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Abstract

Planewave pseudopotential calculations were conducted to predict the

energetics and phase stability of Pt-Cr and Ru-Cr binary alloys. Validation

of appropriate number of k-points and planewave energy cut-off was carried

out for all studied systems. At the composition of A3B and AB3 (where

A = Cr and B = Pt or Ru) phases, the heats of formation determined for

five different structures, L12, A15, tP16, DOC and DO′

C are almost of the

same magnitude and the relaxed structures show no rotation. We observed

that the cubic L12 Pt3Cr is the most stable structure in agreement with the

experiments. The results for PtCr3 indicate the negative heat of formation for

the A15 phase whereas all the remaining studied phases have positive heats

of formation. It is clear that the PtCr3 (A15) is the most stable structure.

PtCr (L10) was found to be more stable compared with PtCr (B2) phase. The

L12 Pt3Cr, A15 PtCr3 and L10 PtCr phases could be considered as possible

coatings to cover the engines which are exposed to aggresive environments.

The heats of formation of all studied compositions and phases of Ru-Cr

systems are positive, these results suggest that, generally, studied Ru-Cr

phases are not stable. The effect of pressure and doping were investigated on

A15 RuCr3 structure which was reported to exist at a higher temperature.

Elastic constants and moduli were investigated to determine the strength

of the PtCr systems. The strength of PtCr L10 is greater than that of B2

phase. The ratio of shear to bulk modulus (G/B) has been used to predict

the ductility or the brittleness of the material. It was found that Pt3Cr L12

is the most ductile phase among those considered in this study. The density



of states were calculated to further analyze the stability of systems.

The magnetic properties of Cr were studied using VASP which predicted an

anti-ferromagnetic and a non-magnetic ground state for pure Cr. We have

investigated the thermal stability at 0 GPa for different phases of Pt3Cr,

PtCr3, PtCr and RuCr3 A15 phase, where we detected the soft modes at

X, G, M and R points of the Brillouin zone from the phonon spectra of

Pt3Cr A15 phase. Pt3Cr L12 and PtCr3 A15 are predicted as dynamically

stable structures. RuCr3 A15 phase was found to be dynamically stable

but thermodynamically unstable. Phonon DOS were studied to observe the

modes of vibration and atoms that contribute to soft modes. Lastly we

investigated the thermal expansion of Pt3Cr L12 and A15 phases.



Chapter 1

Introduction

In this chapter we give a brief overview of the previous theoretical and ex-

perimental work done on the metallic Pt, Cr, Ru and their binary alloys.

The importance and the use of the Pt-Cr and Ru-Cr alloys will be briefly

summarized, lastly we state the objectives of the study.

1.1 Overview

Transition metal alloys serve as a good basis for development of modern

solid-state theory and have a variety of potential applications in technol-

ogy. Materials that are solid at high temperatures are in demand for high-

temperature structural applications, whereas those having high values of

strength-to-weight and stiffness-to-weight are desired for aircraft and space

applications. Improving the efficiency of gas turbine and prolonging the ser-

vice life of turbine hot-section components are constant driving forces for

the development of high temperature materials in engine industries. The gas

turbine engines are used in today’s means of transport, i.e trains, ships, air-

1
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crafts etc. These engines are exposed to environments such as hot corrosion[1]

and oxidation that can decreace the engine’s operation time. With today’s

jet engine operating temperatures, thermal barrier coating failure results in

melting of the blade. But even without reaching such catastrophic failure,

blades suffer from accelerated oxidation depending on the environment and

hot corrosion. Coatings can considerably enhance the oxidation and hot

corrosion resistance of these components.

We study Pt based superalloys since their higher melting point and good

corrosion resistance have the potential to substitute Ni-based superalloys

for high temperature components in turbine engines. The platinum family

(platinum, palladium, ruthenium, iridium, osmium and rhodium) is one of

the most important group of metals. These materials and their alloys display

exceptional qualities as they have high corrosion resistance, high resistance

to arc erosion and a high melting point. The alloys of this family are very

hard, and consequently they have a good mechanical wear ability. When

used in proper applications, the platinum metals provide years of successful

operation.

In search for the new materials to be used as components in gas turbine

engines, considerable interest has been shown in chromium(Cr) and Cr-rich

alloys since the late 1950s as Cr has a high melting temperature (1863 ◦C)

and a good oxidation resistance. Its low density (20 % less than that of most

Ni-base alloys) and high thermal conductivity (two or four times higher than

that of most Ni-base superalloys) are also attractive since they may result

in increased efficiency[2, 3, 4]. The presence of a significant amount of Cr
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gives the Pt and Ru coatings excellent corrosion resistance combined with

good oxidation resistance. Ruthenium is a hard, silvery white metal with

a shiny surface and a melting point of 2300 - 2450 ◦C, a boiling point of

about 3900 - 4150 ◦C, and a density of 12.41 g/cm3. It is a relatively inert

element that does not react with oxygen, most acids or aqua regia (mixture

of concentrated nitric acid and 3-4 parts of hydrochloric acid).

Platinum-group metals (PGMs) such as platinum, palladium, rhodium,

ruthenium, osmium, and iridium have many outstanding properties. They

are widely used in the automotive industry as catalysts. They have very high

melting points, for example, Pt, Rh, and Ir melt at 1769, 1966, and 2247 oC,

respectively. Their alloys are thus widely used as crucibles for growing single

crystals especially oxides. Platinum is used in industries owing to its wear

resistance and as jewellery due to its lack of tarnish. It is used as a coating

to chemical attack and as a resistor due to its excellent high-temperature

resistance. [5, 6, 7]

1.2 Binary alloys

PtCr and RuCr are additional binaries that have been prioritised in the cur-

rent study and associated compositions such as PtCr3, Pt3Cr (A15, L12,

tP16, DOc and DO′

c), PtCr (B2 and L10), RuCr (B2 and L10) and RuCr3,

Ru3Cr(A15, L12, tP16, DOc and DO′

c) have been targetted. These binaries

were also studied experimentally by Mintek and indeed related equilibrium

phase diagrams and solid phases are being determined. Information on stud-

ies of Pt-Cr and Ru-Cr binary and ternary alloys is scarce in literature when
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compared to Ni-Al and Pt-Al binaries.

1.2.1 PtCr Alloys

Much research has been done on Pt3Cr ordered alloy with Cu3Au-type struc-

ture. The ground state magnetic properties [8] of Pt3Cr have been explained

from the calculated electronic structure using tight-binding parametrisation

scheme. The global trends of the experimental values such as the local mag-

netic moments have been reproduced satisfactorily by spin-polarized band

calculations and the ferrimagnetism in Pt3Cr has been explained in terms of

the hybridisation between 3d states in Cr band and 5d states in Pt band.

Several studies have been done on Pt3Cr [9, 10] since the A3B-type in-

termetallic compounds have attracted considerable interest owing to their

diverse mechanical, structural and magnetic properties. Extensive work has

been done on Pt-Cr alloys [11] to understand the crystal structure and mecha-

nism of the ordered phase. Jackson et.al [11] performed tensile (using small-

scale tensile testing materials) and hardness tests to measure mechanical

properties after various heat treatments. The results for tensile tests indi-

cated an increase in tensile strength with no effect on ductility. The electrical

sensitivity of several Pt-Cr alloys containing between 5 and 15 at.%Cr has

been measured over the temperature range of 1.4 - 300 K [12]

1.2.2 RuCr Alloys

No thermodynamic measurements of RuCr were reported up to 1987 [13]. An

enthalpy of formation of Cr2Ru was calculated using Mediema’s model, and a
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value of -15 kJ/mol was obtained. Addition of Ru increases the Neel temper-

ature of pure Cr from 311.5 K to a maximum of ≈ 550K at ≈ 5at.%Ru. A

further increase in Ru content to ≈ 15at% lowers the temperature at ≈ 273K

[14]. Weak ferromagnetism was observed in the regions of 30 and 60 at.%Ru.

1.3 Overview of the Pt,Cr, Ru and their bi-

nary alloys

This section gives an overview of the Pt-Cr and Ru-Cr phase diagrams, and

lastly the structural aspects of all studied phases of the metallic Pt, Cr and

Ru and their binary alloys.

1.4 The Pt-Cr phase diagram

PtCr system was reviewed [15] and their assessed phase diagram [16] in Fig-

ure 1.1 is based primarily on extensive experimental study using microscopic,

XRD and electron micropobe technique [17, 18]. The phase diagram is dom-

inated by broad homogeneity range of the (Pt) terminal solid solution from

29 to 100at.%. The composition and temperature of the eutectic have been

determined by Waterstrat [18].

Recently a calculated phase diagram Fig 1.2 was carried out [19]. The pres-

ence of a eutectic reaction on either side of PtCr3 was established [20, 21].

PtCr3 remains cubic over its whole composition range from 50-85 at.% Pt[18,

20, 21, 22, 23, 24, 25]. L12 Pt3Cr orders to an L10 type at composition PtCr,

without the tetragonal distortion typical of this structure [18, 23, 24, 25].

Through thin film studies, a tiny distortion was however, shown [26, 27, 28]
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Figure 1.1: Phase diagram of Pt-Cr by Massalski[16]



1.4. THE PT-CR PHASE DIAGRAM 7

Figure 1.2: Phase diagram of Pt-Cr by Oikawa[19]

as well as a PtCr/Pt3Cr two-phase region. Using Miedema’s model [13],

an enthalpy of formation with a value of δH = −36kJ/mol (of atoms) was

calculated for PtCr.

Small additions of Pt increase the Neel temperature of pure Cr from 311.5

to 440K (at 0.6 at.% Pt) [29], 583K at 2at.% Pt [30], and 460K at 5at.% Pt

[31]. Disordered(Pt) is paramagnetic, while Pt3Cr shows strong spontaneous

magnetisation [25]. Pt3Cr is ferromagnetic [23], with some maximum mag-

netisation near stoichiometric composition [25], which then decrease with

increasing Cr until it changes to antiferromagnetic behaviour at ≈ 52at.%

Pt [21, 30] to that of the PtCr phase which show no Neel point [24]. The

addition of Cr strongly increases the electrical resistivity of Pt [17, 21, 32, 33].
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1.5 The phase diagram of Ru-Cr

The commonly accepted binary phase diagram for the Ru-Cr system is shown

in Figure 1.3. According to this diagram, the terminal Cr solid solution has

a maximum solid solubility of 18.0 % Ru at room temperature and about 26

% Ru at 1600 K. At room temperature, two or multiphase structures exist

for alloys with Ru concentrations from 18 to about 59 %. Several researchers

proposed different versions of the binary phase diagram for the Ru-Cr system.

Savitskii et al. first presented the phase diagram of Ru-Cr, which indicated

a eutectic reaction in the composition region between 0 to 24 % Ru [34].

However, a significantly different version was given by Shunk [35] and was

confirmed with small changes by Waterstrant in 1981 [36].

The Massalski phase diagram [38] is based on the review of the work on

microstructural evolution and mechanical properties of Ru-Cr alloys and is

similar to that proposed by Shunk [35]. According to this phase diagram,

terminal Cr has a maximum solubility of about 18.0 % Ru at room temper-

ature and about 26 % Ru at 1600 K. However Gu et al work [37] indicated

that the alloys containing 6 to 20 % Ru precipitated the RuCr3 phase during

heat treatment.

There are two possible explanations for the formation of RuCr3 in this

composition region. The first involves inhomogeneity caused during solidifi-

cation and heat treatment. Since the ingots were remelted at least five times

and the microstructure was homogeneous for all tested specimens according

to their investigation, this reason is possible but not probable. The second

possible explanation is that the solid solution data presented in Figure 2.3
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Figure 1.3: phase diagram of Ru-Cr [38]

[38] are in error. Since the precipitates first formed at the grain boundaries

and their volume fraction increased with increasing Ru content, Gu et al [37]

suggest that there is a eutectic reaction between α chromium and RuCr3 and

Ru concentrations ranging from about 3 to approximately 20%.

1.6 Structural aspects of Pt, Cr, Ru and their

binary alloys

There are 14 different types of crystal cell structures or lattices that are

found in nature. However most metals and many other solids have unit cell
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structures described as bcc, fcc or hcp. A key feature that distinguishes

metals from non-metals is their bonding; they have electrons that are free to

move easily from one atom to the next.

1.6.1 fcc Pt

The fcc structure atoms are located at each of the corners and the centers of

all cubic faces. Each of the corner atoms is the corner of another cube so the

corner atoms are shared among eight unit cells. Additionally, each of its six

face centered atoms is shared with an adjacent atom. Since 12 of its atoms

are shared, it is said to have a coordination number of 12. The fcc unit cell

consists of a net total of four atoms; eight eigths from corners atoms and six

halves of the face atoms.

The atoms in the fcc can pack closer together than they can in the bcc

structure. The atoms from one layer nest themselves in the empty space

between the atoms of the adjacent layer. Pt is a face centered cubic struc-

ture with a space group symmetry Fm-3m and pearson symbol cF4. The

experimental lattice parameter of Pt at room temperature is 3.924 Å [39].

The atoms are located at (0 0 0) and the melting point is 17690C.

1.6.2 bcc Cr

The bcc unit cell has atoms at each of the eight corners of a cube plus one

atom in the center of the cube. Each of the corner atoms is the corner of

another cube so the corner atoms are shared among eight unit cells. It is

said to have a coordination number of 8. The bcc unit cell consists of a net
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total of two atoms; one in the center and eight eights from corners atoms.

The bcc arrangement does not allow the atoms to pack together as closely

as the fcc or hcp arrangements. The bcc is often the high temperature form

of metals that are close-packed at lower temperatures.

The bcc unit cell ha s a packing factor of 0.68. Metals which have a

bcc structure are usually harder and less malleable than close-packed metals

such as gold. When the metal is deformed, the planes of atoms must slip

over each other, and this is more difficult in the bcc structure. It should be

noted that there are other important mechanisms for hardening materials,

such as introducing impurities or defects which makes slipping more difficult.

Cr has a body-centered structure with a space group Pm-3m and pearson

symbol cP2, the experimental lattice parameter of Cr is 2.884 . The structure

contains two Cr atoms per unit cell located at (0 0 0) and (0.5 0.5 0.5). The

melting point of Cr is 18630C.

1.6.3 hcp Ru

Another common closed packed structure is the hexagonal close packing. The

hexagonal structure of alternating layers is shifted so its atoms are aligned

to the gaps of the preceding layer. The atoms from one layer nest themselves

in the empty space between the atoms of the adjacent layer just like in the

fcc structure. However, instead of being a cubic structure, the pattern is

hexagonal. The hcp structure has three layers of atoms. In each, the top

and bottom layer, there are six atoms that arrange themselves in the shape

of a hexagon and a seventh atom that sits in the middle of the hexagon. The
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middle layer has three atoms nestled in the triangular ”grooves” of the top

and bottom plane.

There are six of these ”grooves” surrounding each atom in the hexagonal

plane, but only three of them can be filled by atoms. There are six atoms

in the hcp unit cell. Each of the 12 atoms in the corners of the top and

bottom layers contribute 1/6 atom to the unit cell. The two atoms in the

center of the hexagon of both the top and bottom layers each contribute 1/2

atom and each of the three atoms in the middle layer contribute 1 atom.

The coordination number of the atoms in this structure is 12. There are

six nearest neighbours in the same closed packed layer, three in the layer

above and three in the layer below. Ru exhibits the hexagonal closed packed

structure with experimental lattice parameter of 2.73 Å. The melting point

of Ru is between 2.300oC and 2.450oC.

The hcp and the fcc structures both have a packing of 0.74, consist of

closely packed planes of atoms, and have a coordination number of 12. The

difference between the fcc and hcp is the stacking sequence. The hcp layers

cycle among the two equivalent shifted positions whereas the fcc layers cycle

between three positions. The HCP contains only two types of planes with

an alternating ABAB arrangement. Atoms of the third plane are in exactly

the same position as the atoms in the first plane. However, the fcc structure

contains three types of planes with ABCABC arrangement. Atoms in rows

A and C are no longer aligned. Cubic lattice structures allow slippage to

occur more easily than non-cubic lattices, so hcp are not as ductile as the fcc

metals.
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Figure 1.4: PtCr B2 structure, atoms are represented by balls of different
colors: pink (Pt) and green (Cr)

1.6.4 B2 PtCr and RuCr

PtCr and RuCr have a CsCl structure as shown in Figure 1.4: the B2 PtCr

structure. The unit cell has two atoms of different species i.e Pt and Cr

which are located at Cr (0 0 0) and Pt (0.5 0.5 0.5).

1.6.5 L12 AB3 and A3B

Pt3Cr alloy is known to have the crystal structure of Cu3Au(L12) type with a

space group Pm-3m and pearson symbol cP4. Cu3Au is an ordered alloy that

possesses well-understood surface properties for which experimental determi-

nation of the band structure has been extensively compared with theoretical

calculations. This structure has cubic symmetry, which suggests that the al-

loys have no uniaxial magneto-crystalline anisotropy. The structure consists

of four atoms per unit cell (3Pt, Cr), with Cr and Pt atoms located at 1a(0

0 0) and 3c(0 0.5 0.5) respectively as shown in Table 1.1. The optimized

structures of Pt3Cr L12 and PtCr3 L12 are shown in Figures 1.5 and 1.6
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Figure 1.5: Pt3Cr L12 structure

Figure 1.6: PtCr3 L12 structure

Table 1.1: The atomic positions (Wyckoff notation) in the L12 Pt3Cr crystal
structure.
Atoms Positions x y z

Cr 1a 0.0 0.0 0.0
Pt 3c 0.0 0.5 0.5
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Figure 1.7: Pt3Cr A15 structure

1.6.6 A15

The A15 compounds crystallize in a structure in which the unit cell has the

overall shape of a cube as shown in Figure(s) 1.7 and 1.8 the A15 unit cell

of Pt3Cr and PtCr3 respectively. In Pt3Cr , the Cr atoms are located at the

corners and in the center of the cube, while the Pt atoms are arranged in pairs

on the cube faces. A special charectaristic of the A15 crystal structure is that

the Pt atoms form mutually orthogonal linear chains that run throughout

the crystal lattice.

1.6.7 DOC

Pt3Cr takes the tetragonal DOC structure, which is shown in Figure 1.9. The

prototype is U3Si. The lattice constants are a = 5.225 Å and c = 7.418 Å.

The DOC structure has the same Pearson notation as DO
′

C, the difference

being in the position of the Cr atoms. In DOC the Cr atom occupies the 4a

site, while in the DO
′

C the Cr atom is on the 4b site, as shown in Table 1.2

and Figure 1.10.
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Figure 1.8: PtCr3 A15 structure

Figure 1.9: Pt3Cr DOc Structure

Figure 1.10: Pt3Cr DO′

c Structure
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Table 1.2: The atomic positions (Wyckoff notation) in the DOC and DO
′

C

Pt3Cr crystal structure. The displacement parameter,u is different for DOC

and DO
′

C structures.

Atom in DOC Atom in DO
′

C Positions x y z
Cr Pt1 4a 0.00 0.00 0.25
Pt1 Cr 4b 0.00 0.50 0.25
Pt2 Pt2 8h 0.25-u 0.75-u 0.00

Figure 1.11: PtCr3 DOc Structure

Figure 1.12: PtCr3 DO′

c Structure
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Table 1.3: The atomic positions (Wyckoff notation) in the GaPt3 type of the
space group P4/mbm (pearson symbol tP16), Pt3Cr crystal structure.

Atom Positions x y z
Cr 4f 0.000 0.500 0.258
Pt1 4e 0.000 0.000 0.251
Pt2 4g 0.231 0.731 0.000
Pt3 4h 0.290 0.790 0.500

Figure 1.13: Pt3Cr tP16 Structure

1.6.8 tP16 Pt3Cr

We will also consider the tetragonal tP16 (Pt3Ga) structure, which is dis-

played at low temperatures by the Pt-Ga system. The unit cell is shown

in Figure 1.12, where we note 16 atoms per unit cell (4Cr and 12Pt) with

Cr on 4f(0, 0.5, 0.258), Pt on 4e(0,0,0.251), Pt on 4g(0.231,0.731,0) and Pt

on 4h(0.29,0.29,0.5) sites, as given in table 1.3. The experimental lattice

constants are a = 5.459 Å and c = 7.806 Å .
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Figure 1.14: PtCr3 tP16 Structure

1.7 Mintek project

At mintek work has been ongoing in building a thermodynamic database for

the prediction of the phase equilibria in Pt-based superalloys [40, 41, 42, 43,

44]. This work is based on Pt, Cr, Ru and Al. Pt-Cr-Ru has been studied

experimentally in the as-cast condition using scanning electron microscope

(SEM) and X-ray diffraction (XRD). The major phases were Ru, Pt and PtCr

while the minor phases were Cr2Ru (σ), Cr3Ru (A15) and PtCr3 (A15).

In this work we study five phases of PtCr3 (A15 phase included), Pt3Cr,

Ru3Cr and RuCr3. Again we will look at two phases (B2 and L10) of Pt-Cr

and Ru-Cr, and lastly the Pt,Cr and Ru phases.

1.8 Objectives

In this thesis we investigate the stability of Pt-Cr and Ru-Cr binary alloys.

This study focuses on the gas turbine engines that are operating at higher

temperature which expose the engine to environments such as oxidation and
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hot corrosion that can decrease the operation time. The main objective

of the thesis is to search for the potentially useful and undiscovered Pt-Cr

and Ru-Cr binary alloys aiming at prolonging the service life of the turbine

hot section components, which could ensure the global competitiveness of

South Africa.To meet the thesis objectives, we investigate stability of five

phases ( L12, A15, tP16, DOC and DO′

C) of the Pt3Cr, PtCr3, Ru3Cr and

RuCr3 compositions. In addition we will also perform stability study on

two phases (L10 and B2) of the additional binaries, PtCr and RuCr. We

are interested in Pt, Cr and Ru because they display exceptional qualities

like high melting point and high corrosion resistance. The alloys formed

by these high melting point materials are very hard and they have a good

mechanical wear ability. The stability will be predicted based on the heats

of formation, elastic constants, density of states, phonon spectra and phonon

density of states for Pt-Cr and Ru-Cr binary alloys. We will investigate the

magnetic state of metallic Cr, furthermore, we study the effect of doping with

Ni in particular the A15 RuCr3 existence at a higher temperature has been

reported. The thermal expansion of Pt3Cr L12 and A15 phases will be studied

in the temperature range of 0 -500 K. After analyzing all the stability results,

we will then consider the agreement between different methods of study, and

draw a final conclusion about the phase stability of Pt-Cr and Ru-Cr binary

alloys.
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1.9 Outline

The thesis is partitioned into seven chapters:

In Chapter 1 we give a brief overview of Pt-Cr and Ru-Cr binary alloys.

We further outline the background of the previous work and the objectives

of the thesis. This chapter review the phase diagram of Pt-Cr and Ru-Cr

binary alloys, and describes the structures of the pure metals and different

phases of Pt-Cr and Ru-Cr alloys.

Chapter 2 introduces and explains the methods used in the present study,

in particular the plane-wave pseudopotential method, as embodied in the

CASTEP and VASP codes.

Chapter 3 gives the results and discussions of the structural properties of Pt,

Cr, Ru and their binary alloys. This chapter predicts the stability of Pt-Cr

and Ru-Cr based on the heats of formation of different phases. The magnetic

moments are computed. We investigate the effects of pressure and doping

on the heats of formation of A15 RuCr3 structure. The computed results are

compared with previous theoretical studies and experimental work. We will

study the elastic constants and moduli that will be used to determine the

strength of materials

In Chapter 4 we describe and analyze the calculated DOS which give valu-

able information on the nature and stability of the alloys. This chapter also

compares the energy differences between the main peaks of the valence band

and conduction band of different materials. We will study the magnetic prop-

erties of Cr
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Chapter 5 predicts the thermal stability of Pt-Cr and Ru-Cr systems from

phonon calculations, and determines the thermal expansion. Chapter 6

presents the conclusions of this thesis and recommendations for future work.

This is followed by bibliography.



Chapter 2

Methodology

In this chapter we outline the ab-initio quantum mechanical methods used in

this study. The project is based on density functional theory (DFT) which is

a formal exact theory that connects the ground state properties to the charge

density. Both CASTEP [45] (Cambridge Sequential Total Energy Package)

and VASP [46] (Vienna abinitio Simulation Package) computational schemes

have been employed. CASTEP and VASP employs the plane-wave pseudopo-

tential methods which performs the ab-initio quantum mechanical calcula-

tions that explore the properties of crystals and surfaces in materials such

as metals, minerals semiconductor, ceramics and zeolites. CASTEP with

the ultrasoft pseudopotential(USPP) method [47]and VASP with USPP and

projector augmented wave(PAW) [48] methods. We will start by discussing

DFT theory which predicts the ground state energy and the phase stability

in crystals.

23
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2.1 Density functional theory

Density functional theory is an extremely successful approach for the descrip-

tion of the ground state properties of metals, semiconductor and insulators.

Density-functional theory is based on the remarkable theorem by Hohenberg

and Kohn [49] who demonstrated that the total energy of a many-electron

system in an external potential is a unique functional of the electron density

for a given position of atom nuclei. The minimum value of the total energy

functional is the ground state energy of the system, and the density that

yields this minimum value is the exact ground state density. The electron

density is a scalar function defined at each point r in real space, ρ = ρ(r).

In density functional theory, the total energy is expressed as

E = E [ρ(r), Rα] (2.1)

where the electron density ρ and total energy E depend on the type and

arrangement of the atomic nuclei, Rα denotes the positions of the nuclei

α in the system. This equation is the key to the atomic-scale understand-

ing of structural, electronic and magnetic properties of matter. While the

Hohenberg-Kohn theorem shows it is possible to use the ground state density

to calculate properties of the system, it does not provide a way of finding

the ground state. A route to this is provided by Kohn-Sham equations [50].

The idea of the Kohn-Sham approach is to reintroduce a special type of

wavefunctions (single particle orbitals) into the formalism, to treat kinetic

and interaction energy. In this approach the total energy in equation 2.1
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is decomposed into three terms Schrödinger equation by first expressing the

functional as the sum of three terms, written as

E [ρ] = To [ρ] + U [ρ] + EXC [ρ] (2.2)

where To is the sum of the kinetic energies of all effective electrons moving as

independent particles. In DFT the ”real” electrons of a system are replaced

by ”effective electrons” with the same charge, mass and density distribution.

However, effective electrons move as independent particles in an effective

potential, whereas the motion of a real electron is correlated with those of

all electrons. If each effective electron is described by a single particle wave

function ψi, then the kinetic energy of all effective electrons in the system is

given by

T0 =
∑

ni

∫

ψ∗

i (r)

[

−
h̄2

2m
∇2

]

ψi(r)dr (2.3)

Where ni denotes the number of electrons in state i. The second term, U, is

the Coulomb energy which is purely classical and contains the electrostatic

energy arising from the Coulombic attraction between the electrons and nu-

clei, the classical repulsion between the electrons, and the repulsion between

the nuclei. It can be written as

U [ρ] = Uen [ρ] + Uee [ρ] + Uion−ion. (2.4)

The third term in equation 3.2, EXC , is the exchange correlation energy,

which accounts for all remaining compicated electronic contributions to the
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total energy. Electrons are fermions that obey Pauli exlusion principle. In

real space, the Pauli principle implies that, around each electron with a given

spin, all other electrons with the same spin tend to avoid that electron. As

a consequence, the average Coulombic repulsion energy of that electron is

reduced. This energy gain is called exchange energy. Correlation energy is

the additional many-body interaction between electrons of both spins.

The set of wave functions that minimize the Kohn-Sham energy functional

is given by the self-consistent solutions of the equation:

[

−
h̄2

2m
∇2 + Vion(r) + VH(r) + VXC(r)

]

ψi(r) = εiψi(r), (2.5)

where ψi is the wave function of electronic state i, εi is the Kohn-Sham

eigenvalue, Vion is the static total electron-ion potential and VH is the Hartree

potential of the electron which is given by

VH(r) = e2
∫ ρ(r′)

|r − r′|
dr′. (2.6)

The exchange-correlation potential, VXC , is given formally by the functional

derivative

VXC(r) =
δEXC [ρ(r)]

δρ(r)
. (2.7)

εi are Lagrange multipliers, which are effective one-electron eigenvalues.

These eigenvalues are used to determine the occupation number ni by apply-

ing the Aufbau principle. The eigenstates are ordered according to increasing

eigenvalues. For non-spin polarized systems, each state is occupied by at most

two electrons with opposite spins. ρ(r), the electron density, is given by
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ρ(r) = 2
∑

i

∫

|ψi(r)|
2. (2.8)

Therefore, the Kohn-Sham total-energy functional is written as:

E = 2
∑

occ

εi + Uion−ion −
e2

2

∫ ∫

ρ(r)ρ(r′)

|r − r′|
drdr′ + EXC [ρ(r]) −

∫

ρ(r)VXCdr.

(2.9)

From the above discussion, the exchange-correlation potential can not

be obtained explicitly because the exact exchange-correlation energy is not

known. The only way to solve the problem is by way of approximate methods,

the local density approximation which will be discussed in the next section.

2.1.1 Local Density Approximation

The simplest method of describing the exchange correlation energy of an

electronic system is to use the local density approach, which is widely used

in total-energy pseudopotential calculations. LDA gives the correct sum rule

for the exchange co rrelation hole [51, 52, 53]. In the LDA it is assumed that

the exchange-correlation energy depends only on the local electron density

around each volume element dr and thus,

EXC [ρ(r)] ≈
∫

ρ(r)εXC [ρ(r))] dr (2.10)

The basic idea in the LDA is that any atomic arrangement such as crystal,

a surface or a molecule there is a certain electron density ρ(r) at each point

r in space. There are two assumptions made in LDA
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(i) The exchange and correlation effects come predominantly form the in-

termediate vicinity at a point r and

(ii) these exchange and correlation effects do not depend strongly on the

variations of the electron density in the vicinity of r.

If conditions (i) and (ii) are reasonably well fulfilled, then the contribution

from volume element dr would be the same as if this volume elements were

surrounded by a constant electron density of the same value as within dr.

This is an excellent aprroximation for metallic systems, but represents quite

a severe simplification in systems with strongly varying electron density.

A system of interacting electrons with a constant density is called a ho-

mogenous electron gas. Substantial theoretical efforts have been made to un-

derstand and characterize such an ideal system. In particular, the exchange-

correlation energy per electron of a gomogenous electron gas, εxc[ρ], has been

calculated by several approaches such as many-boty pertubation theory [54]

and quantum Monte-Carlo methods [55]. As a result, εxc[ρ] is quite accu-

rately known for all densities of interest in solid state chemistry. There are

different analytical forms with different coefficients in their representattion of

the exchange-correlation terms. These coefficients are not adjustable param-

eters, but rather they are determined through first principle theory. There

are two types of exchange-correlation terms, one for the energy and one for

the potential. The energy terms are represented as follows

εxc = εx + εc (2.11)
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where εx is the exchange energy

εx = −
3

2
(
3ρ

π
)

1

3 (2.12)

and εc is correlation energy

εc = −c
[

(1 + x3)ln(1 +
1

x
) +

x

2
− x3 −

1

3

]

. (2.13)

their corresponding potentails are

µ =
∂(ρε)

∂ρ
, (2.14)

µx = −2(
3ρ

π
)

1

3 (2.15)

and

µc = −cln(
1

x
+ 1) (2.16)

respectively. Where c = 0.0225, x = rs

21
, rs = ( 3

4πρ
)

1

3 The two terms are

related by

µxc =
∂[ρεxc(ρ)

∂ρ
(2.17)

Using the formulas given above, the exchange-correlation potential for any

electron density ρ(r) can be evaluated. Thus al terms of the effective one

operator in the Kohn-Sham equations are defined and one can proceed with

a computational implementation. The iterative, self-consistent procedure for
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solving the Kohn-Sham equations is shown in Figure 2.1 [56]. The electronic

methods are also summarized in Figure 2.2 [56].

2.1.2 Generalized Gradient Approximation

Despite the remarkable success of the LDA, it has also limitations. For

systems where the density varies slowly, the LDA tends to perform well,

and chemical trends are well reproduced. In strong correlated systems were

independent particle picture breaks down, the LDA is very inaccurate. For

example, the LDA has been applied to high Tc superconductors, but finds

several to be metallic, when in reality they are insulating at 0K [57]. LDA

finds the wrong ground states in many simpler cases by underestimating

bondlengths and lattice constants by roughly 10% [58].

In LDA the weak bonds are too short and the calculated binding energies

are typically too large [59]. Beyond the LDA the exchange and correlation

in an inhomogeneous system is non-local with respect to electrons it sur-

rounds, and this is referred to as gradient correcton or generalized gradient

approximation GGA, which was introduced by Perdew and Wang [60], it was

found to overestimate bondlenghts and lattice constants. The GGA exchange

correlation energy is written as

EGGA
x c(n) =

∫

drn(r)εGGA
xc [n(r), ‖▽n(r)‖ (2.18)

where εxc is the exchange correlation energy and n(r) is the gradient term.

The GGA has been widely used and have proved to be quite successful in

correcting some of the deficiencies of the LDA. The correct magnetic ground
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Figure 2.1: Schematic representation of SCF and geometry optimization
methods used in DFT
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Figure 2.2: Flow chart of electronic structure methods used for solving Kohn-
Sham equations
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state was predicted for ferromagnetic Fe [61] and antiferromagnetic Cr and

Mn [62, 63, 64].

2.2 Plane-wave pseudopotential method

The plane-wave pseudopotential method has become a powerful and reliable

tool to study the properties of a broad class of materials. The emphasis on

the total energy and the related properties makes plane-wave pseudopoten-

tial a technique suited to structural studies based on a quantum-mechanical

treatment of the electronic subsystem. The main idea of the method is to

simplify the DFT problem by considering only valence electrons. Core elec-

trons are excluded under the assumption that their charge density is not

affected by the changes in the chemical environment. This approximation is

well understood and gives a number of computational advantages i.e.

(i) The pseudopotential is much weaker in the core region than the true

coulomb potential of the nucleus, and it does not have a singularity at

the position of the nucleus.

(ii) The resulting pseudo-wave functions are smooth and nodeless in the

core region.

(iii) There are fewer electronic states in the solid state calculation.

(iv) Both pseudopotentials and pseudo-wave functions can be efficiently rep-

resented using a plane wave basis set. The plane-wave pseudopotential

method is applicable to large systems that are subject to 3D periodic

boundary conditions.
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2.2.1 Plane-wave basis

An infinite plane-wave basis set is used to expand the electronic wave func-

tions of the system. The method is described well by using Bloch’s theorem,

which state that the electronic wavefunstion at eack k-point can be expanded

in terms of a discrete plane-wave basis set i.e.

ψki(r) = exp [ik.r] fi(r). (2.19)

This expression has a wavelike and cell-periodic part. The function fi(r)

defines the periodicity of the solid and can be expanded using a basis set

with a discrete set of plane waves, written as

fi(r) =
∑

G

Ci,Gexp [iG.r] (2.20)

where the G are the reciprocal lattice vectors of the periodic cell. Thus each

electronic wave function can be written as a sum of plane waves,

ψki(r) =
∑

G

Ci,k+Gexp [i(k + G).r] (2.21)

where Ci,k+G are the coefficients for the plane waves that need to be solved

and depend entirely on the specific kinetic energy,
(

h̄2

2m

)

|k +G|2.

The convergence of this expansion is controlled by the choice of the kinetic

energy cutoff. In practice, the plane wave basis set is limited by including all

plane waves whose kinetic energies are less than some particular cutoff energy

Ecut. Introduction of an energy cut-off to the discrete plane-wave basis set

produces a finite basis set. The truncation of the plane-wave basis set at
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a finite cut-off energy will lead to an error in the computed total enenrgy.

However it is possible to reduce the magnitude of the error by increasing

the value of the cut-off energy. In principle, the cut-off energy should be

increased until the calculated total energy has converged.

The plane-waves are used as a basis set for the electronic wave functions,

and substitution of equation 2.21 into equation 2.5 (Kohn-Sham equation)

and the integration over r gives the following secular equation

∑

G′

[

h̄2

2m
|k + G|2 δGG′ + Vion(G − G′) + VH(G − G′)

]

Ci,k+G′ = εiCi,k+G

(2.22)

We see that the first contribution, the kinetic energy, is diagonal, whereas

the various potential contributions are given by their Fourier transforms.

This may be written in terms of the Hamiltonian matrix elements Hk+G,k+G′

as

∑

G′

Hk+G,k+G′Ci,k+G′ = εiCi,k+G′. (2.23)

The solutions of the Kohn-Sham equation are obtained by diagonalizing the

Hamiltonian matrix elements Hk+G,k+G′. The size of these matrix elements

is determined by the choice of energy cut-off ( h̄2

2m
|k + G|2, and will be large

for systems that contain both valence and core electrons.

Although Bloch’s theorem states that the electronic wave funstions can

be expanded using a discrete set of plane-waves, a plane-wave basis set is

usually very poorly suited to expanding electronic wave functions because a

very large number of plane- waves are needed to expand the tightly bound
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core orbitals and to follow the rapid oscillation of the wave functions of the

valence electrons in the core region. An extremely large plane-wave basis set

would be required to perform all-electron cal culation, and a vast amount

of computational time would be required to calculate the electronic wave

functions. This problem can be overcome by the use of pseudopotential

approximation [65, 66, 67].

2.2.2 The pseudopotential method

The physical properties of solids are dependent on the valence electrons to a

much great extent than on the core electrons.In the pseudopotential method,

the core electrons and the strong attractive coulomb potential inside the

ionic core are replaced by a weaker pseudopotential that describes all the

salient features of a valence electron moving through a crystal, including

relativistic effects [66, 68]. Thus the original solid is now replaced by pseudo-

valence electron and pseudo-ion cores. These pseudoelectrons experience

exactly the same potential outside the core region as the original electrons

but have a much weaker potential inside the core region. Figure 2.3 illustrates

the ionic potential (Z/r), the valence wave function (ψv), the corresponding

pseudopotential (Vpseudo), and pseudo-wave function (ψpseudo) respectively

[68].

The valence wave functions oscillate rapidly in the region occupied by

the core electrons due to the strong ionic potential in this region. The oscil-

lations mantain the orthogonality between the core and valence wave func-

tions, which is required by the exclusion principle. The pseudopotential is



2.2. PLANE-WAVE PSEUDOPOTENTIAL METHOD 37

Figure 2.3: Schematic illustration of all-electron potential (solid line) and
pseudoelectron potential (dashed line) with the corresponding valence wave
function (ψv) and pseudo-wave function (ψpseudo) [68].
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constructed ideally, so that its scattering properties or phase shifts for the

pseudo wave functions are identical to the scattering properties of the ion

and the core electrons for the valence wave functions, but in such a way that

the pseudo wave functions have no radial nodes in the core region. In the

core region, the total phase shift produced by the ion and the core electrons

will be greater by π, for each node that the valence functions had in the core

region, than the phase shift produced by the ion and the valence electrons.

Outside the core region the two potentials are identical, and the scattering

from the two potential is indistinguishable.

The advantage of using the pseudopotential approximation is that it al-

lows the electronic wave function to be expanded using a much smaller num-

ber of plane-wave basis states, so that a smaller amount of computational

time would be required for convergence of the energies. The pseudopotential

has the form

VNL =
∑

lm

|lm〉Vl〈lm| , (2.24)

where |lm〉 are the spherical harmonics and Vl is the pseudopotential for

angular momentum l. The majority of the pseudopotential currently used in

the electronic structure is generated from all electron atomic calculations.

A pseudopotential that uses the same potential for all the angular mo-

mentum components of the wave function is called a local pseudopotential.

A local pseudopotential is a function that only depends on the distance de-

pendence of the potential. The norm-conserving pseudopotential (NCP) by

Kleinmann and Bylander [69] is an example of a non-local pseudopotential,
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using a different potential for each angular momentum component of the wave

function. Recently, the ultrasoft pseudopotential (USP) put forward by Van-

derbilt has been implemented in plane-wave calculations. In this scheme the

pseudo-wave-functions are allowed to be as soft as possible within the core

region. They cover a wide range of atoms, including the transition metals.

In this thesis we use the ultrasoft pseudopotential by Vanderbilt [70] within

the CASTEP program [71, 72] for total energy calculations since they give

accurate results for the systems we are interested in.

2.2.3 Brillouin zone sampling

Many calculations in crystals involve the averaging over the Brillouin zone

[73] of a periodic functions of wave vector. Such calculations are often long

and complicated. and in principle require knowledge of the value of the

function at each k point in the Brillouin zone. Electronic states are allowed

only at a set of k points determined by the boundary conditions that apply

to bulk solid. Due to the Bloch theorem, the infinite number of electrons

in the solid is accounted for by an infinite number of k points. and only a

finite number of electronic states are occupied at each k point. The occupied

states at each k point contribute to the electronic potential in the bulk solid so

that, in principle, an infinite number of calculations are needed to compute

this potential. All required functions of k, in particular the potential are

continous so the integral over the infinite number of k-points can be replaced

by a sum over a finite, often small number.

Density functional theory approximate the k-space integrals with a finite
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sampling of k-points. Special k-point schemes have been developed to use

the fewest possible k-points for a given accuracy, thereby reducing the com-

putational cost. The most commonly used scheme is that of Monkhorst and

Pack [74]. Other sampling scheme are those given by Chadi and Cohen [75],

Joannopoulos and Cohen [76]. Monkhorst proposed a scheme where the k

are distributed homogeneously in the Brilloin zone according to

k = x1b1 + x2b2 + x3b3 (2.25)

where b1, b2,b3, are the reciprocal lattice vectors, and

xi =
l

ni

(2.26)

where l = 1, ..., ni, where ni are the folding parameters. MP-This essen-

tially means that the sampling k-points are distributed homogeneously in

the brilloinn zone , with rows or columns of k-points running parallel to

the reciprocal lattice vectors that span the Brilloiun zone. In this work, for

CASTEP calculations we will use the Monkhorst and Pack sampling scheme

to generate efficient and accurate sets of special points in the BZ. In VASP

we used Methfesset-Paxton [77] sampling method for the Brilloiun-zone in-

tegration in metals which converged with the number of sampling points,

without the loss of precision of normal broadening techniques. The scheme

can be applied to simple cubic tight-band as well at to band structures of

simple and transition metals. The method promises general applicability in

the fiels of total-enegy calculations and many-body physics.

The number of k-points necessary for a calculation depends entirely on the
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system as the treatment of metals, semiconductors and insulators is different.

Metallic systems require an order of magnitude more k-points than semicon-

ductor and insulating systems. Dense k-space meshes to define the Fermi

surface precisely. If the k-points sampling does not give a well converged

total energy, then a much denser set of k-points must be used to reduce the

errors and ensure the required convergence.Therefore,choosing a sufficiently

dense mesh of summation is crucial for the convergence of the results, and is

therefore one of the major objectives when performing convergence tests.

2.2.4 Smearing

In solid-state one-electron and many-body calculations, integrals fo periodic

functions over the Brillouin zone are routinely made in the evaluation of

the densities of states, charge densities etc. In metals the Fermi surface

(FS) of the system is no longer a sharp feauture in the BZ, and the number

of electronic wavevectors(k-points) needed to sample the Brillouin zone is

significantly reduced. Instead of having to hedge in the FS with thousands

of k-points, less than a hundred are always sufficient: enough of them will

fall near enough to the FS to take into account its essential contribution to

the free energy. Smearing schemes aim at reducing the number of sampling

k-points needed to treat metals at 0K.

In these schemes, the smearing width depends on a fictitious temperature,

which we will call a smearing temperature. We will denoted it σ to distinguish

it from the physical temperature (T). Both of these quantities are related to

an energy scale, thanks to the Boltzmann constant. The smearing energies
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which are useful for k-point convergence properties are in the 0.2 to 1 eV

range, and correspond to temperatures above 2000 K. In this work we used

the coldsmearing and Methfessel-Paxton smearing for CASTEP and VASP

calculations respectively.

2.2.5 Periodic boundary conditions

Computer simulation programs predicts the properties of a system in bulk.

In this study we are not interested in surface effects. Our simulations track

only a small number of particles in order not to slow dowm the computation.

As a result most of the atoms are near the edge of the sample, that is near

its surface. To eliminate surface effect from the computation we use a trick

called periodic boundary conditions(PBC). When using PBC, particles are

enclosed in a box, and the cubical simulation box is replicated to infinity by

rigid translation in all the three cartesian directions, completely filling the

space.

If one of our particles is located at position r in the box, we assume that

this particle really represents an infinite set of particles located at

r + 1a+mb + nc (2.27)

Where l,m,n are integer numbers and a,b,c are the vectors corresponding to

the edges of the box. Each particle i in the box should be thought as inter-

acting not only with other particles j in the box, but also with their images

in nearby boxes. That is, interactions can ”go through” box boundaries. It

is clear that
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(i) surface effects have been eliminated from the surface, and

(ii) the position of the box boundary has no effect(i.e. a translation of a

box with respect to the particles leaves the forces unchanged).

2.2.6 CASTEP

CASTEP is premier density functional theory quantum mechanical code to

simulate the properties of solids, interfaces, and the surfaces for a wide range

of materials classes including ceramics, semiconductors and metals. CASTEP

employs plane-wave techniques to deal with materials with weak pseudopo-

tentials. First principle calculations allow researchers to investigate the na-

ture and the origin of the electronic, optical and structural properties of a

system without the need for any experimental input, with the ecxeption of

the atomic number of mass of the constituent atoms.

CASTEP is well suited to research problems in solid state physics, mate-

rials science, chemistry and chemical engineering. In these areas, researchers

can employ computer simulations to perform virtual experiments, which can

lead to tremendous results. This method can calculate forces acting on atoms

and stress on the unit cell. CASTEP relies on a plane-wave basis, pseu-

dopotentials and the use of density functional theory to describe the valence

electrons in a model. Other ingredients include fast Fourier transforms and

minimization of the total energy rather than matrix diagonalization.
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2.2.7 VASP

VASP is a package for performing ab-initio quantum mechanical molecular

dynamics(MD) using pseudopotentials and plane-wave basis set. The ap-

proach implemented in VASP is based on a finite-temperature LDA and an

exact evaluation of the instanteneous electronic ground state at each MD-step

using efficient matrix diagonalization schemes and an efficient Pulay mixing.

The interaction between ions and electrons is described using Vanderbilt

pseudopotentials(USPP) or the projector augmented wave(PAW). Both tech-

niques allow a considerable reduction of the necessary number of plane-waves

per atom for transition metals and first row elements.

The projector-Augmented wave implemented in VASP reconstructs the

full all-electron density and avoids the necessity of nonlinear core-corrections.VASP

uses efficient matrix diagonalisation schemes and an efficient Pulay/Broyden

charge density mixing, these techniques avoid all problems occuring in the

original Car-Parinello method, which is based on the simultaneous integra-

tion of electronic and ionic equations of motion.

The plane-wave basis set in VASP offers two main advantages:

(i) Control of basis-set convergence, which is crucial for the accuracy of

calculations is almost trivial, in particular for the prediction of forces,

stresses and pressures. Very large local basis sets are required to match

the accuracy of a well convergeg plane-wave calculations.

(ii) The calculations of the forces acting on the atoms and ofthe stresses on

the unit cell using Hellmann-Feyman theorem [78] is straightforward.
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VASP uses a rather ”traditional” and ”old fashioned” self-consistency cy-

cle to calcualate the electronic ground-state. The combination of this schemes

with efficient numerical methods leads to an efficient, robust and fast scheme

for evaluating the self-consistent solution of the Kohn-Sham functional.

2.2.8 Heats of formation

For the study of the relative stability of binary alloys, it is convenient to

consider the heats of formation which is calculated as follows:

∆Hf = EAxBy
− xEA − yEB (2.28)

Where EA, EB and EAxBy
,are the equilibrium total energies of A, B and

alloy AxBy in a given underlying lattice (bcc, fcc or hcp). x and y are atomic

concentrations of A and B. The equilibrium total energies of an alloy and its

constituents are calculated using VASP. The lower the heat of formation of

an alloy, the more stable it becomes.



Chapter 3

Structural, thermodynamic and

elastic properties

3.1 Introduction

In this chapter we present the structural and electronic properties of Pt,

Cr, Ru and their alloys obtained using the computational methods that are

outlined in chapter 2. The calculated results are compared with the available

previous theoretical and experimental results. The structural properties such

as lattice parameters, atomic positions will be given and compared with

the experimental results. We also present the heats of formation and the

magnetic moments of the alloys.

3.2 Structural properties of metallic Pt, Cr

and Ru

Ground-state properties of metals are well described by the DFT approach.

The self-consistent DFT calculations were carried-out for the ground state

structure of fcc Pt, bcc Cr and hcp Ru. The are two conditions to be con-

46



3.2. STRUCTURAL PROPERTIES OF METALLIC PT, CR AND RU 47

sidered for the accurate calculation for the DFT method; one is the energy

cut-off convergence for the plane wave expansion of the wavefunction and

the other is the number of k points used to sample k space in the plane-wave

expansion. In CASTEP the Monkhorst-Pack scheme for k-sampling was used

to select an optimal set of k points of the Brullouin zone such that the great-

est possible accuracy is achieved given a particular number of k points used.

In VASP we used the Monkhorst-Pack scheme, together with a Methfessel

Paxton smearing of 0.2 eV to allow the partial occupancy near the Fermi

level.

K-spacing of 0.103/Å and was used for cubic metals which sufficiently

converged the energy to 1meV. In order to reduce the number of plane waves

required, the chemically inactive core electrons were replaced with an untra-

soft pseudo potential [70, 79]. The density mixing scheme based on the

Pulay and Normal(blocked Davidson) algorithms were used for CASTEP and

VASP respectively to find the electronic ground state [79, 80]. The effect of

the plane-wave cut-off on the calculated total energy was considered, i.e. we

carried out single point energy calculations where we increased cut-off energy

and monitored the convergence of energy of approximately 1meV/atom. The

converged energies are shown in Table 3.1.

From the single-point calculations we computed the kinetic energy cut-off

of metallic Pt,Cr and Ru as 400eV, 500eV and 500 eV respectively. In order

to determine the optimal energy cut-off for the plane-wave expansion the

total energy was computed as a function of the cut-off as shown in Figure

3.1. The energy cut-off convergence depends almost on the atom species and
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Table 3.1: Computed lattice parameters, cut-off and total energies for metal-
lic Pt, Cr and Ru

Materials Ecut−off ET a
(eV) (kJ/mol) (Å)

Pt 400 -584.266 3.998
3.924exp[81]

Cr 500 -929.385 2.851
2.88exp[82]

Ru 500 -894.437 2.706
2.71exp[83]

is taken to be large enough for the present lattice structure and boundary

conditions.

We further performed a number of calculations which lead us to the rel-

evant choice of smearing width for this study. We varied k-points (4x4x4 to

20x20x20) and a smearing width (0.02 to 0.2 eV) and observed the change

in energies. The results for Pt is shown in Figure 3.2, where we plotted three

energies E, E0 and F from CASTEP output files as a function of smearing

width at different k-points. Where E is the final energy printed by CASTEP,

E0 is the energy at 0K i.e the corrected final energy of the system and F =

E - TS is the final Helmholtz free energy.

3.3 Alloys

3.3.1 Introduction

In this section we explore the binary alloys formed by transition metals (Pt,

Ru and Cr) with higher melting points. Six different composition of binary

alloys are studied, namely PtCr, RuCr, Pt3Cr, PtCr3, Ru3Cr and RuCr3.
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Figure 3.1: Total energy vs kinetic energy cut-off for Pt
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Figure 3.2: Pt smearing width vs E
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Table 3.2: Calculated and experimental lattice constants and heats of for-
mation (∆Hf) of Pt3Cr in the L12, A15, DO′

C , DOC and tP16 phases

.

Phase Prototype a a exp c/a ∆Hf

notation (Å) (Å) (Å) (eV/atom)
Pt3Cr L12 Cu3Au 3.920 3.873 [84] -0.2601

A15 Cr3Si 4.963 0.1147
DOC U3Si 5.541 1.416 -0.2597
DO

′

C Ir3Si 5.547 1.416 -0.2597
tP16 GaPt3 5.545 -0.2593

For each A3B composition we studied five different phases, L12, A15, tP16,

DOC and DO′

C.

3.3.2 Lattice constants, heats of formation and mag-

netic moment

The calculations were performed at experimental lattice constants in the

framework of DFT by CASTEP and VASP codes. During the self-consistency

cycles, the Brillouin zone integration was performed using 0.103/Å k-spacing.

Table 3.2 summarizes the optimized lattice constants and magnetic moments

for studied systems together with those of previous studies, theoretical and

experimental. Other previous calculations employed different exchange cor-

relation functionals.

Our computed lattice parameters are slightly larger than the experimental

and theoretical results. It is owing to the GGA approximation, which always

overestimates the results. The GGA results are in good agreement with cal-

culations such as linear combination of atomic orbitals (LCAO), LMTO and

FLAPW. We have calculated the equilibrium lattice constants and the heats
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Table 3.3: Calculated and experimental magnetic moment (per unit cell) of
Pt3Cr in the L12, A15, DOC , DO

′

C and tP16 phases.

Phase Approach Magnetic moment
(µB)

L12 This work GGA 2.619
LAPW 2.601 [86]
LMTO 2.623 [87]
ASW 2.61 [88]
Magnetometer 2.52 [89]
Neutron 2.52 [90]

A15 This work 0.001
DOC This work 2.690

DO
′

C This work 2.689
tP16 This work 2.726

of formation of the L12, A15, tP16, DOC and DO
′

C phases of Pt3Cr. The

calculations have predicted structures with negative heats of formation, L12,

tP16, DOC and DO
′

C which are therefore expected to be stable. Their heats

of formation are almost of the same magnitude and the relaxed structure

show no rotation i.e. u = 0 (u = x - 0.25) where u is the atomic displace-

ment. We observed that the cubic L12 Pt3Cr is the most stable structure

in agreement with the experiments. In contrast with Pt-Cr, the Pt3Al takes

the non-cubic DO
′

C and tP16 (brittle) as its ground state as compared with

the L12 (ductile) phase [85].

Table 3.3 presents the detailed comparison of the computed magnetic

moments of all the studied phases of Pt3Cr with the experimental results

and some previous theoretical studies. The magnetic moment of a material

consists of contributions from spin and orbit polarization. The orbit moment

is nearly quenched in 3d and 4d elements, and spin polarization contributes
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the majority of the magnetic moment. The spin-polarized calculations were

performed for Pt3Cr in the L12 phase. The total spin moment (µB) is the

difference of the spin up and spin down charges, which is directly available

from ab-initio calculations. µB is usually referred to as ”magnetic moment”.

There have been quite a few theoretical and experimental studies for the

magnetic properties of Pt3Cr, The results are shown in Table 4.3, including

our calculated (GGA-PBE) total magnetic moment. Our results are in good

agreement with the experimental results. There is a very good agreement

between ASW, LMTO and our GGA results which gives magnetic moment

of 2.61 µB, 2.623 µB and 2.601 µB respectively. These results lead us to

conclusion that Pt3Cr should be charecterized as a ferrimagnet in agreement

with experiments [89, 90, 91, 92, 93, 94]. The previously determined magnetic

moments (LMTO, ASW etc) were predominantly localized on the Cr site,

with the moment of Pt site being very small and opposite in sign to the Cr

moment. The d states of the 3d Cr atoms are located near the top of the

Pt d band and form relatively 3d bands. As one proceeds from lighter to

heavier 3d elements, the up-spin 3d bands is first filled , and then electrons

start to occupy the down-spin 3d band with increasing atomic numebr of the

3d elements. Recent ab-initio calculations [95] reveal that spin polarization

or magnetization is responsible for L12 ordering in Pt3Cr.

The results of PtCr3 in Table 3.4 indicate the negative heat of forma-

tion for the A15 phase whereas all the studied phases have positive heats of

formation which are close to zero. It is apparent that the PtCr3 A15 phase

is the most stable structure. The A15 phase has the lowest energy and the
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Table 3.4: Calculated lattice constants, heats of formation and magnetic
moments (per unit cell) of PtCr3 L12, A15, DOC, DO

′

C and tP16 phases.

Phase Prototype a ∆Hf Magnetic moment
notation (Å) (eV/atom) (µB)

L12 Cu3Au 3.708 0.0211 0.0000
A15 Cr3Si 4.677 -0.0144 0.0539
DOC U3Si 5.253 0.0237 0.0000
DO

′

C Ir3Si 5.252 0.0237 0.0000
tP16 GaPt3 5.252 0.0235 0.0000

Table 3.5: Calculated lattice constants and heats of formation of Ru3Cr and
RuCr3 in the L12, A15, DOC, DO

′

C and tP16 phases.

Phase Prototype a ∆Hf

notation (Å) (eV/atom)
Ru3Cr L12 Cu3Au 3.774 0.0948

A15 Cr3Si 4.788 0.3225
DOC U3Si 5.325 0.0859
DO

′

C Ir3Si 5.325 0.0859
tP16 GaPt3 5.270 0.0859

RuCr3 L12 Cu3Au 3.678 0.2378
A15 Cr3Si 4.631 0.0796
DOC U3Si 5.197 0.2383
DO

′

C Ir3Si 5.197 0.2383
tP16 GaPt3 5.197 0.2383

highest magnetic moment of 0.0539 µB. The lattice constants and the heats

of formation of the DOC , DO′

C and tP16 phases are quite close to each other.

When making a comparison between Pt3Cr and PtCr3 results, we observed

that the alloys with more Pt additions are stable than those with more Cr.

This is due to the poor ductility of Cr at ambient temperature, a problem

which it shares with molybdenum (Mo) and tungsten (W).

More studies were conducted on the RuCr system, which is complicated,
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Table 3.6: Calculated lattice constants and heats of formation of PtCr and
RuCr in the B2 and L10 phases.

Phase Prototype a c/a ∆Hf

notation (Å) (Å) (eV/atom)

PtCr B2 CsCl 3.119 -0.0268
L10 CuAu 3.782 1.017 -0.0671

RuCr B2 CsCl 2.989 0.1874
L10 CuAu 3.776 0.962 0.0675

hence its literature is scarce. The phase diagram of RuCr is not well under-

stood, however the experimentalist are modifying the current phase diagram.

It is reported that RuCr contains two intermetallics Cr2Ru(σ) and Cr3Ru.

We look at five phases of RuCr3 and Ru3Cr, and the results are reported in

Table 3.5. The heats of formation of all studied compositions of Ru-Cr are

positive and very close to zero, especially for RuCr3 A15 phase and Ru3Cr

DOC , DO
′

C and tP16 phases. These results suggest that all the studied

RuCr3 phases are not stable. Hence it might be necessary to apply doping to

the system and observe the effect on the heats of formation, particularly on

RuCr3 A15 phase where there is an evidence of its presence experimentally,

and has a relatively lower heat of formation when compared to all studied

phases shown in Table 3.5.

Lastly we predicted the heats of formation for AB composition of PtCr

and RuCr alloys. The results are shown in Table 3.6. From the results it is

apparent that PtCr L10 is the most stable structure as compared with the

B2 phase. Whereas the RuCr systems are all unstable even though the heat

of formation for L10 is very close to zero.
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3.3.3 The effect of doping on RuCr3 A15 structure

As indicated in previous chapters one of the aims of this project is to search

for the materials that are stronger and corrosion resistant. RuCr alloys is one

of the targeted alloys, however, thus far the performed calculations predict

all studied phases of RuCr as unstable. Our next step is to examine the

effect of doping on the unstable RuCr3 A15 structure. The calculations on

the doped system were performed with a 0.103/Å Monkhorst-Pack k-spacing.

The Ni dopant was introduced to reduce the heats of heats of formation of

the A15 RuCr3 structure. We doped the structure with two Ni atoms at

three different positions using the VASP and CASTEP codes.

Table 3.7 presents the effect of doping on the heats of formation and lat-

tice constants of RuCr3 A15 structure. It is noted from the VASP results

that Ni dopant reduces the lattice constants at all positions, and increases the

heats of formation. The lattice constants for CASTEP exhibits a different

trend compared to VASP. The lattice constant at position 1 is increased, and

later decreased at position 2 and three. Heats of formation from CASTEP

and VASP code follow a similar trend, however the VASP heats of forma-

tion are significantly increased as compared to CASTEP results. The VASP

heats of formation for the doped and undoped system are 0.0796 eV/atom

and 0.1009 eV/atom, where for CASTEP we computed 0.0794 eV/atom and

0.0932 eV/atom for the doped and undoped system. It is clear that the in-

troduction of Ni as a dopant increases the heats of formation, so the doped

RuCr3 A15 system remain unstable.
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Table 3.7: The doping effect on RuCr3 A15 phase

CODE SYSTEM a(Å) ∆Hf (eV/atom)
VASP undoped 4.631 0.0796

doped pos(1) 4.616 0.1009
doped pos(2) 4.578 0.1009
doped pos(3) 4.478 0.1009

CASTEP undoped 4.623 0.0794
doped pos(1) 5.531 0.0832
doped pos(2) 4.589 0.0932
doped pos(3) 4.589 0.0932

3.3.4 Pressure effect RuCr3 A15 structure

Here we report the heats of formation obtained in normal conditions (P =

0) and under pressure from 1 GPa to 5 GPa. The results obtained at P

= 0 is 0.0796 eV/atom which indicates that the system is unstable. Calcu-

lations under pressure do not predict a change of stability with increasing

pressure, the system remains unstable in agreement with the results on the

effect of doping, where the heats of formation for A15 RuCr3 were predicted

as 0.0796 eV/atom and 0.1009 eV/atom for the doped and undoped system

respectively.

3.3.5 Elastic constants

We investigate the elastic constants and moduli of Pt-Cr and Ru-Cr bi-

nary alloys within density functional theory in the framework of GGA. The

planewave cut-off energy was 500 eV and the convergence of the calculations

is 1 meV. The knowlegde of elastic constants is essential for many practi-

cal applications related to the mechanical properties of solids, for example,
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Table 3.8: physical parameters and elastic constants Cij in GPa of Pt3Cr
and PtCr3 systems

System C11 C12 C13 C16 C33 C44 C66

L12 Pt3Cr 330.3 181.2 113.0
A15 Pt3Cr 463.8 119.8 32.3

Ll2PtCr3 350.7 208.7 173.3
DOC PtCr3 445.5 102.83 220.0 2.460 325.8 205.0 -122.7
A15 PtCr3 461.5 145.7 77.8

thermoelastic stress, internal strain and fracture toughness [96]. Elastic con-

stants determine the response of crystal to external forces. They play an

important role in determining the strength of the material.

In Table 3.8 we list the elastic moduli for Pt3Cr (L12 and A15 phases)

and PtCr3 (L12, DOc and A15). It is found that C11 for Pt3Cr increases

from the L12 to A15 phase, whereas C12 and C44 decreases as we move from

L12 to A15 phase. The same trend was observed in the C11, C12 and C44

values of PtCr3 from the L12 to A15 phase. We observed that the C44 is

always smaller than the other elastic constants. Unfortunately there are no

experimental data for checking our calculated elastic constants against.

From the calculated Cij values, the bulk modulus (B), shear modulus

(G) and Young’s modulus (E) were estimated using the Voigt-Reuss-Hill

approximation [97], the results are presented in Table 3.9. Bulk modulus

represents the resistance to fracture, shear modulus represents the resistance

to plastic deformation, while Young’s modulus is the ratio between strain

and stress, and is used to provide a measure of stiffness of the material, that

is the larger the value of E the stiffer is the material.
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Table 3.9: Bulk, shear and Young Modulus in GPa of Pt3Cr and PtCr3

calculated by using the Voigt-Reuss-Hill approximation [97]

System Modulus Voigt Reuss Hill
Pt3Cr L12 Bulk 230.9 230.9 230.9

Shear 97.6 93.7 95.6
Young’s 256.7 247.6 252.2

Pt3Cr A15 Bulk 234.5 234.5 234.5
Shear 88.2 47.9 68.0
Young’s 235.1 134.5 184.8

PtCr3 L12 Bulk 256.0 256.0 256.0
Shear 132.4 109.9 121.2
Young’s 338.8 288.5 313.7

PtCr3 DOC Bulk 255.8 255.8 255.8
Shear 102.4 190.9 146.6
Young’s 271.0 458.6 364.8

PtCr3 A15 Bulk 251.0 251.0 251.0
Shear 109.8 97.6 103.7
Young’s 287.5 259.1 273.3
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Pugh [98] has proposed a simple relationship in which the ductile/brittle

properties of metals could be related empirically to their elastic constants by

the ratio (G/B) of shear modulus divided by bulk modulus. If the ratio <

0.5 the material behaves in a ductile way. From Table 3.10 it is noted that

ratio (G/B) based on Reuss moduli is less than 0.5 for studied Pt3Cr phases

and PtCr3 L12 and A15 phases, indicatng that this structures are ductile in

nature. However for PtCr3 DOc phase, the ratio is greater that 0.5 hence

the material is expected to be brittle. The Ll2 Pt3Cr is ductile in agreement

with the previous calculations of Chauke et.al [85], where the L12 Pt3Al was

predited to be ductile.

Pettifor [99] suggested that the angular character of atomic bonding in

metals and compounds, which could be related to the brittle/ductile, could be

described by the Cauchy pressure C12 − C44. For metallic bonding Cauchy

pressure is typically positive. On the other hand for directional bonding

with angular character, the Cauchy pressure is negative, with larger negative

pressure representing more directional characteristics. The positive values

of the Cauchy pressure are noted in Table 3.10 and they follow the order of

DOc PtCr3 > A15 Pt3Cr > A15 PtCr3 > L12 Pt3Cr > L12 PtCr3.

The heats of formation and independent lattice constants of PtCr and

RuCr B2 and L10 phases are presented in Table 3.11. The elastic constants

C11 and C44 of PtCr L10 are greater than those of the B2 phase. A different

trend is observed for the C12 value of PtCr L10 which is less than B2 value.

Ledbetter [100] proposed that the bulk modulus B could be used as a

measure of the average bond strength because it has a strong correlation with
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Table 3.10: The calculated Reuss shear modulus G, Bulk modulus B, the
ratio of (G/B) and the Cauchy pressure C12−C44 of Pt3Cr and PtCr3 phases

System G B G/B C12 − C44

L12 Pt3Cr 93.70 230.9 0.406 68.17
A15 Pt3Cr 47.89 234.5 0.204 87.50
L12 PtCr3 109.9 256.0 0.055 35.34
DOc PtCr3 190.9 255.8 0.746 225.5
A15 PtCr3 97.6 251.0 0.389 67.9

Table 3.11: Heats of formation and elastic constants Cij in GPa

System ∆Hf C11 C12 C13 C33 , C44 C66

(eV/atom)
B2 PtCr -0.027 122.7 204.0 118.0
L10 PtCr -0.067 378.5 187.7 159.1 420.8 178.3 213.0
B2 RuCr 0.187 243.2 218.2 132.0
L10 RuCr 0.067 397.5 206.7 224.3 377.0 152.7 182.0

Table 3.12: Bulk, shear and Young Modulus in GPa

System Modulus Voigt Reuss Hill

PtCr B2 Bulk 176.9 176.9 176.9
Shear 54.3 -210.5 -78.0
Young’s 148.3 -1046.4 -449.0

PtCr L10 Bulk 243.3 243.2 243.2
Shear 158.7 146.3 152.5
Young’s 391.1 365.7 378.4

RuCr B2 Bulk 226.5 226.5 226.5
Shear 84.2 27.4 55.8
Young’s 224.7 78.9 151.8

RuCr L10 Bulk 275.8 275.8 275.8
Shear 131.9 118.8 125.3
Young’s 341.3 311.6 326.5
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the cohesive energy or binding energy of atoms in crystal. It is interesting

to note from Table 3.12 that the average Reuss bulk modulus of PtCr L10 =

243.2 GPa is larger than the bulk modulus of PtCr B2 = 176.9 GPa. This

implies that the bond strength of PtCr L10 is greater than that of the B2

phase.

Hardness is related to the elastic and plastic properties of materials. Shear

modulus is a significant qualitative predictor of hardness better than the

bulk modulus. There is a linear relationship between hardness and shear

modulus. As listed in Table 3.12, the bulk modulus 243.2 GPa and shear

modulus 146.3 GPa for PtCr L10 are larger than the corresponding values of

176.9 GPa and -210.5 GPa. The negative value of the shear modulus of the

B2 phase indicate that the B2 PtCr structure is elastically unstable. This

observation is in good agreement with the previous stability prediction based

on the heats of formation, which show L10 as the most stable structure. As

a result the hardness of L10 is higher than that of the B2 phase.

Apart from the bulk and shear moduli, the elastic shear constant C44 is

also an important parameter of predicting the hardness of a material. The

calculated C44, 178 GPa, of PtCr Ll0 is large compared to that of B2 118

GPa, so its shear resistance to the shear stress should be significant. From

the results in Table 3.12, L10 is expected to behave in a brittle way because

of the Reuss ratio (G
B

) = 0.601. On the other hand PtCr(B2), RuCr(B2) and

RuCr(L10) are ductile alloys with (G/B) of -1.199, 0.121 and 0.431 respec-

tively. We further investigated the elastic properties of RuCr3 A15 phase,

and we have found the bulk modulus (B) = 277.5 GPa, shear modulus (G)
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= 114.8 GPa and Young’s modulus (E) = 300.2 GPa. The calculated elastic

constants C11, C12 and C44 are 448.3 GPa, 162.1 GPa and 101 GPa respec-

tively. All positive eigenvalues of the elastic constant matrix show that the

A15 phase of RuCr3 is elastically stable, however, the structure is predicted

as thermodynamically unstable with ∆Hf = 0.0796 eV which is close to zero.

The Cauchy pressure is positive for all the studied PtCr and RuCr structures

indicating atomic bonding in the systems.



Chapter 4

Electronic and magnetic

properties

4.1 Density of states

4.1.1 Introduction

The density of states (DOS) of a system describes the number of states at each

level that are available to be occupied by electrons. A high DOS at a specific

energy level means that there are many states available for occupation. A

DOS of zero means that no states can be occupied at that energy level. From

the DOS we can deduce the nature of materials and also predict the stability

of the systems. In this chapter we present the results of the calculated DOS

of metallic Pt, Cr, Ru and their alloys which will give more information of

the studied systems.

4.1.2 Methodology

In calculations for metallic systems, the smearing width is introduced to

eliminate discontinous changes in energy when an electron band crosses a

64
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Figure 4.1: Periodic table of transition elements

Fermi-level during the self-consistent procedure. This smearing width was

set to 0.1 eV to ensure the convergence of the self-consistence procedure. The

ultra-soft pseudopotential was used to describe the electron-core interaction.

Pt, Cr and Ru are all transition metals belonging to the different groups

of the periodic table as shown in Figure 4.1. Cr, Ru and Pt belong to 1st, 2nd

and 3rd rows respectively. Their electronic configurations are as follows Cr

= [Ar]4s13d5, Ru = [Kr]5s14d7 and Pt [Xe]4f145d96s1. In Cr, all the s and d

subshells are half full. A full filled and half filled subshell lower energy, and

gain some stability.

The calculated density of states of metallic Pt is shown in Figure 4.2. We
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Figure 4.2: DOS of metallic Pt
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can draw some conclusion from the DOS of Pt; firstly the DOS is continuous,

there is no band gap between the valence and conduction band indicating

that Pt is metallic. Secondly, contributions of the Pt s and p states are

almost the same and the d-states contribute more to the DOS of Pt. The

conduction band consists of the anti-bonding s, p and d states of Pt. The

main contribution of the d-states can be seen in the valence band near the

Fermi level. The Fermi level is located in the region of high DOS value,

implying that the surface of Pt would be chemically inactive.

Figure 4.3 shows the calculated DOS of Ru. The majority and minority

spins are split evenly though the Ru is normally a paramagnetic element. The

up-spin and down-spin DOS are equal. The main contribution in both the

valence and the conduction bands is from the d-states. The high peak of the

valence-band DOS is located at ≈ 2.0 eV. The main peak of the anti-bonding

d states is higher than the main peak of the bonding d-states. The energy

difference between the main peak of valence band and that of conduction

band is about 3.8 eV. The d-states of Ru at Fermi level are less compared

to the d-states of Pt, this is expected because the 5d-states of Pt has higher

energy that the Ru 4d states.

The spin-up DOS is the same as the spin-down DOS of metallic Cr,

and these are shown in Figure 4.4. Our calculated DOS predicts Cr as a

non-magnetic system which is not in agreement with recent work [101] that

indicate Cr as an antiferromagnet system. The main peak of the valence

band is located at 2.2 eV below the Fermi level, whereas the energy difference

between the high peak in the valence band and conduction band is about 4.0



68 CHAPTER 4. ELECTRONIC AND MAGNETIC PROPERTIES

Figure 4.3: DOS of metallic Ru
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Figure 4.4: DOS of metallic Cr
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eV. The high peak of the Cr 3d band is noted in the conduction band.

From the DOS of Pt3Cr L12 phase in Figure 4.5 we note that spin-up

DOS is not equal to the spin-down DOS for the total and partial DOS of

Pt and Cr. More contribution to the DOS come from the d-states of both

Cr and Pt. The main peaks are located at ≈ 1 eV and 3.5 eV for Cr and

Pt respectively. In the case of Cr, the energy difference between the main

peaks of the valence band and conduction band are 1.1 eV and 2.0 eV for

spin-up and spin-down DOS respectively, whereas in Pt the energy difference

of spin-up DOS and spin-down DOS are 3.55 eV and 4eV. The total DOS

has the exact energy difference that is almost the same as in partial DOS of

Pt.

In determining the stability of the system we concentrate our attention

on the DOS in the vicinity of the Fermi level. For metallic Pt and Cr DOS

in Figures 4.2 and 4.4, the position of the main peak DOS from the Fermi

level is ≈ 0 and 2.2 eV, whereas for the alloy Pt3Cr L12 structure the energy

difference is about 3.5 eV. The energy difference between the main peak of

valence band and that of conduction band are about 5.5 eV, 4.0 eV and 3.55

eV for metallic Pt, Cr and alloy Pt3Cr respectively. There is a narrowing of

the energy difference as we move from the metallic system to the alloy. The

position of the high peak from the Fermi level shifts gradually to the lower

energy side.

In Figure 4.6 we present the electronic density of states of PtCr3 in the

L12 structure. There is equal distribution of the spin-up and spin-down DOS.

The Cr 3d band stretches from -2.2 eV to 2 eV while Pt 5d band stretches
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Figure 4.5: DOS of Pt3Cr L12 structure
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Figure 4.6: DOS of PtCr3 L12 structure
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from -6 eV to -3 eV. The 5d band in PtCr3 L12 is narrower than in Pt3Cr

L12 structure and also in metallic Pt in Figure 4.2.

From the total DOS we note the energy difference of about 6.2 eV between

the main peak in the valence band and conduction band, this value is greater

than the energy difference of 3.55 eV obtained for the stable Pt3Cr L12

structure. The broadening of the energy difference is observed by increasing

the number of Cr atoms, i.e for Cr rich region.

The total and partial density of states of PtCr3 A15 phase are shown in

Figure 4.7. The projected spin-up and spin-down DOS are equal. Both the

PDOS of Pt and Cr are dominated by the d states with less contribution from

the s and p states. The s,p and d states of Pt are mainly in the conduction

band. In the total DOS there is more contribution of Cr than Pt atoms. The

energy difference between the main peak in valence band and conduction

band is about 3.8 eV, and this value is less than the energy difference of about

6.2 eV obtained for PtCr3 L12 phase. These results, together with those in

Table 3.4 demonstrate that the PtCr3 A15 phase is the stable structure.

Figure 4.8 shows the calculated DOS of RuCr3 L12 structure, and the spin-

up and spin-down DOS are equal. The behaviour is similar to the observed

results of PtCr3 L12 structure. The main DOS peak in the valence band is

closer to the Fermi level in Cr than in Pt. The total DOS shows the energy

difference of 0.5 eV from the main peak of the valence band to the Fermi

level, and this value is closer to the Fermi level, hence RuCr3 is reported as

unstable structure.

In Figure 4.9 we show the total DOS of Ru3Cr L12 and partial DOS of
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Figure 4.7: DOS of PtCr3 A15 structure
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Figure 4.8: DOS of RuCr3 L12 structure
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Figure 4.9: DOS of Ru3Cr L12 structure
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Ru and Cr. We observe a high peak in the conduction band whereas for Cr

rich RuCr3 the high peak of the PDOS of Cr was observed in the valence

band. The DOS have a large dip structure at the Fermi level. Ru PDOS

show less s,p and d states in the conduction band. The energy difference is

larger for Ru than for Cr.

The total and partial DOS of RuCr3 A15 phase are shown in Figure 4.10.

The spin-up and spin-down DOS are equal. The partial DOS of Ru indicates

more d states in the conduction band than in the valence band. There is a

less contribution of the s and p states in both PDOS of Ru and Cr.

The DOS of PtCr B2 structure in Figure 4.11, depicts that the partial

DOS of both Pt and Cr are dominated by the d-states. The contribution from

the s and p states are negligible small. In the case of Cr, the up-spin DOS

is mainly further from the Fermi-level while the down-spin DOS is mainly

closer to the Fermi-level, hence we notice the unequal up-spin and down-spin

DOS. The energy difference of the main peak of the Cr up-spin valence-band

from the Fermi-level is about 1.0 eV. The partial DOS of Pt is dominated by

the d states. The up-spin DOS is closer to the Fermi level as compared to

the down-spin DOS.

In Figure 4.12 the 5d bands of Pt shifts to the lower energy as compared

with metallic Pt, more d states are also accumulated. In Cr we observe the

high PDOS in the conduction band. The spin-up and spin-down DOS are

slightly different, the system can be classified as magnetic. When comparing

the stability of PtCr L10 and PtCr B2 structure we considered the energy

difference between the Fermi level and the main peak in the valence band.



78 CHAPTER 4. ELECTRONIC AND MAGNETIC PROPERTIES

Figure 4.10: DOS of RuCr3 A15 structure
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Figure 4.11: DOS of PtCr B2 structure
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Figure 4.12: DOS of PtCr L10 structure
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The calculated results were 1.0 eV and 5.6 eV for B2 and L10 structures

respectively. These results prove that PtCr L10 is more stable than PtCr B2

structure.

The total of B2 RuCr and partial DOS of Cr in Figure 4.13 show the

Fermi-level located at the shoulder of the strong DOS region, so the system

is unstable. There are unequal spin-up and spin-down DOS. A unique be-

haviour is noted at the spin-down DOS in the conduction band, where a high

peak is observed at this point only.

Figure 4.14 (DOS of RuCr L10) shows that the partial DOS of Cr has a

high peak in the conduction band. The spin-up and spin down DOS are equal.

Ru partial DOS has more d-states in the valence band than in conduction

band, the d states contribution is significant compared to the s and p states.

All the studied Ru-Cr show the high peak of Cr d-states in the conduction

band, the only exception is the RuCr3 structure which is reported to exist

experimentally.

4.2 Magnetic properties of Cr

4.2.1 Introduction

The stable structure of the Pt-Cr alloys were observed, and thus far, all the

studied Ru-Cr are predicted as unstable. The aim of this project is to identify

the stable Ru-Cr systems, the other remarkable property that could help to

find the stable structure of the Ru-Cr binary alloys is the magnetic moment

of the system. That is the magnetic moment from the Ru and Cr sites. The

Ru system was computed as a paramagnetic system in agreement with the
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Figure 4.13: DOS of RuCr B2 structure
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Figure 4.14: DOS of RuCr L10 structure
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prevoius studies, while Cr was computed as a non-magnetic system but the

recent work predicts Cr as antiferromagnetic. In this section we study the

magnetic properties of metallic Cr.

4.2.2 Methodology

We performed plane-wave based, spin-polarized DFT calculations within

VASP. The all electron (frozen core) Projector Augmented Wave (PAW)

DFT method was employed. The GGA of Perdew, Burke and Ernzerhof

(PBE) was used for the exchange-correlation functional [102]. We used the

standard version of the PAW-PBE potential for Cr supplied with VASP. We

used k-spacing of 0.103/Å on the Cr bcc unit cell containing two atoms to

obtain lattice constant and magnetic moment. Kinetic energy cut-off of 500

eV was employed. The atoms were relaxed to within a force tolerance of

0.02 eV/Å using a conjugate-gradient algorithm. In order to obtain accurate

forces, the first Methfessel-Paxton method [77] was invoked for Fermi-surface

smearing with a width of 0.1 eV.

4.2.3 Results and discussion

In order to clarify the role of magnetism of Cr, we performed the cell opti-

mization for antiferromagnetic(AF) and compared it with the non-magnetic

(NM) structure and calculated results are presented in chapter 3. Table 4.1

lists the computed lattice parameters for NM and AF chromium, together

with the data from the previous theoretical studies and experiments.

The predicted equilibrium lattice constant for the AF bcc Cr is 2.870Å,
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Table 4.1: The lattice constants (a) and magnetic moment(m) of the AF and
NM Cr
Method State a(Å) m µB Reference

GGA PBE-VASP AF 2.870 1.07 This work
PBE-VASP NM 2.851 0 This work
PAW AF 2.855 1.09 ref[101]

AF 2.849 1.19 ref[103]
LAPW NM 2.850 0 ref[104]
FLAPW AF 2.871 1.08 ref[105]
Expt 2.879 ref[105]

LSDA PAW AF 2.778 0.67 ref[103]
LAPW NM 2.793 0 ref[106]
ASW AF 2.854 0.71 ref[107]

this value agrees well with all-electron DFT-FLAPW-GGA lattice constant

of 2.871 Å. Our NM lattice constant has a value of 2.851 Å, which is in good

agreement with the NM LAPW, AF PAW and LSDA ASW results which are

given as 2.850 Å, 2.855 Å and 2.854 Å respectively. We note that the AF

lattice constant lies closer to the experimental value than the calculated NM

lattice constant. The computed heats of formation of the AF and NM Cr

are -0.06 kJ/mol and 1.25 kJ/mol respectively, so AF Cr is predicted to be

more stable than NM. Our AF Cr has has a magnetic moment of 1.07µB, we

see a very good agreement between our results and AF FLAPW magnetic

moment of 1.08 µB, and also AF PAW value of 1.09 µB.



Chapter 5

Phonons and thermal

expansion

5.1 Phonons

5.1.1 Introduction

The study of phonons is an important part of solid state physics, since

phonons play a major role in many physical properties of the solids, in-

cluding a material’s thermal conductivity. In particular, the properties of

long-wavelength phonons give rise to sound in solids. Phonons are a quantum

mechanical version of a special type of vibrational motion, known as normal

modes in classical mechanics, in which each part of a lattice oscillates with

the same frequency. The normal modes are the elementary vibrations of the

lattice.

The phonon spectrum of different phases of Pt3Cr, PtCr3, PtCr and

RuCr3 A15 phase were investigated by the VASP code that allow inter-atomic

forces to be calculated. We used the PHONON code of Parlinski [108] in-

terfaced to VASP, which allows phonons, thermodynamic properties such as

86
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lattice specific heat, vibration energy and free energy to be calculated.

PHONON is a software for calculating the dispersion curves, and phonon

density spectra of crystals from either a set of force constants, or from a set

of Hellmann-Feyman forces [78] computed within an ab initio program which

optimizes the structure of the crystalline supercell within constraints imposed

by a crystallographic space group. We used the direct method [108, 109, 110]

where the force constants are calculated from Hellman-Feyman forces.

In this chapter, we will compare the phonon stability of different phases

of Pt3Cr, PtCr3 and PtCr binary alloy at 0 GPa. Furthermore, we will

investigate the phonon spectra of RuCr3 A15 phase. The total and partial

phonon density of states for different phases of Pt3Cr, PtCr3, PtCr and RuCr3

will be presented. Lastly we analyse the thermal expansion results of Pt3Cr

and PtCr3 binary alloys.

5.1.2 Methodology

Density functional theory is applied to study the behaviour of the phonons in

Pt3Cr, PtCr3, PtCr and RuCr3 with a plane-wave pseudopotential method

as implemented in the VASP code. The generalized gradient approximation

(GGA) is used with the Perdew and Wang’s [102] form of the exchange-

correlation interactions. The unit cell structure entered should already have

been optimized by VASP. System is represented by a supercell of 2x2x2 with

periodic boundary conditions. The Hellmann-Feyman forces necessary to

evaluate the force constants and the dynamical matrix were obtained from

calculations performed by VASP within generalized gradient approximation
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(parametrized by PBE scheme).

The projected augmented wave (PAW) pseudopotentials and the plane

wave basis set expanded up to the cut-off energy of 500 eV were employed

to treat the valence states. The first Brillouin zone were sampled wihin a

5x5x5 and 7x7x5 Monkhorst-Pack k-mesh scheme for (B2, L12, L10 and A15)

and (tP16, DOC and DO′

C) phases respectively. We have used the supercell

diameter of 7 Å to obtain the reliable phonon dispersion relations.

Periodic boundary conditions were imposed. Selected atoms were dis-

placed at 0.05 Å away from their equilibrium positions, and the correspond-

ing interatomic forces were calculated and then force constants were ob-

tained. Using these force constants, the phonon frequencies were obtained

by straightforward diagonalization of the dynamical matrix. The phonon

dispersion curves were calculated along several high symmetry directions in

the BZ.

5.1.3 Phonon DOS and dispersion curves of Pt3Cr phases

at O GPa

In Figure 5.1. we present the calculated phonon DOS and phonon spectra for

different phases of Pt3Cr at zero pressure along the high symmetry directions

of the Brillouin zone. In the 1D lattice, the atoms are restricted to move

along the x direction, so all the phonons correspond to longitudinal waves,

whereas in 3D, vibration is not restricted to the direction of propagation,

it also occurs in the perpendicular plane; the 3D phonons also correspond

to transverse waves. The dispersion relations exhibit two types of phonons,
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Figure 5.1: Phonon DOS and dispersion curves of Pt3Cr phases at 0 pressure
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the optical and acoustic modes corresponding to the upper and lower sets of

curves in the diagram, respectively.

Figure 5.1 (a) shows the longitudinal and transverse acoustic and optical

phonons which indicates a total of 12 phonon branches. Pt3Cr L12 contains

four atoms (N = 4) per unit cell, so there are 3 acoustical branches (1 longi-

tudinal and 2 transverse) shown at the lower part of the phonon dispersion

curve, and 3N - 3 = 9 optical branches (N-1 = 3 longitudinal and 2N - 2 =

6 transverse). The frequencies of optical phonons start at about 2 THz. In

addition to the phonon dispersion curves of Pt3Cr phases we have calculated

the density of states. For the completeness of the lattice dynamics we show,

in Figure 5.1 (b), the total and partial phonon density of states of Pt and

Cr in the Pt3Cr L12 phase. We observed exceptionally low density of states

of Cr atoms below 5.2 THz, whereas for Pt atoms high DOS was detected

below and above 5.2 THz.

The Pt and Cr atoms vibrate in modes of different frequencies. Pt atoms

vibrate preferentially at lower frequencies; all DOS of states start at approx-

imately 0.3 THz and vanish below 6.3 THz. The partial density of states of

Cr has a very low intensity below 5.2 THz. This means that in this region the

acoustic modes of Cr contribute very little to the phonon density of states.

In the total DOS, modes below 5.2 THz mainly emanate from vibrations of

Pt atoms. The vibrations of both Pt and Cr atoms contribute to the modes

between 5.2 THz and 6.3 THz.

The calculated phonon dispersion for A15 Pt3Cr are predicted in Figure

5.1 (c). We have found the soft modes at X, G and M-points of the Brillouin
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zone. We have observed another soft mode at R point, but the soft mode

frequency is about i1 THz which is higher than the frequencies of modes

arising from the X, G and M points. The R mode is expected not to cause

any effect.

For convenience, we use the negative y-axis to plot the imaginary branches

of spectra. From Figure 5.1 (c), one can conclude that the A15 Pt3Cr is

unstable, owing to the appearance of imaginary phonons. This structure

has a slightly higher maximal optic phonon frequency of 7.5 Hz. Comparing

phonon dispersion for Pt3Cr L12 and A15 phases in Figures 5.1 (a) and (c)

respectively, it has turned out that the L12 phase is vibrationally stable,

whereas the A15 phase is unstable.

Figure 5.1 (d) shows DOS of the A15 Pt3Cr phase and we observe a low

DOS of Cr atoms below 4.0 THz, and a high DOS between 4.0 THz and 5.0

THz. Cr DOS starts at 1.8 THz and ends at 5.2 THz. Negative frequencies

appear in the PDOS of Pt atoms and this interesting feature is detected up to

-2.4 THz. This different profile of frequency distribution indicates the origin

of dynamic instability in the Pt3Cr A15 phase. From the previous statements

we conclude that the soft modes shown in the phonon dispersion curve of the

A15 Pt3Cr are attributed to the Pt atoms. From the total DOS of Pt3Cr

that appears in the ranges 0.3 THz to 6.3 THz and -2.4 THz to 8.3 THz for

the L12 and A15 respectively, it is apparent that the L12 Pt3Cr phase is the

most stable in agreement with the results of the phonon dispersion curves.

In Figure 5.1 (e) the DOC acoustic and optical phonons are consistent

with the DO′

c results indicated in Figure 5.1 (f). The frequencies and the
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Brillouin zone are clearly described. The dispersion curves do not show too

complicated features; there are no imaginary phonons detected in these two

studied phases. The frequencies of optical phonons start at about 1.5 THz.

The frequencies of L12 optical phonons in Figure 5.1 (a) start at about 2

THz, which is higher than the frequency observed in DOc and DO′

c.

The phonon dispersion curves of Pt3Cr tP16 phase are predicted and

shown in Figure 5.1 (g). There are more phonon branches in the tP16 phase

than in all studied phases of Pt3Cr. The phonon branches of tP16 Pt3Cr

starts at a frequency of ≈ 0 THz, and there are no imaginary phonons. It

is apparent that the frequency of the acoustic branches of the L12 phase is

relatively higher as compared with all the studied Pt3Cr phases, hence the

L12 is predicted as the most stable phase, in agreement with the previous

results discussed in Chapter 4.

5.1.4 Phonon DOS and dispersion curves of the PtCr3

phases at 0 GPa

Figure 5.2 shows the calculated phonon DOS and dispersion curves of PtCr3

phases at 0 GPa. Figure 5.2 (a) shows that the phonon spectra of the L12

PtCr3 has soft modes at points M and R of the Brillouin zone. There is a high

density of unstable modes in the region of the M point. The corresponding

phonon DOS of PtCr3 L12 is shown in Figure 5.2 (b), where PDOS shows

Cr atoms vibrating at lower frequencies (below 0 THz). Pt atoms vibrate at

frequencies greater than 0 THz. It is evident that Cr atoms are responsible

for the soft modes observed at points M and R in Figure 5.2 (a).
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Figure 5.2: Phonon DOS and dispersion curve of PtCr3 phases at 0 pressure
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Both the phonon spectra and phonon DOS predicts PtCr3 L12 to be

unstable.

We also computed the phonon dispersion curve of the A15 PtCr3 for

comparison with the L12 PtCr3 phase. Figure 5.2 (c) depicts the A15 PtCr3

acoustic branches which start at a frequency of 4Hz, and there are no soft

modes for the A15 structure. In comparison of the dispersion curves, it is

apparent that the PtCr3 A15 phase is stable while the L12 is unstable.

In Figure 5.2 (d) we show the total and PDOS of A15 PtCr3 phase, as in

the A15 Pt3Cr we observe the low DOS of Cr below 4 THz. Pt DOS starts

at 0.8 THz and ends at 7.3 THz. No negative frequencies are detected in

the PDOS of the A15 phase as compared to the L12 phase in Figure 5.1 (b).

For comparison, we also calculated the phonon DOS of PtCr3 DOC and tP16

phases, and the results indicated the existence of negative frequencies. From

this results we can conclude that A15 phase is dynamically stable while other

studied phases are unstable.

The phonon spectra of the DOC and DO′

C are shown in Figures 5.2 (e)

and (f) respectively, the results are generally similar but differ at X. For DOC

PtCr3 we detected the soft modes at Z and G points of the Brillouin zone,

whereas DO′

C soft modes were found at three points G,X and Z points of

the Brillouin zone. The phonon spectra of tP16 PtCr3 show the soft modes

at G and Z points of the Brillouin zone. It is evident that the L12, DOC,

DO′

C, an tP16 phases are vibrationally unstable, whereas A15 structure is

vibrationally stable.



5.1. PHONONS 95

Figure 5.3: Phonon DOS and dispersion curve of PtCr B2 and L10 at 0
pressure

5.1.5 Phonon DOS and dispersion curves of the PtCr

B2 and L10 phases at 0 GPa

In Figure 5.3 we present the phonon DOS and dispersion curves of PtCr B2

and L10 phases. The phonon dispersion of PtCr B2 phase is presented in

Figure 5.3 (a), and the soft modes have been detected at G and M points of

the Brillouin zone. These results demonstrate that PtCr B2 is dynamically
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unstable.

The partial DOS of Pt and Cr in PtCr B2 phase in Figure 5.3 (b) depicts

that Pt vibrates at lower frequencies while Cr vibrates at higher frequencies.

The sum of Cr density of states Crx + Cry + Crz fits the total density of

states above 5.0 THz. The part above the gap is mainly due to vibrations of

Cr atoms, while the part below the gap is contributed by Pt atoms. PtCr B2

is an interesting lattice in which Pt atoms form a frame for acoustic modes,

and the Cr atoms vibrate within the optical modes.

The results of PtCr L10 in Figure 5.3 (c) show that motions within acous-

tic dispersion curves are almost entirely due to the Cr atoms. For PtCr L10

phase, the unstable phonon modes appear in a smaller part of the Brillouin

zone. Significant softening occurs in the lower transverse acoustic branch,

and soft modes are attributed to Pt atoms.

These results demonstrate that PtCr L10 is also dynamically unstable, the

difference is that the soft mode frequencies of L10 phase are more pronounced

than those of the B2 phase. The frequency of a given lattice vibration de-

pends on the stiffness of the lattice (elastic moduli). The calculated C44s of

L10 and B2 with values of 178.3 GPa and 118.0 GPa respectively confirms

the relationship between the phonon frequency and elastic constants. The

relation between the frequency of phonon modes and the elastic constant C44

is found to be reasonably valid for PtCr phases.

Figure 5.3 (d) shows the total and partial DOS of PtCr L10 phase, and

it can be deduced that vibrations below 4 THz emanate from Pt atoms, and

the vibrations above 4 THz are mainly associated with Cr atoms.
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5.1.6 Phonon DOS and dispersion curves of the RuCr3

A15 phase at 0 GPa

Figure 5.4 presents the phonon DOS and dispersion curve of RuCr3 A15

phase. In Figure 5.4 (a) there are no soft modes detected at any point of

the Brillouin zone, indicating that RuCr3 A15 phase is dynamically stable.

However, the results in chapter 3 predicted RuCr3 A15 phase as thermo-

dynamically unstable though the positive heat of formation, 0.0796 eV, is

close to zero. Both findings give an interesting question about the stability

of RuCr3 A15 phase. The phonon dispersion results can be linked with the

experimental work which indicated that RuCr3 A15 phase is stable at higher

temperature. From our results and experimental findings, we assume that

RuCr3 A15 phase can be observed as thermodynamically stable if more tests

can be done on the system.

We have calculated the phonon DOS and partial phonon DOS for RuCr3

A15 phase as shown in Figure 5.4 (b). The curves show that motion within

acoustic dispersion curves are predominantly due to Ru. The motion within

optical dispersion curves originate from both Ru and Cr.

5.2 Thermal expansion

5.2.1 Introduction

There has been a growing interest in the thermal expansion of solids. Thermal

expansion gives information about the temperature dependence of the lattice

vibrational frequencies [111, 112]. Free energy calculations were perfomed

in the framework of the frozen core all-electron projector augmented wave
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Figure 5.4: Phonon DOS and dispersion curve of the A15 RuCr3 phase at 0
pressure
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(PAW) [48] . To evaluate the free energy as a function of the temperature,

the phonon frequencies must be first calculated for each lattice constant.

Free energy can be used to study thermal properties and thermodynamical

parameters of the crystals.

The phonon dispersion calculations were performed at a number of elec-

tronic temperatures up to 500 K. The free energy was calculated as the sum

of the electronic and vibrational contributions. For ordered solids, the free

energy at finite temperature has contributions from both the lattice vibra-

tions and the thermal excitations of electrons [113]. Our aim is to investigate

the temperature dependence of the lattice vibrational frequencies. We calcu-

lated the total free energy at different temperatures and for each temperature

we fitted the polynomial.

5.2.2 Results and Discussion

We determine the lattice constants and the thermal expansion of Pt3Cr L12

phase in the temperature range 0 - 500 K. The lattice constant (a) of 3.920

Å (and experimental value is 3.873 Å) was obtained for the Pt3Cr L12

phase. In Figure 5.5, we plot the dependence of the free energy on the lattice

constant in the temperature range 0 - 500 K. The change of the minimum

position of the free energy curve directly determines the thermal expansion

of the Pt3Cr L12 phase.

In Figure 5.5, we note that the minimum of each curve shifts to larger

lattice constants when the temperature increases. The points of minimum

free energy are connected by a vertical solid line. The minimum lattice
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Figure 5.5: Lattice constant dependence of the free energy (L12 Pt3Cr) for
several temperatures. Vertical solid line connects points of the minimum of
free energy
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Table 5.1: Lattice constants a (from polynomial fit) at various temperatures
for Pt3Cr L12 phase

T (K) a (Å)
0 3.923
50 3.924
100 3.924
150 3.927
200 3.929
250 3.931
300 3.933
350 3.935
400 3.938
450 3.940
500 3.942

constant was evaluated accurately using the polynomial fit. Lattice constants

obtained for each temperature are listed in Table 5.1, and they range from

3.933 Å at room temperature to 3.942 Å at 500 K. The thermal expansion

of the Pt3Cr L12 phase was determined at different temperatures using the

following equation

∆l

l
=
aT − a300

a300

(5.1)

where aT is the lattice constant at a given temperature and a300 at room

temperature. The thermal expansion as a function of temperature is plotted

in Figure 5.6, and it increases linearly with temperature.

We have also calculated the thermal parameter α as a function of T,

which is defined as

α(T ) =
1

a

δa

δT
(5.2)

The values of α(T ) are presented in Table 5.2, and it is inversely propor-
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Figure 5.6: Thermal lattice expansion as a function of temperature for Pt3Cr
L12 phase
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Table 5.2: Temperature dependance of thermal expansion α(T ) for Pt3Cr
L12 phase

T (K) α(T ) (10−6)K−1

100 15.29
150 10.18
200 10.18
250 10.17
300 10.17
400 10.15
450 10.15

tional to temperature.

We have also determined the free energy vs lattice constant for the Pt3Cr

A15 phase and the curve is presented in Figure 5.7. The lattice constant

reduces from 4.989 Å to 4.987 Å. In the case of the Pt3Cr A15 phase, the

minimum of each curve shifts to a lower lattice constant as temperature

increases, this behaviour can be attributed to the soft modes in Figure 5.1

(c). In general we observe an opposite trend in A15 and L12 curves, where

the minimum shifts to higher lattice constants.

The thermal expansion is plotted as a function of temperature in Figure

5.8 for Pt3Cr A15 phase. The thermal expansion increases linearly with an

increasing temperature.
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Figure 5.7: Pt3Cr A15 lattice constant dependence of free energy for several
temperatures. Vertical solid line connects points of the minimum of free
energy
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Figure 5.8: Thermal lattice expansion as a function of temperature for Pt3Cr
A15 phase



Chapter 6

Conclusions and

recommendations

6.1 Conclusions

Structural investigations of Pt, Cr, Ru and their alloys have been performed

by using first principles planewave pseudopotential GGA-PBE method. Suf-

ficient tests were conducted on the convergence of k-points, kinetic energy

cut-off and smearing to ensure accurate DFT results. The equilibrium lattice

constants are determined for the pure metals Pt, Cr and Ru, and they are in

good agreement with experiments. We have calculated the lattice constants,

heats of formation and magnetic moments of Pt-Cr and Ru-Cr binary alloys.

The lattice constants and magnetic moments compare well with theoretical

and experimental values.

We studied 27 structures consisting of 3 pure metals: Pt, Cr, Ru and

24 binary alloys of Pt-Cr and Ru-Cr. The phase stability study of PtCr

and RuCr binary alloys was based on the heats of formation, DOS, phonon

spectra and phonon DOS. Five different phases of Pt3Cr were studied, namely

106



6.1. CONCLUSIONS 107

L12, A15, DOC , DO′

C and tP16. The heats of formation of all studied Pt3Cr

phases except the A15 were almost of the same magnitude, but L12 was

predicted as the more stable structure.

The magnetic moment of L12 Pt3Cr was studied and computed as 2.619

µ, which compares well with the previous theoretical (ASW and LMTO)

and experimental work. Pt3Cr L12 was characterized as ferromagnetic where

a major part of magnetization density is around Cr with a much smaller

magnetization around Pt.

We have calculated elastic constants of all the studied phases of Pt3Cr.

The elastic constant C44 of all such systems is smaller than C11 and C12. The

bulk, shear and Young’s moduli were calculated using the Voigt-Reuss-Hill

approximation. The ratio of shear to bulk modulus (G/B) has been used to

predict the ductile/brittle behaviour of materials. Most of the studied phases,

including the stable Pt3Cr L12 are ductile. The Cauchy pressure remained

positive for all studied systems, a strong indication of atomic bonding in the

systems. The bulk, shear, Young’s moduli and elastic constant C44 of Pt3Cr

L12 phase are significantly higher than those of A15 phase. L12 Pt3Cr is hard

as compared to the A15 phase.

The DOS of the pure metals, Pt, Cr, Ru and associated alloys were

calculated. In all DOS diagrams, no clear energy gap separates the valence

and conduction band, thus all the studied systems in this work are metallic.

The partial DOS of all Pt, Cr and Ru in both pure metals and alloys indicated

the d-states dominating the s and p states in both the valence and conduction

bands. The contribution of the s and p states is almost the same. The high
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peaks of the metallic Pt, Ru and Cr are located at ≈ 0 eV, 2.0 eV and 2.2

eV respectively.

In the Pt3Cr L12 structure, the main peaks of Cr and Pt were located at

about 1 eV and 3.5 eV. The stability is associated with low DOS at the Fermi

level (Ef). The energy difference between the main peaks of the valence and

conduction band was considered, and also the energy difference between the

main peak of the valence and the Fermi level which indicated the stability

of the system. There is a narrowing of energy difference between the valence

and conduction band as we move from the pure metal to alloys, i.e. the

reported energy differences for Pt, Cr and Pt3Cr L12 structures are 5.5 eV,

4.0 eV and 3.55 eV respectively.

The 5d Pt high valence peak in Pt3Cr L12 is shifted away from the Ef by

as much as 3.55 eV as compared with 5d peak in pure Pt. We observed the

unequal spin-up and spin-down DOS which highlighed the magnetism of the

structures, where Pt3Cr was predicted as ferromagnetic. The large total DOS

in Pt3Cr L12 near the Ef lead to spin polarization and formation of magnetic

moment which in turn is a stabilizing factor. Pt3Cr L12 was found to be

energetically more favoured because the DOS at the Fermi level is relatively

small as compared to other structures. A larger energy stabilization due

to spin polarization relates to the large DOS at the Ef and with a larger

localized magnetic moment on the Cr atom.

The stability of different phases of Pt3Cr was further investigated using

the phonon dispersion relations and phonon density of states. This analysis

assures us that the soft modes at the high symmetry points lead to the unsta-
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ble structures.. The calculated phonon dispersion relations, which contain

soft modes and correspond to the unstable phases, have as a rule slightly

higher maximal optic phonon frequencies.

We have investigated the phonon stability at 0 GPa for five different

phases of Pt3Cr using the PHONON code within VASP. The acoustic and

optical modes were clearly represented. The frequency and the Brilloun

zone are clearly described. There are no soft modes detected in Pt3Cr (L12,

DOC ,DO′

C and tP16). In the calculation of A15 Pt3Cr we have noted soft

modes at X, G, M and R points of the Brillouin zone. The A15 phase is

dynamically unstable. Phonon study predicted the Pt3Cr L12 as the most

vibrationally stable structure compared to other studied phases.

We presented the phonon DOS where we observed the atoms vibrating

in modes of different frequencies. The vibrations in DOS of Pt3Cr L12 are

mainly due to Pt atoms. Negative frequencies appear in PDOS of Pt atoms

in Pt3Cr A15 phase, which indicates the dynamic instability of the system.

We then conclude that the soft modes in phonon spectra of A15 Pt3Cr are

attributed to Pt atoms. All performed calculations for heats of formation,

DOS, elastic constants, phonon spectra and phonon DOS depict Pt3Cr L12

as the most thermodynamically and dynamically stable phase; these results

show an excellent level of agreement between on such stability.

Similar studies were conducted on PtCr3 phases; and the heats of forma-

tion of all such studied phases were positive except the A15 phase which is

stable and the latter’s existence has been observed experimentally [19]. We

observed that C44 was always smaller that the other elastic constants for all
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the studied phases of PtCr3. The total DOS in PtCr3 A15 phase indicated

more contribution of Cr than Pt atoms, the energy difference between the

main peak of valence band and conduction band was about 3.8 eV, which is

2.4 eV less than the value of about 6.2 eV for PtCr3 L12 phase. PtCr3 A15

phase was predicted as the stable structure.

The magnitude of PDOS of Pt and its shape near the Fermi-level are

strikingly different for the L12 phase of Pt3Cr and PtCr3. The Pt 5d band in

L12 PtCr3 is narrower than in Pt3Cr. The phonon spectra and phonon DOS

of PtCr3 phases predicted A15 as dynamically stable structure, whereas L12,

DOC, DO′

C and tP16 are dynamically unstable.

We further performed studies on two phases of PtCr, L10 and B2 where

the heats of formation predicted PtCr L10 as the most stable structure. The

elastic properties of PtCr were also investigated. From the bulk moduli we

noted that the strength of PtCr L10 is greater than that of B2 phase. The

shear modulus shows that L10 is harder than B2. All positive values of the

elastic constants and moduli show that the L10 phase of PtCr is elastically

more stable than the B2 phase which has the negative shear modulus of

-210.47 GPa.

The DOS stability of PtCr B2 and L10 structure was compared by con-

sidering the energy difference between the Fermi-level and the main peak of

the d-states in the valence band, which were found to be 1.0 eV and 5.6 eV

for B2 and L10 respectively. Hence PtCr L10 structure is more stable than

B2. The magnitude of the DOS at Fermi-level is indicative of the stability

of the calculated structure.
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The soft modes were detected at G and M points of the Brillouin zone in

PtCr B2 phase. The results of PtCr L10 show that motions within acoustic

dispersion curves are almost entirely due to the Cr atoms. A strong softening

appeared in the lower transverse acoustic branch of the PtCr L10 phase. PtCr

B2 and L10 were found to be dynamically unstable, the difference is that the

soft mode frequencies of L10 phase are higher than those of the B2 phase.

We studied the phonon DOS of PtCr B2 and L10 phase 0 GPa. The total

DOS in PtCr L1o phase indicate that vibrations below 4 THz are due to Pt

atoms, and the vibrations above 4 THz are mainly due to Cr atoms. The

partial DOS of Pt and Cr in PtCr B2 phase indicate that Pt vibrates at lower

frequencies while Cr vibrates at higher frequencies.

The stabilities of five different phases of RuCr3 and Ru3Cr were also

investigated. We also perfomed studies on RuCr L10 and B2 phases. The

heats of formation predicted all the studied Ru-Cr binary alloys as unstable,

although their values are closer to zero. The effect of pressure and doping

was investigated on RuCr3 A15 structure where there is an evidence of its

existence experimentally,. We discovered that application of both quantities

increase the heats of formation and render RuCr3 A15 to be more unstable.

Ru-Cr system is very difficult to study.

RuCr3 L12 structure behaves differently from PtCr3 L12, since RuCr3 has

equal spin-up and spin-down DOS whereas PtCr3 has unequal spin-up and

spin-down DOS. The total DOS of Ru3Cr L12 have a large dip structure at

the Ef which indicates that the structure is unstable. The PDOS of Ru in

Ru3Cr L12 has a low s, p and d states in the conduction band. The PDOS
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of Ru in RuCr3 A15 phase indicates more d states in the conduction band

than in the valence band.

In the phonon dispersion curves of RuCr3 A15 phase there were no soft

modes detected at any point of the Brillouin zone, indicating that RuCr3 A15

phase is dynamically stable even though this system had marginally positive

(just above zero) heats of formation. These findings raised an interesing

research question about the stability of RuCr3 A15 phase. We have calculated

the total and partial phonon DOS for RuCr3 A15 phase and the curves

indicated that motions within acoustic dispersion curves were almost due to

Ru. The motion within optical dispersion curves are vibrations due to both

Ru and Cr. The existence of a stable RuCr3 A15 phase has been observed

experimentally [37], and this is confirmed by our calculations.

Studies on pure Cr, at first Cr was predicted to be non-magnetic. The

computed lattice constant is in good agreement with previous theoretical

studies. This finding was changed in our spin polarized calculations with the

GGA-PBE, where Cr was reported as anti-ferromagnetic, there is an excellent

agreement between our theoretical studies and experiments. The heats of

formation predicted AF as the most stable structure than NM. The magnetic

moment of 1.07 µB was obtained for AF, which is in good agreement with

FLAPW calculations.

Lastly we studied the thermal expansion of Pt3Cr L12 and A15 phases

in the temperature range of 0 - 500 K. From the plot of the dependence of

free energy on the lattice constants, it is observed that a minimum of each

curve shifts to larger lattice constants in Pt3Cr L12 phase as we increase the
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temperature, whereas in the A15 phase the minimum shifts to lower lattice

constants.

In summary, we have demonstated, from computational modelling stud-

ies, the stability of Pt-Cr and Ru-Cr alloys. The stability was firstly investi-

gated based on the heats of formation and the results predicted Pt3Cr L12,

PtCr3 A15 and PtCr L10 as the most stable structures. These results were

further confirmed by electronic DOS. Additional investigation on stability

based on phonon DOS and phonon spectra also reveals Pt3Cr L12, PtCr3

A15 and PtCr L10 as stable structures. In conclusion, it is recommended

that such predicted stable structures be considered for high temperature

applications in aggresive environments. Intensive stability study must be

conducted on RuCr3 A15 phase which was predicted as dynamically stable

but thermodynamically unstable.

6.2 Recommendations

We suggest that new ab-initio calculations be conducted especially on metal

alloys formed by preferably other transition metals in order to find materials

that are stronger and corrosion resistant for the use in gas turbine industries.

Since all the studied Ru-Cr systems are thermodynamically unstable it is

recommended that further calculations be done beyond room temperature

i.e at higher temperatures as these would be useful in clarifying the issue of

stability in Ru-Cr systems. Finding a dopant that can tune or improve the

stability of RuCr3 is a challenging task, the useful direction for future work is

to search and identify the possible dopants, i.e. a number of metals that could
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be considered to reduce the heats of formation of RuCr3 A15 phase. It is

also recommended that further calculations on Ru-Cr systems be performed

using the anti-ferromagnetic Cr to investigate the effect of magnetic moment

on the heats of formation.
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