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Abstract 

 

The importance of gold for scientific uses is of fundamental importance to research and 

technology developments. The bulk gold shows reluctance to participate in chemical 

reactions, the effect which has been corrected by the change in the size towards 

nanoclusters. It is therefore imperative that the structure of gold nanomaterials is 

understood for better applications in catalysis and other developments. Molecular 

dynamics and the density functional theory have proven to be good tools in 

computational material science and have thus been used to greater lengths. 

 

Molecular dynamics simulations on different gold nanoclusters and nanotubes were 

successfully carried out at different thermodynamic conditions. The effect of size on the 

melting of materials was duly tested and our results to some extend agree with what has 

already been reported. Gold nanoclusters show melting below the bulk and the melting 

temperatures increase with cluster size. However, the Au55 cluster shows different 

results in that it melts above the bulk due to structural reconstruction. The structure of 

the clusters changes from spherical shapes to tetragonal or face centred cubic (fcc) 

structures. Gold nanotubes show no resistance to temperature and different 

configurations are obtained in different ensembles. Single wall nanotubes form spherical 

clusters in the NVT while the NPT conditions give patches of clusters at elevated 

temperatures. The multi wall nanotubes also form spherical clusters in the NVT but fcc 

structures are obtained in the NPT Berendsen ensemble towards melting.        

 

Ab initio calculations in DMOL
3
 code on different gold nanoclusters show the stability 

of the clusters to increase with size and the Au3 and Au8 clusters contain the most stable 

structures. The Au-Au bond length in the dimer was obtained to within reasonable 

agreement with experiments and other theoretical works. Doping of the clusters further 

improved their stability although different impurities give different observations.  

 

The QMERA code calculations show that a gold atom on top of the surface causes 

slanting of the outer MD layers. The morphology of the quantum atoms also changes as 

compared to the neutral surface and the results are compared by the DMOL
3
 code which 

confirms the QMERA results. 
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CHAPTER 1: General Introduction 

 

1.1. Introduction 

 

Gold‟s attractive colour, bright lustre, and malleability and ductility (to the point of 

durability) have endeared it to man throughout history. In ancient times, gold was 

mined exclusively in southern Africa, but apparently to a limited extent within South 

Africa. The first recorded discovery of gold in South Africa during the modern era 

occurred on the farm Eersteling, near Polokwane, in the Limpopo Province, during 

1871 [Puddephatt 1978]. The discovery of gold in conglomerates on the farm 

Langlaagte (now Johannesburg) on the Witwatersrand, in 1886, led to the exploitation 

of the largest gold deposits the world has known to date. South Africa is still the 

world‟s largest gold producer, and it was reported to contribute 35% (35 877 tons) of 

the world‟s gold production in 1998. The lowest production was reported in 2003 

where gold production fell by 6.5% to 373.074 kg. However, gold still accounted for 

an estimated 37% of dollar export revenue within the country, making gold the largest 

mineral foreign earner in South Africa by contributing 27.2% in mineral revenues and 

being responsible for 56% of South Africa‟s mine labour force 

[http://contrystudies.us/south-africa/66.html, http://www.mbendi.com/gold.htm]. 

 

Gold is specially relevant for both fundamental and applied research and has been 

important material to mankind both in everyday life and in scientific endeavours. 

Gold is special in its chemical and physical properties in that in its bulk form it is the 

most inert and soft metal in relation to its cohesive energy [Soler 2001]. The 

importance of the metal gold ranges from commercial, medical to scientific use. 

Because of its beauty, permanence and rarity, gold is still the material of choice for 

the fabrication of religious artifacts, decorative articles, and jewellery. However, the 

unique chemical and physical properties offered by this precious metal are 

increasingly being sought for use in a growing number of industrial and medical 

applications. These include uses within the fields of nanotechnology, medicine, and 

electronics for products such as smart-cards, automotive electronics, sensors, medical 

implants, and drug delivery systems. Scientific applications include the use in 

catalysis at the nano level.  

http://contrystudies.us/south-africa/66.html
http://www.mbendi.com/gold.htm
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Gold, the life-blood of South African economy, could hold the key to a new treatment 

for people suffering from HIV/AIDS and malaria. South African scientists and 

researchers working within Project AuTEK (Gold Technology) Biomed, and seven 

local universities are working on a series of gold-based drugs that could be used to 

fight HIV, while another group has started research into the development of a series 

of malaria gold-based drugs. Project AuTEK is a joint initiative between Mintek and 

three of South Africa‟s biggest mining houses, Anglo Gold Ashanti, Gold Fields and 

Harmony Gold. Gold-based drugs have demonstrated the ability to inhibit HIV 

replication in vitro and once fully developed could be considered as a potential choice 

of therapy for individuals infected with HIV, as it will slow down the progression of 

HIV. The malaria research project, which is very much on the early stages, intends to 

prepare gold-based drugs and then screen them to investigate anti-malarial effects. 

The treatment of humans with gold-based drugs is called Chrysotherapy [The Star 

2006]. 

 

On the other side, scientists from the University of East Anglia have developed a 

golden bullet to help in the fight against cancer. This is achieved by adding tiny 

amounts of gold to an existing cancer drug, and the method was found to boost the 

power of the drug by 50%. This allows more malignant cells to be killed while 

healthy tissue is left unharmed. This development will replace chemotherapy which 

kills off fast growing cells but cannot differentiate between healthy cells and tumours. 

The metal has also long been used for biological purposes with the treatment of 

arthritis and as an implant in dentistry [Pudephatt 1978].   

 

The ancient Romans were familiar with the processes for colouring glass by adding 

gold. Initially colourless, the glass takes on a ruby-red colour when heated in a 

controlled fashion. The source of this colour is finely divided gold clusters. The light 

absorption depends on the concerted oscillation of the conducting electrons in all of 

the gold atoms in the cluster, called plasmon oscillation. Variation of the size, shape, 

or electrical properties of the particles‟ surroundings should influence the frequency 

of the oscillation, and thus the colour of the absorbed light. This could allow for the 

production of materials that are suitable for use in nanophotonic components, 

including tiny optoelectronic circuits or optical storage devices. 

 



 3 

Gold is one of the most noble metals and is also counted among those with the best 

electrical properties. These combined features make gold a logical choice for 

electronic interconnection applications. Naturally the relatively high price of this 

metal restricts its use to those applications where its unique properties make its use 

essential. Much of the technology associated with gold plating of electronic contacts 

and semiconductor devices has been directed toward minimizing use of the amount of 

metal per component, while striving for maintenance of deposit performance [Blair 

2002]. 

 

Gold is applied to the surfaces of electronic components in one of the four ways. The 

first application is through electroplating, the second is by thermal decomposition of a 

screen-printed paste (thick-film technology), the third by vacuum deposition or 

thermal decomposition of a metallo-organic compound (thin film-technology) and 

lastly, by mechanical rolling to form a strip stock from which components can be 

stamped or punched (initially materials). Electroplating accounts for the greatest 

consumption of gold among these techniques, since it is generally more versatile than 

the others and offers more precise control of the precious metal used. The plating 

solutions employed usually contains potassium cyanide, KAu(CN)
2
, sometimes 

referred to as PGC. 

 

Nanoscience and nanotechnology are key interdisciplinary research areas in South 

Africa, which has recently launched a National Nanotechnology Strategy for the 

funding and implementation of nanotechnology research and development with the 

potential to bridge the innovation chasm between basic research and applied 

technology 

 

Small clusters show properties that differ from those of the bulk. The structural, 

electronic, optical, thermodynamic, spectroscopic, magnetic, and chemical properties 

of isolated clusters and their assemblies have revealed unique properties differing 

from those found in the bulk [Michaelin et al. 19999, Luedtke and Landman 1996, 

Bilalbegović (1998), Zhao et al. 2003, Goodman 2004]. Metal nanoclusters 

containing a few atoms show quantum size effects which give them unique properties 

and make them interesting candidates for the building blocks of nanostructured 

materials and nanoelectronic digital circuits [Michaelin et al. 1999]. Metallic clusters 
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provide an interesting subject of study because they constitute intermediate systems 

between isolated atoms and molecules, on the one extreme, and bulk solids, on the 

other. They have a large ratio of surface to volume atoms, and they often exhibit an 

interesting phenomenology of their own [Rogan et al. 2003, Rodriguez-Lopez et al. 

2003]. The magnetic behaviour of clusters has higher magnetic moments than the 

corresponding bulk value mainly due to the reduced atomic coordination. This 

increases the electron localization and a corresponding reduced valence band width 

[Rodriguez-Lopez et al. 2003].     

 

The regular crystalline packing of atoms, which usually minimises energy in a bulk 

solid, is known not to last indefinitely as physical size is decreased [Gülseren et al. 

1998]. Small clusters of some metals were observed to abandon single crystal 

structures in favour of an icosahedral shape below a critical point and the stability of 

the icosahedral was also confirmed. The driving force causing this morphological 

change at small size can generally be traced back to two very distinct sources; firstly, 

to electronic magic sizes stabilised by filling of shells as in atoms and nuclei, and 

secondly, to competition between optimal internal packing and minimal surface 

energy, the latter dominating for sufficiently small size.    

 

Gold clusters have special applications in catalysis when supported on metal oxides 

such as TiO2 to form Au/TiO2 catalyst. Gold shows extraordinary high activity for 

low-temperature catalytic combustion partial oxidation of hydrocarbons, 

hydrogenation of unsaturated hydrocarbons, and reduction of nitrogen oxides [Valden 

et al. 1998]. Gold clusters promote the reaction between CO and O2 to form CO2 at 

temperatures as low as 40 K [Goodman 2004, Valden et al. 1998, Haruta and Date 

2000]. The activity of gold depends on the size of the cluster; when the catalyst is too 

small or too big it becomes less effective. There is a certain size range for the clusters 

to be effective. Valden et al.  have found that the Au/TiO2 catalyst is effective when 

the diameter of the cluster is about 3.5 nm (35 Å). The catalytic activity might be 

attributed to the highly abundant metal/support interface, the presence of ionic gold or 

to coordinatively unsaturated atoms in small gold clusters. Furthermore, the high 

catalytic activity of small Au clusters is caused by orbital roughness not necessarily 

by geometrical (low coordination) roughness.       
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The most challenging cluster phenomena is perhaps to find the stable structures of 

these small materials as clusters are known to be unstable even at lower temperatures 

[Michaelin et al. 1999, Garzón et al. 1998]. Michaelin et al. have found that certain 

Au nanoclusters between ~19 and 75 atoms in size are disordered in their lowest-

energy configuration. The study of different structures of clusters has revealed that 

small clusters appear to be amorphous instead of crystalline or quasicrystalline 

structures. Gold clusters appear in different forms, some have icosahedra (Ih) form, 

some appear in decahedral (Dh) form and some hexagonal [Michaelin et al. 1999, 

Bilalbegoić 1998]. Icosahedra have been found to be the preferred form for the 

clusters [Bilalbegoić 1998]. 

 

Another aspect that needs more focus from the researchers is the determination of the 

melting point of nanoclusters and the resistance of the clusters towards high 

temperatures. It is a general knowledge that small nanomaterials are less stable and 

have melting points that are lower than the respective bulk materials [Puffat and 

Borrel 1976, Nakamura et al. 2001, Doye and Wales 2001, Cleveland et al. 1998, 

Cleveland et al. 1999, Kusche et al. 1999, Cortie and van der Lingen 2002, Schmidt et 

al. 1998, Chen and Yan]. Buffat and Borel and Rodriguez-Lopez et al. have studied 

the effect of the size on the melting of the gold particles and found the reduction of 

melting temperature (Tm) as the particle reduces its size. The size of the particle plays 

a vital role on the stability and melting of a particular material. Although it is hard to 

determine or find the minima for small clusters few researchers have found that 

clusters with a few number of atoms or diameter are less stable [Michaelin et al. 1999, 

Nakamura et al. 2001, Doye and Wales 2001].  

 

Nakamura et al. have found that wire orientation also plays a role in the stability of 

the clusters. They built structures of different shapes (zigzag, linear straight and 

rectangular) and found that the zigzag structure is more stable than structures that are 

linear and rectangular. The lower melting point in clusters is attributed to the higher 

proportion of surface atoms than larger particles. Surface atoms have fewer nearest 

neighbours and are more weakly bound and less constrained in their thermal motion 

than atoms in the body of a material [Schmidt et al. 1998]. Schmidt et al. have found 

that melting of sodium clusters occur on average 33% lower than the bulk material. 
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It is suggested that the catalytic properties of gold can be improved with the doping of 

transition metal [Chen and Yan, Yuan et al. 2005, Xiang at al. 2004]. In order to 

enhance the stability and improve their chemical activities, or examine the electronic 

shell structures in mixed gold clusters, many studies have been performed on 

impurity-doped or mixed gold clusters [Yuan et al. 2005]. Additionally, the dopant 

atom can modify and control the electronic structure of gold clusters, thus changing 

their chemical reactions for catalytic purposes through the increase of the electronic 

states around the Fermi level. It is also reported that the delocalization of s- and d-

electrons of transition metal atoms considerably enhance the stability of gold (Au) or 

silicon (Si) clusters doped with transition metal (TM) atoms [Yuan et al. 2005]. These 

bimetallic clusters are particularly important in catalytic applications because of their 

unique catalytic selectivity, which originates from their unique structure due to the 

interactions between the two different elements and their composition. The platinum-

gold (PtAu) bimetallic clusters (or alloys), which are important catalysts for alkane 

conversion, C-N coupling, isotope exchange, and NO reduction, were found to have 

enhanced catalytic activity [Tian et al. 2005]. 

 

Gold (Au) clusters (with up to seven atoms) were reportedly found to prefer low spin 

and planar geometry while platinum (Pt) clusters prefer high spin and three-

dimensional (3D) structure [Tian et al. 2005, Tian et al. 2004]. This is attributed to 

the strong relativistic effect of gold in Au clusters and the involvement of platinum 5d 

and 6s atomic orbitals in bonding of Pt clusters. The substitution of an Au atom by a 

Pt atom in Au7 cluster does not change the essential structure of the gold cluster, i.e. 

the preference for two-dimensional (2D) geometry and low spin, although 3D 

structures of Au6Pt are stable. However, the electronic structure of Au6Pt changes 

much upon the substitution of a Pt atom. The reactivity of Pt-doped gold cluster is 

much enhanced with respect to the pure Au cluster. In catalytic applications, Pt was 

found to be the essential catalytically active component in PtAu bimetallic catalysts 

[Tian et al. 2004].  

  

Nanomaterials are exceptional materials because of their different properties and their 

special applications in technology. Many of the extraordinary properties attributed to 

nanotubes are their superlative resilience, tensile strength and thermal stability which 

have fed fantastic predictions of microscopic robots, dent-resistant car bodies and 
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earthquake-resistant buildings [Collins and Avouris 2000]. Nanotubes have generated 

a strong interest in their possible applications in nano-electronic and nano-mechanical 

devises because they exhibit unique electronic and mechanical properties due to their 

curvature. Because of their very large surface area and curvature nanotubes can 

absorb large amounts of hydrogen and other species and this makes them the world‟s 

smallest gas tanks. Their large length/diameter enables them to be used in composite 

materials to obtain ultra strong materials. Nanotubes are chemically active materials, 

and can as such be functionalised with a wide variety of atoms and molecules and can 

be good transport materials. 

 

Gold nanotubes in particular have attracted great interest because of their important 

applications in technology, telecommunications, satellites, and their ability to form 

covalent bonds to thiol–functionalised organic compounds make them an interesting 

subject of study [Bilalbegović 2003, Senger et al. 2004, Goring et al. 2004]. Because 

of their large non-linear optical properties and ultrafast response, gold and silver 

nanotubes improve optical limiter properties in carbon nanotubes [Chin et al. 2005]. 

Gold nanotube electrodes are used to detect hydrogen peroxide. 

 

Nanowires have attracted a great deal of interest in the past few years because of their 

importance in fundamental physics and technological applications as molecular 

electronic devices [Bilalbegović 2000, Bilalbegović 2001, Bilalbegović 2003, Wang 

et al. 2001, Nakamura et al. 2001, da Silva et al. 2001, Novaes et al. 2001]. 

Nanowires are very important for the advances in various fields of technology and 

their electrical, thermal conductiveness, as well as mechanical properties are of great 

scientific and technological interest [Rubio-Bollinger 2001]. Nanowires have melting 

temperatures lower than the bulk but higher than those of nanoclusters [Bilalbegović 

2000]. Several attempts were made on determining the stability and melting 

temperatures of gold nanowires [Bilalbegović 2000, Bilalbegović 2001, Wang et al. 

2001, Bilalbegović 1998]. Wang et al. have found that nanowires become stable with 

the increasing wire size and that bigger nanowires behave similar to the bulk material, 

although some detail differences still exist. Bilalbegovic [Bilalbegović 2000, 

Bilalbegović 2002] and Wang et al. [Wang et al. 2002] have studied melting in 

nanowires extensively and found that nanowires show melting temperatures that are 

lower than the bulk melting.  



 8 

The tight binding molecular dynamics (TB-MD) work by da Silva et al. [da Silva et 

al. 2001] show that nanowires break under tensile stress. The nanowires form a single 

five atom chain or necklace through pulling before breaking and the measured force is 

about 1.8 nN. The breaking of the nanowire shows an increase in the bond distances 

from ~3.1 Å to ~4.3 Å. Novaes et al. [Novaes et al. 2001] have done some ab initio 

work on the influence of impurities on the rupture of a gold nanowire. They found 

that the Au nanowire always breaks at an Au-Au bond, with a maximum bond length 

between 3.0 and 3.1 Å. They therefore concluded that the experimentally observed 

large Au-Au bonds before rupture of the nanowire (~3.6 Å) are probably due to the 

presence of light impurities (X) forming Au-X-Au bonds.        

 

 

1.2. Structural Properties 

 

In its bulk form gold is a soft gold and yellow metal with the highest ductility and 

malleability of any chemical element [Pudephatt 1978]. Figure 1.1 shows some gold 

nuggets as well as some examples of the applications of gold in jewellery and 

monetary systems. Gold is atom number 79 and falls under group eleven and period 

six on the periodic table of elements. The electronic configuration of gold is written 

as: 1s
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which then gives the valence of 5d
10

.6s
1
. The electronic structure is shown in Figure 

1.2. The atomic weight of metallic gold is 196.97 g.mol
-1

 while the density and 

volume respectively are 19.32 g.cm
-3

 and 67.9 Å at room temperature. The bulk gold 

melts at 1337 K and boils at 3080 K.  

 

Gold crystallises into a face centred cubic (fcc) structure and has the lattice parameter 

of 4.08 Å (shown in Figure 1.3) and the atomic radius of 1.79 Å. The elecronegativity 

of the metal is given as 2.54 (Pauling) and 1.42 (Allrod Rochow). The bulk modulus 

of gold is 171 GPa and the Youngs modulus is 78.5 GPa. Figure 1.3 shows the lattice 

structure of gold. Gold has a thermal conductivity of 320 W.m
-1

.K
-1

, a coefficient of 

thermal expansion of 14.2 x 10
-6

 K
-1

, enthalpy of fusion of 12.5 kJ.mol
-1

, the enthalpy 

of vaporization is 330 kJ.mol
-1

 and, its enthalpy of atomization is 368 kJ.mol
-1

. Most 
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of the mentioned bulk properties change drastically when we reach nanoscales, i.e. 

nanoclusters and nanotubes. 

 

   

 

Figure 1.1. Gold nuggets are shown with the main picture showing a combination of those 

nuggets together with the application in jewellery and monetary systems [http://nevada-outback-

gems.com/prospect/gold_specimen/Natural_gold.htm].  

 

 

 

Figure 1.2. The electronic structure of gold is shown with six energy levels and one electron in the 

outer energy level. The atomic number of gold is shown as 79 (P =79), the number of neutrons is 

118 (N = 118) [http://www.chemicalelements.com/elements/au.html].     

http://nevada-outback-gems.com/prospect/gold_specimen/Natural_gold.htm
http://nevada-outback-gems.com/prospect/gold_specimen/Natural_gold.htm
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Figure 1.3. The structure of a simple face centred cubic (fcc) lattice of gold with four atoms is 

shown. The interatomic or bond length distance between the atoms is 2.88 Å with the lattice 

parameter of 4.08 Å.  

 

 

The structural, physical, optical, chemical and mechanical properties of nanoclusters 

differ significantly from those of the bulk. Gold nanoclusters appear in different forms 

or shapes, e.g. they can be spherical, cylindrical, tetrahedral, octahedron, isocahedron, 

etc. The interatomic (bond) distance decreases or becomes small from that of the bulk, 

from 2.88 Å to 2.42 Å in a gold dimer. The structures of different clusters are shown 

in Figure 1.4. The experimental bond length for a Au dimer is 2.47 Å [Simard and 

Hackett 1990; Huber and Herzberg 1979] and compares well with our calculated 

value.   
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Figure 1.4. Gold nanoclusters are shown in different sizes. A dimer with a bond distance of 2.42 

Å, a trimer and a bigger cluster with 55 (Au55) atoms are shown from left to right. 

 

 

Gold nanotubes and nanowires, on the other hand, assume a totally different structure 

from the bulk and clusters. The structure of a nanowire is an unbroken chain of atoms 

connected to each other. A nanotube structure is a continuous cylindrical shape with a 

hole. The structure of nanotube can be specified by a vector, (n, m), which describes 

how the graphene sheet is rolled up [Iijima 1991]. To produce a nanotube with the 

indices (6, 3), for example, the sheet is rolled up so that the atom labelled (0, 0) is 

superimposed on the one labelled (6, 3). A carbon sheet is shown in Figure 1.5 with 

the indices (n, m) well indicated. 

 

 

Figure 1.5. A carbon sheet with the hexagonal shapes clearly visible. The (n, m) indices are 

indicated for each hexagon [http://www.personal.reading.ac.uk/~scsharip/tubes.htm].  
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Different examples of single wall carbon nanotubes are shown in the figure below. 

Values for (n, m) are given after the grapheme sheet has been rolled. The bonding in 

carbon nanotubes is sp², with each atom joined to three neighbours, as in graphite. 

The tubes can therefore be considered as rolled-up graphene sheets (graphene is an 

individual graphite layer). There are three distinct ways in which a graphene sheet can 

be rolled into a tube, as shown in Figure 1.6 below. 

 

 

Figure 1.6 shows different (n, m) for sngle-wall carbon nanotubes with the specified values to give 

different sizes [http://www.personal.reading.ac.uk/~scsharip/tubes.htm]. 

 

 

Carbon nanotubes are most commonly known and studied after the discovery of 

helical microtubules of graphic carbon by Iijima [Iijima 1991, Iijima 1993]. They are 

reported to be the strongest materials around due to the strength of the sp
2
 carbon-

carbon bonds [Iijima 1991, Iijima 1993, Roth et al. 2001, Mizoguti 2000, Tans et al. 

1997, Thelander et al. 2001]. Carbon nanotubes have hundred times the tensile 

strength of steel, thermal conductivity better than all but the purest diamond, and 
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electrical conductivity similar to copper, but with the ability to carry much higher 

currents, [Thelander et al. 2001]. The electronic properties of carbon nanotubes are 

also extraordinary. Especially notable is the fact that nanotubes can be metallic or 

semiconducting depending on their structure. Thus, some nanotubes have 

conductivities higher than that of copper, while others behave more like silicon. 

 

Carbon nanotubes can be applied in aerospaces and space elevators and because of 

their lightness are important transport materials [Thelander et al. 2001]. There are 

several areas of technology where carbon nanotubes are already being used. These 

include flat-panel displays, scanning probe microscopes, and sensing devices. The 

unique properties of carbon nanotubes will undoubtedly lead to many more 

applications. The discovery of carbon nanotubes has then prompted the study of 

nanotubes of other materials with gold taking as much attention [Nakamura et al. 

2001, da Silva et al. 2001, Novaes et al. 2001, Rubio-Bollinger et al. 2001, 

Bilalbegović 1998, and Wang et al. 2002]. There has been a report of the evidence of 

a single wall platinum nanotube [Oshima et al. 2002] and structures of ultrathin 

copper nanotubes [Kang et al. 2002] has also been reported.   

 

Nanotubes range from a single wall (SWNT) to multi wall (MWNT) as shown in 

Figure 1.7 where a single-wall and three-wall gold nanotubes can be seen. The 

structure of a nanotube can be likened to that of a chicken wire rolled to form a 

cylindrical shape with the hexagonal shapes noticeable in the structure.      

 

          

Figure 1.7. A single wall (SWNT) and a three wall nanotubes (TWNT) are shown. One ring 

makes a single wall nanotube, a combination of three rings constitute a three wall nanotube. 

Field emission scanning electron micrograph of gold nanotubes is shown on the far right 

[http://www.engr.wisc.edu/news/headlines/2004/Mar01.htm (2008/03/06), Roth et al. 2001].  
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1.3. Rationale of the Study 

 

The importance of the metal gold is increasing every day. From the basic uses as a 

standard for monetary systems, in coinage and jewellery, gold was also found to be 

important for biological purposes, as in dentistry, treatment of cancer, arthritis, etc. 

[Pudephatt 1978, Schmidbaur and Chichester 2001]. The uses of gold for commercial 

purposes dominated the applications of gold in chemical processes because it was 

believed to be inert and therefore ineffective in chemical reactions because of its filled 

d-orbitals. Naturally, the relatively high price of this metal restricts its use to those 

applications where its unique properties make its use essential. Gold is not a threat to 

the environment and it is collected with great care because of its value.  

 

In recent years, the world has focused on the use of gold at nanolevel (in 

nanotechnology). The importance of the nanoclusters, nanotubes and nanowires are 

special focus. Gold clusters are supported on materials such as TiO2 to form the 

catalyst Au/TiO2, which accelerates the rate of chemical reactions such as the 

oxidation of CO to CO2. Nanotubes show potential application in technology, 

telecommunications, satellites, etc and their superlative resilience, tensile strength and 

thermal stability which have fed fantastic predictions of microscopic robots, dent-

resistant car bodies and earthquake-resistant buildings have made them subject of 

great scientific interest. 

 

In this work, we study the properties of both the clusters and nanotubes of gold in the 

classical molecular dynamics (MD) and electronic quantum mechanics (QM) in the 

density functional theory (DFT). The work in the MD consists of determining the 

properties of gold nanomaterials under different thermodynamic conditions using 

molecular dynamics simulation in the DLPOLY computer code. A many-body 

Sutton-Chen (SC) potential is employed to calculate the interactions between the 

atoms in the systems. Because of its simple form, its application to various types of 

structure and, its readily availability in the DLPOLY code, the Sutton-Chen potential 

is chosen for the simulations. The MD method gives an important advantage of 

determining different properties at different temperatures and the calculations are less 
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expensive. Bigger structures with thousands, even millions of atoms can be well 

handled. 

 

The calculations in quantum mechanics are performed on the gold clusters using 

density functional theory method in the DMOL
3
 code. As opposed to thousands of 

atoms considered in the atomistic calculations, the electronic calculations will be 

limited to a few tens of atoms less than hundred. The generalised gradient 

approximation (GGA) is used to carry out the calculations on the clusters. A big 

advantage for using the DFT is that the results are more accurate and not reliant on 

any interatomic forcefield. Furthermore, doping of the gold clusters with different 

elements can be carried out.  

 

 

1.4. Objectives of the Study 

 

Our calculations are based on two different methods: classical mechanics (atomistic) 

and quantum mechanics (ab initio). To perform MD simulations under different 

thermodynamic conditions, we use a many-body Sutton-Chen potential in the 

DLPOLY code. The simulations are performed on different gold clusters and 

nanotubes under two conditions or ensembles, i.e. the constant NVT Berendsen and 

the constant NPT Berendsen ensembles. The potential is easy to use in DLPOLY code 

and owing to its simple form it can be applied in the calculations of alloys and in 

catalysis. Molecular dynamics will be used to determine the structures of the clusters 

and nanotubes at different temperatures from the radial distribution functions (rdfs). 

The melting temperatures will be estimated using the energy-temperature plot, the 

radial distribution functions and the density profiles.  

 

In quantum mechanics, we will use the DFT in the GGA to perform geometry 

optimization calculations on different gold cluster sizes. We shall carefully note the 

changes in the bond distances after optimization of the structures. The total and 

binding energies will be determined during the simulations and we will use them to 

analyse the stability in the gold clusters. We will dope the gold clusters with different 

transition metals in order to further stabilise the clusters. 
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CHAPTER 2: Theoretical Background 

 

2.1. Methodology 

 

2.1.1. Historical Background 

 

Computer simulation methods provide much insight into several structural, 

dynamical, and thermal properties of solids and liquids. Computational methods are 

particularly well suited to most systems, as well as the study of low-symmetry 

systems (such as those involving surfaces of defects), where the complexity of 

analytical treatments may become overwhelming, and of systems with finite 

temperature. Computer simulations, like experiments, can be used to investigate the 

properties of materials even to the electronic properties. They have a valuable role to 

play in providing essentially exact results for problems in statistical mechanics which 

would otherwise only be soluble by approximate methods, or might be quite 

intractable. The results of computer simulations can also be compared with those of 

real experiments. In the first place, this is a test of the underlying model used in a 

computer simulation. Eventually, if the model is a good one, the simulator hopes to 

offer insight to the experimentalist (as experiments have limits in that they cannot go 

to extremes of pressure and temperature), and assist in the interpretation of new 

results. The dual role of simulations, as a bridge between models and theoretical 

predictions on the one hand, and between models and experimental results on the 

other, is illustrated in Figure 2.1. Owing to the manner in which computer simulations 

are conducted and analysed, and as the word simulation means "mimic", these 

techniques are often termed "computer experiments" [Allen and Tildesley 1987]. 

 

Computer simulation provides a direct route from the microscopic details of a system 

(masses of the atoms, the interactions between them, molecular geometry, etc.) to 

macroscopic properties of experimental interest (the equation of state, transport 

coefficients, structural order parameter, and so on). In addition to being of academic 

interest, this type of information is technologically useful. It may be difficult or 

impossible to carry out experiments under extremes of temperature and pressure, 
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while a computer simulation of the material in, say a shock wave, a high-temperature 

plasma, a nuclear reactor, or a planetary core would be perfectly feasible. 

 

 

Figure 2.1. The connection between experiment, theory, and computer simulation [Allen and 

Tildesley 1987].  

 

 

In computers physical systems are represented by models, which are then simulated 

using different techniques (maybe electronic or atomistic) on the computer. As a 

consequence of the developing technology, the capacity of computers has been 

upgraded significantly and computers can now handle systems with thousands and 

millions of atoms. Simulations can be performed classically (atomistic) or quantum 

mechanically (ab initio level). Both approaches can be used to perform a range of 

basic tasks including computation of the energy of molecules and solids and some 

methods can also predict properties related to the energy of the structure, geometry 

optimizations to find local energy minima for the specified starting structure as well 

as computation of vibrational frequencies resulting from interatomic motion within 

the molecule or solid. Quantum mechanical calculations are usually based on the 

density functional theory (DFT) or Hartree-Fock theory and deal mostly with the 

electronic properties while classical methods are mostly dependent on the interatomic 



 18 

forces or potentials and use the laws of classical physics to predict the structures and 

properties of molecules. 

 

 

2.1.2. Classical Molecular Dynamics Method 

 

2.1.2.1. Background 

 

The molecular dynamics method was first introduced by Alder and Wainwright in the 

late 1950's (Alder and Wainwright, 1957, 1959) to study the interactions of hard 

spheres [Allen and Tildesley 1987, Leach 1996]. Many important insights concerning 

the behaviour of simple liquids emerged from their studies. The next major advance 

was in 1964, when Rahman carried out the first simulation using a realistic potential 

for liquid argon (Rahman 1964). Molecular dynamics calculates the real dynamics of 

the system, from which time averages of properties can be calculated. Sets of atomic 

positions are derived in sequence by applying Newton‟s equations of motion. 

Molecular dynamics is a deterministic method, by which we mean that the state of the 

system at any future time can be predicted from its current state. The first molecular 

dynamics simulations were performed using very simple potentials such as the hard-

sphere potential. The behaviour of the particles in this potential is similar to that of 

billiard or snooker balls. The particles move in straight lines at constant velocity 

between collisions. The collisions are perfectly elastic and occur when the separation 

between a pair of spheres equals the sum of their radii. In potentials such as the 

Lennard-Jones (LJ) potential the force between atoms or molecules changes 

continuously with their separation. By contrast, in the hard-sphere model there is no 

force between particles until they collide. The simulation of a realistic system was 

done by Rahman and Stillinger in their simulation of liquid water in 1974 (Stillinger 

and Rahman 1974). The number of simulation techniques has greatly expanded and 

there exists now many specialized techniques for particular problems, including 

mixed quantum mechanical-classical simulations that are being employed to study 

enzymatic reactions in the context of the full protein. Molecular dynamics simulation 

techniques are widely used in experimental procedures such as X-ray crystallography 

and NMR structure determination. 
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Molecular dynamics is the term used to describe the solution of the classical equations 

of motion (Newton's equations) for a set of molecules where their structures and 

properties can be predicted [Allen and Tildesley 1987, Leach 1996, Atkins 1998, 

Grant and Richards 1995] and uses assumptions like the Born-Oppenhiemer 

approximation [Atkins 1998] where it is assumed that the nuclei is fixed or stationery. 

Molecular dynamics is characterised or described by a forcefield (interatomic 

potential). A forcefield or interatomic potential comprises of a set of equations 

defining the variation of the potential energy of a molecule or a crystal with the 

locations of its component atoms, a series of atom types that define the characteristics 

of an element in a particular chemical context and one or more parameter sets that fit 

the equations and atom types to experimental data. The atoms type depends on 

hybridization, charge, and the types of the other atoms to which an atom is bonded. 

Parameter sets define force constants, and structural parameters such as bond lengths 

and angles. 

 

Classical molecular dynamics methods do not consider the electrons in a molecular 

system explicitly. Instead, these calculations are based on interactions among the 

nuclei. Electronic effects are implicitly included in a forcefield via its 

parameterization. Such approximation makes molecular dynamics methods relatively 

inexpensive computationally and, hence, allows them to be used for very large 

systems containing up to millions of atoms. However, it also imposes limitations such 

as that, firstly a particular forcefield can achieve good results only for a limited class 

of molecules or solids, related to those for which it was parameterised, secondly, the 

results are as good as the forcefield used and thirdly, neglecting the electrons means 

that molecular dynamics methods cannot treat chemical problems in which electronic 

effects predominate. 

 

Molecular dynamics simulation is used to compute the motions of individual 

molecules in models of solids, liquids, and gases. The key word is motion, which 

describes how positions, velocities, and orientations change with time. In effect 

molecular dynamics constitutes a motion picture that follows molecules as they dart to 

and fro, twisting, turning, colliding with one another, and, perhaps, colliding with 

their container. The usage is not unique as molecular dynamics may also refer to the 

motions of real molecules when studied primarily by molecular beam or spectroscopic 
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techniques. The molecular dynamics simulation method is based on Newton's second 

law or the equation of motion written as: 

 

                                     amF                                              (2.1) 

  

F is the force exerted on the particle, m its mass and a its acceleration (vector 

quantities are bolded). From the knowledge of the force on each atom, it is possible to 

determine the acceleration of each atom in the system. Integration of the equations of 

motion then yields a trajectory that describes the positions, velocities and 

accelerations of the particles as they vary with time. From this trajectory, the average 

values of properties can be determined. The force on a particular atom i can be written 

as: 

 

iii amF 
       (2.2) 

 

In the above equation F, m and a respectively represent the force, mass and 

acceleration of the particle i. The force F can be evaluated directly from the derivative 

of the potential energy, E, with respect to the coordinates, r, and can be implemented 

in the Newton‟s second law of motion to yield the equation: 
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The acceleration is then given by: 
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There are many algorithms for integrating the equations of motion using finite 

difference methods, several of which are commonly used in molecular dynamics 

calculations [Leach 1996]. All algorithms assume that the positions and dynamical 

properties (velocities, accelerations, etc.) can be approximated as Taylor series 

expansions. The Verlet algorithm [Allen and Tildesley 1987, Leach 1996, Verlet 

1976] is perhaps the most widely used method for integrating the equations of motion 

in a molecular dynamics simulation. The Verlet algorithm uses the positions and 

accelerations at time t, and the positions from the previous step, r(t-δt) to calculate 

new positions at (t+δt), r(t+δt). The following relationships between these quantities 

and the velocities at time t can be written as: 
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Adding these two equations gives 

 

)()()(2)( 2 tatttrtrttr      (2.7) 

 

The velocities do not explicitly appear in the Verlet integration algorithm. The 

velocities can be calculated in a variety of ways, a simple approach is to divide the 

difference in positions at times t + t and t – t by 2t: 
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Alternatively, the velocities can be estimated at the half-step, tt 
2

1
 : 
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Implementation of the Verlet algorithm is straightforward and the storage 

requirements are modest, comprising two sets of positions (r(t) and r(t - t)) and the 

accelerations a(t). The Verlet algorithm lacks an explicit velocity term in the 

equations and this makes it difficult to obtain the velocities, and thus the velocities are 

not available until the positions have been computed at the next step. Furthermore, it 

is not a self-starting algorithm which implies that the new positions are obtained from 

the current positions r(t) and the positions from the previous time step, r(t – t). 

Therefore, several variations of the Verlet algorithm have been developed. The leap-

frog algorithm [Hockney 1970] uses the following relationships: 
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To implement the leap-frog algorithm, the velocities )
2

1
( ttv   are first calculated 

from the velocities at time tt 
2

1
  and the accelerations at time t. The positions 

)( ttr   are then deduced from the velocities just calculated together with the 

positions at time r(t) using the equation 2.10. The velocities at time t can be calculated 

from  

 


























 ttvttvtv 

2

1

2

1

2

1
)(

   (2.12) 



 23 

The velocities thus „leap-frog‟ over the positions to give their values at tt 
2

1
  

(hence the name). The positions then leap over the velocities to give their new values 

at tt  , ready for the velocities at tt 
2

3
 , and so on. The leap-frog method 

thus has two advantages over the standard Verlet algorithm. It explicitly includes the 

velocity and also does not require the calculation of the differences of large numbers. 

The obvious disadvantage of the leap-from algorithm is that the positions and the 

velocities are not synchronised. This means that it is not possible to calculate the 

kinetic energy contribution to the total energy at the same time as the positions are 

defined (from which the potential energy is determined). The velocity Verlet method 

[Swope et al. 1982] therefore gives positions, velocities and accelerations at the same 

time and does compromise precision and the relationships are: 
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The time dependence of the properties of the system can also be provided using 

molecular dynamics.  

 

Suppose we wish to determine experimentally the value of a property of a system 

such as the pressure or the heat capacity. In general, such properties will depend upon 

the positions and momenta of the N particles that comprise the system. The 

instantaneous value of the property A can thus be written as  )(),( trtpA
NN

, where 

)(tr
N

 represent the N momenta and positions respectively at time t (i.e., 

  ),...,,,,,...,,,,()(),( 21112111 txzyxppppAtrtpA xzyx

NN

  where p1x is the momentum 

of particle 1 in the x direction and x1 it is coordinate. The experimentally measured 

value is the average of A over the time because the instantaneous value of A changes 
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with time due to fluctuations as a result of interactions between the particles. As the 

time over which the measurement is made increases to infinity, so the value of the 

following integral approaches the true average value of the property: 
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Boltzman and Gibbs developed stastical mechanics in which a single system evolving 

is replaced by a large number of replications of the system that are considered 

simultaneously. The time average is then replaced by an ensemble average: 
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The angle brackets  indicate an ensemble average, or expectation value, i.e. the 

value of the property A over all replications of the ensemble generated by the 

simulation. Equation 2.16 is written as a double integral for the convenience but in 

fact there should be 6N integral signs on the integral for the 6N positions and 

momenta for all the particles.  NN

rp  is the probability density of the ensemble 

which refers to the probability of finding a configuration with momenta p
N
 and 

positions r
N
. The ensemble average of the property A is then determined by 

integrating over all possible configurations of the system. The ergodic hypothesis, 

which is one of the fundamental axioms of stastical mechanics, the ensemble average 

is equal to the time average. Under conditions of constant number of particles, volume 

and temperature, the probability density is the familiar Boltzmann distribution: 
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In the above equation  NN

rpE ,  is the energy, Q is the partition function, kB is 

Boltzmann‟s constant and T is the temperature. The partition function is more 

generally written in terms of the Hamiltonian, H, and for a system of N identical 

particles the partition function for the canonical ensemble is as follows: 

 

 













   Tk

rpH
rdpd

hN
Q

B

NN
NN

NNVT

,
exp

1

!

1
3  (2.18) 

 

The canonical ensemble is the name given to an ensemble for constant temperature, 

number of particles and volume (NVT). Molecular dynamics is traditionally 

performed under conditions of the famous constant number of particles (N), volume 

(V), and energy (E). These conditions together form the microcanonical ensemble 

(NVE) [Allen and Tildesley 1987, Leach 1996, Atkins 1998, Grant and Richards 

1995, Smith et al. 2006]. Also the following ensembles can be used in molecular 

dynamics: the canonical ensemble (the constant NVT), and the grand-canonical 

ensemble (the constant μVT), and many others derived from these basic three. 

 

 

2.1.2.2. Setting up a MD Simulation 

 

In setting and running a molecular dynamics simulation, the first task is to decide 

which energy model to use to describe the interactions within the system. Then the 

initial configuration has to be chosen in such a way that it favours the potential model 

used. In this work the many-body Sutton-Chen potential [Sutton and Chen 1990, Todd 

and Lyndell-Bell 1993, Mahladisa 2004] is employed to study properties of magic 

gold clusters and cylindrical gold nanotubes in molecular dynamics using the 

DLPOLY computer code. The first stage of molecular dynamics simulation is the 

equilibration phase; the purpose of which is to bring the system to equilibrium from 

the starting configuration. When these parameters achieve stable values, then the 

production phase can commence. It is during the production phase that the 

thermodynamic properties and other data are calculated. DLPOLY sums up all the 

steps at the end and gives the average results after the final step. 
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2.1.2.3. Interatomic Potentials 

 

Potential models or interatomic potentials are used to describe the interactions 

between atoms in molecular dynamics and the choice of the potential model depends 

on the type of the system. We choose a many-body potential for metallic gold 

spherical nanoclusters and cylindrical nanotubes. The Sutton-Chen potential, which 

takes the general form of the Finnis-Sinclair potential [Finnis and Sinclair 1984], will 

be used in the DLPOLY [Smith et al. 2006] computer code to execute molecular 

dynamics simulations on gold clusters and tubes. The potential always favours fcc and 

hcp structures over the bcc structures and can always be compatible with the extended 

fcc structures like nanocluster and nanotubes. The potential is convenient for scaling 

properties of both length and energy, and a number of properties of the perfect crystal 

may be derived analytically. 

 

Metallic systems require many-body potentials because of some shortcomings or 

failures of a two-body potential. A many-body potential is required because a two-

body potential fails to deal with the complications in metals [Finnis and Sinclair 1984, 

Ercolessi et al. 1988, Daw and Baskes 1984, Holender 1990]. A two-body potential 

can model well the coordination of an ion which has nearly a constant coordination 

during the motion where the ion interacts with other ions. Motions which tend to 

change the coordination appreciably are greatly discouraged by their high energetic 

cost. Such motions occur easily in the proximity of surfaces or defects, and the 

extreme case consists of pulling an atom out of the system. This mechanism cannot be 

modelled by two-body forces, for one simple reason that a two-body scheme implies a 

linear dependence of the energy of an atom upon its coordination. A two-body force 

like the Lennard-Jones (LJ) potential gives a poor description of surface relaxation in 

metals and cannot account for the long range interactions. Another disadvantage of 

using a two-body force in the simulations of metals is that a two-body potential fails 

to simulate the electronic cohesion in metals and are not capable of describing 

rewarding atomic coordination. A many-body force gives rise to N-body interactions 

in the sense that the force exerted by one atom on another depends on the disposition 

of all neighbours to both atoms concerned. By contrast, a pair potential alone gives 

rise to a force that depends only on the separation of the atoms concerned and thus 
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ignores the surrounding atoms. A pair-body potential gives the Cauchy relation 

between metals as C12=C44, which is seldom the case for real metals, for gold C12/C44 

is 3.7. In general, the pure pairwise-potential models do not work properly when the 

local environment differs from the uniform bulk. 

 

 

2.1.2.4. The Sutton-Chen Potential 

 

The Sutton-Chen potential has several advantages. Firstly, it provides a method for 

analysing trends in properties in different metals; secondly it is analytic and 

approximate expressions for various quantities may be obtained in terms of the 

potential parameters. Thirdly, it is particularly suitable for computer modelling, as 

they are efficient to evaluate. Lastly, that it is longer ranged than most semi-empirical 

potentials, a property that may be important for the correct modelling of surface 

phenomena. 

 

The Sutton-Chen potential has the form: 
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The first term represents the repulsion between the atomic cores and the second term 

models the bonding energy due to the electrons. The first term is the two-body term 

which is purely repulsive and the second term deals with the many-body interactions 

and is totally cohesive. The electrons are not included explicitly, so the local density, 

ρi, in the second term is the local density of the atoms. The repulsion term is given by: 
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The local density is given by: 
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In the above equations rij is the separation between atoms i and j, c is a positive 

dimensionless parameter, ε is a parameter with the dimensions of energy, a is a 

parameter with the dimensions of length, and n and m are positive integers. The three 

parameters, , C and a are not independent and are determined by the equilibrium 

lattice parameters and lattice energy of the face-centred lattice. The exponent pairs 

(n,m) are assigned for modelling different metals by fitting the elastic constants as 

closely as possible. For a given crystal structure, the Sutton-Chen potential is defined 

by the exponents n and m. That is because the equilibrium condition for a particular 

crystal structure fixes the dimensionless parameter c. If two metals, with the same 

crystal structures, may be represented by the same values of exponents, n and m, then 

the results obtained for one metal may be directly converted into the results of another 

simply by rescaling the units of energy and length. The relative stabilities that the 

potentials predict for the face-centred cubic (fcc) and body-centred cubic (bcc) crystal 

structures are also determined entirely by the exponents n and m. The ratio of the bulk 

elastic constant to the cohesive energy per unit volume is proportional to the product 

of the exponents. The exponents n and m in the potential for gold are given the values 

10 and 8 respectively, while  and c are given the values 0.0128 eV and 34.408 

respectively. The lattice parameter a for gold is 4.08 Å. The force on each atom is 

written as a sum of a pairwise contribution. The force between two atoms i and j is 

described by the equation: 
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The pairwise form of the force between two gold atoms means that the interaction 

between the atoms ignores the surrounding atoms. The force will therefore represent 

the spring connecting two atoms.   
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2.1.2.5. Simulation Details 

 

Molecular dynamics (atomistic) simulations were carried out on hexagonal (six 

corners) or spherical magic gold clusters ranging from 55 to 2214 atoms in size as 

well as cylindrical nanotubes of different number of atoms and different number of 

walls ranging from 24 to 1523. The exact numbers considered for Au clusters is 55, 

149, 249, 309, 887, 1464 and 2214 and for the nanotubes we have considered 

structures with 24, 196, 364, 480, 541, 628, 1252 and 1523 atoms. 

 

Different ensembles were used for the calculations on nanoclusters and nanotubes 

with the NPT Berendsen [Allen and Tildesley 1987, Leach 1996, Grant and Richards 

1995, Smith et al. 2006] ensemble being the centre of focus. Other ensembles were 

used mainly for comparison with the NPT Berendsen ensemble. Each ensemble has 

its advantages due to different parameters controlled in each. The major reason for 

using the NPT conditions is that they give good results when determining the 

temperature effects, for example, the structural changes with temperature and melt ing 

points of these materials. The NVT or NVE ensembles do not give the much needed 

transition or jump in the energy-temperature plot and that is because the pressure is 

not closely controlled as in the NPT conditions. Furthermore, the NPT Berendsen 

ensemble allows simulations to be carried out at a chosen constant pressure and the 

temperature and pressure are controlled by the thermostat and the barostat relaxation 

times that are set to suit the simulation.  

 

The constant-energy, constant-volume ensemble (NVE) is obtained by solving the 

standard Newton equation without any temperature and pressure control. Energy is 

conserved when this (adiabatic) ensemble is generated. The constant-temperature, 

constant-pressure ensemble (NPT) allows control over both the temperature and 

pressure. The unit cell vectors are allowed to change, and the pressure is adjusted by 

adjusting the volume (i.e., the size and also, in some programmes, the shape of the 

unit cell). The main difference between the two ensembles is that the NVE ensemble 

does not allow the size of the unit cell to change while the NPT ensemble allows the 

unit cell size to change either by contracting or expanding. The NPT Berendsen 

conditions allow the energy to change which abides well for the determination of the 
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melting points through the energy-temperature plot (aided by the radial distribution 

function and the density profiles). 

 

The Verlet algorithm, which uses acceleration, positions and time (a, r, t), at a 

previous step r(t-δt) to calculate new positions at (t+δt), r(t+δ), was used to integrate 

the equations of motion. This makes molecular dynamics to be systematic because if 

we know the acceleration, positions and time at the previous step we can predict the 

properties for the future step. No electrostatics interactions were taken into 

consideration since we have neutral systems [Leach 1996]. Periodic boundary 

conditions [Allen and Tildesley 1987, Leach 1996] were employed in most of our 

calculations. Periodic boundary conditions keep the number of atoms and the density 

in a simulation box constant throughout the simulation in that the central box is 

surrounded by neighbors such that when an atom leaves the box it is replaced by an 

image particle that enters from the opposite side.    

 

The structures of gold clusters and tubes were first relaxed at T = 0 K before higher 

temperatures could be imposed on these nanostructures. Simulations were run for 6 x 

10
4
 MD steps with a time step of 5 ns. The simulation temperatures for the clusters 

ranged from as low as 100 K to as high as 2000 K depending on the resistance of the 

materials towards high temperatures. Au nanotubes do not show that much resistance 

as the clusters and the temperatures ranged from 100 K to 1400 K. Pressure was set to 

0.0 kbar in the NPT Berendsen ensemble with the thermostat [Berendsen et al. 1984] 

and barostat [Evans 1983] relaxations times set at 0.4 ps and 0.5 ps respectively. 

 

The annealing process was also performed on the selected gold clusters and 

nanotubes. Annealing is the process of heating a material to some high temperature 

and then slowly cooling down. In our calculations, we start from the point where 

melting has occurred and slowly cool down at intervals of 50 K until we get to very 

low temperatures, i.e. 50 K or 0 K. We have chosen the cluster with 309 atoms and 

the nanotube with 1252 atoms was considered assuming that the results are the same 

for other materials. The main purpose of this process is to test the possibility of 

regaining the initial structure after the structure has been deformed by temperature. 

We will also see if we indeed get stable structures by means of determining the 

energies at different stages.  
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2.1.3. The DLPOLY Computer Code 

 

The DLPOLY code [Smith et al. 2006] is a parallel molecular dynamics simulation 

package developed at the Daresbury Laboratory by W. Smith and T.R. Forester in 

England in 1997. The code is issued free under license to academic institutions 

pursuing scientific research of a non-commercial nature. The purpose of the 

DL_POLY_2 package is to provide software for academic research that is 

inexpensive, accessible and free of commercial considerations. The users of the code 

have direct access to source code for modification and inspection. The code is a 

package of subroutines, programs, and data files, designed to facilitate molecular 

dynamics simulations of macromolecules, polymers, ionic systems, solutions, and 

other molecular systems on a distributed memory parallel computer. The DLPOLY 

code is capable of simulating the following molecular species: 

  

1. Simple atomic systems and mixtures; e.g., Ne, Ar, and Kr, 

2. Simple unpolarisable point ions ; e.g., NaCl, and KCl, 

3. Polarisable point ions and molecules; e.g., MgO, and H2O, 

4. Simple rigid molecules; e.g., CCl4, SF6, and Benzene,  

5. Rigid molecular ions with point charges e.g. KNO3, (NH4)2SO4, 

6. Polymers with rigid bonds e.g. CnH2n+2 

7. Polymers with rigid bonds and point charges; e.g., proteins 

8. Macromolecules and biological systems 

9. Molecules with flexible bonds 

10. Silicate glasses and zeolites 

11. Simple metals and alloys; e.g., Al, Ni, Cu, and Au, 

12. Covalent systems; e.g., C, Si, Ge, SiC, and SiGe. 

 

The code is capable of performing wide range of molecular dynamics simulations 

using different potential models, viz. the two-body potentials (Lennard Jones), many-

body potentials (Sutton-Chen), etc. The Sutton-Chen potential is found readily 

available for use in the code. A range of properties like the total energy of the system, 

diffusion coefficients, pressure, volume, temperature, and lattice parameters, can be 

calculated using DLPOLY. The code uses different thermodynamic conditions such 
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as different ensembles, and higher temperature can easily be carried out. The code can 

be used to investigate the melting temperatures, the change in the structure at different 

temperatures, and many thermodynamic properties.  

 

Five input files which are equally valued in their different respect are required to 

initiate a DLPOLY simulation, viz. CONTROL, CONFIG, FIELD, TABLE and 

REVOLD files. The first three file are mandatory, while TABLE is used to input 

certain type of pair potential, and is not always required. REVOLD is required only if 

the job represents a continuation of a previous job. The FORTRAN written files must 

have their names written in capital letters for the code to recognise them. The files are 

interrelated and therefore one mistake in one file will lead to the termination of the 

simulation where an error message will be printed at the end of the OUPUT file.    

 

 

2.1.3.1. The CONTROL Input File 

 

The simulation is controlled in this file and is read by the subroutine SIMDEF. The 

file makes extensive use of directives and keywords. Directives are character strings 

that appear as first entry on a data record (or line) and which invoke a particular 

operation or provide numerical parameters. Also associated with each directive may 

be one or more keywords, which may qualify a particular directive by, for example, 

adding extra options. Directives have the following form: 

 

keyword [options] {data} 

 

The keyword and options are text fields, while the data options are numbers (integers 

or reals). Directives can appear in any order in the CONTROL file, except for the 

finish directive which marks the end of the file. Some of the directives are mandatory 

(for example the timestep directive that defines the timestep), some others are 

optional. The file is free-formatted, integers, reals, and additional keywords are 

entered following the keyword on each record. Real and integer numbers must 

separated by a non-numeric character (preferably a space or a comma) to be correctly 

interpreted. No logical variable appear in the CONTROL file. Comment records 

(beginning with a #) and blank lines may be added to aid legibility and the file is not 



 33 

case sensitive. The first record in the file is a header 80 characters long, to aid 

identification of the file and the last record is a finish directive which the end of the 

input data. A wide choice of control directives that are relevant to the simulation may 

be inserted between the header and finish directives. The CONTROL file in short 

contains all the parameters required to control a simulation, i.e., duration (number of 

steps), the job time and close time, the temperature, pressure, which properties to print 

during a simulation, the cut-off radius, the ensemble, etc. 

 

 

2.1.3.2. The CONFIG Input File 

 

This file contains the dimensions of the unit cell, the key for periodic boundary 

conditions and the atomic labels, coordinates, velocities and forces. The file is read by 

the subroutine SYSGEN (It is also read by the subroutine SIMDEF if the Ewald 

precision directive is used). The CONFIG file is where the structure is contained with 

the atoms and their specific positions or coordinates. The file has the same format as 

the output file REVCON. When restarting from a previous run, the CONFIG file must 

be replaced by the REVCON file, which is renamed as the CONFIG file and this, is 

done by the restart directive in the CONTROL file. The copy marco in the executive 

sub-directory of DLPOLY does this for the user. The first few records in a typical 

CONFIG file are shown below:  

 

Sample of 5x5x5 unit cells of gold configuration                                                     

         2         3      

       20.4800102205        0.0000000000        0.0000000000 

        0.0000000000       20.4800102205        0.0000000000 

        0.0000000000        0.0000000000       20.4800102205 

AU               1 

    0.7669999082E-01   -0.1800404519E-01    0.1559645479     

   -0.6394637067        0.7191780488        0.3560873033     

    -2617.585843       -6860.422622        -8329.447344     

AU               2 

    2.146807714         1.946505832         0.2320882471E-01 

   -0.7201362964       -0.2587050489       -0.1215035490     

   -6704.987987         3879.804010         332.7548383     

AU               3 
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    2.056837622        -0.7392579524E-01     2.067636248     

    0.3514962921        0.9539534229         0.2997429062     

    264.0516524         9065.808543          4829.122639     

AU               4 

    0.3923468588E-02    1.960997966          2.043765690     

   -2.540815867         0.6811282875         0.8479955133E-01 

    1547.115607         9764.160026          302.7042774     

etc. 

 

The file is fix-formatted: integers as “i10”, reals as “f20.0”. The header record is 

formatted as 80 alphanumeric characters. The integer 2 means that coordinates, 

velocities and forces are included in the file. The integer 3 means that the 

parallelepiped periodic boundary conditions should be applied. The first 

20.4800102205 is real and represents the x-component a cell vector, the second one 

gives the y-component and the third a z-component of the cell. The volume is thus 

determined from these three components which give the dimensions of the cell. The 

cut-off radius set in the CONFIG file should be less or equal to half of the smallest 

component, e.g. in this example the cut-off radius will be 10.0 Å or less but we have 

used 9.5 Å during our simulations and it worked very well. The next record start with 

an atomic label, Au for gold and its atom index will be one for the first atom, 2 for the 

second and etc. Each atom is described by the x-, y-, z-components of the coordinates, 

velocities and forces.  

 

 

2.1.3.3. The FIELD Input File 

 

The FIELD file contains the force field information defining the nature of molecular 

forces. It is read by the subroutine SYSDEF. This is where all the atomic interactions 

are dealt with the specification of the force-field or interatomic potential. The 

interactions between the atoms lead to the production of energy which is usually 

measured in electron volts (eV). The file is free formatted (though it should be noted 

that atom names are limited to 8 characters and potential functions keys are limited to 

only 4 characters). Additional information is associated with the directives and the file 

is not case sensitive. The file divides into three sections; i.e., general information, 

molecular description and non-bonded interaction descriptions, appearing in that order 
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in the file. The first record in the FIELD file is the title and it must be followed by the 

units directive. Both of these are mandatory. 

 

It is important to note that there is an organizational between the FIELD and the 

CONFIG file described earlier. It is required that the order of specification of the 

molecular types and their atomic constituents in the FIELD file follow the order in 

which they appear in the CONIFG file. Failure to adhere to this common sequence 

will be detected by DLPOLY and result in premature termination of the job. It is 

therefore essential to work from the CONFIG file when constructing the FIELD file. 

The entry of the molecular details begins with the mandatory directive: 

 

molecules n 

   

Here n is the integer specifying the number of different types of molecule appearing 

in the FIELD file. Once this directive is encountered, DLPOLY enters the molecular 

description environment in which only molecular keywords and data are valid. 

Immediately following the molecules directives are the records finding the individual 

molecules.   

 

1. name-of-molecule  

      which can be any character string up to 80 characters in length.(this is not a      

      directive, just a simple character string). 

2. nummols n 

where n is the number of times a molecule of this type appears in the simulated 

system. The molecular data then follow in subsequent records. 

3. atoms n 

where n indicates the number of atoms in this type of molecule. A number of records 

follow, each giving details of the atoms in the molecule, i.e. site names, masses and 

charges. Each record carries the entries: 

 

sitnam  a8  atomic site name 

weight  real  atomic site mass   

chge  real  atomic site charge 

nrept  integer  repeat counter 
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ifrz  integer  „frozen‟ atom (if ifrx > 0) 

igrp  integer  neutral charge/charge group number 

 

These entries are order sensitive. Blank entries must not be left unless all parameters 

appearing after last specified are void. The integer need not be specified (in which a 

value of 1 is assumed). The number greater than 1 specified here indicates that the 

next (nrept - 1) entries in the CONFIG file are ascribed the atomic characteristics 

given in the current record. The sum of repeat numbers for all atoms in a molecule 

should equal the number specified by atoms directives. 

 

4. shell n m 

where n is the number of core shell units and m is an integer specifying which shell 

mode is required: 

 

 m = 1 for adiabatic shell model;  

 m = 2 for relaxed shell model; 

 

Each of the subsequent n records contains: 

 

index 1  integer  site index of core 

index 2  integer  site index of shell 

spring  real  force constant of core-shell spring 

 

5. finish  

This directive is entered to signal to DLPOLY that the entry of the details of a 

molecule has been completed. The entries for a second molecule may now be entered, 

beginning with the name-of-molecule record and ending with the finish directive. The 

cycle is repeated until all the types of molecules indicated by the molecules directive 

have been entered. 

 

A complete FIELD file is shown below specifying all simulation requirements for a 

gold metal using the many Sutton-Chen potential. There is a good correlation between 

this file and the CONFIG file discussed earlier. 
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DL_POLY TEST CASE 2: Au Sutton-Chen forcefield 

units ev 

molecular types 1 

Gold 

nummols 1 

atoms 55 

AU   196.97   0.0      55 

finish 

vdw 1 

AU  AU  stch   0.0204688  3.59   11.0  6.0  34.408 

close 

 

Metal potentials in DLPOLY are based on the Finnis-Sinclair model [Finis and 

Sinclair 1991]. The explicit form of the potential in DLPOLY is confined to the 

formulation of the Sutton and Chen [Sutton and Chen 1984] and Rafii-Tabar and 

Sutton [Rafii-Tabar and Sutton 1991]. These are non-bonded potentials and are 

characterized by atom types rather than specific atomic indices. The input of metal 

potential data is signaled by the directive: 

 

metal n 

 

where n is the number of metal potentials to be entered. There follows n records, each 

specifying a particular metal potential in the following manner (see Table 1): 

 

atmnam 1  a8  first atom type  

atmnam 2  a8  second atom type 

key   a4  potential key 

variable 1  real  potential parameter 

variable 2  real  potential parameter   

variable 3  real  potential parameter 

variable 4  real  potential parameter 

variable 5  real  potential parameter 

 

The variables pertaining to each potential are described in Table 2.1. Any metal 

potential not specified in the FIELD file will be assumed to be zero. The Sutton-Chen 

will handle alloys, but care must be taken to enter the cross terms of the potentials 
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explicitly. The rules for defining the cross terms of the potential are not usually the 

terms encountered in the Lennerd-Jones systems. A second potential is usually needed 

in alloys where the interactions between the two metals studied is taken care of by 

Sutton-Chen. The second potential model will handle the interactions between the 

different atomic species. However, the Sutton-Chen potential can be modified to suit 

such kind of calculations or the LJ potential can be modified through the use of the 

mixing rules.  

 

Table 2.1. Definition of the metal potential functions and variables. This is exactly how the 

potential parameters are put in the FIELD file in DLPOLY as shown above. 

key potential type Variables (1-5) Functional form 
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2.1.3.4. The REVOLD File 

 

The file contains statistics array from a previous job. It is not required if the current 

job is not a continuation of a previous run (i.e. if the restart directive is not present in 

the CONTROL file). The file is unformatted and there not readable by a normal 

person. DLPOLY usually produces the file REVIVE at the end of a job which 

contains the statistics data. REVIVE should be copied to REVOLD before a 

continuation run commences. This may be done by the copy macro supplied in the 

executive sub-directory of the DLPOLY code.  

 

 

2.1.3.5. The TABLE file 

 

This file offers an alternative way of reading in the short range potentials – in tabular 

form. This is particularly useful if an analytical form of the potential does not exist or 
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is too complicated to specify in the FORGEN subroutine. The TABLE file read by the 

subroutine FORTAB.F in the VDW_TERMS.F file. 

 

 

2.1.4. THE DLPOLY OUTPUT FILES 

 

The output file is where the output data produced from the input files is printed. 

DLPOLY produces up to seven output files: HISTORY, OUTPUT, REVCON, 

REVIVE, RDFDAT, ZDNDAT and STATIS. These respectively contains: a dump 

file of atomic coordinates, velocities and forces; a summary of the simulation; the 

restart configuration; statistics accumulators; radial distribution data; Z-density data 

and a statistical history. The REVCON and REVOLD files have been said about 

earlier. 

 

 

2.1.4.1. The HISTORY file 

 

The HISTORY file is a dump file of atomic coordinates, velocities and forces. Its 

principal use is for offline analysis. The file is written by the subroutine TRAJECT or 

TRAJECT_U. The control variables for this file are ltraj, nstraj, istraj and keytrj 

which are created internally, based on information read from the directive traj in the 

CONTROL file. The HISTORY file will only be created only if the traj directive 

appears in the CONTROL file. The file can be very large, especially if it is formatted. 

This file is particularly important if graphical processing of the data is required. 

 

 

2.1.4.2. The OUTPUT File 

 

The OUPUT file consists of eight or nine seven sections: Header; Simulation control 

specifications; Force field specification; Summary of the initial configuration; 

Simulation progress; Summary of statistical data; Sample of the final configuration; 

Radial distribution functions; and Density profiles. The printing of the radial 

distribution and density profiles is respectively executed by the inclusion of the 
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directives rdf and print rdf and zden in the CONTROL file. The RDFDAT file (for the 

radial distribution functions) is written from the subroutine RDF1 while the ZDNDAT 

file (for the density profiles) is written by ZDEN1.  

 

 

2.1.4.3. The STATIS File 

 

The file is formatted with integers as “i10” and as reals “e14.6”. It is written by the 

subroutine STATIC. It consists of two header records followed by many data records 

of statistical data. The STATIS file is appended at intervals determined by the stats 

directive in the CONTROL file. The complete structure of both the input and output 

DLPOY files is Figure 2.2. 

 

 

Figure 2.2. The scheme illustrating the DLPOLY input (left) and OUTPUT (right) files. Files 

marked with an asterisk are non-mandatory. 

 



 41 

2.1.5. Calculated Parameters 

 

A wide variety of thermodynamic properties can be calculated from computer 

simulations and molecular dynamics is just one technique to carry out that job. 

Simulations give results that can be compared with the experiments to quantify the 

potential model used as well as to validate the obtained results. 

 

 

2.1.5.1. The Energy 

 

The internal energy is easily obtained from a simulation as the ensemble average of 

the energies of the states that are examined during the course of the simulation. The 

equation for the energy can be written as: 
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The average potential energy V is obtained by averaging its instantaneous value, 

which is obtained at the same time as the force computation is made. Thus, the 

potential energy is given by: 
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The kinetic energy is given by: 
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where mi is the mass of atom i and vi is the velocity of atom i. The total energy of the 

system can be represented as the sum of the kinetic energy and the potential energy 

and, the total energy of the system with a given set of positions and velocities is 

represented by: 

 

)()( tVtKTtot        (2.26) 

 

 

2.1.5.2. The Pressure 

 

The pressure is usually calculated in a computer simulation via the virial theorem of 

Classius. The virial is defined as the expectation value of the sum of the products of 

the coordinates of the particles and the forces acting on them. This is usually written 

 xii pxW  where xi is a coordinate (e.g. the x or y coordinate of an atom) and 
xi

p  

is the first derivative of the momentum along that coordinate (
i

p  is the force, by 

Newton‟s second law). The virial theorem states that the virial is equal to -3NkBT. In 

an ideal gas, the only forces are those due to interactions between the gas and the 

container and it can shown that the virial in this case equals -3PV, the results which 

can be obtained directly from PV = NkBT. Forces between the particles in a real gas or 

liquid affect the virial, thence the pressure. The pressure is then written as: 

 









 

 

N

i

N

ij

ijij

B

B fr
Tk

TNk
V

P
1 13

11

   (2.27) 

 

The forces are calculated as part of molecular dynamics simulation, so little additional 

effort is required to calculate the virial and thus the pressure. The pressure can be kept 

constant depending on the type of ensemble used. In the NPT isorthermal-isothermic 

ensemble the total pressure of the system is constant. In the microcanonical ensemble, 

however, the pressure will fluctuate throughout the simulation. 
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2.1.5.3. The Temperature 

 

The temperature, like the pressure, depends on the type of ensemble used for a 

particular simulation. In a canonical ensemble the total temperature is constant 

whereas it is allowed to fluctuate in the microcanocial ensemble. The temperature is 

directly related to the kinetic energy of the system as follows: 
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In the above equation, pi is the total momentum of particle i and mi is its mass and Nc 

is the number of constraints on the system. Each degree of freedom contributes kBT/2 

according to the theorem of equipartition of energy. If there are N particles, each with 

three degrees of freedom, then the kinetic energy should equal 3NkBT/2.  

 

 

2.1.5.4. The Radial Distribution Functions (RDFs) 

 

Radial distribution functions are a useful way to describe the structure of a system, 

particularly of liquids. Consider a spherical shell of thickness r at a distance r from a 

chosen atom. The volume of the shell is given by: 
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If the number of particles per unit volume is , then the total number in the shell is 

4r
2r and so the number of atoms in the volume element varies as r

2
. The pair 

distribution, g(r), gives the probability of finding an atom (or molecule, if simulating 
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a molecular fluid) a distance r from another atom (or molecule) compared to the ideal 

gas distribution. g(r) is thus dimensionless. Higher radial distribution functions (e.g. 

the triplet radial distribution function) can also be defined, but are rarely calculated 

and so references to the radial distribution function are usually taken to mean the 

pairwise version. In a crystal, the radial distribution function has a multiple number of 

sharp peaks whose separation and heights are characteristic of the lattice structure. 

The radial distribution function of a liquid is intermediate between the solid and the 

gas, with a small number of peaks as short distances, superimposed on a steady decay 

to a constant value at longer distance. The radial distribution functions can in short be 

used to differentiate between solids, liquid and gas phases. Furthermore, the radial 

distribution functions can be used in calculations where we are able to notice a change 

in the phases; i.e., starting from a solid structure we can be able to see the structure 

change to a liquid phase and then to a gaseous one as shown in Figure 2.3.      

 

     

Figure 2.3. The rdfs for gold bulk are shown, starting from a solid crystal on the left, the system 

reaches melting in the central figure and on the right the gaseous system can be observed. The 

number of peaks decreases and the broadening of the peaks is quite noticeable.  

 

 

2.1.5.5. The Density Profiles 

 

The density profiles show less dense structures at melting by a decrease in the number 

of peaks and a sudden change in the peak pattern. Figure 2.4 shows a change in the 

peak patterns of the density profiles as we move from a solid to a liquid phase. The 

behaviour of the density in the system can be described using the density profiles 

when it changes by the changing pressure or temperature. The increasing pressure 

always increases the density of a material while the increasing temperature decreases 

the density.   



 45 

      

Figure 2.4. The density profiles are plotted for the bulk Au at solid and liquid phases. The peak 

patterns in the liquid structure change quite significantly from that of the solid structure.  

 

 

2.1.5.6. Melting Temperature (Tm) 

 

Melting temperature is defined as the temperature at which, under a specific pressure, 

the liquid and solid phases of a substance coexist in equilibrium. At melting the 

systems appear disordered and molecular diffusion can occur and it is a high pressure 

case. At low temperatures systems are ordered with little molecular motion and that 

occurs at low pressures. The melting temperature of most substances is the same as 

their freezing temperature because the substance melts at a similar temperature as that 

at which it freezes. The example is that of the most interesting liquid, water, which 

melts very close to 0 
0
C (273.15 K). Coexistence is easily achievable in larger systems 

in two dimensions [Atkins 1998]. 

 

Unlike the boiling point, the melting temperature is relatively insensitive to pressure. 

Meting points are often used to characterise organic compounds and ascertain the 

purity. The melting point of a pure substance is always higher and has a smaller range 

than the melting point of an impure substance. The more impurity is present, the 

lower the melting point and the broader the range. The chemical element with the 

highest melting point is tungsten which melts at 3695 K (3422 
0
C) making it excellent 

for use in light bulbs. Platinum, with the melting point of 1772 
0
C (2045.15 K), has 

the highest melting point amongst the precious metals while metallic gold melts at 

1064 
0
C (1337 K). Computationally we are able to keep the pressure and temperature 

constant while allowing the energy to fluctuate until a stable value is reached.  
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Not only is heat required to raise the temperature of the solid to the melting point, but 

the melting itself requires heat called the heat of fusion. From thermodynamics, at the 

melting point the change in Gibbs free energy (∆G) of the material is zero, because 

the enthalpy (H) and the entropy (S) of the material are increasing (∆H, ∆S > 0). 

Melting phenomena happens when the Gibbs free energy of the liquid becomes lower 

than the solid for that material. Carnelley‟s rule established in 1882 by Thomas 

Carnelley states that high molecular symmetry is associated with high melting point.  

A good example is that of three structural isomers with molecular formula C5H12 

where the melting point increases in the series: isopentane 113 K, n-pentane 143 K 

and nenopentane 255 K. Pyridine has a lower symmetry than benzene hence its lower 

melting point.  

 

A high melting point results from a high heat of fusion or low entropy of fusion or a 

combination. In highly symmetrical molecules the crystal phase is densely packed 

with many efficient intermolecular interactions resulting in a higher enthalpy change 

on melting.  

 

The melting temperature for spherical particles of radius R is obtained 

phenomenologically by equating the Gibbs free energies of solid and liquid spherical 

clusters, assuming constant pressure conditions: 
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where ρs and ρl are the solid and liquid densities, L
b
 is the bulk latent heat of melting, 

and γsv and γlv are the solid-vapour and liquid-vapour interface energies, respectively. 

The surface energy anisotropy of the solid is not taken into account, and the 

possibility of inhomogeneous phases (such as a liquid skin wetting the solid cluster) is 

also neglected. For a wire, following a similar procedure, the Gibbs free energies per 

unit length of the solid and liquid wires at constant pressure and temperature equate 

to,  
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svss RNG  2       (2.31) 

 

and  

 

lvll RNG  2       (2.32) 

 

where N is the number of atoms per unit length, μs and μl are the chemical potentials 

of the solid and liquid phases, respectively, R is the wire radius. Since near bulk 

melting temperature, b

mT ,  
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we obtain for the melting temperature Tm(R) of a thin wire,  
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Hence, the melting temperature of a wire should be depressed by approximately half 

the corresponding amount for a spherical cluster. The definition of the surface atoms 

plays an important role in melting of materials. A wire has clearly defined surface 

atoms than a spherical cluster while it is difficult to locate such atoms in the bulk. In 

this simple model the latent heat of melting per atom (averaged on all atoms) 

decreases with exactly the same law when the size is decreased: 
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These relations imply the existence of a critical radius, 

 

b

s

lv

l

s

sv

c
L

R






































2

1

     (2.36) 

 

Corresponding to 

 

 

0)(,0  ccm TLRT
     (2.37) 

 

Below this condition the wire is not stable. 

 

 

2.1.5.7. Periodic Boundary Conditions 

 

Periodic boundary conditions enable a simulation to be performed using a relatively 

small number of particles, in such a way that the particles experience forces as if they 

were in bulk fluid. Imagine a cubic box of particles which is replicated in all 

directions to give a periodic array. A two-dimensional box is shown in Figure 2.5. In 

the two-dimensional example each box is surrounded by 8 neighbours, in three 

dimensions each box would have 26 nearest neighbours. The coordinates of the 

particles in the image boxes can be computed simply by adding or subtracting integral 

multiples of the box sides. Should a particle leave the box during a simulation then it 
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is replaced by an image particle that enters from opposite side, as illustrated in Figure 

2.5. The number of particles within the central box thus remains constant and so is the 

density at particular thermodynamic conditions. Periodic boundary conditions are 

indicated by a number 3 at the top of the CONFIG file.   

 

 

Figure 2.5. Periodic boundary conditions are shown in two dimensions [Allen and Tildesley 1987; 

Leach 1996]. 

 

 

2.1.5.8. The Heat Capacity at constant Volume and Pressure 

 

The internal energy of a substance increases when its temperature is raised. The 

increase depends on the conditions under which the heating takes place, and for the 

calculation at a constant volume we suppose that the sample is confined to that 

volume. The internal energy is then plotted against temperature and the slope thereof 

at any temperature is called the heat capacity of the system at that temperature. The 

heat capacity at constant volume is denoted Cv and is defined formally as: 
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where U is the internal energy of the system and T is the temperature. The heat 

capacity is an extensive property, i.e. 100 g of water has 100 times the heat capacity 

of 1 g of water and therefore requires 100 times the heat to bring about the same rise 

in temperature. The heat capacity is then calculated as a change in the energy over the 

change in temperature at constant volume.  

 

In the same way the energy of a substance changes, the enthalpy increases as the 

temperature is raised. The relation between the increase in enthalpy and the increase 

in temperature depends on the conditions, for example, constant pressure or volume. 

The most important condition in this case is constant pressure, and the slope of the 

graph of enthalpy against temperature at constant pressure is called the heat capacity 

at constant pressure, denoted Cp, and given by: 
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Here H is the enthalpy of the system. For a constant pressure of 0.0 kbar we find that 

the enthalpy of the system equals to the energy as the term pV becomes zero (H = U). 

The heat capacity at constant pressure is then calculated as the change in the energy 

over the change in temperature at constant pressure.  

 

Most systems expand when heated at constant pressure. Such systems do work on the 

surroundings and some of the energy supplied to tem as heat escapes back to the 

surroundings. As a result, the temperature of the system rises less than when the 

heating occurs at constant volume. A smaller increase in temperature implies a larger 

heat capacity, so it can be said that in most cases the heat capacity at constant pressure 
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of a system is larger than its heat capacity at constant volume. The relation between 

the two heat capacities for any pure substance is the written as: 

 

T

vp

TV
CC



 2


      (2.40) 

 

T is the temperature, V the volume, α the expansion coefficient and κT is the 

isothermal compressibility defined as: 

 

T

T
p

V

V 













1


      (2.41) 

 

 

2.1.5.9. Diffusion Coefficient 

 

Diffusion is the phenomena of random motion causing a system to decay towards 

uniform conditions. For example, diffusion of particles causes a net movement of 

particles from areas of high concentration to areas of lower concentration until 

equilibrium is reached. Diffusion is a spontaneous process more familiarly known as a 

passive form of transport, rather than active and affects a variety of different 

quantities. Spontaneous processes are not reversible. Examples of diffusion include 

diffusion of concentration, heat, or momentum. Diffusion increases entropy, 

decreasing Gibbs free energy, and therefore is thermodynamically favourable.  

 

In all cases of diffusion, the flux of the transported quantity (atoms, energy, or 

electrons) is equal to a physical property (diffusivity, thermal conductivity, electrical 

conductivity) multiplied by a gradient (a concentration, thermal, electrical field 

gradient). Diffusion in this type of molecular dynamics simulations is calculated as 

the slope of the graph of mean square displacement as a function of time.  
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2.1.5.10. The Coefficient of Thermal Expansion  

 

During heat transfer, the energy stored between the intermolecular atoms changes. 

When the stored energy increases, so does the length of the molecular bond. As a 

result, solids typically expand as a response to heating and contract on cooling and 

this response to temperature change is expressed as its coefficient of thermal 

expansion. The coefficient of thermal expansion is used in two very close ways, 

firstly as a volumetric expansion coefficient and secondly as a linear thermal 

expansion. The volumetric expansion coefficient can be measured for all substances 

of condensed matter (liquids and solids) while the linear thermal expansion can only 

be measured in the solid state and is common in engineering applications. Some 

substances have a negative expansion coefficient and will expand when cooled, e.g. 

freezing water.   

Thermal expansion is used in mechanical applications to fit parts over one another; 

e.g., a bushing can be fitted over a shaft by making its inner diameter slightly smaller 

than the diameter of the shaft, then heating it until it fits over the shaft, and allowing it 

to cool after it has been pushed over the shaft, thus achieving a 'shrink fit'. The 

thermal expansion coefficient is calculated between three different volumes using the 

formula below: 
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V is the volume and T is the temperature. A large value of thermal expansion means 

that the volume of the sample responds strongly to changes in the temperature. 

 

 

2.1.6. Annealing Process 

 

Annealing is a heat treatment in which a material is exposed to an elevated 

temperature for an extended time and then slowly cooled down. It is regarded as the 

toughening process and prevents the creation of defects in the atomic scale as defects 
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like vacancies, misplacement, etc. can really hurt the strength of material. In the glass 

factory it is extremely important to anneal the glass before it is ready or else it will be 

very fragile and even removing it from its mould will be impossible. Glasses which 

are not properly annealed will contain stress which may result in breakage before or at 

any time subsequent to their removal from the kiln. Annealing is critical to the 

longevity of glass. 

 

Annealing is also used as an optimisation tool in finding the global minima. Another 

important application is to relieve internal stress, refine the structure and improve cold 

working properties. There are three stages in the annealing process, with the first 

being the recovery phase, which results in softening of the metal through removal of 

crystal defects and the internal stresses which they cause. The second phase is 

recrystallization, where new grains nucleate and grow to replace those deformed by 

internal stresses. If annealing is allowed to continue once recrystallization has been 

completed, grain growth will occur, in which the microstructure starts to coarsen and 

may cause the metal to have less than satisfactory mechanical properties. The high 

temperature of annealing may result in oxidation of the surface of the metal, resulting 

in scale. If scale is to be avoided, annealing is carried out in an oxygen, carbon, and 

nitrogen free atmosphere. In thermodynamics annealing occurs by diffusion of atoms 

within a solid material, so that the material progresses towards its equilibrium state. 

Annealing process is depicted in Figure 2.6. 

 

 

Figure 2.6. The different processes of annealing are illustrated, special attention to full annealing 

[http://www.efunda.com/processes/heat_treat/softening/annealing.cfm].  
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2.1.7. Quantum Mechanics 

 

2.1.7.1. Historical Overview 

 

Quantum mechanics deals with the behaviour of subatomic particles, particularly 

electrons. Quantum mechanics differs from classical mechanics (where Newton‟s 

laws of motion are solved) in that matter has wave-like character, i.e. instead of 

particles and waves having distinct entities, particles have some of the properties of 

waves and waves have some of the properties of particles.  

 

It is not possible to obtain the exact solutions to the Schrödinger equation for any but 

the smallest, totally symmetric systems. Quantum mechanics methods are 

characterised by their various mathematical approximations to its solutions. The 

fundamental section of quantum mechanics is the ab initio methods. The aim of an ab 

initio method is to find the solution to the many-body Schrödinger equation for the 

system being studied. The behaviour of N electrons in a system is described by the 

many-body wavefunction Ψ, which is an anti-symmetric function of the electron 

coordinates, {ri i = 1….N}. For convenience, one can write such a wave function in 

the form of a product of individual particle functions (leads to the so-called Slater 

determinant [Slater 1951]): 

 

       NNN xxxxxx   ...,...,, 221121  (2.43) 

 

This wavefunction satisfies the many-body Schrödinger equation written as: 
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and the eigenvalue E is the total energy of the system. The potential Vext consists of 

the external potential imposed on the electrons by the nuclear configuration {RI} and 

Ve-e is the electron-electron interaction given by the Hartree term i
rr

e

ij ji







2

 

denotes the Cartesian coordinates and the spin coordinates of each electron. In 

principle this equation can be solved to arbitrary accuracy by representing the Ψ as a 

direct product of the wavefunction and diagonalizing the Hamiltonian. However, the 

cost of this calculation scales exponentially with the number of electrons in the 

system and is intractable for all but the smallest of systems. The variational principle 

shows that the ground state energy can be found by minimizing the quantity 
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       (2.46) 

 

over all possible Ψ({ri}). The variational principle states that the expectation value of 

the total energy using any approximate many electron wavefunction such as a Slater 

determinant is an upper bound for the exact total energy. Therefore by varying each 

electron wavefunction such that it minimizes the total energy 
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one obtains conditions for each wavefunction in the form of one-electron wave 

functions. The functions are known as the Hartree-Fock (HF) equations expressed as: 
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The ab initio methods use no experimental computations unlike the classical 

mechanics or the semi-empirical quantum mechanical methods. The computations in 

ab initio are based solely on the laws of quantum mechanics and on the values of a 

small number of physical constant like, the speed of light, masses of charges of 

electrons and nuclei, and Planck‟s constant. Ab initio methods provide high-quality 

quantitative predictions for a broad range of systems. These methods are not limited 

to a specific class of systems and nowadays handle large systems of up to 100 atoms 

as compared to previous times where they were very much limited to small systems. 

The ab initio and atomistic methods are both important and some programs like 

QMERA combine them together. Since the formation of quantum mechanics in the 

1920‟s, two major theoretical approaches or electronic structures have emerged; 

namely, the Hartree-Fock (HF) theory [Hartree 1928, Fock 1930] and the density 

functional theory (DFT) [Hohenberg and Kohn 1964, Kohn and Sham 1965].  

 

The quality and reliability any electronic structure theory of solids, surfaces and 

molecules hinges on the ability to describe the many-body interactions accurately 

enough to allow quantitative predictions of physical properties. A useful theory has to 

allow practical calculations with a reasonable computational effort on systems which 

are large enough to represent realistic models. The balance between accuracy and 

speed is intimately linked to the theoretical approach as well as to the computational 

implementation. Figure 2.7 shows a comparison for the methodology for solving the 

many-body Schrödinger equation and the effective one-electron Kohn-Sham 

equations.   

 

Owing to its applicability to a wide range of systems including metallic, 

semiconducting and insulating materials and its good balance between accuracy and 

compute efficiency, the density functional theory has become the dominant approach 

for calculations of solids and surfaces of different sizes and dimensions. However, for 

organic molecules the Hartree-Fock based approaches have been very successful in 

describing the electronic structures, binding energies, vibrational frequencies and 

other molecular properties [Thomas 1926]. The problem with the Hartree-Fock 

methods is that they are computer intensive and thus are limited to relatively small 

systems. Furthermore, problems can arise if one tires to use the HF theory for metallic 
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systems. An overview of the difference between the Hartree-Fock (HF) and the 

density functional theory (DFT) is shown in Figure 2.8. 

 

 

Figure 2.7. The difference between the Schrödinger and Kohn–Sham equations is illustrated 

[Wimmer 1998]. 

 

 

2.1.7.2. The Density Functional Theory (DFT) 

 

The density functional theory is the quantum mechanical method used in physics and 

chemistry to investigate the electronic structure of many-body phases, in particular 

molecules and the condensed phases. DFT is among the most popular and versatile 

methods available in condensed matter physics (computational physics) and 

computational chemistry.    

 

The predecessor to the density functional theory was the Thomas-Fermi model, 

developed by Thomas and Fermi in 1927 [Thomas 1926, Fermi 1928]. They 

calculated the energy of an atom by representing its kinetic energy as a function of the 
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electron density, combining this with the classical expressions for the nuclear-electron 

and electron-electron interactions (which can both be represented in terms of the 

electron density). 

 

Hartree-Fock (1928,1930) Density Functional (1964,1965) 
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Kohn-Sham equations 

Figure 2.8 shows the Hartree-Fock and density functional theory schemes on the left and right 

respectively in quantum mechanics. The DFT leads to the Kohn-Sham equations                

[Wimmer – Electronic Structure Methods, NATO Series]. 

 

   

Although this was an important first step, the Thomas-Fermi equation‟s accuracy was 

limited because it did not attempt to represent the exchange energy of an atom 

predicted by the Hartree-Fock theory. An exchange energy was added by Dirac in 

1928. The Thomas-Fermi-Dirac theory remained rather inaccurate for most 

applications. The largest source of error was in the representation of the kinetic 

energy, followed by the errors in the exchange energy, and due to the complete 

neglect of the electron correlation.     



 59 

The density functional theory is an approach to the electronic structure of atoms and 

molecules which has enjoyed a dramatic surge since the 1980s [Leach 1998, Parr 

1983, Wimmer 1991]. The density functional theory is based on a rather remarkable 

theorem which states that the total energy of a system such as a bulk solid or a surface 

depends only on the electron density of its ground state [Hohenberg and Sham 1964, 

Wimmer 1991, MedeA User‟s Guide]. The Hohenberg-Kohn theorem [Leach 1996, 

Wimmer 1991] thus enables us to write the total electronic energy as a function of the 

electron density: 

 

][][][][  XCo EUTE     (2.49)  

 

To[] is the kinetic energy, U[] is the Coulombic energy, and EXC[] contains the 

exchange and correlation contributions. All of the electron-electron interactions are 

thus contained within the EXC term. A crucial conclusion from the Hohenberg-Kohn 

theorem is that the ground-state properties of a system are determined by the density. 

An incorrect density gives energy above the true energy. To perform a density 

functional calculation it is necessary to write the various terms in equation (2.49) in 

terms of the density and then optimise the energy with respect to the density, subject 

to any constraints on the system. The starting point is a wavefunction that is taken to 

be antisymmetrised product of molecular orbitals which are both real and 

orthonormal. The charge density at a point r can then be written as the sum over 

occupied molecular orbitals of 
2
:  
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The kinetic energy To[] of all effective electrons in the system is given by: 
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In the above equation ni denotes the number of electrons in state i. By construction, 

dynamical correlations between the electrons are excluded from the To[]. The 

Coulomb energy term U[] is purely classical and contains the electrostatic energy 

arising from the Coulombic attraction between electrons and nuclei (Uen), the 

repulsion between all electronic charges (Uee), and the repulsion between nuclei (Unn):  
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where e denotes the elementary charge of a proton and Z is the atomic number of 

atom  at position R. The summations extend over all atoms and the interactions 

over all space. The exchange-correlation energy EXC includes all remaining 

complicated electronic contributions to the energy. The most important of these 

contributions is the exchange term. The next step is the derivation of equations that 

can be used for practical density functional calculations. Equations (2.49) to (2.55) 

introduce one-particle wave functions and a change of these wave functions 
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corresponds to a variation in the electron density. The procedure leads to the 

following equations which include the exchange-correlation term: 
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with 
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Equations (2.56) are called the Kohn-Sham equations. The electron density, which 

corresponds to these wave functions, is the ground state density which minimizes the 

total energy. The Coulomb or electrostatic potential VC(r) at point r is generated from 

the electric charges of all nuclei and electrons in the system. It can be evaluated 

directly in space: 
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The electronic structure calculation is shown in Figure 2.9. 

 

 

The solutions of the Kohn-Sham equations form an orthornomal set, i.e. 
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The exchange-correlation potential is related to the exchange-correlation energy by: 
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The equation above is formally exact in the sense that it does not contain any 

approximations to the complete many-body interactions. 

 

 

 

Figure 2.9 shows the structure of a typical electronic structure calculation [Dreizler and Gross 

1990; Perdew and Yang 1992; Freeman and Wimmer 1995]. 

 

 

2.1.7.3. Solution to the Kohn-Sham equation 

 

By standard mathematical techniques for solving eigenvalue problems, expansion can 

be made to the unknown solutions Ψi(r) in a set of known functions, Φj(r), with 

unknown linear coefficients, cij  
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These coefficients are determined through a variational procedure which leads to the 

solution matrix problem 
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H and S are the so-called Hamiltonian and overlap matrices with the following matrix 

elements 
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ε represents an eigenvalue and c are the coefficients of a solution denoted as a column 

vector. 

 

 

2.1.7.4. The Local Density Approximation (LDA) 

 

As a consequence of the Kohn-Sham theorem, the exchange-correlation energy 

depends only on the electron density. As a simple and, as it turns out, surprisingly 

good approximation, one can assume that the exchange-correlation energy depends 

only on the local electron density around each volume element dr. This is called the 

local density approximation (LDA): 
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The basic idea of the LDA is illustrated in Figure 2.10. In any atomic arrangement 

such as a crystal, a surface, or a molecule, there is a certain electron density (r) at 

each point r in space. The LDA then rests on two basic assumptions. Firstly that the 

exchange and correlation effects come predominantly from the immediate vicinity of 

a point r and secondly that these exchange and correlation effects do not depend 

strongly on the vibrations of the electron density in the vicinity of a point r. If 

conditions of the two assumptions are reasonably well fulfilled, then the contribution 

from volume element dr would be the same as if this volume element were 

surrounded by a constant electron density to the same value within dr. This is an 

excellent approximation for metallic systems, but represents quite a significant 

simplification in systems with strongly varying electron densities. 

 

A system of interacting electrons with a constant electron density is called a 

homogeneous electron gas. The exchange-correlation energy per electron of a 

homogeneous electron gas, 0
xc[], has been calculated by several approaches. As a 

result, xc[], is quite accurately known for a range of densities. For practical 

calculations, xc[] is expressed as an analytical function of the electron density. 

There are various analytical forms with different coefficients in their representation of  

 

 

Figure 2.10 shows the illustration of the local density approximation. For the purpose of 

computing the exchange-correlation energy in a volume element dri, the electron density i 

around point ri is assumed to be constant in the near surrounding. The value of i is different in 

each volume element. 
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the exchange-correlation terms. These coefficients are not adjustable parameters, but 

rather they are determined through first-principles theory. Hence, the LDA is a first 

principle approach in the sense that the quantum mechanical problem is solved 

without any adjustable, arbitrary, or system dependent parameters. 

 

There are two types of exchange-correlation terms, one for the energy and one for the 

potential. The energy, xc, is needed to evaluate the total energy and the potential 

term, xc, is required for the Kohn-sham equations. The two terms are related by: 
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Using the explicit formulas given in Table 2.2, one can evaluate the exchange-

correlation potential for any electron density (r).  

 

Table 2.2. Explicit forms for the local density approximation, originally given by Gôspôr [Gôspôr 

1954] and Kohn and Sham [Kohn and Sham 1965]. Correlation terms are according to Heidin 

and Lundvist [Heidin and Lundvist 1972]. Exchange and correlation energies per electron are 

denoted by  and the corresponding potentials by . Both quantities are given in Hartree atomic 

units (1 Hartree = 2 Rydberg = 27.21165 eV). 

 

 



 66 

2.1.3.5. The Generalised Gradient Approximation (GGA) 

 

The development of non-local exchange and correlation functions challenges for the 

need to improve the LDA when coming to the bond energies of molecules, the 

cohesive energies of solids, and the energy barriers of molecular reactions. A large 

number of total energy calculations have shown that LDA gives interatomic bond 

lengths within  0.05 Å of experiment or better for a great variety of solids, surfaces 

and molecules. However, two systematic trends have been found, that is that the weak 

bonds are too short and binding energies calculated with the LDA are typically too 

large [Wimmer 1998]. The generalized gradient approximation (GGA) [Yang et al. 

1990, Perdew 1991] is then employed to deal with the failures of the local density 

approximation. The local density approximation can be considered to be the zeroth 

order approximation to the semi-classical expansion of the density matrix in terms of 

the density and its derivatives [Dreizler and Gross 1990].  

 

A natural progression beyond the LDA is thus to the gradient expansion 

approximation in which first order gradient terms in the expansion are included. This 

results in an approximation for the exchange hole which has a number of unphysical 

properties which does not normalise to -1 and it is not negative definite and contains 

oscillations at large separation distance (u) [Yang et al. 1990]. In the generalized 

gradient approximation a function form is adopted which ensures the normalisation 

condition and that the exchange hole is negative definite. This leads to an energy 

function that depends on both the density and its gradient but retains the analytic 

properties of the exchange correlation hole inherent in the LDA. The typical form for 

a generalized gradient approximation (GGA) function is: 
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   (2.67) 

 

The GGA improves significantly on the LDA‟s description of the binding energy of 

molecules. It was this feature that led to the very wide spread acceptance of the DFT 

in the chemistry community during the early 1990. Figure 2.11 shows the density 

functional theory methods implementation with the entire link from LDA to GGA. 
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Figure 2.11. Overview of the theoretical and computational choices for the solution of the density 

functional one-particle equations [Yang et al. 1990; Freeman and Wimmer 1995] is illustrated. 

 

 

2.1.8. The DMOL
3
 Code    

 

DMOL
3
 [Delley 1990, Delley 2000] computer code allows the simulations or 

modelling of the electronic structure and energetics of the molecules, solids, and 

surfaces using the density functional theory (DFT). A broad range of systems, 

including organic and inorganic molecules, molecular crystals, covalent solids, 

metallic solids, and infinite surfaces of a material can be studied using the DMOL
3
 

computer code and then the structure, reaction energies, reaction barriers, 

thermodynamic properties and vibrational spectra can be predicted. DMOL
3
 uses the 

DFT to produce highly accurate results while keeping the computational cost fairly 

low for an ab initio method. The code is capable of performing quite a few different 

tasks such as: 
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 Single-point energy calculations 

 Geometry optimization 

 Molecular dynamics 

 Transition-state search 

 Transition-state optimization 

 Following a reaction path. 

 

Each of these calculations can be set up so that it generates specified chemical and 

physical properties. A number of properties are calculated by a DMOL
3
 job including 

the total energy, binding energy, density of states (both total and partial), population 

analysis, etc. The code performs calculations on molecules and three-dimensional 

periodic structures (crystals) as well as non-periodic systems but cannot work on 

structures with two-dimensional periodicity such as surfaces. Molecular dynamics in 

total energy DFT schemes is implemented in essentially the same way as in 

conventional force-field methods with the main difference being the atomic forces 

which are derived by solving the DFT equations rather than being derived from the 

empirical potentials of interatomic interactions.  

 

The DMOL
3
 calculation dialog contains the following tabs: 

 

 Setup: Allows the choice of the type and quality of calculation that the code 

will perform along with other basic input options, such as the basis set, DFT 

functional, spin state, and the total charge. 

 Electronic: Allows the setting of the parameters that control the details of the 

energy evaluation including the integration accuracy and the SCF 

convergence. 

 Properties: Allows the selection of the properties that will be computed by the 

code which include the volumetric visualizations (such as charge density and 

molecular orbitals) and electronic properties. 

 Job Control: Allows the specification of the job settings for the DMOL
3
 

calculation.  
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2.1.8.1. Simulation Procedure 

 

Three-dimensional structures of the AuN (N = 2, 4, 13, 19, 38, and 55) clusters of 

different number of atoms were built to favour the code used for this work. Geometry 

optimization was then performed on different clusters to search for minimum energy 

structures. The overall quality of the DMOL
3
 calculation affects the basis set, k-point 

and SCF convergence. We have chosen medium which is regarded as the high quality 

level for the geometry calculations on metallic gold clusters. The electron density 

functional is treated by the gradient-corrected generalised gradient approximation 

(GGA) [Yang et al. 1990, Perdew 1991] with the exchange-correlation potential 

parameterized by Perdew and Wang (PW91) [Perdew and Wang 1992]. The DNP or 

DND basis set was used.  

 

The calculations were performed using the same orbitals for alpha and beta spins by 

choosing the spin-restricted option. The medium convergence threshold was chosen to 

set the quality of the geometry optimization for energy, maximum force and 

maximum displacement between optimization cycles. The values for the energy, 

maximum force and maximum displacement in the medium convergence threshold 

respectively are 2 x 10
-5

 Ha (2.72 x 10
-3

 eV), 0.004 Ha/Å
-1

 (0.1088 eV/Å
-1

) and 0.005 

Ha (0.136 eV). Maximum number of geometry optimization cycles was specified by 

selecting maximum number of iterations and was set at 100 which proved enough to 

give good results. The maximum step size is set at 0.3 Å. This number determines the 

length of the simulation and once it is reached the calculation will stop, even if the 

convergence criteria are not satisfied.  

 

The quality of the k-point sampling is particularly important for metallic systems, 

where rapid changes in electronic structure may occur along the energy band that 

crosses the Fermi level. The default settings used by DMOL
3
 are designed to give 

accurate sampling for metallic systems. The integration accuracy, SCF tolerance and 

orbital cutoff quality were set to medium with the smearing set at 0.05 Ha (1.360 eV) 

and the all-electron core treatment was used. The total energy, binding energy, density 

of states, etc. were calculated during the simulations. The quality of the k-points is 

tested in the convergence of the energy during a simulation.      
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Figure 2.12 shows energy as a function of optimization steps for a DMOL
3
 geometry optimization 

calculation.  

      

 

Figure 2.12 shows a typical energy convergence in a DMOL
3
 geometry optimization 

simulation. The energy starts at less negative values and goes down exponentially 

from the first step to step number 11. The energy then stabilizes and becomes constant 

from step 12 to step 20 at a value of -326617.3284 Ha. The stabilized energy signifies 

a good optimized structure and that will further imply a well run calculation. It is 

always good to check the convergence of few parameters even though the OUPUT 

file gives a successful completion message.   

 

   

2.1.9. QMERA (QM/MM) 

 

QMERA [Sherwood et al. 2003] is a program that allows combined quantum 

mechanical (QM) and molecular mechanics (MM) forcefield calculations on 

nonperiodic systems to be performed using the ChemShell [Sherwood and de Vries 

1997-2000] environment. ChemShell is a computational chemistry environment, 
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based on the Tcl (Tool Command Language) interpreter that takes over the 

communication and data handling for hybrid QM/MM calculations leaving the time-

consuming energy evaluations to specialized external codes.  

 

Mixed quantum mechanical molecular mechanics (QM/MM) calculations involve the 

division of a system into two parts: the central chemically active QM region ("I") and 

the surrounding outer MM region ("O"). Treating the central part of the system 

quantum mechanically allows the electronic structure and its changes (e.g. bond 

breaking and formation in a chemical reaction) to be modelled in a concise way. The 

remaining portion of the system is described using molecular mechanics with the two 

regions being allowed to interact through the use of appropriate potentials. The 

combination of the speed and efficiency of the MM forcefield calculations for the 

bulk of the system with the versatility and precision of the QM method for the 

important reactive zone allows the reactions in large systems to be studied in a more 

realistic manner than would be possible using either QM or MM alone. 

 

QMERA provides both mechanical and electronic embedding schemes for treatment 

of the QM/MM interactions. Dangling covalent bonds between the QM and MM 

regions are capped with hydrogen link atoms. Geometry and transition state 

optimization in QMERA can be carried out using a range of minimizers, including a 

linear-scaling delocalized coordinate algorithm. QMERA employs DMOL3 as the 

QM server and GULP for the MM calculations. 

 

 

2.1.9.1. Tasks in QMERA 

 

The QMERA module allows you to perform calculations on nonperiodic systems. 

QMERA can currently perform three different tasks: 

 

 Single-point energy calculation 

 Geometry optimization 

 Transition state optimization 
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A QMERA job initiates with the definition of the structure which should be a 

nonperiodic three-dimensional (3D) atomistic document that contains the system of 

interest. The second step is to select the type of calculation to be performed and set 

the associated parameters. We have in our work, performed simple single-point 

energy calculations before we could run geometry optimization calculations. The 

calculation is then run by selecting the server on which the calculation will take place. 

The final step after a geometry optimization calculation will be to analyse the results 

when the job is complete. The files are returned to the user and where appropriate, 

displayed in the Project Explorer dialog. 

 

 

2.1.9.2. Simulation Details 

 

We have performed QM/MM geometry optimization calculations on the interactions 

between a graphite surface and a gold atom. The geometry optimization task allows 

for the refine of the geometry of a structure in order to obtain a stable structure. This 

is achieved by carrying out an iterative process in which the coordinates of the atoms 

are adjusted at each step so that the total energy of the structure is minimized. 

Geometry optimization is based on reducing the magnitude of calculated forces until 

they become smaller than defined convergence tolerances. The process of geometry 

optimization results in a structure that closely resembles the real structure. 

 

The quantum mechanical (QM) region was first selected by highlighting the central 

atoms which we need to fall in that region and then click select and add. The program 

indicates the selected atoms by naming them QuantumAtoms. Geometry optimization 

calculations were then performed for 500 maximum iterations and the step size was 

set at 0.3 Å. With the quality set to medium we have used the energy of 2 x 10
-4

 Ha 

(5.4 x 10
-3

 eV) to specify the convergence threshold for the maximum energy change. 

The maximum force of 0.004 Ha/Å (0.11 eV/Å) to specify the convergence threshold 

for the maximum force, and the maximum displacement is 0.005 Å for the 

convergence threshold for the maximum displacement were also used. The BFGS 

pseudo-Newton minimization with BFGS update of the inverse hessian was used. The 

DMOL
3
 code was used as the server for QM interactions while GULP was used as the 
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MM server. The electron density exchange-correlation functional for the QM server 

was handled by the generalized gradient approximation (GGA-PW91). The GGA 

functional yields more reliable results and is relevant for any calculations involving 

comparison of energies. In the molecular mechanics (MM) server GULP, we used the 

Dreiding forcefield to handle the interactions between the outer carbon atoms. The 

electronic embedding scheme was employed and the model to disperse the boundary 

charge was included. The program is then able to calculate the electron density, 

frequency, population analysis and Muliken charges. The total and the binding 

energies are given in the output file while the optimized structure is updated every 

step of the calculation. 

 

 

2.1.10. COMPUTER SPECIFICATIONS FOR CALCULATIONS 

 

The atomistic (MD) simulations on nanoclusters, nanotubes and nanowires were 

carried out on the ORIGIN 2000 Silicon Graphics Incorporated (SGI) UNIX machine 

which uses the IRIX 6.5 operating system. The access to the SGI machine is through a 

remote login from a workstation. Because of the capacity of the SGI machine and, 

depending on the size of the system, calculations on the nanoclusters, nanotubes and 

nanowires took on average 4 hours to two days to complete. A calculation on the 

nanocluster with 55 atoms would take about 8 hours to complete while the smallest 

nanotube calculation would only take about 4 hours to complete. However, the 

calculation on the nanocluster with 2214 atoms would on average require two days to 

complete while that one on a multi-wall nanotube would complete after one and a half 

days. The nanowire took one day to complete. 

 

The ab inito calculations were performed on the HP Compaq Windows XP Service 

Pack 2 desktop computer. The Materials Studio Version 4.2 operating system was 

used to run the DMOL
3
 calculations on different nonperiodic nanoclusters. The 

smallest cluster took two days to complete while the biggest nanocluster with 55 

atoms would take almost the whole week to converge. The structures from both the 

MD and ab initio calculations were then viewed using the weblab viewer program and 

sigmaplot program was used to plot different graphs.  



 74 

CHAPTER 3: Semi-Empirical Results 

 

3.1. Introduction 

 

In this section we will show results from the molecular dynamics (MD) atomistic 

simulations. Gold nanoclusters and nanotubes consist of atoms from tens up to a 

thousand or more atoms. The MD work will focus on the temperature effect on the 

clusters by discussing the melting temperatures as well as the structural behaviour at 

different temperatures. The temperature was increased in small intervals until a 

sudden jump in the energy is obtained. The total energy plotted against temperature 

shows a jump in the transition of the material from solid to liquid. The radial 

distribution functions (rdfs) are a useful way of describing the structure at different 

thermodynamic conditions while the density profiles help in validating the prediction 

the total energy curve and the rdfs. The change in the structure in terms of the bond 

distances will be dealt with. Diffusion coefficients and the annealing process are 

discussed in details. 

 

 

3.1.1. Molecular Dynamics (MD) 

 

The total energy, radial distribution functions (rdfs) and the density profiles will be 

the centre of discussion in this part. The total energy shows a jump in the transition of 

the material from a solid to a liquid phase. The radial distribution functions 

differentiate between solid, liquid and gas phases of materials. The solid features in 

the rdfs are characterised by a multiple number of well defined peaks in the structure, 

the liquid phase will show few well-defined peaks and the gas state will have more 

long range interactions. The density profiles on the other hand show a decrease in the 

number of peaks and a change in the pattern when a particular material gets to a liquid 

state.  

 

We shall therefore combine the three methods in estimating the melting temperatures 

in different materials (clusters and tubes) considered in this work. Melting in the 
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clusters can be sufficiently predicted as three methods mentioned above can be 

satisfied. Contrary to the nanoclusters, gold nanotubes do not show the necessary 

discontinuity in the total energy curve which is essential in the estimation of the 

melting temperature. We shall therefore show where melting occurs in the nanotubes 

with the help of the radial distribution functions as well as the density profiles.   

 

We will also plot the diffusion coefficients as a function of temperature for some 

materials. The heat capacity at constant volume and pressure will be discussed and 

then compared to that of the bulk. The structural evolution of the nanomaterials will 

be shown at different temperatures. The annealing process in which materials are 

cooled from a high temperature to lower temperatures will be studied for the cluster 

with 309 atoms and the nanotube with 1252 atoms. 

 

3.1.1.1. Gold Clusters 

 

We commenced simulations at very low temperatures and increased the temperature 

in the steps of 50 K, 100 K or 200 K until the total energy shows a jump or a sudden 

increase in the slope. The use of a change in the total energy slope as signal of melting 

temperature in materials is quite common [Gülseren et al. 1995, Ercolessi et al. 1991, 

Wang et al. 2004, Rodriguez-Lopez et al. 2003]. However, we prefer to couple this 

method with changes in the radial distribution functions (rdfs) as well as the density 

profiles to further validate our predictions of the melting points. The number of atoms 

in the gold clusters ranges from 55 to 2214 in order to study the impact of the system 

size on the physical properties. The cluster with 2214 atoms is sufficiently large 

enough to yield most details concerning the cluster behaviour and could also depict 

some bulk properties. The magic number clusters considered in this work are Au55, 

Au147 and Au309.  

 

 

3.1.1.1.1. The Au55 Cluster 

 

We now show the total energy, in the NPT Berendsen ensemble at 0.0 kbar, for the 

Au cluster with 55 atoms. The energy curve plotted in Figure 3.1 depicts a linear 
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increase in the energy with temperature up to 1200 K. The jump or discontinuity in 

the energy is not clear but observable. This makes the use of radial distribution 

functions and density profiles more necessary as will be noted in Figures 3.2 and 3.3. 

There is a significant change in total energy from 1600 K to 1700 K. The value of the 

total energy at 300 K is -3.09 eV/atom which is less negative when compared to the 

bulk cohesive energy of -3.78 eV/atom [Sutton and Chen 1990], hence the cluster will 

be less stable than the bulk at 300 K.       

 

 

Figure 3.1. The energy is plotted against temperature in the constant pressure and temperature 

conditions. The estimated melting temperature is shown by the arrow in the inset. 

 

 

The radial distribution functions at different temperatures, depicted by Figure 3.2, 

show more structure at 300 K where many periodic peaks can be observed. The 

number of peaks has decreased dramatically at 1400 K but some solid features are still 

present. However, the peaks have lost the order of arrangement that was seen at 300 

K. The graph at 1700 K shows two well defined peaks which have dropped in peak 

heights. The behaviour of the peaks at 1700 K signifies a liquid structure and, the 

trend is further continued at 1800 K.  

Tm ≈ 1700 K 
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Figure 3.2. The radial distribution functions in the constant pressure and temperature conditions 

are shown for the Au55 magic cluster 

 

 

We now look at Figure 3.3 where the density profiles for the cluster are shown. The 

structure is dense and follows a circular pattern which gives a distinct peak height at 

300 K. There is continuity at 1000 K with the only difference being the decrease in 

the denseness. However, the plot at 1600 K shows a slight change in the behaviour of 

the graph. The peak at 1600 K starts to broaden and covers a larger area with a further 

decrease in the peak height. The noise that represents the denseness in the structure 

disappears gradually as the temperature is raised. The peak then collapses with a 

dramatic change in the peak pattern at 1700 K. The dramatic change in the pattern of 

the peak is a clear indication of a change in the phases. The peak at 1600 K can be 

taken to be representing a transition temperature as it shows a different behaviour 

from the ones at 300 K and 1700 K. The temperature just above the melting 

temperature shows a continuation of the melting process and the same trend was seen 

in the rdfs. 

 

It therefore argues well to say that the energy plot, the radial distribution functions, 

and the density profiles concur well in showing the melting behaviour in the cluster. 

We are satisfied with the results of these three methods and can therefore estimate the 

melting temperature of the cluster. We deduce the melting temperature of the Au55 
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cluster to be 1700 K which is several Kelvins above the bulk melting points. The fact 

that gold undergoes reconstruction at its three low index surfaces {(100), (110) and 

(111)} might give an indication of a reconstructing cluster. The process of 

reconstruction makes materials to adopt their most compact structures which results in 

the reduction in the interatomic distances and tensile stress.  

         

 

Figure 3.3 shows the density profiles in the Au55 cluster. We note the different volumes occupied 

at various temperatures. 

 

 

Furthermore, a Au(111) surface has shown melting above the bulk [Carnevali et al. 

1987] and solid tin clusters (Sn) above the bulk tin have also being reported 

[Shvartsburg and Jarrold 2000]. The reasoning behind the high melting of the 

materials expected to show melting that is below the respective bulk material is much 

attributed to the reconstruction in the effort to relieve some stress. The simulated 

annealing embedded atom potential Monte Carlo work on the different face-centred 

cubic (fcc) metal clusters with 55 atoms has shown that palladium (Pd), gold (Au), 

and platinum (Pt) clusters do not show the discontinuity in the energy at least until 

1600 K [Vlachos et al. 1993]. Figure 3.4 shows the energy versus temperature plot for 

different clusters as well as the heat flow in the Al-Cu-V compounds. The transition 

before 1600 K is only observed in the case of silver (Ag) and nickel (Ni) clusters. The 
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transmission electron microscope experimental work by Singh and Tsai [Singh and 

Tsai 2003] also uses the discontinuity in the energy to determine melting temperatures 

(see Figure 3.4b). The heat flow is plotted as a function of temperature for Al-Cu-V 

nanomaterials and the sudden change in the pattern is considered the point of melting 

initiation. Also Figure 3.4(b) shows the different namomaterials melt lower than the 

respective bulk materials.   

 

    

Figure 3.4 shows the energy E(n)/n as a function of temperature for different face-centred cubic 

(fcc) metals [Vlachos et al. 1993] on the left (a) and on the right (b) the heat flow versus 

temperature in the Al-Cu-V nanomaterials [Singh and Tsai 2003].  

 

 

The structure of the Au55 cluster is shown at the starting configuration and at the 

melting point in Figure 3.5. The cluster assumes a well ordered near spherical shape at 

the initial configuration, and then dismantles itself into a disordered structure at 1700 

K. The bonding distances do not conform into any particular pattern at 1700K as 

some increase while others decrease as they deviate from 2.77 Å noted at 0 K. 

 

                                  

Figure 3.5. The starting configuration of the Au55 cluster is on the left. On the right we show the 

structure at melting (1700 K).  The bond distances are 2.77 Å at the initial configurations. 

(b) 
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3.1.1.1.2. The Au147 Cluster 

 

The gold cluster with 147 atoms was also studied and its melting behaviour the NVT 

Berendsen ensemble was investigated. An important contribution from these 

simulations is the step by step illustration of the procedure towards melting by means 

of the radial distribution functions (rdfs). We will also show the changes in the 

structure at the corresponding temperatures as in the rdfs. 

 

The plot for the radial distribution functions in Figure 3.6 shows that the cluster 

reaches its melting temperature at 850 K. The cluster achieves more peaks at 300 K, 

and that depicts strong crystalline features. At 800 K some solid features are still 

notable with reduced number of peaks, and in particular the shoulder and the splitting 

are much visible.  
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Figure 3.6. Rdfs for the Au147 cluster at different temperatures are shown as melting is 

approached. 

shoulder 
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The appearance of the shoulder will, therefore, imply the presence of a solid while the 

splitting signifies the initiation of melting. The cluster is melted at 850 K with the rdf 

plot showing three ordered peaks. The same peak pattern is again noted at 1000 K. As 

observed and expected, the predicted melting temperature of the Au147 cluster is lower 

than that of the bulk.  

 

 

                              

 

                         

 

 

Figure 3.7. The structural evolution of the Au147 cluster at different temperatures and constant 

volume is illustrated in the figure. The initial configurations are represented by (a) and (b). 

(a) 
(b) 

(c) 
(d) 

(e) 

0 K 0 K 

800 K 
850 K 

1000 K 
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The cluster before and after simulations is shown in Figure 3.7. The atoms in the 

cluster at the starting configuration form a hexagonal or spherical pattern and the 

bonds are defined (Figure 3.7a). The interatomic bond distance is the same as in the 

bulk gold, i.e. r ≈ 2.88 Å. It is interesting to note that atoms start to stretch at 300 K as 

we find an irregular change in the bond distances. However, as depicted by the rdfs 

the structure is very much a crystal at 300 K (Figure 3.7b) and the atoms and the bond 

distances are well ordered. 

 

The cluster changes to a significant level at 800 K (Figure 3.7c), where the corners are 

destroyed and it assumes a convincing round shape. Further collapse in the structure is 

observed at 850 K (Figure 3.7d), a temperature determined to be the melting of the 

cluster. The structure begins to disintegrate at 1000 K and a single atom is seen to be 

breaking away as shown by Figure 3.7e. The structural evolution illustrated in Figure 

3.7 further validates the results from the rdfs. The bond distance change from 2.88 Å 

at the starting configuration to 2.73 Å, 2.93 Å, 3.93 Å, 2.89 Å, 3.92 Å, etc. at 300 K, 

to 2.70 Å, 2.85 Å, 2.77 Å, 2.86 Å, etc. at 800 K, to 2.80 Å, 2.79 Å, 2.91 Å, 2.82 Å, 

etc., and finally to 2.79 Å, 2.58 Å, 3.03 Å, 2.66 Å, 2.90 Å, etc. at 1000 K. The change 

becomes more irregular at 1000 K where distances as low as 2.58 Å and the one as 

high as 3.03 Å are obtained. 

 

 

3.1.1.1.3. The Au249 Cluster 

 

The different gold clusters come in different sizes and one way to increase the size is 

to increase or change the number of atoms in the system but still keeping the size at 

the nanometer level. It has been said in one of the previous sections (Introduction) 

that the size of material has some impact on its melting. In general, under ideal 

conditions, the melting temperature of a substance is supposed to increase with size. It 

implies that the melting in the bulk materials should be higher than the melting 

temperatures at the nano level. We will show the total energy curve, the radial 

distribution functions (rdfs), and the density profiles at different temperature in our 

underlying discussions. The total energy as a function of temperature is plotted in 

Figure 3.8.  
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A linear increase of the total energy with temperature for the cluster with 249 atoms is 

evident in Figure 3.8. A notable change in the slope of the energy occurs at 1000 K. 

The graph becomes linear again above 1050 K. The radial distribution functions are 

then plotted in Figure 3.9 to check the structural evolution into melting and to further 

ascertain the predictions of the total energy curve. It can be observed from the 

comparison of clusters with a few atoms (e.g. Au55) and a larger one (Au249) that the 

latter reflect a clear jump in the energy, which then makes prediction of the melting 

temperature using the total energy curve more reliable. 

 

 

Figure 3.8. The change in the total energy with temperature for the Au249 cluster is shown.  

 

 

In Figure 3.9 the structure possesses more peaks which are well ordered at 300 K 

signifying more interactions between the atoms in the system. The structure quickly 

loses the long range interactions at 800 K (the cluster becomes amorphous) and 

melting is attained at 1050 K. The melting process continues to show at 1200 K where 

a molten state is being approached. g(r) is zero for short distances less than the atomic 

diameter (from 0.0 Å to 2.6 Å) due to the strong repulsive forces. The first and the 

maximum peak at 300 K occurs at r ≈ 2.88 Å with g(r) having a value of 6.8. The 

highest peak reduces to g(r) ≈ 3.4 in the molten phase with the same value of r. The 

Tm  ~ 1050 K 
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implication of g(r) in the liquid phase is that the chances of two molecules having the 

separation of r ≈ 2.88 Å are more than three times. The radial distribution function 

passes through a minimum value around r ≈ 3.5 Å at 300 K which then shifts to r ≈ 

3.6 Å at 800 K, and r ≈ 4.0 Å at 1050 K as the peaks broaden with the increase in 

temperature. This means that the chances of finding two atoms with these separations 

are less than for the ideal gas. At long distances, g(r) tends to the ideal gas value, 

indicating that there is no long-range order.  

 

The significant decrease in the peak height very much justifies an idea that 

interactions between the atoms in the solids are stronger than those in the liquid due to 

the difference in the bond distances. The interatomic distances usually increase in the 

liquid because of the gain in the energy which accelerated the atomic vibrations and 

this weakens the van der Waals forces that act between the atoms. 

 

 

Figure 3.9. The radial distribution function of Au249 cluster at various temperatures where a 

transition into melting can be followed. 
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The density profiles are plotted in Figure 3.10 at four different temperatures. The 

simulations start with a solid crystal at 300 K and transform into a liquid structure at 

1050 K, the process which is illustrated in the figure above. The system is more dense 

at 300 K where multiple peaks are evident. The system then looses much denseness at 

800 K but still maintaining some regular pattern which seems to elapse at 1050 K. 

The peaks have even smaller heights at 1200 K and it is interesting to note that the 

density fluctuates along the same boundaries or r for various temperatures. The 

density profiles stretch from a minimum value of r ≈ -8.0 Å to a maximum value of    

r ≈ +8.0 Å. 

 

 

Figure 3.10. The density show the behaviour in the solid and the liquid state of the Au249 cluster 

and the cluster is melted at 1200 K.  

 

 

We show the cluster at its initial configurations with a spherical morphology depicted 

by Figure 3.11. The interatomic distance is found to be 2.88 Å. The simulated 

structured at the melting temperature is also shown by Figure 3.11. The structure 

appears molten and some atoms have bigger separations between them. The bond 

distance of 2.88 Å at the initial configurations changes to, for example, 2.70 Å, 3.02 
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Å, 2.61 Å, at 1200 K. The change in the bond distances is irregular leading to the gaps 

being created as some bonds stretch.      

 

       

Figure 3.11. The well ordered structure of the cluster is shown by a) at the starting 

configurations with the bond distance of 2.88 Å. The configurations at 1200 K are shown by b). 

 

 

3.1.1.1.4. The Au309 Cluster 

 

The total energy curve related to the Au309 cluster can be divided into four regions as 

shown in Figure 3.12. In region 1 the cluster is solid and diffusion is either non-

existent or very low. Region 2 (transition temperature) exhibits an upward curvature 

and the increase in the total energy which is associated with the loss of solid rigidity 

and onset of diffusion at the cluster surface. Region 3 is the estimated melting point of 

the cluster and region 4 shows complete melting where the energy starts increasing 

linearly. The estimated Tm is 1000 K which lies below the bulk melting temperature of 

Au.  

 

Contrary to the magic cluster with 55 atoms the total energy curve for this magic 

cluster shows a clear jump towards melting. The energy shows an upward increase 

between 950 K and 1000 K which then tends to level off afterwards. It is also 

interesting to note that the four sections in the energy curve are clearly 

distinguishable. We attribute this to the added number of atoms as we move from 55 

atoms in the cluster to 309 atoms. The total energy shows the same increasing 

a) 

b) 
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behaviour in the solid and liquid phases. It is apparent that the energy becomes less 

negative as the temperatures is increased, making the cluster less stable as atoms gain 

kinetic energy.  

 

 

Figure 3.12 shows the total energy in the Au309 cluster. The bulk melting temperature of our 

model is 1320 K (experimental value is 1337 K). 

 

 

The radial distribution functions for the Au309 cluster at various temperatures are 

depicted in Figure 3.13. There is an early onset of instability in the cluster at 300 K 

indicated by the peaks which do not follow any particular trend as observed in the 

case of the Au55 and Au249 clusters. However, we are able to see the transition the 

cluster undergoes as the temperature is enhanced. The plot at 950 K shows a very 

unstable structure with the immediate appearance of the shoulder and the splitting. A 

shoulder shows between two peaks characterizing a crystal while splitting is a result 

of the number of peaks decreasing and this behaviour usually emerges at the transition 

temperature. The shoulder and the splitting vanish immediately on melting. Fewer and 

ordered peaks are obtained at 1000 K. The structure of the Au309 cluster starts at a 

distance r ≈ 2.65 Å. The first and the maximum peak occurs at r ≈ 2.88 Å and the 

Tm ≈ 1000 K 

(1) 

(2) 

(3) 

(4) 
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corresponding g(r) ≈ 6.2. Broadening and reduction of the peak heights with 

increasing temperature is observed. 

 

The density profiles for the Au309 cluster at different temperatures are shown in Figure 

3.14. The density profiles plotted at different temperatures show many peaks 

following a specific trend at 300 K which is further visible at 800 K. The peaks then 

show a sudden decrease in their number and denseness at 950 K. As expected the 

density profiles show a different change in the pattern of the peaks at 1000 K, then 

1200 K. Hence the density profiles show less dense structures at melting by a 

decrease in the number of peaks and a sudden change in the peak pattern. 

 

There is a good agreement between the total energy curve, the radial distribution 

functions as well as the density profiles. As estimated by the energy plot and the rdfs, 

the density profiles confirm the melting temperature for the Au309 cluster to be ~ 1000 

K. The density profiles show that the more atoms we have in a system the more peaks 

we can generate as seen in the case of the bigger cluster with 309 atoms. The density 

profiles extend over the same area from low to high temperatures and r ranges from    

-9.0 Å to 9.0 Å. 

 

 

Figure 3.13. The rdfs in the Au309 cluster at different temperatures. The cluster show unstable 

peaks at 300 K. 

shoulder 
splitting 
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The transition temperature occurs very close to the melting and that is clearly shown 

by the graph at 950 K. The peaks indicate certain features associated with the crystal 

(300 K) and some of the characteristics of melting are also present. The decrease in 

the denseness of the system is also depicted by the structure plotted at a higher 

temperature which will be shown in Figure 3.15. 

 

 

Figure 3.14. Density profiles in the NPT Berendsen conditions for the Au309 cluster are 

represented at different temperatures. 

 

 

We now look at the structures of the gold cluster with 309 atoms before and after 

simulations. The structures are shown by Figure 3.15. A well ordered cluster with 

atoms regularly arranged into a spherical or hexagonal shape is shown in Figure 

3.15(a). The bond distance at the initial configurations is 2.88 Å, which is the same as 

in the bulk gold. The Au309 cluster deforms into a disordered tetragonal (four-cornered 

structure) shape at 1000 K (Figure 3.15b). The structure become loosely compact at 

1000 K and voids can be noted where one is able see through the structure. The voids 

are generally associated with the increasing bond distances although some show a 

decrease. We also observe the change from a hexagonal to a tetragonal shape. 
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Figure 3.15. A well ordered structure before calculations is shown by a) while disoriented 

structure is a melted one at 1000 K shown by b). 

 

 

3.1.1.1.5. The Au887 Cluster 

 

We show some results from the total energy, the radial distribution functions and the 

density profiles. We show the energy curve first. The number of atoms in the cluster 

or the size of the material does not quantify a structure to be of nanometre level. If a 

material, however big it may be, behaves like a nanocluster in all respects that 

material will automatically be called a nanocluster. We increase the number of atoms 

in our nanoclusters and compare the change in the behaviour relative to the bulk 

material. The fact that the melting temperature increases with the increasing size 

should mean that this cluster will show melting above 1000 K because the previous 

cluster (Au309) has shown melting at 1000 K. 

 

The radial distribution functions, on the other hand, are related to more atoms and 

hence the interactions between the atoms will be more characterised by the increased 

number of peaks. The density profiles also show good increased number of peaks 

which will change by decreasing when the liquid structure is attained. It is satisfying 

that the transition from solid to liquid is clearly indicated by the rdfs and the density 

profiles.   

a) 

b) 
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Figure 3.16 shows the change in the total energy of the cluster with 887 atoms at changing 

temperatures.  

 

 

The total energy plotted, in Figure 3.16 for the cluster with 887 atoms, shows an 

increase in the solid right into the liquid phase with a sudden increase occurring in the 

region where melting is approached. The transition temperature occurs in well defined 

crystal materials as some known materials such as glass do not show this behaviour. 

The Au887 cluster, which is a clearly defined crystal at lower temperatures, shows a 

clear jump in the energy between 1000 K and 1050 K. The energy shows a linear 

behaviour in both the crystal and the molten phases of the nanoclusters. This 

observation highlights the fact that atoms in a particular phase have an average 

energy.    

 

The radial distribution functions are shown in Figure 3.17 where a crystal structure is 

depicted at 300 K and melting occurs at 1050 K. The plot at 1200 K shows a slight 

decrease in the peak height while keeping the same trend implying that melting in this 

cluster is a slow process. Melting will, in most instances, commence at the outer 

atoms or at those atoms near the surface.  

Tm ≈ 1050 K 
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Figure 3.17. The rdfs for the Au887 cluster are shown. Different colours indicate different 

temperatures. 

  

 

The density profiles for the Au887 cluster are shown by Figure 3.18. The system is 

much denser at 300 K through the multiple peaks which have arranged themselves in 

a particular pattern. Similarly to previously studied clusters, we are able to achieve a 

change in the pattern of the profiles when the temperature exceeds 1000 K. The order 

of the peaks at 1000 K remains the same as those at 300 K but a decrease in the 

heights is noted. The plot at 1050 K is further reduced and the pattern has faded. The 

density profile at 1200 K becomes flat denoting a much decrease in the denseness of 

the system. The density profiles, like the radial distribution functions show 

broadening of the peaks due to the increasing vibrations as temperature is raised. It is 

gratifying that the three methods discussed, concur well in the estimation of the 

melting temperatures of the various clusters. The estimate of the melting temperature 

of the Au887 cluster is 1050 K. The melting of the cluster initiates change in the shapes 

of the cluster, as observed in smaller clusters, from more spherical to tetragonal 

shapes (Figure 3.19).      
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Figure 3.18 shows the density profiles for the Au887 cluster. The density profiles go between           

-12 Å and +12 Å.  There are almost no peaks to talk of at 1200 K. 

 

 

The bond distance in the spherical clusters at lower temperatures is 2.88 Å, as has 

been from the cluster with 249 atoms. The reduced peaks in the rdfs and the density 

profiles justify larger separation of atoms at higher temperatures.   

 

      

     

Figure 3.19 shows a spherical Au887 cluster before melting on the left and a melted structure of 

the cluster at 1200 K on the right. 
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3.1.1.1.6. The Au1464 Cluster 

 

We now study a bigger cluster with more than a thousand atoms. The total energy 

curve is shown in Figure 3.20. The four regions of interest explained earlier, are 

clearly shown as the cluster slowly changes from a solid to a liquid phase. The 

variation of energy with temperature is not convincingly linear in region 1 which 

suggests that the atoms are showing significant vibrations. There is a marked change 

or jump in the energy between 1000 K and 1100 K. 

 

 

Figure 3.20.  The variation of the total energy with temperature in the cluster with 1464 atoms in 

the NPT Berendsen ensemble is illustrated. 

 

 

The total energy commences from more negative values signifying a stable structure 

and increase steadily with temperature. The cluster gives a total energy of -3.54 

eV/atom at 300 K and it is less negative compared to the bulk total energy of -3.78 

eV/atom at the same temperature. 

 

The radial distribution functions are shown in Figure 3.21 from 300 K to 1400 K. The 

structure at 300 K represents a clear crystal behaviour with distinct peaks, starting 

with a large peak followed by a smaller ones. The first and the maximum peak occurs  

Tm ≈ 1100 K 

(1) 

(2) 

(3) 

(4) 
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at g(r) ≈ 12.5 and r ≈ 2.9 Å while the plot runs up to 12.0 Å. We notice a reduction in 

the number of peaks at 1000 K, but no melting is depicted at this temperature. The 

cluster has melted at 1100 K. The melted structure at 1100 K shows three broad peaks 

with fewer long range interactions. Melting in the cluster continues to show at 1400 K 

where we expect higher atom diffusion since the cluster is molten. There is a 

consistent pattern in the reduction of the rdf peak heights as temperature is raised. The 

melting temperature estimated from the total energy curve is in line with what is 

shown by the rdfs. 

 

 

Figure 3.21 shows the radial distribution functions of the Au1464 cluster. Different temperatures 

are indicated by the corresponding colours. 

 

 

The density profiles of the Au1464 cluster are reflected in Figure 3.22, and are a way of 

further validating the results from the total energy curve and the radial distribution 

functions. The density profiles show a regular pattern of many peaks that extend from 

r ≈ -15.0 Å to r ≈ +15.0 Å. The pattern of the peaks changes dramatically at 1000 K 

with a small upward curvature. The behaviour of the density profiles change slightly 

at 1100 K towards achieving a flat shape. The plot becomes flat at 1400 K which is 

higher than the bulk melting temperature. The energy curve, the radial distribution 

functions and the density profiles show the transition temperature of the Au1427 cluster 
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to be at 1000 K and melting is attained at 1100 K. The transition or intermediate 

temperature is defined as the temperature which lies between the solid and the liquid 

phase of a material and it is achieved when there is a transformation from a solid to a 

liquid phase.  

 

 

Figure 3.22. The density profiles show a total different behaviour in different phases, solid and 

liquid phases. 

 

 

We would also like to explore the change in the structure of the cluster as the 

temperature is enhanced. Figure 3.23 (a and b) shows the starting structure of the 

Au1464 cluster in different forms, the ball and stick and cpk respectively. The bond 

distance in the cluster is uniform and equals 2.88 Å at the initial configurations. The 

structure of the cluster deforms into a tetragonal shape which is also a face-centred 

cube at the temperature before melting, 1000 K. Figure 3.23c depicts the ball and 

stick model representing the structure just before melting at 1000 K. Although the 

cluster has lost its spherical shape at 1000 K, the compactness is still visible. The 

structure after melting (at 1200 K) is illustrated by Figure 3.23d where voids are seen 

with the reductions in the interactions between the atoms. It remains to be seen if the 

predicted melting temperature is directly proportional to the size of the cluster. Thus 

far, with the exception of the Au55 cluster, melting of the nanoclusters is below the 

bulk melting. 
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Figure 3.23. The structure of the Au1464 is shown at different stages of the MD calculations in 

terms of temperature. 

 

 

3.1.1.1.7. The Au2214 Cluster 

 

Discussions on the Au2214 cluster are similar to the preceding ones. We look at the 

total energy as we vary the temperature in the NPT Berendsen ensemble at a constant 

pressure of 0.0 kbar. The radial distribution functions tell us about the change in the 

structure as the temperature is raised and the density profiles show how the denseness 

of the system varies with temperature.  

 

The total energy depicted in Figure 3.24 shows a jump between 1000 K and 1200 K 

after which a linear increase is noticed.  

(a) – 0 K (b) – 0 K 

(d) – 1200 K 
(c) – 1000 K 
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Figure 3.24. The variation of the total energy with temperature in the Au2214 cluster is illustrated. 

 

 

The radial distribution functions for the cluster are shown in Figure 3.25. The 

structure starts from a well defined crystal and very close to the melting temperature 

of the cluster a molten system is shown by the red colour at 1100 K. This is the 

intermediate temperature where the solid and liquid phases co-exist. At this 

temperature, 1100 K, the number of peaks and the peak heights in the system decrease 

drastically and the behaviour is very close to that of the liquid structure but the peaks 

are not well defined. The cluster reaches melting at 1200 K with broad peaks and that 

continues to show at 1400 K. The structure in the cluster starts at ≈ 2.5 Å while the 

first and maximum peak occurs at g(r) ≈ 10.2 and the corresponding distance r ≈ 3.0 

Å and then terminates at 12.0 Å. 

 

The density profiles validate the results of the total energy curve and the radial 

distribution functions, and further shed insights on the change on the denseness with 

temperature. The density profiles plotted in Figure 3.26 depict a decrease in the 

denseness at higher temperatures and follow the same trend as those of the Au1464 

cluster. The 1100 K plot shows a similar behaviour to the one at 1200 K. The plot at 

1400 K depicts a small change in comparison to the plot at 1200 K but the peaks deep 

downwards. There is quick change between phases in the Au2214 cluster. 

Tm ≈ 1200 K 
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Figure 3.25. The rdfs for the Au2214 are shown from 300 K to 1400 K. The plot shows more 

regular peaks at 300 K just like in the bulk. 

 

 

 

 

Figure 3.26. The change in the behaviour of the density profiles for the cluster with 2214 atoms is 

illustrated.  
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3.1.1.2. The Platinum Magic Clusters 

 

We have also carried out some molecular dynamics work on platinum clusters and 

found the Pt55 cluster to behave similarly to the Au55 cluster. Platinum shows the 

similar behaviour to gold from bulk to the surface properties [Sutton and Chen 1990, 

Todd and Lyndell-Bell 1993], and together with gold are the only metals whose three 

low index surfaces {(110), (100), (111)} reconstruct [Ravelo and El-Batanouny 1989, 

Hakkinen et al. 1991, Ravelo and El-Batanouny 1993]. Since the metals have the 

same crystal structures, they are represented by the same values of m and n, the 

results from one metal can be directly converted into results of the other by simply 

rescaling the units of energy and length.    

 

The Pt55 cluster shows melting at higher temperatures as compared to the Pt309 cluster. 

The energy plots for platinum clusters are shown in Figure 3.27. The total energy per 

atom at 300 K is -4.81 eV/atom and -5.71 eV/atom for the Pt55 and Pt309 respectively. 

The total energies for the clusters at 300 K are less negative when compared to the 

bulk platinum cohesive energy of -5.86 eV/atom [Sutton and Chen 1990].  

 

   

Figure 3.27. The energy is plotted against temperature for the two clusters of platinum where (a) 

shows the Pt55 cluster and (b) the Pt309 cluster. The Pt309 cluster shows a good jump as compared 

to Pt55 cluster.   

 

The energy curve for the Pt55 cluster plotted in Figure 3.27(a) shows some ambiguity 

next or around the transition and melting temperatures. The Pt309 cluster shows a good 

transition into melting, as reflected in Figure 3.27(b). The rdfs for the platinum 

clusters are plotted in Figure 3.28. We have estimated melting temperatures for the 

(a) 
(b) 

Tm  2500 K Tm  1550 K 
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two clusters using the total energy plotted as a function of temperature in conjunction 

with the rdfs and the density profiles. The estimated melting temperatures for the Pt55 

and Pt309 clusters were then respectively found to be 2500 K and 1550 K. The melting 

temperature of bulk platinum is 2045.15 K and clearly the Pt55 cluster shows melting 

at a temperature higher than the bulk while the Pt309 cluster melts below the bulk. 

 

    

Figure 3.28 (a and b) show the rdfs in the Pt55 and Pt309 clusters respectively. The Pt55 cluster 

shows more peaks at 300 K as compared to the Pt309 cluster. The Pt309 cluster looks less stable at 

300 K. 

 

The density profiles for the two platinum clusters are shown in Figure 3.29. The 

behaviour is the same as in gold clusters. The Pt55 cluster is shown in Figure 3.29(b) 

where a change in the pattern of the peaks changes and levels off at 2500 K. The 

drastic change in the density profiles in the Pt309 cluster is observed at 1550 K. 

 

     

Figure 3.29. Density profiles for Pt55 and Pt309 clusters are shown by (a) and (b) respectively. 

Similar behaviour to the gold nanoclusters is observed. 

 

(a) 
(b) 

(a) 
(b) 
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3.1.1.3. The Cohesive Energy at 300 K 

 

The material with the lowest energy at a specified temperature is usually the most 

stable under those conditions. The stability of the surfaces is determined by the value 

of their surface energies and the one with the lowest surface energy is always the most 

stable surface. We noted from our previous work on the bulk and surface properties of 

gold [Mahladisa 2004, Todd and Lyndell-Bell 1993] that the most stable surface of 

gold is the close-packed (111) surface which reconstruct into 23 x √3 layers. 

Furthermore, a material with the highest energy is usually the most reactive. It is well-

known that gold, in its bulk form does not react with almost all materials including the 

highly reactive oxygen and sulphur. In fact gold is the most inert of all transition 

metals.     

 

 

 

Figure 3.30. The cohesive energies of the nanoclusters at 300 K are shown with comparison made 

to the bulk gold at the same temperature. The cohesive energy illustrates the stable nature of 

bulk gold and the fact that the smallest cluster depicts lower stability as expected. 
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The cohesive energy of a metal discloses the strength of the metallic bond. The 

decreasing cohesive energy of a nanoparticle implies the decreasing strength of the 

corresponding metallic bond and so the metallic bond will be broken much easier 

which will then lead to the decreasing melting point of the nanoparticle.  

 

Figure 3.30 shows the cohesive energy in the different clusters at 300 K and 

comparison is made with the bulk gold. The insert shows a line joining the points. The 

Au55 cluster depicts the highest cohesive energy while the clusters with the lowest 

energies are found to be the Au249 and Au309 clusters. In fact the two clusters showing 

the lowest cohesive energies are very close, in value being -3.64 eV/atom and -3.65 

eV/atom for Au249 and Au309 respectively. The energy for the Au55 cluster is -3.09 

eV/atom. The bulk material, which has 500 atoms, as expected, depicts the lowest 

energy equalling to -3.70 eV/atom. In the previous work it was shown that the many-

body Sutton-Chen potential gives the bulk cohesive energy as -3.78 eV/atom at 0 K 

which agrees perfectly with the experimental value of -3.78 eV/atom [Miedema 

1978]. The energy in the figure above does not follow any trend with the increasing 

size but rather only irregular pattern is noticeable. The bigger clusters (Au1464 and 

Au2214) which exceed a thousand atoms in their size are actually the ones showing 

higher cohesive energies. We also have to highlight the fact that gold is very reactive 

at a nano level and we can notice in this case that the energy in the clusters increases 

quite significantly compared to the bulk. We find the energy of the Au55 cluster at 300 

K (-3.09 eV/atom) to be higher than the energy of the bulk at 1773 K (-3.16 eV/atom). 

  

We have plotted the total energy for different magic gold clusters with the size 

ranging from 13 to 55 atoms at different temperatures. Figure 3.31 shows that the 

energy in different systems increases with increasing temperature. An interesting 

phenomenon observed in the plot is that the energy becomes more negative with the 

increasing cluster size. The smallest cluster with 13 atoms has the highest energies at 

different temperatures while the biggest cluster with 55 atoms has more negative 

energies. The results below show that the cluster with the highest number of atoms is 

the most stable and more good is that the stability is kept that way at temperatures as 

high as 1000 K. The energy increases as the atoms feel some heat and therefore begin 

to vibrate with the frequent vibrations showing at higher temperatures as a result of 

the increase in the kinetic energy.   
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Figure 3.31. The total energy for different clusters is plotted at various temperatures. The size of 

the clusters ranges from 13 atoms to 55 atoms. The circles with a solid line represent the Au13 

cluster, the triangles up with a dotted line show the Au19 cluster, the diamonds with dashed line 

represent the Au38 cluster while the squares with a white fill and long dashed line show the Au55 

cluster.    

 

 

 

3.1.1.4. The Behaviour of the Melting Temperature  

 

The materials at a nano level are expected to show a significant drop in the melting 

temperature when compared to their respective bulk materials. In addition, we have 

found that surfaces of gold show melting temperatures that are well below the bulk 

melting. We have therefore plotted the melting temperatures for the different gold 

clusters against the size of the clusters in Figure 3.32. Melting in a material initiates at 

the surface and melting in nanoclusters is below the respective bulk melting because 

nanoclusters have clearly defined surfaces. The spherical shapes of these structures 

also an important role. 
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Figure 3.32 shows the behaviour of the melting temperature in the different Au clusters in the 

NPT Berendsen ensemble at 0.0 kbar. The melting temperature of the bulk is indicated by an 

open circle. 

  

 

The Au55 cluster shows the highest melting temperature and it is well above the bulk 

material. The bulk melting temperature for the potential model we use in this work is 

1320 K which is in good agreement with the experimental value of 1337 K. The 

cluster with the second smallest number of atoms has the lowest melting temperature 

of 850 K. It is quite intriguing to note that the biggest cluster considered in this work 

shows the highest melting temperature at 1200 K with exception of the Au55 cluster. 

Although the melting temperature fluctuates with cluster size it can be noticed that 

there is an increase from the cluster with 309 atoms up to the cluster with 2214 atoms 

as shown in Figure 3.33. 

 

The reason behind the high melting temperature found in the Au55 cluster is assumed 

to be the reconstruction that the cluster might undergo. The fact that all low index 
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surfaces of gold reconstruct provides a reasonable basis for cluster showing melting 

that is well above that of the bulk. 

  

 

Figure 3.33. The melting temperature is shown from the cluster with 309 atoms to the Au2214 

cluster with the bulk shown by a circle lying well above all. 

 

 

In addition, the temperature simulations on the Au(111) surface have shown that the 

reconstructed surface melts at 100 K or 150 K above the bulk melting temperature as 

opposed to the unreconstructed one which melts below the bulk by 1250 K [Carnevali 

et al. 1987]. The high melting in the Au(111) surface might be a contribution of the 

denseness of the first-layer packing in the surface or might  be the effect of the many-

body forces.  

 

In the experimental work by Shvartsburg and Jarrold (2000) the different tin clusters 

ranging from 10-30 atoms in size have shown melting to occur at least 50 K above the 

bulk tin, and the latter has a melting temperature of 505 K. The elevation of the 

melting points in the small clusters is, in certain instances caused by the impurities. 
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However, this was not the case with the tin clusters and for our computational work 

we are well aware that no impurities can exist unless introduced by hand. Another 

factor is the indirect involvement of the change in the chemical bonding through 

differences in coordination numbers, directionality and rigidity. It is therefore 

suggested that if the physical basis for the elevated melting points in small tin clusters 

is their heavily reconstructed geometries, then the same phenomenon may occur for 

other clusters that are heavily reconstructed. The Carr-Parrinello ab initio molecular 

dynamics study by Lu and co-workers [Lu et al. 2000] shows that the melting points 

calculated for the silicon and germanium clusters exceed the melting points of the 

respective bulk elements by a smaller margin. It can therefore be assumed that the 

“reconstructed” silicon and germanium clusters may show melting points that are well 

above their respective bulk forms.        

 

It is understood that nanoclusters will show melting that is lower than the bulk 

material but melting does not necessarily increase or decrease with the size of the 

clusters (see Figure 3.31). Schmidt and co-workers [Schmidt et al. 1998] as well as 

Kusche and co-workers [Kusche et al. 1999] have studied melting in different sodium 

clusters ranging from 55 to 200 atoms. It is found that sodium clusters melt 

reasonably below the bulk sodium melting temperature (by about 33%) with the 

smallest clusters (Na55 and Na59 clusters) depicting highest melting temperatures. 

However, the melting points of these Na clusters show large variations with changing 

cluster size, rather than any gradual trend.  

 

The behaviour of the melting process in the bulk gold is shown by Figure 3.34. The 

caloric curve shows a clear description of the transition from a solid to a liquid 

through the well defined jump in the energy. The relation between temperature and 

energy, U = U(T), is called the caloric curve and its derivative is the heat capacity, Cp 

or Cv, depending on the conditions under which the calculations are performed. The 

energy becomes more negative with the increasing size. The bulk shows a linear 

increase in the energy before and after melting. The sudden jump in the energy is well 

defined. The energies in the solid are obviously lower than those in the liquid and this 

is clearly shown by all the results in Figure 3.34. The model we are using for the 

calculations in this work estimates the melting of the bulk gold very well. The value 

for Tm ≈ 1320 K compares fairly well with the experimental value of 1337 K. The 
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results from total energy for the bulk, just like in the nanoclusters, was complemented 

by the radial distribution functions and the density profiles and a concurrence was 

found.  

 

Figure 3.34. The bulk melting temperature calculated from our previous work [Mahladisa 2004] 

is shown. Comparison of the Sutton-Chen model is made with the glue model as well as results 

from Holender [Holender 1990]. 

 

 

3.1.1.5. Diffusion Coefficients (D) 

 

Molecular dynamics simulation provides a good way of investigating dynamic 

processes on the picoseconds time scale. Where atomic diffusion occurs at liquid-like 

or near liquid-like rates it can be observed and measured in the simulations. The 

effects of diffusion in a system are shown by the irregular arrangement of peaks in the 

density profiles. Diffusion in the bulk materials initiates at the surface atoms as that is 

Tm ≈ 900 K 

Tm ≈ 1320 K 
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where melting also commences. The onset of diffusion in a material signals the 

instability of that particular system. 

 

  

Figure 3.35. The diffusion coefficients are show for different clusters at different temperatures. 

Diffusion is also plotted for the bulk for comparison. 

 

 

Diffusion coefficients for different clusters and the bulk are plotted at various 

temperatures in Figure 3.35. Diffusion is zero or very minimal at 300 K for all the 

clusters as well as the bulk. In fact no diffusion is noted until 1000 K for all the 

clusters except for the Au309 cluster. The Au309 cluster has some significant diffusion 

values of more than 5.0 x 10
-10

 m
2
.s

-1
 at 1000 K. All the clusters depict substantial 

improvement at 1200 K with the values higher than 1.5 x 10
-9

 m
2
.s

-1
. The diffusion 

increases further at 1400 K for all clusters. The bulk material on the other hand only 

starts to show the onset of diffusion at 1320 K which tends to be the melting 

temperature.      

 

It was previously shown that among the clusters plotted in Figure 3.33, the Au309 

cluster shows the lowest melting at 1000 K. The other clusters have their melting 

temperatures starting from 1050 K to 1200 K. The Au55 cluster, owing to its high 
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melting temperature, starts to show diffusion at 1400 K. It should then be expected 

that at 1000 K the radial distribution functions and the density profiles will show 

significant instabilities, as we have observed.  

 

There is a relation between the inter-atomic potential and the structural changes 

around the melting temperatures and the phase transition size. The molecular 

dynamics work by [Ercolessi et al. 1991] on different gold clusters shows the same 

behaviour in the mobility where it is found that no significant amount of diffusion can 

be seen at temperatures from 0 K to 1000 K. They observe substantial leaps in 

diffusion once 1000 K is exceeded. Wang et al. [Wang et al. 2004] found the same 

results on icosahedra gold clusters where the onset of diffusion shows only after 1000 

K. Different observations are noted on the work by Rodriguez-Lopez et al. 

[Rodriguez-Lopez et al. 2003]. They have studied different concentrations of gold-

copper (AuCu) alloys and calculated the diffusion coefficients of individual atoms in 

the alloys. They are able to see notable values of diffusion at temperatures as low as 

550 K. However, their calculated melting points for the alloys were found to be 

around 550 K.  

  

Our results show that diffusion is much reliant on the size of clusters and that high 

values are obtained when the melting is approached. The materials with the lowest 

melting points show higher diffusion.  

 

 

3.1.1.6. The heat capacity at constant pressure (Cp) 

 

The heat capacities of selected Au clusters are shown in Table 3.1 and the bulk and 

experimental values are included for comparison. The heat capacities for the cluster 

and the bulk were calculated at the same temperature interval, i.e. between 900 K and 

800 K for better reference. The estimation of the bulk heat capacity at 3.37 is fairly 

comparable to the experimental value of 3.06 [Evans 1983]. We cannot as much 

compare the numbers of this parameter for the bulk and the clusters because of the 

different scales. 
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Table 3.3. Heat capacities for different clusters are shown. The value in the bulk is also shown 

with the experimental value taken from [Evans 1983]. The heat capacity is multiplied by the 

Boltzmann constant (kB = 1.380 x 10
-23

 J.K
-1

) to make it dimensionless. 

Cluster (No. of atoms) Cp Bulk Experimental 

249 3.30 3.37 3.06 

309 2.33   

1464 3.87   

2214 2.33   

 

 

 

Gold nanoclusters in Table 3.1 are lower than the bulk except for the cluster with 

1464 atoms. The trend of the heat capacity in the clusters follows an irregular pattern 

as the size increases. The biggest cluster in our study together with the Au309 cluster 

shows the lowest heat capacities while the small cluster (Au249) shows a value close to 

the bulk. The Au249 cluster has a heat capacity Cp = 2.30 which is close to Cp = 3.37 in 

the bulk. 

 

The results discussed with respect to the different nanoclusters show that most 

parameters calculated and discussed are distinguishable to those of the bulk material, 

the most crucial one being the melting temperature. It has already being mentioned 

that if a material, no matter what the size, behaves like a nanoclusters, that material is 

called a nanocluster.  The melting temperatures of the materials discussed are below 

the bulk, the structures show less peaks in the rdfs and the density profiles compared 

to the bulk, the density is significantly lower than the in the bulk and the atomic 

diffusions are higher than in the bulk. The diffusion coefficients and the energies in 

the nanoclusters are significantly higher than in the bulk and this further proves that 

nanoclusters are less stable than the bulk material. The bond distances in the 

nanoclusters are lower than 2.88 Å for the small clusters and matches that of the bulk 

as the size of the clusters increases. This confirms the fact that big nanoclusters will 

carry some characteristics that are similar to the bulk.   
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3.1.2. Gold Nanotubes 

 

We shall look at the structural behaviour of gold nanotubes defined by (n, m) at 

different temperatures and try to estimate their melting temperatures. We shall refer to 

the radial distribution functions (rdfs) and the density profiles for the discussions of 

our results. We will try to show how the structure changes with temperature. The 

energy curves for the nanotubes, contrary to what we have observed with different Au 

nanoclusters, do not show the necessary jump or discontinuity as we have noticed 

with the clusters and we shall omit them for the discussions in this regard. This is 

owing to the nanotubes having small radii of the order of 1.0 nm (10.0 Å) and are 

close to one-dimensional systems for which the strict phase transitions do not exist 

[Bilalbegović 2000, Bilalbegović 2003]. The nanotubes will be divided into two 

categories, i.e. single wall (SWNT) and multi-wall (MWNT). A single wall nanotube 

is a single cylindrical shape with a hole allowing us to peep through while a multi 

wall nanotube is a combination of single walls and ranges from two walls to as many 

as possible (to four in this work). Different sizes of nanotubes will be considered for 

each class. The multi wall nanotubes will have two, three and four walls. We present 

our results under two different ensembles, the NVT and NPT Berendsen ensembles 

and the results will thereof be compared.  

 

 

3.1.2.1. Single Wall Nanotubes (SWNT) 

 

The radial distribution functions will be shown first under two conditions; we follow 

with the density profiles, the diffusion coefficients and then the changes in the 

structures at different temperatures will be shown. The size of the nanotubes start 

from 24 atoms and will go up to 1523 atoms.   

 

 

3.1.2.1.1. The Au24 (6, 6) nanotube 

 

We start by showing a small nanotube with 24 atoms where we illustrate how the 

details of the structure change as the number of atoms increases in the systems. The 
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radial distribution functions give limited details in the structures containing slightly 

few atoms associated with few peaks (one peak) that will be detected. The number of 

peaks increases significantly with the increasing number of atoms. The simulations in 

this nanotube were carried out only under conditions of the constant volume and 

temperature (NVT).  

   

The radial distribution functions (rdfs) as well as the density profiles of the nanotube 

with 24 atoms are shown in Figure 3.36. The structure shows only one peak at 300 K 

and the increasing temperature only decreases the height of the peaks. Obvious 

broadening of the peak is visible as the interactions between the atoms weaken. The 

density profiles show a well shaped curve at 300 K. The curves at 700 K and 1000 K 

become smooth and shift to the right. The rdfs in this regard cannot show a well 

melted structure because there cannot be few well ordered peaks since there is only 

peak depicted by the nanotube. However, it may be surmised that the much observed 

fall in the peaks signifies melting in the nanotube.        

 

       

Figure 3.36 shows the Au24 nanotube where the radial distribution functions at different 

temperatures are depicted by the picture on the left and the density profiles are on the right. 

 

 

The starting configurations of the nanotube with 24 atoms are shown from different 

directions in Figure 3.37. The interatomic distances, which do not differ much from 

those of the bulk gold, are noted to be 2.83 Å and 2.84 Å (the interatomic distance in 

the bulk is 2.88 Å). The atomic arrangement depicted on the left of Figure 3.37 follow 

the ring pattern. The atoms are nicely packed and although there are no clear 
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hexagonal patterns, the building of such patterns can be witnessed. However, the 

nanotube shows a good cylindrical shape.  

 

 

          

Figure 3.37 shows the structure of the Au24 nanotube before simulations viewed straight and 

along a the z-direction. The tube has the diameter of D = 8.14 Å and length L = 4.92 Å.   

 

 

The nanotube looses the ring shape at 700 K and form a single structure. At 1000 K a 

longer bond of 3.00 Å formed and atoms start to break away from the structure. There 

is an irregular pattern in the change of the bonds. The bond distances change from 

2.83 Å and 2.84 Å to 2.84 Å, 2.74 Å, 2.86 Å and 3.00 Å. The resulting structures at 

700 K and 1000 K are shown in Figure 3.38. The increase in the bond length weakens 

the interaction between the atoms resulting in some atoms breaking away from the 

rest. 

  

                        

Figure 3.38. The simulated structures of the nanotube are shown at 700 K on the left and at 1000 

K on the right. 

(a) (b) 
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3.1.2.1.2. The Au196 (5, 3) nanotube 

 

The radial distribution functions depicted by Figure 3.39 show that the NVT 

conditions reflect more structure than the NPT condition due to a number peaks 

observed. The peaks show a lot of instabilities at room temperature as they follow no 

particular pattern. The nanotube is approaching a liquid phase at 700 K where a 

second peak starts to assume a round shape. 

 

       

Figure 3.39 shows the rdfs in the NVT (left) and NPT (right) Berendsen ensembles at various 

temperatures.  

 

The melted structure of the Au196 nanotube under the two ensembles is observed at 

1000 K with well defined two peaks. Similarities in the two rdfs are that the structures 

start at 2.8 Å and the first and the maximum peak occurs at 3.0 Å. The rdf peaks 

broaden and decrease in peak height as the temperature rises.      

 

       

Figure 3.40. The density profiles for the Au196 nanotube at different temperatures from left to 

right in the NVT and NPT conditions.  

(a) 
(b) 

(a) (b) 



 116 

The density profiles plotted against the distances r, at different temperatures are 

shown in Figure 3.40. The NVT Berendsen ensemble performs the simulation at a 

fixed volume throughout the calculations. The NPT Berendsen ensemble fixes the 

pressure and temperature while the volume is allowed to change, either by expanding 

or contracting. The density profiles on the left in Figure 3.40 for the NVT conditions 

show the plots to be dense at a particular area (around -10 and 10) with a shift with a 

temperature change. The NPT conditions show the plots to extend over a considerable 

distance and noticeable denseness in the system is at four regions. The density profiles 

show more dense systems at 300 K in both conditions. The order followed by the 

peaks in the density profiles is completely lost at 1000 K. The NPT, which shows 

clear plots in this regard, depicts a decrease both in the number of peaks as well as the 

peak heights. The structure in the NPT ensemble is dense at 300 K and 500 K. A 

reasonable decrease in the density of the system occurs at 700 K although some noise 

can still be detected. The peaks are very smooth at 1000 K where the nanotube is 

already melted. The peaks in the NPT follow the same behaviour throughout which 

gives a good transition from a solid to a liquid phase.            

 

We now look at the structure of the nanotube plotted at different temperatures in the 

two ensembles. Figure 3.41 shows the starting structure. As opposed to the nanotube 

with 24 atoms we are able in this regard to see the hexagonal patterns with atoms 

connecting to form a long and stretching shape (Figure 3.41 (a)). Figure 3.41 (b) 

shows a different orientation where a hole is depicted. 

 

  

         

Figure 3.41 shows the structure of the Au196 nanotube before simulations. The hexagonal shapes 

are easily spotted in the left orientation, and on the right we show a hollow in the nanotube. The 

diameter D of this nanotube measures to 5.48 Å while the length L = 29.82 Å. This is the 

experimentally observed chiral gold nanotube.  

(a) 
(b) 
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Figure 3.42. The Au196 nanotube is shown in the NVT and NPT conditions at two different 

temperatures, i.e. 500 K and 1000 K. (a) and (b) show the nanotube in the NVT while (c) and (d) 

the NPT structures. Different temperatures give different atom mobilities.  

 

 

Figure 3.42 shows the nanotube under the NVT and NPT conditions at 500 K and 

1000 K. Figure 3.42 (a) and (b) show the NVT structures while Figure 3.42 (c) and 

(d) show the NPT ones. The NVT conditions attain a single structure with some 

tubular features still visible at both 500 K and 1000 K. The nanotube stays at the 

centre of the simulation box at 500 K (Figure 3.42a) and then moves to the bottom at 

1000 K (Figure 3.42b) and this is what the density profiles have shown where the plot 

changed positions with the changing temperature. The NPT structures shown by 

Figure 3.42 (c) and (d) depict different structures at the two temperatures. The 

nanotube splits into three clusters at 500 K but two of the three clusters merge to form 

one cluster. Two clusters of different sizes are then obtained at 1000 K. The effects of 

different volumes are shown in the behaviour of the nanotube at higher temperatures.  

 

 

3.1.2.1.3. The Au364 (6, 5) nanotube 

 

The obvious difference between the Au196 and Au364 nanotubes is the number of 

atoms each one consists of. The number of atoms in a structure, sometimes, plays an 

500 K 

NVT 

1000 K 

NVT 

500 K NPT 
1000 K NPT 

(a) (b) 

(c) (d) 
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important role in certain structural properties such as melting. The melting 

temperature of a material decreases when the size of the material decreases and 

nanomaterials show melting temperatures that are below their respective bulk 

materials. The interatomic distances in the nanomaterials also decrease with the size. 

The Au-Au interatomic distance in the Au196 nanotube is 2.42 Å and in the Au364 is 

2.82 Å.   

 

The radial distribution functions for the Au364 nanotube in the NVT and NPT 

ensembles in Figure 3.43 show melted structures at 850 K and 750 K respectively. 

The rdfs start at 2.82 Å with instability clearly showing at 300 K. The plots show 

increased number of peaks since there are more atoms than in the tube with 196 

atoms.  

 

     

Figure 3.43. The radial distribution functions for the gold naotube with 364 atoms in the NVT 

and NPT Berendsen ensembles.   

 

 

The density profiles are plotted in Figure 3.44. The NVT plot becomes dense within a 

small distance range and shifts to the left at higher temperatures of 850 K and 1000 K. 

The plots show some decrease in the denseness as high temperatures are reached. The 

NPT plot shows quite a wide range with noise fading as the temperature is increased. 

The plots are smoother and peak heights decrease and change the initial pattern at 

1000 K.  

 

The ball and stick and stick models of the starting configurations of the Au364 

structure are shown in Figure 3.45.  

(a) (b) 
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The bond distance in the nanotube is 2.82 Å which slightly differ with 2.89 Å of the 

bulk gold. 

 

     

Figure 3.44 shows the density profiles for the Au364 nanotube in the NT and NPT shown 

respectively by (a) and (b).  

 

                 

Figure 3.45. The starting structure of Au364 nanotube with the bond distance at 2.82 Å and the 

diameter D is 7.47 Å. The length L measures to 81.28 Å.  

 

 

The structures are shown at 500 K and 1000 K, in the NVT and NPT ensembles, in 

Figure 3.46. The first two structures on the left represented by Figure 3.46 (a) and (b) 

show the NVT conditions where single clusters are obtained. Figure 3.46 (a) shows 

(a) 

(b) 

(a) 
(b) 
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the Au364 deforming into a single cluster at 500 K and the cluster assumes a more 

spherical shape at 1000 K. The NPT nanotube deforms into four clusters varying in 

sizes at 500 K (Figure 3.46c). The nanotube at 1000 K depicted by Figure 3.46 (d) 

then forms two big clusters and one small one. The tube feels early heat at 500 K and 

forms many clusters, but adjustment is made when the temperature is raised and then 

the number of clusters decrease. The phenomenon of temperature is known to 

increase the kinetic energy in a system. The structures in the NPT show that the 

kinetic energy, under such conditions, increases at 500 K and then reduces at 1000 K 

where the atoms come together again after separating in patches. The nanotube breaks 

into clusters which prefer spherical shapes at higher temperatures. The shape of the 

clusters is always spherical since that is how nanoclusters and nanotubes prefer to 

configure at melting.  

 

 

                

 

    

Figure 3.46. The NVT structures are depicted by a at 500 K and b at 1000 K. c and d show the 

structure under the NPT conditions, c shows four clusters at 500 K, d consists of three clusters at 

1000 K. 

 

(a) 
(b) 

(c) 

(d) 
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3.1.2.1.4. The Au628 (7, 3) nanotubes 

 

            

Figure 3.47. The rdf for the Au624 are shown in the NVT in (a) and NPT in (b). 

 

 

The rdfs for the gold nanotube with 624 atoms are shown in Figure 3.47. The graphs 

show melting at 850 K in both ensembles. The rdfs start at the point corresponding to 

the interatomic bond distance for a particular nanotube and terminates at the cut-off 

radius used for the calculations. The three nanotubes studied so far, the Au196, Au364 

and Au624 show their rdf plots to respectively start at 2.42 Å, 2.82 Å and 2.83 Å 

which are their corresponding bond distances. All nanotubes show strong repulsive 

forces at short distances less than the atomic radius and g(r) is zero. The plot for the 

density profiles in Figure 3.48 further justifies the melting behaviour of the Au624 

nanotube at 850 K. The graph for the nanotube at 850 K loses the animosity and 

becomes smoother. There is a shift to the left in the plots in the NVT conditions as the 

melting temperature is approached. The graphs at 700 K and 1000 K in the NPT 

conditions reduce the number of peaks as well as the peak heights.      

 

                 

Figure 3.48. The density profiles for the Au624 are shown. The left plot will indicate the constant 

volume conditions and the right one will indicate the NPT ensemble. 

(a) (b) 
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The structure of the nanotube at the starting configuration is shown in Figure 3.49. 

The interatomic distance in the nanotube is found to be 2.83 Å before simulations. 

The simulated nanotubes show different results from the other two nantoubes above in 

the NVT conditions. The Au624 nanotube does not form a spherical cluster at 500 K, 

rather a shape with a chain-like end. The tube then forms a big spherical cluster and 

some patches can be observed on the sideways at 1000 K.  

 

             

Figure 3.49. The starting configurations of the Au628 nanotube. The bond distances are found to 

be 2.83 Å. The diameter of this nanotube measures to 6.96 Å. 

 

 

The work by da Silva and co-workers [da Silva et al. 2004] have shown that a 

nanotube stretches into a mono chain before breaking. The cause of the breakage is 

found to be the stress applied or experienced by the nantoube. Bilabegović 

[Bilalbegović 2001] has studied the stress effect on the gold nanotubes using the 

embedded atom method (EAM) in molecular dynamics. The results found show that 

applying certain stress on a nanotube deforms the structure to such an extent that the 

initial structure cannot be recovered by removing the stress. The stress can be in the 

form of applied pressure, temperature, etc. The NPT conditions show similar effects 

to the previous nanotubes where the nanotube disintegrate into four clusters, two big 

(a) 

(b) 
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and two small clusters at 500 K and later forming three spherical clusters at 1000 K. 

The simulated structures of the Au628 nanotube are shown in Figure 3.50. 

 

 

                

       

      

Figure 3.50. The structures of the Au628 nanotube simulated at 500 K and 1000 K under the 

NVT (a and b) and NPT (c and d) conditions. 

 

 

 

3.1.2.1.5. The Au1252 (8, 7) nanotube 

 

In this nanotube we move from a hundred of atoms in the structures and consider a 

nanotube with over a thousand atoms. The rdfs in Figure 3.51 show more long range 

interactions in the structure of the nanotube. The structure at 300 K shows much 

instability due to lack of multiple peaks in the rdfs, but strong solid features exist. The 

structure of this nanotube is less characterised by the rdfs as we have seen with the 

case of the nanotube with 624 atoms. The contributing factor is the much volume 

(a) 

(b) 

(c) 

(d) 
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accorded to the atoms and hence the long range interactions. We are however, still 

able to observe a structure described by a few well defined peaks at 1000 K in both 

ensembles which signifies the melting in the nanotube.       

 

                

Figure 3.51. The radial distribution functions for the Au1252 nanotube extracted at different 

temperature in the two ensembles. 

 

The graph for the density profiles for the Au1252 nanotube depicted in Figure 3.52 

gives less dense systems at 300 K. The NVT conditions show only one complete peak 

at r ≈ 0.0 Å with some noise contrary to the multiple peaks observed in the NPT 

conditions. The plots become smooth at 700 K and continue to smoothen further at 

1000 K. Once again the difference in the volume in the two ensembles can be noticed. 

The graphs in the NVT ensemble go from r ≈ -35 Å to r ≈ 35 Å while the NPT 

ensemble has -70 Å ≥ r ≤ 70 Å as the range of the distance. Transition for a solid to a 

liquid phase is well established from the rdfs and the density profiles. The density 

profiles show, through the NVT and NPT ensembles, what difference the volume can 

make in the movement of the atoms. 

 

            

Figure 3.52. The graph on the left shows the density profiles in the NVT and the right graph 

shows the NPT ensemble. 
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The starting configuration of the nanotube is shown in Figure 3.53 with the hollow in 

the nanotube clearly shown. As one of their potential uses, nanotubes can be used as 

transport materials where a fluid can be allowed to pass through the nanotube from 

one end to the other. The process allows the fluid to be passed from source to the 

other. The initial configurations of the nanotubes show well ordered structures with 

the cylindrical shapes well appreciated. 

             

Figure 3.53. The different view of the starting configurations of the Au1252 nanotube with the 

diameter of 10.18 Å and length 110.76 Å is shown. 

 

 

 

The process of heating different structures at various temperatures yields different 

results for each particular system. The number of atoms in a system plays some 

significant role as has been observed with different results for the nanotubes. The 

general agreement generated from imposing temperature on different nanotubes is that 

the initial cylindrical shapes of these nanomaterials collapses at temperatures as low 

as 300 K. Figure 3.54, which shows the nanotube with 1252 atoms, clearly shows the 

role played by a number of atoms in a system. The Au1252 nanotube collapses into 

multiple clusters at 500 K which then merge or coalesce and form three spherical 

clusters at a higher temperature of 1000 K under both conditions. 
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Figure 3.54 shows the structure of the Au1252 nanotube at 500 K and 1000 K in the NVT (a and 

b) and NPT Berendsen (c and d) ensembles. 

 

(a) 

(c) (d) 

(b) 
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The mechanism followed during the collapse of the nanotubes is that the atoms break 

away from each other forming patches or groups of clusters and remain bonded in 

those small clusters. The bond distances in the heated structures are found to be 

different with others preferring to contract and others increasing. The clusters formed 

under the NPT conditions seem to assume a more spherical shape while those in the 

constant volume and temperature show some inconsistency. The constant pressure 

and temperature conditions form exactly six clusters at 500 K which are able to 

converge to form three clusters of comparable sizes. The constant volume-

temperature conditions depict three clearly visible clusters which are not convincingly 

spherical with some small structures on the side. However, three near spherical shapes 

are obtained at 1000 K although the sizes are not as comparable as those in the NPT. 

 

 

3.1.2.2. Multi-Wall Nanotubes (MWNT) 

 

The significant question arising from studying these types of nanotubes is whether 

melting starts from the inside layer or the outside one. We hope we will be able to 

address that problem in the underlying discussions. Wang et al. [Wang et al. 2002] 

and Bilalbegović [Bilalbegović 2000] have reported some results on the effect of 

temperature on the multi wall nanotubes. We shall consider three different nanotubes 

under this topic, viz. double wall, three wall and four wall nanotubes. We are 

following the discussion underlined in the single wall nanotubes sections where we 

shall focus on the radial distribution functions (rdfs), the density profiles as well as 

the structures at various temperatures. The molecular dynamics simulation studies of 

CuNi alloys by Kazanc [Kazanc 2006] and Zhou and Gao [Zhou and Gao 2005] 

follow the same procedure as ours where the radial distribution functions are used in 

differentiating between different phases. The studies clearly show crystal structures of 

the alloys and gold nanowires transforming from a liquid phase to a solid, going 

through the transition. Bilalbegović [Bilalbegović 2000] shows that multi wall 

nanotubes are very solid at lower temperatures which then loose their crystalline 

structures faster than the bulk material. The loss of the tubular structure is further 

confirmed by the semi-empirical tight-binding work at different temperatures by 

Delogu [Delogu 2007].      
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3.1.2.2.1. Au Double Wall (6, 3) nanotube (DWNT) 

 

The radial distribution functions, in Figure 3.55, for this nanotube clearly show the 

difference between the constant number of atoms (N), constant volume (V) and 

constant temperature (T), the NVT Berendsen ensemble, and constant number of 

atoms (N), constant pressure (P) and constant temperature (T), the NPT Berendsen 

ensemble. That difference is much noticeable at 300 K where the NVT conditions 

show more structure which gives a clear face-centred crystal (fcc) structure. The fcc 

structure is characterised by the multiple number of peaks in the rdfs. The NPT 

conditions on the other hand show an unstable fcc structure at 300 K and splitting 

appears at the peak located at r  5.5 Ǻ. The instabilities in the structure at a room 

temperature are caused by the fact that in the NPT conditions, due to constant 

pressure, the system feels heat quicker and hence lattice vibrations occur earlier. 

However, the behaviour of the structure in the two ensembles is found to be the same 

at 700 K where a shoulder is observed at r  4.2 Ǻ.  

 

The graphs for the rdfs in Figure 3.55 show melted structures at 1000 K where two 

smooth and well defined peaks are seen. The premelting (melting below the bulk Tm) 

behaviour in the nanotubes is a clear indication that the cylindrical and spherical 

shapes of these materials provide a good surface as melting initiates at surface atoms. 

It may be argued that that the nanotubes have an enhanced free energy at the surface 

atoms which is generated from the liquid-vapour interface free energy being much 

lower than the average solid-vapour interface free energy, which in turn increases the 

surface to volume ratio. In such shapes there appears to be no or very few bulk atoms 

owing to the instability that they show at low temperatures. The radial distribution 

functions, as expected show more structure under the NVT conditions although both 

ensembles show well melted structures at 1000 K.  

 

A nanotube is in general round in shape and the hexagonal patterns of atoms stimulate 

the melting in these materials. The double wall nanotube significantly gives an 

increased number of atoms and, as we expect depicts a good number of clearly 

defined peak at room temperature. This fact leads to well ordered peaks at melting to 

clearly show a molten nanotube structure.  
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Figure 3.55. The radial distribution functions under the NVT and NPT Berendsen conditions for 

the Au double wall nanotube. 

 

 

The density profiles are plotted in Figure 3.56 for the Au double wall nanotube. The 

graph on the left shows a more dense system at 300 K with the distance r ranging 

from -10 Å to 10 Å. The plot at this temperature consists of an infinite number of 

peaks signifying the solid behaviour in the system. The graph changes dramatically at 

700 K, the number of peaks has decreased significantly. The system at 1000 K shows 

a flat graph compared to the other two temperatures which confirms the results from 

the rdfs. The NPT system shows stability up to 700 K where a multiple number of 

well defined peaks are observed. The system at 300 K is not as dense as the one in the 

constant volume and temperature conditions as the peaks have some good separations. 

The number of peaks decreases at 700 K and then the plot similarly flattens as in the 

NVT at 1000 K.    

 

    

Figure 3.56 shows the density profiles under two conditions for the double wall nanotube. The 

left graph always represents the NVT conditions and the right graph is for the NPT ensemble. 
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The initial configuration of the Au double wall nanotube is shown in Figure 3.57. The 

separation distance between the walls in the nanotube is found to exceed 3.347 Å. 

This separation is good enough to make sure the walls do not appear to be one thing 

and remain separated until a high temperature in imposed on the nanotubes. The 

bonding distances are the same as in the bulk gold, r = 2.88 Å. This double wall 

nanotube consists of 480 atoms.  

 

       

Figure 3.57 shows the nanotube with two walls. The nanotube spots two shells or walls which are 

separated by a distance of more than 5.50 Ǻ. The interatomic or bond distance in the nanotube is 

2.88 Ǻ.   

 

 

The simulated configurations are shown by Figure 3.58. The single wall nanotubes 

studied in previous sections show the same trend on increasing temperature. They 

(single nanotubes) prefer to form patches of clusters differing or equal in their sizes. 

The double wall nanotube shows a totally different morphology when subjected to the 

same conditions. The NVT conditions show the nanotube deforming into a tetragonal 

shape at 500 K and then a spherical cluster is attained at 1000 K. The nanotube in the 

NPT conditions on the other hand undergoes only one phase change which is from 

two cylindrical shapes to a tetragonal one. The nanotube deforms into a tetragonal 

structure at 500 K, and keeps the same structure at 1000 K but with more separations 

between the atoms. The NPT conditions deform the nanotube into a face centred cubic 

structure resembling the surface structure of gold. The structures at 1000 K under both 
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conditions show some visible gaps. The density profiles have shown that the 

denseness in the systems decreases quite significantly at 1000 K. In this type of a 

nanotube we observe that heating occurs simultaneously in the two walls leading to a 

total collapse in the structure. The rdfs and density profiles have shown melted 

structures at 1000 K and the difference is noticeable in the structures between 700 K 

and 1000 K.      

 

 

     

 

 

   

Figure 3.58. Simulated structures of the Au double wall nanotube are shown. (a) and (b) are the 

NVT configurations at 500 K and 1000 K respectively while (c) and (d) represent the NPT 

structures at 500 K and 1000 K. 

(a) 
(b) 

(c) 
(d) 
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The structural transformation in the nanotubes starts with the breaking of the walls 

that form the cylindrical shapes. The atoms break away from their curved bonding, 

forming a shape like a flat sheet and depending on the restrictions the structure is 

subjected to, one or a number of clusters are formed. The two walls in the double wall 

nanotube are destroyed completely once the temperature is introduced and the atoms 

will rearrange and form single structures. The nanotubes collapse under high 

temperatures and are not able to retain their tube structure. The bond distances are 

found to follow no particular order during the destruction of the nanotube, some 

bonds do increase while others decrease from the original distances. 

 

 

3.1.2.2.2. Au Three Wall (6, 4) Nanotube (TWNT) 

 

The increasing number of walls or shells will obviously increase the number of atoms 

in a nanotube. As the number of walls increases the inner wall becomes further rooted 

into the interior of the structure. This poses two possibilities when the system is 

heated. Firstly, as in the case of the double wall, the heating of the three walls in the 

nanotube might be simultaneous and could therefore lead to the collapse of the 

cylindrical nanotube structure. The second possibility is that heating might occur wall 

by wall where outer shells might experience more heat than the inner ones. If the 

second possibility holds, it could be suggested that the nanotubes are important 

materials for storage under hot conditions.    

 

     

Figure 3.59. The radial distribution functions in a three walled nanotube with 541 atoms. The left 

plot show the NVT ensemble while the on the right we exhibit the NPT ensemble. 
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Figure 3.59 depicts the radial distribution functions of the nanotube under the NVT 

(left graph) conditions showing an unstable structure at room temperature. The peaks 

do not follow any particular pattern, with the first and maximum peak occurring at r ≈ 

3.0 Å and g(r) ≈ 12.5. The structure shows more instability at 700 K and melting 

reflected at 1000 K. The peak height drops in the first and maximum peaks. The 

structure under the NPT conditions shows more instability with splitting already 

occurring at 300 K. The structure is molten at 700 K, and a liquid structure is depicted 

at 1000 K. The nanotubes have even more clearly defined surfaces than in the 

nanoclusters and all atoms seem to be at surfaces already and therefore difficult to 

separate bulk atoms from those at the surface. Melting in the nanotubes seems to 

involve all atoms contrary to the clusters where surface atoms are where melting 

initiates.        

 

The density profiles for the nanotube are shown in Figure 3.60 where the NVT 

conditions are shown on the left and the NPT conditions are on the right. The 

structure of the nanotube is better represented in the left plot where many peaks 

signify the denseness of the system. At 1000 K a horizontal line is noted, quite 

different from the many peaks observed at 300, 500 K and 700 K. The NPT density 

profiles cover more volume as compared to the NVT ones. Although not as dense as 

the structure in the NVT case, the NPT conditions show progressive difference from 

300 K and 1000 K. The structure starts with certain peaks at 300 K which decrease in 

height at 700 K and then followed by a smooth peak at r ≈ 20 Å at 1000 K. The 

results follow the same trend as in the previous discussions where the density profiles 

validate the findings from the radial distribution functions.     

 

              

Figure 3.60. The density profiles are shown. Many peaks in the plot signify the denseness. 
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Figure 3.61. The starting structure of the Au three wall nanotube is shown from different angles. 

the inner nanotube is always the smallest.  

 

 

The starting configurations of a gold nanotube with three walls and 541 atoms are 

shown in Figure 3.61. Bonding in this nanotube is different in the three walls or 

shells. The interatomic distance in the outer shell is found to be 2.45 Ǻ. The central 

wall shows higher interatomic distances of 2.83 Ǻ, where the bond distance in the 

interior and smallest wall is 2.78 Ǻ. The separation between the exterior wall and the 

second one is about 3.94 Ǻ and the central and the inner shell are separated by 

approximately 3.82 Ǻ.  

 

Figure 3.62 shows the evolution of the nanotube structure with temperature in the 

NVT and NPT ensembles. The NVT structures are shown by Figure 3.62 (a, b and c) 

at 300 K, 500 K and 1000 K respectively. The nanotube looses the cylindrical shape 

at 300 K with one or two atoms breaking away from the rest. However, the atoms are 

still arranged in the form of a tube pattern. The deformation of the structure continues 

at 500 K where a near spherical shape is attained. Finally at 1000 K the structure 

converges to form a face centred cubic structure showing more holes implying that 

most bond distances have increased. We have noticed in the previous nanotubes that 

at lower temperatures the structure of the nanotube collapses and some atoms break 

away. However, the atoms then come together at a higher temperature of 1000 K and 

form one structure, a fcc structure in case of the larger nanotubes.  
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In Figure 3.62 (d, e and f) we show the evolution of the structure in the NPT 

Berendsen ensemble. Melting process of a crystalline material is known to start from 

the surface layer and propagates into the interior. Thus, the atoms in the outer shell of 

the nanotube should show lower melting than the interior shell due to their large 

surface-to-volume ratio. The NPT conditions preserve the cylindrical walls of the 

nanotube throughout, even up to higher temperatures. The outer and central walls 

deform into patches of clusters forming rings, but the three shells are still identifiable 

at 300 K. The walls of the nanotube are more homogenous at 500 K than at 300 K. 

The inner wall remains intact with a small cluster inserted inside. The interior wall 

continues to be visible and can still be noticed at 500 K and 1000 K while the other 

two walls form patches of clusters that surround the inner shell. Our results show that 

heating in the nanotube commences at the outer walls, which have lower melting 

temperature as compared to the inner wall. The outer wall is then seen as the one 

providing more surface atoms and the inner one providing the most part of the bulk.  

 

Bilalbegović [Bilalbegović 2000], in the MD study of multi-walled nanotubes using 

the embedded atom method (EAM), has also found that as the multi wall nanotube is 

heated, the walls become homogenous with a thin filled interior core. Bilalbegović 

however, reported that melting occurs simultaneously in the nanotube. Gülseren et al. 

[Gülseren et al. 1995] on the other hand reported that the atomistic work using a 

many-body potential on lead (Pb) nanowitres show melting to be preceded by surface 

melting effects of the outer skin or shell. The MD work by Delogu [Delogu 2007] on 

Au nanotubes in the NPT ensemble using tight-binding band energy semi-empirical 

interatomic potential shows that nanotubes form fcc structures first before breaking 

and this study shows a good agreement with our observations. We have noted 

different results in our study thus far where a double wall nanotube behave similarly 

to the results of Bilalbegóvic and the three walled nanotube show similar results, 

under the NPT conditions, to those of Gülseren et al. The emerging assumption is that 

melting in the multi-wall nanotubes starts from the outer wall or that the structure can 

collapse leading to simultaneous melting. It is intriguing to note that the two 

ensembles show different results in the melting behaviour of the three wall Au 

nanotube.      
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Figure 3.62. Different temperature configurations are shown. The top three structures represent 

the NVT ensemble. The bottom configurations are the structures in the NPT ensemble. (a) and 

(d) show the NVT and NPT structures respectively at 300 K, (b) and (e) show the 500 K and (c) 

and (f) are the 1000 K configurations. 

 

 

3.1.2.2.3. Au Four Wall (6, 3) Nanotube 

 

The structure of the Au four wall nanotube is characterized by four rings forming 

circles that will eventually form one structure. The number of atoms in the chosen 

nanotube is of 1523 atoms. The increased number of atoms in a system should 

increase the number of peaks in the plot for the radial distribution functions and 

therefore the possibility of finding an atom or a group of atoms within a particular 

distance range. On comparing the structures of various nanotubes, we realise that as 

the size, in terms of the number of atoms and walls, increases the behaviour towards 

that of the bulk.  

(a) 
(b) 

(c) 

(d) (e) (f) 
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The radial distribution functions of the nanotube with four walls are depicted in 

Figure 3.63. The plot for the NVT conditions start at 800 K due to some technicalities 

experienced in the calculations. The structure of the nanotube shows strong solid 

features at 800 K with many unstable peaks depicted. The melted structure occurs at 

900 K and that continues at 1000 K. The NPT conditions on the other hand show a 

stable structure at 300 K which resembles that of the bulk gold. The well ordered 

peaks follow a particular order where the first and maximum peak is located at g(r) ≈ 

7.0 and r ≈ 3.0 Å. Melting occurs at 1000 K. Although the structure is much 

crystalline at 300 K in the NPT conditions, onset of instabilities is already noticed. 

 

     

Figure 3.63. The structural evolution of the nanotube with temperature is depicted. The constant 

pressure simulations are performed at 0.0 kbar. The NVT conditions are shown on the left and 

the NPT on the right. 

 

 

     

Figure 3.64. We are able to show two temperatures on the left figure in the NVT conditions as 

explained earlier. More details can be observed in the NPT ensemble.  
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The density profiles under the two conditions are shown by Figure 3.64. The NVT 

conditions show less structure but a dense system is seen at 800 K through a 

congested peaks at 5.0 Å ≤ r ≤ 35.0 Å. The denseness in the system fades at 1000 K 

where a smooth graph is depicted. The NPT conditions show a good representation of 

the crystal structure at 300 K with uncountable number peaks going over a large 

distance range. However, the number of peaks as well as the peak heights drops at 

800 K. The density profiles at 1000 K show a change in the pattern where a curvature 

filled with peaks is noted. The 1000 K and 1200 K graphs are further down from the 

rest implying strong liquid features. The density profiles validate the results from the 

radial distribution functions.    

 

We further observe changes in the nanostructure at various temperatures. Figure 3.65 

show the starting configurations for the nanotube with four walls and 1523 atoms. 

Each wall contributes a certain number of atoms towards the total number. The bond 

distances are the same in the four walls and are equal to 2.84 Å. The spacing of the 

walls are different. The outer wall is ≈ 7.84 Å from the third one, the third one ≈ 6.99 

Å from the second and the second wall is ≈ 7.61 Å from the inner wall. The four-wall 

nanotube is essentially the continuation of a three-wall nanotube by simply adding 

another wall, just like the three-wall being the continuation from a double-wall 

nanotube. 

 

       

Figure 3.65 shows the starting configuration of the Au four wall nanotube. The bond distance is 

2.84 Å. The separation between the walls is about 3.347 Å. 
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In Figure 3.66 we show how the structure of the nanotube evolves with temperature in 

the NVT and NPT Berendsen ensembles. Under the NVT, the nanotube collapses into 

a spherical cluster at 500 K which has varying bond distances, and atoms are attached 

to each other. The structure at 1000 K also shows a spherical cluster but some atoms 

are detached from the larger structure. The NPT conditions reflect a compact face 

centred cubic (fcc) structure at 500 K. The fcc structure is further attained at 1000 K 

though the atoms are not as closely packed as in the case of 500 K. 

 

 

       

 

 

       

Figure 3.66. The structural evolution of the four wall nanotube is shown. The NVT conditions are 

represented by a) 500 K and b) 1000 K while c) 500 K and d) 1000 K show the NPT conditions. 

 

 

(a) (b) 

(c) (d) 
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3.1.2.3. Diffusion Coefficients 

 

It is expected that heavier molecules should diffuse slower in a system. Heat is needed 

to increase the rate of diffusion by providing the energy needed to break and form 

new bonds. The diffusion coefficients of different gold nanotubes under the constant 

pressure conditions are shown in Figure 3.67.     

 

 

Figure 3.67. The diffusion coefficients of different nanotubes are shown in the NPT conditions. 

The double-wall nanotube consists of 480 atoms, the three-wall nanotube 541 atoms and the four-

walled nanotube has 1523 atoms.   

 

 

The single-wall nanotube with 628 atoms shows higher values of diffusion at 

respective temperatures with the value of more than 1.0 x 10
-9

 m
2
.s

-1
 obtained at 900 

K. The multi-walled nanotubes show zero diffusion at least until 700 K and start to 

show appreciable values at 1000 K. The three-wall nanotube, with 541 atoms, shows 

higher values of diffusion coefficient compared to the Au double-wall and four-wall 

nanotubes. The four-wall nanotube at higher temperatures reflects slightly higher 

diffusion coefficients to the double-wall nanotube. However, the single-wall nanotube 

with 196 atoms depicts very low diffusion remaining below 1.0 x 10
-9

 m
2
.s

-1
 at 



 141 

temperatures as high as 1200 K. The diffusion in this nanotube only exceeds 2.3 at 

1300 K and then increases to 4.1 x 10
-9

 m
2
.s

-1
 at 1400 K.   

 

 

3.1.2.4. The Heat Capacity  

 

The heat capacity of a material depends on the enthalpy and therefore the total energy 

of the system plays a crucial role in determining this property. The good linear 

behaviour of the energy will determine the good values for the heat capacity as was 

shown with the bulk and clusters. The total energy in the nanotubes does not depict 

neat (in terms linearity) behaviour with temperature and therefore do not provide a 

good slope of the plots.   

 

Table 3.2 shows the heat capacities (Cp and Cv) in the two ensembles used for the calculations on 

different gold nanotubes.  

Nanotube Size and Type Cp Cv 

196 (Single-Wall) 4.65 2.33 

628 (Single-Wall) 2.33 5.82 

480 (Double-Wall) 4.65 3.49 

541 (Three-Wall) 6.98 4.65 

1252 (Single-Wall) 6.98 3.49 

1523 (Four-Wall) 2.33 4.65 

 

 

 

Table 3.2 shows values for the heat capacity under constant pressure and volume 

conditions for different nanotubes. The change in the heat capacity does not reflect 

any trend in both ensembles, whereas some values are below the bulk value of 3.37 

and others are well above that. The NVT conditions give consistent values of Cv if we 

consider the same types of structures. As an example, the double-wall nanotube has 

the smallest value of 3.49 as compared to the three-wall and four-wall nanotubes 

which have the same Cv of 4.65.  
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The fluctuations of the heat capacity can be best shown graphically in Figure 3.68. 

The black triangles represent the values of Cv and the red circles show those for Cp. 

 

 

 

Figure 3.68 shows the heat capacities for the gold nanotubes in the constant volume (NVT) and 

pressure (NPT) conditions. The values here are the same as those in Table 3.2 above. The heat is 

multiplied the Boltzmann’s constant (kB) to make it dimensionless.  

 

 

The two conditions show fluctuating values with increasing number of atoms of the 

nanotubes. However, the values in the NVT ensemble fluctuate from just above 2.0 to 

slightly below 6.0 while those in the in the NPT ensemble shows large differences 

with the values commencing from 2.0 and ending with 7.0. The same fluctuations 

were however also found in the nanoclusters and indeed some clusters depicted values 

above those of the bulk. It is good to compare the values of the heat capacities among 

the same kind of nanotube rather than the bulk. The values show that nanotubes are 

very instable materials. And because they loose their structures at every low 

temperatures, it is not a surprise to get high values of the heat capacities, especially in 

the NPT ensemble. 
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3.1.3. The Annealing Process 

 

Annealing occurs by the diffusion of atoms within a solid material, so that the 

material progresses towards its equilibrium state. The movement of atoms has the 

effect of redistributing and destroying the dislocations in metals and (to a lesser 

extent) ceramics. This alteration in dislocations allows metals to deform more easily, 

so increases their ductility. The annealing process reduces the amount of process-

initiating Gibbs free energy in a deformed metal and this (reduction of Gibbs free 

energy) in turn causes “stress-relief”. The relief of internal stress is a 

thermodynamically spontaneous process at higher temperatures.  

 

Annealing is simply a method used to toughen materials and is important in 

preventing the creation of defects (like vacancies and misplacements) in the atomic 

scale. The process is carried-out by heating the material to some temperature, a 

melting temperature in this work which is 1000 K, and then slowly cooling the 

structure down to the most possible lower temperature. The configurations are always 

taken from the previous temperature; i.e., we perform a simulation at a temperature of 

900 K and the final configurations are taken to perform a simulation at 850 K and the 

trend continues in that manner. The annealing process was carried out in the NPT 

Berendsen ensemble for the Au309 clusters and in the NVT Berendsen ensemble for 

the Au1252 nanotube. 

  

We will discuss this process through the illustration of the total energy when the 

temperature is raised, and when the temperature is slowly reduced. The radial 

distribution functions and the density profiles will be used to show the evolution of 

the structure from one phase to the other. The atomic structures will be shown at 

different temperature from the starting configurations to the final image. We will 

measure a few bond distances and with the help of the volume change will determine 

whether the reduction of the applied heat can relieve stress from the structures. Using 

the results from the above-mentioned calculated parameters we hope to address the 

questions of whether annealing really makes the structure stable and if it is possible to 

move from a liquid phase and then slowly back to the solid phase and if the initial 

structures before any temperatures could be applied can be restored.  
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3.1.3.1. The Energy 

 

The structure with the lowest total energy at respective temperatures is regarded as the 

most stable. The total energy under both methods (straight calculations where we start 

from 0 K and annealing) is therefore plotted at various temperatures. 

  

     

Figure 3.69. The total energy is shown in for the Au309 cluster in the NPT Berendsen ensemble on 

the left and in the Au1252 nanotube in the NVT Berendsen ensemble on the right. 

 

 

The total energy for the Au309 cluster does not show major differences between the 

two methods. The annealed structure however, shows lower energies at higher 

temperatures before the structures start to show the same values at a lower 

temperature. The energy, in the case of the increasing temperature is lower at 500 K, a 

good indication that the cluster is stable at lower temperatures. The small difference in 

the energy in the cluster between the two methods tells us that the cluster retains its 

cluster structure even at higher temperatures. The nanotube shows significant 

differences between the annealed structure and the heated one. The annealed structure 

clearly depicts lower energies at all temperatures. The big difference in the energy in 

the nanotube clearly shows the change in the structure at higher temperatures as we 

have shown in the previous section on nanotubes. The higher energies depict the 

unstable nanotube while the lower energies show the stable cluster (the nanotube 

deforms into clusters at elevated temperatures). The two graphs in Figure 3.69 

illustrate the fact that annealing structures to lower temperatures make them more 

stable.  
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3.1.3.2. The radial distribution functions (rdfs) 

 

The rdfs for the Au309 cluster and Au1252 nanotube are shown by Figure 3.70. The 

starting point is a high temperature point where the structures are molten. The rdfs for 

the Au309 cluster on the left show two or three well ordered peaks at 1000 K which are 

rapidly increased at 500 K and many more peaks are attained at 50 K. The rdfs for the 

Au1252 nantoube on the right show a liquid structure at 950 K and the solid structure 

is visible at 0 K. The annealing method allows the transformation of the structure 

from liquid to solid and hence stable structures are also obtained. The annealing 

process does not restore the initial or same crystal structures but rather more stable 

solid structures.  

 

           

Figure 3.70. The radial distribution functions are shown starting from a high temperature of 

1000 K or 950 K and then slowly getting lower temperatures, 50 K or 0 K. The left plot shows the 

Au309 cluster and the right represent the Au1252 nantoube. 
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3.1.3.3. The Density Profiles 

 

The density profiles, like the radial distribution functions, increase the number of 

peaks when in a solid phase. The density profiles for the Au309 cluster and the Au1252 

nanotube are illustrated by Figure 3.71. The plots for the density profiles for the Au309 

cluster are on the left in Figure 3.71 where few peaks depicting some good 

separations between them are shown at 950 K. The number of peaks increases at 500 

K and numerous peaks are attained at 50 K. The density profiles for the Au1252 

nanotube are shown on the right of the figure. The nanotube only shows one peak. 

The peak is very smooth at 900 K. The noise starts to show at 500 K and some more 

is generated at 50 K. The density profiles agree with the results from the radial 

distribution in that starting from few peaks at elevated temperatures we are able to 

generate more peaks at lower temperatures signifying solid structures.      

 

   

Figure 3.71 shows the density profiles for the Au309 cluster on the left and Au1252 nanotube on 

the right. 
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3.1.3.4. The Structural Configurations 

 

We show the configuration at different stages to check if initial structures can be 

restored through the annealing method. Figure 3.72 shows the structure at high 

temperatures on the left (a and c) and the annealed structures are on the right (b and d) 

in the figure. The three cluster merge to form one shape in case of the nanotube while 

the more compact structure in the cluster is formed but the shape does not change. 

 

 

        

 

  

                 

Figure 3.72. The structures of the Au309 cluster and the Au1252 nanotube are shown at different 

stages of the calculations. (a) and (c) show the melted structures of the cluster and nanotube (the 

starting configuration in the annealing process) respectively while (b) and (d) show the 

configuration at 50 K. 

(a) (b) 

(c) 
(d) 
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We would like to further show or compare with the results from the bulk material. In 

Figure 3.73 we show the total energy of the bulk with one case starting from low 

temperatures and the other plot shows the energy starting from high values and then 

decreasing gradually. There is some discrepancies in the two plots where the 

decreasing temperature shows high energies which reduce towards those of the 

increasing temperature. The two plots highlight the difference in the values of the 

energy in the solid and liquid phases. 

 

 

Figure 3.73 illustrates the difference in the behaviour of the total energy of the fcc bulk lattice 

with 500 atoms in the NPT Berendsen ensemble.  

 

 

The configurations in Figure 4.74 show the well ordered pattern of atoms in the 

starting structure on the left and then the atoms are highly disordered after melting. 

Furthermore, in the bulk, the bond lengths show increasing trends although there are 

certain sporadic decreases. Some holes can be seen in the melted structure. 

 

                    

Figure 3.74. The initial and high temperature (after melting) configurations are depicted for the 

bulk gold 500 atoms.  
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3.1.4. Model Nanowires 

 

A nanowire is a connection of atoms to form a continuous straight line as opposed to 

the nanotubes where there is no hole and there are no hexagonal shapes. A nanowire 

is shown in different orientations in Figure 3.75. The wire forms a stacking pattern of 

atoms with some steps meaning that it is not a uniform continuous arrangement of 

atoms.     

 

           

 

 

 

 

 

 

 

 

 

Figure 3.75. We show the structures of the nanowire with 288 atoms at different temperatures in 

the NVT Berendsen ensemble. 

0 K – initial configurations 

300 K 

500 K 

(a) 

(b) 

(c) 

(d) 
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We have used the NVT Berendsen ensemble with the temperature controlled by the 

thermostat at 0.04 ps and the calculations were run for 6 x 10
4
 MD steps. The 

simulated structures of the nanowire at higher temperatures are depicted in Figure 

3.75(c and d). The atomic movements were given freedom in the z-direction. The 

dimensions of the wire are as follows: x = 46.2968 Å, y = 46.2912 Å and z = 89.5416 

Å while the angles are: α = 90.0635
0
, β = 89.7416

0
 and γ = 89.7269

0
. Although we 

could only manage a temperature raise to 500 K, we are able to see significant 

changes in the structure. The pointing arrows in Figure 3.75(a and b) show the steps 

in the nanowire resulting in the hills being formed. The temperature simulated 

structures show the atoms to move from areas of high concentration (the hills) to the 

valley sites. Figure 3.75(c) depicts only one small kink or step site at 300 K as pointed 

by the arrow. The kinks disappear at 500 K (Fig. 3.75d) with high concentration of 

atoms in the centre of the wire.   

 

The radial distribution functions as well as the density profiles for the nanowire are 

shown in Figure 3.76. The rdfs depict the wire structure that is already approaching 

melting at 300 K. A decrease in the peak height is depicted by the 500 K plot showing 

amorphous state of the wire. The density profiles plot shows many peaks with some 

low concentrations in certain areas. The denseness in the structure decreases at 500 K 

as compared to that at 300 K. The middle peaks in the density profiles are very dense 

with virtually no spacing between them and, separations are noted between the ones 

on the extreme left and right. 

 

       

Figure 3.76 illustrates the radial distribution functions (rdfs) as well as the density profiles for 

the Au288 nanowires in the constant volume and temperature conditions. 
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CHAPTER 4: Quantum Mechanical Results 

 

4.1. Introduction 

 

This section deals with the interaction of atoms at electronic level where the density 

functional theory (DFT) method was executed in the DMOL
3
 code. Different clusters 

with the size ranging from 2 atoms up to 55 atoms will be discussed. We will look at 

the optimised structures of the clusters, their binding energies as well as the effect of 

the dopant atom (platinum, palladium, titanium and zinc) on the properties of different 

gold clusters. We will study the individual clusters separately and we shall refer to the 

structural changes with respect to the bond distances, the binding energies and effect 

of the number of atoms on different properties for our discussions. 

 

 

4.1.1. The Density Functional Theory (DFT) 

 

The density functional theory does the calculations at the electronic level without 

using any experimental data but only some constants such as the Planck‟s constant. 

The DFT method tries to find the solution to the Schördinger (or rather the Kohn-

Sham) equation. This method is applicable to a wide range of materials including 

metallic, semiconducting and insulating materials and has a good balance between 

accuracy and computational efficiency and that make the density functional theory the 

dominant approach for electronic structure calculations of solids and surfaces. In the 

DFT, the total energy of a system such as a bulk solid or a surface depends only on 

the electron density of its ground state.     

 

The understanding and quantitative prediction of the electronic structure takes a 

central and fundamental role in today‟s concept of materials science. We therefore 

look for the changes of the structure after optimisation in terms of the change in the 

bond distances and the total energy of the system thereof. The binding energy and the 

number of atoms also help in the description of the behaviour of the different gold 

clusters. The total and the binding energies tell us about the stability of the clusters as 
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the size is increased. The stable atoms or nuclei have the highest binding energies. 

The density of states if calculated, tell if the clusters behave like metals, 

semiconductors, or insulators through the presence or absence of the energy gap. We 

have, starting from the face centred cubic (fcc) bulk lattice of gold with four atoms, 

built the spherical clusters using the Materials Studio interface. The number of atoms 

in each particular cluster is determined by the chosen radius. We have built non-

periodic spherical models for the clusters as the DMOL
3
 code allows to build such 

structures and gives the binding energy in its output file.  

 

 

4.1.1.1. Smaller Non-spherical Gold Clusters 

 

We have started our DFT calculations from a small structure; i.e., from a dimer (two 

atoms) to try and reproduce the Au-Au interatomic distance. The size of these 

structures goes from 2 atoms to 43 atoms.  All the DMOL
3
 clusters are non-periodic 

with different symmetry patterns. 

 

 

4.1.1.1.1. The Au2 cluster 

 

This cluster is essentially made by joining two gold atoms with a string called a bond 

distance thereby forming a dimer. We show the configurations of the cluster at the 

start and after optimisation in Figure 4.1. The cluster has a Dinfh symmetry with a 

centroid of 1.1834, 1.1837, 0.0001.   

 

                       

Figure 4.1 shows the structure of the Au2 nanocluter with two atoms at the starting (on the left) 

and final (on the right) configurations. The interatomic distance in the starting structure is 3.01 

Å which then reduces to 2.42 Å after optimisation.  

 

 

(a) 
(b) 
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The bond distance in the Au-Au dimer from our geometry optimization calculations is 

obtained to the value of 2.42 Å (Figure 4.1). It compares well with the experimental 

value of 2.47 Å [Simard and Hackett 1990; Huber and Herzberg 1979] which 

validates our approach we have chosen to study small clusters and this verifies the 

fact that we have the correct structure. Other density functional studies [Chen and 

Yang, Yuan et al. 2005, Sankaran and Viswatharan 2006, Joshi et al. 2006] have been 

performed on this cluster in trying to reproduce the experimental bond length and 

different values are reported.  

 

The DMOL
3
 work by Chen and Yan [Chen and Yang] reports a value of 2.49 Å while 

the Amsterdan density-functional calculations [Yuan et al. 2005], gives a value of 

2.52 Å. The Au-Au bond length in the bulk is 2.89 Å. The optimized bond length 

found by [Joshi et al. 2006] as well as [Sankaran and Viswatharan 2006] in their 

density functional theory (DFT) Lee-Yan-Parr correlation function (B3LYP) in the 

Gaussian 03 program is 2.57 Å. The geometry of the cluster is not altered in any way 

through the optimization cycles, except for the bond length.  

 

Different geometries of nanoclusters are illustrated in Table 4.1 with symmetry 

operations in brackets. The letter n in Aun indicates the number of atoms in that 

nanocluster. The bond length of 2.42 Å from the dimer is further maintained in the 

clusters with three (Au3) and four (Au4) atoms and the change in the bond distance in 

the two clusters is uniform. The nanocluster with five atoms (Au5) shows an increase 

in the bond length to the value of 2.49 Å. This value matches the experimental bond 

length in the dimer, but cannot be as such compared as there is a factor of the 

surrounding atoms as well as the size. A further slight increase to 2.50 Å is obtained 

with the Au6 nanocluster. The increase in the bond length remains steady as the Au8 

cluster shows a value of 2.52 Å. The cluster with nine atoms (Au9) has a bond length 

of 2.78 Å. The bulk bond length is matched by the cluster with fifteen atoms, having a 

value of 2.88 Å. We have plotted the bond length as a function of cluster size in 

Figure 4.2 in order to asses if this parameter changes linearly with the size of the 

clusters. The nanoclusters in consideration validate the fact that these small materials 

show some properties different to the bulk, with the bond length being an example in 

this case.  
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Table 4.1. Different gold nanoclusters are illustrated starting from a dimer. Symmetries are 

shown in brackets for each cluster and the subscript numbers indicate the size of the nanocluster 

in terms of the number of atoms.  

 

 

 

 

 

  

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

Au2 (Dinfh) 
Au3 (D3h -6 m 2) Au4 (Td – 4 3 m) 

Au5 (C2v 4 m m) Au6 (D4h 4/m m m) Au8 (D2d -4 2 m) 

Au9 (D4d) 
Au15 (C2v m m 2) Au10 (D4d) 
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The average bond lengths, in Figure 4.2, as a function of cluster size show somewhat 

linear increase from the dimer to the cluster with eight atoms, i.e. from 2.42 Å to 2.52 

Å. There is a significant increase in the parameter at nine atoms (Au9) which is further 

enhanced at ten atoms (Au10). The bond length reduces at the Au12 cluster causing 

some fluctuations from Au9 to Au15 nanoclusters. Although the bulk bond length is 

matched for the cluster with fifteen atoms, it is obvious that the Au10 and Au12 

nanoclusters show the bond distances that are well above the bulk. The increasing 

bond lengths in the clusters imply the reduction in the strength of interactions between 

atoms as the neighbours move slightly away from the central atom. As already 

indicated, the smaller distances were obtained for clusters consisting of two and four 

atoms.  

 

 

Figure 4.2 shows the average bond length in the gold nanoclusters up to the size of 15 atoms. The 

bond lengths are measured between atoms. 

 

 

4.1.1.2. The Binding Energy of the Small Non-spherical Clusters 

 

The binding energy is a useful property for determining the stability of materials 

especially nanomaterials. It is defined as the energy required to decompose a 

molecule, an atom, or a nucleus into its components or alternatively the energy 

required to separate a particle from a system of particles or to disperse all the particles 
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of a system. The increasing binding energy usually signifies the increase in the 

stability of the particular material.  The binding energy is calculated from the formula: 

 

 
n

nEE
E atomT

B




      (4.1) 

 

ET is the total electronic energy of the cluster, Eatom the total electronic energy of a 

single gold atom and n is the number of atoms.  

 

 

      

Figure 4.3. The binding energy (EB) per atom is plotted with (a) the negative values and (b) the 

positive values. The size of the clusters starts from two (2) to eighteen (18) atoms. 

 

 

The binding energy of the pure gold nanoclusters, in Figure 4.3(a) starts from a less 

negative value with the dimer and gradually continues to move towards more negative 

values until the cluster with 18 atoms. The plot in Figure 4.3(b) illustrates the 

increasing values more and clearly the difference between the clusters is not large. 

The binding energy increases with cluster size due to the increase in the average 

number of nearest neighbours per atom and this promotes greater average number of 

interactions per atoms. There is a change in the trend at the Au9 nanocluster which 

might suggest the probability of an unstable structure. Although the binding energy 

increases with cluster size and the difference is significant between Au2 and Au18 

structures, the values are still far from bulk cohesive energy. The binding energies for 

the Au2 and Au18 are -2.44 eV/atom and -3.11 eV/atom respectively while the bulk 

(a) (b) 
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value is known to be -3.78 eV/atom. It should be mentioned that the binding energy 

does not necessarily indicate which cluster is the most stable; however, this is 

provided by the second energy difference. The second energy difference is calculated 

using the relation: 

 

 nBnBnBB AuEAuEAuEnE 2)( 112           (4.1) 

 

where EB is the binding energy of the cluster and n the size of the cluster. ∆2EB is 

plotted in Figure 4.4 for the structures of size n = 2 – 14. In cluster physics, the 

quantity ∆2EB is very sensitive and can be used to represent the relative stability of a 

cluster with respect to its neighbours.  

 

In fluctuations (Figure 4.4) on this parameter (∆2EB) two different patterns are 

observed. For the smaller clusters (n = 2 - 5) we notice even-odd staggering pattern 

where the odd numbered structures show high peaks. The clusters with the size (n = 6 

- 10) show the oscillations resulting in the high peaks given by the even numbered 

clusters. The high peaks are obtained for the Au3 and Au8 nanoclusters with Au3 

showing the highest peak at 0.16 eV/atom. We therefore find the Au3 and Au8 

structures to be more stable with the Au6 cluster also depicting some peak. The lowest 

peak is depicted by the Au9 structure and to a lesser degree the Au4 cluster. The plot 

of the binding energies has also shown the Au9 cluster to be less stable in agreement 

with the ∆2EB.  

 

Chen and Yan [Chen and Yan] show the even numbered cluster to be the most stable 

but they have also observed a staggering pattern for clusters which break in the 

middle and initiates again at a little bigger cluster. On the other hand, Zhao et al. 

[Zhao et al. 2001] show that for titanium clusters the odd numbered clusters are the 

stable ones. The self-consistent-field (SCF) electronic structure calculations [Jain 

2005], in Q-Chem package, show high peaks for Au8 and Au10 clusters. The odd-even 

oscillations are however not clearly defined. In good agreement with our work, Jain 

[2005] also found the Au9 cluster to depict less stability. 
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Figure 4.4. The second change in the binding energy differences are shown for the pure gold 

nanoclusters. 

 

 

4.1.1.3. Doped Gold Clusters 

 

Doping of gold clusters of various sizes can be expected to show different results 

from pure clusters with respect to geometry, stability, bond lengths, etc. Different 

dopants, depending on their electronic structure configurations, might show varying 

effects on different properties for gold clusters. We have doped different gold clusters 

with impurities, platinum (Pt), titanium (Ti), zinc (Zn) and palladium (Pd). The 

doping process is done by substituting one gold atom with one of the impurities for 

different sizes of the Au nanoclusters. In our results we will discuss the geometry, 

show the binding energies; and stability of clusters will be checked with the help of 

the second energy differences. The stability of a material plays an important role in 

the chemistry of that material since less stable materials with defined surfaces are the 

more reactive ones. The binding energy shows that the size of cluster increases its 

stability but that the atomic coordination is the last determining factor.    

 



 159 

Table 4.2. We show selected Pt-, Ti-, Zn-, and Pd-doped gold clusters at different sizes. Some 

bond lengths are indicated with different colours showing different impurities. 

 

 

 

 

 

 

 

 

 
   

  
  

  
  

 

Au1+Pt1 Au1+Ti1 Au1+Zn1 Au1+Pd1 

Au2+Pt1 Au2+Ti1 Au2+Zn1 Au2+Pd1 

Au4+Ti1 Au4+Pt1 Au4+Zn1 Au4+Pd1 

Au9+Pt1 Au9+Ti1 Au9+Zn1 Au9+Pd1 
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Doped gold nanoclusters are illustrated in Table 4.2. The optimized bond length for 

the diatomic molecule where platinum, titanium and zinc are dopants is 2.42 Å. This 

value is the same as the one for Au-Au interatomic distance. The Pd-doped cluster 

does, however, show a different result, with a value of 2.97 Å. The results clearly 

indicate that palladium makes a longer bond with gold as compared to the pure cluster 

and other dopants such like Pt, Ti and Zn. The strongest bond in the investigated 

diatomic systems occurs in the Au-Ti structure and has a higher binding energy of      

-5.90 eV/atom. Au-Pt bond (-3.41 eV/atom) is the second on the list and the weakest 

bond is realised in the zinc doped nanocluster (-1.82 eV/atom). Changes are noticed at 

the cluster with three atoms where a uniform bond length of 2.42 Å is only retained in 

the Pt- and Zn-doped clusters. In the case of titanium a bond length of 3.03 Å is noted 

between gold and titanium while the Au-Au distance is 3.06 Å. The Pd-doped cluster 

with three atoms makes Au-Pd bond length of 2.83 Å while Au-Au distance is 3.13 Å. 

The bond length between the gold and the impurity atoms continues with the 

increasing trend with palladium leading the pack. We have to, however, allude to the 

fact that the geometry of the clusters thus far does not differ from that of the pure Au 

clusters, except for the bond lengths in certain instances.  

 

There is no change in the structural configuration for the doped gold clusters when 

compared to the bulk up to the size of nine atoms. We observe different geometries 

with regard to the different dopants at the Au10 nanocluster. The structural 

configurations are illustrated in Figure 4.5. The pure Au10 cluster is shown for 

reference and initial structures have the same configuration. The optimized structures 

of the Pt-and Ti-doped nanocluster give different geometries. The initial 

configurations show the well ordered pattern where five atoms arrange themselves at 

the top and the other five do so at the bottom. There is one atom at the peak and one at 

the bottom and these atoms have four atoms next to them. Geometry optimization 

results for platinum and titanium impurities show random arrangement of atoms and 

no ordered atom arrangement at the top and bottom is noted as in the initial structures. 

For the Au10 nanocluster, Pt and Ti atoms show greater effects and our findings 

presumably suggest that the initial configurations are not their preferred geometry. 

Zn- and Pd-doped clusters show no differences from the Au pure cluster geometry 

and the bond lengths in all the structures including the Au10 nanocluster exceed 3.0 Å.    
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Figure 4.5 illustrates the doped gold cluster with ten atoms. The first structure at the top left is 

the pure Au10 cluster for comparison. 

Au10 Au9+Pt1 Initial Au9+Pt1 Optimized 

Au9+Ti1 initial Au9+Ti1 Optimized 

Au9+Zn1 initial Au9+Zn1 Optimized 

Au9+Pd1 initial Au9+Pd1 Optimized 
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4.1.1.3.1. The Binding Energy of the Doped Clusters 

 

The dopant atoms are expected, in one or the other, to show a change in the binding 

energy relative to the pure gold nanoclusters. Pure gold nanoclusters have shown their 

stability to increase with size where the binding energy became more negative as the 

number of atoms increased.  

 

Figure 4.6 shows the binding energy of pure gold clusters as well as that of the doped 

clusters. The binding energies for platinum and titanium show the same pattern where 

they start from more negative values and steadily converge to -3.32 eV/atom for 

platinum and -3.68 eV/atom for titanium. We have already mentioned that the 

titanium dopant forms the strongest bond with gold at the diatomic level. Zinc-doped 

nanoclusters give the binding curve that depicts the same behaviour as that of pure Au 

clusters. Zinc-doped nanoclusters start from the less negative values of the binding 

energy and move to more negative values as in the pure Au nanoclusters. The 

numerical values of the binding energy for zinc dopant are close to those of pure gold 

clusters although slightly lower at smaller clusters from two until seven atoms. The 

values merge with those of pure Au clusters at 12 atoms. The palladium impurity has 

binding energies that are more negative with some fluctuations between six and ten 

atoms. The binding energies in the Ti-doped clusters remain higher throughout. The 

plots in Figure 4.6 show stable values of the binding energy between 12 and 18 atoms. 

      

              

Figure 4.6 shows the binding energies of the pure god clusters compared to those of the doped 

clusters. Different colours show different impurities. 
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Figure 4.7 shows the second difference in the binding energy for the different 

impurities or dopants. Pure gold nanoclusters have shown even-odd alterations and we 

were able to determine the stable clusters and the Au3 and Au8 clusters are the most 

stable because we observed two patterns in the oscillations depending on the cluster 

sizes. The second change in the binding energy was calculated using the formula: 

 

      XAuEXAEXAuEnE nBnBnBB 2)( 112            (4.3) 

 

where EB is the binding energy, n the number of atoms, and X is the impurity element 

and in this work it will be one of Pt, Ti, Zn or Pd.  

 

The platinum-doped gold clusters are plotted in the upper curve of Figure 4.7. The 

change in the binding energy increases from n = 2 - 4, then shows an even-odd 

oscillations between the clusters with four and nine atoms. The odd numbered clusters 

show higher peaks with the Au4Pt (n = 5) and Au6Pt (n = 7) clusters indicating higher 

stabilities. The lower peak is depicted by the Au5Pt (n = 6) cluster. The effect of a 

titanium impurity on gold clusters shows a smooth increasing trend from n = 2 - 5. 

The highest peak is obtained for Au7Ti (n = 8) cluster implying that this is the stable 

structure of the Ti-doped Au clusters. The absence or the small visibility of the 

staggering pattern was also observed in the study of gold nanoclusters by [Jain 2005] 

and the results show the cluster with ten atoms to be the most stable with a high peak 

at ≈ 4 eV. ∆2EB in the zinc-doped gold nanoclusters decreases in their values from 2 

to 4 atoms but soon find the even-odd staggering pattern as in the Pt-doped clusters. 

The Au4Zn (n = 5) cluster shows the highest peak at 0.07 eV/atom followed by the 

Au6Zn (n = 7) cluster with a peak not as high as in Au4Zn (0.3 eV/atom). In addition, 

as in the Pt-doped clusters, the cluster with lower stability is the Au5Zn (n = 6) 

cluster. On the contrary, for the palladium (Pd)-doped Au clusters we find a 

decreasing ∆2EB up to n = 5 while the highest peak occurs at Au5Pd (n = 6). The Pt- 

and Zn-doped clusters show odd numbered clusters as stable structures and in the Ti- 

and Pd-doped clusters the even numbered clusters are the most stable. However, 

owing to good oscillations, we were able to get one or more stable structures for Pt 

and Zn-doped clusters.        
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Figure 4.7 shows the second difference in the binding energy (∆2EB) for various dopants in the 

gold clusters.  
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4.1.1.4. Magic Spherical Clusters 

 

Gold nanoclusters that show some degree of stability are referred to as magic clusters. 

The known magic gold nanoclusters are the structures with 13, 19, 38, 55, 147 and 

309 atoms [Cleveland et al. 1998; Fries et al. 2006]. There may be certain sizes of 

clusters that could fall in this category that we are not aware of. In view of computer 

power limitations we were only able to study up to the nanocluster with 55 atoms. We 

have studied the five different spherical nanoclusters, e.g. Au13, Au19, Au38, Au43, and 

Au55. Structural changes of the clusters as the size is increased will be discussed, and 

the stability with respect to the binding energies for the pure and doped structures will 

be checked. 

 

                         

 

 

                           

 

Figure 4.8. The Au13 and Au19 nanoclusters before and after optimization. 

Au13 - Initial 
Au13 - Optimized 

Au19 - Initial 
Au19 - Optimized 
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Figure 4.8 shows two nanoclusters of gold with less than 20 atoms. The Au13 structure 

is the smallest cluster studied in this type of nanoclusters and behaves differently to 

the other structures. The spherical nanoclusters fall under the same Oh (m -3 m) 

symmetry group and have the starting bond length as 2.88 Å. The Au13 nanocluster 

shows no change in the geometry after optimization. The difference is noted in bond 

lengths which attain a value of 3.18 Å on relaxation, an indication of the outer 

movement of the atoms. The three atoms in the centre maintain their straight line 

pattern achieving an angle of 180.0
0
. However, the scenario changes when we look at 

the structure with 19 atoms in Figure 4.8. The initial configurations show a near 

spherical structure with four traceable corners. The optimized structure of the cluster 

depicts a change in the geometry with regard to the central atoms where three atoms 

are aligned on the left and right side of the cluster. The central pattern does not show 

any difference relative to the initial arrangement. The central atom in the outer atoms, 

bulge outwards, where three atoms form a line as illustrated by the two-way arrow. 

The angle changes from 180.0
0
 to 175.3

0
 making the bond lengths to increase from 

2.88 Å to 3.13 Å. The change in the interatomic distances is not uniform. In the cases 

where there are two atoms in a line, the bond length change is from 2.88 Å to 3.26 Å.  

 

The larger nanoclusters with 38, 43 and 55 atoms are shown Figure 4.9. There is 

generally more bulging in the movement of the atoms in all the structures. In the Au38 

nanocluster, we observe four places (in top and bottom halves) where such change 

(bulging or slanting) in the atomic arrangement occurs. The Au-Au bond length 

changes to 3.20 Å in cases where bulging occurs and 3.21 Å where there is no 

bulging. The Au43 cluster reflects the same trend although the central atoms arranged 

in the quartet form show some outwards slanting. The angle changes from 180.0
0
 to 

174.3
0
 with the changes in the Au-Au bond distance going from 2.88 Å to 3.16 Å and 

3.31 Å. In the Au55 cluster, more bulging is noted owing to the increased number of 

atoms resulting in more triplets and quartets. We observe three lines with slanting of 

the middle atom and the bond length varies accordingly. The top and the bottom lines 

show a change in the bond length to 3.18 Å while the middle row slanting atom 

makes a distance of 3.23 Å. The bond distance changes to 3.22 Å and 3.25 Å at the 

quartets and 3.31 Å at the triples. The Au-Au-Au angle decreases to 176.1
0
. The 

bulging of atoms eliminates corners, making the structures to be rounder.  
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Figure 4.9. The initial and geometrically optimized structures of the Au38, Au43 and Au55 clusters 

are shown.  

Au38 - Initial Au38 - Optimized 

Au55 - Initial Au55 - Optimized 

Au43 - Initial Au43 - Optimized 
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4.1.1.4.1. The Binding Energy of the Spherical Clusters 

 

The plot in Figure 4.10 shows the binding energy of the clusters becoming more 

negative with the increasing cluster size, although the Au43 cluster deviates slightly 

from the trend. The Au43 structure is perceived as less stable compared to the Au38 

and Au55 clusters, a suggestion that it does may not belong to the magic clusters.  

 

 

Figure 4.10. The binding energy is shown for the spherical clusters from 13 to 55 atoms.  

 

 

4.1.2. The Interaction of a Gold Atom with the Graphite Surface 

 

The conversion of a toxic carbon monoxide (CO) to the environmental friendly 

carbon dioxide (CO2) is promoted by the inclusion of the gold catalyst, Au/TiO2 

[Goodman 2004, Haruta 2004]. The catalyst is functional even at temperatures lower 

than 100 K at the preferred size of 3.5 nm thereby defying the notion that gold is not a 

reacting metal [Valden et al. 1998, Boccuzzi et al. 2001]. Bulk gold is, of course, very 

noble and does not react with more reactive elements such as sulphur [Pudephatt 

1978]. We investigate the reaction between carbon atoms in graphite surfaces with a 

gold atom as an adatom. 

Au13 

 

Au19 

Au38 

Au43 

Au55 
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We have used DMOL
3
 and QMERA codes for this type of calculation in order to 

compare emanating results. The DMOL
3
 calculations were performed on the periodic 

systems and the QMERA simulations, as mentioned earlier, uses the non-periodic 

systems with DMOL
3
 as the quantum mechanical server. Graphite surfaces were first 

built for the geometry optimization calculations in DMOL
3
 in order to determine their 

surface and binding energies. The QMERA program caters for bigger systems 

because of its dual mode operation (QM/MM) and DMOL
3
 is limited in that capacity 

but the calculations are fully electronic. 

 

                   

 

 

 

Figure 4.11 shows the graphite surfaces with different number of atoms and layers. The picture 

at the top left (a) shows a surface with 3 layers and 32 atoms and on the top right (b) we show the 

surface with 4 layers and 64 atoms. A non-periodic graphite surface with 120 atoms is shown 

below by (c).  

(a) 
(b) 

(c) 
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The surface energies of the graphite surfaces are shown in Table 4.3. The surface 

energy for the surface with the same number of atoms as the bulk is calculated using 

equation 4.4. Equation 4.5 is used for cases where the surface has different number of 

atoms to the bulk. Es is the total energy of the slab, Eb the total energy of the bulk, A 

the area in the x-y direction and n is the number of atoms.  

 

 
A

EE bs

2


        (4.4) 

 

Or 

 

 
A

EnEn bssb

2




      (4.5) 

 

The surface energy is mainly used to determine the stability pattern of different 

surfaces of the same material. The surface with the highest surface energy is 

considered to be the least stable. The values for the surface energy shown in Table 4.3 

indicate that the nonperiodic (110) surface with 120 atoms has the highest surface 

energy. The periodic (110) surface with 64 atoms produce the lowest value. Reactions 

occur easily on unstable surfaces as there is enough energy that can be used for that 

purpose. We aim to investigate the effect of the surface energy to the rate of the     

reaction process. The last row represents results from QMERA.   

 

Table 4.3. The surface energies and the binding energies for the different graphite surfaces are 

shown. *indicates the QMERA results.  

Type of Surface (No. of 

atoms) 

Surface Energy 

(J.m
-2

) 

Binding Energy 

(eV/atom) 

100 (32) 4.065 -7.21 

110 (64) 3.158 -7.59 

110 (120) 4.501 -7.09 

110 (40)* 2.188 -6.45 
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The QMERA (110) graphite surface behaves differently from the DMOL
3
 ones. The 

surface is illustrated in Figure 4.12 before and after optimization. The QM region is 

chosen as the two central lines of atoms leaving the outer rows to the molecular 

mechanics (MM) server. The calculations on the surface give a surface energy of 

2.188 J.m
-2

 and the binding energy is -6.45 eV/atom. The value for the surface energy 

is smaller as compared to the DMOL
3
 surfaces implying that the QMERA program 

provide a stable graphite surface. The binding energy is less negative with respect to 

the other surfaces in Table 4.3. This is assumed to be the effect of the less number of 

atoms in the QM region. The binding energy is given by the QM server (DMOL
3
) 

suggesting that only the red atoms in Figure 4.12 are considered. However, the 

structure of the surface is of particular interest if we look at the configurations before 

and after optimization in Figure 4.12. The initial configurations show a well ordered 

pattern of atoms arranged in six rows. The surface has three layers. The MM atoms 

bend outwards in the middle resulting in the tip atoms going inwards. The QM atoms 

form a circle or a ring in the centre of the surface resulting in a totally different 

structure.         

 

               

 

 

                 

Figure 4.12. The (110) graphite surface is viewed from different angles before (a and b) and after 

optimization (c and d). The red colour denoted the quantum mechanical (QM) region of chosen 

atoms. 

(a) 

(b) 

(c) 

(d) 
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The interaction of the gold atom with the graphite surface using the QMERA program 

is shown in Figure 4.13. It has been mentioned that gold catalysts speed up the 

formation of carbon dioxide (CO2) from carbon monoxide (CO). This happens when 

fuel cells generate energy from hydrogen. Hydrogen produced by the usual process 

contains large amounts of CO which, if not removed from the hydrogen, it impairs the 

function of a fuel cell. Therefore gold nanoparticles on a support (TiO2) with a high 

surface area are good catalysts (like Au/TiO2) for the room temperature oxidation of 

CO to CO2. The balanced chemical reaction is then written as: 

 

22 22 COOCO       (4.6) 

 

Gold in this case displays hidden value or extra power and is used as a catalyst to 

clean CO from hydrogen fuel.  

 

 

     

 

Figure 4.13.  The results from QMERA are shown with a gold represented by the yellow colour.  

The arrow indicates the position and movement made by the Au atom. 
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In Figure 4.13 the gold atom and the carbon atoms coloured red belong to the 

quantum mechanical region. The gold adatom was strategically positioned on top 

between the two central rows of graphite atoms. Some separation of more than 2.5 Å 

was carefully adjusted so that the adatom is not forced into the surface. The carbon 

and gold quantum atoms cluster at the centre of the surface forming a near round 

shape. The gold atom is inserted inside the graphite atoms which form a disordered 

steep or hill centred between the left and right rows. The outer MM atoms on the 

right-hand and left-hand side of the slab bend inwards towards the middle atoms at the 

top meaning that the bottom atoms move away from the central atoms. The degree of 

curvature differs between the rows, i.e. the atoms closer to the central atoms show 

more inward bending than the atoms at the extreme outer rows. The implication of 

this calculations is that there is some attraction by the middle quantum mechanical 

(QM) atoms towards the outer molecular mechanics (MM) atoms but happens 

stronger for the top atoms because of the orientation of those middle atoms. Or 

possibly the graphite outer molecular mechanics atoms interact with each other 

through the help of hydrogen atoms that are included in the output of the QMERA 

program. The addition of the gold atom makes the binding energy less negative with a 

change from -6.45 eV/atom to -5.17 eV/atom.  

 

The behaviour of the QM atoms in the graphite surface with a gold atom is similar to 

the QM atoms in the surface without a gold atom. They all form curves at the exterior 

and have an opening at the centre. The difference lies in the fact the clean surface QM 

atoms form a nice spherical circle while the atoms in the surface with a gold impurity 

form a steep or hill which is caused by the presence of a gold atom as an impurity. 

 

We would like to compare results from the QMERA program to the fully electronic 

DMOL
3
 code where periodic surfaces are considered. The structure of the periodic 

surface in Figure 4.14 undergoes the slanting deformation with the gold atom 

remaining at the centre of the two central layers. The results for the periodic surface 

concur well with those of the nonperiodic surface.   
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Figure 4.14. The periodic graphite surface simulated with DMOL
3
 code. A gold atom remains 

between the central layers even at slanting.  
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CHAPTER 5: Conclusion and Recommendation 

 

5.1. Conclusion 

 

The atomistic molecular dynamics was fully implemented to simulate different gold 

nanomaterials in order to determine their properties under certain thermodynamic 

conditions using the many-body Sutton-Chen (SC) potential in the DLPOLY code. Of 

specific interest were gold nanoclusters and nanotubes where calculations were 

carried out at various temperatures and, melting temperatures, structure, density, etc. 

were determined. Our calculations showed that size does have an effect on melting of 

the studied structures although the rule is not universal. Gold nanoclusters melted well 

below the bulk melting temperature except for the cluster with 55 atoms. The Au55 

cluster melted above the bulk melting temperature and such observation is attributed 

to the cluster having undergone reconstruction in order to reduce the tensile stress. A 

similar observation was made for tin nanoclusters with respect to their bulk material. 

However, above the Au55 cluster, the melting temperature increased almost linearly 

with cluster size. All the nanoclusters were able to show a sudden jump in the plot of 

the total energy as a function of temperature and, this was instrumental in the 

determination of melting temperatures. The temperature was increased by small 

amounts to achieve the sudden increase in the energy as the temperature was raised. 

The structure of clusters transforms from a spherical shape to the tetragonal or       

face-centred cubic (fcc) structures at higher temperatures.   

 

Gold nanotubes show different structural behaviour at higher temperatures compared 

to the bulk and nanoclusters. Single wall nanotubes (SWNTs) form single spherical 

clusters under the NVT conditions while patches of clusters are formed under the 

NPT conditions. Multi-wall gold nanotubes (MWNTs) form spherical shapes in the 

NVT Berendsen ensemble compared to the fcc structures in the NPT ensemble. The 

small clusters formed in small single-wall nanotubes are placed at different positions 

in the unit cell due to the different mobilities at different temperatures. The NPT 

ensemble gives more atom mobility. Exact melting temperatures were not determined 

for these structures; however we were able to establish that all the nanotubes melt 
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below the bulk and the nanoclusters. Melting in the multi-wall nanotubes commences 

from the outside and the nanotube with three separate walls show the three walls even 

at melting suggesting simultaneous melting. Diffusion coefficients in the nanotubes 

are generally higher than in the nanoclusters and the bulk.  

 

The annealing process was carried out in the small steps of decreasing temperatures 

with the final structure in the previous temperature serving as the starting 

configurations. The lowest temperature achieved was 50 K and this was lower enough 

to give satisfying results in terms of the energy and the structure. The annealing of the 

gold nanocluster and nanotube showed that the initial configurations cannot be 

restored although the final annealed structure is more stable. The annealed structures 

give more negative energies and are very compact. The three nanoclusters in the 

nanotube coalesce to form one big spherical nanocluster. 

 

A stepped nanowire was simulated in the NVT ensemble and the steps or kinks on the 

nanowire were found to disappear as the temperature was raised. This is because the 

atoms become mobile at higher temperatures and as such the steps are destroyed and 

the nanowire becomes a continuous line distribution of atoms. 

 

The ab initio calculations carried out in the DMOL
3
 code on gold nanoclusters show 

that the stability of the nanoclusters increases with the increasing cluster size. The 

nanoclusters with three and eight atoms are the most stable while the Au9 cluster 

depicts lowest stability. The Au-Au bond length in a dimer was determined as 2.42 Å 

and is in reasonable agreement with the experimental value of 2.49 Å. Titanium (Ti) 

forms the strongest bond with Au while palladium forms the longest bond with gold at 

2.97 Å. The weakest bond is obtained for a zinc (Zn) dopant. The dopants enhance the 

stability of the gold clusters with platinum and titanium giving more negative values 

at smaller sizes. For bigger gold clusters zinc is more effective in improving the 

stability. The bigger clusters assume more spherical shapes on optimization through 

bulging. The central atom moves outwards in cases where trimers are formed. The 

binding energy becomes more negative with size.  

 

The morphology of the surface changes for the quantum atoms in the QMERA 

calculations where transformation is made to form a spherical configuration. The 
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outer rows of atoms curve outwards at the centre while the tip atoms move inwards. 

The inclusion of the gold atom makes the quantum atoms to form a steep with the 

outer rows atoms curving inwards at the top and outwards at the bottom. The gold 

atom is inserted in the steep of carbon atoms although they do not form any bonds 

with the gold atom. The binding energy of the surfaces decreases with the addition of 

the gold impurity. The surface energy of the pure surface shows the QMERA surface 

is stable compared to the DMOL
3
 ones. The DMOL

3
 results with periodic systems 

confirm results from QMERA. 
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5.2. Recommendation 

 

Since gold has found great applications in catalysis through the support of metal 

oxides like TiO2, it is of fundamental importance to explore the structure of such 

catalysts as computational methods are well behind in that regard. The chemical 

reaction where carbon monoxide (CO) is converted to carbon dioxide (CO2) can be 

studied in detail and could lead to insights into the reactive capabilities of gold in such 

cases (Equation 4.6 refers). Both the atomistic and ab inito methods can be used to 

study the structure and participation of a gold catalyst during the conversion of CO to 

CO2. Structural properties of bigger systems can be explored using the atomistic 

methods while structures with fewer atoms can be studied using ab inito methods for 

more precise results. The importance of gold nanotubes as transport materials is 

subject to investigations where the strength of the materials will be tested. This can be 

achieved by putting different nanofluids to flow through the tubular structure, varying 

the size of the fluids. The atomistic methods will be preferred because bigger systems 

will have to be taken into consideration. The electronic structure of the nanoclusters 

and nanotubes can be studied further with the inclusion of the charge differences and 

density of states. The interaction between gold atoms and graphite surfaces can 

always be taken to larger sizes in order to study the mobility of such atoms as the size 

is increased and different adatoms can be tested against those of gold.     
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