly molecules, condensed phases, 

and atoms. DFT is based on the concepts of Thomas [55] and Fermi [56]. It was 

developed by Hohenburg, Kohn and Sham [57] employing the two theorems. The 

theorems are stated as follows: the first theorem states that for any system of 

interacting particles in an external potential V (r), the external potential is uniquely 

determined (with a constant excluded) by the ground state density ƿ0(r) [57]. The 

theorem provides a foundation for reducing the many-body system using electron 

density functional. Hence the electron density depends on 3 spatial coordinates 

instead of 3N [57]. The second theorem describes that a universal function for the 
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density energy could be defined for all-electron systems. Although the exact ground 

state is the global minima for a given external potential. Conversely, the density which 

minimises the function is the exact ground state density [58].  

Moreover, the DFT determines properties of many-electrons systems using a function 

of function (functional), which is dependent on the density of electrons. The DFT 

method was recognised to be accurate for quantum chemistry calculations in the early 

90s, following the enhancement of the approximations involved in the method in 

modelling the exchange and correlation interactions [59]. Although the DFT approach 

still has challenges to describe properly the intermolecular interactions, such as Van 

der Waals forces, excitations during charge transfer, transition states, bandgap in 

semiconductors, global potential energy surface and strongly correlated systems [60, 

61]. It has been proven by Kohn and Sham that the properties of the total ground-state 

of an interacting electron gas may be described by introducing a certain functional of 

the electron density ρ(r), which depends on the positions of atoms [58].  

                             𝐸(𝜌) =  ∫  𝜌(𝑟)𝑣𝑒𝑥𝑡(𝑟)𝑑𝑟 +
1

2
∬

𝜌(𝑟)𝜌(𝑟′)

|𝑟−𝑟′|
𝑑𝑟𝑑𝑟′ + 𝐺[𝜌],                       (2.1) 

where 𝑣𝑒𝑥𝑡(𝑟) is the external field integrating with the field of the nuclei; the functional 

G(ρ) comprises the kinetic and exchange-correlation energy (EXC) of the interacting 

electrons. G(p) is universal and is independent of the external fields. Moreover, the 

expression is a minimum for the correct density function   𝜌(𝑟). The equation made it 

possible for both Kohn and Sham to further develop the concept and make a 

suggestion of G(p) form as follows [62]  

                                                𝐺(𝜌) = 𝑇(𝜌) + 𝐸𝑋𝐺(𝜌),                                                      (2.2) 

where T (𝜌) is the kinetic energy of the non-interacting electrons with density 𝜌(𝑟) and 

the functional 𝐸𝑋𝐺(𝜌) encompassing the many-electron effects of the exchange and 

the correlations. The exact many-body and correlation interaction are unknown, hence 

there is an approximation that the exchange-correlation is then taken from the known 

results of an interacting electron system of constant density (homogeneous electron 

gas), and it is assumed that the exchange and correlation effects are not strongly 

dependent on inhomogeneities of the electron density away from the reference point 

r. Therefore, it is necessary to determine the set of wave function ψi that minimises 

the Kohn-Sham energy functional. The electron density is denoted as follows:          
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                                                         𝜌(𝑟) = ∑ | 𝜓𝑖(𝑟)|2𝑁
𝑖=1  ,                                (2.3) 

where N represents the number of electrons. The Kohn-Sham energy function is then 

given by a self-consistent solution. 

                   [− ▽2+ ∑
2𝑍𝐼

|𝑟−𝑅𝐼|
+ ∫ 2𝐼

𝜌(𝑟′)

|𝑟−𝑟′|
𝑑𝑟′ + 𝑉𝑥𝑐(𝑟)] 𝜓𝑖 = Ԑ𝑖𝜓𝑖 ,           (2.4) 

where Ri is the position of the nucleus I of charge Zi and Ԑ𝑖 is the Lagrange factor. 

The exchange-correlation potential, Vxc is given as a functional derivative: 

                                                                 𝑉𝑥𝑐(𝑟) =
𝛿𝐸𝑥𝑐[𝜌(𝑟)]

𝛿𝜌(𝑟)
 ,                                                (2.5) 

It is applicable for ground-state and the exchange-correlation energy, the DFT is only 

known by approximation. This theory can hardly be overemphasised. It reduces the 

many-electron problem to an essentially single-particle problem with the effective local 

potential, 

                               𝑉(𝑟) = ∑
2𝑍𝐼

|𝑟−𝑅𝐼|
+ ∫ 2𝐼

𝜌(𝑟′)

|𝑟−𝑟′|
𝑑𝑟′ + 𝑉𝑥𝑐(𝑟),                                    (2.6) 

However, a critical concern in DFT application is the way the functional Exc is defined. 

The energy functional, 𝐸𝑥𝑐(𝜌) for inhomogeneous electron gas is expressed as 

Coulomb interaction between the electron and its surrounding exchange-correlation 

hole [63]; 

                                                             𝑉𝑥𝑐[𝜌] =
1

2
∫ 𝑑𝑟𝜌(𝑟) ∫ 𝑑𝑟′ (𝑟,𝑟′−𝑟)

|𝑟−𝑟′|
,            (2.7) 

The critical drawback about the DFT is that the exact functionals for exchange and 

correlation are not known beside for the free electron gas, contrary, the approximation 

method can resolve the problem. The two commonly used approximations include 

generalised gradient approximation (GGA) and local density approximation (LDA). 

The methodology for solving the Schrodinger equation and the DFT Kohn-Sham 

equation respectively are depicted in figure 2.4 below. 
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Figure 2.4 a comparison of the methodology for solving the many-body 

Schrodinger equation and effective one-electron Kohn-Sham equation [63] 

2.5 Molecular Dynamics 

Molecular dynamics simulation is a technique for computer simulation of complex 

systems, modelled at the atomic level. It is used to study the motions of atoms in a 

given system to understand and predict the structural, dynamic, kinetic and equilibrium 

properties under the chosen conditions (compositions, temperatures, and pressures) 

[64] in the same manner as experiments. It can provide details of atomistic processes 

in microstructural evolutions. However, it is limited to full functionality within a certain 

range of length and time scales. Consequently, it needs to be integrated with other 

computational methods to span the length and time scales of interest [65]. 
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2.5.1 Aims of Molecular Dynamics 

A molecular dynamics simulation aims to present a simple model for the appropriate 

many-body problem and to use that model to gain insight into the possible behaviour 

of the real system. It provides an understanding of the properties of assemblies of 

molecules in terms of their structure and the microscopic interactions between them. 

The model under study is best based on a minimum number of adjustable parameters, 

and these are not to be continually altered to improve the fit with the experiment. This 

serves as a complement to conventional experiments, enabling a researcher to learn 

something new, something that cannot be found out in other ways [66]. 

2.5.2 The Molecular Dynamic Approach is as Follows 

First during sample preparations: a model system consisting of N particles is selected 

and Newton's equations of motion for this system are solved until the properties of the 

system no longer change with time (equilibration of the system). After equilibration, 

the actual measurement is then performed. It uses assumptions like the Born-

Oenheimer approximation [67], where the nuclei are assumed to be stationary.  The 

atomic positions and velocities are accrued from the variation and integration of the 

following equations with time steps chosen accordingly. 

                                             𝑉 (𝑡 +  𝛿𝑡) =  𝑣(𝑡) +  
1

2
[𝑎(𝑡) +  𝑎(𝑡 +  𝑡)]𝛿𝑡                         (2.8) 

                                        𝑟(𝑡 +  𝛿𝑡) =  𝑟(𝑡) +  𝑣(𝑡)𝛿𝑡 +
1

2
𝑎(𝑡)𝛿𝑡2                                           (2.9)  

The atomic acceleration is obtained from Newton’s 2nd law of motion, which states as: 

                                                                      𝑎𝑖 =
𝐹𝑖

𝑚𝑖
                                                   (2.10) 

To measure an observable quantity in a molecular dynamics (MD) simulation, the 

observable first must be expressed as a function of the positions and momenta of all 

particles in the system. The average volume of the system is determined by the 

balancing between the internal pressure and the externally set pressure. The enthalpy 

of the system is approximately conserved, so this method generates constant 

enthalpy, constant pressure (NPH) ensemble [64]. 

Molecular dynamics simulation is advantageous in the sense that it gives a route to 

dynamical properties of the system: transport coefficients, time-dependent responses 

to perturbations, rheological properties, and spectra. It is described by a force field 
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(inter-atomic potential) allowing researchers to examine the effect of temperature on 

a system [64]. 

2.5.3 Force Field 

Force field (interatomic potentials) refers to the functional form and parameter sets 

used to calculate the potential energy of a system of atoms in molecular dynamics 

simulations. It describes physical systems as collections of atoms kept together by 

interatomic forces, with the interaction law specified by the potential U (r1,…, rN), which 

represents the potential energy of N interacting atoms as a function of their positions 

𝑟𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖).  The force acting upon 𝑖th atom is determined by the gradient (vector 

of first derivatives) for atomic displacements. 

                                    𝐹𝑖 = −𝛻𝑈(𝑟1, … , 𝑟𝑁) = −(
𝜕𝑈

𝜕𝑥𝑖
,

𝜕𝑈

𝜕𝑦𝑖
,

𝜕𝑈

𝜕𝑧𝑖
)                                         (2.11) 

A force field or interatomic potential is made up of a set of equations that defines the 

variation of the potential energy of a molecule or a crystal with the locations of its 

component atoms, where the type of the atom depends on hybridization, charge, and 

the types of the atoms to which a reference atom is bonded to. The force constants 

and structural parameters such as bond lengths and angles are defined by the 

parameter sets. 

Molecular dynamics simulations models polarizability can introduce induced dipoles 

through different methods, such as fluctuating charges. This allows for dynamic 

redistribution of charge between atoms which respond to the local chemical 

environment.  

2.5.4 Limitations 

There are numerous drawbacks associated with molecular dynamics. That is, a force 

field can achieve excellent results only for a limited class of molecules or solids, related 

to those for which it was parameterised. The results are relatively not as good as the 

force field used. Molecular dynamics methods cannot treat chemical problems in which 

electronic effects predominate due to the neglected electrons. However, several 

methods are available for controlling temperature and pressure where specific 

ensembles are selected to calculate the structural, energetic, and dynamic properties 

of a system. 
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2.5.5 Molecular Dynamics Ensembles 

A system is described using an ensemble, particularly described as a statistical 

ensemble which is an idealization consisting of many copies of a system [68]. 

Considering all at once, each of which represents a possible state that the real system 

might be in. The ensembles provide a way to derive the properties of real 

thermodynamic systems from the laws of classical and quantum mechanics [68]. The 

molecular dynamics calculations consider different systems with different degrees of 

separation from their surroundings. MD considers three main ensembles namely, 

microcanonical, canonical and isothermal-isobaric ensembles [68]. 

(i) Micro Canonical (NVE) Ensemble 

The microcanonical ensemble, represent the possible states of a mechanical system 

that has an exactly specified total energy. The system is isolated from changes in 

moles (N), volume (V), and energy (E). The system cannot exchange energy or 

particles with its environment. Furthermore, if no time-dependent external forces are 

considered, the system’s Hamiltonian is constant. 

(ii) Canonical (NVT) Ensemble 

The canonical ensemble is an ensemble where the number of particles (N), the volume 

(V) and the temperature (T) are fixed to prescribed values. The temperature T is, in 

contrast to N and V, an intensive parameter and the energy of endothermic and 

exothermic processes is exchanged with a thermostat. 

(iii) Isothermal–isobaric ensemble (NPT) 

The isothermal–isobaric ensemble, is a statistical mechanical ensemble where the 

amount of substance (N), pressure (P) and temperature (T) are conserved. It 

corresponds most closely to laboratory conditions with a flask open to ambient 

temperature and pressure. 

2.5.6 Molecular Dynamics Properties 

Computer simulations can calculate different types of thermodynamic properties, this 

is done by employing the molecular dynamics technique. The simulations produce 

comparative results with experiments making it possible to quantify the potential 

models used and to validate the obtained results. 
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(i) The Temperature 

A temperature in a many-body system makes use of the equipartition of energy overall 

degrees of freedom that enter quadratically in the Hamiltonian of the system.  

The temperature in a simulation is calculated from the standard expression of 

statistical mechanics, relating it to the kinetic energy of the atoms and given by: 

                                                     𝑇𝑖𝑛𝑠𝑡 =
2

𝑔𝑘𝐵
𝐸𝑘𝑖𝑛                                         (2.12) 

where 𝐸𝑘𝑖𝑛 is the kinetic energy at present, g is the number of degrees of freedom of 

the system and kB is Boltzmann’s constant. The expression gives the instantaneous 

temperature of the simulation with the value being different at different time steps 

represented by: 

                < 𝑇 >=
1

𝑁
∑ 𝑇𝑖𝑛𝑠𝑡(𝑛)𝑛                                        (2.13)   

where the summation is over all time steps (or a subset) of the simulation, N. If an 

appropriate equilibration period has been undertaken before the actual simulation, the 

temperature of the simulation will be close to the desired target temperature, i.e., < T 

> ≈ 𝑇𝑡𝑎𝑟𝑔𝑒𝑡  [69]. The temperature, the same as the pressure, depends on the type of 

ensemble used for a simulation. In a canonical ensemble, the total temperature is 

constant whereas it can fluctuate in the microcanonical ensemble. The temperature is 

usually related to the kinetic energy of the system as follows: 

                                                𝐾 = ∑
│𝑃𝑖│

2𝑚𝑖
=

𝐾
𝐵𝑇

2
(3𝑁 − 𝑁𝐶)𝑁

𝑖=1                              (2.14)        

where 𝑃𝑖  is the total momentum of a particle 𝑖  
and 𝑚𝑖 is its mass and 𝑁𝐶 is the number 

of constraints on the system. Each degree of freedom contributes 
𝐾

𝐵𝑇

2
 according to the 

theorem of equipartition of energy. If there are N particles, each with three degrees of 

freedom, then the kinetic energy is assumed to be equal to 
3𝑁𝐾

𝐵𝑇

2
 [69]. 

It is a crucially important parameter in almost all systems and its speciation is not 

necessarily straightforward, particularly for atomistic systems. The temperature-based 

results that are within a tolerable precision limit depends on the temperature 

dependence of another parameter. 

(a) Melting Temperature (Tm) 

Melting temperature is a temperature at which under specific pressure, the liquid and 

solid phases of a substance coexist in equilibrium. In general, the melting temperature 
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of most substances is the same as their freezing temperature, due to the evidence 

that the substance melts at a similar temperature as that at which it freezes.  

In computer simulations, the pressure and temperature can be kept constant while 

allowing the energy to fluctuate until a stable value is reached. The   melting   

temperature   for   spherical   particles   of   radius   R   is determined from Gibbs free 

energies of solids and liquids, with assumptions of constant pressure conditions given 

by: 

                                   
𝑇𝑚

𝑏 −𝑇𝑚 (𝑅)

𝑇𝑏
𝑚

=  
2

𝜌
𝑠 𝐿𝑏𝑅

[𝛾𝑠𝑣 − (
𝜌𝑠

𝜌𝑙
)

2

3 𝛾𝑙𝑣 ]                                       (2.15) 

where ρs and ρl are the solid and liquid densities, Lb is the bulk latent heat of melting, 

γsv and γlv are the solid-vapour and liquid-vapour interface energies, respectively. 

(ii) Radial Distribution Function (RDFs) 

The radial distribution function (RDF) defines the probability of finding a particle at a 

distance r from another tagged particle compared to a homogenous distribution [70]. 

It is denoted by: 

                                                                          𝑔(𝑟)𝐼 = 4𝜋𝑟2𝜌 𝑑𝑟 ,                                     (2.16) 

where 𝜌 𝑖𝑠 the number density, r is the radial distance between atoms and g(r) is the 

probability of finding an atom a distance r from another atom (or molecule) compared 

to the ideal gas distribution. 

The radial distribution function (RDF) is constructed as a histogram of the distances 

between an atom and its neighbours during the simulation. It is a useful way of 

describing the structure of a system and the type of matter. It consists of multiple 

numbers of sharp peaks whose separation and heights are characteristic of the lattice 

structure, used to differentiate between solids, liquid, and gas phases. They are also 

used to calculate noticed change in structural phases. Lastly, they give the probability 

of finding the centre of a particle or atom at a given distance from the centre of another 

particle. In figure 2.5. (b) below the central atom is a reference atom. It is drawn with 

radius r. Figure 2.5. (a) below simplifies the demonstration of atom interactions in 

different orbitals in a different matter. 
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Figure 2.5. The schematic representation of radial distribution function (RDF) 

Each peak represents a coordination shell for the solid, with the nearest neighbours 

being found in the first coordination shell, the second nearest neighbours being found 

in the second and so on. 

(iii) Diffusion Coefficients  

A diffusion coefficient is a proportionality constant between the molar flux due to 

molecular diffusion and the gradient in the concentration of the species (driving force 

for diffusion). Diffusivity coefficient in solids at different temperatures is predicted by 

Fick's law given as: 

                                                        𝐷 = 𝐷0𝑒
−𝐸𝐴
𝑅𝑇 ,                                                  (2.17) 

where D is the diffusion coefficient, D0 is the maximum diffusion coefficient (at infinite 

temperature), T is the temperature in units of [absolute temperature (kelvins or 

degrees Rankine)], R is the gas constant in dimensions of [energy temperature−1 

(amount of substance)−1]  and EA is the activation energy for diffusion in dimensions 

of [energy (amount of substance)−1]. 

The diffusion coefficient can be estimated from the integral of the velocity 

autocorrelation function as: 

                                       𝐷 =
1

3
 ∫  

∞

0
< 𝑣𝑖  (𝑡) ∙ 𝑣𝑖  (0)> 𝑑𝑡,                                       (2.18) 

Alternatively, from the slope of mean-square displacements plots using Einstein 

relation as by: 

http://en.wikipedia.org/wiki/Kelvin
http://en.wikipedia.org/wiki/Rankine_scale
http://en.wikipedia.org/wiki/Gas_constant
http://en.wikipedia.org/wiki/Activation_energy
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                                     𝐷 =
1

6
 

𝑑

𝑑𝑡
< │𝑟𝑖  (𝑡) − 𝑟𝑖  (0)│ >,                              (2.19) 

It is a physical constant dependent on molecule size and other properties of the 

diffusing substance as well as on temperature and pressure. It implies that the mass 

of the substance diffuses through a unit surface in a unit time at a concentration 

gradient of unity [71] 

2.6 The Potential Model 

The potential model considers one or more interaction terms for a physical system, it 

is used to investigate particle and high energy systems by describing the variation in 

the energy of the molecule or solid as a function of atomic coordinates [72]. It depends 

solely on the quality and accuracy of the potential model; considering various 

experimental and theoretical aspects of the potential model as related to particle and 

high energy physics. Various Coulombic summation schemes that have been 

employed are described below [72]. 

2.6.1 Born Model of Solids 

The Born Model of Solids with the assumption that the energy and its derivatives are 

defined as the simulation of all interactions between the atoms in the system, giving 

rise to the total interaction and total net force acting on each atom due to others [73]. 

In this model, the atoms of a system are represented as point charge particles that 

interact through long-range electrostatic forces and short-range interactions. As such 

the interaction energy between the atoms is represented by: 

                                              𝑈𝑖𝑗 =
1

4𝜋𝜖0
 
𝑞𝑖 𝑞𝑗 

𝑟𝑖𝑗
+  𝛷(𝑟𝑖𝑗),                                              (2.20) 

where term one represents long-range coulombic interactions, 𝑞𝑖 and 𝑞𝑗 are the ionic 

charges, 𝜖0 is the permittivity of vacuum, and  𝑟𝑖𝑗 is the interatomic distance. The 

second term, 𝛷(𝑟
𝑖𝑗

) describes short-range interactions between ions, which includes 

the repulsion between the electron charge clouds and the Van Der Waals attraction 

forces [73]. 

(i) Long-Range Interactions 

A long-range include charge-charge interactions between ions and dipole-dipole 

interactions between molecules. Hence, the ionic system with a pair of ions i and j, 

separated by a distance rij, possess the coulombic interaction energy between them. 
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The long-range interaction energy of two ions (ion i and ion j) with charges qi and qj is 

given by: 

                                                𝛷𝑙𝑟 (𝑟𝑖𝑗) = ∑  
1

4𝜋 0
 

𝑞𝑖𝑞𝑗

𝑙+𝑟𝑖𝑗
 ,                                                  (2.21) 

where rij is the displacement separating the two ions, 휀0 is the permittivity of free space 

and l is the set of lattice vectors representing the periodicity of the crystal lattice. 

Contrary to ionic systems, this interaction will not be present in a non-ionic system and 

only short-range interactions will be considered. This is because long-range 

interactions describe the coulombic summation only [73]. 

(a) Ewald Summation 

Ewald summation is a method for computing long-range interactions (electrostatic 

interactions) in periodic systems. It calculates the electrostatic energies of ionic 

crystals together with the electrostatic potential acting on an object ion in a lattice. The 

lattice is made up of ions acting as an array of positive and negative charge points. 

The total potential, φ, acting on the object/ion by the array of point charges are 

separated into two components. One part in real space, φ1, and the consecutive part 

in reciprocal space, φ2, given by: 

                                                                       𝜑 = 𝜑1 + 𝜑2                                                        (2.22) 

The real part, φ1, consists of an array of point charges countered by an array of 

Gaussian charge distributions equal in magnitude but opposite in charges. Thus, each 

ion is effectively neutralised and neighbouring ions no longer interact. The reciprocal 

part, φ2, consists of an array of Gaussian charge distributions, φL, with equivalent 

charge and magnitude as the original point charge array. Ewald summation is a special 

case of the Poisson summation formula, it replaces the summation of interaction 

energies in real space with an equivalent summation in Fourier space. The advantage 

of this method is the rapid convergence of the energy compared with that of a direct 

summation. This means that the method has high accuracy and reasonable speed 

when computing long-range interactions. The method requires charge neutrality of the 

molecular system to calculate accurately the total Coulombic interaction [73].  

(ii) Short Range Interactions 

The short-range interactions are given in one or more ranges for each ion pair, up to 

a maximum range. At small distances, the electron cloud overlap leads to strong short-
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range repulsive forces due to electron density and as a result, the nuclear shielding is 

reduced. This increases the Columbia repulsion between the positively charged nuclei. 

This force prevents a crystal lattice from collapsing on itself. However, before the 

nuclear repulsion becomes significant there is also a quantum mechanical effect 

because the electrons are forced to occupy a smaller portion of space. Since the 

electrons must maintain orthogonal orbitals, the energy states increase in energy. This 

is known as orthogonalisation or Pauli repulsion. There is a contrasting longer-range 

attractive interaction at larger interatomic distances arising from the formation of 

instantaneous dipoles between adjacent electron clouds. This effect (Van Der Waals 

interaction) is also quantum mechanical in origin. By only adjusting the much smaller 

short-range contribution the whole spectrum of crystal structures can be reproduced. 

Below some of the possible descriptions for the short-range interaction are discussed. 

The most basic form would be a simple harmonic interaction, given by: 

                                                   𝛷𝑠𝑟 (𝑟𝑖𝑗) =  
1

2
𝐾(𝑟𝑖𝑗 − 𝑟0)2 ,                                             (2.22) 

where rij is the distance between two atoms i and j, r0 is the equilibrium bond distance 

and K is the harmonic force constant. This model is quite sufficient for systems that 

only deviate slightly from r0 and for which interactions can realistically be confined to 

adjacent pairs of ions [73].   

(a) Buckingham potential 

The Buckingham potential describes the exchange repulsion, which originates from 

the Pauli exclusion principle, by a more realistic exponential function of distance. It is 

a formula that describes the van der Waals energy 𝛷(𝑟𝑖𝑗 ) for the interaction of two 

atoms that are indirectly bonded as a function of the interatomic distance (r). It is used 

to model two body non-bonded interactions in ionic solids. The general form of 

Buckingham potential is: 

                                                              𝛷(𝑟𝑖𝑗 ) = 𝐴𝑖𝑗 ∗  𝑒𝑥𝑝
−

𝑟𝑖𝑗

𝜌𝑖𝑗 −
𝐶𝑖𝑗

𝑟   𝑖𝑗
6                                (2.23) 

where Aij is the size of the ions, ρij is the hardness and Cij is the dispersion parameter. 

The first term is called the Born-Mayer potential and the attraction term was added to 

it to form the Buckingham potential. For the cation-anion interactions, the attractive 

term is often ignored due to its small contribution to the short-range potential. 
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(b). Three-body potentials 

The three-body potentials are mostly valence angle forms. They are primarily included 

to permit the simulation of amorphous materials. The potential forms available are as 

follows. 

                                                  𝑈(𝜃𝑗𝑖𝑘) =
𝑘

2
(𝜃𝑗𝑖𝑘 − 𝜃0)2                                                  (2.24) 

where 𝑘𝑖𝑗𝑘 is the three-body force constant and   𝜃0 is the equilibrium angle. 

2.7. Simulation codes 

2.7.1. GULP 

GULP is a cross-platform, streaming task runner (code-based) program for performing 

a variety of types of simulations on materials using boundary conditions of 0-D 

(molecules and clusters), 1-D (polymers), 2-D (surface, slabs and grain boundaries), 

or 3-D (periodic solids). The code focuses on analytical solutions, through the use of 

lattice dynamics. A variety of forces fields are used within the GULP spanning the shell 

model for ionic materials, molecular mechanics for organic systems. It includes 

analytical derivatives up to at least second order for most force fields and third-order 

for many [74]. 

2.7.2. DL_POLY 

DL_POLY is a general-purpose molecular dynamics (MD) simulation package 

developed at Daresbury Laboratory [75]. Its general design provides scalable 

performance from a single processor workstation to a high-performance parallel 

computer, provided MPI2 instrumentation is available on the parallel machine. It is 

supplied in source form under license and can be compiled as a serial application code 

[75]. 

(i) INPUT FILES       

DL POLY_2.0 requires six input files named: CONTROL, CONFIG, FIELD, TABLE, 

TABEAM, and REVOLD. The first three files are mandatory, while files TABLE and 

TABEAM are used only to input certain kinds of pair potential, as a result, they are not 

always required. RE D is required only if the job represents a continuation of a previous 

job. 
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(ii) OUTPUT FILES 

 

Figure 2.6. Schematic representation of DL_POLY input and output files. 

After the execution, the DL POLY code produces up to eight output files: HISTORY, 

OUTPUT, REVCON, REVIVE, RDFDAT, ZDNDAT, STATIS and CFGMIN. These 

respectively contain a dump file of atomic coordinates, velocities and forces; a 

summary of the simulation; the restart configuration; statistics accumulators; radial 

distribution data, Z-density data, a statistical history, and the configuration with the 

lowest configurational energy. Some of these files are optional and appear only when 

certain options are used. The schematic representation of the DL_POLY input and 

output files is shown in figure 2.6 above. 

2.8 Approximation Methods 

Physical systems are described by complicated equations with detailed exact 

solutions; the details of the solution may obscure easy interpretation of results, 

rendering the solution to be of small aid in discerning trends or identifying the most 

important causal agents [76]. As such a carefully crafted approximate solution will yield 

a result that exposes the important driving physics and filters away extraneous 

features of the solution. This gives rise to the use of approximation methods to 
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generated approximate solutions. The approximation methods rely on some form of 

linearization to capture the behaviour of some local nonlinearity [76].  

2.8.1 Local Density Approximation 

The local density approximations (LDAs) are a set of approximations to the Exc 

functional in DFT which is determined by the electronic density at a point in space. 

They demonstrate that Exc is similar to that of a locally uniform electron gas with similar 

density in regions where there is slow variation in charge density [77]. The 

approximation is mainly used where the Exc density is local of an inhomogeneous 

system substituted be that of an electron gas evaluated at local density.  The LDA is 

based on two basic assumptions, (1) the exchange and correlation effects are from 

the immediate locality of point r. (2) the correlation effects are slightly dependent on 

the alteration of the electron density in the locality r [78]. The fulfilment of these two 

conditions results in the same contribution from the volume element dr as the volume 

element was surrounded by a constant electron density ρ(r) of the same value as 

within d(r). The exchange-correlation energy density of the homogenous electron gas, 

𝐸𝑋𝐶
ℎ𝑜𝑚(𝜌0) in this approximation is dependent on the homogeneous density 𝜌

0
 and it 

replaces for the inhomogeneous system with density ρ(r) by 

                                             𝐸𝑋𝐶
𝐿𝐷𝐴(𝜌(𝑟)) = 𝐸𝑋𝐶

ℎ𝑜𝑚(𝜌0)|𝜌0
,                                             (2.25) 

For spin-unpolarised system (where the functional only depends on the density) the 

LDA for the EXC is given as, 

                                        𝐸𝑋𝐶
𝐿𝐷𝐴[𝜌] = ∫ 𝑝(𝑟)Ԑ𝑋𝐶(𝜌)𝑑𝑟,                                           (2.26) 

and  

                                                            
𝛿𝐸𝑋𝐶(𝜌(𝑟))

𝛿𝜌(𝑟)
=

𝜕[𝜌(𝑟)Ԑ𝑋𝐶(𝑟)

𝜕𝜌(𝑟)
,                              (2.27) 

Although the approximation is not effective for systems with slowly varying densities, 

such as weakly perturbed electronic gas, it is effective for systems with 

inhomogeneous electron densities such as atoms and molecules. Considering the 

exchange-correlation hole and the pair correlation function, the exchange-correlation 

energy density becomes. 

                                                 𝜌𝑋𝐶
𝐿𝐷𝐴(𝑟1, 𝑟2) = 𝜌(𝑟1)[𝑔ℎ𝑜𝑚([𝜌]; |𝑟1 − 𝑟2|] ,                  (2.28) 



39 
 

where 𝑔ℎ𝑜𝑚[𝜌] is the coupling constant integrated pair-correlation part of the pair-

correlation function which is unaffected by the coupling constant integration given by, 

𝑔𝑥𝑐
𝐿𝐷𝐴([𝜌]; 𝑟1, 𝑟2) = 1 −

9

2
[

𝑠𝑖𝑛 (𝑘𝐹(𝑟1)|𝑟1−𝑟2|−𝑘𝐹(𝑟1)|𝑟1−𝑟2|𝑐𝑜𝑠 ((𝑘𝐹(𝑟1)|𝑟1−𝑟2|)

(𝑘𝐹(𝑟1)|𝑟1−𝑟2|)3 ]2                     (2.29) 

  where 𝑘𝐹(𝑟) represents a position-dependent local Fermi wave vector denoted by: 

                                                                 𝑘𝐹(𝑟) = (
3

𝜋
)

1

3𝜌(𝑟)
1

3                                                                       (2.30) 

The EXC is fragmented linearly into exchange and correlation terms as: 

                                                        𝐸𝑋𝐶 = 𝐸𝑋 + 𝐸𝐶,                                              (2.31) 

So that the discrete expressions for Ex and Ec can be evaluated. Hence the exchange 

term transforms to an analytic form for the homogeneous electron gas (HEG). 

Furthermore, the exchange term is applied under approximation that exchange-energy 

within a particular system where density is not homogeneous and it is obtained from 

employment of the HEG results, leading to the expression [79, 80] 

                                       𝐸𝑥
𝐿𝐷𝐴[𝜌] = −

3

4
(

3

𝜋
)

1

3 ∫ 𝜌(𝑟)
4

3𝑑𝑟,                                            (2.32) 

The equation satisfies correct exchange scaling. There are corresponding equations 

for the correlation part of [𝜌] and for 𝐸𝐶
𝐿𝐷𝐴[𝜌]. The LDA exchange-correlation hole is 

spherical around the reference electron. 

                                                   𝜌𝑋𝐶
𝐿𝐷𝐴(𝑟1, 𝑟2) = 𝜌𝑋𝐶(𝑟1, 𝑠),                                                 (2.33) 

Where 𝑠 = |𝑟1 − 𝑟2| and it satisfies the sum rule, 

                                    ∫ 𝜌𝑋𝐶
𝐿𝐷𝐴(𝑟1, 𝑟2)𝑑𝑟2 = 4𝑟 ∫ 𝜌𝑋𝐶

𝐿𝐷𝐴(𝑟1, 𝑠)
∞

0
𝑠2𝑑𝑠 = −1,                        (2.34) 

These equations provide a fundamental understanding of the unlikely success of LDA 

in intensely inhomogeneous systems. Conversely, the coupling constant averaged 

exchange-correlation hole can be approximated using LDA. On the other hand, the 

analytic expressions for the correlation energy of the HEG are only defined in the high-

density and low-density limits corresponding to infinitely weak and infinitely strong 

correlation, respectively. The high-density limit of the correlation energy density is 

written as [79] 

                                              Ԑ0 = 𝐴𝑙𝑛(𝑟𝑠) + 𝐵 + 𝑟𝑠(𝐶𝑙𝑛(𝑟𝑠) + 𝐷),                              (2.35) 
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and the low limit 

                                                               Ԑ0 =
1

2
(

ᵍ0

𝑟𝑠
+

ᵍ1

𝑟𝑠

3
2

+. . . ….,                                            (2.36) 

The Wigner-Seitz radius is related to the density as 

                                                                           
4

3
 𝜋𝑟𝑠

3 =
1

𝜌
 ,                                                    (2.37) 

The local density approximations are important as an appropriate property of any 

approximate EXC functional in the construction of more sophisticated approximations 

to the EXC including the GGA and hybrid functionals. Hence, the LDA component 

entails the functional explicitly [80]. Moreover, the LDA explicitly approximates the true 

density energy through the energy of a local constant’s density. However, it fails to 

approximate in systems where density variations are rapid like in molecules. On the 

other hand, the local spin density (LSD) is not adequate for most chemical applications 

which particularly requires the determination of energy variations with considerable 

precisions. This LSD has been used mainly to calculate the electronic structure in 

solid-state physics [81, 82]. The LSD approximation is given by  

                               𝐸𝑋𝐶
𝐿𝑆𝐷[𝜌↑,   𝜌↓] = ∫ 𝑑3𝑟𝜌(𝑟)Ԑ𝑋𝐶

𝑢𝑛𝑖𝑓 [𝜌↑(𝑟), 𝜌↓(𝑟)],                            (2.38) 

where Ԑ𝑋𝐶
𝑢𝑛𝑖𝑓

(𝜌↑,   𝜌↓) is the exchange-correlation energy per particle of a uniform 

electron gas [83, 84, 85]. 

2.8.2 Generalised Gradient Approximation 

The GGA extends the exchange-correlation functional with terms containing gradients 

of the electron density. Moreover, the GGA provides several distinct parameterisations 

as compared to the LDA [86]. Hence, since the LDA is limited in approximating the 

exchange-correlation hole, the solution is the functional exchange correlation with 

terms containing an electron density gradient. These gradients take measurements of 

the changes of the electron density and use them to advance the LDA. The theory of 

the gradient function is based upon the weakly varying electron gas [87]. These 

approximations are called gradient expansion approximation (GEA) and are denoted 

by. 

                                                     𝐸𝑋
𝐺𝐸𝐴[𝜌] = 𝐸𝑋

𝐿𝐷𝐴[𝜌] + 𝛽 ∫
(▽𝜌)2

𝜌
4
3

𝑑𝑟 + ⋯ ,                                (2.39) 
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                                      𝐸𝐶
𝐺𝐸𝐴[𝜌] = 𝐸𝐶

𝐿𝐷𝐴[𝜌] + 𝐶 ∫
(▽𝜌)2

𝜌
4
3

𝑑𝑟 + ⋯ ,                                     (2.40) 

where 𝛽 is a constant, and 𝐶(𝜌) is a function determined by the response theory. 

However, the rapid difference of realistic densities in atoms and molecules obstructs 

systematic improvements of GEA over LDA. The analysis of the gradient expansion 

of the exchange-correlation hole shows that the short-range part (near the reference 

electron) is enhanced, yet the long-range is worsened [88]. Moreover, the 

corresponding approximations of the GEA are the generalized gradient 

approximations (GGA) given by: 

                                             𝐸𝑋𝐶 = 𝐸𝑋𝐶[𝜌(𝑟),▽ 𝜌(𝑟)]  ,                                          (2.41) 

which introduces improvements on the LDA results, and it is superior to the correlated 

wavefunction methods such as MP2. GGA offers distinct parameterisations relative to 

the LDA. Hence, the GGA with gradient-corrected functional is written as 

                                𝐸𝑋𝐶
𝐺𝐺𝐴[𝜌↑,   𝜌↓] = ∫ 𝑑3𝑟𝑓( 𝜌↑(𝑟), 𝜌↓(𝑟),▽ 𝜌↑,▽ 𝜌↓) ,                             (2.42) 

This kind of expression decreases LSD atomization energy errors by a factor of 

approximately 5 [89] . The most used GGA’s are the Becke GGA [90] for the exchange 

energy, and the exchange and correlation GGA’s by Perdew [91] and Perdew and 

Wang [88, 92, 93, 94]. The form of the Becker GGA correlation to the LDA is given as 

                                  𝐸𝑥
𝐺𝐺𝐴[𝜌↑, 𝜌↓] = 𝐸𝑋

𝐿𝐷𝐴 − 𝛽 ∫ ∑
𝜌𝜎(𝑟)

4
3𝑥𝜎

2

1+6𝛽𝑥𝜎 𝑠𝑖𝑛ℎ−1 𝑥𝜎
𝑑3𝑟𝜎 ,                                (2.43) 

and  

                                                            𝐸𝑋
𝐿𝐷𝐴 = −𝐶𝑋𝜎 ∑ 𝜌𝜎

4

3 (𝑟)𝑑3(𝑟) ,                                   (2.44) 

where 𝐶𝑋 =
3

2
(

3

4𝜋
), 𝑋𝜎 =

|𝛻𝜌|

𝜌𝜎

4
3

 and 𝜎 denotes electron spins, that is either spin-up (↑) or 

spin-down (↓). The constant (𝛽) is a parameter used to obtain the correct exchange 

energy for the nobble gas. 

2.9. Plane-wave Pseudopotential  

The plane-wave pseudopotential method is a scientific technique used to perform the 

variation self-consistent solution with relatively high accuracy. The method has been 

advanced and perfected to reliably predict the static and dynamic properties of 
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molecules and crystalline solids [94]. The complex many-body problem with strongly 

correlated electrons and nuclei had been embodied within the framework of the Born-

Oppenheimer approximation. On the other hand, the DFT is being mapped to a single-

particle problem moving in an effective external potential for a set of fixed nuclei. 

Moreover, the development of a practical numerical scheme to solve the resulting 

single-particle Kohn-Shan equation for extended systems such as crystalline solids or 

liquids have been included in the method [95]. It expands the wavefunction of the 

single-particle eigenstates of the Kohn-Sham equations into a set of basic functions. 

Hence, the Schrodinger equation transforms into an algebraic equation for the 

expansion coefficient solved by the numerical performed method. In short, the plane-

wave pseudopotential method deals with weak pseudopotentials and is responsible to 

perform complete structure optimization, particularly the relaxation of internal 

parameters. Furthermore, the method can simulate the electronic ground-state for 

metals, insulators, and semiconductors [95]. 

2.9.1 Plane-wave Basis Sets 

The plane-wave basis sets are mainly utilized in the calculations that involve the 

boundary conditions. The sets are coupled with pseudopotential or ‘effective core 

potential’ in practical performance, to be used as particularly for valence charge 

density. These plane-wave basis sets are relatively more efficient than the 

comparative Gaussian-type basis, due to that they are guaranteed to converge to the 

target wave function. Since there is an infinite number of electrons, a wave function is 

required for each electron. However, the basis set required for the expansion of each 

wave function needs to be infinite also. Bloch’s theorem offers a solution, by starting 

with the periodicity of the crystal lattice. The theorem defines that the crystal 

momentum k is a good quantum number and provides the boundary condition for the 

single-particle wave function, 𝜙𝑘. Bloch’s theorem is often stated in an alternative form:  

                                                     𝜙𝑘(𝑟 + 𝑅𝐿) = 𝑒𝑖𝑘.𝑅𝐿𝜙𝐾(𝑟),                              (2.45) 

It is equivalent to the statement that all eigenfunction 𝜙𝑘𝑖 of a single-particle 

Schoedinger equation with periodic potential can be expressed as a periodic function 

𝑢𝑘𝑖 modulated by a plane wave vector 𝑘 [96], where RL is a direct lattice vector. 

                                                       𝜙𝑘𝑗(𝑟) = 𝑒𝑖𝑘𝑟𝑢𝑘𝑗(𝑟) ,                                                   (2.46) 
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𝑢𝑘𝑖 can be expanded as a set of plane-wave basis. 

                                              𝑢𝑗(𝑟) = ∑ 𝐶𝐺
𝑗
𝑒𝑖𝐺.𝑟

𝐺  ,                                                             (2.47) 

and G are reciprocal lattice vectors and the functions 𝑢𝑘𝑖 are periodic, they can be 

expanded in a set of plane-waves. Hence the exponential prefactor with the electronic 

wavefunction is written as: 

                                                          𝜙𝑘𝑗(𝑟) = ∑ 𝐶𝐺
𝑘𝑗

𝑒𝑖(𝐾+𝐺)𝑟
𝐺   ,                                           (2.48)          

where 𝐶𝐺
𝑘𝑗

 is the coefficient of the periodic plane-waves. The number of wavefunctions 

utilised is controlled by the largest wavefunction in the expansion of equation (2.49). 

This is equivalent to introducing a cut-off on the kinetic energy of an electron with a 

wave-vector k given by  

                                                                𝐸𝐾 =
ℏ2|𝐾+𝐺|2

2𝑚
                                                        (2.49) 

For only the plane-wave that obeys: 

                                                            𝐸𝐾 =
ℏ2|𝐾+𝐺|2

2𝑚
< 𝐸𝑐𝑢𝑡                                                 (2.50) 

Are included in the basis. However, the plane-wave set at finite cut-off leads to an 

error in the computed total energy, therefore the energy must be increased throughout 

until the calculated energy has converged. 

2.9.2 Pseudopotentials 

A pseudopotential or an effective potential is used as an approximation of complex 

systems in physics. They were brought into practice in the year 1930 by Hans 

Hellmann [103]. Many chemical and physical properties depend mainly on the valence 

electrons distribution, while the core electrons do not participate in a chemical bonding. 

However, they are strongly localised around the nucleus, and their wave function 

overlaps less with the core electron’s wave function of the next neighbouring atoms. 

As a result, the electron core distribution is the same despite the chemical environment 

an atom is experiencing [102]. Therefore, the core electrons are declared “frozen” and 

the core electron distribution is kept in the crystal environment. This is adventitious 

that few electrons must be treated, and few eigenstates of the Kohn-Sham equation 

must be calculated. Moreover, the removal of core electrons from the calculation 

reduces the total energy scale which calculates the energy difference between atomic 

configurations more stable. The introduction of the pseudopotential approximation is 

an attempt to solve the complex effects of the core electrons in motion and they are 

nuclear with pseudopotential or an effective potential [97, 98, 99]. Hence the 
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Schrodinger equation now contains a modified effective term instead of the coulombic 

potential term for core electrons. Thus, in the pseudopotential approach, only the 

valence electrons are explicitly dealt with [100, 101, 102, 103, 104] 

Figure 2.7 below shows the schematic representation of an atomic all-electron wave 

function and the corresponding atomic pseudo wave functions, demonstrating the 

properties of the pseudopotentials. The strong ionic potential causes the valence wave 

functions to oscillate rapidly in the region occupied by the core electrons. These 

oscillations maintain the orthogonality between the core electrons and valence 

electrons. The pseudopotential is contracted in a way that the pseudo wave function 

has no radial nodes within the core region and the pseudo wave functions and 

potential agreement with the true wave function and the potential outside the cut-off 

radius (rcut). The pseudopotential preserves the atomic properties of the elements, with 

the phase shifts included in the scattering across the core. Generally, the 

pseudopotential is non-local. Hence it has projectors for different angular momentum 

states. The general form of the pseudopotential is given by  

                                             𝑉𝑖𝑜𝑛 = ∑|𝑙𝑚⟩𝑉𝑖⟨𝑙𝑚|,                                                  (2.51) 

where |𝑙𝑚⟩ are spherical harmonics, and 𝑉𝑖 is the pseudopotential for angular 

momentum (𝑙) [96]. The pseudopotentials used in electronic structures are mainly 

generated from all-electron atomic calculations. The norm-conserving pseudopotential 

is one of the examples of non-local pseudopotential. It makes use of the different 

potentials for each angular momentum components of the wave function. The 

pseudopotential that uses the same potentials for all angular momentum components 

of the wave function is named local pseudopotential. The local pseudopotential is 

relatively computationally efficient as compared to the non-local pseudopotential [105, 

106] 
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Figure 2.7 Schematic representation of an atomic all-electron wave function 

and the corresponding atomic pseudo wave functions [107]. 

(i) Norm-conserving Pseudopotentials 

The use of pseudopotentials is important for performing the ab initio calculations.  The 

norm-conserving pseudopotential type, which is non-empirical allows obtaining the 

pseudo wave functions that are identical to real wave functions beyond a chosen core 

radius, whose eigenvalues agree with the real eigenvalue [107]. The property gives a 

correct description of bonding in pseudopotential calculations. Moreover, it corrects 

the exchange-potentials and self-consistent electrostatics. The Norm-conserving 

pseudopotentials also produce the scattering power of the full atom potential, correctly 

at energies away from the bound valence state energy to the first order in the energy 

difference. As such, the Norm-conserving pseudopotentials reduce all-electron 

electronic structure calculations with a higher degree of accuracy [108]. 

(ii) Ultrasoft Pseudopotentials 

The ultrasoft pseudopotentials attain smoother pseudo wave function. It is a radical 

departure from the norm-conserving pseudopotentials. The pseudo wave functions 

are required to be equal to all-electron wave functions outside the radius. The ultrasoft 

pseudopotential is capable to reduce the plane-wave cut-off required in calculations, 

due to large values of radius which can be used in their scheme. Hence the 
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complication that emerges is two-fold. Those are (1) the equality of the 

pseudopotentials to the all-electron wave functions in the interstitial while they have 

different norm inside, the topological complexity, as such they are not normalised. (2) 

The pseudo charge density is not obtained from computing ∑ 𝜙∗𝜙 as in the Norm-

conserving pseudopotentials; thus, produces incorrect charge. Lastly, the 

pseudopotentials become less transferable by relaxing the Norm-conservation, 

however, this is less important.  

2.10. Implementation of Plane-wave Pseudopotential Codes 

The plane-wave pseudopotential code has been utilised to solve quantum mechanical 

problems. Some of the used codes include VASP, CASTEP, Win2k and quantum 

expresso. CASTEP, and VASP [109]  (PHONON [110]) codes implemented in Material 

Studio and MedeA [111] interfaces, respectively. VASP is designed to perform ab initio 

quantum mechanical calculations, and the molecular dynamics (MD) simulations using 

pseudopotentials or the projector-augmented wave method and a wave basis set 

[109]. The implemented approach in VASP is based on the finite temperature with the 

free energy as a variational quantity and an exact evaluation of the instantaneous 

electronic ground-state at each MD time state. The package makes use of efficient 

matrix diagonalization schemes and efficient charge density mixing. The technique 

can avoid the problems occurring in the original that are based on the simultaneous 

integration of the electronic and ionic equation motion.  The ultra-soft Vanderbilt 

pseudopotential (US-) [112] and augmented wave (PAW) method are used to describe 

the interaction between ions and electrons. The methods allow for a considerable 

reduction of the plane-waves numbers per atom for transition metals. Moreover, VASP 

can be used to perform calculations on the forces and the full stress tensor, and it can 

as well be used to relax atoms into their instantaneous ground-state.  The VASP code 

performs a convergence test as the initial test to establish the suitable energy cut-off 

and k-points sufficient to converge the total energy of the system under investigation. 

Thereafter properties such as heats of formation, density of states, elastic constants 

and phonon dispersion curves can be determined. 
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2.11. Theoretical Background of the Calculated Properties 

2.11.1 Heats of Formations 

The heats of formation (ΔHf) and associated entropies provide a fundamental 

understanding of the stabilities of a compound and a phase diagram construction. The 

standard enthalpy of formation or standard heat of formation of a compound is the 

change of enthalpy that goes along with the formation of one mole of a substance in 

its standard state from its composite elements in their standard state (1 bar and 298K). 

The heat of formation is estimated from: 

                                                              𝛥𝐻𝑓 = 𝐸𝑐 − ∑ 𝑥𝑖𝑖 𝐸𝑖,                                               (2.52) 

where 𝐸𝑐 is the calculated total energy of the compound, 𝐸𝑖  is the calculated total 

energy of the element 𝑖 in the compound. The heats of formations are used to predict 

the stability trend of the materials [113]. 

2.11.2 Density of States 

The density of states (DOS) of a system describes the number of states per interval 

of energy at each available energy level. They further indicate how dense the packed 

quantum states are in a system. The integration of DOS over a range of energy gives 

several states as: 

                                                   𝑁(𝐸) = ∫ 𝑔(𝐸𝑔(𝐸))𝑑𝐸
𝛥𝐸

𝐸
 ,                                      (2.53) 

Where 𝑁(𝐸) represents the carrier density and 𝑔(𝐸)𝑑𝐸 denotes the number of states 

between 𝐸 and 𝑑𝐸. The DOS allows for the integration to be performed for the electron 

energy instead of the integration over the Brillouin zone. The presence of suppression 

in the electronic density of states (pseudo gap) at the Fermi level is established in the 

case of metal phosphates.  This has led to a question in the study of complex metal 

phosphates systems, that how the pseudo gap forms in the electronic density of states 

at the Fermi level and their relations to the stability of structures. Hence, numerous 

contexts such as Jahn-Teller effects in molecules [114], the colouring patterns of 

atoms over the sites of a given lattice, [115] and Hume-Rother rule [116] have 

proposed the direct relations between the formation of a pseudo gap and stability of 

the structure. 
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Literature reveals that the density of states is essential in determining the stability trend 

of structures for the Fermi level (Ef). Conversely, the theory suggests a fundamental 

background that a structure with the highest density of states around the Fermi level 

is the least stable, while the structure with the lowest density of states is the most 

stable [117, 118]. 

2.11.3 Phonon Dispersion Curves 

The phonon dispersion curves are defined as the k wave vector dependence of the 

frequencies 𝜔(𝑘, 𝑗) of the normal modes for all branches 𝑗 and selected directions in a 

crystal. The phonon dispersion curves have an essential role in most physical 

properties of condensed matter physics. These include thermal conductivity, 

mechanical stability, and electrical conductivity. Moreover, they are an indication of an 

excited state in quantum mechanical quantization for the vibrational modes of elastic 

structures with interacting particles.  The behaviour of phonon dispersion branches 

reflects some features of a crystal structure and its interatomic interactions. Hence, 

they provide the most comprehensive and detailed information about the dynamical 

properties of a crystal. The calculations of phonon vibrational frequencies are given 

as: 

                                                                   𝜔 = 𝑣𝑖𝑞                                                            (2.54) 

where 𝑣𝑖 is the speed and 𝑞 is a wave-vector of the lattice vibrations; In cases where 

crystals consist of more than one types of atoms, two types of vibrational modes are 

displayed; that is: optical and acoustic. 

 The optical phonons come from the out of phase vibrations between neighbouring 

atoms within the unit cell, while the in-phase vibrations give rise to acoustic phonons. 

The acoustic modes have zero frequency at 𝑞 = 0 (the centre of the Brillouin zone), 

and contrary to that, the optical modes have non-zero frequencies. The two modes 

(acoustic and optical) split into longitudinal and transverse modes named longitudinal 

acoustic (LA), transverse acoustic (TA), longitudinal optical (LO) and transverse 

optical (TO). The acoustic modes display a linear relationship between frequency and 

long wavelengths phonon wave-vector. The negative vibrational frequencies known 

as soft modes indicates mechanical instability of systems in the study, and positive 

vibrations indicate stability. More attention is paid along with the Γ point, where there 

are points of high symmetry. Table 2.1 below list and describe the critical k-points of 
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high symmetry line in the first Brillouin zone for certain Bravais lattice of BCC, FCC, 

and hexagonal lattice [119, 120]. Phonon dispersions curves for various crystal 

directions rely on this notation. These demotions describe the direction and symmetry 

of a crystal. 

Table 2.1 Critical k-points in the first Brillouin zone [113]. 

Symbol Description 

Γ(0,0,0) Centre of the Brillouin zone 

Simple cube 

M (1/2,1/2,0) Centre of an edge 

R (1/2,1/2,1/2) Corner point 

X (0,1/2,0) Centre of a face 

Body-centred cubic 

H (-1/2,1/2,1/2) Centre point joining four edges 

P (1/4,1/4,1/4) Corner point joining four edges 

N (0,1/2,0) Centre of a face 

Face-centred cubic 

K (3/8,3/4,3/8) Middle of an edge joining two trigonal faces 

L (1/2,1/2,1/2) Centre of a trigonal face 

U (1/4,5/8,5/8) Middle of an edge joining a trigonal and a square face 

W (1/4,4/8,1/2) Corner point 

X (0,1/2,1/2) Centre of the square face 

Hexagonal  

A (0,0,1/2) Centre of a hexagonal face 

K (2/3,1/3,1/2) Middle of an edge joining two rectangular face 

H (1/2,0,0) Corner point 

L (1/2,0,1/2) Middle of ab edge joining a hexagonal and a rectangular 

face 

M (1/2,0,0) Centre of a rectangular face 

 

2.11.4 Elasticity 

The elastic properties relate to different fundamental solid-state properties. These 

properties include phonon spectra, lattice constants, equation of states and interatomic 
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potentials. They provide crucial information about the strength of materials against an 

externally applied strain. They also act as stability criteria to probe mechanical stability 

and structural transformation [121, 122]. The elastic constants of a material provide 

detailed information about the response of the material to the externally applied strain 

required to maintain a given deformation. Furthermore, they provide more information 

with the strength of a material by characterizing it from bulk modulus (B), shear modulus 

(G), Young’s modulus (E), shear anisotropy factor (A) and Poisson’s ration (𝑣).  

The calculations of elastic constants were initiated by Born [123]. The Born stability 

criteria are a set of conditions for the elastic constants (Cij) that are related to the second-

order change in the internal energy of a crystal under formation. However, the range of 

Born stability is more sensitive to the choice of coordinates [124]. Moreover, it was 

suggested that Born conditions are not effective for the stressed systems and they are 

effective for only the unstressed systems [125]. On the other hand, Barron and Klein 

indicated that the definition of the elastic constants derived the Helmholtz free energy, 

and they cannot be applied directly to the study of the stress-strain relationship in a 

stressed system [126]. However, it was demonstrated that the elastic constants cannot 

be used as a stability criterion for stressed systems [125, 127]. They suggested the use 

of elastic stiffness coefficients as stability criteria for isotropic stress. They further 

obtained a more general form for anisotropic stress, from the path-dependent finite 

displacement. The stability criteria are framed in terms of the elastic stiffness coefficients 

which governs proper relations of stress and strain at finite strain by considering both 

internal and the external work was done during the process of deformation [128]. This 

indicates that the stability analysis can be determined by an appropriate generalization of 

the zero-stress elastic constants valid for arbitrary stress. 

Since bulk modulus can measure the degree of stiffness or the energy required to 

produce a given volume deformation, it is one of the significant parameters to characterise 

the physical property of a material. Shear modulus describes the resistance to shape 

change caused by shearing force. Young modulus reflects the resistance of a material 

against uniaxial tension [129]. Moreover, bulk modulus depicts a bonding character within 

a material. Hence is it used as an indicator for strength and hardness of the material, and 

it is an inverse of compressibility [130]. The ration of bulk to shear modulus (B/G) of 

polycrystalline phases, states that the shear and bulk moduli signify the resistance to 

plastic deformation and the resistance to fracture, respectively [130]. A high B/G value is 
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associated with ductility, and a low B/G is related to brittleness. The critical value 

separating ductility and brittleness is 1.75 [131]. 

(i) Elastic Stability Criteria 

Many criteria have been introduced to deduce the elastic stability of crystals and they 

vary for difference lattice crystals. That is, the stress and strain for an individual material 

have three tensile and three strain shear components, leading to six components in total. 

As such, a relationship between stress and strain is then defined by a 6x6 symmetry 

matrix with 36 elements; where only 21 elements are independent and given by the 

equation: 𝜎1 = 𝐶𝑖𝑗휀𝑗, where 𝜎 is for stresses and 휀 for strain. The structural symmetry of 

the crystal uses some of the matrix elements that are equal and others fixed at zero. 

Cubic crystals consist of three independent elastic constants (C11, C12, and C44). The bulk, 

shear, Young’s modulus and Poisson’s ration for the cubic crystal are given by [79, 85].  

 

𝐸 =
9𝐵𝐺

3𝐺 + 𝐺
, 𝑣 =

𝐸

2𝐺 − 1
, 𝐺𝑣 = [

𝐶11 − 𝐶12 + 3𝐶44

5
] , 𝐺𝑅 = [

𝐶44(𝐶11 − 𝐶12)

4𝐶44 + 3(𝐶11 + 𝐶12)
],  

 

𝐺 = 𝐺𝐻 = [
𝐺𝑉 + 𝐺𝑅

2
 ] , 𝐵 = (

𝑐11 − 2𝑐12

3
) , 𝑐′ =

𝑐11 − 𝑐12

2
,  

 

                                 𝐴 =
2𝐶44

𝐶−𝐶12
,      𝑣 =

𝐶12

𝐶11+𝐶12
                                                    (2.55) 

 

where 𝐸 is Young’s modulus, 𝑣 Poisson’s ratio, 𝐺 isotropic shear modulus, 𝐵 bulk 

modulus, 𝑐′ tetragonal shear modulus, and 𝐴 the Zener anisotropic factor. The Hill 

average is selected as the estimation of bulk modulus and shear modulus.  

The mechanical stability requirements for cubic crystal yield the conditions for stability on 

the elastic constants, these conditions are as follow: 

                             (𝑐11 − 𝑐12) > 0,    (𝑐11 + 2𝑐12) > 0,   𝑐11 > 0, 𝑎𝑛𝑑    𝑐44 > 0                   (2.56) 

The requirements for mechanical stability in hexagonal structures are [132]: 

𝐶11 > 0, 𝐶11 − 𝐶12 > 0, 𝐶44 > 0, 𝐶11 + 𝐶12 −
2𝐶13

2

𝐶33
> 0 𝑎𝑛𝑑 𝐶66 =

𝐶11−𝐶12

2
> 0                   (2.57) 

for orthorhombic crystals, the mechanical stability conditions are given by [133] 

𝐶11 + 𝐶12+𝐶33 + 2𝐶12 + 2𝐶23 > 0, 𝐶22 + 𝐶33 − 2𝐶13 > 0,

𝐶11 > 0,   𝐶22 > 0,   𝐶33 > 0,   

                               𝐶44 > 0, 𝐶55 > 0,   𝐶66 > 0                                                             (2.58) 
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Lastly, the mechanical stability conditions for trigonal crystal are [134] 

𝐶44 > 0,    𝐶66 > 0, 𝐶11 > 0,   𝐶33 > 0, 𝐶11 − 𝐶12 > 0, (𝐶11 + 𝐶33 − 2𝐶13) > 0,   

                                 (2𝐶11 + 𝐶33 + 2𝐶12 + 4𝐶13) > 0                                                 (2.59) 
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Chapter 3: Structural, Electronic and Vibrational Properties of 

LiMO2 (M: Mn, Ni and Co) 

3.1 Introduction 

This chapter presents results obtained from the first-principles density functional 

theory (DFT) calculations with an aid of Hubbard correction (DFT+U) performed on 

LiMnO2, LiNiO2 and LiCoO2 structures cathode materials. The DFT has provided a 

convenient first principle framework for investigating the convergence test of the 

structures particularly the cut-off energy, k-points and convergence parameters. 

Moreover, it is critical to calculating structural parameters such as lattice parameters.  

The structural properties provide detailed information about the materials crystal 

nature. The electronic properties particularly the band structures, Density of States 

(DOS) and phonon dispersion curves will be analysed and discussed to enable better 

understanding of the electrical conductivity and vibrational stability of the structures. 

The significance of the Hubbard U parameter on the electronic density of states (DOS), 

band structures and the crystal structure will be discussed. Moreover, the electronic 

properties calculations on the materials help mainly in understanding the conductivity 

of the materials. On the other hand, mechanical properties give details about the 

vibrational stability of the structures. These properties are evaluated from the 

electronic band structure, density of states and phonon dispersion curves. The 

calculations of the properties in the study provide insight into the crystal nature of the 

materials under investigation. Furthermore, they provide insight into the conductivity 

behaviour of the materials, together with the electron contributions constituting the 

behaviours. The electronic band structures provide the electronic levels in crystal 

structures, which are characterized by two quantum numbers, the Bloch vector k and 

the band index n and structures [135]. Many electrical, optical and even magnetic 

properties of crystals can be explained in terms of the band structure. the density of 

states (DOS) of a system help in describing the number of states that are to be 

occupied by the system at each level of energy.  They are an average over space and 

time domains of the various states occupied by the system.  For mechanical stability, 

phonons dispersion curves describe an elementary vibrational motion in which a lattice 

of atoms or molecules uniformly oscillates at a single frequency [136]. Elastic 
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constants describe properties of material undergoing stress, deforms, and their 

recoveries and return to its original shape after the stress ceases.  

3.2 Structural Properties of LiMO2 (M: Mn, Ni and Co)  

The layered parent bulk structures (LiMO2: M=Mn, Ni, and Co) in this work have a 

Bravais lattice of rhombohedral centred hexagonal with the space group symmetry 

𝑅3̅𝑚. The bulk structure has alternative layers of Li+ and (MO2)- in which a transition 

metal (M) is stable as low-spin M3+ and situated at the centre of an octahedron formed 

by oxygen atoms. The illustrated structure in figure 3.1 below is for LiMO2 (M: Co, Mn 

and Ni). The material is ordered with Li+, M3+ and O2- [137]. The structural properties 

are tabulated in table 3.1. The vectors that describe the positions of atomic nuclei 

within the crystal structure are illustrated in table 3.2. 

 

Figure 3.1 (a) The 3D layered parent bulk of LiMO2 (M: Mn, Ni and Co) with 

Bravais lattice of rhombohedral cantered hexagonal and (b) top view 

representation of co-ordinated sites for LiMO2 (M: Mn, Ni and Co). 
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Table 3.1 Structural properties of LiMO2 (M: Mn, Ni, and Co) 

Structure LiMnO2 LiNiO2 LiCoO2 

Lattice 

Parameters(Å) 

a=3.002 [138] a=2.881 [139] a=2.830 [140] 

c=14.550 [138] c=14.198 [139] c=14.119 [140] 

Volume (Å3) 105.345 [141] 102.057 [139] 96.466 [140] 

Space Group 𝑅3̅𝑚 [142] 𝑅3̅𝑚 [142] 𝑅3̅𝑚 [142] 

 

Table 3.2 Fractional coordinates and atomic positions of LiMO2 (M: Mn, Ni, and 

Co) [190] 

Atoms Positions x y z 

Li 3b 0 0 1/2 

Mn 3a 0 0 0 

Ni 3a 0 0 0 

Co 3a 0 0 0 

O 6c 0 0 0.2584 

 

3.3 Method 

3.3.1 Convergence Test  

A convergence test establishes the suitable energy cut-off and k-points sufficient to 

converge the total energy of a system under consideration [113]. Thereafter properties 

such as heats of formations, density of states, elastic constants and phonon dispersion 

curves can be calculated.  The cut-off energy provides more information about the cut-

off on the number of plane waves functions being utilized as basic functions to 

represent the wave function. It is used to fix the number of plane waves in the basis 

set, rather than a straightforward option of choosing the number of plane waves. The 

k-points are sampling points in the first Brillouin zone of material, they help in 

converging the total energy of a system [113]. 

(i) Kinetic Energy Cut-off 

To ensure the appropriate cut-off energy of the structures, the single point energy were 

calculated at fixed k-points of 5x5x2 for both the LiMnO2 and LiNiO2 and 4x4x2 for 
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LiCoO2. All calculations were performed within the GGA-PBE embedded within the 

CASTEP code. Figure 3.2 depicts the curves for total energy per atom against the 

kinetic energy cut-off for(a) LiMnO2, (b) LiNiO2 and (c) LiCoO2 materials. The cut-off 

energy of 550 eV was chosen for LiNiO2 and LiCoO2, and 500 eV for LiMnO2 because 

they were energies that gave a zero slope [143]. 

 

Figure 3.2 Graphical representation of total energy per atom versus kinetic cut-

off energy of (a) LiMnO2, (b) LiNiO2 and (c) LiCoO2. 

(ii) K-Points 

This subsection outlines the convergence of the final energies with the k-point 

sampling set size. The energy calculations were performed using fixed cut-off 

energies, thus 550 eV for LiNiO2 and LiCoO2 and 500 eV for LiMnO2. The graphical 

representation of the final energy versus k-points is shown in figure 3.3 below. 

On the other hand, the convergence test calculations were performed with the same 

energy varying the k-points.  The final energy for the number of k-points for all 

materials converged when the final energy per atom (final energy difference between 

two consecutive points) was less than 0.5 eV. As a result, the k-points mesh of 5x5x2 
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converged for 𝑅3̅𝑚 LiMnO2 and LiNiO2 materials, and the k-point mesh of 4x4x2 

converged for 𝑅3̅𝑚 LiCoO2 material. The cut-off energy of 550 eV and the k-mesh of 

5x5x2 will be employed to perform the electronic properties of the LiNiO2, 550 eV with 

4x4x2 k-mesh for LiCoO2 and 500 eV with 5x5x2 for LiMnO2. 

 

Figure 3.3 Graphical representation of final energy versus k-points for (a) 

LiMnO2, (b) LiNiO2 and (c) LiCoO2. 

3.4 Results 

3.4.1 Geometry Optimization 

Structural relaxation (optimization) was performed, during which the lattice and cell 

volume of the structure were allowed to change until the structures were fully relaxed. 

This is significant to obtain a ground state structure or minimum total energy of the 

crystal structure before the determination of other properties. The structural 

optimization was performed using the CASTEP code [144] discussed in chapter 2 
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using the cut-off energy and k-points mesh as stated in the above section. The 

parameters of the relaxed structures are shown in table 3.3 below. 

Table 3.3 The parameters for optimised and experimental structures 

Structures Optimised Structures Experimental Structures 

Lattice 

Parameter

s (Å) 

Cell 

volume 

(Å3) 

Cell Angles (°) Lattice 

Parameters (Å) 

Cell 

volume 

(Å3) 

LiNiO2 a=b= 2.890 

c=14.222 

102.891 Alpha=beta=90 

Gamma=120 

a=b= 2.881 [139] 

c=14.198 [139] 

102.057 

[139] 

LiMnO2 a=b= 2.841 

c=14.488 

102.258 Alpha=beta=90 

Gamma=120 

a=b=3.002 [138] 

c=14.550 [138] 

105.345 

[141] 

LiCoO2 a=b= 2.850 

c= 13.992 

98.992 Alpha=beta=90 

Gamma=120 

a=b= 2.830 [140] 

c= 14.119 [140] 

96.466 

[149] 

 

3.4.2 Derivation of Hubbard U Parameters 

The Hubbard U parameter is mainly used to correct the electron self-interactions in 

DFT by localizing electrons in strongly correlated systems [145]. However, the correct 

U parameter must be derived per element. It is not the same for oxidation states of a 

given element and it significantly perturbs the electronic structure of material [146, 

147]. As such, the choice of U parameters was initiated to produce a relative bandgap 

in agreement with the experimental data range. The process of determining the 

suitable U parameter is a trial and error process guided by the cut-energy and the k-

points which allows a complete optimization of the structures. The cut-off energy and 

k-mesh for each structure as stated above were not varied in table 3.3, only the U 

parameter was changed. This is represented in table 3.4 below. In this case, the 500 

eV with 5x5x2 k-mesh for the 𝑅3̅𝑚 LiMnO2 material was sufficient to the U of 4.25 eV 

in Mn3+
 transition metal. The 550 eV with 5x5x2 k-mesh on 𝑅3̅𝑚 LiNiO2 matched the 

U of 2.45 eV in Ni3+
 transition metal, and 550 eV with 4x4x2 k-mesh on LiCoO2 

matched to U of 6.10 eV in Co3+
 transition metal.  
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Table 3.4 Representation of Hubbard U parameters per transition metal. 

Transition metals Mn3+ Ni3+ Co3+ 

U (eV) 4.25 2.45 6.10 

 

The use of these U parameters produced band gaps in good agreement with the 

experimental gaps, and they had a relatively small difference as compared to other 

theoretical findings. The comparison of the U parameters results to theoretical and 

experimental U is displayed in table 3.8 below. 

3.4.3 Structural Properties of LiMO2 (M: Mn, Ni and Co) 

The equilibrium structural properties were performed from the geometry optimisation 

calculation within the generalised gradient approximation. The calculations were 

performed using an energy cut-off of 500 eV for LiMnO2 and 550 eV for LiNiO2 and 

LiCoO2. The k-points of 5x5x2 for LiMnO2 and LiNiO2, and 4x4x2 for LiCoO2. Lastly, 

the U parameters used in the d state of the materials were 4.25 eV, 2.25 eV and 6.10 

eV for LiMnO2, LiNiO2 and LiCoO2, respectively.  

(i) LiMnO2 

Table 3.5 lists the calculated and experimental lattice parameters, cell volumes and 

heats of formation for LiMnO2. The orthorhombic LiMnO2 (space group 𝑅3̅𝑚) gave 

lattice parameters; a=b=2.841 Å and c=14.488 Å at an ambient pressure that 

corresponds to the cell volume of 101.258 Å3. The calculated lattice parameters are 

in good agreement with the experimental results (a=b=3.002 Å and c=14.550 Å) [138] 

with a percentage difference of 5.51% for a,b and 0.43% for c. Moreover, the 

calculated volume (101.258 Å3) is well predicted and compares well to the 

experimental volume (105.345 Å3) [141], to within 3.96% which is typical for the DFT 

for transition metal phosphates [148] 
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Table 3.5 Calculated and experimental lattice parameters, volume, and heats of 

formation for orthorhombic LiMnO2. 

Structure LiMnO2 (Space group 𝑹�̅�𝒎) 

Properties Simulated Experimental 

Lattice Parameters (Å) a=b= 2.841 

c=14.488 

a=b=3.002 [138] 

c=14.550 [138] 

ΔHf (eV/atom) -0.330  

Volume (Å3) 101.258 105.345 [141] 

 

The calculated heat of formation is given in table 3.5. The lower the heat of formation, 

the more stable the structure. That is at ambient pressure, the o-LiMnO2 structure 

gives the heat of formation of -0.330 eV/atom. This implies that the o-LiMnO2 is 

energetically favourable since it displays the negative ΔHf value. The ΔHf value 

suggests the stability of o-LiMnO2. The lattice parameters and the heat of formation 

suggest structural stability on the o-LiMnO2 structure. 

(ii) LiNiO2 

Table 3.6 is a list of the calculated and experimental lattice parameters, cell volumes 

and heats of formation for LiNiO2. The orthorhombic LiNiO2 (space group 𝑅3̅𝑚) gave 

lattice parameters; a=b=2.890 Å and c=14.222 Å at an ambient pressure that 

corresponds to the cell volume of 102.891 Å3. The calculated lattice parameters give 

a good agreement to the experimental results (a=b=2.881 Å and c=14.198 Å) [139] 

with a percentage difference of 0.31% for a,b and 0.17% for c. Moreover, the 

calculated volume (102.891 Å3) is well predicted and compares well to the 

experimental volume (102.057 Å3) [139], to within 0.81% which is typical for the DFT 

for transition metal phosphates [148]. 
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Table 3.6 Calculated and experimental lattice parameters, volume, and heats of 

formation for orthorhombic LiNiO2 

Structure LiNiO2 (Space group 𝑹�̅�𝒎) 

Properties Simulated Experimental 

Lattice Parameters (Å) a=b= 2.890 

c=14.222 

a=b= 2.881 [139] 

c=14.198 [139] 

ΔHf (eV/atom) -0.455  

Volume (Å3) 102.891 102.057 [139] 

 

The predicted heat of formation is given in table 3.6. The lower the heat of formation, 

the more stable the structure [113]. That is at ambient pressure, the o-LiMnO2 structure 

gives the heat of formation of -0.455 eV/atom. This implies that the o-LiMnO2 is 

energetically favourable since it displays the negative ΔHf value. The ΔHf value 

suggests the stability of o-LiNiO2. The lattice parameters and the heat of formation 

suggest structural stability on the o-LiNiO2 structure. 

(iii) LiCoO2 

Table 3.7 lists the calculated and experimental lattice parameters, cell volumes and 

heats of formation for LiCoO2. The orthorhombic LiCoO2 (space group 𝑅3̅𝑚) gave 

lattice parameters; a=b=2.850 Å and c=13.992 Å at an ambient pressure which 

corresponds to the cell volume of 98.992 Å3. The calculated lattice parameters give a 

good agreement to the experimental results (a=b=2.830 Å and c=14.119 Å) [140] with 

a percentage difference of 0.70% for a,b and 0.90% for. Moreover, the calculated 

volume (98.992 Å3) is well predicted and compares well to the experimental volume 

(96.466 Å3), to within 2.58% which is typical for the DFT for transition metal phosphates 

[148] 
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Table 3.7 Calculated and experimental lattice parameters, volume, and heats of 

formation for orthorhombic LiCoO2 

Structure LiCoO2 (Space group 𝑹�̅�𝒎) 

Properties Simulated Experimental 

Lattice Parameters (Å) a=b= 2.850 

c= 13.992 

a=b= 2.830 [140] 

c= 14.119 [140] 

ΔHf (eV/atom) -0.432  

Volume (Å3) 98.992 96.466 [149] 

 

The predicted heat of formation is given in table 3.7. The lower heat of formation, the 

more stable the structure. That is at ambient pressure, the o-LiCoO2 structure gives 

the heat of formation of -0.432 eV/atom. This implies that the o-LiCoO2 is energetically 

favourable since it displays the negative ΔHf value. The ΔHf value suggests the 

stability of o-LiCoO2. The lattice parameters and the heat of formation suggest 

structural stability on the o-LiCoO2 structure. 

3.4.4 Electronic Properties  

The focus of this section is on the band gaps, which represents a range of energy 

levels in the materials that do not allow electrons to possess. Although materials may 

have different band gaps within their electronic structure, it is essential to pay much 

attention to the Fermi level band gaps. This is an energy level where electrons exist 

when a material is at absolute zero temperature (Ef = 0 eV). The band gap sizes are 

used to classify the nature of materials, either being a metal, semiconductor, or 

insulator. Moreover, the influences of the band gaps on materials conductivity are 

discussed. 

Herein, the electronic properties of LiMnO2, LiNiO2 and LiCoO2 with the 𝑅3̅𝑚 space 

group are outlined, particularly the band structures, the density of states and phonon 

dispersion graphs. As the initial point, the same cut-off energy and the k-mesh are 

used as fundamental parameters although the energy gap is the centre of focus. The 

Hubbard U parameter is adjusted to obtain a bandgap that falls within the experimental 

range of the same materials. This will have a major impact when doping the materials. 

The comparison of the simulated conductivity results (band gaps), with the simulated 

bandgaps from other works and the experimental data is shown in table 3.8.  
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Table 3.8 Comparisons of simulated and experimental band gaps (eV) using 

the density functional theory. 

Systems Our work Other works (eV) Experimental 

(eV) PBE+U PBE+U+D3 SCAN SCAN+D3 

LiMnO2 1.64 1.42 

[150] 

1.42 [150] 1.19 

[150] 

1.11 [150] 1.64 [151] 

LiNiO2 0.40 HMa 

[150] 

HMa [150] HMa 

[150] 

HMa [150] 0.40 [152] 

LiCoO2 2.22 2.22 

[150] 

2.26 [150] 1.74 

[150] 

1.96 [150] 2.10-2.27 [153] 

                                    HMa = half-metal [150]. The bandgap is zero. 

3.4.5 Band Structures 

To understand and find the possible synthesizing routes for LiMnO2, LiNiO2, and 

LiCoO2, it is critical to probe their electronic structures. Figure 3.4 depicts the 

calculated electronic band structures around the Fermi level (Ef) set at 0 eV for the 

antiferromagnetic (low spin) state. These electronic band gaps are produced from the 

same cut-off energy, k-mesh and U parameters. Presented by the graphs in figure 3.4 

are energy electrons in different bands versus high symmetry k-points (wave vector). 

For comparisons purposes, the band dispersion is plotted along with the high 

symmetry points G→A→H→K→G→M→L→H.  

Figure 3.4 (a) illustrate the electronic band structure of LiMnO2 material. The graph 

represents energy electrons in different bands versus high symmetry k-points. The 

electronic band structure of LiMnO2 consists of 51 bands and the bands originate from 

3d orbitals of the transition metals Mn. The bottom bends predominantly form the 2p 

orbitals of the two O atoms in the compounds. On the other hand, the top levels denote 

Mn-3d bands, and the bottom levels as O-2p bands respectively in the structures as 

bonding properties. These bonding properties are split by the ligand field (Fermi level, 

Ef at 0 eV) into upper antibonding eg bands and nonbonding t2g bands with distinct 

energy gap Δ0 [45, 46, 47]. In the valence band, the Mn-3d states are shifted to below 

-75 eV, and they are shifted to higher energy in the conduction band. The conduction 

and the valence bands are unoccupied with a bandgap of 1.64 eV in good agreement 
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with the experimental value of 1.64 eV [151]. This value (1.64 eV) can be attributed to 

insulator behaviour and low electrical conductivity in LiMnO2. 

The electronic band structure of LiNiO2 is shown in figure 3.4 (b), the structure contains 

39 bands. The bands mainly originate from 3d orbitals of the transition metals Ni. 

Moreover, the bottom bends predominantly form the 2p orbitals of the two O atoms in 

the compounds. The top levels denote Ni-3d bands and the bottom levels as O-2p 

bands in the structures as bonding properties. These bonding properties are split by 

the ligand field (Fermi level, Ef at 0 eV) into upper antibonding eg bands and 

nonbonding t2g bands with distinct energy gap Δ0 of 0.40 eV. The bandgap is in good 

agreement with the experimental value of 0.40 eV [152]. The small bandgap in the 

material suggests that the LiNiO2 structure has a semiconductor behaviour 

characteristic with high electrical conductivity [45, 46, 47].  

Figure 4.3 (c) is the electronic band structure of LiCoO2 material. The plot representing 

the structure has 42 bands, where the bands mainly originate from 3d orbitals of the 

transition metals Co. The bottom bands of the structure predominantly form the 2p 

orbitals of the two O atoms in the compounds. Thus, the top levels denote Co-3d bands 

and the bottom levels as O-2p bands as bonding properties. Moreover, these bonding 

properties are split by the ligand field (Fermi level, Ef at 0 eV) into antibonding eg bands 

and nonbonding t2g bands with distinct energy gap Δ0 of 2.22 eV [45, 46, 47]. The 

energy gap falls within the experimental range of energy gaps 2.10-2.27 eV [153], 

which suggests an insulator behaviour characteristic in the structure with low electrical 

conductivity. 
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Figure 3.4 Graphical representation of band structures for (a) LiMnO2, (b) 

LiNiO2 and (c) LiCoO2 material with low spin state. 

3.4.6 Density of States 

Structural conductivity is fundamentally related to details of the Fermi surfaces. For 

conductivity examination of the LiMnO2, LiNiO2 and LiCoO2 structures, the electronic 

density of states is considered, from which the differences of electronic structures in 

these materials are analysed. The TDOS (total density of states) and the PDOS 

(partial density of states) graphs of the LiMnO2, LiNiO2, and LiCoO2 are represented 

in figure 3.5. The graphs are expressed in numbers of states per atom for each energy 

interval. They are plotted to compare the conductivity of these crystal structures.  

The DOS graphs shown in figure 3.5 depict the relatively exact trend in all the 

structures. Conversely, the DOS is characterized by two distinguishable patterns, i.e. 

valence band and conduction band. More importantly, the DOS and the band structure 

are calculated using the same cut-off energy, K-mesh points, and U parameters.   
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(i) The density of States for LiMnO2 

Figure 3.5 (a) shows the density of states for LiMnO2 structure, the valence band close 

to the Fermi level in DOS is occupied by a set of peaks coming from O-p states and 

Mn-d states. On the other hand, the conduction band is occupied by a set of peaks 

mainly from p state of Mn, p state of O, and s state of Li. The peaks at the Fermi level 

are due to the p state of O and d state of Mn contributions. The PDOS in figure 3.5 (a) 

exposes high electron contribution in the valence band as compared to the conduction 

band. In the valence band of LiMnO2, the p state of O and Mn-contribution increases 

gradually, and the d state contribution of Mn gradually decreases. Moreover, the s 

state contribution of O and Li is moderate. This contribution is seen also in the 

transition metal where it is higher in Mn. As such the TDOS depicts moderate electron 

contribution in the conduction ban. The moderate electron contribution is mainly by the 

s and p states of O; s, p, and d of Mn and s of Li which have lower peaks.  

The conduction band of LiMnO2 is dominated by the exceedingly small contribution of 

p states in O, p states of Mn and s states of Li. There is no s states contribution in O 

and Mn, no p state contribution in Mn. As a result, this causes a gradual decrease in 

peak accumulation in the conduction band. As a result, the TDOS of LiMnO2 has a 

bandgap of 1.64 eV indicating an insulator characteristic in the material. 

(ii) The density of States for LiNiO2 

Figure 3.5 (b) shows the density of states for the LiNiO2 structure, the Ef lies in between 

the peaks that are in the valence and conduction bands. The gap from the Ef to the 

peak in both energy regions is relatively smaller. These peaks are due to the 

contribution of p states of O and d states of Ni. The PDOS in figure 3.5 (b) expose high 

electrons contribution in the valence band as compared to the conduction band. In the 

valence band, the p state of O and Ni-contribution increases moderately. On the other 

hand, the d state contribution of Ni increases relatively. The s state contribution of O 

and Li in LiNiO2 is higher. Furthermore, this contribution is seen also in the transition 

metals where it is extremely low with approximately the same amount in Ni.  

In the conduction band, TDOS depicts low electron concentration in LiNiO2. The low 

electron contribution on LiNiO2 material is mainly by the s and p states of O; s, p, and 

d of Ni, and s of Li, which have lower peaks. Moreover, there is no s state contribution 

of O, and relatively small p states contribution from O and Ni. As such, there is a small 
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contribution from s states of Ni and Li. Hence, this causes a lowering of peaks 

displayed in the TDOS figure 3.5 (b). As a result, the LiNiO2 has a bandgap of 0.40 eV 

indicating a semiconductor behaviour.    

(iii) The density of States for LiCoO2 

In figure 3.5 (c), is the density of states for LiCoO2 structure, the Ef cuts a lower part of 

a peak in the valence band, leaving a relatively big gap between the Ef and the first 

peak in the conduction band. The contributing peaks at the Fermi level are due to the 

contribution of s and p states of O and d states of Co. The PDOS in figure 3.5 (c) 

exposes high electrons contribution in the valence band as compared to the 

conduction band. Thus, in the valence band, the p state of O and Co-contribution is 

exceptionally low. On the other hand, the d state contribution of Co is moderate, and 

the s state contribution of O and Li in LiNiO2 is lower. This contribution is also observed 

in the transition metals where it is extremely low with approximately the same amount 

in Co. 

 From the conduction band, TDOS depicts high electron contribution in LiCoO2. The 

high electron contribution on the LiCoO2 is mainly by the s and p states of O; s, p, and 

d of Co, and s of Li which have intense peaks. As such the LiCoO2 has a bandgap of 

2.22 eV indicating an insulator characteristic behaviour  
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Figure 3.5 Graphical representation of the total and partial density of states for 

(a) LiMnO2, (b) LiNiO2 and (c) LiCoO2. 

3.4.7 Mechanical Stability 

Mechanical stability of material provides a descriptive measurement of a material 

stiffness to withstand its structural nature under mechanical load. Mechanical stability 

is crucial for applications of low-density material. However, the mechanical properties 

of materials vary from material to material by order of magnitude with changing atomic 

composition and crystal structures [154]. Hence, the mechanical stability and elastic 

response of crystal systems are determined from properties such as elastic constants, 

bulk (B), shear (S), and Young’s (Y) moduli.  These are associated with changes that 

can occur on the crystal structure under excessive pressure. That is, a macroscopic 

distortion of a crystal structure is related to elastic constants, which are associated 

with structural stability, equation of state, interatomic potentials and phonon spectra 

[155].  
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(i) Phonon Dispersion Curves for LiMnO2, LiNiO2, and LiCoO2 

The phonon dispersion curves analyse in details the vibrational stability of a material. 

The term phonon draws an analogy between photon representing a quantum of 

electromagnetic radiation and quanta of lattice vibration [156]. The theory of phonons 

explains in details solid-state phenomena, such as thermal and electrical conductivity, 

which are unable to be outlined in the static lattice theory [156]. The phonon dispersion 

calculations in this subsection were performed to further compare in detail the 

structural stability of the LiMnO2, LiNiO2 and LiCoO2 crystalline materials.  

Figure 3.6 (a) is a phonon dispersion curve of LiMnO2 structure at ambient pressure. 

The phonon dispersion curve does not have soft modes along with high symmetry 

directions in the Brillion zone. This behaviour suggests that LiMnO2 is vibrationally 

stable. The phonon dispersion curve for the LiNiO2 structure at ambient pressure is 

displayed in figure 3.6 (b). The phonon dispersion curve shows no evidence of soft 

modes along with the high symmetry directions in the Brillion zone. The behaviour of 

the curves suggests that the material is vibrationally stable.  

Figure 3.6 (c) is a phonon dispersion curve for the LiCoO2 structure. The phonon 

spectra display imaginary phonon branching down to -1THz. The phonon is observed 

along the high symmetry direction referred to as Z (1 ½ ½) and G (0 0 0) in the Brillion 

zone as discussed in chapter 2 section 2.11.3. Considering the absence of supporting 

evidence on the PDOS, the soft mode is regarded as imaginary. However, it is a 

reason that the structure is less stable than the LiMnO2 and LiNiO2 as proven by the 

density of states shown in figures 3.5. The vibrational stability of the materials is a 

reason for a larger energy bandgap in the material as shown in the energy band 

structures figure 3.4 (c).  
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Figure 3.6 The graphic representation of phonon dispersions for (a) LiMnO2, 

(b) LiNiO2 and (c) LiCoO2. 

(ii) Elastic Properties 

Elastic properties relate to fundamental aspects of solid-state, such as the equation of 

states, phonon dispersions, and thermal expansion [157, 158]. To further investigate 

the stability of LiMO2 (M: Mn, Ni, and Co) structures, the elastic constants were 

calculated. These elastic constants are defined by the Taylor expansion of the total 

energy, and they are derived from the energy as a function of lattice strains [159]. In 

this section, the results of elastic constants, bulk, shear, and Young’s moduli of LiMO2 

(M: Mn, Ni, and Co) are discussed.  Studies have shown that smaller lattice 

parameters yield larger values of elastic constants, while larger lattice parameters 

yield smaller elastic constants.  

On table 3.9 is the list of DFT results on elastic constants (Cij), bulk (B), and Young’s 

(E) moduli for 𝑅3̅𝑚 LiMnO2 first column. All the independent elastic constants for the 

orthorhombic LiMnO2 structure are positive and satisfy the stability conditions for 

mechanical stability. Moreover, there is a dependent elastic constant C'= (C11-C12)/2 

which also contributes to the stability of a material. This independent parameter 

confirms the stability of a particular material when it has a positive value (C'>0) [113]. 

Hence, the calculated C' for LiMnO2 yields a value greater than 0, suggesting that the 

materials are stable. The elastic constant C66 for LiMnO2 have the same values as the 

C'. This phenomenon suggests that the C66 on the structure is a dependent elastic 

constant. Moreover, from the calculated elastic constants, the macroscopic 
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mechanical parameters such as bulk, shear and Shear modulus have been calculated. 

The parameters show larger values of bulk and Young moduli on the LiMnO2 structure, 

suggesting hardness and stiffness, respectively. That is, the bulk moduli value (145.91 

GPa) suggests that the material is resistant to compression and Young’s modulus 

(218.85 GPa) indicating that the material is not subjective to length elongation. Lastly 

the law value of shear modulus (87.54 GPa) suggesting that the material is subjected 

to deformation. Moreover, the experimental elastic constants shown in table 3.9 also 

display the same behaviour as the simulated elastic constants with a difference of 

1.76%. The difference is relatively small, implying a fair agreement between the 

simulated and the experimental value. 

Table 3.9 lists DFT results on elastic constants (Cij), bulk (B), and Young’s (E) moduli 

for 𝑅3̅𝑚 LiMnO2, LiNiO2, and LiCoO2. All the independent elastic constants for the 

orthorhombic LiNiO2 structure are positive and satisfy the stability conditions for 

mechanical stability. Moreover, the calculated C' for LiNiO2 yields a value greater than 

zero, providing more evidence that the materials are stable. The elastic constant C66 

for LiNiO2 has the same values as the C'. This phenomenon suggests that the C66 on 

the structure is a dependent elastic constant. Moreover, from the calculated elastic 

constants, the macroscopic mechanical parameters such as bulk, shear and Shear 

modulus have been calculated. The parameters show larger values of bulk and Young 

moduli on the LiMnO2 structure, suggesting hardness and stiffness, respectively. That 

is, the bulk moduli value (132.38 GPa) suggests that the material is resistant to 

compression and Young’s modulus (122.25 GPa) suggesting that the material is not 

subjective to length elongation. Lastly the law value of shear modulus (45.41 GPa) 

suggesting that the material is subjected to deformation. The experimental elastic 

constants shown in table 3.9 also display the same behaviour as the simulated elastic 
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constants with a difference of 5.11%. The difference is relatively small, implying a fair 

agreement between the simulated and the experimental value. 

Table 3.9 the comparisons of elastic constants (Cij), bulk (B), and Young's (E) 

moduli of LiMnO2, LiNiO2, and LiCoO2 with the experimental values. 

Elastic 

Constants Cij 

(GPa) 

Calculated Experimental 

LiMnO2 LiNiO2 LiCoO2 LiMnO2 

[160]  

LiCoO2 

[160] 

 

LiCoO2 

[161] 

 

C11 315.33 212.59 347.00 201 167 - 

C12 88.85 153.18 98.36 104 93 - 

C13 67.31 65.66 64.80 78 48 - 

C22 315.33 212.59 347.00 201 169 - 

C23 67.31 56.66 64.80 78 77 - 

C33 235.60 197.26 221.50 148 238 - 

C44 55.10 42.35 52.32 92 43 - 

C55 55.10 42.35 52.32 92 48 - 

C66 113.24 29.70 124.32 90 84 - 

C'=(C11-C12)/2 113.24 29.71 124.32 - - - 

Bulk (B) 145.91 132.38 152.38 112.71 112.25 191 

Shear (G) 87.54 45.41 91.63 65.75 28.46 80 

Young’s (E) 218.85 122.25 228.99 165.14 78.72 - 

 

In table 3.9 the last column are DFT results on elastic constants (Cij), bulk (B), and 

Young’s (E) moduli for 𝑅3̅𝑚 LiCoO2. All the independent elastic constants for the 

orthorhombic LiMnO2 structure are positive and satisfy the stability conditions for 

mechanical stability. Moreover, the calculated C' for LiCoO2 yields a value greater than 
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0, suggesting that the materials are stable. The elastic constant C66 for LiCoO2 have 

the same values as the C'. This phenomenon suggests that the C66 on the structure is 

a dependent elastic constant. Furthermore, from the calculated elastic constants, the 

macroscopic mechanical parameters such as bulk, shear and Shear modulus have 

been calculated. The parameters show larger values of bulk and Young moduli on the 

LiCoO2 structure, suggesting hardness and stiffness, respectively. That is, the bulk 

moduli value (152.38 GPa) suggests that the material is resistant to compression and 

Young’s modulus (228.99 GPa) suggesting that the material is not subjective to length 

elongation. Lastly the law value of shear modulus (91.63 GPa) suggesting that the 

material is subjected to deformation. The experimental elastic constants for the LiCoO2 

were missing from the literature for comparisons. 

(iii) Total Density of States 

To investigate the stability of these materials in more detail, the TDOS is evaluated as 

shown in figure 3.7. The structure with the highest density of states at Ef is considered 

the least stable, whereas the structure with the lowest density of states at Ef is 

considered the most stable [162]. It was inferred that the LiMnO2 represented by a red 

line in the plot has the lowest density of states as compared to LiNiO2 which has the 

second-lowest density of states; the LiCoO2 with the highest density of states at Ef. As 

a result, the LiNiO2 is the most stable relative to LiMnO2 and LiCoO2. 

 

Figure 3.7 The comparisons of the total density of states. 



74 
 

3.5 Discussion 

The work was probing the crystal nature of the LiMO2 (M: Mn, Ni, and Co), the 

electronic calculations reveal the conductivity and the electron contribution in the 

conductivity behaviour of the materials. Furthermore, the materials vibrational stability 

was determined to provide the mechanical properties of the materials. The first 

principle calculation of the orthorhombic 𝑅3̅𝑚 space grouped LiMO2 (M: Mn, Ni, and 

Co) was performed to determine the electronic band structure, density of states and 

phonon dispersions. All the calculations were performed using the Perdew-Burke-

Ernzerhof (PBE) exchange-correlation function with Hubbard U-parameter to correct 

the correlated d electrons of the transition metals (Mn, Ni, and Co). 

The band structures provided evidence that the LiNiO2 has a semiconductor behaviour 

characteristic with high electrical conductivity, due to its exceedingly small energy gap. 

On the other hand, both LiMnO2 and LiCoO2 have an insulator behaviour characteristic 

with low electrical conductivity. Comparatively, the LiNiO2 has the smallest bandgap 

amongst all the materials. On contrary, the LiCoO2 has the largest bandgap compared 

to all materials. This phenomenon is confirmed by the density of states curves. The 

conduction bands of LiMnO2, LiNiO2, and LiCoO2 materials are dominated by the 

contribution of p states in O, p states of transition metals (Ni, and Co) and s states of 

Li. There is no s states contribution in O and Mn, no p state contribution in Mn. As a 

result, this causes a gradual decrease in peak accumulation in the conduction band. 

The decrease in the s- and p-electrons number with increasing of electrons from 

oxygen ions to the transition metals d shell, corresponds to a dn→dn+1L transition or 

2p →3d transition, it is a transition with charge transfer [163]. The partial density of 

states shows that the states associated with the transition metals are predominantly 

of 3d character while the states associated with O are predominantly of 2p character. 

Furthermore, the 3d states of transition metals are predominant with little contribution 

from O and Li s-orbital in all structures. 

Relating to the bonding and non-bonding states, the occupied d bonding states are 

separated from the unoccupied antibonding states of the transition metals (Mn, Ni, and 

Co) by the Fermi level; this occurs as a result of the interaction of the transition metals 

(Mn, Ni, and Ni) with the O-p states which result in splitting the transition metals-3d 

states into valence and conduction bands [164]. In the conduction band, the transition 

metals-3d states are shifted to higher energy and they remain unoccupied, whereas 
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in the valence band the transition metals-3d states are shifted to a lower energy region. 

This allows for a gap at the Fermi level to be generated [164]. Hence, the overall band 

gaps for all materials are found to be considered in more fair agreement with the 

experimental results than the theoretical results [152, 153, 164, 150]. Hence the 

agreement between our results and the experimental results is satisfactory [152, 153, 

164]. 

Considering the structural stability, all the independent elastic constants for the 

orthorhombic structures are positive and satisfy the conditions for mechanical stability. 

Moreover, the C' for LiMnO2, LiNiO2 and LiCoO2 suggests that the materials are stable 

with C'>0 for all materials. The elastic constant C66 for LiMnO2, LiNiO2 and LiCoO2 

have the same values as the C'. This phenomenon suggests that the C66 on the 

structures is a dependent elastic constant. On the other hand, the larger values of bulk 

and Young moduli on all the three structures, suggests hardness and stiffness, 

respectively in all the materials. 

Phonon dispersion curves outlined that the LiCoO2 is the least stable material as 

compared to the other materials due to the imaginary negative frequencies contained 

in the phonon curves of this material. This situation is supported by the large bandgap 

size of the materials determined in the band structures. More evidently, the heats of 

formation declare LiNiO2 as a thermodynamically stable material due to its lowest 

value. The energy of the position empty transition metals eg, which mainly determines 

the band gaps strongly depends on the methods employed during the investigation. 

This is validated more by the compared total density of states for these materials; from 

which the LiCoO2 presented the highest density of states at the Fermi level indicating 

that the material is comparatively the least stable. On the other hand, LiNiO2 had the 

lowest density of state at the Fermi level implying that it is more stable than LiMnO2 

and LiCoO2. These total densities of states support the findings from both band 

structures and the phonon dispersion curves. The material with the lowest band gap 

has a lower density of states at the Fermi level and hence it is more stable. Conversely, 

the material with a big band gap possesses the highest density of states and as a 

result, it is the least stable material. On the other hand, the three structures satisfy the 

stability criteria of the orthorhombic material, proving their stability. 
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Chapter 4: Derivation and Validation of Interatomic Potentials 

for NiO and CoO 

In this section, the GULP derived interatomic potentials for NiO and CoO cubic crystals 

and their validation are discussed.  The derived interactions between Ni-O, Ni-Ni, Co-

O and Co-Co pairs were used as input parameters for the thermodynamic properties 

of both the of NiO and CoO systems, each containing 20 000 atoms. The lattice 

parameters, elastic constants, energy graphs, melting points and radial distribution 

curves were employed to analyse properties of these systems compared with 

experimental results. 

4.1 Introduction 

The molecular dynamic (MD) simulations require that the interatomic interactions 

(forces between atoms within a structure) are utilized at each step of performing a 

calculation particularly fitting interatomic potential. The nature of the interatomic 

bonding and atomic configuration is required before the calculations [165]. As such 

the description of the interatomic potential in this work is based on atomistic technique. 

This technique employs empirically derived equations to describe the interatomic 

interactions. Atomistic simulation technique makes it is possible to simulate large 

systems with thousands of atoms. As such the method is ideal for producing accurate 

statistical data from molecular dynamics simulations to allow efficient use of large 

simulation cells and long simulation time. Moreover, the accuracy and reliability of the 

generated force fields rely on the quality of the interatomic potentials [166]. As such, 

fit the interatomic interactions using corresponding oxides to improve the transferability 

and accuracy of our force fields. 

In general, oxides possess complex crystal structures on which theories of thermal 

conductivity have been based, resulting in hindering the applications of the theories to 

various oxides [165]. This limits the understanding of the origin of the modest thermal 

conductivity [165]. In counter to that, we derive the potential parameter sets that 

describe atomic interactions in NiO and CoO crystal structures, particularly for 

utilization in MD calculations at high temperature to analyse if the dynamic motion of 

atoms is realistic in terms of the state transformation of the structures.  
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4.2 Procedure 

The accuracy and reliability of the atomic simulations depend mainly on the quality of 

the derived interatomic potentials [167]. In this work, a simple two-body potential 

function based on the Born model of ionic solids was used. Although in most molecular 

dynamic simulations, the shell model used to approximate electronic polarization 

effects was not incorporated due to the significant increase in computational time; in 

this work, all particles were assumed to be rigid ions.  

The derivation of interatomic potentials was carried out using a cross-platform, 

streaming task runner (code-based) GULP [168]. The code first performs the optical 

optimisation to minimise the energy of the structure under a temperature of 300K 

(considered as room temperature), thereafter performs the parameter fitting. The input 

parameters such as lattice parameters, elastic constants, space group number, 

dielectric constant and bulk modulus are provided from the experimental data before 

the fitting. The procedure fits the ionic size (Aij), dispersion parameter (Cij), and the 

hardness of ions (ρij), according to the Buckingham potentials, where the interaction 

of two atoms are not directly bonded as a function of the interatomic distances. The 

atomic probing was based on Co3+-O2-, Co3+- Co3+, Ni3+-O2-, Ni3+-Ni3+ and O2-- O2-. 

Moreover, the resultant interatomic interactions are utilised as input data on the 

molecular dynamic (MD) simulation for validation. The MD calculations are performed 

on 20000 atomic crystal structures of NiO and CoO. The calculations are performed 

under temperature variations to point to the melting temperature of each material, 

under the amorphization technique. The process uses the micro-canonical ensemble 

(NVE), which fixed the total number of atoms, volume, and energy of material under 

investigation, however, permits the temperature to change.   

4.3 Structural Properties of NiO and CoO 

In figure 4.1 below, are the depictions of primitive unit cells for the body-centred cubic 

(BCC) crystal structures used for fitting interatomic potentials for both compounds NiO 

and CoO. The BCC unit cell consists of a net total of two atoms (Ni and O or Co and 

O), the one in the centre (O) and eight from the corners (Ni/Co). That is, each of the 

corner atoms is the corner of another cube, the corner atoms in each unit cell will be 

shared among eight-unit cells. Moreover, the volume of each atom occupying the 

corner is shared between eight adjacent cells, as such the BCC structure has the 
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equivalent volume of two atoms, at the central midpoint and the corner. Structures 

used in this work have the space group of Fm3M (225) with lattice parameter a=4.42 

Å [169] and a=4.26 Å [169] for NiO and CoO, respectively. The structural equilibrium 

interatomic distances are provided through the lattice constants and the curvature 

around the equilibrium bond lengths is represented by the elastic constants. Moreover, 

the resistance measure of compression for the structures is represented by bulk 

moduli. These properties are shown in table 4.1 for NiO structure and table 4.2 for 

CoO structure. 

 

Figure 4.1 Body-cantered cubic unit cells of (a) NiO and (b) CoO. 

 

Table 4.1 Structural properties of NiO 

Structure Lattice 

Parameters 

(Å) 

Angles ( °) Elastic Constants 

(GPa) 

 ume 

(Å3) 

Bulk 

Modulus 

(GPa) 

NiO A=4.415 [170] Alpha 90.0 C11 342.7 [171]  77.309 

[170] 

204.4 

[171] Betta 90.0 C12 141.3 [171] 

gamma 90.0 C14 41.2 [171] 
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Table 4.2 Structural properties of CoO. 

Structure Lattice 

Parameters 

(Å) 

Angles ( °) Elastic Constants 

(GPa) 

 

Volume 

(Å3) 

Bulk 

Modulus 

(GPa) 

CoO A=4.260 [172] Alpha 90.0 C11 307 [173] 77.309 

[172] 

224 [173] 

Betta 90.0 C12 183 [173] 

gamma 90.0 C14 90 [173] 

 

4.4 Derivation of Interatomic Potentials 

4.4.1 Introduction 

In this section, the Buckingham interatomic potentials [174] of NiO and CoO are 

derived, where the interaction between two atoms that are not directly bonded as a 

function of the interatomic distances. The Buckingham-type potential function was 

employed for short-range interactions and the GULP (General Utility Lattice Package) 

code [175] was used to calculate the two-body interactions in each structure. To obtain 

appropriate potential parameters for both NiO and CoO, lattice parameters of the most 

stable structure, space group, and the elastic constants were used in the fitting 

procedure as inputs for the derivation of the potential model. The derived interatomic 

potentials were validated by comparison of the initial and ultimate results of the 

structures. Moreover, the molecular dynamics (MD) calculations based on the derived 

potentials were performed employing the DL_POLY [176] code to investigate the 

potentials accuracy at various temperatures and to determine the structural melting 

point.  

4.5 Results 

The O-2 - O-2
 interactions are the dominant interactions in oxides, and the transferability 

of these interactions was considered vital by taking the actual interactions from the 

MD INPUT [165]. Hence, the short-range potentials parameters for Ni2+ - Ni2+, Ni2+ - 

O2-, Co2+ - O2- and Co2+ - Co2+ pairs were derived. The derived Buckingham 

interatomic potentials are shown in table 4.3 and table 4.4 for NiO and CoO 

respectively. The calculated charges to maintain a neutrally charged system during 

fitting are shown in table 4.5. Lastly, the calculated elastic constants and bulk moduli 
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of the NiO and CoO structures with the generated interatomic interactions are 

illustrated in table 4.6 and 4.7 respectively. 

Table 4.3 The derived Buckingham interatomic potentials for NiO 

Ionic pair (ij) Aij(eV) ρij (Å) Cij (eV/ Å6) 

Ni2+ - Ni2+ 6393.86 0.27829 0.00 

O2--  O2- 11782.88 0.23400 30.22 

Ni2+ - O2- 380400.00 0.15000 0.00 

 

 

Table 4.4 The derived Buckingham interatomic potentials for CoO 

Ionic pair (ij) Aij(eV) ρij (Å) Cij (eV/ Å6) 

Co2+ - Co2+ 80948.00 0.20000 10.00 

O2--  O2- 11782.88 0.23400 30.22 

Co2+ - O2- 58856.82 0.18 0.00 

 

 

Table 4.5 The partial charges used in deriving the interatomic potentials. 

Species (ion) Partial charge (e) System 

Nickel (Ni2+) 1.00 NiO 

Cobalt (Co2+) 1.00 CoO 

Oxygen (O2-) -1.00 All 
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Table 4.6 The calculated elastic properties and bulk modulus NiO. 

Elastic properties GULP (Fitted) (GPa) Experimental 

(GPa) [177] 

C11 344.65 342.7 

C12 86.60 141.3 

C44 86.60 41.2 

Bulk modulus 172.62 204.4 

 

 

Table 4.7 The calculated elastic properties and bulk modulus for CoO. 

Elastic properties GULP (Fitted) (GPa) Experimental 

(GPa) [177] 

C11 275.27 307 

C12 188.26 183 

C44 188.26 90 

Bulk modulus 217.26 224 

 

4.6 Validation of the Interatomic Potentials 

4.6.1 Comparison Between Calculated and Experimental Results 

The accuracy of the derived interatomic potentials was first checked by comparing the 

experimental and calculated lattice parameters, volume and structural angles as 

illustrated in table 4.8 for NiO and table 4.9 for CoO. This confirmed the value of Aij 

and ρij for O2-- O2-, Ni2+ - Ni2+, Co2+ - Co2+, Ni2+ - O-2
,
 and Co2+ - O2-. The comparison 

of the initial (experimental) and the final (fitted) elastic constants for NiO and CoO are 

represented in tables 4.10 and 4.11 respectively. The lattice parameters and structural 

angles obtained from the GULP are the same as the experimental parameters. 

However, there is a small difference between the experimental and the calculated 

volume. 
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Table 4.8 Comparison of initial and final parameters generated from the derived 

interatomic potentials in NiO. 

Parameter Exp [170] Fitted Difference %Difference 

 Volume (Å3) 86.06 86.06 0.00 0.00 

A (Å) 4.42 4.42 0.00 0.00 

B (Å) 4.42 4.42 0.00 0.00 

C (Å) 4.42 4.42 0.00 0.00 

Alpha (°) 90.00 90.00 0.00 0.00 

Beta (°) 90.00 90.00 0.00 0.00 

Gamma (°) 90.00 90.00 0.00 0.00 

 

Table 4.9 Comparison of initial and final parameters generated from the derived 

interatomic potentials in CoO. 

Parameter Exp [172] Fitted Difference %Difference 

 Volume (Å3) 77.31 100.57 23.26 26.15 

A (Å) 4.26 4.65 0.39 8.76 

B (Å) 4.26 4.65 0.39 8.76 

C (Å) 4.26 4.65 0.39 8.76 

Alpha (°) 90.00 90.00 0.00 0.00 

Beta (°) 90.00 90.00 0.00 0.00 

Gamma (°) 90.00 90.00 0.00 0.00 

 

Table 4.10 Comparison of experimental and derive elastic constants and bulk 

modulus for NiO. 

Elastic properties GULP (Fitted) (GPa) Experimental (GPa) 

[177] 

C11 344.65 342.7 

C12 86.60 141.3 

C44 86.60 41.2 

Bulk modulus 172.62 204.4 
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Table 4.11 Comparison of experimental and derive elastic constants and bulk 

modulus for CoO. 

Elastic properties GULP (Fitted) 

(GPa) 

Experimental 

(GPa) [177] 

C11 275.27 307 

C12 188.26 183 

C44 188.26 90 

Bulk modulus 217.26 224 

 

4.7 MD Study of NiO and CoO Using the Derived Potentials 

The derived interatomic potentials were fit into the input file of the molecular dynamics 

to determine the melting point of 20 000 atoms nanostructure of both NiO and CoO. 

Figures 4.2 and 4.3 are the representation NiO and CoO (respectively) of the 

structures generated from MD with the interatomic potentials.  

4.7.1 NiO Bulk Structure 

The NiO bulk was evaluated under the NVE ensemble, with 5000 steps, and 0.001 ns.  

The NiO with generated interatomic potentials remains in a crystalline form from the 

temperature of 0K-2000K, figure 4.2 (a). The structure changes from the crystalline 

form into an amorphous state, when heated with a temperature between 2250K and 

2500K figure 4.2 (a and b). The actual melting point of the structure is determined from 

the curve of energy vs temperature shown in figure 4.3.  The graph shows a point 

where the state change starts to take place that is the transformation from the 

crystalline to amorphous form starts at 2150K. This temperature is relatively close to 

the experimental melting point (2228K) of the NiO structure as shown in table 4.12 

below [178]. 
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Figure 4.2 Representation of molecular dynamics results with the derived 

interatomic potentials in different temperatures. (a) NiO structure with 20 000 

atoms in a crystalline form (before the melting point), (b) the structure at the 

melting temperature, and (c) the amorphous structures (after melting point) 

 

Table 4.12 Comparisons of the melting temperatures for NiO structure. 

Structure Calculated Melting 

Temperature (K) 

Structure melting 

Temperature (K) 

[178] 

NiO 2250 2228 

 

In figure 4.3 is the graph representing the relationship between energy and 

temperature in the NiO structure. The graph shows the structure has constant energy 

when heated between 2000K and 2100K. However, the energy of the structure 

increases at 2100K. This implies the elevation in the energy level of atoms above an 

arbitrary baseline energy state.  At this level, the energy of a structure remains 

constant under the temperature range of 2150K to 2350K. Within this range, the 

experimental structure transforms from the crystalline to the amorphous state. At 

2250K, the structure changes state. This point is regarded as a melting temperature. 
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The simulated melting temperature is relatively close to the experimental value of 

2228K [178]. Moreover, the graph depicts another increase in energy of the structure 

which leads to the breaking point of the structure. That is the crystal breaks beyond 

2350K. The structural break can lead to huge forecasting errors and unreliability of the 

model in general [179]. 

 

Figure 4.3 Energy vs temperature plot for NiO structure. 

4.7.2 CoO Bulk Structure 

The CoO bulk was evaluated under the NVE ensemble, with 5.0 Pa, 5000 steps, and 

0.001 ns. Figure 4.4 is an illustration of structures generated with interatomic potentials 

for CoO. The MD results show that the structure remains in the crystalline form when 

heated between 0K to 1000K shown in figure 4.4 (a). The transition from crystalline to 

amorphous state is present from 1100K to 2000K illustrated in figures 4.4 (a, b and c). 

The actual melting point of the structure was determined from the energy vs 

temperature curve as shown in figure 4.5. The plot outlines the 1100K as the 

temperature at which a complete transformation from a crystalline state to an 

amorphous occurs. This is shown by the constant energy from the 1100K towards the 
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2000K. The validation of the melting point temperature for the CoO structure is shown 

in table 4.13. 

 

Figure 4.4 Representation of molecular dynamics results when run with the 

derived interatomic potentials in different temperatures. (a-c) CoO structure 

with 20 000 atoms at different temperatures. (a) The CoO structure with signs 

of state change (melting), (b) CoO structures in an amorphized state, and (c) 

the amorphous structures (after melting point). 

 

Table 4.13 Comparisons of the melting temperatures for CoO structure. 

Structure Calculated Melting 

Temperature (K) 

Structure melting 

Temperature (K) 

[178] 

CoO 2000 2206 

 

In figure 4.5 is the graph representing the relationship between energy and 

temperature in the CoO structure. The graph depicts a directly proportional 

relationship between energy and temperature at 300K and 600K, and also at 900K to 
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1400K. This implies the elevation in the energy level of atoms within the structure 

above an arbitrary baseline energy state.  From 1400K, the energy of a structure 

remains constant. Within this range, the structure transforms from the crystalline to the 

amorphous state. At 1800K the structure starts to change state, however, the complete 

change of state is realised at 2000K. This point is regarded as the melting temperature. 

The simulated melting temperature is relatively close to the experimental value of 

2206K [178].  

 

Figure 4.5 Energy vs temperature plots for CoO structure 

4.8 Radial Distribution Function 

The radial distribution function (RDF) defines the probability of finding a particle at a 

distance r from another particle. Moreover, the RDF describes how the density of 

surrounding matter varies as a function of the distance from a point. The RDF is 

strongly dependent on the type of matter under study; hence they vary greatly for 

solids, gases, and liquids. To demonstrate a phase change in NiO and CoO structures, 

the RDFs of amorphous and crystalline structures were calculated to represent bond 

lengths between relative atom species within the bulk material shown in figures 4.6 to 

4.9, respectively.  
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4.8.1 NiO Structure 

The RDFs for the NiO structure shown in figure 4.6, indicate that as the temperature 

increases, the peaks become broader, and the countable number of the peaks 

reduces for Ni-Ni, O-O and Ni-O interactions. The Ni-O were determined to have a 

bond length of 1.9 Å. The first maximum peak for Ni-Ni interaction is at ~ 2.2 Å, O-O 

and Ni-O is approximately 3.5 Å. The peaks beyond 3 Å for the structure at 2250K are 

relatively broader than that of the structure at 2000K. This suggests that the probability 

of finding the nearest neighbouring atom in NiO at 2250K is exceptionally low, and it 

is relatively high in the 2000K temperature. That is, the structure heated at 2000K has 

not changed its form, it is still in the crystalline form as shown by the snapshot of the 

bulk material in (b) with the atomic patterns; whereas the structure heated up to 2250K 

has changed to the amorphous state represented in (d). 

 

Figure 4.6 representation of the radial distribution curves for NiO in the 

crystalline state (a) and the snapshot of the bulk structure (b), the redial 

distribution function curves for NiO in amorphous forms and (d) its bulk 

structure. 

To further probe the behaviour of the material under different temperatures, the radial 

distribution functions were calculated for the material at various temperatures. The 
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RDF curves are shown in figure 4.7 below. The magnified portion of the curves shows 

the broadening of the curves as the temperature increases. It is observed that from 

300K to 1200K the peaks are sharper, suggesting that the atoms within the material 

area more ordered implying that the material is in the crystalline state. However, the 

peaks broaden from 1500K indicating the state change in the material. The peaks 

broaden even more when the temperature increases, suggesting that the material 

turns into an amorphous phase. The RDF show evidence of an amorphous phase at 

the experimental melting point [178].  

 

Figure 4.7 The radial distribution function curves for NiO under different 

temperatures; and the magnified portion on the top right corner. 

4.8.2 CoO Structure 

On figure 4.8 is the RDFs for CoO structure; from the plot, we observe that the increase 

in the simulation temperature results in the broadened peaks for Co-Co, O-O and Co-

O atomic interactions and the decreased number of the peaks. The Co ions lie in 

positions having m symmetry with a mean of Co-O bond length of 2.10 Å, falling within 

a range of experimental bond length of the same elements [180]. The first maximum 

peak for Co-O interaction is at approximately 2.2 Å for O-O interaction and at 

approximately 3.5 Å for Ni-Ni interaction. The peaks beyond 2.2 Å for a structure 



90 
 

heated at 1500K are relatively more intense with a higher probability of finding the 

nearest neighbouring atom in CoO. This indicates that the structure is in the crystalline 

form as depicted in (b). However, the structure heated at 2000K has broader peaks 

beyond 2 Å with a lower probability of finding the nearest neighbouring atom in the 

structure. This suggests that the structure has changed its form into amorphous as 

shown by the snapshot of the material bulk in (d).  

 

Figure 4.8 representation of the radial distribution curves for CoO in the 

crystalline state (a) and the snapshot of the bulk structure (b), the redial 

distribution function curves for CoO in amorphous forms and (d) its bulk 

structure. 

To further investigate the behaviour of the material under different temperatures, the 

radial distribution functions were calculated for the material at various temperatures. 

The RDF curves are shown in figure 4.9 below. The zoomed portion of the curves 

shows the broadening of the curves as the temperature increases. It is observed that 

from 300K to 1500K the peaks are more intense, suggesting that the atoms within the 

material area more ordered implying that the material is in the crystalline state. 

However, the peaks broaden from 1800K indicating the state change in the material. 
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The peaks broaden even more when the temperature increases to 2000K, suggesting 

that the material turns into an amorphous phase. The RDF show evidence of an 

amorphous phase at the temperature close to the experimental melting point (2206K) 

[178].  

  

Figure 4.9 the radial distribution function curves for CoO under different 

temperatures; and the zoomed portion on the top right corner. 

4.9 Discussion 

The exact comparison of the lattice parameters provided the same equilibrium 

interatomic distances in the structure. On the other hand, the agreement between 

elastic constants of NiO provided an average percentage difference of 1.41 % which 

provides a small difference. Conversely, the CoO elastic constants produced an 

average percentage difference of 11.66%. The distinctive elastic constants provide 

smaller curvatures around the equilibrium bond lengths [165]. 

The fundamental aspect of this section is to derive the forces between the atoms to 

determine the conditions of the favourable simulation in probing these materials and 

other relative structures. Moreover, the results are fundamental in the doping process 

of various compounds. The computational modelling investigations of LMO (M: Ni and 

Co) are currently based on molecular dynamics simulations. However, the accuracy 
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of the method is limited by the inability of the method to accommodate thermal effects. 

As the counterpart to the concern, the empirical interatomic potentials for NiO and 

CoO crystal structures were derived in the present work, the task possesses 

challenges in the classical simulation methods [181]. The task is based on nickel and 

cobalt oxides since the nature of oxides possess complex crystal structures on which 

theories of thermal conductivity have been based [165]. The published interatomic 

interactions for LMO (M: Ni and Co) which are fundamental for performing atomic 

simulation on doped systems were not available, hence they were derived in the 

present work. The derived interatomic potentials for both NiO and CoO were validated 

in the bulk form, directed by accurate determination of the calculated lattice 

parameters and the volume of both structures which compared well to the 

experimental lattice parameters. 

Moreover, the derived interatomic parameters were further validated by their ability to 

reproduce high-temperature structural change of the NiO and CoO bulk at a relatively 

adequate temperature as that of the experimental melting temperature for both 

structures; which compares well to the similar phenomenon observed from Brillouin 

scattering [182], lattice dynamics [183] and DFT molecular dynamics methods [184].  

To further estimations of the melting point of the structures, the change in total energy 

with temperature was monitored together with radial distribution functions. The 

calculated radial distribution curves from molecular dynamics simulation provided 

more evidence of phase change from 2250K and 2000K for NiO and CoO, 

respectively. It was inferred from the curves that the generated structure for both NiO 

and CoO had a phase change at a lower temperature than the experimental structures. 

This was validated by the RDFs with a lower probability of finding the nearest 

neighbouring atom when the NiO structure is heated at 2250K and when the CoO is 

heated at 2000K. The stiffness of the materials was detected from the bulk moduli of 

the structure, with a percentage difference of 19.86% in NiO. The success of the 

interatomic potentials in large systems was demonstrated by perming the MD 

calculation with the derived potentials for NiO and CoO on 20 000 atomic 

nanostructures, respectively. 
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Chapter 5: Summary and Conclusions 

The first principle density functional theory was used to probe the electronic properties 

of the layered LiMO2 (M: Mn, Ni, and Co) bulk structures. The DFT with Hubbard 

correction U calculations within the exchange-correlation of GGA-PBE embodied in 

CASTEP, VASP, and PHONON codes were employed. Three isostructural layered 

materials with the space group 𝑅3̅𝑚 were considered in the work. The structures are 

orthorhombic LiMnO2, LiNiO2, and LiCoO2. The energy and k-mesh configurations 

were determined to find minimal converging energy and k-points for each structure. 

Full structure optimisation has been performed on the structures to determine the 

equilibrium cell parameters.  Moreover, the spin polarised local density approximation 

calculations were performed to calculate the electronic band structure, partial and total 

density of states, and the phonon dispersion curves.  

The DFT+U yields satisfactory predictions of equilibrium lattice constants with a 

difference of less than 4% in LiMnO2 with 3.96% in volume and less than 1% in LiNiO2 

and 0.81% in the volume of the structure and LiCoO2 2.58% in the volume of the 

structure. The Hubbard U parameters for LiMnO2, LiNiO2, and LiCoO2 structures 

correct the electron self-interactions in DFT by localizing electrons in strongly 

correlated systems [145]. The Hubbard U values together with the low spin transition 

metal in 3+ charge state (Mn3+, Ni3+, and Co3+) predicts the electrical conductivity of 

the materials. Hence, they produce band gaps that are in considerable agreement with 

the experimental data. The bandgap of the LiMnO2 material (1.64 eV) is the same as 

the bandgap of the LiMnO2 determined experimentally [151]. Conversely, the bandgap 

of LiNiO2 (0.4 eV) is the same as the experimental band gap of the LiNiO2 determined 

by Laubach, S. at. al [152]. Lastly, the bandgap of LiCoO2 (2.22) material falls within 

the experimentally determined range of the LiCoO2 (2.10 -2.27 eV) [153]. The small 

energy band in LiNiO2 possess high conductivity, and the wide energy bandgaps in 

LiMnO2 and LiCoO2 possess low conductivity. Hence, the LiNiO2 has a semiconductor 

characteristic; LiMnO2 and LiCoO2 have an insulator characteristic. 

Furthermore, the density of states (DOS), for LiMnO2, LiNiO2, and LiCoO2 structures 

were calculated to probe their electronic structure behaviour. The partial density of 

states depicted that, the electron contributions at the Fermi level of all three materials 

are due to the 3d states of the transition metals and 2s states of the O atoms per 
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material. The relationship between the DOS and the U value was that when increasing 

the U value, the contribution of the O 2p states near the Fermi increases, and 

therefore the occupied and unoccupied bands are more separated, which effectively 

increases the bandgap of the system, which affects the electronic properties of the 

structures.  

Lastly, the phonon dispersion curves were calculated to evaluate the vibrational 

stability of the LiMnO2, LiNiO2, and LiCoO2 systems with the same conditions. The 

phonon curves displayed that the LiCoO2 material is relatively the least stable material 

with the imaginary frequencies contained in the phonon curves of this material. This is 

supported by the large bandgap size of the materials determined in the electronic band 

structures. Conversely, both LiNiO2 and LiMnO2 have no negative vibrations.  

Moreover, the LiNiO2 material was found to be the most stable, predicted from the 

heat of formations.  

The stability criteria of the materials were determined from the calculated total density 

of states. The TDOS share a valuable insight that the structure with the highest density 

of states at the fermi region (Ef) is considered the least stable, whereas the structure 

with the lowest density of states at Ef is considered most stable [162]. As such, the 

TDOS brought to attention that the LiCoO2 has the highest density of states at the 

Fermi level, indicating that the material is comparatively the least stable; the LiNiO2 

had the lowest density of state at the Fermi level implying that it is more stable than 

LiMnO2 and LiCoO2. The total density of states results validates the findings from both 

band structures and the phonon dispersion curves. Phonon dispersion curves show 

that the LiMnO2 and LiNiO2 are vibrationally stable inconsistent with their calculated 

elastic constants, which satisfy all necessary stability criteria. Although the phonon 

dispersion curves show soft modes in LiCoO2, the predicted heats of formation and 

elastic constants show that the structure can be thermodynamically favorable. As 

such, the LiNiO2 material is more vibrationally stable than LiMnO2 and LiCoO2. On the 

other hand, the LiCoO2 is relatively the least stable material. In conclusion, the DFT+U 

is a versatile function that provides good all-round performance for the relevant 

structural and electrical properties benchmarked in this study. 

To the good interest of this work, it has been identified that the LiNiO2 with predicted 

U values, be a recommendable material to perform the NMC doping. This can improve 



95 
 

the electrochemical performance of the Li-ion cathode materials and reduce the 

structural transformation during cycling. 

Moreover, the GULP based script was employed to fit the interatomic potentials based 

on Buckingham potential. The initial attention is focused on simple cubic structures of 

NiO and CoO. Several experimental structures, elastic, and lattice dynamic properties 

which are classified as the key to fitting potentials were not available, hence they were 

calculated in the present study. The derived interatomic potentials for NiO and CoO 

were validated in their bulk form as evidenced by their reliable accuracy of determining 

the output structure, elastic constants, and moduli. The overall properties compared 

relatively well with the experiment data. However, the GULP script utilised in the study 

was two-body interaction, as such the C12 and C44 resulted in the same values. As a 

counterpart to that, the robustness of the derived interatomic potentials was further 

demonstrated by their ability to produce a high-temperature transition of 20000 atoms 

structures for both NiO and CoO. The state change temperature was compared to the 

experimental melting point of the same structures, which compared well with the 

acceptable percentage differences.  

The change in radial distribution functions, direct observation of the structures, and 

the total energy with the temperature deduced from molecular dynamics simulations, 

depicted the material phase changes from low to higher temperatures. The interatomic 

potentials in NiO structures presented a melting point above 2250K. Conversely, the 

interatomic potentials for the CoO structure showed a melting point at 2000K. These 

melting points corresponded from the calculated RDF, atomic structures, and energy 

with temperature graphs, which were in convincing agreement with the experimental 

results.  

Suggestion for future work 

In future work, we intend to employ the parameters driven in this work in a large system 

of both pure and doped materials and monitor the cycling stability of the doped LiMO2 

cathode material. We further intend to carry out the amorphization and recrystallisation 

to generate a nano structural model of LiMnO2, LiNiO2, LiCoO2, and LiMnxNiyCozO2 

(x+y+z=1) which are crucial for improvement of such cathode material for future 

lithium-ion battery applications. 



96 
 

 

References 

 

[1]  ByChang, L., Feng, L., Lai-Peng, M., and Hui-Ming, C., "Advanced Materials for 

Energy Storage," Advanced Energy Materials, 22, 28-62, 2010.  

[2]  Vikström, H., Davidsson, S. and Höök, M., "Lithium availability and future 

production outlooks," Applied Energy, 110, 252-266, 2013.  

[3]  Seo, D.H., Lee, J., Urban, A., Malik, R., Kang, S. and Ceder, G., "The structural 

and chemical origin of the oxygen redox activity in layered and cation-disordered 

Li-excess cathode materials," Nature chemistry, 7, 692, 2016.  

[4]  Ulvestad, A., "A Brief Review of Current Lithium-Ion Battery Technology and 

Potential Solid State Battery Technologies". 2018 

[5]  Hausbrand R, Cherkashinin G, Ehrenberg H, Gröting M, Albe K, Hess C, 

Jaegermann W., "Fundamental degradation mechanisms of layered oxide Li-ion 

battery," cathode materials: Methodology, insights and novel approaches, 192, 3-

25, 2015.  

[6]  Sun, H. and Zhao, K., "Electronic structure and comparative properties of 

LiNixMnyCozO2 cathode materials.," The Journal of Physical Chemistry C, 121,  

6002-6010, 2017.  

[7]  Tuccillo, M., Palumbo, O., Pavone, M., Muñoz-García, A.B., Paolone, A. and 

Brutti, S., "Analysis of the Phase Stability of LiMO2 Layered Oxides (M= Co, Mn, 

Ni)," Crystals, 10, 526, 2020.  

[8]  Chakraborty, A., Dixit, M. and Major, D.T., "Accurate Cathode Properties of 

LiNiO2, LiCoO2, and LiMnO2 Using the SCAN Meta-GGA Density Functional," 

2018.  

[9]  Noh, H.J., Youn, S., Yoon, C.S. and Sun, Y.K., "Comparison of the structural and 

electrochemical properties of layered Li [NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 



97 
 

and 0.85) cathode material for lithium-ion batteries," Journal of power sources, 

233,  120-130, 2013.  

[10]  Deng, D., "Li-ion," Energy Science and Engineering, 3, 385-478, 2015.  

[11]  Liu, C., Neale, Z.G. and Cao, G., "Understanding electrochemical potentials of 

cathode materials in rechargeable batteries," Materials Today, 19, 109-123, 2016.  

[12]  Li, T., Li, X., Wang, Z. and Guo, H.,, "A short process for the efficient utilization of 

transition-metal chlorides in lithium-ion batteries: a case of Ni0.8Co0.1Mn0. 1O1 and 

LiNi0.8Co0.1Mn0.1O2," Journal of Power Sources, 342, 765-503, 2017.  

[13]  Wu, E.J., Tepesch, P.D. and Ceder, G., "Size and charge effects on the structural 

stability," PHILOSOPHICAL MAGAZINE B, 77, 1039-1047, 1998.  

[14]  Shi-xi, Z., Han-xing, L., Shi-xi, O. and Qiang, L., "Synthesis and performance of 

LiMnO2 as cathodes for Li-ion batteries," Journal of Wuhan University of 

Technology-Mater. Sci. Ed., 18, 5-8, 2003.  

[15]  Wu, E.J., Tepesch, P.D. and Ceder, G., "Size and charge effects on the structural 

stability of LiMO2 (M= transition metal) compounds," Philosophical Magazine B, 

77, 1039-1047, 1998.  

[16]  Mishra, S.K. and Ceder, G., "Structural stability of lithium manganese oxides," 

Physical Review B, 59, 6120, 1999.  

[17]  Wu, E.J., Tepesch, P.D. and Ceder, G, "Size and charge effects on the structural 

stability of LiMO2 (M= transition metal) compounds," Philosophical Magazine B, 

77, 1039-1047, 1998.  

[18]  Jang, Y.I., Moorehead, W.D. and Chiang, Y.M., "Synthesis of the monoclinic and 

orthorhombic phases of LiMnO2 in oxidizing atmosphere," Solid State Ionics,  149, 

201-207, 2002.  

[19]  Jang, Y.I. and Chiang, Y.M, "Stability of the monoclinic and orthorhombic phases 

of LiMnO2 with temperature, oxygen partial pressure, and Al doping.," Solid State 

Ionics, 130, 53-59, 2000.  



98 
 

[20]  Orman, H.J. and Wiseman, P.J., "Cobalt (III) lithium oxide, CoLiO2: structure 

refinement by powder neutron diffraction," Acta Crystallographica Section C, 2,  

12-14, 1984.  

[21]  Ceder, G. and Mishra, S.K., "The Stability of Orthorhombic and Monoclinic‐

Layered LiMnO2," Electrochemical and solid-state letters, 2, 550-552, 1999.  

[22]  Wu, L., Lee, W.H. and Zhang, J., "First principles study on the electrochemical, 

thermal and mechanical properties of LiCoO2 for thin film rechargeable battery," 

Materials Today: Proceedings,1, 82-93, 2014.  

[23]  Ohzuku, T. and Makimura, Y., "Layered lithium insertion material of 

LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries," Chemistry Letters, 30, 642-643, 

2001.  

[24]  Lee, M.H., Kang, Y.J., Myung, S.T. and Sun, Y.K., "Synthetic optimization of Li 

[Ni1/3Co1/3Mn1/3]O2 via co-precipitation," Electrochimica Acta, 50, 939-948, 2004.  

[25]  Kim, J.M. and Chung, H.T., "Role of transition metals in layered Li [Ni, Co, Mn]O2 

under electrochemical operation," Electrochimica Acta, 49, 3573-3580, 2004.  

[26]  Lee, M.H., Kang, Y.J., Myung, S.T. and Sun, Y.K., "Synthetic optimization of Li 

[Ni1/3Co1/3Mn1/3]O2 via co-precipitation," Electrochimica Acta, 50, 939-948, 2004.  

[27]  Liu, B., Xu, B., Wu, M.S. and Ouyang, C.Y., "First-principles GGA+ U Study on 

Structural and Electronic Properties in LiMn0.5Ni0.5O2, LiMn0.5Co0.5O2 and 

LiCo0.5Ni0.5O2," International Journal of Electrochemical Science, . 11, 2016.  

[28]  Nakai, I., Takahashi, K., Shiraishi, Y., Nakagome, T. and Nishikawa, F., "Study of 

the Jahn–Teller Distortion in LiNiO2, a Cathode Material in a Rechargeable 

Lithium Battery, byin SituX-Ray Absorption Fine Structure Analysis," Journal of 

solid state chemistry, 140, 145-148, 1998.  

[29]  Park, K.S., Cho, M.H., Park, S.H., Nahm, K.S., Sun, Y.K., Lee, Y.S. and Yoshio, 

M., "The effects of Ni and Li doping on the performance of lithium manganese 

oxide material for lithium secondary batteries," Electrochimica acta, 47, 2937-

2942, 2002.  



99 
 

[30]  Ko, S., Lee, S.C., Lee, C.W. and Im, J.S., "A Co-free layered LiNi0.7Mn0.3O2 

cathode material for high-energy and long-life lithium-ion batteries," Journal of 

Alloys and Compounds, 613, 96-101, 2014.  

[31]  Zhong, S.K., Wei, L., ZUO, Z.G., Xin, T.A.N.G. and LI, Y.H., "Synthesis and 

electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode materials," 

Transactions of Nonferrous Metals Society of China, 19, 1499-503, 2009.  

[32]  Chakraborty, A., Dixit, M. and Major, D.T., "Accurate Cathode Properties of 

LiNiO2, LiCoO2, and LiMnO2 Using the SCAN Meta-GGA Density Functional," 

2018.  

[33]  Park, K.S., Cho, M.H., Park, S.H., Nahm, K.S., Sun, Y.K., Lee, Y.S. and Yoshio, 

M., "The effects of Ni and Li doping on the performance of lithium manganese 

oxide material for lithium secondary batteries," Electrochimica Acta, 47, 2937-

2942, 2002.  

[34]  P. Education, "Band Gap," 26 September 2015. [Online]. Available: 

http://www.pveducation.org/pvcdrom/pn-junction/band-gap. [Accessed 16 

January 2021]. 

[35]  "Band Theory of Solids," HyperPhysics, 26 September 2015. [Online]. Available: 

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/band.html. [Accessed 16 

January 2021]. 

[36]  "Wikimedia Commons," 26 September 2015. [Online]. Available: Band Gap 

Comparison. 

[37]  "HyperPhysics," Conductor Energy Bands, 26 September 2015. [Online]. 

Available: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/band.html#c6. 

[38]  "HyperPhysics," Semiconductor Energy Bands, 26 September 2015. [Online]. 

Available: http://hyperphysics.phy-astr.gsu.edu/hbase/solids/band.html#c5. 

[39]  Yue, P., Wang, Z., Peng, W., Li, L., Guo, H., Li, X., Hu, Q. and Zhang, Y., 

"Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2 as 

cathode material for lithium ion batteries," Scripta materialia, 65, 1077-1080, 

2011.  



100 
 

[40]  Li, L.J., Li, X.H., Wang, Z.X., Guo, H.J., Yue, P., Chen, W. and Wu, L., "A simple 

and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials 

for lithium ion battery," Powder Technology, 206, 353-357, 2011.  

[41]  Wu, E.J., Tepesch, P.D. and Ceder, G., "Size and charge effects on the structural 

stability of," PHILOSOPHICAL MAGAZINE B, 77, 1039-1047, 1998.  

[42]  Liu, B., Xu, B., Wu, M.S. and Ouyang, C.Y., "First-principles GGA+U Study on 

Structural and Electronic Properties in LiMn0.5Ni0.5O2, LiMn0.5Co0.5O2 and 

LiCo0.5Ni0.5O2," International Journal of ELECTROCHEMICAL science, 11, 432 - 

445, 2016.  

[43]  "Defect Chemistry in Layered LiMO2 (M = Co, Ni, Mn, and Li1/3Mn2/3) by First-

Principles Calculations," Chemistry of materials, 24, 3886−3894, 2012.  

[44]  Kwon, N.H. and Fromm, K.M., "Enhanced Electrochemical Performance of <30," 

Food Chem, 133, 38-44, 2012.  

[45]  Aydinol, M. K, Kohan, S. F. Ceder, G. Cho, K. and Joannopoulos, J., Physics 

Review B, 56, 1354, 1997.  

[46]  Huang, Z. F., Meng, X. Wang, C. J., Sun, Y. and Chen, G., Journal of Power 

Sources, 158, 1394, 2006.  

[47]  Amriou, T., Khelifa, B., Aourag, H., Aouadi, S.M., and Mathieu, C., Materials 

chemistry and physics, 92, 499-504, 2005.  

[48]  Blundell, S.J. and Blundell, K.M., Concepts in Thermal Physics, 2nd ed, New : 

Oxford University Press, 2010.  

[49]  Kittel, C., Introduction to Solid States Physics, New york: Wiley, 2004.  

[50]  Carson, J.S., "Introduction to modeling and simulation," in InProceedings of the 

Winter Simulation Conference, 8, 2005.  

[51]  Kitchenham, B. and Brereton, P., "A systematic review of systematic review 

process research in software engineering," Information and software technology,  

55, 2049-2075, 2013.  



101 
 

[52]  Hoang, K., Lee, M.S., Mahanti, S.D. and Jena, P., "Clusters: An Embryonic Form 

of Crystals and Nanostructures," In Science and Technology of Atomic, 

Molecular, Condensed Matter & Biological Systems, 1, 37-70, 2010.  

[53]  Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A. and Joannopoulos, A.J., 

"Iterative minimization techniques for ab initio total-energy calculations: molecular 

dynamics and conjugate gradients," Reviews of modern physics, 64, 1045, 1992.  

[54]  Jayaraman, A., "Diamond anvil cell and high-pressure physical investigations," 

Reviews of Modern Physics, 55, 65, 1983.  

[55]  Thomas, L.H., "The Calculation of Atomic Fields," In Mathematical proceedings 

of the Cambridge philosophical society, 23, 542-548, 1927.  

[56]  Fermi, E, “Fermi E. Statistical method to determine some properties of atoms," 

Rend. Accad. Naz. Lincei, 6, 602-607, 1927.  

[57]  Hohenberg, P. and Kohn, W., "Inhomogeneous Electron gas," Physical review, 

136, 871, 1964.  

[58]  Kohn, W. and Sham, L.J., "Self-Consistent Equations Including Exchange and 

Correlation Effects," Physical review, 140, A1133, 1965.  

[59]  Evarestov, R.A., "The LCAO First-Principles Treatment of Crystals," Quantum 

Chemistry of Solids, 153, 232, 2007.  

[60]  Parr, R.G., and Yang, W.T., "Density-Functional Theory of Atoms and Molecules," 

Oxford University Press,5-15, 1994.  

[61]  Koch, W., Holthausen, M.C. and Kaupp, M., "A Chemist’s Guide to Density 

Functional Theory, 2nd ed," Willey-VCH, 113, 989-989, 2001.  

[62]  Sham, L.J. and Kohn, W., "One-Particle Properties of an Inhomogeneous 

Interacting Electron Gas," Physical Review, 145, 531, 1966.  

[63]  Mattsson, A.E., Schultz, P.A., Desjarlais, M.P., Mattsson, T.R. and Leung, K., 

"Designing Meaningful Density Functional Theory Calculations in Materials," 

Modelling and Simulation in Materials Science and Engineering, 13, 1, 2005.  



102 
 

[64]  Zhang H. and Banfield J.F., "Aggregation, coarsening, and phase transformation 

in ZnS nanoparticles studied by molecular dynamics simulations.," Nano Letters,  

4, 713–718, 2004.  

[65]  Cai W., Li J. and Yip S., "Chapter 128 Molecular Dynamics," Comprehensive 

Nuclear Materials, 1-36, 2010. 

[66]  Allen M.P., "Introduction to Molecular Dynamics Simulation," Computational Soft 

Matter, 23, 1-28, 2004.  

[67]  Atkins P. W., Physical Chemistry 6th Edition, Oxford : Oxford University Press, 

1998.  

[68]  "Molecular Simulation," WIKIBOOKS, [Online]. Available: 

https://en.wikibooks.org/wiki/Molecular_Simulation/Thermodynamic_ensembles. 

[Accessed 17 January 2021]. 

[69]  Hernández, E.R., "Molecular Dynamics: from basic techniques to applications (A 

Molecular Dynamics Primer)", 1077, 95-123, 2008.  

[70]  Allen M.P., and Tildesley D.J., Computer Simulation of Liquids, Oxford: 

Clarendon Press, 1987.  

[71]  D. L. R.S, "PHD Thesis,"  2015.  

[72]  Catlow C. R. A., Ackermann L., Bell R. G., Corà F. , Gay C.D. H., Nygren M. A., 

J. C. Pereira,G. Sastre, C.B. Slater and P.E. Sinclair, "Computer Modelling as a 

technique in solid state chemistry," Faraday Discussions, 92, 433, 1997.  

[73]  Mkhonto D, "PhD Thesis," University of Limpopo, 2005.  

[74]  Gale, J., "GULP manual," 1998.  

[75]  Smith W. and Forester T.R., "DL_POLY_2. 0: A general-purpose parallel 

molecular dynamics simulation package," Journal of molecular graphics, 14, 136-

141, 1996.  

[76]  Powers, J.M. and Sen, M., "Mathematical Methods in Engineering," 219-279, 

2015.  



103 
 

[77]  Chakraverty, M., Kittur, H.M. and Kumar, P.A., "First Principle Simulations of 

Various Magnetic Tunnel Junctions for Applications in Magnetoresistive Random 

Access Memories," IEEE Trans. Nanotechnol, 12, 975, 2013.  

[78]  Horn, K., and Scheffler, M., "In Electronic Structure (Handbook of Surface 

Science),"  2, 2000.  

[79]  Robert, G.P., and Weitao, Y.,"Density-Functional Theory of Atoms and 

Molecules," 1994.  

[80]  Dirac, P., "Note on Exchange Phenomena in the Thomas-Fermi Atom," 

Mathematical proceedings of the Cambridge philosophical society, 26, 376-385, 

1930.  

[81]  Dreizler, R.M. and Gross, E.K., Gross, "Density Functional Theory," 1990.  

[82]  Yang, W. and Parr, R.G., "Density Functional Theory of Atoms and Molecules," 

1989.  

[83]  Vosko, S.H., Wilk, L. and Nusair, M., "Accurate Spin-Dependent Electron Liquid 

Correlation Energies for Local Spin Density Calculations: A Critical Analysis," 

Canadian Journal of physics, 58, 1200-1211, 1980.  

[84]  Perdew, J.P., and Zunger, A., "Self-Interaction Correction to Density-Functional 

Approximations for Many-Electron Systems," Physical Review B, 23, 5048, 1981.  

[85]  Perdew, J.P. and Wang, Y., "Accurate and Simple Analytic Representation of the 

Electron Gas Correlation Energy," Physical Review B, 45, 13244, 1992.  

[86]  Perdew, J.P. and Wang, Y., "Erratum: Accurate and simple analytic 

representation of the electron-gas correlation energy," Physical Review B, 98,  

079904, 2018.  

[87]  Geldart, D.J.W. and Rasolt, M., "Exchange and Correlation Energy of an 

Inhomogeneous Gas at Metallic Densities," Physical Review B, 13, 1477, 1976.  

[88]  Perdew, J., "Generalized Gradient Approximations for Exchange and Correlation: 

A Look Forward and Backward," Physical Review B, 172, 6, 1991.  



104 
 

[89]  Politzer, P., and Seminario, J.M., "Modern Density Functional Theory: A Tool for 

Chemistry," 1995.  

[90]  Becke, A., "Density-functional Exchange-Energy Approximation with Correct 

Asymptotic Behaviour," Physical review A, 38, 3100, 1988.  

[91]  Perdew, J., "Density-Functional Approximation for the Correlation Energy of the 

Inhomogeneous Electron Gas," Physical review B, 33, 8824, 1986.  

[92]  Perdew, J.P., and Wang, Y., "Accurate and Simple Density Functional for the 

Electronic Exchange Energy: Generalized Gradient Approximation," Physical 

review B,  33, 8800, 1986.  

[93]  Perdew, J.P., Ziesche, P. and Eschrig, H., "In Electronic Structure of Solids," 

1991.  

[94]  M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, "“Iterative 

Minimization Techniques for Ab iIitio Total-Energy Calculations: Molecular 

Dynamic and Conjugate Gradients," Physical review, 64, 1045, 1992.  

[95]  Meyer, B., "The Pseudopotential Plane Wave Approach," NIC Series, 31, 71-83, 

2006.  

[96]  Ashcroft, N.W., and Mermin, N.D. "On Introductory Concepts," Solid State 

Physics, 1976.  

[97]  Blakemore, J.S. "Solid State Physics, 2nd ed," 1985.  

[98]  Phillips, J.C. and Kleinman, L., "New Method for Calculating Wave Functions in 

Crystal and Molecules," Physical Review, 116, 287, 1959.  

[99]  Cohen, M.L. and Heine, V., "The Fitting of Pseudopotentials to Experimental Data 

and their Subsequent Application," Solid State Physics, 24, 37, 1970.  

[100]  Hellmann, H., "A New Approximation Method in the Problem of Many Electrons," 

The Journal of Chemical Physics, 3, 61-61, 1935.  

[101]  Pickett, W.E., "Pseudopotential Methods in Condensed Matter Applications," 

Computer Physics Reports, 9, 97-115, 1989.  



105 
 

[102]  Heine, V., "The Pseudopotential Concept," Solid State Physics (Academic Press),  

24, 1-36, 1970.  

[103]  Brust, D.A.V.I.D. and Alder, B., "The Pseudopotential Method and the Single-

Particle Electronic Excitation Spectra of Crystals, Methods in Computational 

Physics," Academic Press, 8, 61, 1968.  

[104]  Harrison, W.A., "Pseudopotentials in the Theory of Metals, Frontiers in Physics," 

1966.  

[105]  Srivastava, G.P. and Weaire, D., "The Theory of the Cohesive Energies of 

Eolids," Advances in Physics, 26, 463-517, 1987.  

[106]  Bachelet, G.B., Hamann, D.R. and Schlüter, M., "Pseudopotentials that Work: 

From H to Pu," Physical Review B, 26, 1494, 1982.  

[107]  Hamann, D.R., Schlüter, M. and Chiang, C., "Norm-Conserving 

Pseudopotentials," Physical Review Letters, 43, 1494, 1979.  

[108]  Hamann, D.R., "Generalised Norm-conserving Pseudopotentials," Physical 

Review B, 40, 2980, 1989.  

[109]  Kresse, G., Marsman, M. and Furthmüller, J., "VASP the GUIDE, Computational 

Physics," 8, 2009.  

[110]  Parlinski, K., Li, Z.Q. and Kawazoe, Y., "First-Principles Determination of the Soft 

Mode in Cubic ZrO2," Physical Review Letters, 78, 4063, 1997.  

[111]  [Online]. Available: http://www.materialsdesign.com.. 

[112]  Vanderbilt, D., "Soft Self-Consistent Pseudopotentials in Generalized Eigenvalue 

Formalism," Physical review B, 41, 7892, 1990.  

[113]  Lethole, N.L., " Computer Modelling Studies of MPO4, LiMPO4 and NaMPO4 (M: 

Fe, Co, Mn) Polymorphs (Doctoral dissertation, University of Limpopo)," 2016.  

[114]  Inoshita, T., Nakao, K. and Kamimura, H., "Electronic Structure of 

PotassiumGraphite Intercalation Compound: C8K," Journal of the Physical 

Society of Japan,  43, 1237-1243, 1977.  



106 
 

[115]  Bancel, P.A. and Heiney, P.A., "Icosahedral Aluminum-Transition Metal Alloys," 

Physical Review B, 88, 7917, 1986.  

[116]  Matsuda, T., Ohara, I., Sato, H., Ohashi, S. and Mizutani, U., "Electronic 

Properties for Icosahedral and Amorphous Phases in the Mg-Zn-Al Alloy," J. 

Journal of Physics: Condensed Matter, 1, 4087, 1989.  

[117]  Gornostyrev, Y.N., Kontsevoi, O.Y., Maksyutov, A.F., Freeman, A.J., Katsnelson, 

M.I., Trefilov, A.V. and Lichtenshtein, A.I., "Negative Yield Stress Temperature 

Anomaly and Structural Istability of Pt3Al," Physical Review B, 70, 014102, 2004.  

[118]  Pankhurst, D.A., Nguyen-Manh, D. and Pettifor, D.G., "Electronic Origin of 

Structural Trends Across Early Transition-Metal Disilicides: Anomalous 

Behaviour of CrSi2," Physical Review B, 69, 075113, 2004.  

[119]  Harald, I., and Lüth, H., "Solid-State Physics: An Introduction to Principles of 

Materials Science 2nd ed," 1996.  

[120]  Vasileska, D., Goodnick, S.M. and Klimeck, G., "Computational Electronics: 

Semiclassical and Quantum Device Modelling and Simulation," 2010.  

[121]  Zhou, Z. and Joós, B., "Stability Criteria for Homogeneously Stressed Materials 

and the Calculation of Elastic Constants," Physical Review B, 54, 3850, 1996.  

[122]  Beckstein O, Klepeis JE, Hart GL, Pankratov O, "First-Principles Elastic 

Constants and Electronic Structure of α-Pt2Si and PtSi," Physical Review B, 63, 

134112, 2001.  

[123]  Born, M. and Huang, K., "Dynamical Theory of Crystal Lattices," Acta Cryst, 9, p. 

837, 1956.  

[124]  Hill, R., Hopkins, H. G., and Sewell, M. J., "Mechanics of Solids 1st ed," 1982.  

[125]  Tang, M. and Yip, S., "Lattice Instability in β‐SiC and Simulation of Brittle 

Fracture," Journal of applied physics, 76, 2719-2725, 1994.  

[126]  Barron, T.H.K. and Klein, M.L., "Second-Order Elastic Constants of a Solid under 

Stress," Proceedings of the Physical Society, 85, 523, 1965.  



107 
 

[127]  Wang, J., Li, J., Yip, S., Phillpot, S. and Wolf, D., "Mechanical Instabilities of 

Homogeneous Crystals," Physical Review B, 52, 627, 1995.  

[128]  St.‐Amant, A., Cornell, W.D., Kollman, P.A. and Halgren, T.A., "A Study of 

Geometries, Conformational Energies, Dipole Moments and Electrostatic 

Potential Fitted Charges Using Density Functional Theory," Journal of 

computational chemistry, 16, 1483-1506, 1995.  

[129]  Kittle, C., "Introduction to Solid State Physics, 5th ed," 1976.  

[130]  Cohen, M.L., "Calculation of Bulk Moduli of Diamond and Zinc-Blende Solids," 

Physical Review B, 32, 7988, 1985.  

[131]  Pugh, S.F., "Relations Between Elastic Moduli and Plastic Properties of 

Polycrystalline Pure Metals," Philosophical Magazine and Journal of Science, 45, 

823-843, 1954.  

[132]  Goumri-Said, S. and Kanoun, M.B., "Theoretical Investigations of Structural, 

Elastic, Electronic and Thermal Properties of Damiaoite PtIn2," Computational 

materials science, 43, 243-250, 2008.  

[133]  Mayer, B., Anton, H., Bott, E., Methfessel, M., Sticht, J. and Schmidt, P.C., "The 

Elastic Anisotropy of Crystals," Journal of Physics., 38, 256-296, 2010.  

[134]  Langreth, D.C. and Perdew, J.P., "The Exchange Correlation Energy of a Metallic 

Surface," Solid State Communications, 17, 1425-1429, 1975.  

[135]  Wacker, A., "An Introduction to theConcept of Band Structure," 20 Noveber 2018.  

[136]  Ulvestad, A., "A Brief Review of Current Lithium Ion Battery Technology and 

Potential Solid State Battery Technologies," 2018.  

[137]  Hoang, K. and Johannes, M.D., "Defect chemistry in layered transition-metal 

oxides from screened hybrid density functional calculations," Journal of Materials 

Chemistry A, 2, 5224-5235, 2014.  

[138]  Tuccillo, M., Palumbo, O., Pavone, M., Muñoz-García, A.B., Paolone, A. and 

Brutti, S., "Analysis of the Phase Stability of LiMO2 Layered Oxides (M= Co, Mn, 

Ni)," Crystals, 10, 526, 2020.  



108 
 

[139]  Hirota K, Nakazawa Y and Ishikawa M, J. Phys.: Condens. Matter, 3, 4721-4730, 

1991.  

[140]  Tian, S, " Materials Physical Properties.," 2004.  

[141]  Armstrong, A.R., Dupre, N., Paterson, A.J., Grey, C.P. and Bruce, P.G., " 

Combined neutron diffraction, NMR, and electrochemical investigation of the 

layered-to-spinel transformation in LiMnO2," Chemistry of materials, 16, 3106-

3118, 2004.  

[142]  Hoang, K. and Johannes, M.D., "Defect physics in complex energy materials," 

Journal of Physics: Condensed Matter, 29, 293001, 2018.  

[143]  Arroyo y de Dompablo M.E., Biskup N., Gallardo-Amores J.M., Moran E., 

Ehrenberg H., and Amador U., "Gaining Insights into the Energetics of FePO4 

Polymorphs," Chemistry of Materials, 3, 994-1001, 2010.  

[144]  M.D. Segall, P. J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, 

"“First-principles simulation: ideas, illustrations and the," Journal of physics: 

condensed matter, 14, 2744, 2002.  

[145]  Anisimov, V.I., Zaanen, J. and Andersen, O.K., "and theory and Mott insulators: 

Hubbard U instead of Stoner I," Physical Review B, 3, 943, 1991.  

[146]  Zhou, F., Cococcioni, M., Marianetti, C.A., Morgan, D. and Ceder, G., "First-

principles prediction of redox potentials in transition-metal compounds with LDA+ 

U," Physical Review B, 23, 235121, 2004.  

[147]  Singh, V., Kosa, M., Majhi, K. and Major, D.T., "Putting DFT to the test: a first-

principles study of electronic, magnetic, and optical properties of Co3O4," Journal 

of chemical theory and computation, 1, 64-72, 2014.  

[148]  Hellmann, H., " A new approximation method in the problem of many electrons," 

The Journal of Chemical Physics, 3, 61-61, 1935.  

[149]  Miyashiro, H., Yamanaka, A., Tabuchi, M., Seki, S., Nakayama, M., Ohno, Y., 

Kobayashi, Y., Mita, Y., Usami, A. and Wakihara, M., "Improvement of 



109 
 

degradation at elevated temperature and at high state-of-charge storage by ZrO2 

coating on LiCoO2," Journal of the Electrochemical Society, 153, A348, 2005.  

[150]  Chakraborty, A., Dixit, M. and Major, D.T., "Accurate Cathode Properties of 

LiNiO2, LiCoO2, and LiMnO2 Using the SCAN Meta-GGA Density Functional," 

2018.  

[151]  Kong, F., Longo, R.C., Park, M.S., Yoon, J., Yeon, D.H., Park, J.H., Wang, W.H., 

Santosh, K.C., Doo, S.G. and Cho, K., "Ab initio study of doping effects on LiMnO2 

and Li2MnO3 cathode materials for Li-ion batteries," Journal of Materials 

Chemistry A, 16, 8489-8500, 2015.  

[152]  Laubach, S., Laubach, S., Schmidt, P.C., Ensling, D., Schmid, S., Jaegermann, 

W., Thißen, A., Nikolowski, K. and Ehrenberg, H., "Changes in the crystal and 

electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-

intercalation," Physical Chemistry Chemical Physics, 17, 3278-3289, 2009.  

[153]  Van Elp, J., Wieland, J.L., Eskes, H., Kuiper, P., Sawatzky, G.A., De Groot, F.M.F. 

and Turner, T.S., "Electronic structure of CoO, li-doped CoO, and LiCoO2," 

Physical Review B, 12, 6090, 1991.  

[154]  De Jong, M., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, 

M., Ande, C.K., Van Der Zwaag, S., Plata, J.J. and Toher, C.," Charting the 

complete elastic properties of inorganic crystalline compounds" Scientific data,  2, 

1-13, 2015.  

[155]  Tanaka, K. & Koiwa, M, " Single-Crystal Elastic Constants of Intermetallic 

Compounds," Intermetallics, 4, 29-39, 1996.  

[156]  Chen, H.S., "Anisotropy of elasticity about metal," Metal-lurgy Industry Press, 

Beijing,1996.  

[157]  Tian, S.K., Chen, Y., Hang, J., Tang, L., McDaid, P. and Deng, L., “Asymmetric 

organic catalysis with modified cinchona alkaloids", 37, 621-631, 2004.  

[158]  Zhang, L.Q., Cheng, Y. and Niu, Z.W., "Elastic Properties and Phonon 

Dispersion," J. At. Mol. Sci, 5, 81-94, 2014.  



110 
 

[159]  Fast, L., Wills, J.M., Johansson, B. and Eriksson, O., "Elastic Constants of 

Hexagonal Transition Metals: Theory," Physical Review B, 51, 17431, 1995.  

[160]  Gaillac, R., Pullumbi, P. and Coudert, F.X., "LATE: an open-source online 

application for analysis and visualization of elastic tensors," Journal of Physics: 

Condensed Matter, 28, 275201, 2016.  

[161]  Cheng, E.J., Taylor, N.J., Wolfenstine, J. and Sakamoto, J., "Elastic properties of 

lithium cobalt oxide (LiCoO2)," Journal of Asian Ceramic Societies, 5, 113-117, 

2017.  

[162]  H. Chauke, " PhD Thesis," University of Limpopo, 26, 2005.  

[163]  Anisimov, V.I., Korotin, M.A. and Kurmaev, E.Z., "Anisimov, V.I., Korotin, M.A. 

and Kurmaev, E.Z., 1990. Band-structure description of mott insulators (NiO, 

MnO, FeO, CoO)," Journal of Physics: Condensed Matter, 17, 3973, 1990.  

[164]  Adebambo, P.O., Adetunji, B.I., Olowofela, J.A., Oguntuase, J.A. and Adebayo, 

G.A., "Structural, Electronic, Magnetic and Optical Properties of Ni, Ti/Al-based 

Heusler Alloys: A First-Principles Approach," Zeitschrift für Naturforschung A, 2, 

129-134, 2016.  

[165]  Tada M., Yoshiya M. and Yasuda H., "Derivation of interatomic potentiasl from 

Ab-initio calculations for molecular dynamics simulations of NaxCoO2.," 

Tranactions of the Materials research Society of Japan, 2, 205-208, 2010.  

[166]  Fisher, C.A., "Molecular dynamics simulations of reconstructed NiO surfaces," 

Scripta Mat., 50, 1045-1049, 2004.  

[167]  C. Fisher, "Molecular dynamics simulations of reconstructed NiO surfaces," 

Scripta materialia, 50, 1045-1049, 2004.  

[168]  Gale, J., "GULP: A computer program for the symmetry-adapted simulation of 

solids," Journal of the Chemical Society, Faraday Transactions, 93, 629-637, 

1997.  



111 
 

[169]  Clendenen, R.L. and Drickamer, H.G., "Lattice parameters of nine oxides and 

sulfides as a function of pressure," The Journal of Chemical Physics, 44, 223-

4228., 1966.  

[170]  Leineweber, A., Jacobs, H. and Hull, S., "Ordering of nitrogen in nickel nitride 

Ni3N determined by neutron diffraction," Inorganic chemistry, 40, 5818-5822, 

2001.  

[171]  Jifang, W., Fisher, E.S. and Manghnzmi, M.H., "Elastic constants of nickel oxide," 

Chinese Physics Letters, 8, 153, 1991.  

[172]  Wyckoff, R., "Interscience publishers, new york, new york rocksalt structure," 

Crystal structures, 1, 85-237, 1963.  

[173]  Wdowik, U.D. and Parlinski, K., " Lattice dynamics of CoO from first principles," 

Physical Review B, 75, 104306, 2007.  

[174]  Toennies, J., "On the validity of a modified Buckingham potential for the rare gas 

dimers at intermediate distances," Chemical Physics Letters, 20, 238-241, 1973.  

[175]  Gale, J.D. and Rohl, A.L., "The General Utility Lattice Program (GULP)," 

Molecular Simulation, 5, 291-341, 2003.  

[176]  Smith, W., Forester, T.R., Todorov, I.T. and Leslie, M., "The DL poly 2 user 

manual," 2006.  

[177]  Uchida, N. and Saito, S, "Elastic constants and acoustic absorption coefficients 

in MnO, CoO, and NiO single crystals at room temperature," The Journal of the 

Acoustical Society of America, 51, 1602-1605, 1972.  

[178]  Greenwood, Norman N.; Earnshaw, Alan, "Chemistry of the Elements," 1336–

1337, 1984.  

[179]  Antoch, J., Hanousek, J., Horváth, L., Hušková, M. and Wang, S., "Structural 

breaks in panel data: Large number of panels and short length time series," 

Econometric Reviews, 38, 828-855, 2018.  



112 
 

[180]  Krishnamachari, N. and Calvo, C., " Crystallographic studies of cobalt arsenates, 

I. Crystal structure of Co3 (AsO4)2", Canadian Journal of Chemistry, 48, 881-889, 

1970.  

[181]  Atkinson, K.J.W., Atomic scale simulation of defects in bulk materials and 

monolayer surfaces, PhD Thesis, University of London, 2002.  

[182]  Mjwara, P.M., Comins, J.D., Ngoepe, P.E., Buhrer, W. and Bill, H., "Brillouin 

scattering investigation of the high temperature diffuse phase transition in Li2S," 

Journal of Physics: Condensed Matter, 3, 4289, 1992.  

[183]  Bertheville, B., Bill, H. and Hagemann, H., “Experimental Raman scattering 

investigation of phonon anharmonicity effects in Li2S," Journal of Physics: 

Condensed Matter, 10, 2155, 1998.  

[184]  Jand, S.P., Zhang, Q. and Kaghazchi, P., "Theoretical study of superionic phase 

transition in Li2S," Scientific reports, 1-6, 5873, 2017.  

[185]  Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford: Clarendon 

Press, 1954.  

[186]  H. Chauke, " PhD Thesis," University of Limpopo, 26, 2005.  

[187]  Bartell, L.S., "Molecular Geometry: Bonded Versus Nonbonded interactions," 

Journal of Chemical Education, 45, 754, 1968.  

[188]  Laubach, S., Laubach, S., Schmidt, P.C., Ensling, D., Schmid, S., Jaegermann, 

W., Thißen, A., Nikolowski, K. and Ehrenberg, H., "Changes in the crystal and 

electronic structure of LiCoO2 and LiNiO2 upon Li intercalation and de-

intercalation," Physical Chemistry Chemical Physics, 17, 3278-3289, 2009.  

[189]  Croguennec, L., Deniard, P., Brec, R. and Lecerf, A., "Nature of the stacking faults 

in orthorhombic LiMnO2," Journal of Materials Chemistry, 3, 511-516, 1997.  

 

 

 

 



113 
 

 

 

Outputs 

Conference Presentations 

N. Tsebesebe, K. Kgatwane, R.S. Ledwaba, and P.E. Ngoepe, “Atomistic simulation  

studies of layered LiMnO2 nanospherical cathode materials”, South African Institute of 

Physics, 64th Annual Conference, July 2019, Polokwane 

 

N.T. Tsebesebe, K.M. Kgatwane, R.S. Ledwaba and PE Ngoepe, “Atomistic  

Simulation of Nanospherical o-LiMnO2 Cathodes Materials”, Faculty of Science and  

Agriculture Research Conference, September 2019, Polokwane 

 

N. Tsebesebe, R.S. Ledwaba and P.E. Ngoepe, “First principle investigation of  

structural and electronic properties of LiMO2 (M: Mn, Ni, Co) as potential cathode  

materials: A DFT+U study”, Annual Conference for High Performance Computing,  

December 2019, Boksburg. 

 

N. Tsebesebe, K.M. Kgatwane, R.S. Ledwaba and P.E Ngoepe, “Structural  

investigation of pure LiMnO2 and Li-Rich Li1.2Mn0.8O2 cathode materials for Li-Ion  

batteries: An Atomistic Simulation Study”, International Conference on Defects in  

Insulating Materials, November 2020. An online conference hosted by the Federal  

University of Sergipe, Brazil. 

 

 



114 
 

Publication 

 

N.T. Tsebesebe, K.M. Kgatwane, R.S. Ledwaba and P.E. Ngoepe, “Investigating the  

structural and electronic properties of LiMO2 (M: Mn, Ni, Co) as potential cathode  

materials: A DFT study”, Submitted to Institute of Physics Conference Series:  

Materials Science Engineering 

 


