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ABSTRACT 

 

Using “gravimetric analysis, potentiodynamic polarisation (PDP), and electrochemical 

impedance spectroscopy (EIS), an investigation into the corrosion prevention 

properties of the metals aluminium (Al), mild steel (MS), and zinc (Zn) was carried out 

in a solution of hydrochloric acid (HCl) with a concentration of 1. 0 M. Inhibition was 

shown to be more effective as the concentration of the inhibitor increased, according 

to the measurements from the gravimetric analysis. Glycerol stearate (GS), was 

investigated for its possible use as a corrosion inhibitor on aluminium, mild steel and 

zinc metal in 1.0 M HCl solution. Techniques such as gravimetric analysis, 

potentiodynamic polarisation (PDP), and impedance spectroscopy (EIS) were utilised 

in order to ascertain the rate of corrosion. At a concentration of 50 mol. L-1, 

electrochemical tests (PDP and EIS) have indicated that there is the highest 

percentage of inhibitory efficiency of glycerol stearate such as 81.06 % (PDP), 86.18 

% (EIS) for aluminium, 82.69 % (PDP), 75.44 % (EIS) for mild steel and 71.05 % 

(PDP), 89.50 % (EIS) for zinc metal. It was discovered using gravimetric analysis and 

electrochemical techniques that the rate of corrosion decreased as the inhibitor 

concentration increased.  The findings that glycerol stearate operated as a mixed type 

of corrosion inhibitor were demonstrated by the disparities that existed between the 

corrosion potential (Ecorr) values of the blank (1. 0 M) and inhibitor (GS) concentrations 

for all metals. Studies on potentiodynamic polarisation demonstrated that the addition 

of GS reduced the corrosion current densities on aluminium metal, mild steel, and zinc 

metal, which resulted in the metals being more resistant to corrosion. Using 

electrochemical impedance spectroscopy, the researchers found that the charge 

transfer resistance increased as GS concentration increased. The values of the free 

Gibbs energy showed that a spontaneous corrosion process was occurring at the 

surface of the aluminium, mild steel, and zinc metal. The Langmuir adsorption 
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isotherm was followed by the data collected from adsorption isotherm research for 

each element. The presence of the adsorption coating was validated by Fourier 

transform infrared spectroscopy (FTIR), which was performed on the surfaces of 

aluminium, mild steel, and zinc. The adsorption mechanism has been further explained 

by using thermodynamics and quantum chemistry parameters, both of which have 

been calculated and interpreted. Images obtained using scanning electron microscopy 

(SEM) revealed that the presence of glycerol stearate significantly reduced the amount 

of inhomogeneity in aluminium, mild steel, and zinc.” 
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CHAPTER ONE  

INTRODUCTION 

 

1.1. BACKGROUND 

 

In “structural and decorative applications, metals are the preeminent essential 

materials used. Corrosion, a degradation of metals is inevitable but a preventable 

process. In comparison to other types of natural disasters, like as earthquakes, floods, 

or even the Covid-19 epidemic, metal corrosion has a much more significant impact 

on the development of a nation. Corrosion is a natural phenomenon which follows 

different pathways. If corrosion is left unabated it has the potential to cripple the 

economy of both developed and developing countries. It has emerged as a scourge 

throughout all seasons although it is much elevated during rainy seasons. This is a 

silent destroyer that may be left undetected until it is quite late. It is a very costly 

occurrence that attack the core of development and maintainance. It is safe to mention 

that the negative effect of corrosion causes ripples throughout the economy of any 

country.  

 

The effects of corrosion cannot be underestimated, for example, corrosion metals cost 

in the US estimation was about $276 billion on annual basis, which is ample times 

more than the normalised loss acquired due to natural disasters ($17 billion per 

annum).  However, in the South African context the cost of corrosion to its economy 

is approximately 5% of GDP, as researched by University of Witwatersrand and Mintek 

in 2005 (Corrosion Awareness Day highlights the tragedy of rust 2015). 

 

This offsets the economic value made by the mining sector as they cancel each other. 

It shows how serious this is if one considers the economics that mining in the country 

contributes. The scourge of corrosion costs the world economy in excess of 3% per 

annum, equivalent to $2.3 trillion in 2014.  It was deemed necessary to declare 

Corrosion Awareness Day on 22 April 2010 and to point out the effect corrosion 

caused in the entire world. Corrosion is the reason why bridges collapses, piers 
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deteriorate, roads, transportation equipment, cars and aircrafts deteriorate serving as 

a world's critical infrastructure limiting factor. In many countries around the world, 

potable water loss due to corrosion of infrastructure and environmental damage by 

corroded sewer lines contributes significantly. The negative impact of corrosion may 

be summed up significantly as materials, resources and manpower losses, which 

results in a pronounced impact on the ecosystem. 

 

By means of optimum corrosion management practices [1], it was also suggested that 

about 25 to 30% of the annual corrosion costs could be preserved [1]. For example, in 

variety of electronic applications [2], aluminium (Al) which is a light metal with good 

electric conductivity was used. The need to protect Al metal from corrosion has been 

one of the major challenges. Corrosion can be mitigated by applying several methods 

such as blending of production fluids, upgrading materials, process control and 

chemical inhibition [2–4]. Amongst these methods, the corrosion chemical inhibition 

due to its economic and practical usage [5–7], is reported to be the best method to 

combat destruction or degradation of metal surfaces in corrosive media. Therefore, 

the quest for an efficient corrosion inhibitor is paramount important and as a 

fundamental progressive step in this search, it has been found that the use of non-

toxic organic compounds is one of the most practicable and feasible ways for providing 

protection of metals”[8–10]. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

3 
 

 

 

 

1.2. PROBLEM STATEMENT 

 

Metal, “metal derivatives and products have become an integral part of our daily lives 

in homes, industries, transport entities and infrastructure. Due to their malleability and 

durability, metals satisfy a wide variety of design requirements. High stiffness and 

strength and the fact that they can be alloyed for high rigidity, strength, and hardness 

make metals very important for industrial applications. Their summed-up benefits are 

the high capacity to absorb energy, good electrical and thermal conductivity. However, 

they are prone to degradation, resulting in very negative economic effects and safety 

aspects. In natural environment, particularly acids and bases corrode metals into their 

respective weak metal oxides, which compromise their structural stability [11]. 

Corrosion “knows no national boundaries. Toxic materials, released from corroded 

equipment in one area, pollute the air and water farther afield. Acid rain generated in 

one country not only pollutes the local environment but can cause corrosion damage 

far beyond that country's borders and even beyond the borders of its neighbours. And 

toxic material ends up in the world's waterways and can poison sea life, killing many 

species and making others toxic to humans.” 

 

There have been many studies geared to protect and prolong metals efficiency in 

performing optimally and prevent an inevitable process of corrosion like painting and 

plating methods for the reduction of corrosion on mild steel. However, a drawback 

associated with the plating technique is the coating component adsorption efficiency. 

Due to this drawback of the plating technique, it is advisable to plate with zinc or 

cadmium because of their activeness. Furthermore, in painting methods, drying times 

have been a drawback because they are temperature and humidity dependant [12–

15]. To avoid these drying times problems, corrosion based chemical inhibitors are 

most preferred as an inhibitive method in different mediums such as acidic, alkaline, 

and saline media. Chemical corrosion inhibitors are mostly preferred because they are 

available, simple in adsorption model and they are affordable [7]. A quest is to design 

or discover a material that is environmentally friendly and able to operate in both acidic 

and basic media. Several research groups have studied a wide spectrum of corrosion 
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inhibitors with competing efficiency such as metallic phthalocyanines. However, in 

most organic solvents, metallic phthalocyanines have low solubility, and they 

aggregate resulting in a poor performance as corrosion inhibitors, hence there is a 

need for metallic phthalocyanines to be functionalised with electron donating functional 

groups.”  
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1.3. RATIONALE 

 

The “exportation and local trade of industrial products control macroeconomics. All 

these are in one way or the other proportional to industrial equipment, transport, and 

infrastructure. However, corrosion has a serious negative effect on all of these since 

industrial equipment, transport and infrastructure are metallic derivatives. Corrosion 

mitigation strategies need to be implemented to circumvent “poor gross domestic 

product (GDP) and gross national product (GNP). Corrosion extends beyond national 

boundaries. Toxic material ends up in the world's waterways and can poison sea life, 

killing many species and making others toxic to humans. The method of corrosion 

inhibition of choice would be synergism that can be employed to enhance the 

inhibitor’s potential to prevent corrosion. This method addresses poor or moderate 

inhibition activity and reduce the quantity of an expensive inhibitor [16]. It plays an 

essential role in both theoretical and practical work on corrosion inhibitors since it 

diversifies the activity of the inhibitor in corrosive media [17]. It is generally regarded 

as a nontoxic and non-irritant material. All these chemical characteristics make it ideal 

for use as a corrosion inhibitor.  

 

Extensive studies have been made on cations and anions to investigate their 

synergistic effects when incorporated to metal corrosion inhibitors [18–20]. Also, 

considerable attention and wide-ranging review on the effect of synergism for halide 

ions have been done [21]. In this present study, the synergistic effect of glycerol 

stearate (GS) as a corrosion inhibitor is evaluated. GS is the synthetic product 

resulting from the esterification of glycerol with stearic acid. Glycerol and stearic acid 

are from both natural and synthetic sources hence they fit a criterion for suitable metal 

corrosion inhibitors because of their non-toxicity thus making them eco-friendly. The 

presence of the oxygen atoms makes GS a suitable inhibitor [22].  

 

Extensive studies on glycerol and stearic acid separately as corrosion inhibitors have 

been conducted [23]. However, in this study, synergistic effects of glycerol and stearic 

acid will be examined. Synergism is the sum effect of two or more chemical 
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compounds combined to mitigate corrosion [24]. GS is studied as a corrosion inhibitor 

since it possesses an oxygen atom, which qualifies it as a suitable metal corrosion 

inhibitor. In addition, GS has a large molecular weight, which will result in greater 

surface coverage, hence blocking the active sites of the metal, protecting the metal 

from attack by ions from a corrosive media. GS is biodegradable and undergoes facile 

production as the synthetic reagent and is readily available”[25]. 

 

1.4. RESEARCH AIM AND OBJECTIVES OF THE STUDY 

 

1.4.1. AIM 

 

The aim of this study was to investigate the corrosion inhibition potential of glycerol 

stearate on selected metals (mild steel, aluminium, and zinc) in both acidic and basic 

media. This is in line with protecting the environment and promoting green chemistry 

technology. 

 

1.4.2. OBJECTIVES 

 

The objectives were to: 

 

i. Study glycerol stearate concentration effect on the rate of corrosion. 

ii. implement adsorption principles, kinetics, and thermodynamics in investigating 

the inhibitive efficiency of glycerol stearate on selected metals, 

iii. Evaluate metals morphological, optical and structural properties of the selected 

metals after inhibitor treatment, using Scanning Electron Microscopy (SEM), 

Fourier Transform Infrared spectrometry (FTIR). 

iv. Apply computational studies such as density functional theory (DFT) to evaluate 

the interaction between the chemical inhibitor and the metal surface.  

v. Identify the inhibition mechanism, adsorption type and adsorption isotherm. 

vi. Evaluate corrosion potential, corrosion current density, charge transfer 

resistance using potentiodynamic polarisation (PDP) and electrochemical 

impedance spectroscopy (EIS). 
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1.5. DISSERTATION OUTLINE 

 

This thesis explores the effect of corrosion on aluminium, mild steel and zinc metal 

using weight loss measurements and electrochemical techniques. The thesis consists 

of five chapters and a short description of each chapter, and their outline is provided 

below.  

 

Chapter one: Provision of the background, problem statement, rational, aims and 

objectives of the study.  

 

Chapter two: Literature review on corrosion, it includes corrosion definition and 

corrosion classifications, corrosion rate, corrosion affecting factors, corrosion of 

metals, corrosion theory, corrosion inhibitors, corrosion testing, analytical techniques. 

Chapter three: This chapter provides an experimental section of the study. 

Chapter four: The chapter provides results and discussions. 

Chapter five: The chapter provides general discussions, conclusions of the study and 

recommendations for future work. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1. CORROSION 

 

2.1.1. Definition and classifications of corrosion 

 

Corrosion “is a spontaneous chemical reaction whereby metals and metal derivatives 

decay. This is an oxidation-reduction reaction in which metals are oxidised by their 

surroundings and the oxygen in the air. This reaction can be either spontaneous or 

electrochemical. The formation of rust (corrosion of steel) requires iron, water, and 

oxygen. Although it is a complex process, the chemical equation is simply 4Fe + 3O2 

+ 6H2O → 4Fe (OH)3. In addition, aluminium due to its highly negative redox potential; 

reacts with water to produce hydrogen gas according to 2Al + 3H2O → 3H2 + Al2O3. 

This chemical reaction may be of particular importance when it occurs between the 

strands of an aluminium conductor. Furthermore, the corrosion of zinc in an 

oxygenated hydrochloric acid electrolyte illustrates the effect of multiple cathodic 

reactions with the oxidation reaction occurring at the anode according”to Zn → Zn2+ + 

2e- [26,27]. 
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                    (a)                                                      (b)   

Figure 2. 1: Before (a) and after (b) corrosion of microwave [26, 27]. 

The above Figure illustrates how corrosion degrades metal with time. 
 

2.1.1.1. Pitting corrosion 

Pitting “corrosion takes place during the access of aggressive anions at the passivated 

metal surfaces. Thin oxide layers are attacked very effectively by halides, which is the 

experience that leads to the metal surface localised dissolution. In chemical industries, 

most serious problems are caused by chlorides due to their excess presence in many 

surroundings such as seawater, salt on roads, and in food. Several metals such as 

iron, nickel, copper, aluminium, and steels are subjected to this type of corrosion 

except chromium, which is one of the few exceptions. The occurance of pits within a 

large, passivated metal surface leads to high metal perforation, which in turn weakens 

the material and causes major losses of economy and safety problems. However, this 

process occurs with a sequence of steps”[28]. 
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In addition, It occurs in four distinct stages [3-6]: (i) the metal  passive film attack 

external processess, at both the passive film boundary/solution interface; (ii) 

Whenever there are no overt changes to the microscopic structure of a film (ii), the 

metal passive film will launch an attack from within; (iii) this is the step between the 

initial development of metastable pits and their subsequent growth under pitting 

potential, after which a passivation film is formed;  and (iv) the final step is above a 

specific potential and it is known as the stable pit growth.  

 

 

 

Figure 2. 2: Pitting corrosion [28]. 

Above Figure depicting pitting corrosion. 

2.1.1.2. Crevice corrosion 

 
Crevice corrosion normally takes place at the crevices and shielded areas on metal-

corrosive media interface. This type of corrosion occurs in small solution volumes 

trapped within the metal surface crevices. Metal and nonmetal interfaces can also lead 

to crevice corrosion. Metals that are most susceptible to crevice corrosion are stainless 
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steels. Metal oxidation and oxidation-reduction are mechanisms associated with 

crevice corrosion yielding hydroxyl ion. This type of corrosion can be mitigated using 

several inhibition techniques such as flushing of the equipment with an inhibitor 

solution, use of welded butt joints in place of bolted joints, continuous welding, 

soldering, vessel design with complete drainage, removal of solid deposits, use of non 

absorbents such as Teflon [29]. 

 

Furthermore, crevices accelerate corrosion since it makes chemical environment to 

store moisture, this type of corrosion is also known for trapping pollutants and 

concentrates the corrosion products with the exclusion of oxygen [30]. It mostly occurs 

in the near neutral solutions with dissolved oxygen acting a cathode reactant. Three 

main factors contributing to crevice corrosion [31], i.e.  

 

i. The structure geometry, e.g., welded fabrications, riveted plates, and 

threaded joints. 

ii. Metal/non-metallic solids contact, e.g., rubber, plastics, and glass. 

iii. Deposit attacks due to corrodants on the metal surface. 
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Figure 2. 3: Crevice corrosion-an overview [29]. 

 

Crevice corrosion is depicted in the above Figure. 

2.1.1.3. Microbiological corrosion 

Microbiological corrosion is an essential factor in the engineering alloys corrosion, and 

it affects the perfomances of metals and the economy of many countries. This 

corrosion type is due to the chemical interaction between the metal and the 

environment that is prone to microorganisms. The release of corrosive metabolites, 

including bacterial exopolymers to the environment, causes this corrosion type to 

occur between the metal-environment interactions. The microorganism’s interactions 

on metals causes other corrosion forms such as stress corrosion cracking and 

hydrogen embrittlement [5].  

 

Furthermore, bacterias produced products are aggressive and lead to this form of 

corrosion known as a microbial influenced corrosion (MIC) [32,33]. Microorganisms 
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are precursors for the MIC to occur and their effect lead to following additional 

requirements such as [34]: 

 

i. Energy source 

ii. Carbon source 

iii. Electron donator species 

iv. Electron acceptor species 

v. Water 

 

 

Figure 2. 4: Microbiologically influenced corrosion [32, 33]. 

Figure 2.4. clearly showing the influence of microorganisms to the corrosion process. 

2.1.1.4. Intergranular corrosion 

 

Intergranular corrosion also takes upon the name intracrystalline corrosion or 

interdendritic corrosion. The above-mentioned type of corrosion is frequently 

intergranular stress corrosion cracking (IGSCC) due to the tensile stress and the 

occurrence of cracks along the boundaries. Intergranular implies between crystals or 

grains. The identification of intergranular corrosion normally requires the examination 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS096483051830622X&psig=AOvVaw130rxi3Vz6nEpck1ZI8rkf&ust=1637399654481000&source=images&cd=vfe&ved=2ahUKEwj5tq2Xi6T0AhVdgM4BHSJ2ClEQr4kDegUIARDiAQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS096483051830622X&psig=AOvVaw130rxi3Vz6nEpck1ZI8rkf&ust=1637399654481000&source=images&cd=vfe&ved=2ahUKEwj5tq2Xi6T0AhVdgM4BHSJ2ClEQr4kDegUIARDiAQ


 

 

 

 

14 
 

 

 

 

of a microstructure under a microscopy although in most cases it is recognised 

visually. In such as the process of coring is usually encountered in alloy castings, this 

type of corrosion takes place from local differences in composition. A well-recognised 

and accepted mechanism of intergranular corrosion is grain boundary precipitation, 

notably chromium carbides in stainless steels [35]. 

 

In addition, it takes place along the grain boundaries due to the micro galvanic coupling 

amid the precipitates free zone (PFZ) and the grain boundary precipitates [36,37]. The 

PFZ acts as a solute-depleted layer adjacent to the grain boundary. For the 

propagation of the intergranular corrosion, it is necessary that the corrosion potential 

amid the PFZ and the grain boundary be higher than 100 mV and also the continuity 

of the grain boundary precipitates contributing to the intergranular corrosion along the 

boundary  is required [38,39]. 

 

 

 

Figure 2. 5: Intergranular Corrosion [35]. 

This is another form of chemical reaction clearly indicating the intergranular 

corrosion. 
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2.1.1.5. Atmospheric corrosion 

 

Atmospheric corrosion is an electrochemical process that takes place in the presence 

of an electrolyte such as air, rain, humidity, and dew. When a certain critical humidity 

is reached, invisible thin film electrolyte tends to form on metallic surfaces under 

atmospheric corrosion conditions. In unpolluted atmospheres, for iron metal this 

humidity level is around 60%. This humidity level depends on the material corroding, 

it is not a constant. This humidity level depends on the corrosion products hygroscopic 

in nature, the presence of atmospheric pollutants and surface deposits. Atmospheric 

corrosion proceeds by balancing anodic and cathodic reactions in the presence of thin 

film electrolytes. The metal dissolution in the electrolyte occurs at the anode, while the 

reduction of oxygen occurs at the cathode. Under thin film corrosion conditions, 

oxygen from the atmosphere is readily supplied to the electrolyte. Depending on 

relative humidity, the surface contaminants nature, and other factors such as sunlight 

exposure and temperature, the thickness and electrical conductivity of the film is 

evaluated [40]. In addition, the rate of atmospheric corrosion is totally dependant upon 

the period moisture is in contact with the surface, pollution degree of the atmosphere, 

temperature, and substrate chemical composition, e.g., carbon or stainless steel. 
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Figure 2. 6: Atmospheric corrosion [40]. 

The Figure above shows how corrosion is in the atmosphere. 
 

2.1.1.6. Galvanic corrosion 

 

Galvanic corrosion takes place in the presence of a common electrolyte in which two 

different metals that are physically or electrically connected to each other are 

immersed. The more noble metal (the cathode) corrodes at a slow rate; meanwhile 

the more active metal (anode) corrodes at an accelerated rate in a galvanic couple. 

Galvanic corrosion is affected by factors such as anode relative size, metal type, and 

conditions of operation such as salinity, humidity, etc. The corrosion rates of the 

material are directly affected by the surface area ratio of the anode and cathode [41]. 

 

Corrosion of this type can also be observed in microelectronic devices where 

semiconductors and metals of varying types are linked, as well as at water main 

junctions such as copper/steel pipe junctions. Corrosion of this kind can also be found 

in ships with components made of different metal alloys that are submerged in water, 

or in metal matrix composite materials in which graphite materials are disseminated in 
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a metal as strengthening substances [42]. Galvanic corrosion can result in rapid metal 

deterioration in many situations, but it can also provide cathodic protection when used 

in conjunction with sacrificial anodes [43]. Although galvanic corrosion is a widely 

studied phenomenon, its complexity makes it difficult to apply quantitatively [44]. 

 

 

 

Figure 2. 7: Galvanic Corrosion [41-44]. 

 
Galvanic corrosion is shown in the above Figure. 

2.1.1.7. General corrosion 

 

General corrosion takes place because of rust. When a metallic material such as steel 

is exposed to water, the metal surface is oxidised and the appearance of a thin layer 

of rust occurs. To inhibit a metal dissolution (oxidation), an inhibitive coating must 

interfere with the reaction [45]. Furthermore, corrosion media permeates the entire 

metal surface, and it is not harzadous. It is a metal weight loss without any localised 

attack, it is not penetrating deeply, and the common example is the rusting of steel in 

air [46]. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.pipingmart.com%2Fblog%2Fother%2Fwhat-is-galvanic-corrosion%2F&psig=AOvVaw1FbakUZBmc6tSm6A8UIdg0&ust=1637401927186000&source=images&cd=vfe&ved=2ahUKEwiprYjTk6T0AhWNIRoKHYmNCd0Qr4kDegUIARDNAQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.pipingmart.com%2Fblog%2Fother%2Fwhat-is-galvanic-corrosion%2F&psig=AOvVaw1FbakUZBmc6tSm6A8UIdg0&ust=1637401927186000&source=images&cd=vfe&ved=2ahUKEwiprYjTk6T0AhWNIRoKHYmNCd0Qr4kDegUIARDNAQ
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Figure 2. 8: General Corrosion [45, 46]. 

This Figure shows the overall effect of the general corrosion. 

2.1.1.8. Stress corrosion cracking 

 

Stress corrosion cracking (SCC) can result in a negative effect on a material beyond 

the repair point. A metallic material can encounter SCC along the grain boundary 

cracks when subjected to extreme tensile stress, and this can further lead to further 

corrosion. Cold work, welding, and thermal treatment are causes of SCC included. 

This type of corrosion is intensified when a metallic material is exposed to an 

environment that increases stress cracking resulting in a transition from a minor stress-

corrosion to an irreparable damage. The failure due to stress corrosion is entitled 

‘’season cracking’’ in consideration of brass. However, it is entitled ‘’caustic 

embrittlement’’ in consideration of steel. Steel hydrogen embrittlement is also regarded 

to be a corrosion phenomenon [47]. While a metal is exposed to a corrosive medium 

and under tension, SCC tends to be a slow crack growth (typically less than 10-6 m/s) 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FFigure-24-General-Corrosion-28_fig2_342571524&psig=AOvVaw2fZyOUGwf1WlNoRdZXFLV3&ust=1637402414402000&source=images&cd=vfe&ved=2ahUKEwjloLG7laT0AhVHwYUKHUaxCEMQr4kDegUIARDMAQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FFigure-24-General-Corrosion-28_fig2_342571524&psig=AOvVaw2fZyOUGwf1WlNoRdZXFLV3&ust=1637402414402000&source=images&cd=vfe&ved=2ahUKEwjloLG7laT0AhVHwYUKHUaxCEMQr4kDegUIARDMAQ
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and occurring at the temperature above 60 oC [48]. As an engineering concern, for the 

material that is nominally ductile, when SCC results in brittle failure when applied at 

low stresses. In addition, below the bulk material’s yield strength, SCC failure happens 

at tensile load [49].  

 

 

 

Figure 2. 9: Accelerated Stress Corrosion Cracking [47-49]. 

Figure 2.9. shows the effect of accelerated stress corrosion cracking. 
 

2.1.1.9. Selective leaching 

Selective leaching occurs via corrosion processes resulting in a removal of one 

element from a solid alloy. The most common example is dezincification, which is the 

selective removal of zinc in brass alloys. Leaching also occurs in other alloy systems 

resulting in the removal of aluminium, iron, cobalt, chromium, and other elements. 

However, selective leaching is a general description of these dealloying processes 

such as dealuminumification and decobaltification, etc. There is also a metallurgical 

term ‘’parting’’ which is sometimes applied, but the most preferred term is selective 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fuscorrosion.com%2Findex.php%2Faccelerated-stress-corrosion-cracking-testing%2F&psig=AOvVaw0g00cL3l5S6y5Ox5d7OZOX&ust=1637404567382000&source=images&cd=vfe&ved=2ahUKEwjtj4G-naT0AhUW_IUKHU7OATMQr4kDegUIARDpAQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fuscorrosion.com%2Findex.php%2Faccelerated-stress-corrosion-cracking-testing%2F&psig=AOvVaw0g00cL3l5S6y5Ox5d7OZOX&ust=1637404567382000&source=images&cd=vfe&ved=2ahUKEwjtj4G-naT0AhUW_IUKHU7OATMQr4kDegUIARDpAQ
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leaching [50]. In some alloys, this type of corrosion occurs by either mechanism, 

depending on temperature, concentration, and corrodent flow rate. 

 

 

Figure 2. 10: Selective leaching [50]. 

Above is the Figure that shows the result of selective leaching. 

2.1.1.10. Localised corrosion 

 

Localised corrosion occurs when a small area of a metallic material encounters 

corrosion or when the material is in contact with a corrosion causing stresses. The rate 

of corrosion is faster at the small local that corrodes than at the rest of the component. 

This type of corrosion works hand in hand with stress and fatigue, and the combined 

resut is much worse as compared to the stress and fatigue result respectively [51]. It 

is known for an extreme attack at limited areas on surface components, while the 

remaining surface area deteriorates at a lower rate. 

 

 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSelective_leaching&psig=AOvVaw3WmIX2ICQTvHu5FmsvYuqI&ust=1637405199177000&source=images&cd=vfe&ved=2ahUKEwiA6aLrn6T0AhUT8xoKHThwATUQr4kDegUIARC9AQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSelective_leaching&psig=AOvVaw3WmIX2ICQTvHu5FmsvYuqI&ust=1637405199177000&source=images&cd=vfe&ved=2ahUKEwiA6aLrn6T0AhUT8xoKHThwATUQr4kDegUIARC9AQ
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Figure 2. 11: Localised Corrosion - an overview [51]. 

This Figure depicts the results of how localised corrosion will look like. 

2.1.1.11. Caustic agent corrosion 

 

Caustic agent corrosion is the result of the degradation of a metallic material by the 

presence of impure gas, liquids, or solids. When a metal is in a dry form, it is not 

susceptible to degradation by most impure gases except when the metal be exposed 

to moiusture resulting in dissolution forming harmful corrosive droplets. An example of 

such caustic agent is hydrogen sulfide [52]. In addition, this corrosion type is present 

in many common household products. The severity of the damage is dependant on 

the corrosive properties and concentration of agents ingested. Furthermore, strong 

alkaline cleaning products, such as drain cleaners and lye soaps are often responsible 

for serious injuries. 

 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Flocalized-corrosion&psig=AOvVaw1YlU_wL20jeJZEfAXhohKW&ust=1637405611862000&source=images&cd=vfe&ved=2ahUKEwiOkoewoaT0AhUP8BoKHRekDFYQr4kDegUIARC9AQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fengineering%2Flocalized-corrosion&psig=AOvVaw1YlU_wL20jeJZEfAXhohKW&ust=1637405611862000&source=images&cd=vfe&ved=2ahUKEwiOkoewoaT0AhUP8BoKHRekDFYQr4kDegUIARC9AQ
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Figure 2. 12: Caustic agent corrosion [52]. 

Figure 2.12. shows the results of caustic seeping through the cracks resulting in 

corrosion. 

 

2.1.2. Consequences of corrosion 

 

Lives of humanity are affected by corrosion on daily basis. Kitchen sinks, car bodies, 

charcoal grills, and any other metal tools used in homes are all subject to the 

deterioration process caused by corrosion, which is taking place on them. The 

corrosion of household appliances can present a potential health risk (e.g., corrosion 

product inside water pipes or tanks can mix with drinking water putting lives at risk). In 

the human body, metals can also be used as implants, but metals have the potential 

to deteriorate, which would lower the structural quality of the implant and could also 

provoke a biological response in the body of the host. Corrosion products were found 

in the tissue surrounding the metal implant, which is evidence of the implant's 

deterioration and could potentially lead to bone loss [53]. 
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The process of corrosion has a negative impact on the global economy; Mazeika and 

Linas said, Industries that are energy intensive, such as cement, often experience 

severe corrosion damage caused by hot combustion gases. Metals are used by 

petroleum companies to carry or transport fuels, and several other metals, including 

fans and chimneys, are experiencing a high rate of corrosion. In addition, corrosion 

can result in product contamination, which can ultimately lead to the closure of a plant 

or an entire company. The repair or replacement of corroded metals is an expensive 

endeavour that has the potential to put the economy at risk [54]. 

 

Corrosion consequencies have the potential to endanger livelihood as shown in Figure 

2.13. Metal that has been corroded loses its strength, which can lead to catastrophic 

events such as the collapse of buildings and bridges, the crushing of aircraft, the failure 

of gas and water pipes, and so on. These things can result in severe injuries or even 

the loss of livelihood. 

 

 

Figure 2. 13: Impacts of corrosion [53-55]. 
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 Corrosion affects nearly every aspect of modern society. In many of these areas, 

however, its impact is difficult to quantify [55] 

 

2.1.3. Corrosion prevention methods 

 

Studies have shown that corrosion or corrosion rate can be inhibited or reduced using 

various prevention methods as depicted in Figure 2.14.  

 

 

 

Figure 2. 14: Methods of corrosion prevention [56]. 

 

Below is the outline of some corrosion prevention methods. 

 

i. Barrier protection 

This is the first protection method which was used to reduce the rate of 

corrosion rate during olden days. In this method the barrier amid the surface of 

the metal and corrosive environment is formed, hence the name barrier 
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protection. Examples of this method is coating by paint and galvanizing. When 

barrier (e.g., paint) is removed from metal surface, corrosion occurs. 

 

 

 

Figure 2. 15: Barrier protection [57]. 

 

Barrier protection Figure 2.15 detailed [57]: 

 

ii. Cathodic protection 

This was studied, proven and become widely used corrosion prevention method 

with example shown in Figure 2.16. It is mostly used to protect pipeline which 

are buried or submerged, buried tanks, offshore gas and oil platform, steel in 

concrete and plenty of other structures.  
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Figure 2. 16: Cathodic protection [57]. 

 

 

iii. Electroplating [58] 

This is a process in which electrochemical reaction is applied to coat metallic 

surface by metal as shown in Figure 2.17. It consists of anode, cathode, 

electrolyte, and power supply source. Cheap metals such as zinc and steel are 

used for coating. 

 



 

 

 

 

27 
 

 

 

 

 

 

Figure 2. 17: Electroplating [58]. 

 

iv. Corrosion inhibitors 

 

Inhibitors are applied at low concentrations to reduce the rate of corrosion. The 

usage of inhibitors is mainly in water treatment facilities, chemical production 

companies, oil and gas exploration etc. corrosion inhibitor method is the most 

widely used corrosion prevention presently. Corrosion inhibitors are broad and 

slow the rate of corrosion in various ways. Inhibitors can be classified as mixed 

and adsorption inhibitors. Mixed inhibitors slow down both cathodic and anodic 

reactions, while in adsorption the inhibitor adsorb to the metal surface forming 

a thin film to protect metal from corrosion. Different inhibitors are used for 

different metals in different environment. Corrosion inhibitors are effective, and 

most of them are eco-friendly, especially organic compounds such as Ionic 

liquids. Ionic liquids can reduce corrosion rate on metals such as aluminium, 

mild steel, and zinc. 
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2.1.4. Rate of corrosion 

 
Corrosion rate is defined as to how fast the degradation of a metal takes place.  The 

rate of corrosion is depended on factors such as the environment, material type and 

the exposure time [59]. Corrosion rate ( ) is calculated as given in Equation 2.1 [60]: 

                                                                                                              (2. 1) 

where,  is the weight loss of the metal in immersion per time (t), and S is the 

surface area of the metal exposed. 

2.1.4.1. Factors affecting the rate of corrosion [61,62]: 

2.1.4.1.1. Nature of metal [61] 

 
i. Metal purity: High corrosion rate is associated with the metal’s impurity.  

ii. Metal physical state: The more stressed the metal is, the higher the corrosion 

rate. 

iii. Oxide layer nature: Depending on the porosity, stability and instability of the 

metal, corrosion rate is determined. 

iv. Corrosive products’ nature: The more soluble the products are, the higher the 

rate of corrosion. 

 

2.1.4.1.2. Nature of corrosive environment: 

 
i. Temperature: The higher the temperature, the higher the rate of corrosion. 

ii. Moisture: The presence of moisture causes a high rate of corrosion. 

iii. pH value: The rate of corrosion in pH levels less than 7 is high (e.g., acidic 

conditions). 

iv. Electrolyte nature: The presence of salts in the electrolyte tends to increase the 

rate of corrosion.  
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2.1.5. Corrosion of metals 

2.1.5.1. Mild steel 

Mild “steel is an alloy which has a large iron content with other metals such as carbon, 

manganese, copper, and silicon in small amounts. Due to a low carbon content, mild 

steel is also called low carbon steel. Mild steel’s strength depends on the carbon 

present. Due to its accesseability and cost effectiveness, mild steel is mainly used for 

construction [63]. Metals or alloys tend to degrade when exposed to corrosive 

environment which is saline. In a mild steel, the most well known corrodent is iron 

which later results in iron oxide commonly known as rust. The corrosion of iron is 

because of high humidity of more than 60% [4]. Other factors such as rain, dew, 

radiation, and wind can accelerate corrosion rate. Metals are of a high economic 

significance, hence the need for their protection. Depending on environmental 

conditions and ecosystem, the higher rate of corrosion can be prevented. The 

commonly used prevention methods are painting, water absorption products and 

dehumidification. Because of high operational labour, and application cost, these 

methods are not favoured and considered not to be eco-friendly [64].  As depicted in 

Figure 2.18., redox reaction is taking place upon the corrosion of mild steel. For this 

reaction (corrosion) to take place, oxygen and moisture are involved. In a solution, iron 

is oxidised to form rust.  
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Figure 2. 18: Corrosion process for mild steel [65]. 

 

2.1.5.2. Zinc metal 

In “majority of natural environments, zinc is reckoned to resist corrosion [66]. The most 

cost-effective way of protecting zinc against corrosion is by metallic coating method. 

The formation of an oxide layer on a zinc metal is due to the gradual attack by the 

atmospheric oxygen. The interior layer located on a zinc metal serves as an inhibitor 

for the furtherance of zinc corrosion process [67]. 

Zinc metal can progressively corrode in certain tropical temperatures, resulting in zinc 

oxide being produced in the product. It has been stated that corrosion can take place 

in a variety of different open and enclosed settings since the air temperature can range 

anywhere from -18 oC to 70 oC. The process of corrosion is an electrochemical 

phenomenon because it involves the passage of electrons between the surface of a 

metal and an electrolyte [68]. The process of corrosion can also be characterised as 

the tendency of a metal to interact with water, oxygen, and other substances in an 

aqueous medium. This is another definition of the corrosion process. 
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Corrosion of the metal takes place at the anode, while reduction of oxygen and 

hydrogen takes place at the cathode [69]. Figure 2.19 displays how corrosion takes 

place on a zinc metal. Firstly, the metal undergoes a loss of electrons leading to the 

metal’s degradation process. The outlined reactions below show in depth how the zinc 

corrosion process” occurs. 

 Anodic reaction: Zn(s) → Zn2+ + 2e-                                                                     (2.2) 

Cathodic reaction: 2H+ + 2e- → H2 (g)                                                                    (2.3) 

Overall corrosion reaction: Zn + 2H+ → Zn2+ + H2 (g)                                                                  (2.4)  

 

 

 

 

 
Figure 2. 19: Zinc metal corrosion process [67-69]. 
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2.1.5.3. Aluminium metal 

Many “industrial companies have employed the use of aluminium to make pipes, 

batteries, and machines due to aluminium’s unique features such as light weight [70]. 

Due to this light weight, aluminium is one of the most produced metal and it is easy to 

transport [71]. Other advantages aluminium posseses are electrical conductivity, 

thermal conductivity, ease of use, corrosion resistance, surface treatment, suitability, 

and aluminium alloys diversity [72].  

The rate of corrosion on aluminium is slow as compared to mild steel, zinc, and other 

metals. Due to the thin protective surface layer, aluminium remains the most corrosion 

resistance metal [73]. In addition, the thin film is non-labile and serves as blockade of 

electron transfer between the metal surface and the corrosive environment. Corrosion 

on the aluminium metal surface occurs if the pH of an electrolyte is below and above 

4-9 range [74]. In addition, this makes the investigation for suitable corrosion inhibitors 

on aluminium in both acidic and basic condition to be” conducted. 

 

Figure 2. 20: Corrosion mechanism on aluminium [75]. 
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2.1.6. Corrosion theory 

2.1.6.1. Kinetics 

Kinetic models can be used to further expound on corrosion process. Temperatures 

associated with the environment greatly influence the rate of corrosion. The higher the 

temperature, the faster the corrosion rate. The lower the temperature, the slower the 

rate of corrosion [76]. Before the formation of corrosion products, the process of 

corrosion passes through the activated complex like other chemical reactions. The 

minimum required energy is needed for the transition of the reactants to the activated 

complex. With the use of the Arrhenius equation (2. 5), the activation energy (Ea) can 

be determined.  

                                                                                        (2.5) 

where CR is the rate of corrosion, Arrhenius pre-exponential factor is denoted by A, Ea 

is activation energy of the corrosion process, R is the gas constant denoted by R and 

the absolute temperature is denoted by T. 

Corrosion kinetics bring an elucidation regarding corrosion rate at a specific time and 

environment. Corrosion reaction undergoes a redox reaction of which the electrons 

involved can be further quantified as current. The corrosion behaviour of the metals in 

an electrolyte can be examined through temperature effect [77]. Regarding Equation 

2.1, the corrosion rate increases with an increase in temperature, Ea and A can be 

varied with temperature. Depending on the analysis method, the rate of corrosion is 

measured differently.  

 

2.1.6.2. Adsorption isotherms and thermodynamic parameters 

 

Adsorption studies assist by elucidating the adsorption mechanism of the inhibitor 

compound on the metal surface. This adsorption process depends on the metal type, 

inhibitor structure, and the electrolyte type [78]. There are several adsorption 

isotherms tested on the studies of corrosion such as Langmuir, Temkin, Frumkin and 
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Freundlich isotherms [79]. The type of the adsorption isotherm is determined from the 

surface coverage obtained in gravimetric analysis [80]. The isotherm with large 

regression coefficient of approximately 0.99 is most preferred and this best fit the 

Langmuir adsorption isotherm. From Equation 2.6, the Langmuir adsorption isotherm 

is given from which the equilibrium constant of adsorption or desorption is obtained. 

 

                                                                                                   (2.6) 

Cinh  is the inhibitor concentration, Ɵ is the surface coverage degree, and Kads is the 

equilibrium constant of adsorption. 

With the assistance of chemical stability of the species and reactions involved, the 

process of corrosion can further be defined. The thermodynamic control concept can 

further help in understanding corrosion process although the rate of corrosion process 

cannot be evaluated by thermodynamic calculations. The theoretical activity of the 

metal can be calculated with the application of thermodynamics when the composition 

of the surrounding is known. The equilibrium constant of adsorption relates   to change 

in Gibbs free energy of adsorption (∆Gads) by Equation 2.7: 

                                                                                          (2.7) 

∆G is the adsorption Gibbs free energy, R is gas constant, T is temperature and 55.5 

is the water concentration of solution. With the help of Equation 2.7, the Gibbs free 

energy values of adsorption (∆Gads) can be easily determined. Mostly, negative values 

of the Gibbs free indicate that a spontaneous process occured. A negative value of 

change in free Gibbs energy (∆Gads) implies the spontaneity of corrosion process and 

a good adsorption stability at the inhibitor metal interface [81]. The varience between 

free Gibbs energy and temperature is explained in two ways: 

i. Exothermic process occurs when ∆Gads increase as the temperature increases. 

ii. Endothermic process occurs when ∆Gads decrease as the temperature increases. 
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The values of the free Gibbs energy play an important role in figuring out the kind of 

adsorption process that is taking place on the surface of the metal. In addition, the 

type of adsorption process can either be physisorption, which is also known as 

"physical adsorption," or chemisorption (chemical adsorption). The values of Gads that 

range from -40 kJ. mol-1 and above in a direction that is negative represent the 

chemisorption process that ultimately results in chemical bonding. In addition, if the 

value of Gads is less than -20 kJ. mol-1 and goes in the positive direction, this indicates 

a physisorption process rather than a chemical bonding activity since it indicates a 

weak van der Waals interaction [82]. There are other thermodynamic parameters 

which can be derived, such as adsorptive enthalpy, and the standard entropy, 

. With the help of the Van’t Hoff equation, adsorptive enthalpy can be deduced: 

    
2RT

H

dt

dInKeq


                                                                                             (2.8) 

The adsorptive constant is denoted by K. 

Using the equation below, the standard entropy,  can be calculated: 

                                                                                     (2.9) 

Using the Equation 2.10, the equilibrium constant (Keq) for the reaction is calculated.  

Faraday’s constant is denoted by F: 

                                                                                    (2.10)                                                        

2.1.7. Electrochemistry 

 

According to Equation 2.11, positively charged metal ioins propagate into an 

electrolyte and in turn electrons cleaves on the oxide-free metal surface resulting in 

metal dissolution [83]. 

M → Mn++ ne-                                                                                                      (2.11) 

H

S

S

ads
o

ads
o

ads
o STHG 

oo

eq EnFGRTInK 



 

 

 

 

36 
 

 

 

 

An atom in metal surface is denoted by M, an ion in solution is denoted by Mn+ and 

electrons in a metal are denoted by ne-.  

Owing to a negative charge on the metal surface from residual electrons, the potential 

difference between the metal surface and the solution increases and this potential is 

the metal’s potential as the working electrode. The change in potential hinders further 

metal dissolution and in turn favors the deposition of metal ions from an electrolyte to 

cleave back on the metal surface which is the reverse of Equation 2.11. The 

continuiety of degradation and deposition processess of metal ions would enhance the 

metal reaching its potential stability tenderly resulting in equal rates of the dissolution 

and deposition processes [84]. This metals’s potential is entitled reversible protential 

(Er) having a concentration dependent value of dissolved metal ions and the standard 

reversible potential (E˚) for unit activity from dissolved metal ions, aM
n+: 

                                                                                                   (2.12) 

                                                                          (2.13) 

Gas constant is denoted by R, Absolute temperature is denoted by T, Faraday 

constant denoted by F and the number of electrons transferred per ion is denoted by 

n. Once a reversible potential is reached, no further net dissolution of metal takes 

place. In addition, the net dissolution of the metal is generally slow in this process. The 

potential of the metal in  most cases  do not attain a reversible potential although the 

potential of the metal is positive because due to the fact that when different reactions 

are involved electrons can be eradicated from the metal surface [85]. In addition, a 

reaction between electrons and hydrogen ions can occur in acidic solution with 

electrons adsorbing on the metal surface resulting in hydrogen evolution (Equation 

2.14). 

                                                                                               (2.14) 

The reaction above permits continuiety of the same metal ions quantity into solution 

which results in a metal corrosion with the reversible potential given in Equation 2.14. 
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                                                                             (2.15)  

PH2 is the hydrogen gas partial pressure. If hydrogen partial pressure is permitted to 

build up, the reversible potential of reaction (Equation 2.14) could be attained. Due to 

the absence of further net reaction of hydrogen ions, the net metal dissolution would 

cease effectively. 

In neutral solutions, the concentration of hydrogen ions is to permit reaction (Equation 

2.14) to progress at a significant rate. Nevertheless, the electrons on the metal can 

react with oxygen molecules from air into solution effectively to produce hydroxyl ions 

as demonstrated in Equation 2.16.  

                                                                                    (2.16) 

The potential of the working electode (metal) remains more than the reaction’s 

reversible potential (Equation 2.17): 

                                                                        (2.17) 

Once Equation 2.11 and 2.16 couples, corrosion process can proceed. In the 

electrochemical terminology, the electrode on which oxidation reaction occurs is called 

anode. The dissolution of the metal is as the result of the loss of electrons on the 

surface of the metal thus oxidation process (Equation 2.11). In electrochemical 

terminology, the gaining of electrons is called a reduction occurring at the cathode 

[86]. 

2.1.8. Corrosion inhibitors 

Inhibitors are used extensively in the manufacturing of chemicals, as well as in water 

treatment facilities, oil and gas exploration, and other related fields. The use of 

chemical corrosion inhibitors is the method that has seen the greatest amount of use 

for the purpose of preventing the corrosion process. These inhibitors are utilised in a 

wide variety of settings and can limit the pace of corrosion. Inhibitors can be 
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categorised in several different ways, including as mixed types and as adsorption 

inhibitors. In the case of adsorption inhibitors, cathodic and anodic inhibitors are 

slowed down by mixed-type inhibitors, and the adsorbed inhibitor on the metal surface 

produces a thin coating that prevents the metal from corroding [87]. In different 

situations, different types of metals require different inhibitors to be applied. Most 

organic corrosion inhibitors, such as ionic liquids and green inhibitors, have the 

advantage of being environmentally friendly and economically effective. This is 

especially true with organic corrosion inhibitors. 

 

2. 2. SELECTED CORROSION INHIBITORS 

 

2.2.1. Some organic compounds as corrosion inhibitors 

 

2.2.1.1. Plant extracts as corrosion inhibitors 

In “recent years, phytocompounds and extracts derived from herbs have garnered an 

increasing amount of attention in the field of environmentally friendly products. When 

evaluating some plant extracts, the total phenolic content should be employed, and 

the relationship between the extract outline and the corrosion inhibitive impact should 

be considered. It was discovered that there was a correlation between the overall 

phenolic content of the plant extracts and the efficiency with which they inhibited 

corrosion. The extracts' inhibitory effectiveness increases in direct proportion to the 

total phenolic content of the plant material. When screening plant extracts for inhibitory 

effects, it is likely that the total phenolic content can be utilised as a reference [88]. 

This is because total phenolic content includes both monomeric and polymeric” 

phenolics [88]. 

 

2.2.1.2. Extraction methods used to obtain plant extracts. 

Throughout the course of the last several decades, several articles on the isolating 

and fractionating of diverse compounds, including plant extracts, essential oils, and 

chemicals that have been purified, have appeared. The chemical composition of the 

drug, the particle size of the sample, and the presence of interfering compounds are 
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all factors that influence the selectivity of an extraction process [89]. This method is 

used to profile the target content of plant species. The market niche of the compound 

of interest and the needed level of purity both have an impact on the choice of 

extraction process, which in turn influences the rate, yield, and purity of the extracted 

substance. The quantity of a chemical that can be extracted from plant material is 

susceptible to being significantly influenced not only by the type of solvent that is used 

for the extraction process but also by the procedures that are used to isolate the 

substance after it has been extracted. Because of the influence that these operational 

variables have on both the concentration of the extract and its antioxidant activity, each 

extraction method has its own distinct set of variables that need to be optimised. The 

primary factors that influence the extraction kinetics are the extraction time, 

temperature, the ratio of solvent to feed, the number of sample repetitions, and the 

choice of extraction solvent. The degree to which temperature and the amount of time 

required to extract a substance both play a significant role in determining solubility. 

The viscosity and surface tension of the solvents both decrease when the extraction 

temperatures are raised, which in turn has the effect of accelerating the rate at which 

mass is transferred [90]. Another factor that can influence the extraction kinetics is the 

pretreatment of the material. This factor has an impact not only on the sample's matrix 

but also on the particle size and distribution, as well as the amount of moisture that is 

contained within the” sample. 

 

Because of “the ease with which they can be implemented, the reliability with which 

they are endowed, and the adaptability with which they are endowed, the liquid-liquid 

and solid-liquid extraction strategies that have been present for a protracted time are 

still widely used today. These traditional approaches do, however, come with their own 

individual advantages and disadvantages that should not be overlooked. The amount 

of material that can be extracted is improved when various solvents are used in the 

process. One of the most significant drawbacks of this method is that it makes use of 

traditional solvents, such as alcohols (methanol, ethanol, and isopropanol), acetone, 

diethyl ether, and ethyl acetate, all of which are frequently mixed with varying amounts 

of water for the purposes of sample preparation, separation, and detection. In addition, 
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this method also requires the use of ethyl acetate. Not only are these solvents a 

problem for the environment, but they are also a problem for the economy. In order to 

satisfy the requirements, set forth by the regulatory body, it is necessary to carry out 

additional purification steps utilising membranes. It is possible for active chemicals to 

undergo rapid chemical degradation if they are subjected to higher temperatures for 

an extended period. The traditional method of extraction takes an extremely long time, 

which is another one of the many drawbacks associated with the method. The 

extraction process itself also takes an extremely long time. The modern extraction 

techniques place an emphasis on applications that are beneficial to the environment, 

techniques that are based on sorption, techniques that reduce the amount of solvent 

that is used, and techniques that make use of both solid and liquid” materials [91,92]. 

 

In “comparison to organic solvent technology, solid-phase extraction, also known as 

SPE, pressurised liquid extraction, also known as PLE, microwave-assisted 

extraction, also known as MAE, and solid-phase microextraction, also known as 

SPME, all have several significant advantages. The ease of product fractionation is 

just one of these benefits, along with the product's positive impact on the surrounding 

environment. These techniques are simple, the extraction process with them takes 

less time, and they produce fewer harmful pollutants because they use a lower 

percentage of organic solvent. This is because the organic solvent is used as a carrier. 

Because of this, they have seen an increase in their level of popularity. The most 

significant benefit that the SFE has to offer is the selective extraction of components 

or the fractionation of the total extracts [93]. Both processes are possible with the SFE. 

This can be achieved by altering the process parameters or by utilising a variety of 

gases with the intention of isolating components or fractionating them. Both methods 

are viable options. It is common knowledge that subcritical and supercritical fluids are 

types of solvents that do not cause cancer, do not cause genetic mutations, do not 

cause fires, and are thermodynamically stable. Additionally, it is also common 

knowledge that these types of solvents do not cause fires. Any substance that has 

been brought to a temperature and pressure that are both greater than its critical point 

is a supercritical fluid. At this stage, the substance does not exist in a state that can 
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be classified as either liquid or gas. They function admirably as a suitable replacement 

for organic solvents, which, when they are brought to within a short distance of their 

critical point, exhibit a peculiar property in which even minute variations in temperature 

or pressure can result in significant variations in density. They do this because organic 

solvents approach their critical point. Because of this, the characteristics of the organic 

solvents can be altered in a wide variety of different ways. They are an adequate 

substitute for the original item. The point at which the boiling curve and the pressure-

temperature phase diagram intersect is known as the critical point (Figure 2.21). At 

this point, both the liquid and gas phases vanish, and all that is left is the supercritical 

phase. On the pressure-temperature phase diagram, the region corresponding to gas 

and liquid are separated by the boiling curve. 

 

The fundamental advantage of the extraction methods, on the other hand, is that they 

can be used to isolate both polar and non-polar molecules, and their selectivity can be 

adjusted by selecting the appropriate solvent and/or operating conditions. This ability 

to isolate both types of molecules is a fundamental benefit of the extraction methods. 

The extraction methods have the significant benefit of being able to separate both 

types of molecules, which is a significant advantage. According to research that was 

carried out on the components that make up corrosion inhibitors, it was discovered 

that chemicals that are either polar or non-polar can be effective at inhibiting corrosion. 

In addition to this, the techniques of extraction that have been covered up until this 

point offer economic benefits, which have been discussed up until this point. The 

findings of this review indicate that polyphenols are one of the primary ingredients that 

are included in environmentally friendly corrosion inhibitors. Other ingredients that are 

included in these inhibitors include: Although other solvents, like ethyl acetate or 

acetone, have been used extensively in the extraction of polyphenols from plants, the 

largest yields of polyphenols are typically obtained using ethanol, methanol, and their 

combinations with water. Other solvents, like ethyl acetate or acetone, have also been 

used extensively in this process. The reason for this is that these solvents have a 

higher boiling point than water, which makes it possible for them to dissolve a greater 

quantity of polyphenols [94–96]. 
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Due to the intricacy of the subject matter, it is conceivable to make the assertion that 

there is still a "barrier" separating study and the application of the findings. This is 

something that can be said. Because this is something that is possible, it is something 

that can be said. To achieve quality control of vegetable extracts and the efficacy of 

specific phytocompounds, much more research needs to be done on analytical and 

microbiological characterisation assessments on vegetal extracts that are being tested 

as novel eco-friendly material-protecting products. These assessments must be 

performed on vegetal extracts that are being tested as novel eco-friendly material-

protecting products [97,98]. These assessments need to be performed on vegetal 

extracts that are being tested as novel eco-friendly material-protecting products. 

These sorts of evaluations ought to be carried out on plant extracts that are currently 

being investigated for use as innovative environmentally friendly material protecting 

products. In the sections that are to follow, we will discuss in greater depth the 

research that has been carried out over the course of the past two decades on the use 

of plant extracts as corrosion inhibitors for aluminium and its alloys in a variety of 

corrosive environments. This research was conducted on the use of plant extracts as 

corrosion inhibitors for aluminium and its alloys in various corrosive environments. 

During this study, an investigation into the utilisation of plant extracts as corrosion 

inhibitors for aluminium and its alloys in a variety of different corrosive conditions was 

carried out. In addition to this, particulars pertaining to the extraction method itself as 

well as the key components of the extracts are broken down in this section of the article 

(as reported by the authors in the specific corrosion inhibition research or in studies 

not directly connected to corrosion research). Based on the solvents that were used 

during the extraction procedure, the extracts were divided up into four unique” groups. 
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Figure 2. 21: p–T diagram of a pure substance and separation processes [55]. 
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Figure 2. 22: Natural products as corrosion inhibitors for aluminium and its alloys 
[55]. 

Figure 2.22. shows different percentages of natural products as corrosion inhibitors. 
 
 

2.2.1.3. Drugs as corrosion inhibitors for aluminium and its alloys 

As “was stated earlier, there was once a time when it was supposed that 

pharmaceuticals had the potential to act as corrosion inhibitors. This was especially 

true with regard to the protection of steel against corrosion [99]. The number of studies 

that describe drugs as corrosion inhibitors for aluminium and its alloys is relatively low; 

however, such research may become more appealing in the not-too-distant future. The 

chemical structures of all the anticorrosion medications that have been reported as 

being effective in this article are summarised in a condensed form [24,59,100–

104].Antibacterial and antifungal drugs were among the compounds that had received 

the most attention from researchers up until this point because of their potential use 

as corrosion inhibitors for aluminium and the alloys of aluminium in a variety of different 

solutions [24,59,100–104].  
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This attention had been focused on these compounds since antibacterial and 

antifungal drugs were among the compounds that had received the most attention 

from researchers. However, there have also been a few studies done on the possibility 

of using antihypertensive and antiemetic drugs as corrosion inhibitors [55,105]. These 

drugs are used to treat high blood pressure and nausea, respectively. These 

medications are prescribed to treat high blood pressure and, respectively, nausea and 

vomiting. Both medications are prescribed to treat high blood pressure, as well as 

nausea and vomiting, respectively. When put through a series of tests in acidic 

solutions, every one of the medicines that were the focus of the investigation 

demonstrated an ability to prevent corrosion. 

 

The WL method has been utilised quite extensively in recent research that has been 

carried out to evaluate the effectiveness of these compounds as inhibitors 

[59,100,101,103]. These studies have been carried out in recent times. The authors 

of each of the included studies arrived at the same finding, which was that the 

individual drugs tested acted as mixed-type inhibitors. This was the consensus 

reached by the researchers who carried out the studies. The incorporation of 

polarisation methods into several the research projects ultimately led to the formation 

of this conclusion. 

 

According to the findings of all the research that has been carried out and published 

about the use of drugs as corrosion inhibitors, the efficiency of the inhibition increased 

proportionally with the drug concentration, but it decreased as the temperature 

increased. This was the conclusion that was reached after all the research on the topic 

had been carried out and published. This was the realisation that came about as a 

result of all the investigation that was carried out. The authors suggested mainly 

physisorption as a possible adsorption mechanism for all of the drugs that were 

studied, with the exception of Bhat and Alva's work [24,59,100,102,104,105], which 

suggested a mixed-type adsorption (physisorption and chemisorption) for meclizine 

hydrochloride. This work was the only one that suggested this type of adsorption 
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mechanism. Although Bhat and Alva's research was the only one that suggested a 

mixed-type adsorption, this was still the result. 

 

This result was reached as a direct consequence of the thermodynamic calculations 

that were carried out and their outcomes. On the other hand, these authors reported 

that physisorption was the most important part of the overall mechanism [106]. Gece 

has compiled a thorough review article in which he compares medications that are 

categorised into a variety of pharmacotherapeutic categories [99]. Although each of 

these pharmaceuticals has a completely unique biological mechanism of action, it is 

still possible to apply any of them to the treatment of corrosion in a wide variety of 

materials. However, it is essential to keep in mind that the pharmacodynamic, and 

consequently the pharmacologic action that the drugs have on the body, have, in 

essence, nothing to do with the mechanism of their potential to inhibit corrosion.  

 

In addition, rather than classifying these drug-based corrosion inhibitor candidates 

according to their biological activity, it is more useful to consider their general 

molecular properties (such as the presence of heterocycles in their structures or 

reactive centres such as O, N, and/or S atoms with lone pairs of electrons, which can 

aid in their adsorption onto metal surfaces). In addition, it is ideal to classify 

medications in accordance with the pharmacotherapeutic groups to which they belong 

to perform an analysis (or categorisation). Not only is this ideal in the context of 

describing the drugs, but also in the context of the potential for corrosion inhibition that 

the drugs possess. 

 

Particularly, carrying out these steps makes it much simpler for a researcher with a 

background in the biological sciences to search for their potential dual application in 

clinical settings. This is because these steps are performed. This is because of the 

fact that carrying out these steps enables one to better organise the information that 

is being gathered. This is especially true for medical implants, like metal-based hip 

prostheses, where antimicrobial drugs (like antifungals and antibiotics) or anti-

inflammatory drugs can make a big difference in preventing corrosion while the implant 
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is exposed to the harsh biological environment of the body for a long time as shown in 

figure 2.23. They can also help the body accept the implant by preventing infections 

or making them less” likely [99].  

 

 

Figure 2. 23: Tested drugs [55]. 
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2.2.1.4. Gums as corrosion inhibitors 

Plant-based “gums are made up of a combination of long-chain polysaccharide 

compounds, which are formed either naturally because of the gummosis, as a result 

of injury to the bark or stem, or as a result of microbial attack. Gummosis is the process 

by which plant-based gums are produced. The production of gums derived from plants 

takes place through a process known as gummosis. The term "gummosis" can refer 

to either the process of the decomposition of plant tissue or an injury to the bark or the 

stem of the plant. Gummosis is a term that is used in botany. Gums have a wide variety 

of applications, some of which include the preservation of food, work in the cosmetics 

and pharmaceutical industries, and work in the cosmetics industry (fungi and bacteria) 

[107]. 

 

Most of the time, oils and organic solvents will not cause them to dissolve. When other 

gums are put in contact with liquid water, the water is either absorbed by the gum, 

causing it to swell, or the gum is dispersed in the water, causing it to produce a solution 

that is jelly-like or viscous. On the other hand, when they encounter water, certain 

gums dissolve very quickly and easily. The hydrolysis of these gums results in the 

production of glucuronic acid in addition to the simple monosaccharides galactose, 

mannose, and arabinose as a byproduct [107,108]. The stem of plants, particularly 

those belonging to the families Leguminosae and Sterculiaceae, is the source of most 

gums, with only a small percentage coming from other plant parts. This is especially 

true of plants that are legumes and sterculiaceous. 

 

This is particularly true of legumes and other plants in the sterculiaceous family. This 

is especially the case with gum tragacanth, which is a substance that can be found in 

plants that are members of the legume and sterculiaceous families (roots, leaves, and 

seeds). In addition to their well-known applications in the pharmaceutical and food 

industries [109–112], gums can also be used as corrosion inhibitors for a wide variety 

of metals in a number of different environments [108], where corrosion is prevalent. 

These gums can be used in a variety of settings, including marine environments, 

chemical environments, and food environments. These gums have applications in a 
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variety of different environments, including chemical environments, food 

environments, and marine environments, among others [108]. 

 

These gums have a variety of different applications that can be used in a wide range 

of environments. These gums contain a high concentration of nitrogen and oxygen 

atoms, which can be found in the polysaccharide compounds that are found in the 

gums. Additionally, these gums contain a high concentration of carbon atoms. These 

polysaccharide compounds perform the function of adsorption centres, and as a result, 

they have the capacity to stop corrosion from occurring. In addition to this, gum-metal 

complexes will begin to form, and these complexes will work as a protective barrier 

layer to separate the surface of the metal from the corrosive environment. This will 

prevent the surface of the metal from being corroded. 

 

In addition to this, gums have a low level of toxicity, they are biodegradable, and they 

are beneficial to the environment. Gums are a natural substance that can be found in 

many plants. Gums are a naturally occurring substance that can be discovered in a 

wide variety of plant species. The utilisation of gums is a more responsible choice for 

the environment. In order to determine whether or not a variety of gums have the 

potential to act as corrosion inhibitors for aluminium and the alloys that are made of 

aluminium, a variety of gums have been tested in a variety of different solutions 

[108,113,122,114–121]. The results of these tests will determine whether a variety of 

gums have this potential. 

 

None of the three types of gums—xanthan gum, Commiphora pedunculata gum, or 

arabic gum—went through any additional purification steps before being put to use 

[114,115,117]. In the earlier studies that came before, the other gums were purified 

utilising one of two approaches [117,123] that could not be more dissimilar from one 

another. The purification processes for Raphia hookeri [113], Pachylobus edulis [116], 

and Dacroydes edulis [124] all made use of the same method, which consisted of 

dissolving the gums in an ethanol solution that contained 95% of the gums' original 



 

 

 

 

50 
 

 

 

 

concentration. This method was utilised in all three of the purification processes. This 

approach was utilised in each one of the different purification procedures. 

 

Eddy et al. [108,118,120,123], were able to successfully purify the gum by first 

dissolving it in ice-cold distilled water and then centrifuging the resulting solution to 

form a thick gel. This process was successful in removing impurities from the gum. 

Using this process, they were able to eliminate any impurities that might have been 

found in the gum. This procedure has been carried out successfully on several 

different occasions. After the addition of watered-down hydrochloric acid, the pH of the 

supernatant was brought to a state in which it had a value that was more comparable 

to that of an acidic solution. This was accomplished by lowering the concentration of 

the acid. After that, an extremely slow addition of ethanol with a concentration of 80% 

was made, and the gum that had precipitated was obtained by centrifuging the mixture. 

 

In the end, the gum was cleaned with alcohol, then it was cleaned with ether, and in 

the end, it was allowed to dry out before it was used. Before it was used, the gum was 

cleaned with alcohol, then it was cleaned with ether. The gums that were used in the 

studies that were carried out independently by Eddy et al. were purified by using the 

same method that was used to purify the gums. Traditional methods such as WL, HE, 

and thermometric testing were the only methods that were used in any of these studies 

to determine how effective the gums being evaluated were at preventing the growth of 

microorganisms. The only methods that were used to determine how effective the 

gums being tested were at inhibiting the growth of microorganisms were these 

methods (no electrochemical analysis was reported). 

 

Two of the materials that are put through the most exhaustive testing and inspection 

procedures are aluminium in its purest form as well as alloys of aluminium in the 1xxx 

series [108,115,118–120]. In each of the studies, the investigators discovered that 

increasing the gums' concentration led to an increase in the effectiveness of their 

inhibitory properties. The results of all of the studies came to the same conclusion 

regarding this finding. In each and every one of the studies that they analysed; the 
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results consistently pointed to the same conclusion. In the research carried out by 

Arukalam et al. [125], Eddy et al. [122]., Umoren et al. [113]., and Umoren, it was found 

that an increase in temperature led to an increase in the effectiveness of the inhibition, 

whereas in other studies, it was found that the opposite was true. Umoren et al., and 

Umoren were the researchers who made this discovery.  

 

According to the findings of the study that Eddy et al. [118] conducted, the progression 

of the change in inhibition effectiveness for Ficus tricopoda gum followed an 

unpredictable pattern as the temperature increased. However, the authors found that 

the effectiveness of the inhibition increased with an increase in temperature for higher 

gum concentrations. This was the case even though the gum concentrations remained 

the same. This was the case despite the consistency of the gum concentrations 

remaining unchanged. They discovered that the effectiveness of the inhibition 

decreased when the temperature was elevated for concentrations of up to 0.3 g. L-1 

gum added; however, they discovered that the effectiveness of the inhibition increased 

when the temperature was elevated for higher gum concentrations. 

 

For gum addition concentrations up to 0.3 g. L-1, the efficiency of the inhibition reduced 

with increasing temperature, as reported by Eddy et al. [122]. The effectiveness of 

xanthan gum as a corrosion inhibitor of 98.08 percent aluminium alloy in a 0.5 M HCl 

solution at temperatures between 28 oC and 60 oC was published by Arukalam et al. 

[125]. Their studies centred on how well the gum worked as a heat-resistant corrosion 

inhibitor for the metal. Their primary focus was on learning if the gum worked as a 

corrosion inhibitor. They concluded that the process of inhibition occurs because 

protonated and molecular species can adsorb on the cathodic and anodic sites of the 

corroding metal surface. 

 

As a result of these findings, they concluded that inhibition is a real phenomenon. In 

the experiments that Umoren [124] and Ebenso [114] carried out, they found that the 

exudate gum of Raphia hookeri was effective as a corrosion inhibitor for aluminium. 

This was one of the discoveries that came about because of the experiments. They 
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came to this realisation because of their investigation (the composition of the 

experiment was not given). To verify the accuracy of the method, tests were carried 

out at temperatures ranging from 30-60 oC using solutions of 0.1 M and 2. 0 M HCl. 

The findings substantiated the validity of the methodology. According to the authors, 

the exudate gum produced by Raphia hookeri is composed of D-mannopyranose and 

D-galactopyranose, both of which are connected to one another. The authors have 

been very generous in providing us with this information. 

 

The findings that were presented by the authors [113,126] indicated that the addition 

of potassium halides led to an even more significant increase in the effectiveness of 

the inhibition (KI, KCl, and KBr). It was discovered that the synergistic effect of the 

halides decreases as one moves from iodine to bromine to chlorine. This was a finding 

that came about because of the research that was conducted. The authors of the study 

held the belief that the order could be explained by the fact that the radii of the halide 

ions and the electronegativity of the halide ions both played a role in the process of 

adsorption. Specifically, they believed that the order could be explained by the fact 

that the radii of the halide ions were greater than the electronegativity of the halide 

ions. They were, however, unable to provide any evidence to back up this hypothesis 

in any way. They thought that the order could be explained by the fact that the radii of 

the halide ions were increasing from lowest to highest. This was the order in which the 

radii were found. In a separate piece of research, Umoren et al. [127] compared the 

efficacy of the exudate gums from Raphia hookeri and Pachylobus edulis in inhibiting 

the corrosion of AA1060 aluminium alloy (98.5% purity) in 0.1 M and 2. 0 M HCl 

solutions at temperatures ranging from 30-60 oC. They found that the exudate gums 

from Raphia hookeri were more effective than the exudate gums from Pachy. They 

discovered that the gums obtained from Raphia hookeri were significantly more 

effective than those obtained from Pachylobus edulis. They made the discovery that 

the exudate gums from the Raphia hookeri species were significantly more effective 

at inhibiting corrosion than the exudate gums from the other Raphia species. 
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The findings of the study indicate that Raphia hookeri performs its role as an inhibitor 

in a manner that is more efficient than that of Pachylobus edulis does. In solutions of 

1. 0 M and 2. 0 M NaOH, at temperatures of 30-40 oC, Umoren et al. [124], investigated 

the efficacy of gum arabic as a corrosion inhibitor for AA1060 aluminium alloy. The 

results of the research were positive. According to the findings conducted by Umoren 

et al. [113], gum arabic was successful in both concentrations. They were taken aback 

by the results of their investigation, which showed that gum arabic had a significant 

inhibitory effect. The scientists who conducted the research and wrote up the study 

are of the opinion that the ability of this gum to prevent corrosion is due to the 

adsorption of its primary constituents on the surface of the aluminium alloy. 

 

This substance contained a variety of primary constituents, some of which were 

glucoproteins, arabinoglactan, oligosaccharides, and polysaccharides. Umoren [127] 

carried out a series of experiments to evaluate the efficacy of gum arabic as a 

corrosion inhibitor. The tests were carried out with the same aluminium alloy and 

temperatures in solutions that contained lower concentrations of sodium hydroxide 

(i.e., 0.1 M NaOH). Based on the findings of the study, gum arabic was found to be an 

effective substance in inhibiting corrosion. The author discovered that the variation in 

the efficacy of the inhibition with gum concentration and temperature followed the 

same pattern as what was discovered in the earlier work. This pattern was found to be 

true. The author is credited with discovering this pattern. The addition of 0.5 M KI led 

to an increase in gum arabic's already remarkable capacity to inhibit the growth of KI, 

which ultimately led to an improvement in gum arabic's capacity. This resulted in an 

increase in gum arabic's ability to inhibit the growth of KI. Umoren [127] conducted 

experiments to determine whether or not gum arabic had the potential to be used as 

a corrosion inhibitor for the same aluminium alloy. The gum arabic was heated to 

temperatures ranging from 30-60 oC and then immersed in a solution of 0.1 M H2SO4. 

 

 

According to Umoren's [127] research, gum arabic exhibited positive characteristics in 

this regard. The gum arabic was being evaluated for its quality at various points 



 

 

 

 

54 
 

 

 

 

throughout the course of the investigation. In contrast to what was stated about 

alkaline solutions, it was discovered that the effectiveness of the inhibition decreased 

as the temperature increased. This was the case even though the temperature was 

not a factor in the initial discovery. This was the case even though the temperature 

was not a variable in the experiment that was initially conducted. The investigation that 

Ameh [117] and Eddy [118] commissioned the former to carry out found that the 

exudate gum from Commiphora pedunculata was effective as a corrosion inhibitor for 

AA3001 aluminium alloy when used in a solution of 0.1 M HCl at temperatures of 30-

60 oC. 

 

Ameh tested the efficacy of Commiphora kestingii gum exudate as a corrosion inhibitor 

for 96.65% aluminium alloy in 0.1 M H2SO4 solution at 30-60 oC. The data 

demonstrated the efficacy of the gum exudate. He found that the gum exudate worked 

just as well in cool temperatures as it did in hot ones. Besides octadecanoic acid, alpha 

camphorenal, nerolidolisobutyrate, diisopropenyl-1-methyl-1-vinyl cyclohexane, and 

abetic acid, the author says that this gum also included a significant amount of 

sucrose”. In addition, all of these parts and pieces were physically present. Based on 

the discovery that the efficacy of the inhibition varied with temperature, the scientists 

concluded that chemisorption might be a potential adsorption mechanism for 

Commiphora kestingii gum exudate. So, they were able to deduce that chemisorption 

is a potential adsorption process for Commiphora kestingii gum exudate. 

 

Due to this, the authors were able to arrive at the conclusion that chemisorption is a 

mechanism that has the potential to be used for the adsorption of Commiphora 

kestingii gum exudate. To put it another way, the authors arrived at their conclusion 

by basing it on the observation that the temperature influenced how effectively the 

inhibition performed. To put it another way, the authors found that the temperature 

influenced how effectively the inhibition worked. In an earlier piece of research, 

Umoren et al. [113], made the hypothesis that the adsorption of gum arabic on the 

surface of AA1060 aluminium alloy in NaOH solution would occur using the same 

mechanism. This hypothesis was tested and found to be correct. 
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Eddy et al. [122], conducted an experiment at temperatures of 30-60 oC to determine 

the efficacy of using Ficus tricopoda gum as a corrosion inhibitor for a 96.65% 

aluminium alloy that was dissolved in 0.1 M H2SO4 solution. The result of the 

experiment was to determine whether the gum was effective in preventing corrosion. 

The purpose of the experiment was to determine whether the utilisation of this gum 

produces the desired results. Camphene, sucrose, 2-methylene cholestan-3-ol, and 

7-hexadecenal are some of the components that the gum is said to be made up of, at 

least according to the authors of the study that was carried out on the gum. The study 

was carried out to investigate the gum. It has been determined that the gum contains 

these constituents in its composition. 

 

The findings of the authors indicate that the adsorption of Ficus tricopoda gum was 

endothermic up to 0.3 g. L-1 but exothermic at higher gum concentrations. This was 

the case regardless of the initial gum concentration. This was true even though the 

gum concentration at the beginning varied. Futhermore, the same group investigated 

the efficacy of Ficus thonningii gum as a corrosion inhibitor for 96.65% aluminium alloy 

in 0.1 M H2SO4 solution at both 30-60 oC. The gum was tested at both temperatures. 

Both temperatures were evaluated for their effect on the gum. The researchers  [113] 

concluded that inhibition effiency was not affected by the temperature at any point. By 

employing a technique known as gas chromatography-mass spectrometry, the 

researchers were able to determine that the primary components of this gum include, 

among other things, 16-methyl-octadecanoic acid, abietic acid, n-hexadecanoic acid, 

and andrographolide (GCMS). 

 

The researchers were able to use this information to determine the composition of the 

gum. Eddy et al., tested the effectiveness of Ficus benjamina gum as a corrosion 

inhibitor for 96.65% aluminium alloy in 0.1 M H2SO4 solution at temperatures of 30 and 

60 oC as the final step of their experiment. During this experiment, the anti-corrosion 

qualities of the gum were investigated in detail and analysed. According to the authors 

[119], the majority of the gum is composed of the two sugars sucrose and D-glucose, 
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while the gum also contains a variety of carboxylic acids in smaller amounts. In 

addition, the authors state that the gum contains no protein or fat. Additionally, the 

gum has a flavouring component in it. These carboxylic acids include hexadecanoic 

acid, octadedecanoic acid, and 6, 13-pentacenequinone. From this study it was 

concluded that inhibition action of Ficus Benjamina gum, gum arabic and Commiphora 

kestingii gum is brought on by multiple-layer adsorption brought about by the various 

components of the gum itself [118]. The general mechanism as mentioned above is 

common to both types of gums.  

 

Ameh postulated that the very same mechanism might be at work when gum arabic 

was considered.  Umoren et al. [113], conducted a series of tests in order to evaluate 

the efficacy of Dacroydes edulis exudate gum as a corrosion inhibitor for AA1060 

aluminium alloy in a 2. 0 M HCl solution at temperatures ranging from 30-60 oC. The 

purpose of the tests was to determine whether the gum was effective in preventing 

corrosion. Although the authors of the study suggested physisorption as a potential 

mechanism for this gum, based on the thermodynamic calculations, there was no 

specific indication given as to which of the gum components adsorbed on the surface 

of the aluminium. From these results, it was ascertained that physisorption is the best 

mechanism for this type of corrosion inhibition. 

 

The critical take home message about the physisorption pathway has not been 

convincely dealt with. This then led to the plausible explanation about the conclusion 

thereof, more about the physisorption mechanism. This is something that needs to be 

dealt with in depth, in order to remove any doubt about this conclusion. It was 

hypothesised that the gums Raphia hookeri gum, Pachylobus edulis gum, 

Commiphora pedunculata gum, Ficus benjamina gum, Ficus thonningii gum, and gum 

arabic all used the same mechanism known as physisorption when exposed to an 

acidic solution. Several tests were carried out in order to investigate this hypothesis 

which conclusively proved that physisorption is the main mechanism of interest. 

Additionally, gum arabic yielded the same results making it a very ideal alternative. 
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Exudate gum from Gloriosa superba, which has a pH of 2, was tested by Eddy et al. 

[118], at temperatures of 30 and 60 oC to determine whether or not it is effective as a 

corrosion inhibitor for 96.65% aluminium alloy in 0.1 M HCl solution. The results of 

these tests showed that the exudate gum is effective. According to the findings, the 

gum had a beneficial effect. The authors [118] made the discovery that using the gum 

as a form of protection against corrosion worked effectively, which led to the 

conclusion that this method should be used more often. The results of a GC-MS 

analysis show that 1-piperoylp, 1-penta-decarborxylic acid, 9-octadecenoic acid, and 

stigmasta-5, 22-dien-3-ol are the primary components of the gum that is produced by 

the Gloriosa superba plant. Quantum chemical research and the relative calculations 

has revealed that the adsorption of this gum is caused by the presence of an amide 

group in stigmasta-5, 22-dien-3-ol and a hydroxyl group in 1-piperoylp. Both groups 

contribute to the structure of stigmasta-5, 22-dien-3-ol. The structure of stigmasta-5, 

22-dien-3-ol includes contributions from both groups. These two groups, individually 

and collectively, contribute something to the gum's overall structure. The stigmasta-5, 

22-dien-3-ol molecule contains trace amounts of both groups. A mechanism for the 

adsorption of Gloriosa superba gum onto the surface of aluminium that was of the 

mixed-type variety was proposed by the authors [118]. The thermodynamic 

calculations that were performed served as the foundation for this mechanism 

(physisorption and chemisorption). A mixed-type adsorption mechanism was also 

proposed for both the Ficus tricopoda gum and the gum arabic adsorption 

mechanisms when they were applied to the AA1060 aluminium alloy in NaOH 

solutions. This mechanism was applied to the adsorption of both” gums. 

 

2.2.1.5. Natural oils as corrosion inhibitors 

Essential “oils are highly concentrated hydrophobic liquids that contain monoterpene 

and sesquiterpene hydrocarbons in addition to oxygenated compounds. They are also 

known as volatile oils or ethereal oils. These will include compounds such as alcohols, 

aldehydes, ketones, acids, phenols, oxides, lactones, ethers, and esters”. They are 

oxygenated compounds which give essential oils their unique flavours, colours and 

aromas. Aromatherapy is a holistic healing treatment that uses natural plant extracts 
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to promote health and well-being, this exploits the chemical properties of essential oils 

as a healing treatment. Some use essential oils for massaging and relaxation to treat 

fatigue and stress. Most of essential oils are used in perfumes or air fresherners. 

Avocado extraction of essential oil in addition, a mechanical extraction is utilised for 

recovering oil from ripe avocados, with the supplementary step for removing both the 

skin and seed. This is because most flowers do not contain enough oil that is volatile 

to be expressed, and because the chemical components of flowers are too delicate 

and easily denatured by the high heat used in steam distillation [128], a solvent such 

as hexane or SC-CO2 is used to extract the oils from the crude plant material.  

 

In recent years, the supercritical fluid extraction (SFE) method of extracting essential 

oil components has garnered a lot of interest, particularly in the food, pharmaceutical, 

and cosmetics industries. This is because the SFE method is a more environmentally 

friendly alternative to traditional methods such as organic solvent extraction and steam 

distillation. A lot of people are interested in the process of extracting essential oil 

components using SFE because it uses safer and less harmful solvents than 

traditional methods, and these solvents are also easier to remove or recover. This is 

one of the reasons why the process has garnered so much interest.  

 

Essential oils are suitable for use as corrosion inhibitors for a variety of metals in 

several different environments. This is because essential oils contain the components 

described in earlier discussion within this document, and because essential oils have 

a low toxicity level and are readily available. It is this particular chemical character that 

they are appropriate to be used as corrosion inhibitors [105,129–131]. However, 

research on the effectiveness of various oils as corrosion inhibitors for aluminium and 

its alloys [55,132–134] has only been conducted on a small subset of these oils. Most 

of the studies have been performed using acidic solutions as the medium for the 

experiments. This has been the case for almost all the studies. In solutions containing 

3% sodium chloride, the essential oils of Lavandula angustifolia L. and Laurus nobilis 

L. prevented the corrosion of AA5754 aluminium alloy and aluminium, respectively. 

On the other hand, Fayomi [134] and Popoola [132] found that green roasted Elaeis 
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guineensis oil successfully inhibited the corrosion of AA6063 aluminium alloy when it 

was exposed to a 3.5% sodium chloride solution [55,132]. 

 

The purest form of aluminium as well as various alloys of aluminium drawn from the 

5xxx and 6xxx series were both put to the test and included among the materials that 

were analysed for their performance. When it came to the other naturally occurring 

compounds, it was found out that the efficiency of the inhibition is directly proportional 

to the concentration of all oils that were investigated. This was the case regardless of 

which naturally occurring compounds that were being studied. From their research 

work, Halambek et al. [133], investigated the effect of temperature on the efficacy of 

the inhibition provided by three oils that had been dissolved in ethanol at a 

concentration of 30 vol%. Their research showed that increasing the temperature led 

to an increasing in the effectiveness of the inhibition to a greater degree. 

 

The ability of the essential oil of Ocimum basilicum L to act as a corrosion inhibitor for 

99.85% aluminium in a solution of 0.5 M HCl was investigated by Halambek et al. 

[135], at temperatures ranging from 30-85 oC. The researchers found that the essential 

oil of Ocimum basilicum L had inhibitory effect to a great extend. However, there is an 

optimum temperature beyond which the efficacy is nullified. The temperature beyond 

the optimum one degrades polyphenols, particularly when they are exposed for a 

greater amount of time. In this instance, it is evidence that temperatures lower than 

the “degradation temperature” would be preferred. On the other hand, deterioration 

does not take place instantly; as a result, it is possible that a shorter exposure time is 

not as dangerous as a longer one. According to the researchers [55] of the study, 

linalool is the component of the oil that has the highest concentration. Eugenol, 1, 8-

cineole, and geraniol come in descending order of concentration, following linalool. 

 

In a solution of 1. 0 M hydrochloric acid, Halambek and Berkovi'c [135] conducted an 

experiment with temperatures ranging from 25-75 oC to determine whether or not the 

oil that was extracted from the plant Anethum graveolens L. was effective as a 

corrosion inhibitor for 99.85% aluminium. The experiment was carried out at 
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temperatures ranging from 25-75 oC (this upper temperature limit might also contribute 

to the degradation of these compounds, as discussed earlier). According to what was 

reported by the authors [135], the primary components of the oil are said to be 

limonene and carvone. The effectiveness of the oil that was extracted from the 

Lavandula angustifolia L plant as a corrosion inhibitor for Al–3Mg (95.5% Al) in a 

solution that contained 3% NaCl was investigated in an experiment that was carried 

out by Halambek et al. [133], at temperatures ranging from 25-60 oC.  

 

According to the findings of the researchers, the primary components of the oil that 

was extracted from Lavandula angustifolia L were found to be linalyl acetate and 

linaalool. This information was gleaned from the study of the essential oil. The 

researchers of each of the three studies found that an increase in temperature resulted 

in a decrease in the effectiveness of the inhibition provided by the various oils. This 

was the case even though the studies were carried out at different temperatures. The 

process of decomposition might have to do with the decline in effectiveness that are 

being observed. The researchers Halambek et al. concluded that this behaviour could 

be explained by the inhibitor molecules desorbing from their positions as a result of 

the higher temperature. 

 

Popoola et al. [132], and Abdulwahab et al. [132], conducted research to investigate 

how the presence of a corrosive environment affected the efficacy of inhibition 

provided by two different oils. The oils in question were olive oil and castor oil. In 

solutions containing 2. 0 M HCl and 2. 0 M HNO3, the first group of authors investigated 

the efficacy of Arachis hypogeae natural oil as a corrosion inhibitor for 99.01% 

aluminium at a temperature of 25 oC. Above-mentioned authors conducted their tests 

in aqueous solutions. Using the natural oil from Arachis hypogeae, the solutions were 

evaluated to determine how effective they were at preventing corrosion. In their review 

article, the researchers Capuzzo et al. [128], described a method for SFE and the 

identification of volatile flavour components in roasted peanuts (Arachis hypogaea). 
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A group of compounds include hexanol, hexanal, methylpyrrole, benzene 

acetaldehyde, methylpyrazine, 2, 6-dimethylpyrazine, ethylpyrazine, 2, 3-

dimethylpyrazine, 2, 3, 5-trimethylpyrazine, 2-furancarboxaldehyde, and 2-ethyl-5-

trimethylpyrazine. Popoola et al. [132], discovered that the natural oil of Arachis 

hypogeae was an inhibitor that was more effective in HNO3 solution than it was in HCl 

solution. The ability of ricinus communis oil to act as a corrosion inhibitor for a 99.01% 

aluminium alloy was evaluated by Abdulwahab et al. [132], using solutions of HCl and 

H3PO4 at a concentration of 2 millimolar. The experiment was conducted at a 

temperature of 25 oC. 

 

Hexane was used as the solvent throughout the entire process, as stated in the 

Danlami et al. [136], report, which states that the Soxhlet method was utilised in order 

to extract this oil. According to what was found, the oil had a quantity that was rich in 

unsaturated fatty acids (rich in ricinoleic acid), followed by a quantity that had saturated 

fatty acids at a level that was only marginally higher than the unsaturated level 

(palmitic, stearic, linoleic, linolineic, and dihydroxylstearic acids). According to the 

findings of the study that Abdulwahab et al. [137], carried out, they found that the 

performance of the oil in either of the two acid solutions did not significantly differ from 

one another.  

 

According to what has been reported, electrochemical techniques such as PDP, Rp, 

and EIS have been used in conjunction with the conventional WL technique in order 

to evaluate not only the effectiveness of the oils as corrosion inhibitors but also to 

Figure out how much influence the oils have on the reactions that lead to corrosion. 

This was done in order to evaluate not only the effectiveness of the oils as corrosion 

inhibitors but also to Figure out how much influence the oils have on the reactions that 

lead to corrosion. The purpose of this was to determine how much of an influence the 

oils have. 

 

Based on the PDP readings, the scientists concluded that both the Arachis hypogeae 

oil and the green-roasted Elaeis guineensis oil operated as mixed-type corrosion 
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inhibitors for the various forms of aluminium. These two oils originated in the seeds of 

the Arachis hypogeae plant. Next, it was reported by Halambek et al., [133] that oils 

from Ocimum basilicum L., Anethum graveolens L., Laurus nobilis L., and Lavandula 

angustifolia L. all served as cathodic-type corrosion inhibitors. Results from an 

experiment by Halambek et al. [133] investigated the effectiveness of an ethanol 

solution of laurel oil as a corrosion inhibitor for 99.85% aluminium and AA5754 

aluminium alloy in 1% acetic acid solution at 25 oC. Above-mentioned authors did this 

testing in order to determine whether the laurel oil inhibited the corrosion of the 

materials.  

 

The effectiveness of the solution was evaluated while both unrefined aluminium and 

the alloy were present. Capuzzo [128] discovered that supercritical carbon dioxide 

extraction (SC-CO2) was an effective method for isolating volatile and xed oils from 

dried berries of L. nobilis. The aim of this technique was to isolate volatile and xed oils. 

The extracts contained a sizeable amount of the volatile fraction, which was primarily 

made up of (E)-b-ocimene, 1, 8-cineole, a-pinene, b-pinene, blongipinene, linalyl 

acetate, d-cadinene, a-terpinyl acetate, and a-bulnesene. The volatile fraction also 

contained a-bulnesene. In addition, a considerable amount of a-bulnesen was found 

in the extracts. According to the findings of the authors, an ethanol solution of laurel 

oil protects the AA5754 aluminium alloy more effectively (has a higher inhibition 

effectiveness) than 99.85% pure aluminium does.  

 

When compared, the two compounds proved to be very different. The ethanol solution 

of laurel oil inhibited the corrosion of 99.85% aluminium in the same way that it inhibits 

the corrosion of AA5754 aluminium alloy, but in a different way. This was confirmed 

by the PDP's measurements. The authors offered many potential pathways that could 

explain the inhibitory action of the oils that were evaluated. These mechanisms may 

be at work to account for the suppressive effect. Based on their thermodynamic 

calculations, Halambek et al. [133], determined that the adsorption of the ethanol 

solution of laurel oil on the surface occurred via a mixed-type process. A protective 

layer is produced on the surface of the aluminium and alloy as a direct result of this 
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process. According to the findings of Halembek et al. [133], the primary component of 

Laurus nobilis L. oil, 1, 8-cineole, has the potential to adsorb via the lone pair electrons 

present in oxygen atoms. The protective layer (film) that is already there will have this 

added on top of it. Linalool, which is the primary component of Ocimum basilicum L. 

oil and originates from the basil plant, was found to be responsible for the inhibitory 

effect that the oil of Ocimum basilicum L. possesses. The latter, in addition to 

protonating in an acid solution, possesses within its structure OH groups and double 

bonds, both of which are likely candidates for adsorption centres. Additionally, the 

structure protonates in an acid solution. 

 

In addition to that, there are double bonds present in the structure. The hypothesis put 

forth by the researchers who carried out the study was that the inhibitory effect of the 

oil was exerted on the process in a series of two discrete stages. The initial step in the 

reaction is the adsorption of positively charged chloride ions onto the positively 

charged metal surface via electrostatic forces. The initially positively charged metal 

surface ends up with a negative net charge because of this stage of the reaction, which 

is the consequence of the initial stage of the reaction. During the second stage of the 

process, the protonated linalool had an electrostatic interaction with the negatively 

charged surface. Because of this, a protective layer formed on the surface of the 

aluminium as a byproduct of the process. This occurred because the aluminium was 

heated. 

 

The authors formed the hypothesis that the active components of the oil physisorbed 

on the surface of the aluminium based on the findings of the thermodynamic 

experiment. This hypothesis was supported by the results of the experiment. 

Halambek  and Berkovi'c [135] came up with a mechanism for the adsorption of oil 

from Anethum graveolens L. onto the surface of aluminium that was of the mixed type 

and was very similar to the mechanism that was described above. Halambek and 

Berkovi'c [135] are the ones responsible for developing this mechanism. The authors 

claim that chemisorption can occur in one of two ways: either by the electrons of the 

aromatic ring forming donor-acceptor bonds with the p-orbitals of the aluminium, or by 



 

 

 

 

64 
 

 

 

 

the displacement of water molecules from the surface of the aluminium and the sharing 

of electrons between the oxygen atoms and the aluminium. 

 

The exchange of electrons is a central component of both mechanisms. Because 

chloride ions are present, there is a possibility that physisorption will occur between 

protonated species and the negatively charged surface of the aluminium. This will 

cause the protonated species to take on the charge of the aluminium. An experiment 

was carried out by Fayomi [132] and Popoola [132] at a temperature of 30 oC to 

investigate the efficacy of using green roasted Elaeis guineensis oil as a corrosion 

inhibitor for AA6063 aluminium alloy. The experiment was carried out in order to find 

out more information regarding this topic. The amount of sodium chloride present in 

the solution was 3.5% of its total volume. Carotene, vitamin E, sterols, and squalene 

were found to be the most abundant components of the oil that was obtained from 

Elaeis guineensis by using the SC-CO2 extraction method. This was demonstrated in 

the introduction. Squalene was also found to be present in significant amounts. 

 

The oil was still able to provide an adequate level of protection even after being 

submerged for a total of 216 hours (between 68% and 78%). Based on the data, it can 

be concluded that the inhibitory action of this oil is due to the adsorption of 

surfaceactive chemicals and oxide on the surface of the aluminium, which changes 

the wettability and the interface. It was also shown that the adsorption of surfaceactive 

chemicals and oxide on the surface of the aluminium was responsible for the inhibitory 

activity of this oil. 

 

In addition to the primary groups of eco-friendly inhibitors that were discussed earlier, 

a small number of naturally occurring substances have also been investigated for their 

potential to prevent corrosion of aluminium in alkaline and chloride-containing 

solutions. This work was done in addition to the primary groups of eco-friendly 

inhibitors that were discussed earlier. The findings of these studies have demonstrated 

that the naturally occurring substances do not possess the capability to prevent 

corrosion in each environment. It was discovered that increasing the product 
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concentration led to an increase in the effectiveness of inhibition for each of the natural 

products that were tested. This was true for all the natural products that were 

examined. 

 

The findings of an investigation that was carried out by Rosliza et al. [55], into the 

potential of natural honey to act as a corrosion inhibitor for an aluminum–magnesium–

silicon alloy (97.36% aluminium) in seawater at 25 oC are presented here. The 

investigation was carried out in order to determine whether natural honey can prevent 

corrosion of the alloy. Gudi'c et al., evaluated the effectiveness of five different types 

of honey as corrosion inhibitors for AA5052 aluminium alloy in 0.5 M NaCl solution at 

20 oC. These honeys were extracted from oak trees (H1), coniferous honeydew trees 

(H2), winter savoury trees (H3), alder buckthorn trees (H4), and carob trees (H5). Oak 

honey (H1) was found to be the most effective corrosion inhibitor, it was discovered 

that oak honey (H1) is the most effective corrosion inhibitor so far. 

 

The honey that was collected from oak trees had the highest level of inhibition, 

followed by the honey that was collected from coniferous honeydew trees. The 

effectiveness of the inhibition gradually decreased from H3 to H5 to H4 to H2 to H1 

respectively as it moved down the list. When PDP measurements were carried out on 

different kinds of honey, it was discovered that all the honey acted as a mixed-type 

inhibitor. This was the case in both studies. On the other hand, Gudi'c and his 

coworkers discovered that the anodic reaction was primarily influenced by each of the 

various kinds of honey that were put to the test. This was an important finding as the 

inhibition action brought on by the various types of honey was due to the formation of 

a surface layer “a thin film” on the surface of the aluminium materials, which prevented 

further attack on the aluminium.  

 

The thermodynamic calculations that were carried out by both teams of researchers 

indicated that physisorption was a candidate for the role of adsorption mechanism for 

each of the different kinds of honey that were researched. After boiling animal 

connective tissue for a considerable amount of time, Abdallah et al. [138], tested the 
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glue that they obtained as a corrosion inhibitor for aluminium and aluminium alloys 

containing AA6063 and 20556 (92.47% aluminium) at a temperature of 30 oC using a 

0.1 M solution of sodium hydroxide. The tests were performed at a concentration of 

0.1 M. The results showed that the glue was effective in inhibiting the corrosion of 

aluminium and aluminium alloys. A concentration of 0.1 M was used for all the tests 

that were carried out. The findings of the tests indicated that the adhesive was effective 

in protecting aluminium and aluminium alloys from corrosion. 

 

The effectiveness of the inhibition decreased in proportion to the increasing silica 

content, and the progression followed the order aluminium > AA6063 alloy > 20556 

alloy. It was demonstrated that the efficiency of the inhibition would decrease in a 

manner that was directly proportional to the rate at which the temperature would rise. 

The results of the PDP tests suggested that the animal glue exhibited properties that 

were comparable to those of a mixed-type inhibitor. In their hypothesis, the authors of 

the study hypothesised that the adsorption of animal glue on the surface of materials 

made of aluminium is caused by the substitution of water molecules for those that are 

already present” there.  

 

CONCLUSION 

From “the cited studies, it has been well established that natural products do serve as 

important corrosion inhibitors. This is much more pronounced when taking into con 

sideration the different parameters required for each. This opened a new research 

avenue into compounds that are environmentally friendly. It opened the possibility of 

several potential research niche, one of which is into corrosion inhibitors. However, for 

these inhibitors to be utilised in actual industrial applications, several factors must first 

be taken into consideration. This is necessary in order to proceed with this important 

research which highlights its contribution to environmental care and rehabilitation. It is 

essential to engage in this type of research that aligns with green chemistry and all 

documented benefits. 
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Due to the fact that a higher percentage of the reviewed literature gave very little 

attention to the tests of these extracted compounds [132]. These opened avenues for 

future research meant to evaluate their efficiency. On the other hand, given that the 

extracts were taken from the plant based. Since they are of natural origin that are not 

tempered with, there is a great potential that they do not pose any kind of health risk 

in any way. Some of them have already been put to test in the application of various 

substances and it was confirmed that they indeed do not pose or contaminate fauna 

and the immediate natural environment respectively. This was done in order to ensure 

that they were safe to use in the applications that were being considered.  

 

This is also true for the medications that were discussed, as each one has been shown 

to be safe through clinical testing and is, in fact, still being utilised in pharmacotherapy 

procedures that involve human patients at the present time. On the other hand, the 

latter facts simply cannot be contested, even though it is self-evident that the actual 

dose of exposure or intake is an essential component to take into consideration. In 

addition, as was demonstrated in the review article [99], the body of knowledge derived 

from the research concerning the use of pharmaceuticals as corrosion inhibitors for 

aluminium and its alloys is very limited. In this manner it is quite evident that there is 

still room for further research, mybe even escalate it to a critical research niche. 

 

Utilising the German WGK (Wassergefahrdungsklassen) classification is one method 

that can be utilised to quickly determine whether a substance is safe for the 

environment. The overwhelming majority of chemical manufacturers and distributors 

have ease of access to the data that is associated with this classification. Depending 

on their toxicity, chemicals are placed into one of three categories under the national 

German VwVwS regulation: WGK 1, WGK 2, and WGK 3. Where WGK 1 is the least 

toxic and WGK 3 as the highest toxic with reference to water.  

 

This procedure is carried out in order to ensure that all requirements of the national 

German VwVwS regulation are met. There is not much of a threat to people's health 

posed by the WGK 1 classification, which is the one that is regarded as being the 
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safest all around. The LC50 and EC50 categories, also known as the lethal or effective 

concentrations in 50% of the tested subjects, respectively, provide an additional 

method for determining toxicity. LC50 and EC50 are abbreviated from "lethal 

concentration" and "effective concentration," respectively. Within each of these 

categories, the chemicals are ordered from the most toxic to the least toxic to the 

almost entirely non-toxic in descending order. 

 

In the South African context, they are still designing guidelines for quantifying 

contaminants emanating from corrosion inhibitors. For the moment we are all guided 

by National Environmental Management Act No. 107 of 1998. 29 January 1999 

(NEMA). It is of high priority that a scaling system the same as the WGK one will be 

designed and effected in South Africa. 

 

The ability of a substance to biodegrade is typically evaluated based on the 

percentage of that substance's components that are still detectable in the environment 

after a period of time equal to or equal to twenty-eight days [139]. This evaluation is 

done to determine whether the substance can be considered to have biodegraded. 

Another factor that plays a role in determining the rate at which bioaccumulation takes 

place is referred to as the partition coefficient, and it is denoted by the symbol Po/w 

(partition between 1-octanol and water). If the compound in question has a high 

partition coefficient, then there is a greater possibility that it will be bioaccumulated in 

living organisms. In this field it was established that despite many research ventures 

concerning corrosion inhibition of this type has not been fully investigated, there is 

therefore a wide gap that needs to be attended to through a holistic approach. There 

is therefore most compounds that have not been reported on.  

 

Prior to testing an extract's ability to inhibit corrosion effectively, it would be beneficial 

to separate and analyse the extract's individual components using methods such as 

high-performance liquid chromatography mass spectrometry (HPLC-MS) or gas 

chromatography mass spectrometry (GC-MS). With these components isolated it 

becomes evident which ones are responsible for the corrosion inhibitory effect.  
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This confluence of factors such as extended periods of time and high temperatures 

has the potential to produce a wide range of complications. Due to these issues, there 

is an urgent need to encourage the development and implementation of alternative 

extraction methods that do not call for harsh processing conditions such as high 

temperatures during the manufacturing process or potentially hazardous organic 

solvents. The extraction method is carefully chosen to yield the ideal component that 

specifically display the highest inhibition of metal corrosion. These methods should be 

developed and implemented as quickly as possible.  

 

The fulfilment of this prerequisite is a precondition to be attained before an essential 

requirement can be satisfied. A method known as the supercritical fluid extraction 

method is an alternative to the extraction techniques that have been summarised in 

the review. This method is one of the alternatives that can be used. It enables the 

separation of naturally occurring compounds from natural materials in a selective 

manner at temperatures that are more manageable. Considering the studies that have 

been carried out and reported on the use of pharmaceuticals belonging to a variety of 

pharmacotherapeutic groups as aluminium corrosion inhibitors, there are a few 

aspects that need to be clarified more thoroughly before this field can be given the 

recognition that it justifiably deserves.  

 

These aspects include antimicrobial drugs, which are antibacterial and antifungal 

drugs, have the highest potential out of all the different types of drugs that have been 

tested as potential corrosion inhibitors for aluminium. Out of all the different types of 

drugs that have been tested, antimicrobial drugs have the highest potential as 

corrosion inhibitors for aluminium. Yet it depends where they are going to be used 

whether the antimicrobial activities are concerned or not. Since there are a great many 

questions about the mechanism by which these compounds inhibit corrosion that are 

still unanswered, it is necessary for the interaction that these compounds have with 

aluminium on the molecular level to be investigated in greater depth. Before the use 

of these drugs can become more prevalent, there is an urgent need to carry out an in-
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depth investigation into the ways in which the effectiveness with which they prevent 

corrosion is affected by a variety of physicochemical factors including temperature, pH 

level, ionic concentration, and other factors of a similar nature. There is a need to think 

about the quantity that is used (which is typically quite a lot when one takes into 

consideration the fact that large metallic surfaces need to be protected against 

corrosion), in addition to the potential effects that this could have on the environment 

that is all around us. 

 

In addition, as Gece has already pointed out, not all pharmaceuticals are easily 

biodegradable, and the byproducts of their transformation may be just as hazardous 

to the environment [139]. Due to this, additional research needs to be carried out 

before corrosion inhibitors of this kind can be regarded as being friendly to the 

environment. Despite this, we are confident that Gece’s review has the potential to be 

of significant assistance in the process of finding potential candidates for subsequent 

tests, which are very expensive (e.g., biodegradability, toxicity, and bioaccumulation). 

 

On the other hand, when one considers the possible applications of aluminium and 

the alloys of aluminium in the field of medicine (for instance, orthopaedic implants), 

drugs that inhibit corrosion appear to have an even greater appeal. As a result of this, 

the additional testing that is required to address the issues that have not yet been 

resolved will most likely be carried out rather quickly as opposed to being postponed 

until a later date. This is because this will most likely address the concerns that have 

not yet been resolved. 

 

Most of the studies fail to mention the procedure that was followed in order to extract 

the natural oils from the plant material. Utilising high-pressure extraction with 

supercritical fluids is one of the simplest and most effective methods for removing 

these oils from plant materials at lower temperatures. Because this method reduces 

the amount of damage caused by heat and does not require the application of any 

potentially harmful solvents, it is one of the most useful and effective methods that can 

be used. When it comes to choosing solvents, SC-CO2 is by far the option that is used 
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the most. This is because it possesses a high solvent power and can easily penetrate 

plant material.  

 

One of SC-major CO2's limitations is that it can only be used to treat dry raw materials 

and compounds with low polarity and low molecular weight. Co-solvents and other 

supercritical fluids as potential alternatives, such as propane, argon, or SF6, could be 

used to get around these limitations if they were to be implemented. For example, 

propane is a supercritical fluid, whereas argon and SF6 are not. In the process of 

modifying the polarity of the solvent, water, which is the most common and 

inexpensive solvent, can be used as an additional alternative solvent or co-solvent.  

 

In recent years, there has been a rise in interest in the utilisation of subcritical water 

extraction as an alternative method for the process of phenolic compound extraction. 

This extraction method is an alternative to subcritical solvent extraction. The United 

States of America has been the only country to observe this pattern. When heated to 

well above 100 oC, the dielectric constant of water decreases while the ionic product 

of water increases. This happens because the ionic product of water is more stable at 

higher temperatures. This occurs due to the presence of a negatively charged ionic 

product produced by water. What this means is that both inorganic and organic 

compounds can share a common solvent that can be utilised to isolate the desired 

component. 

 

The most significant barrier that needs to be traversed is represented by the extremely 

high amount of energy that is needed in order to warm up the medium. In addition, 

water that has been heated beyond its critical point, which is determined to be 374 oC 

and 221 bars of pressure, possesses a nature that is highly corrosive. This point can 

be determined by comparing the temperature of the water to the pressure that is being 

applied to it. The high-pressure apparatus that is used to obtain the products that are 

desired may experience difficulties as a result of this issue. There is unquestionably 

room for improvement in these environmentally friendly corrosion inhibitors in terms of 

their functional capabilities in relation to the environment. On the other hand, the 
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utilisation of actual formulations for corrosion inhibition would make these corrosion 

inhibitors even more effective than they already are”. In addition, it is suggested that 

techniques of electrochemical and surface analysis be considered for the purpose of 

carrying out a more in-depth analysis of the inhibition mechanisms.  

 

2.3. CORROSION TESTING 

 

2.3.1. Gravimetric analysis 

 
The broadly used inhibition method is the gravimetric or weight loss method.  The 

method offers simplicity and dependability in several corrosion monitoring programs. 

Weight loss is known as metal mass loss during the process of corrosion.  

Furthermore, the rate of corrosion is measured as the ratio of weight loss to the product 

metal’s surface area and the exposure time. 

 

2.3.2. Adsorption studies 

 
During corrosion testing in the presence of the inhibitor compound, an adsorptive film 

forms on a metal surface and an oxide layer is further characterised using the FTIR 

technique which is very essential in the adsorption film [140]. This technique caters for 

the analyses of both liquid and solid samples. In FTIR technique, infrared absorption 

spectrum is measured, and another advantage is that the technique is fast in 

processing data.  Furthermore, with the help of FTIR qualitative analysis are examined 

such as the functional groups of the samples. 

Analysing the adsorption layer created during the process, FTIR is applied to the 

powder for analysis [141]. Spectra can be collected and analysed from both liquid and 

solid samples using this method. This method of determining the infrared absorption 

spectrum is quick and precise. Its primary application is in qualitative research, where 

it helps classify samples into meaningful categories. 

 

Inhibitory mechanism on a metal [142]: 
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i. The inhibitor chemically adsorbs via chemisorption resulting in the 

formation of a thin protective oxide film. 

ii. The inhibitor adsorbs on the metal surface via physisorption (Van der 

Waals). 

iii. The inhibitor further reacts with the potential corrosive medium after all 

the metal active sites are fully occupied to form a complex. 

iv. Most studied inhibitors ideally undergo the Langmuir adsorption 

isotherm. 

2.4. ANALYTICAL TECHNIQUES 

 

2.4.1. Ultraviolet-visible spectroscopy (UV-vis) 

 

Absorption spectroscopy in the ultraviolet-visible (UV-vis) range is known as UV-vis 

spectroscopy. Ultraviolet–visible spectroscopy is essentially an investigation of 

electronic changes within molecules under illumination by light. The ultraviolet or 

visible light when directed to π electrons or non-bonding electrons it gets absorbed 

resulting on the excitation of electrons from the ground state to higher energy [143]. 

Furthermore, this technique is utilised for quantitative analysis and qualitative analysis 

for the charecterisation of solutes under study. The number of impurities in organic 

solvents can also be determined by Uv-vis.  

2.4.2. Fourier transform infrared spectroscopy (FTIR) 

Using infrared light to obtain the absorption or emission spectra from interacting with 

the sample of interest, Fourier transform infrared spectroscopy is an analytical 

technique used to examine distinct functional groups found in chemical substances. 

The IR's frequency is often measured between 400 and 400 cm -1. Analyte spectra are 

corrected by first recording the background emission spectrum of the IR source. The 

ratio of the sample spectrum to the background spectrum is related to the absorption 

spectrum of the sample. The sample's chemical composition can be deduced from the 
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resulting absorption spectrum, which is based on the bond natural vibration 

frequencies [4].  

2.4.3. X-ray diffraction (XRD)  

X-ray diffraction (XRD) is an analytical technique used to provide the information on 

unit cell dimensions and for phase indentification of a crystalline material. The mean 

bulk composition is determined after the analyte is finely grounded and homogenised. 

When Bragg’s law (nλ=2dsin ) condition is satisfied, constructive interference and a 

diffracted ray are produced due to the interaction of the incident rays with the analyte. 

With XRD, data interpretation and identification of unknown materials are relatively 

straight forward. Peak overlays have been a great disadvantage in XRD utility resulting 

in a detection limit of ~2% analyte for high angle reflections and that for fixed analytes 

[4]. 

2.4.4. Thermogravimetric analysis (TGA) 

In an inert atmosphere (such as nitrogen, helium, vacuum, or air), thermogravimetric 

analysis can be used to determine the physical and chemical changes that take place 

in a material as a function of temperature or time. Inorganic materials, polymers, 

plastics, ceramics, glasses, and composites are analysed [144]. Thermogravimetric 

analysis (TGA) combined with differential scanning calorimetry (DSC) identifies the 

properties of a chosen material, including melting and recrystallization transitions, 

weight loss or gain owing to chemical reactions, and oxidation, dehydration, and 

breakdown [145]. 

2.4.5. Electrochemical techniques 

Analytes can be analysed using electrochemical techniques, which involve the 

measurement of potential (volts) and/or current (amperes) in an electrochemical cell 

that contains the analyte of interest. Depending on the controlled and measured 

aspects, electrochemical methods can be categorised. Three main techniques in 

electrochemistry are potentiometry (measures the difference in electrode potentials), 

coulometry (measures the cell's current over time), and voltammetry (measures the 


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cell's current while actively changing the cell's potential) [146]. In addition, redox 

reactions occur during the operation of the above-mentioned techniques. The typical 

structure of an electrochemical cell will be that one containing two electrodes 

separated by a salt bridge immersed in an electrolyte solution. On the surface of the 

electrodes, chemical reactions mainly occur resulting in half reactions. Three main 

elcetrodes in the electrochemical cell are working electrode (WE), counter electrode 

(CE) and reference electrode (RE) [147]. On the working electrode is where a chemical 

reaction occurs, for an example, in this study the metal is the working electrode. In 

addition, the reference electrode is where standardization process occurs. 

Furthermore, a fixed potential on the reference electrode is evidenced while on the 

working electrode is where a change in potential is monitored. The commonly used 

reference electrode is saturated calomel electrode (SCE) and silver/silver chloride 

(Ag/AgCl) electrode both are the commonly used reference electrodes. Finally, the 

electrode where electrons sink for the flow of current from the external circuit is called 

an auxiliary electrode also known as the counter electrode.  

2.4.5.1. Potentiodynamic polarisation (PDP) 

To “obtain the relevant electrochemical parameters such as the Ecorr, icorr, anodic Tafel 

slope, ba and cathodic Tafel slope, bc, the potentiodynamic polarisation method is 

used. According to Equation 2.18, current densities measured are used to calculate 

the percentage inhibition efficiency of the chemical corrosion inhibitor”compound 

[148]: 

                                                             (2.18)                                            

 

Corrosion current density values are denoted by    and  denoting the 

corrosion current density in the absence and in the presence of inhibitor respectively. 
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2.4.5.2. Electrochemical impedance spectroscopy (EIS) 

To investigate the charge transfer resistance that develops as metals corrode in 

corrosive settings, scientists utilise electrochemical impedance spectroscopy. 

Additionally, EIS can be used to probe other electrochemical parameters such as 

charge transfer resistance (Rct) in the presence and absence of an inhibitor, double 

layer capacity (dll), constant phase element (CPE), and exponents. Furthermore, 

according to Equation 2.19, Rct and Ro
ct are used to calculate the inhibition efficiency 

[149]: 

                                                                                        (2.19)    

 

OVERALL CONCLUSION 

In conclusion, the purpose of this chapter was to provide a review of the relevant 

literature regarding the study of corrosion. This chapter provided an overview of the 

various classifications, forms, and rates of corrosion, as well as the method for 

preventing it. When a substance is subjected to air and moisture, a process known as 

corrosion can take place. This process involves the interaction of oxygen and water 

molecules, which ultimately results in the production of hydrogen. In addition, this 

chapter sheds light on how mild steel, aluminium, and zinc react to corrosion. In this 

body of research, the anti-corrosion properties of inhibitors, which are substances that 

are applied in extremely low concentrations, have been investigated. 

Gravimetric analysis and electrochemical techniques are just two of the many methods 

that can be utilised in the research on corrosion; however, this chapter will focus on 

discussing just those two methods. Gravimetric analysis, also known as weight loss, 

outlines three essential parameters, including corrosion rate, surface coverage, and 

inhibition efficiency. The percentage of inhibition efficiency is the only parameter that 

can be determined using electrochemical techniques and weight loss methods. The 

literature review is summarised in this chapter, and the compound glycerol stearate 
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(GS) was chosen as the inhibitor compound of interest. In addition, the literature review 

revealed that analytical techniques including gravimetric method, UV-vis, FTIR, XRD, 

TGA, PDP, and EIS can be utilised to evaluate the electrochemical and structural 

properties of the GS. These are just some of the techniques that were presented.   
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CHAPTER THREE 

 

EXPERIMENTAL  

3.1. MATERIALS 

3.1.1. Glycerol stearate (GS) synthesis [150]: 

Firstly, “we will have glycerol as the starting material, followed by the glycerol 

protection method through a refluxing for 6 hours a mixture of acetone (36 g), CHCl3 

(156 g), glycerol (30 g) and p-toluenesulfonic acid (1.2 g). After a reaction mixture is 

cooled, there will be an addition of Na2CO3 (1.3g) which will be stirred for 30 minutes. 

To obtain pure 1, 2-O-isopropyl-idene glycerol, the reaction mixture will be vacuum 

distilled (10 mmHg). Furthermore, in the presence of Na2CO3 (0.5g) for 6 hours at 140 

oC stirred will be a mixture of methyl stearate (43 g, 0.15 mole) and 1, 2-O-

isopropylidene glycerol (30 g, 0.23 mole). A continuous removal of methanol will be 

done by evaporation under atmosphere. After the completion of a reaction, excess 1, 

2-O-isopropyl-idene glycerol will be obtained under vacuum (10 mmHg) and the 

remains will be dissolved, washed in ether and water, respectively, to remove Na2CO3. 

Moreover, a deprotection method will be done through the immersion of 1, 2-O-

isopropyl-idene in ethanol (95%, 40 mL) and refluxed for 3 hours in the presence of 

Amberlyst 15 (wet) ion exchange resin (1.0g). Finally, a reaction mixture will be filtered, 

and the filtrate will be concentrated to give glycerol stearate as a” product.  
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Figure 3. 1 : Synthesis of glycerol stearate. 
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3.1.2. Gravimetric analysis (Weight loss measurements): 

 

 

 

Figure 3. 2: Schematic procedure for weight loss measuerements. 
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About 50×10-5 M  of “glycerol stearate was prepared and from it 30×10-5 M and   10×10-

5 M was prepared. Three thermostats at different temperatures; 318 K,  328 K and 338 

K degrees celcius were used. Initial masses of  three metals; aluminium, mild steel 

and zinc will be recorded before corrosion testing.The immersion time for the corrosion 

testing will be 3 hours both in the absence of the inhibitor and the presence of the 

inhibitor. After corrosion testing, metals were washed with distilled water and then left 

to dry. After drying the metals, final masses were recorded, thus mass loss was 

calculated and from then the corrosion rate, percentage inhibition efficiency and 

surface coverage” were determined. 

 

3.2. CHARACTERISATION TECHNIQUES 

The inhibitor formation was confirmed by the Spectrum II FTIR spectrometer 

(PerkinElmer). The spectra were within 500 and 4500 cm-1 at 25 oC. Collected were 

32 scans with 4 cm-1 resolution. Optical absorption spectra were recorded between 

200 – 800 nm at room temperature using a Lambda 365 UV/vis spectrophotometer. 

The surface morphology was investigated using a scanning electron microscope 

(SEM). 

 

3.3. COMPUTATIONAL STUDIES 

The “computational methodology adopted in this study was based on density 

functional theory dispersion corrected (DFT-D) [151], which are essential for the 

accurate description of the organic molecules within the DMol3 [152] code embedded 

in the Materials Studio 2020 version. Geometry optimisations of the inhibitor were 

performed to calculate the energies of the highest occupied molecular orbital (HOMO) 

and lowest unoccupied molecular orbital (LUMO). These were performed using the 

generalised gradient approximation (GGA) [153] of Perdew-Wang 91 exchange-

correlation functional [153], [154] (GGA-PW91). The Tkatchenko and Scheffler (TS) 

[155] dispersion correction to the PW91 was adopted. The convergence tolerances for 

energy, force and displacement were 2.0×10–5 Ha, 0.004 Ha. Å–1 and 0.005 Å, 
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respectively. The double numerical plus polarisation (DNP) basis set with 4.4 Basis 

files will be set using DFT semi-core pseudopotentials. 

With the aid of Koopmans’s theorem, these parameters are often defined [156]: 

Electronegativity (ꭕ) was defined as the ability an atom has to attract electrons towards 

itself and it was determined using equation 3.1: 

ꭕ -1/2 (EHOMO + ELUMO)                                                                                       ( 3.1) 

Global hardness (ᶯ) measured the resistance of an atom to a charge transfer and was 

estimated using equation 3.2: 

ᶯ -1/2 (EHOMO - ELUMO)                                                                                          (3.2) 

Global electrophilicity index ( ) was estimated using a relationship between 

electronegativity and chemical hardness parameters in equation 3.3: 

= ꭕ2/2ᶯ                                                                                                                (3.3) 

Studies described that a high electrophilicity value showed a good electrophile and a 

small value showed a good nucleophile. 

Global softness (σ), it showed the capacity of an atom or group of atoms to receive 

electrons [36], it was estimated through equation 3.4: 

σ = 1/ᶯ  -2/ (EHOMO –ELUMO)                                                                               (3.4) 

Electron affinity (A) was defined as the energy released when an electron was added 

to a neutral molecule, it related with ELUMO through equation 3.5: 

A -ELUMO                                                                                                                                                                (3.5) 

Ionisation potential (I) was defined as the amount of energy required to remove an 

electron from a molecule, it related with ELUMO through equation 3.6: 

I -EHOMO                                                                                                                                                                  (3.6 )                                                                               
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CHAPTER FOUR 

 

RESULTS AND DISCUSSIONS 

4.1. ALUMINIUM  

OBSERVATION OF CORROSION RATE WITH TIME 

 

Optical observations were made with Figure 4.1 showing aluminium metal before 

corrosion testing and from Figure 4.2-4.5 showing aluminium corrosion testing in (a) 

uninhibited solution and (b) inhibited solution. Results were taken after week, a month, 

6 months and a year. The photographs of aluminium metal in the unhibited solution 

showed more rough surfaces as compared to those tested in the presence of glycerol 

stearate. By optical observations it showed that more pits were present on the surface 

of aluminium metal in the uninhibited solution. But the introduction of glycerol stearate 

did minimise the pits. 

 

 
 

Figure 4. 1: Aluminium metal before corrosion testing. 
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Figure 4. 2: Aluminium metal (a) Uninhibited solution after a week (b) Inhibited 

solution after a week. 

 

 

 

 

 
 

 
Figure 4. 3: Aluminium metal (a) Uninhibited solution after a month (b) Inhibited 

solution after a month. 
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Figure 4. 4: Aluminium metal (a) Uninhibited solution after 6 months (b) Inhibited 

solution after 6 months. 

 
 

Figure 4. 5: Aluminium metal (a) Uninhibited solution after a year (b) Inhibited 

solution after a year. 
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4.1.1. Weight loss measurements 

4.1.1.1. Glycerol stearate concentration and temperature effects on corrosion 

rate 

Table 4.1 “and in Figure 4.6, (a) shown are results of the rate of corrosion through 

weight loss measurements for Al in 1. 0 mol. L-1 HCl at various GS concentrations from 

10 x 10-5- 50 x 10-5 M and at 318 K, 328 K and 338 K. In addition, when 10 x10-5 M of 

inhibitor was added, the rate of corrosion decreased as compared to that for the 

uninhibited solution at three various temperatures, and there was a decrease in the 

rate of corrosion when 30 x10-5 M and 50 x 10-5 M of the inhibitor were added as noticed 

in Table 4.1. The rate of corrosion decreased as GS concentration increased since 

surface coverage (θ)  of GS increased on the Al metal surface [114]. It was also noticed 

that the rate of corrosion, CR was high for GS at 338 K as compared to 318 K and 328 

K. In addition, corrosion rate decreased as GS concentration increased as shown in 

Table 4.1. 

 

Figure 4.6(a) showed percentage efficiency of inhibition against GS concentrations at 

318 K, 328 K and 338 K. At 50 x 10-5 M, the highest inhibition efficiency values were 

obtained. In addition, the %IE of GS increased with increasing inhibitor concentration. 

The donation of lone pairs from the O atoms into the unfilled orbit of the Al metal 

formed a coordinate bond. In addition, Cl- ions were adsorbed on Al/solution interface 

[157–159].  

Rate of corrosion (CR in g. cm−2· h−1), efficiency of inhibition (%IE), surface coverage 

(θ) were determined from the weight loss data [160,161]. 

 

At 50 x 10-5 M percentage inhibition efficiency of GS ranged between 55.40-98.51%. 

At 30 x 10-5 M percentage inhibition efficiency was between 52.70-97.01%. Finally, at 

10 x 10-5 M percentage inhibition efficiency of GS ranged from 48.65-95.52%. The 

adsorption isotherm results were shown in Figure 4.6 (b). Langmuir adsorption 

isotherm and inhibitor surface coverage (θ) on Al surface related to GS concentration 

(Cinh) according”to:  
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inhads

inhads

CK

CK




1
                                (4.1)  

The linear form is given by:   

  inh

ads

inh C
K

C


1


      (4.2)  

Where Cinh“denoted GS concentration, θ denoted surface coverage degree, Kads 

denoted constant of equilibrium. Figure 4.6 (b), the plot of Cinh/θ against Cinh showed 

a linear graph with a positive slope. In Table 4.2, Kads values were presented and were 

observed to decrease as the temperature decreased [162].  In this project, larger 

values of Kads for GS indicated process of adsorption, which was favoured by larger 

values of Kads [162]. In Figure 4.6. (b), Langmuir adsorption isotherm was followed by 

GS observed from data given by R2 values closer to and at unity in Table 4.2. 

Furthermore, from slope values a monolayer adsorption was obtained [163,164]. From 

Kads values obtained, free energy of adsorption (ΔG°ads) was determined using the” 

Equation 4.3: 

 

                                                                                                                           (4.3)  

 

ΔG°ads “denoted adsorption Gibbs energy, 55.5 value represented molar concentration 

of water in solution, T denoted absolute temperature, and Kads denoted constant of 

equilibrium for adsorption process. In Table 4.2, it was observed that ΔG°ads values for 

GS inhibitor were less than -20 kJ. mol-1, which indicated a physisorption mechanism 

of”adsorption [163–165]. 

 

)5.55log(303.2 adsKRTG  
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Figure 4. 6: Efficiency (%IE) versus GS concentration (M) plot for (a) GS; and 

Langmuir isotherm (b) GS inhibitor on Al metal sheet at 318 K, 328 K and 338 K. 

Arrhenius graphs for Al metal in 1. 0 M HCl with and without GS (c) Transition state 

graphs at differing GS (d). 
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Table 4. 1: Corrosion rate (CR), efficiency of inhibition, (%IE) and surface coverage (θ) 

of GS at 318, 328 and 338 K for aluminium metal. 

 

 

 

 

 

 

 

 

 

 

 

Inhibitor Temperature 

(K) 

Concentration 

(x 10-5 M) 

Weight 

loss (g) 

Corrosion 

rate (x 10-3 

g. cm-2. hr-1) 

Inhibition 

efficiency 

(IE) 

Surface 

coverage 

( ϴ) 

C/ϴ x 10-5 

GS 

318 

0 0.67 37.22 _ _ _ 

10 0.03 1.67 95.52 0.9552 10.4688 

30 0.02 1.11 97.01 0.9701 30.9231 

50 0.01 0.56 98.51 0.9851 50.7576 

328 

0 0.73 40.56 _ _ _ 

10 0.26 14.4 64.39 0.6439 15.5310 

30 0.19 10.6 73.98 0.7398 40.5540 

50 0.04 2.22 94.52 0.9452 52.8982 

338 

0 0.74 41.11 _ _ _ 

10 0.38 21.1 48.65 0.4865 20.5561 

30 0.35 19.4 52.70 0.5270 56.9245 

50 0.33 18.3 55.40 0.5540 90.2459 
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Table 4. 2: Adsorption parameters for glycerol stearate on Al metal. 

 
 

Inhibitor 

 

T (K) 

 

Kads (x105 L.mol-1) 

 

R2 

 

 

-∆Go
ads (kJ.mol-1) 

 

GS 

       318 2,0004 
 

0.9999 -12.45 
 

328 0.2746 
 

0.9994 -12.84 
 

338 0.1204 
 

0.963 -13.24 
 

 

4.1.2. Thermodynamic and activation parameters 

 
The“Arrhenius equation was used to evaluate temperature effect on the behaviour of 

the adsorption process and activation energy (Ea) parameters of corrosion process 

according”to [81,166]:  

  

             (4.4) 

 

CR“denoted rate of corrosion, Ea denoted energy of activation, R denoted molar gas 

constant (8.314 J. K-1. mol-1), and T denoted absolute temperature and A denoted 

frequency factor. The plot of log (CR) against 1/T for aluminium in 1. 0 mol. L-1 HCl with 

and without GS was presented in Figure 4.6 (c). From slopes, values of the activation 

energy were obtained. Furthermore, from intercepts of regression lines frequency 

factor was obtained. Slope = -Ea/2.303R and c = logA where c indicated regression 

line intercept. Adsorption process that occurred at metal surface/inhibitor interface 

could be either exothermic process where heat was given off or endothermic process 

where heat was absorbed. Table 4.3 showed that values of Ea in the inhibited solution 

were generally higher than that of the blank solution in all inhibitor concentrations. It 

was studied that physical adsorption was determined by higher Ea values while 

chemical adsorption was determined by lower Ea values [167]. Temperature effect on 

RT

E
AC a

R
303.2

loglog 
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inhibition efficiency for Al was used to obtain entropy (∆S°) and enthalpy values (ΔHa°) 

presented in Table 4.3. Positive values of ΔHa° indicated that Al dissolution and GS 

undergo endothermic processes [87,168]. Positive values of ∆So in GS containing 

solution indicated that activated complex formation is dissociative rather than 

associative at the rate-determining step [124].  Measurements for ∆S° and ΔHa° were 

determined using Equation (4.5): 

 

𝑙𝑜𝑔 (
CR

𝑇
) = [log (

𝑅

ℎ𝑁
) + (

𝛥𝑆

2.303𝑅
)] −

𝛥𝐻

2.303𝑅𝑇
                                                                (4.5)                                                       

                      

kB denoted Boltzmann’s constant: CR indicated rate of corrosion and h denoted Plank’s 

constant.  

Figure 4.1 (d) showed log (CR/T) versus 1/T graph for GS, showing linear graphs with 

[log (
𝑅

ℎ𝑁
) + (

𝛥𝑆

2.303𝑅
)] as intercept. In addition, -ΔH°/R values were calculated from 

slopes. Furthermore, it was noticed that blank solution showed high CR values as 

compared to GS inhibitor. Lower CR values indicated that Al metal dissolution was 

minimised. 

 

Table 4. 3: Presented are activation energy (Ea), entropy (∆So) and enthalpy of 

activation (∆Ho
a) values. 

Inhibitor Concentration 

(x10-5M) 

Ea 

(kJ.mol-1) 

∆Ho
ads 

(kJ.mol-1) 

∆So 

(JK-1.mol-1) 

 

GS 

0 4.47 1.75 -267.28 

10 114.23 111.51 54.25 

30 128.61 125.88 95.88 

50 155.87 153.14 172.63 
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4.1.3. Potentiodynamic polarisation (PDP) 

Aluminium potentiodynamic polarisation curves in 1. 0 M HCl in uninhibited and 

inhibited systems were presented in Figure 4.7.  In Table 4.4, shown are values of 

inhibitor concentrations, Ecorr, Icorr, Tafel slopes (ba and bc) anodic and cathodic 

respectively, and percentage inhibition efficiencies (%IEPDP). Obtained current 

densities were by extrapolating curves of Tafel slopes to corrosion potential. It was 

observed in Table 4.4 that inhibition efficiency increases as inhibitor concentration 

increases and as corrosion current densities decrease. This was because of 

adsorption of GS on aluminium surface. Potentiodynamic polarisation study showed 

that GS inhibition efficiencies increased in the order: 10 x 10-5 M (51.37%), 30 x 10-5 

M (78.80%) and 50 x 10-5 M (81.06%). Corrosion potential value of inhibited solutions 

against the blank plays an essential role in a sense that if Ecorr is greater than 85 mV 

is given to either anodic or cathodic type inhibitors and if Ecorr is less than 85 mV is 

accredited to a mixed type inhibitor mechanism [169].  Furthermore, it was observed 

in Table 4.4 that Ecorr values were less than 85 mV with the cathodic inhibitor 

mechanism dominating inferring from the Tafel slopes. 
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Figure 4. 7: Potentiodynamic polarisation plot for aluminium in 1. 0 M HCl in the 

uninhibited and inhibited solutions of GS different concentrations. 

 

Table 4. 4 : Polarisation measurements such as Ecorr, Icorr, ba and bc using different 

inhibitor concentrations. 

Inhibitor Concentration 

x 10-5 (M) 

-Ecorr 

(mV) 

Icorr 

(mA.cm-2) 

ba (mV) bc 

(mV) 

%IEPDP 

Blank  813.17 109.90 290.9 396.8 - 

 

GS 

10 784.10 53.44 134.8 594.4 51.37 

30 737.45 23.30 38.4 198.5 78.80 

50 793.74 20.82 52.1 145.4 81.06 
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4.1.4. Electrochemical impedance 

Corrosion behaviour of aluminium in 1.0 M HCl and in the presence 10 x 10-5 M, 30 x 

10-5 M and 50 x10-5 M GS concentrations was studied with the aid of the EIS. The 

Nyquist plot of aluminium without and with GS concentrations was presented in Figure 

4. 8 with corresponding Bode plots in Figure 4.9 showing that the high frequency limit 

corresponds to the solution resistance Rs represented on the electric circuit shown on 

Figure 4.10. In addition, in Bode plots the low frequency limit represents (Rs + Rct)  

from Nyquist and Bode plots are in good agreement. Table 4.5 showed that Rct values 

increased in inhibited solutions and a decrease in Cdl values was observed as the 

inhibitor concentration increased. The increase in Rct values was due to adsorption of 

GS molecules on aluminium metal thus retarding metal dissolution and hydrogen 

evolution, which are oxidation and cathodic processes occurring at metal solution 

interface [170]. Furthermore, Nyquist plots in Figure 4.8 showed a single depressed 

capacitive arc or semicircle due to metal surface roughness and this revealed that 

aluminium dissolution was by a single transfer process [171]. The impedance nature 

of GS was studied with the use of an electrical circuit comprising Rs, Rct and Cdl shown 

in Figure 4.10. 
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Figure 4. 8: Nyquist plot for aluminium in 1. 0 M HCl in the uninhibited and inhibited 

solution with different GS concentrations. 
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Figure 4. 9: Bode plots of aluminium in 1. 0 M HCl with and without glycerol stearate. 

Table 4. 5: Electrochemical impedance parameters. 

 

Inhibitor Concentration x 

10-5 (M) 

Rs 

(Ω) 

Rct 

(Ω) 

Cdl 

(x10-6 F) 

%IEEIS 

Blank  3.019 0.286 451.2 - 

 

GS 

 

10 2.208 1.536 60.24 81.38 

30 2.262 1.570 59.71 81.78 

50 1.913 2.070 45.05 86.18 
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Figure 4. 10: The suggested electrical circuit for studied GS. 

 

4.2. MILD STEEL 

OBSERVATION OF CORROSION RATE WITH TIME 

 

Visual observations were made with Figure 4.11 displaying mild steel before corrosion 

tests occurred. In addition, Figure 4.12-4.15 revealed that mild steel exhibited a redish-

brownish colour owing to the formation of iron oxide especially in photographs for the 

unhibited solution. However, this rust was minimised after corrosion inhibitor was 

introduced. Observations were made after week, a month, 6 months, and a year.  
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Figure 4. 11: Mild steel before corrosion testing. 

 

 
 

Figure 4. 12: Mild steel (a) Uninhibited solution after a week (b) Inhibited solution 

after a week. 
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Figure 4. 13: Mild steel (a) Uninhibited solution after a month (b) Inhibited solution 

after a month. 

 
 

Figure 4. 14: Mild steel (a) Uninhibited solution after 6 months (b) Inhibited solution 

after 6 months. 
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Figure 4. 15: Mild steel (a) Uninhibited solution after a year (b) Inhibited solution after 

a year. 

4.2.1. Weight loss measurements 

4.2.2. Effect of inhibitor concentration and temperature on corrosion rate 

Figure 4.16 (a)“is a display of the percentage inhibition efficiency (%IE) versus inhibitor 

concentration plots at various temperatures for GS. It is clearly shown from the results 

that the %IE increases as the concentration of the inhibitor increases. However, we 

observed an appreciable %IE of 92.73 % for 50 x 10-5 M at 328 K. This behaviour is 

due to more inhibitor molecules resulting in a larger surface coverage on the mild steel 

(MS) [172]. Furthermore, at 328 K we observed an appreciable reduced corrosion 

rates such”as 4.44 x 10-3, 3.89 x 10-3, 2.78 g.cm-2.h-1 at 10 x 10-5, 30 x 10-5, 50 x10-5 

M.   
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Figure 4. 16: Efficiency (%IE) versus GS concentration (M) plot for (a) GS; and 

Langmuir isotherm (b) GS inhibitor on MS sheet at 318 K, 328 K and 338 K. Arrhenius 

graphs for MS in 1. 0 M HCl with and without GS (c) Transition state graphs at differing 

GS (d). 
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Table 4. 6: Corrosion rate (CR), efficiency of inhibition, (%IE) and surface coverage (θ) 

of GS at 318, 328 and 338 K for mild steel. 

 

In order to obtain insight into the way the GS compound adsorbs on the surface of the 

metal, several different adsorption isotherms, including the Langmuir, Frumkin, 

Freundlich, and Temkin isotherms, have been investigated and fitted using data. In 

order to further understand the isotherm that determines the adsorption process, 

values at 318, 328, and 338 K for various inhibitor doses were considered. This was 

done while observing the surface coverage. The Langmuir adsorption isotherm 

suggests that the value is connected to the equilibrium adsorption constant, Kads, as 

well as the concentration of GS (Equations 4.1). The results are shown in Table 4.7, 

and the data fit the Langmuir isotherm adsorption for GS inhibitor [173]. 

 

 

Inhibitor Temperature 

(K) 

Concentration 

(x 10-5 M) 

Weight 

loss 

(g) 

Corrosion 

rate (x 10-

3 g. cm-2. 

hr-1) 

Inhibition 

efficiency 

(IE) 

Surface 

coverage 

( ϴ) 

C/ϴ x 

10-5 

GS 

318 

0 0.13 7.28 _ _ _ 

10 0.08 4.44 88.06 0.8806 11.3560 

30 0.07 3.89 89.55 0.8955 33.5002 

50 0.05 2.78 92.54 0.9254 54.0325 

328 

0 0.22 12.2 _ _ _ 

10 0.20 11.1 72.61 0.7261 13.7730 

30 0.18 10.0 75.35 0.7535 39.8168 

50 0.16 8.89 78.08 0.7808 64.0331 

338 

0 0.41 22.78 _ _ _ 

10 0.35 19.44 52.70 0.5270 18.9748 

30 0.34 18.89 54.05 0.5405 55.5013 

50 0.32 17.78 56.76 0.5676 88.0971 
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Table 4. 7: Adsorption parameters for glycerol stearate on MS. 

 
 

Inhibitor 

 

T (K) 

 

Kads (x105 L.mol-1) 

 

R2 

 

 

-∆Go
ads (kJ.mol-1) 

 

GS 

318 1.0465 
 

0.9995 -10.74 
 

328 0.4256 0.9989 -11.08 

338 0.6611 
 

0.9996 -11.41 

 

Equation 4.3“was used to determine the adsorption free energy denoted by Gads. 

Electrostatic interaction between charged molecules and a charged metal surface 

(physisorption adsorption mechanism) is related with energies smaller than -20 kJ. 

mol-1, as reported in the literature [174]. In difference, if the ∆Go
ads values are less than 

-20 kJ. mol-1 or less negative is an indication that there is electrostatic interactions 

which signify a physisorption mechanism [19]. According to results on Table 4.2, it is 

noticed that GS inhibitor accounts for physisorption mechanism. In addition, a 

spontaneous adsorption process of GS was observed considering”negative ∆Go
ads 

values [175]. 

 

4.2.3. Thermodynamic and activation parameters 

The “Arrhenius equation was used to evaluate temperature effect on the behaviour of 

the adsorption process and activation energy (Ea) parameters of corrosion process 

according”to [176,177]:  

  

             (4.4) 

 

CR denoted rate of corrosion, Ea denoted energy of activation, R denoted molar gas 

constant (8.314 J. K-1. mol-1), and T denoted absolute temperature and A denoted 

frequency factor.  The Arrhenius Equation (4.4) and its transition state Equation were 

used to calculate activation energy, entropy, and enthalpy at various GS 

RT

E
AC a

R
303.2

loglog 
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concentrations (Equation 4.5). Part (c) of Figure 4.16 depicts an Arrhenius plot of log 

(CR) vs reciprocal temperature (1/T), which was used to derive the activation energy 

estimates. So and Ho were determined by solving the transition state equation (4.5) 

[148]. Transition state graphs for GS at different temperatures are shown in Figure 

4.16 (d). Activation energy, measured in joules per mole, is needed for any chemical 

reaction to take place. Increases in the activation energy barrier for the corrosion 

process, as measured at concentrations of 10 x 105, 30 x 105, and 50 x105 M, indicate 

that the GS compound is effective at inhibiting corrosion. [178]. The activation energy 

of the corrosion process is improved by increasing a double layer thickness which is 

associated with higher Ea values. Positive values of ∆Ho
 are the indication of an 

endothermic process [179,180]. Negative values of So are an indication that the 

formation of the activated complex during the rate-determining step is associative 

rather than associative. This indication can be further interpreted to mean that there is 

a decrease in disorderliness as the reaction progresses from reactants to activated 

complex [148]. A depiction of the various parameters taken from the Arrhenius plot 

and the transition state plot can be seen in Table 4.8. 

 

Measurements for ∆S° and ΔHa° were determined using Equation (4.5): 

 

𝑙𝑜𝑔 (
𝐶𝑅

𝑇
) = [log (

𝑅

ℎ𝑁
) + (

𝛥𝑆

2.303𝑅
)] −

𝛥𝐻

2.303𝑅𝑇
                                                                 (4.5)                                                                 

                      

kB denoted Boltzmann’s constant: CR indicated rate of corrosion and h denoted Plank’s 

constant. Figure 4.16 (d) showed log (CR/T) versus 1/T graph for GS, showing linear 

graphs with [log (
𝑅

ℎ𝑁
) + (

𝛥𝑆

2.303𝑅
)] as intercept. In addition, -ΔH°/R values were 

calculated from slopes. Furthermore, it was noticed that blank solution showed high 

CR values as compared to GS inhibitor. Lower CR values indicated that Al metal 

dissolution was minimised. 
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Table 4. 8: Presented are activation energy (Ea), entropy (∆So) and enthalpy of 

activation (∆Ho
ads) values for GS on mild steel. 

Inhibitor Concentration 

(x10-5M) 

Ea 

(kJ.mol-1) 

∆Ho
ads 

(kJ.mol-1) 

∆So 

(JK-1.mol-1) 

 

GS 

0 51.27 48.54 -134.03 

10 66.09 63.37 -90.85 

30 70.74 68.02 -77.41 

50 83.14 80.41 -41.02 

 

4.2.4. Potentiodynamic polarisation (PDP) 

The use of tafel slope analysis aided in determining corrosion current densities which 

were required for corrosion rates calculations. In addition, via the extrapolation of the 

tafel lines, electrochemical parameters such as corrosion potential (Ecorr), anodic (ba) 

and cathodic (bc) tafel slopes and corrosion current density (Icorr) were obtained. 
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Figure 4. 17: Potentiodynamic polarisation plot for mild steel in 1. 0 M HCl in the 

uninhibited and inhibited solutions of GS different concentrations. 

Figure 4.17: Potentiodynamic polarisation curves for mild steel in 1. 0 M HCl with and 

without the GS inhibitor concentrations (10x10-5 M, 30x10-5 M and 50x10-5 M). From 

Figure 4.17 it is observed that different concentrations of GS reduced the corrosion 

current density (Icorr) values. The most essential trend observed was that the corrosion 

current density shifted to lower regions upon the introduction of GS inhibitor 

compound. The tafel curves showed that the Icorr values reduced with the increasing 

GS inhibitor concentrations. In addition, it is observed that the difference between Ecorr 

values of the blank (1. 0 M HCl) and that of the inhibited solutions is less than 85 mV 

which signifies a mixed-type inhibition mechanism with the cathodic inhibition 

dominating as observed from the tafel slopes [181] . Furthermore, it is shown that the 

tafel slopes decreased upon the introduction of the inhibitor, thus confirming that GS 

has successfully adsorbed on mild steel surface retarding metal dissolution (anodic 
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process) and hydrogen evolution (cathodic process). The percentage inhibition 

efficiencies increased with the increase of the inhibitor concentration with the highest 

efficiency of”82.69% at 50x10-5 M. 

 

Table 4. 9 : Polarisation measurements such as Ecorr, Icorr, ba and bc using different 

inhibitor concentrations. 

Inhibitor Concentration 

x 10-5 (M) 

-Ecorr 

(mV) 

Icorr 

(mA.cm-2) 

ba (mV) bc 

(mV) 

%IEPDP 

Blank  401.15 1.04 65.6 225.5 - 

 

GS 

10 420.00 0.89 61.0 172.1 14.42 

30 400.59 0.61 45.7 74.6 41.35 

50 414.13 0.18 37.3 73.8 82.69 

 

4.2.5. Electrochemical impedance 

More “insight regarding corrosion behaviour of mild steel in hydrochloric acid and 

inhibition by glycerol stearate was obtained with the aid of the electrochemical 

impedance spectroscopy. Nyquist graphs in Figure 4.18 are presented as imperfect 

semicircles together with their corresponding bode plots in Figure 4.19 which revealed 

that as the inhibitor concentration increased the phase angle increased which signifies 

the formation of the adsorptive film. In addition, the imperfect semicircles are a 

representation of mild steel impedance spectra in the uninhibited and inhibited 

solutions with different GS inhibitor concentrations. From the impedance spectra, it is 

observed that the diameter of the imperfect semicircles increased with the increase in 

the inhibitor concentration  [182] and the imperfection of the semicircle is indicative of 

a charge transfer process governing the corrosion of mild steel [183] . Furthermore, to 

explain the impedance nature, an electric circuit comprising the solution resistor (Rs), 

charge transfer resistance (Rct) and a double layer capacitance (Cdl) in Figure 4.20 

was used. 
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Figure 4. 18: Nyquist plot for aluminium in 1. 0 M HCl in the uninhibited and inhibited 

solution with different GS concentrations. 
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Figure 4. 19: Bode plots of mild steel in 1. 0 M HCl with and without glycerol 
stearate. 

 

Table 4. 10: Electrochemical impedance parameters. 

 

Inhibitor Concentration 

x 10-5 (M) 

Rs 

(Ω) 

Rct 

(Ω) 

Cdl 

(x10-6 F) 

%IEEIS 

Blank  1.986 6.122 0.719 - 

 

GS 

 

10 2.256 12.45 0.540 50.83 

30 2.839 17.94 0.602 65.88 

50 2.357 24.93 0.102 75.44 
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Figure 4. 20: The suggested electrical circuit for studied GS. 

 

4.3. ZINC 

OBSERVATION OF CORROSION RATE WITH TIME 

 

Pictorial observations were performed on the zinc metal before corrosion tests were 

run as shown in Figure 4.21. When viewing zinc metal strictly in acidic medium 

(uninhibited solution) the entire metal accumulated stains on surface revealing a 

redish-brownish color as witnessed earlier with mild steel. However, after glycerol 

stearate (inhibitor) was introduced, zinc metal obtained clear surface on some parts of 

the metal especially when observations were made after a week. The same behaviour 

was observed although not very announced for after a month, 6 months and a year as 

compared to when observations were made after a week as shown from Figure 4.22-

4.25. 
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Figure 4. 21: Zinc metal before corrosion testing. 

 

 

Figure 4. 22: Zinc metal (a) Uninhibited solution after a week (b) Inhibited solution 

after a week. 
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Figure 4. 23: Zinc metal (a) Uninhibited solution after a month (b) Inhibited solution 

after a month. 

 
 

Figure 4. 24: Zinc metal (a) Uninhibited solution after 6 months (b) Inhibited solution 

after 6 months. 
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Figure 4. 25: Zinc metal (a) Uninhibited solution after a year (b) Inhibited solution 

after a year. 

4.3.1. Weight loss measurements 

4.3.2. Effect of inhibitor concentration and temperature on corrosion rate” 

 

The gravimetric experiments of Glycerol stearate (GS) inhibitor were presented by the 

percentage inhibition efficiencies (%IE) against inhibitor concentration plots at 318, 

328 and 338 K as given in Figure 4.26 (a). The %IE is observed to increase at all 

temperatures the inhibitor concentration increases from 10 x 10-5 - 50 x 10-5 M, for GS. 

In addition, it is observed that the %IE increases with the increase in temperature. This 

observation could be due to the thermal stability of the GS and the adsorption nature 

of the inhibitor particularly on a zinc metal (Zn) [124]. The effect of temperature is 

showed by the %IE values for 10 x 10-5 M at 318 K, 67.16% while at 328 and 338 K, 

68.65% and 73.13% were obtained respectively. The density of corrosion rate 

increases severely as the temperature increases.  
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As shown“from studies, the rate of metal dissolution is hindered by increasing the 

inhibitor concentration [132]. The corrosion rate was found to be 15.56, 19.44 and 

31.11 × 10-3 g.cm-2.h-1 in the uninhibited solution at 318, 328 and 338 K, respectively. 

However, according to the observations on Table 4.11 it is observed that upon the 

introduction of the inhibitor in the solution, the rate of corrosion decreased. The similar 

behaviour was observed by  Hong et al. [184],  using fungicides and 4-amino-

antipyrine on the corrosion of copper in NaCl solution, respectively. It was found that 

the metal dissolution decreased optimum to a value of 10.0× 10-3g.cm-2.h-1 in GS for 

50 x 10-5 M inhibitor concentration at 318 K. Furthermore, metal mass loss decreased 

with a decrease in the rate of corrosion due to the inhibitor adsorption on Zn metal 

surface. 
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Figure 4. 26: Efficiency (%IE) versus GS concentration (M) plot for (a) GS; and 

Langmuir isotherm (b) GS inhibitor on zinc sheet at 318 K, 328 K and 338 K. Arrhenius 

graphs for zinc metal in 1. 0 M HCl with and without GS (c) Transition state graphs at 

differing GS (d). 

The “mechanism type followed during the process of adsorption at the inhibitor/metal 

interface has been investigated in a significant way by fitting various adsorption 

isotherms with the best regression line R2 value. The surface coverage and inhibitor 

concentrations of the GS relationship followed the Langmuir equation, as expressed 

by Equation 4.2. Figure 4.26 (b) depicts a Langmuir adsorption isotherm plot with R2 

values ranging from 0, 9996 to 0, 9999. The Langmuir plots are enhanced by R2 values 

close to unity. Table 4.12 shows the adsorption equilibrium constant and standard free 

energy of adsorption values. 

The number of inhibitor layers that had been adsorbed on the metal surface was 

calculated by using the slopes of the regression lines. The standard free energy of 

adsorption [185] offers insight into the spontaneity of the inhibitory process as well as 

the stability of adsorption. According to the research that has been done [185], a 
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spontaneous process is characterised by having values of free energy of adsorption 

that are on the negative sign. A physisorption adsorption mechanism is indicated when 

the value of the free energy of adsorption is less than or equal to -20 kJ. mol-1, whereas 

a chemisorption adsorption mechanism is indicated when the value is greater than or 

equal to -40 kJ. mol-1 in the negative direction [4]. GS supplied a physisorption 

process, which can be found displayed in Table 4.12, for Gibbs free energy values 

that were lower than”-20 kJ. mol-1. 

 

Table 4. 11: Corrosion rate (CR), efficiency of inhibition, (%IE) and surface coverage 

(θ) of GS at 318, 328 and 338 K for zinc metal. 

 

 

 

 

 

Inhibitor Temperature 

(K) 

Concentration 

(x 10-5 M) 

Weight 

loss 

(g) 

Corrosion 

rate (x 10-3 g. 

cm-2. hr-1) 

Inhibition 

efficiency 

(IE) 

Surface 

coverage 

( ϴ) 

C/ϴ x 10-5 

GS 

318 

0 0.28 15.56 _ _ _ 

10 0.22 12.22 67.16 0.6716 14.8893 

30 0.21 11.67 68.65 0.6865 43.6968 

50 0.18 10.0 73.13 0.7313 68.3688 

328 

0 0.35 19.44 _ _ _ 

10 0.32 17.78 56.17 0.5617 17.8034 

30 0.30 16.67 58.91 0.5891 50.9263 

50 0.29 16.11 60.28 0.6028 82.9486 

338 

0 0.56 31.11 _ _ _ 

10 0.45 25.00 39.19 0.3919 25.5183 

30 0.44 24.44 40.54 0.4054 74.0029 

50 0.43 23.89 41.89 0.4189 119.3593 



 

 

 

 

117 
 

 

 

 

Table 4. 12: Adsorption parameters for glycerol stearate on zinc. 

 
 

Inhibitor 

 

T (K) 

 

Kads (x105 L.mol-1) 

 

R2 

 

 

-∆Go
ads 

(kJ.mol-1) 

 

GS 

318 0.4528 
 

0.9989 -8.52 
 

328 0.5881 
 

0.9999 -8.79 
 

338 0.3877 
 

0.9996 -9.06 
 

 

4.3.3. Thermodynamic and activation parameters 

Metal”dissolution increases with the increase in temperature, and as a result, there is 

a lower activation barrier [186]. By the help of Arrhenius equation and plot, the effect 

of temperature on the adsorption of GS onto the Zn surface is evaluated.  The log CR 

against 1/T plot as shown in Figure 4.26 (c). The plot assisted in calculating the values 

of the activation energy for the corrosion process. In Table 4.13 is the record of the 

calculated parameters of activation energy.  The activation energy value in the 

uninhibited solution was less than those obtained in the inhibited solution. Higher 

activation energy values in the inhibited solution advocated to a prolonged rate of 

corrosion due to the formation of GS/Zn complex [187]. The entropy and enthalpy of 

activation can be used to investigate the inhibition efficiency of GS on Zn metal 

surface. Scientists have found that higher negative entropy values represent less 

surface destruction on metal, while higher positive entropy values represent greater 

disorder in the system [188]. 

 

Enthalpy values can represent either endothermic or exothermic reactions, depending 

on the sign of the value. Adsorption can”be either physically or chemically involved in 

exothermic processes [40,189], while adsorption is used in endothermic processes. 

Plot of the transition is shown in Figure 5.26, which is based on Equation 5.4. (d) For 

GS.  
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Table 4. 13: Presented are activation energy (Ea), entropy (∆So) and enthalpy of 

activation (∆Ho
a) values for zinc metal. 

Inhibitor Concentration 

(x10-5M) 

Ea 

(kJ.mol-1) 

∆Ho
ads 

(kJ.mol-1) 

∆So 

(JK-1.mol-1) 

 

GS 

0 30.85 28.13 -197.30 

10 31.98 29.26 -197.20 

30 33.03 30.30 -197.05 

50 38.94 36.21 -196.14 

 

4.3.4. Potentiodynamic polarisation (PDP) 

 

The polarisation parameters can be determined with the help of tafel plots. These 

include the corrosion potential (Ecorr), the corrosion current density (Icorr), the anodic 

tafel slope (ba), and the cathodic tafel slope (bc). Corrosion current densities were 

calculated by extrapolating tafel segments from anodic and cathodic curves. 

Coefficients of inhibition were found to be proportional to densities of corrosion 

currents (Equation 2.18) [148]. In Figure 4.27, we see a tafel plot for zinc metal in 1. 0 

M HCl at varying concentrations of the GS inhibitor compound, both in its uninhibited 

form and its inhibited form. The addition of glycerol stearate corrosion inhibitor was 

found to decrease Icorr values. Inhibitor adsorption onto the zinc metal surface was 

observed, providing support for the adsorption mechanism [181]. Furthermore, the 

calculated Ecorr difference between the blank (1. 0 M HCl) and the inhibitor solutions 

was less than 85 mV, indicating a mixed-type mechanism of inhibition with 

the”cathodic mechanism dominating as observed from the tafel slopes at each 

inhibitor” concentration [181]. 
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Figure 4. 27: Potentiodynamic polarisation plot for zinc in 1. 0 M HCl in the uninhibited 

and inhibited solutions of GS different concentrations. 

Table 4. 14 : Polarisation measurements such as Ecorr, Icorr, ba and bc using different 

inhibitor concentrations. 

Inhibitor Concentration 

x 10-5 (M) 

-Ecorr 

(mV) 

Icorr 

(mA.cm-2) 

ba (mV) bc 

(mV) 

%IEPDP 

Blank  445.25 0.38 70.3 97.5 - 

 

GS 

10 460.79 0.28 36.1 40.3 26.32 

30 435.47 0.19 18.5 25.3 50.00 

50 499.87 0.11 69.4 91.5 71.05 
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4.3.5. Electrochemical impedance 

Further study of corrosion behaviour zinc metal in acidic medium in the uninhibited 

and inhibited solution of GS at different concentrations. In Figure 4.28-4.29 is a 

representation of Nyquist plot and its corresponding bode plot for zinc metal in the 

absence and presence of GS inhibitor compound. Bode plots revealed some 

information with regards to electrochemical behaviour of both the uninhibited and 

inhibited systems, it was revealed that at higher phase angle there was a frequency 

shift to higher frequency in the presence of glycerol stearate concenntrations.  It is 

studied that the imperfection of the semicircles in the impedance spectra of zinc is due 

to the roughness and inhomogeneity on the metal surface [190]. From Table 4.15 is 

the impedance data for zinc metal obtained. Table 4.15 shows that the charge transfer 

resistance (Rct) increased as the inhibitor concentration increased.  The highest 

efficiency of 89.50% was obtained at 50x10-5 M. Moreover, to define the impedance 

nature, an equivalent electric circuit made up of the solution resistor (Rs), charge 

transfer resistance (Rct) and a double layer capacitance (Cdl) in Figure 4.30 was” 

utilised. 
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Figure 4. 28: Nyquist plot for zinc in 1. 0 M HCl in the uninhibited and inhibited 

solution with different GS concentrations. 
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Figure 4. 29: Bode plots of zinc in 1. 0 M HCl with and without glycerol stearate. 

Table 4. 15: Electrochemical impedance parameters. 

 

Inhibitor Concentration 

x 10-5 (M) 

Rs 

(Ω) 

Rct 

(Ω) 

Cdl 

(x10-6 F) 

%IEEIS 

Blank  2.348 6.429 0.418 - 

 

GS 

 

10 2.344 11.54 0.252 44.29 

30 3.109 16.94 0.419 62.05 

50 2.121 61.24 0.006 89.50 
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Figure 4. 30: The suggested electrical circuit for studied GS. 

 

4.4. CHARACTERISATIONS 

4.4.1. Fourier transform infreared spectroscopy (FTIR) 

In“order to study inhibitor adsorption film on the metal surface, fourier transform 

infrared spectroscopy (FTIR) was used [191]. The most region of interest is the high-

energy region from 3000-4000cm-1 [192]. In actual fact, this region highly corresponds 

to the OH-stretching vibrations [193]. Figure 4.31-4.33 displayed are IR spectrum of 

the adsorptive film and glycerol stearate (GS) for mild steel, aluminium and zinc. Each 

hydroxyl group formed hydrogen bonds which are detected by the peak at 3307 cm-1, 

secondly followed by a band occurring at 3241 cm-1. In addition, observing from a low 

energy region, there are two peaks occurring at 2914 cm-1 and 2849 cm-1 which 

represent the typical CH2 stretch of alkyl carbon chains. Furthermore, another visible 

peak occurring at 1730 cm-1 is accredited to the C=O stretching mode. Moreover, on 

the adsorption film spectrum, the peak at around 590.34 cm-1 is accredited to the 

passivating iron oxide layer formed on the mild steel. When comparing glycerol 

spectrum and spectra for adsorptive films for mild steel, aluminium and zinc there is a 
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disappearance of glycerol stearate functional groups with respect to each adsorptive 

film formed on three specimen such as mild steel, aluminium and zinc and this imply 

that indeed the reactive heteroatoms have coordinated well on the surface” of each” 

metal. 

 

 

 

Figure 4. 31: FTIR spectra for glycerol stearate and adsorption film formed on 

aluminium. 
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Figure 4. 32: FTIR spectra for glycerol stearate and adsorption film formed on mild 

steel. 
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Figure 4. 33 : FTIR spectra for glycerol stearate and adsorption film formed on zinc. 

 

4.4.2. Scanning electron microscopy (SEM) and energy dispersive spectroscopy 

(EDS) 

In Figure 4.34, 4.37, 4.40, “shown are smooth surfaces of aluminium, mild steel and 

zinc respectively before corrosion testing, any inhomogeneity revealed was due to 

abrasion with emery papers. Nonetheless in Figure 4.35, 4.38, 4.41 after immersion 

in 1. 0 M HCl aluminium, mild steel and zinc surfaces showed a rougher nature. These 

observations are substantiated by corresponding EDS spectra revealing the absence 

and presence of Cl- that led to aluminium surface roughness [194]. However, 

introducing glycerol stearate inhibitor minimised more surface roughness when 
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comparing SEM micrographs in the absence and presence of inhibitor in 1. 0 M HCl 

solution as shown in Figure 4.36, 4.39, 4.42 for aluminium, mild steel and zinc.  

 

 
 
Figure 4. 34:  SEM micrograph and EDS spectrum of pristine aluminium metal. 
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Figure 4. 35: SEM micrograph and aluminium EDS spectrum in 1.0 M HCl solution. 

 

 

 



 

 

 

 

129 
 

 

 

 

 

Figure 4. 36: SEM micrograph and EDS spectrum of aluminium in 1.0 M HCl and 

glycerol stearate inhibitor. 

Figure 4. 37:  SEM micrograph and EDS spectrum of pristine mild steel. 
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Figure 4. 38: SEM micrograph and mild steel EDS spectrum in 1.0 M HCl solution. 
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Figure 4. 39: SEM micrograph and EDS spectrum of mild steel in 1.0 M HCl and 

glycerol stearate inhibiton. 
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Figure 4. 40 : SEM micrograph and EDS spectrum of pristine zinc. 
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Figure 4. 41: SEM micrograph and EDS spectrum of zinc in 1.0 M HCl.  
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Figure 4. 42: SEM micrograph and EDS spectrum of zinc in 1.0 M HCl and glycerol 

stearate inhibiton. 

 

4.5. DENSITY FUNCTIONAL THEORY (DFT) 

The“data collected from weight loss measurements and electrochemical techniques 

were further substantiated with chemical quantum calculations which played an 

essential role in studying the reactivity and selectivity parameters of glycerol stearate 

as the inhibitor molecule in this study [195]. There need to study the inhibitor’s 

reactivity and selectivity emanate due to different regions within the inhibitor which 

interact with the metal surface. There are ample electronic properties on which the 

reactivity of the inhibitor depends, such as dipole moment, partial charges, and 

electronic density to mention few. In addition, the nature of functional groups within 

the inhibitor influences the electronic properties. In Figure 4.43, displayed is the 

schematic representation and optimised geometry of glycerol stearate with the atom 

numbering used in this study. Reason why the geometry of the inhibitor is of outmost 

importance is due to the dependence of the inhibition efficiency on the geometry of the 



 

 

 

 

135 
 

 

 

 

inhibitor molecule. Among many, inhibitor compounds with planar geometry are most 

preferred due to their inhibition efficiencies as compared to non-planar geometries 

[196]. This is due to high possibility of a planar inhibitor molecule to result in a larger 

surface coverage on the metal surface through the inhibitor’s most reactive atomic” 

sites.  

 
 
Figure 4. 43: The optimised geometry and the atom numbering of the studied glycerol 

stearate. 

Through the analysis of the Highest Occupied Molecular Orbital (HOMO) and the 

Lowest Unoccupied Molecular Orbital (LUMO) the reactive sites of glycerol stearate 

can be studied. Furthermore, the study of reactivity parameters such as the HOMO 

energy (EHOMO), the LUMO energy (ELUMO), global softness (σ), global hardness (η), 

electron affinity (EA), ionisation potential (IP) and electronegativity (χ). The reactive 

sites of glycerol stearate can be studied using the Highest Occupied Molecular Orbital 

(HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO). In addition, the 

investigation of reactivity parameters such as the HOMO energy (EHOMO), the LUMO 

energy (ELUMO), global softness (σ), global hardness (η), electron affinity (EA), 
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ionisation potential (IP), and electronegativity (χ) was done. In Figure 4.44 and Figure 

4.45, shown are the HOMO and LUMO of the studied glycerol stearate respectively. 

 
 
Figure 4. 44: Relaxed geometries and HOMO (isosurface generation isovalue = 0.05) 

of glycerol stearate. 
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Figure 4. 45: Relaxed geometries and LUMO (isosurface generation isovalue = 0.05) 

isosurfaces of glycerol stearate. 

 
The“area where electrophilic attack is mostly emanating is at the HOMO while the area 

where the nucleophilic attack is likely to occur from the LUMO [197]. From this study, 

the highest HOMO densities of glycerol stearate occur at carbon atoms on C1, C2, 

C3, C4, on hydroxide oxygen atoms (O1 and O2), on the ether functional group O3 

and lastly on the carbonyl O4. Since the LUMO densities entails information 

concerning the nucleophilic attack, however, this is mainly applicable provided the 

metal surface back donates electrons to glycerol stearate. 

Table 4.16 shows the molecular quantum chemical parameters which relate with the 

reactivity of glycerol stearate used in this study. The parameters included are EHOMO, 

ELUMO, the energy gap (ΔE), among others. The interactions between the HOMO and 

LUMO of reacting glycerol stearate is responsible for electron transition between the 

metal-inhibitor interfaces and this was informed by Frontier Molecular Orbital Theory 

(FMO) [198]. In addition, at the EHOMO glycerol stearate donate electrons to the empty 

d-orbital of the metal, thus higher”EHOMO values are appreciated since they cater for 
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the electron deficient species according to studies [199]. Furthermore, chemical 

compound possessing higher EHOMO values show appreciable inhibition efficiencies 

and enhances an effective adsorption process at the metal-inhibitor”interface [200].  

 

Table 4. 16: Molecular quantum chemical parameters. 

 

Molecular Property Inhibitor Compound 

GS 

EHOMO (eV) -5.470 

ELUMO (eV) -0.067 

ΔE (eV) 5.403 

ɳ 2.702 

σ 0.370 

I (eV) 5.470 

A (eV) 0.067 

ω 1.419 

ꭓ 2.769 

 

 

The degree to which a chemical compound can receive electrons is shown by ELUMO 

values. Lower ELUMO values show a high probability to which a compound can accept 

electrons from some electron rich chemical species [201]. Further information with 

regards to glycerol stearate reactivity, it is through the study of the energy gap. From 

ΔE, the stability and reactivity of the inhibitor molecule can be studied. Thus, higher 

ΔE value is associated with high stability and less reactivity, meanwhile lower ΔE value 

associates with low stability and more reactive to other species [202]. Regarding the 

polarity of the molecule a dipole moment is studied. In addition, from other projects 

dipole moments were reported to increase with increasing inhibition efficiencies 

meanwhile in other reports a different trend was observed [203]. The other crucial 

reactivity parameter shown in Table 4.16 is the electronegativity (ꭓ) which gives 

information“regarding the electron density and the ability of an electron or atom to 
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attract more electrons to itself [204]. The complementing parameter to 

electronegativity is global electrophilicity index (ω), chemical inhibitor with higher ω 

value are named good electrophiles meanwhile those with lower ω value are named 

good nucleophiles [205]. Furthermore, information regarding the resistance of an atom 

to charge transfer is given by global hardness (ɳ) and higher ɳ values signify a higher 

resistance for the inhibitor to transfer charge to the metal surface. Thus, inhibitors with 

a lower ɳ value are mostly appreciated as this will enhance a better adsorption process 

at the metal-inhibitor interface. Global softness is denoted by σ which relates to the 

softness of the inhibitor compound and at the highest σ inhibitor region an enhanced 

inhibitor-metal adsorption is observed [195]. Electron affinity (A) reveals an electron 

deficiency region hence it associates with the ELUMO. Moreover, another crucial 

molecular reactivity parameter is ionisation potential (I) which reveals the amount of 

energy required to remove an electron from the molecule [187] and this”is helpful in 

investigating the amount of energy it takes reactive atoms within glycerol stearate to 

transfer electrons to then metal’s empty”orbital. 
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CHAPTER FIVE 

GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

 

5.1. GENERAL DISCUSSION AND CONCLUSIONS 

 
In “this research, inhibition efficiencies of aluminium, mild steel, and zinc in 1. 0 M HCl 

by glycerol stearate was evaluated. This research was initiated in a quest to find an 

alternative method that is environmentally user friendly. This compound is nontoxic, 

biodegradable and it does not show signs of bioaccumulation. Its ecofriendly chemical 

nature elevates it to be evaluated as a corrosion inhibitor in line with all the aspects of 

green chemistry. It is readily available and well priced, and its application did not seem 

to react with the surrounding chemicals or ambient air to produce more toxic exudants. 

The efficiency of glycerol stearate as a corrosion inhibitor was researched by exploiting 

the following scientific techniques viz, gravimetric analysis, electrochemical 

techniques (potentiodynamic polarisation and electrochemical impedance), 

computational studies and visual comparison. 

5.1.1. Visual comparison 

i. From Figures 4.1-4.5 which displays the rate of corrosion of aluminium 

with passage of time it was clear that this was comparable throughout 

when either the inhibitor is used or not. There was no clear distinction of 

the one with the inhibitor or not. There was however a tinge of 

discolourisation after a year for one without the inhibitor. 

ii. The results from mild steel evaluation as displayed from Figures 4.12-

4.15 showed a clear level of deterioration of mild steel (without inhibitor) 

as compared to the one with the inhibitor. The rusting process showed 

its intensity with the progression of time. After a year the mild steel 

treated with the inhibitor was still intact with no visible signs of 

deterioration. In this case we will accept the hypothesis that glycerol 

stearate slows down or inhibits corrosion within a specified period. This 
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was further emphasised through Figure 4.15 (a) and Figure 4.15 (b) 

respectively. 

iii. From Figures 4.22-4.25 there was a clear indication of rusting with 

progression of time mostly for zinc without inhibitor. At 6 months the one 

not treated with glycerol stearate had started showing signs of significant 

deterioration while the treated one remained intact and maintaining its 

original colour. After a year there was almost complete deterioration for 

the untreated one. 

5.1.2. Gravimetric analysis 

Gravimetric analysis is the easiest way to track the deterioration percentage versus 

time. The loss of some components of the material through corrosion can be computed 

to quantify the level of deterioration. The greater the mass loss the greater the 

deterioration. 

i. In Table 4.2, Table 4.7 and Table 4.12 which are for aluminium, mild 

steel and zinc respectively, it was observed that ΔG°ads values for GS 

inhibitor were less than -20 kJ.mol-1  for all metals in a negative direction, 

which indicated a physisorption mechanism of adsorption. The values of 

ΔG°ads between -20 kJ.mol-1 and -40 kJ. mol-1 signify a mixed type of 

adsorption mechanism and ΔG°ads of -40 kJ. mol-1 and more in a 

negative direction accounts for a chemisorption adsorption mechanism 

[163–165].  

ii. In this study, positive values of ΔH°ads were obtained for aluminium, mild 

steel and zinc which revealed that the corrosion of metals occurred via 

endothermic reaction as shown in Tables 4.3, 4.8 and 4.13. Figures 4.6 

(d), 4.16 (d) and 4.26 (d) corroborate results for aluminium, mild steel 

and zinc as displayed in Tables 4.3, 4.8 and 4.13. 

iii. The values of ΔS° for aluminium were observed to be positive and 

increasing as the inhibitor concentration increased which implies that 

there was an increase in disorder as inhibitor molecules were desorbing 

water molecules from the metal surface as shown in Table 4.3 and 
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Figure 4.6 (d). Furthermore, negative ΔS° values for both mild steel and 

zinc in the presence of the inhibitor concentrations were observed as 

shown from Table 4.8 and Table 4.13. This behavior is due to a decrease 

in disorderliness as a corrosion reaction proceeds from reactants into 

products upon the rate determining step which is associative instead of 

dissociative. Figures 4.16 (d) and 4.26 (d) are substantiating and 

confirming what has been given from Tables 4.8 and 4.13. 

iv. The activation energy values for aluminium, mild steel and zinc were 

observed to be higher and increasing in the inhibited solutions than the 

uninhibited solutions which implies that indeed an activated complex 

which is akin to an adsorptive film has formed by the inhibitor molecules 

as shown in Tables 4.3, 4.8 and 4.13, this has been confirmed from 

Figures 4.6 (c), 4.16 (c) and 4.26 (c). 

v. The percentage inhibition efficiencies for aluminium, zinc and mild steel 

were observed to increase by roughly +/- 2% as the inhibitor 

concentration increased with decreasing corrosion rates as shown in 

Tables 4.1, 4.6 and 4.11 and further confirmed from Figures 4.6 (a), 4.16 

(a) and 4.26 (a). 

vi. For all metals as derived from the Tables 4.2, 4.7 and 4.12 the isotherm 

followed is Langmuir. These Tables are constructed from Figures 4.6 (b), 

4.16 (b) and 4.26 (b). 

5.1.3. Electrochemical techniques 

Tafel plots displayed as Figures 4.7, 4.17 and 4.27 showed that glycerol stearate 

behaved as mixed-type inhibitor due to the fact that corrosion potential difference of 

the uninhibited and inhibited systems was found to be less than 85 mV as shown in 

Tables 4.4, 4.9 and 4.14 [181]. From electrochemical impedance spectroscopy data 

displayed in Tables 4.5, 4.10 and 4.15 for aluminium, mild steel, and zinc respectively, 

double layer capacitances values decreased as compared to the blank solution when 

glycerol stearate was introduced. For example, as the inhibitor concentrations 

increased from 10 x 10-5 M, 30 x 10-5 M and 50 x 10-5 M the double layer capacitances 
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decreased from 60.24 x 10-6 F, 59.71 x 10-6 F and 45.05 x 10-6 F respectively for 

aluminium metal. This was the trend for mild steel and zinc as shown in Tables 4.10 

and 4.15. This trend was explained based on the adsorption of glycerol stearate on 

aluminium, mild steel and zinc surfaces and was as a result of a decrease in water 

electric constant thus increasing the double layer capacitance. 

5.1.4. Adsorption film studies (FTIR) 

Fourier transform infrared (FTIR) spectra of glycerol stearate as compared to 

adsorption films formed on aluminium, mild steel and zinc surfaces there were 

disappearances of some functional groups such as the -OH stretching, -OH bending 

and -C-O at 3307 cm-1, 3241 cm-1 and 1750 cm-1 respectively owing to successful 

adsorption of glycerol stearate on aluminium, mild steel and zinc with the emergence 

of new bands especially for aluminium such as Al-OH at 1250 cm-1  and Al-O at 1062.5 

cm-1. 

5.1.5. Morphological studies 

Figures 4.36, 4.39 and 4.42 are scanning electron microscopy results that show the 

adsorptive layer formed by glycerol stearate. The corrosion inhibition of aluminium, 

mild steel and zinc metal occurs through the pathway whereby metal acidic solution 

interface is deprived sufficient direct contact. This prevents oxidation of the metal by 

creating a barrier that prevents loss of electrons. This barrier prevents the flow of 

electrons from the metal to the oxidising agent. 

5.1.6. Computational studies 

Computational studies are employed to reveal the specific points at which the 

corrosion inhibitor will attach on the surface of the metal. As a result, this will give its 

selectivity and reactivity based on the ideal site of attachment. The reactivity is dictated 

upon by the site of attachment which is based on whether the reaction is endothermic 

or exothermic. This then leads to the rate at which corrosion will proceed with ease 

without external input of energy. The highest densities of HOMO for glycerol stearate 

occurred at carbon atoms on C1, C2, C3, C4, on hydroxide oxygen atoms (O1 and 
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O2), on the ether functional group O3 and lastly on the carbonyl O4 as shown in 

Figures”4.43 and 4.44. 

OVERALL CONCLUSION 

 

In view of all the data accumulated one can now reach a conclusion about the 

performance of glycerol stearate as a corrosion inhibitor. This is derived from the 

series of results such as gravimetric analysis, electrochemical techniques, 

computational studies, adsorption film studies, and morphological studies. From 

computation of the results, it was determined that the optimum corrosion inhibition 

efficiencies for aluminium metal from gravimetric analysis, potentiodynamic 

polarisation and electrochemical impedance spectroscopy were 98.51%, 81.06% and 

86.18% respectively with the average 88.58%. In addition, for mild steel the optimum 

corrosion inhibition efficiencies were from gravimetric analysis, potentiodynamic 

polarisation and electrochemical impedance spectroscopy were 92.54%, 82.69% and 

75.44% respectively with the average value of 83.56%. The optimum corrosion 

inhibition efficiency value obtained for zinc metal from gravimetric analysis, 

potentiodynamic polarisation and electrochemical impedance spectroscopy were 

73.13%, 71.05% and 89.50% rescpectively with the average value of 77.89%. From 

the calculated percentages it is safe to conclude that the inhibition of corrosion by 

glycerol stearate on selected metals was succesful. The corrosion inhibition 

percentages and the fact that glycerol stearate is nontoxic, does not form new 

poisonous material as it associates with the metals, it is economical and abundantly 

available renders it an ideal corrosion inhibitor. The pathway and its effectiveness align 

it very well with green technology as a quest for environmental care and” rehabilitation. 

 

5.2. RECOMMENDATIONS FOR FUTURE WORK 

Firstly, “addition of nano material and electron donating functional groups to glycerol 

stearate can improve its inhibition efficiency in preventing corrosion of the aluminium, 

mild steel and zinc. In addition, introducing functional groups on glycerol stearate will 

improve its solubility. Secondly, a suitable solvent for the solubility of glycerol stearate 
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should be investigated. Furthermore, it will be worthy for other metals to be considered 

for corrosion testing other than aluminium, mild steel and zinc, in this way the optimum 

performance of glycerol stearate will be shown vividly. Quest for glycerol stearate 

derivatives is of paramount importance in order to run quantitative structure activity 

relationship with the aid of chemical quantum parameters such as dipole moment and 

many more. 
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