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Abstract

In this work, we are studying the properties of CaS and CaO structures in both

atomistic simulation and Density Functional Theory. Defects formation (vacancies,

impurity and interstitial) will be mechanism studied by using atomistic simulation

method. In this approach, Mott-Littleton method will be used since it is a good ap-

proach of defects studies, and further explanation will be given on how the introduction

of defects contribute on the stability of the bulk material. Diffusion of different atoms

from one lattice site via interstitial path to vacancy lattice site, and how it segregates

through the material, is also part of this study.

The surface properties will be studied using both methods mentioned. Surface

energies calculations of different surface layers (e.g. CaS (100), CaS (110), CaS (111),

CaO (100), CaO (110) and CaO (111)) is the approach we used to determine the most

stable surface. In atomistic simulation, we further studied how percentage coverage of

atoms contributes on the stability of the surfaces.

We further used Density Functional Theory to calculate surface energies of the

above-mentioned surfaces. As in atomistic simulation method, we used surface ener-

gies to determine the most stable surface. In DFT we used only the most stable surface

of both CaS and CaO to study the adsorption of molecules, namely H2O, H2S, HS and



S2 on CaO (100) and CaS (100). The most/least-adsorbed molecule on both surfaces

is explained in this study.
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Chapter 1
Introduction

Studies of lime (CaO) have been carried out some years ago. Most of these

studies explained how the material contributes in the industries. CaO have been ap-

plied in varies industrial applications, e.g. ceramic, catalysis, painting. Portland

cement is another area that we have identified so far, where CaO as one of the com-

position of cement play a major role in strengthening the product. Due to its high

melting temperature it is likely to find more industrial applications with the advance

of high temperature technology. The diffusion parameters that mostly occur at high

temperature became one of the interesting goals that have paid attention in CaO stud-

ies [1, 2, 3]. Since it is applied in different ways, it became one of the materials that

are studied both experimentally [2, 3] and through computational studies [4]. CaO

has been investigated and it was realized that CaO (100) surface is more reactive with

water molecules [1]. The adsorptions of water molecules on the surface also play a

vital role in the adsorption process. The adsorptions of water molecules were investi-

gated on different surface layers of CaO and MgO. Both mentioned (CaO and MgO)

materials have similar structures that are expected to follow the same trends in other

structural parameters, e.g. the stability of the surface layers [4] and the adsorption of

molecules. From the information we have aquired so far it shows that CaO became

one of the minerals that play a major role in industrial applications. We have noted,

from most of the literature, how frequently this material was cited.
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In recent studies, there are many goals in which researchers were interested

in, because of its many applications. Some researchers focused on the catalytic be-

haviour of the material [5], where CaO and Carbon catalysis, were mixed with each

other in chemical bonded states. And other research focused on its properties as a

coating agent due to its high melting temperature. Dolomite as one of the materials

that contains higher percentage of CaO has been used as a coating agent of pellets

for sticking prevention in order to optimised the blast furnace operation [5].

1.1 Overview of computational and how it relate with
experimental and theory.

Computer technology, particularly in the areas of increased speed of calculations and

more efficient memory storage devices, has improved at a rapid pace over the past

20 years. Many of the improvements in computer hardware and in the algorithms

(software) that control computers have presented a new tool for investigating scien-

tific problems. Scientific research can be categorized in three areas: observational

science, experimental science and theoretical science.

A fourth and new area of scientific research has emerged over the past 40 or

50 years that is revolutionizing how scientists work and how they think about doing

science. Computational studies are the application of computational and numerical

techniques to solve large and complex problems. It takes advantage of not only the

improvements in computer hardware, but probably more importantly, the improve-
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ments in computer algorithms and mathematical techniques. Computational studies

allow us to do things that were previously too difficult to do due to the complexity

of the mathematics, the large number of calculations involved, or a combination of

the two. Computational studies also allows us to build models that help us to make

predictions of what might happen in the laboratory, so that we are perhaps better pre-

pared to make good observations or to understand better what we are seeing. We can

also use computational studies methods to perform experiments that might be too

expensive or too dangerous to do in the laboratory. We can, for example, use com-

putational techniques to design various parts of the automotive industries in shorter

cycles. This also assists in battery material to come with clear prediction of best ma-

terial that will extend the life time of the rechargeable batteries. While computational

models cannot replace the laboratory, they have certainly become an intricate part of

the overall search for scientific knowledge.

We consider computational studies to be a fourth method of doing research, an

addition to observational, experimental, and theoretical methods:

Figure 1.1, shows that science is defined as the study of how nature behaves.

The three supporting sciences are theoretical, experimental, and computational. There

is clearly a "symbiotic" relationship between the three – theoretical findings "drive"

the experimentalists, experimental data is used to build and validate computational

research, computational research provides the theorists with new directions and ideas.

Many of the fundamental questions in science (especially those with potentially
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Figure 1.1: The study of how nature behaves[6]
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Minerals name % of CaO[7]
Limestone 54.89
dolomite 34.37

Table 1.1: Content of CaO in Chichibu limestone.

broad social, political, and scientific impact) are sometimes referred to as "Grand

Challenge" problems. Many of the Grand Challenge problems are those that can

only be solved computationally. Certain research problems in science, are consid-

ered by all computational simulation studies to be one of the major grand challenge

categories. In material research, the argument has been made that we have known,

since 1928, all of the theoretical science needed to solve every chemical problem. It

is only since the birth of computational science (late 1950’s) that we had the tools

and technologies needed to solve these complex mathematical equations born from

the theorists. There are other ways of looking at computational sciences. Some will

describe it as the intersection of three disciplines: We use a slightly different, less

discipline-specific picture of computational science: application, algorithm, and ar-

chitecture:

1.2 Background information of CaO and other Industrial
applications

CaO is produced from limestone (CaCO3), through heating [8]. When we investigate

application of limestone and dolomite, we realize that chemical proccess of the ma-

terial became successfull because CaO is one of the composition in the materials as
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Figure 1.2: The sample of limestone that contains the composition of some minerals
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Figure 1.3: The structure of CaO

shown in Table 1.1. The material composition depends on the type of the mineral and

the geographical origin of the material. The content of CaO in limestone as shown in

figure 1.2 is estimated at 54.89%, and 34.37% of dolomite [7].

Many metal halides and oxides crystallizing in the cubic rock salt structure,

tend to be highly ionically bonded. Large anions are arranged in cubic close pack-

ing and all the octahedral interstitial positions are filled with cations in the structure

shown in figure 1.3. CaO has a rock salt structure with space group Fm-3m, and the

positions are allocated as follows: O atoms at [0.5;0.5;0.5] and Ca at [0,0,0] posi-

tions. The lattice parameter of this cubic structure is a = 4.805Å.
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CaO is a white crystalline solid with a melting point of 2572◦C and its density

is 3340kg/m3. It is manufactured by heating limestone, coral, sea shells, or chalk,

which are mainly CaCO3, to drive off carbon dioxide as follows:

CaCO3(s) =CaO(s) +CO2

The reaction is driven to the right by flushing CO2 from the mixture as it is

released. The production of CaO from limestone is one of the oldest chemical trans-

formations produced by man. The abundance of limestone in the Earth’s crust and

the ease of its transformation to CaO do not alone explain why the lime is one of the

oldest products of chemistry. Lime has many properties that make it quite valuable.

It is so useful, that it is today produced industrially on a vast scale.

1.2.1 CaO is also used to coat the interior the stainless steel walls
of power generation boilers.

Calcium oxide is a possible coating material because it is an excellent electrical in-

sulator and it has large negative free energy to prevent the the reaction with liquid

lithium because of its high heat resistivity [9]. It was proven scientifically that coated

material has longer lifetime periods and also improved performance by reducing the

thermal conductivity of the material [10]. CaO/lime as coating agents reduce mois-

ture penetration and improves resistance against sulphur reaction with the boiler [11].

Owing to its capability, CaO can act as a protecting agent of some gases (sul-

phur compund gases) that are emitted from coal during the combustion process. A

by-product from one of the industries e.g. New Zealand Dairy Corporation factory,
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fluidized bed boiler ash contains economically useful amounts of lime and sulphur.

The fluidized bed boiler is produced from injection of limestone into the combus-

tion chamber to absorb and reduce SO2 and the other sulphur compounds emitted

from burning high sulphur-rich coal [12]. Some of the emitted gases, mentioned ear-

lier, are CO2 and H2S. During the burning process CaO reacts with CO2 at a higher

pressure and temperature to form CaCO3. During the process CO2 and H2S will re-

act with CaO from the walls of the boilers, as results CaCO3, CaS and H2O will be

formed.

1.3 Rationale of this study

Most of CaO originates from limestone and dolomites through chemical reactions.

This material has high melting temperature that has good industrial applications. Ow-

ing to its high melting temperature, some of its applications involve coating boilers

that are always experiencing high temperatures during combustion. In addtion to

coating, CaO has catalytic properties that are valuable during certain chemical re-

actions in the laboratory. It has high resistivity and is used also in the production

of ceramic materials. In the laboratory, the material has been tested to adsorb some

chemicals, e.g. water, sulphur compounds etc.
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1.4 Motivation of the dissertation

CaO is one of the materials used in many industrial applications, including those

needing high heat resistance. At power utility industries such as Eskom’s, coal is used

to generate electricity. Since CaO has a high melting temperature, it has been used

to coat the interior walls of boilers with an aim of protecting them from corrosion

caused by the sulphur compound emitted from the sulphur-rich coal used during the

combustion process. Even though CaO is useful as a coating in boilers, it was noted

that some sulphur compounds could diffuse through CaO and form a layer between

CaO and the metal wall of the boiler.

In the current work, we have studied the bulk and surface properties of CaO and

CaS. The main objective is to study the mechanisms reponsible for the corrosion of

metal walls of boilers and to suggest possible ways of avoiding this problem. CaS

material is included in this study because during the reaction of sulphur and CaO on

the walls of the boiler, CaS is formed.

1.5 Outline of the dissertation

The dissertation is arranged as follows

Chapter one gives the background information on computational, experimental

and the theoretical aspects of CaS and CaO systems.

Chapter two outlines computational methods used in this study.
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Chapter three gives structural properties of the systems. In this chapter atten-

tion is focused on the predictions of structural parameters. This includes how the

systems are being set, e.g. cut-off energy, k-points mesh, and the lattice parameter

variation in both CaS and CaO systems. The validation of new potentials will be

discussed.

Chapter four is on results calculated by atomistic simulation. In this chapter,

we will explain the defect formation on both CaO and CaS systems; diffusion of

atoms on the interstitial path in both systems will be discussed. The impact made by

foreign atoms on the surfaces will also be discussed.

Chapter five presents the Density Functional Theory results, and in particular

the adsorption of the molecules, H2O, HS, S2 and H2S on both CaO (100) and CaS

(100) surfaces.

Chapter six contains the summary and conclusion and also recommended fu-

ture work.
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Chapter 2
Background of computational methodology
and methods of calculation in the current

study

The advent of quantum mechanics opened the door to understand the funda-

mental interaction of the atomistic constituents of matter and turn to use this knowl-

edge to design and control material properties and processing. In practice, the so-

lution of the quantum mechanics equation is intractable, except in relatively simple

cases. Therefore the control of the material structure at various length scales has nec-

essarily progressed by intuition and by trial and error in the laboratory. This time the

approach is not about to be replaced, but in many laboratory it is being supplemented

by computer aided research and development. Today most of pharmaceutical compa-

nies’ routine seeks insight and guideline in the design of new drugs using computer

simulation of molecular interaction [13]. Similarly at the macroscale, companies

such as Boeing and Ford supercomputers are used to model airflow and other charac-

teristic of design features before they actually build model for testing in wind tunnel

of crashing into walls. It is much cheaper to design on the computer.

The thousand fold increases in computational power, resulting from new ma-

chines with massively parallel architecture, promise to change, dramatically, the use

of computational simulations in helping materials research. Computing power is

about to reach the level at which we can finally solve the quantum mechanical equa-
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tions for large enough systems and elucidate complex atomistic interaction occurring

over length scale involving thousand of atoms. Scientists can envision a path that

allows accurate simulation starting at atomistic and proceeding to an intermediate

length scale where many of the bulk material properties, such as strength, are deter-

mined. Results from simulation at the intermediate length scale will naturally feed

into continuum model to simulate the macroscopic engineering designs. The idea of

accurate simulation capabilities at each of the length scales together with the possi-

bility of overlapping the length is empowering.

A primary goal of a material simulation initiative would be to develop a ca-

pacity to reliably predict the properties of real material. To achieve this goal one

must be able to realistically simulate physical phenomenon over a vast range of time

and length scales. For example, there is currently incomplete understanding of how

the underlying structure defects impact on the mechanical properties of real mater-

ial. Some of the mathematical methods used to model material physics are generally

empirically based with phenomenological parameters. One important challenge is to

determine these parameters entirely from first principle calculations.

There is different classification of characteristic range of time and length scale

appropriate to materials. It is necessary to uncover the elusive connection in hierarchy

of quantum/molecular, atomistic/nano, macroscopic and macroscopic scale and to

unravel the complex of the interactions that govern the properties and performance of
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Figure 2.1: Choice of computational method[14]

material. In the next section we will discuss the different appraches of computational

modelling, in particular ab intio and atomistic simulation.

2.1 Choice of methods

Figure 2.1 shows major choices of computational approaches for the simulation and

prediction of structural and functional properties. For structural and dynamical propeties

investigations, two computational methods are suggested quantum mechanical and

force field. If structural and energetic questions need to be answered, which is often

the case in the first stage of modelling and simulation of materials, force field meth-
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ods are preferable because of the high computational efficiency. However, one needs

to be aware that the generality and transferability of force fields cannot be taken for

granted and the results obtained from force field calculations can be misleading.

Among quantum mechanical methods, the next choice is between ab initio and

semiempirical approaches. The latter approach is preferable (semi empirical ) be-

cause of the less amount of computational speed required in the calculations. How-

ever, as with force field methods, semiempirical methods should be used with great

care since the range of applicability of the inherent approximations and parameters

needs to be controlled. Ab initio method typically provide reliable results, but the

sensitivity of the results on the choice of computational parameters, in particular the

choice of the basis functions and the level of correlation requires attention.the next

choice is between DFT and Hartree- Fock method.

Experience so far has shown that DFT method tend to be more robust than

Hartree-Fock method in the sense that with a reasonable choice of basis functions

and other computational parameters, the geometric structures, the vibrational fre-

quencies, and the electronic structure obtained from DFT calculations usually do

not give strong and unexpected deviations from experiment, while this may be the

case with Hartree-Fock calculations for systems where a single determinant is not

appropriate (which may not be a priori obvious to the non-expert) [15]. Correlated

post-Hartree-Fock methods such as coupled-cluster theory are very time consuming

and require a careful control of the computational parameters such as basis functions.
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This level of computation is possible only for rather small systems and the relevance

to the actual materials design problem might thus be questionable, despite the high

accuracy of the results.

As hinted in Figure 2.1, there are many possible choices within semi empiri-

cal and force field methods, which are linked to the availability or applicability of

parameters. This is not the case with ab initio methods. In fact, the amount of com-

putational time possible to run a Hartree-Fock calculation is actually quite limited.

For example, only Gaussian-type basis sets are practical and the computational task

is reduced to the evaluation of analytic expressions. This is not the case for den-

sity functional calculations, where the greater formal simplicity of the Hamiltonian

enables greater freedom in the choices of algorithmic implementations. DFT and

atomistic simulation will be considered in this current work.

2.2 Method of calculation used in the current work

Computer simulation, also known as computer modelling, is the use of computers to

develop and explore numerical models that reproduce the properties of natural and/or

synthetic materials. Atomic-level computer simulation involves basing these mod-

els on the individual atoms and molecules (and sometimes electrons) that make up

the material. The methods used range from rigorous (and computational expensive)

treatments derived from Schrödinger’s equation, referred to as ab initio quantum me-

chanical methods in this chapter to rapid empirical techniques which use approximate



31

functions to describe the forces between particles. The method chosen for any par-

ticular problem depends on the size of the system, the type of bonding in the material

(ionic, covalent, etc), and the kind of information desired.

2.3 Atomistic simulation

An atomistic simulation technique is a forcefield method involves potentials parame-

ters is knows as semi empirical or empirical method. For empirical method, we apply

only derived potentials, and for semi empirical we used the experimental potentials

and fit them in computer to simulate the systems for investigations of structural prop-

erties.

2.3.1 The interatomic potential

The best choice of a potential for simulations depends on how best it can reproduce

the structural parameter. There is a variety of potentials that can be used to model

different systems, e.g. Lennnard – Jones potential, Buckingham potentials, Morse

potentials and etc.

This set of potentials have their own speciality accounting to the given task

on the type of systems, e.g. Lennard – Jones potential (L.J) does not give adequate

description of all the properties of metals. This relation is proved to be wrong for

most of the metals. Pair-wise potentials fail to estimate the structure relaxation and

reconstruction around point defects (vacancies and self-interstitials) in metals. The
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vacancy formation energy obtained by means of pair - wise potentials is overesti-

mated, and is found to be about equal to the bulk cohesive energy.

The solution of the problem is an introduction of a many-body potential, which

include a pair-wise interactions only as part of the full potential. This first part of the

many-body potential accounts for the core - core interactions (or ion - ion interac-

tions), while the second part incorporates the complex nature of metallic cohesion by

an additional term:

U = U1+U2ρ(r)] =
1

2

NX
i:i6=1

φ(rij)+
1

2

NX
i=1

U(ni) (2.1)

Where the φ(r) is the two-body part, and the many-body part U(ni) depends on

electronic charge density around the atom i:

ni=

NgX
i6=j

ρ(rij) (2.2)

Where Ng is the number of nearest neighbours of the atom i.

2.3.2 Coulomb interaction

When considering ionic materials, the Coulomb interaction is by far the dominant

term and can represent, typically, up to 90% of the total energy. Despite having the

simpliest form, given by Coulomb’s law;

Uij =
qiqj
4πε0rij

(2.3)

it is in fact the most complex to evaluate for periodic systems. This is because

the Coulomb energy is given by a conditionally convergent series, i.e. the Coulomb
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energy is ill-defined for an infinite 3-D material unless certain additional conditions

are specified. The reason for this can be readily understood - the interaction between

ions decays as the inverse power of r, but the number of interacting ions increases

with the surface area of a sphere, which is given by 4πε0m2 . Hence, the energy

density of interaction increases with distance, rather than decaying. One solution to

the problem, proposed by Evjen [16], is to sum over charge-neutral groups of atoms.

However, by far the most widely employed approach is the method of Ewald [17]

for three-dimensional materials. Here the conditions of charge neutrality and zero

dipole moment are imposed to yield a convergent series with a well-defined limit. To

accelerate the evaluation, the Coulomb term is subjected to a Laplace transformation

and then separated into two components, one of which is rapidly convergent in real

space, and a second which decays quickly in reciprocal space. Conceptually, this

approach can be viewed as adding and subtracting a Gaussian charge distribution

centred about each ion [18]. The resulting expressions for real and reciprocal space,

as well as the self-energy of the ion, are given below:

U real =
1

2

NX
i=1

NX
j=1

qiqj
rij

efrc(η
1
2 rij) (2.4)

U recip =
1

2

NX
i=1

NX
j=1

X
G

4π

V

qiqj exp(iGrij)
exp(−G2

4η

G2
(2.5)

U self = −
NX
i=1

q2i

³η
π

´ 1
2

(2.6)
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U electrostatic = U real + Urecip + U self (2.7)

Here q is the charge on an ion, G is a reciprocal lattice vector (where the spe-

cial case G = 0 is excluded),V is the volume of the unit cell, and η is a parameter

that controls the division of work between real and reciprocal space. It should also

be noted that although the reciprocal space term is written as a two-body interaction

over pairs of atoms, it can be rewritten as a single sum over ions for more efficient

evaluation. The above still leaves open the choice of cut-off radii for real and recip-

rocal space. One approach to defining these in a consistent fashion is to minimise the

total number of terms to be evaluated in both series for a given specified accuracy,

[19]. This leads to the following expressions:

ηopt =

µ
Nωπ3

V

¶ 1
2

(2.8)

rmax =

µ
ln(A)

η

¶ 1
2

(2.9)

Gmax = 2η
1
2 (− ln(A)) 12 (2.10)

Note that the above expressions contain one difference from the original deriva-

tion, in that a weight parameter, has been included that represents the relative com-

putational expense of calculating a term in real and reciprocal space. Tuning of this

parameter can lead to significant benefits for large systems. There has been several

modifications proposed for the basic Ewald summation that accelerate its evaluation
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for large systems, most notably the particle-mesh [20], and fast multipole methods

[21]. Furthermore, there are competitive approaches that operate purely in real space

for large unit cells and that scale linearly with increasing size, such as the hierarchical

fast multipole methods, though care must be taken to obtain the same limiting result

by imposing the zero dipole requirement. The latter approach can also be applied to

accelerating the calculation of the Coulomb energy of finite clusters.

In principle, it is possible to calculate the Coulomb energy of a system with

a net dipole, μ, as well. The nature of the correction to the Ewald energy can be

determined as a function of the shape of the crystal, and the formula below can also

be employed [22]:

Udipole =
2π

3V
μ2 (2.11)

However, the complexity of using the above correction is that it depends on

the macroscopic dipole of the crystal, and even on any compensating electric field

due to the environment surrounding the particle. Hence the dipole moment is usually

ill-defined, since it depends on the surfaces, as well as the bulk material. Even if

we neglect surface effects, the definition of the dipole moment is ambiguous since

the operator is not invariant under translation of atomic images by a lattice vector.

Consequently, we will take the Ewald result as being definitive.

Similarly, it is possible to relax the charge neutrality constrain, and to perform

calculations on charged supercells [23], provided care is taken when constructing

thermodynamic cycles. This is often used when probing defect energetics as an al-
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ternative to the Mott-Littleton method. Here the net charge, Q is neutralised by a

uniform background charge, leading to an energy correction of:

U backround =
π

2V η
Q2 (2.12)

So far we have only considered how to handle infinite 3-D solids, but the same

issues exist for lower dimensionalities.

2.3.3 Short-range potential function

Two body-potentials represents short-range interaction between two charge clouds,

and can be attractive (Van der Waals) or repulsive. The interaction has various an-

alytical forms and depends on the type of the system being modelled. However all

the analytical forms can be classified under bonded and non-bonded interactions. A

number of these forms will be describes in the next sections (2.3.4 - 2.3.7).

2.3.4 Harmonic potential function

Modelling interaction between bonded ions can be achieved using harmonic potential

form, which its analytical form is written as

U(rij) =
1

2
kij(rij − ro)

2 (2.13)

where the parameter Kij represents the force constant associated with the deriva-

tion from the equilibrium bond separated and r0 the equilibrium bond separation.

This potential is harmonic due to energy being dependent on the square of the dis-

placement of the current bond length (rij) from the equilibrium bond length, and is
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used only when the bond length does not vary much from the equilibrium position.

For interactions where the bond stretching are large, Morse potential is discussed in

section 2.3.5.

2.3.5 Morse potential function

Morse potential is used for covalent bonding when distance vary from the equilib-

rium bond distance at it displays the correct harmonic behaviour missing from the

harmonic function. It is thus able to model systems away from their equilibrium

bond distance such as point defect and surfaces or when temperature or pressure is

applie, and takes the form:

U(rij) = Aij {1− exp [−Bij(rij − r0)]}− Aij (2.14)

where Aij is the bond dissociation energy, r0 is the equilibrium bond distance

and Bij is the function of the slope of the potential energy well and can be obtained

from spectroscopic data; due to its inclusion of the bond energy the Morse poten-

tial is often used with subtraction of the Coulomb interaction, allowing it to com-

plete by describing the bond for nearest neighbours. For second nearest neighbours

a non-bonded potential, such as Buckingham and Lennard ones can be used and are

described below in section 2.3.6 and 2.3.7.
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2.3.6 Buckingham potential form

The Buckingham potential form is the most widely used to model non-bonded inter-

actions. It contains a repulsion and attractive term and takes the form:

U(rij) = Aij exp

µ−rij
ρij

¶
− Cij

r6ij
[24] (2.15)

where the Aij is associated with the hardness of the ions, ρij is related to the

size of the ions and Cij is the term included to model dispersion.

2.3.7 Lennard-Jones potential form

Lennard-Jones potential has a form of nonbonded interaction with a repulsive part

dependant on r−12 and attractive part depend on r−6 as in the Buckingham case, and

is given by:

U(rij) =
Aij

r12ij
− Bij

r6ij
(2.16)

This potential also used for modelling noble gas lattice interactions for interac-

tion between polar and non-polar materials.

2.3.8 Shell model

In atomic physics, the shell model proved successful in providing an explanation for

the detail of atomic structure. Atomic shells were filled with electrons in order of

increasing energy subject to Pauli exclusion principle. As a result of the success of

the atomic shell model, this model was extended to the real nuclei.
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The shell model also known as independent model, treats the nucleons indi-

vidually as opposed to treating the nucleus as a whole. The long range repulsive

coulomb force and the short-range attractive nuclear force interaction between nu-

cleons are replaced by an average force. The shell model describe the nucleons in

terms of groups or shells, with the position and energy of a nucleons depends upon

its quantum numbers.

There were however, several principle that needed reworking, compared with

atomistic structure. In atomistic structure the potential is provided by the Coulomb

fieled of the nucleus, whereas in the nuclear case the motion of a single nucleon is

governed by an average potential generated by all the other nucleons. If two nucleons

collide, the energy required to excite one of them to higher-lying orbit would be

more than the nucleons are likely to transfer. Therefore, in the nuclear case, it is

assumed that there are no nucleon-nucleon collisions and each nucleon moves in an

unperturbed single particle orbit within the nucleus.

In shell model, atomistic interactions are represented by potentials between

each pair of atoms in the system. Electron polarization of the atoms is implemented

via the Dick overhauser model [25], in which an atom is considered as a charge

core connected by a harmonic spring to a massless charge shell. The equilibrium

distance between the core and shell is representation of the electric polarization of

that atom. This is important as there are no electrons in the shell model, all atoms
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are effectively represented by point charge and the shell approximates the effective

of electron density flow on the atomic interaction.

The interaction between core and shell is controlled by empirical potentials

whose parameters are fitted to archive the best possible comparison with experi-

mental or computational techniques. The potentials are usually derived from three

interactions electrostatic coulomb interactions between the atoms, van der waals in-

teractions and short-range repulsive interactions. The charge-charge electrostatic in-

teraction between atoms i and j given as the sum of four terms:

V elec
i =

nX
j

qiqj
4πε0|rδi − rδj|+

nX
j

QiQj

4πε0|rζ i − rζj|
+

nX
j

Qiqj
4πε0|rζ i − rδj|+

nX
j

qiQj

4πε0|rδi − rζj|
(2.17)

Where i 6= j, n is the number of atoms qi is the shell charge of atoms i, Qi is the

core charge of atom i, rδi is the position vector of the shell of atoms i, and rζi is

the position vector of the core of atoms i. Buckingham potentials (two body terms)

were the potentials behind this interaction to represent the non-coulombs short-range

interaction between the shells. These potentials have the following form:

V short
i =

nX
j

−C|rδi − rδj|− 6 +Ae−
rδi−rδj

ρ (2.18)

Where C, A and ρ are parametrized constant specific to each pair of shell i and

j, and i 6= j. The first term in the equation 2.18 represent the attactive van der Waals

interaction and the second term the short-range repulsion due to electron clouds over-
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lap. For shell there is also an additional contribution to the interaction due to the elas-

tic force in the spring connecting core and shell. This force is equal to kδri, where k

is the polarized spring constant between the centre of core and shell for atom i. The

spring interaction between the shells is given by:

V spring
i =

1

2
kδr2i (2.19)

Combining equations (2.17),(2.18) and (2.19) gives the total energy of the sys-

tem as:

E =
1

2

nX
j

£
V elec
i + V short

i + 2V spring
i

¤
(2.20)

This can be minimised with respect to core and shell position to find the equi-

librium geometry of relaxed atoms in the system. Usually certain atoms within the

tip-surface unit cell remain frozen to represent the interface between the macroscopic

and microscopic fature (Refer to Mott-Littleton method in section 2.3.10 for futher

explanation)

2.3.9 Modelling point defects

There are two widely used approaches of calculating defects. There is embedded

cluster [28] and supercell technique. The embedded cluster method is too ideal for in-

finite dilute limit and the supercell method is appropriate for very large bulk systems
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concentration of defects where there exits defect-defect interaction. This supercell

method is mainly applied in large bulk systems.

2.3.10 Supercell method

The supercell method is one of the defect calculation methods that work better in

large periodic system. The supercell containing defects is repeated periodically

throughout space and depends on the size of the supercell e.g. 2x2x2, 3x3x 3 etc.

The key quantity of calculating the defects formation energy in the system is given

by the equation:

EC
d = EC

T (defect
q)−EC

T (no− defect) +
X
i

μinj − q(εv + εf) (2.21)

where EC
T (defect) and EC

T (no-defect) are the total energy of the supercell "C" with

and without defect. The defects is formed by adding/removing ni atoms of chemical

potential μi. εf is the Fermi level, measuring from εV the valence band edge. Almost

all properties of defects can be derived from variations in and differences between

formation energies. The method is very powerfull, but critical limitations remain.

Two of the most important being the relative small number of atoms which can be

treated and the effect of the approximations, such as LDA and GGA required to solve

the DFT itself.
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Figure 2.2: The two region approach to calculate defect energies, where the inner
black sphere represents a defects, the orange sphere represents the boundary of region
I, the grey sphere region IIa , while region IIb tends to infinity [26].

2.3.11 Embedded cluster method

Figure 2.2, explains cluster technique method referred as Mott-Littleton method.

This is a point defects approach which is based on the idea that total energy of

the trace- element bearing system is minimised by a relaxation of the position of

the atoms surrounding the element, and divided the crystal into regions as shown in

figure 2.2, the crystal is divided into an inner region I ( inner black) immediatelty sur-

roundeding the point defect, where the relaxation is assumed to be the greatest, and

an outer region (II), which is only slightly pertubed. In the inner region the elastic

equation for the force are solved explicitly to dertermine the relaxations, and in the

outer region these are estimated using Mott-Littleton approximation [27]. These is

normally also an interface region IIa (grey) surrounding the inner region.
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Within the two region approach, the total energy of the system, U, is given by

U(x, y) = U1(x) + U2(x, y) + U3(y)[28] (2.22)

where x and y label the coordinates of the ions in the inner region I and the

displacement in the outer region II, respectively. U1 and U3 arises solely from inter-

action within each region, while U2 is the interaction energy between them. In this

case we assume that for region II the effect of the force is very small in such a way

that the region will be purely harmonic. Assuming that U3 is a quadratic function of

y, then together with the equilibrium condition states as:

∂U

∂y
= 0 (2.23)

can be written in terms of the derivatives of U2 and so an expression for U is ob-

tained in which the the explicit dependence of the total defect energy on U3 has been

removed. In this case we assume that for region II the effect of the force is very small

in such away that the region will be purely harmonic.

Then the total energy of the region two can be written as:

U3(y) =
1

2
yTH3y (2.24)

where H3 is the Hessian matrix for region II.

Now for the equilibrium displacement of region II then the total energy of the

whole system is given by:

µ
∂Utot(x, y)

∂y

¶
x

=

µ
∂U2(x, y)

∂y

¶
x

+H3y = 0 (2.25)
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therefore

Then combining equations 2.24 and 2.25 with the previous one we get

U2 = −1
2
y (2.26)

Then the total energy of the system becomes

Utot(x, y) = U(x)1 + U(x, y)2 −
µ
∂U2(x, y)

∂y

¶
x

y (2.27)

Then the problem of calculating the defects due to region one and region two

is given by

Udefect(x, y) = Utot(x, y)− Utot(x, y) (2.28)

2.4 Ab initio method

The term ab initio means from first principles. It does not mean that we are solving

the Schrödinger equation exactly. It means that we are selecting a method that in

principle can lead to a reasonable approximation to the solution of the Schrödinger

equation and then selecting a basis set that will implement that method in a reasonable

way.

By reasonable, we mean that the results are adequate for the application in

hand. A method and basis set that is quite adequate for one application may be

totally inadequate for another application. We also have to take into account the cost

of doing calculations and the total amount of computer time required. If an answer is

needed today, there is no point in doing a calculation that will take long time of with
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the results coming back after many days. However, if the results are not adequate for

the purpose, there is no point in doing the calculation, however cheap it may be.

A wide range of ab initio methods have been employed, but we will restrict

ourselves to the sub class of methods that is employed in the vast majority of all

calculations carried out within a short reasonable short time. This is the sub class

that uses the molecular orbital method, possibly followed by a post molecular orbital

method that uses the molecular orbital wave function as the reference function. The

molecular orbital method is generally referred to as the Hartree-Fock method. This

theory will be discussed on the following subsection 2.4.1.

2.4.1 Hartree Fock method

The Hartree-Fock method is based on approximation that each electron moves in the

average potential from the nucleus and the other electrons. This assumption leads to

the independent-particle model, which essentially reduce the many-electron problem

to the problem of solving a number of coupled single-particle equations.

The single-particle equations are solved in an iterative way which will be de-

scribed below. Hartree made the first calculation based on these ideas already 1928

[29], but calculations of this type are of course best suited for computers. Today

there are several computer codes available for anyone who is interested in atomic

properties.
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The Hartree-Fock approximation is a fast and reliable method for a wide range

of atomic systems, but it is just a first approximation. Nowadays there are several

calculation schemes developed which can produce much more accurate results. For

systems with few electrons, as helium, the "many-body problem" can be solved more

or less exactly

General many-electron systems cannot be treated with such a precision, but

a large part of the electron correlation, i.e. effects beyond the independent parti-

cle model, can be accounted for with methods such as configuration interaction or

perturbation theory.

’Ab-initio’ is a term used to describe an accurate solution of the non-relativistic,

time independent Schrödinger equation[30]

Hψ = Eψ (2.29)

Where, H is the Hamiltonian operator for the system, a function of kinetic and

potential energies of the particles of the system, ψ is the total molecular wavefunc-

tion, and E is the molecular energy.

For most of the system can’t do it analytically to solve this equation for any-

thing other than the hydrogen atom. For this reason, for a many body system, approx-

imations are introduced to simplify the calculations. One of these approximations is

that of Born and Oppenheimer where the approximation that as the electrons travel

much faster than the nuclei, the electrons can be assumed to be travelling in a po-
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tential generated by a stationary nucleus. This approximation allows the electronic

Hamiltonian to be considered for a fixed set of nuclear co-ordinates.

Helec=
nX
i=1

− h2

8π2m
52

i−
nX
i=1

NX
a=1

Zαe2

4π�0riα
+
X
i

nX
∠j

2

4π�0rij
(2.30)

In equation above the first term contributing to the electronic Hamiltonian is the

electronic kinetic energy where n is the number of electrons, the second, the electron-

nuclear attraction energy and the third, electron-electron repulsion. The equation can

be greatly simplified by working in atomic units, where electron charge (e) and mass

(m) are defined as unity. The equation then becomes,

Helec=
nX
i=1

−1
2
52

i−
nX
i=1

NX
a=1

Zα

ri
+
X
i

nX
∠j

1

rij
(2.31)

Another approximation is the description of the wavefunction in terms of the

one electron functions, i.e. orbitals. This approximation gives the Hartree product

2.4.2 Density Functional Theory

In density functional theory (DFT), The total energy of the system, Etotal defined as

a function of ρ, the charge density.

Etotal = T [ρ] + U [ρ] + Exc[ρ] (2.32)

Where T[ρ]is the kinetic energy of a system of non-interacting particles of den-

sity ρ, U[ρ] the classical Coulomb energy and Exc[ρ] is a term containing exchange
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and correlation. Again, an iterative procedure is used to evaluate the equation by

varying ρ until self consistent. Whilst equation 2.33 would be exact on solution, it is

currently unknown how to calculate the exchange function Exc [ρ] exactly. The local

density approximation (LDA) is used where, the single particle exchange correlation

energy, �xc, is integrated over all space.

Exc[ρ] =

Z
ρ(r)�xc[ρ(r)]dr (2.33)

Several modifications have been made to the LDA to correct non-local effects

which are poorly reproduced. One popular combination of corrections is that of Lee,

Yang and Parr [31] with the Becke exchange functional, known in the literature as

B-LYP (and a later functional became B3-LYP).

2.4.3 Kohn-Sham equations

Obtaining an expression for the kinetic energy of the electrons in terms of the charge

density is a harder problem. The first approximation, the local density type of Thomas

Fermi approach described above is not sufficiently accurate [32]. It is therefore nec-

essary to break up the charge density into a set of orthonormal orbital functions, as

first proposed by Kohn and Sham [33]. These are single particle wavefunctions in

a non-interacting system (since interaction terms have been included through Exc).

For simplicity here we only consider the spin averaged theory,
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n(r) =
NX

λ=1,s

δ(sλ, s)|ψλ(r, s)|2
Z

ρ(r)�xc[ρ(r)]dr (2.34)

This means we can now write an expression for T, the kinetic energy, as

T = −1
2

X
1,s

Z
ψ∗λ52 ψλdr (2.35)

Once the total number of electrons and spin of the system are fixed, these or-

bitals can be determined using two constraints. Firstly we minimise the energy with

respect to the charge density. Secondly different orbitals are kept orthogonal, and

normalised through the introduction of a set of Lagrange multipliers, . Therefore we

minimise

E[n]−
X
1,s

Eλ{
(Z X

s

Z
|ψλ(r)|2dr − 1

)
(2.36)

Differentiating this with respect to gives

−1
2
52 ψλ(r) +

µ
v(r) +

Z
n(r0)
r − r0

dr0 + vxc(r)

¶
ψλ(r) = Eλψλ(r) (2.37)

where v(r) = −1
2

P
1,s

Zα
|r−R|

and vxc(r) =
δExc[n]
δn(r)

It can be seen that equation 2.37 is a single particle Schrödinger equation, as

we originally proposed in this section. These three equations together constitute the

Kohn-Sham equations, and the self-consistent solution of these leads to the ground

state charge density of the system.
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Local Density Approximation

The most commonly used and successful approximation is the Local Density

Approximation (LDA), first formulated by Kohn and Sham [33] in 1965. If the elec-

tron kinetic energy is written as then in the LDA the universal functional is given

by

F [ρ(r)] = T [ρ(r)] +
1

2

Z
ρ(r)ρ(r0)
|r − r0| drdr

0 + Exc[ρ(r)] (2.38)

whereF [ρ(r)] universal functional of the electron charge density ρ(r), Exc[ρ(r)]

is the exchange-correlation energy functional and is in equation 2.33.

remember thatExc[ρ(r)] is the exchange and correlation energy per particle of a

uniform electron gas of density ρ. The LDA uses the exchange-correlation energy of

the homogeneous electron gas, evaluated from the charge density at the point under

consideration. Effectively at r, ρ = ρ(r) and Exc is equal to the exchange-correlation

energy for the electron-gas system which has a homogeneous charge density ρ. This

is valid if the inhomogeneity of ρ(r) is small, but the main approximation of LDA

is that this is applied even if the inhomogeneity is large. By applying the variational

principle to equation E =
R
v(r)ρ(r)dr + F [ρ(r)], with the constraint that for an N

electron system ,
R
ρ(r)dr = N the following equation is obtained: μZ

δρ(r){δT [P ]
δρ(r)

+ ν(r) +

Z
ρ(r0)
|r − r0|dr

0 +
δExc

δρ(r)
− μ}dr = 0 (2.39)

where ν(r) is external potential of the ground state of the electron-gas system,

and μ is the Lagrangian multiplier equivalent to the chemical potential . Using the
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wavefunction ψλ(r) of the the λth level, the charge density is defined as :

ρ(r) =
NX
λ=1

|ψλ(r)|2 (2.40)

which allows the kinetic energy to be defined as:

T [ρ(r)] =
1

2

NX
λ=1

Z
ψ∗λ(r)∇2ψλ(r)dr (2.41)

The solution of equation (2.37) is then given by solving the following effective

one-electron Schrödinger equation for :

{−1
2
52 +v(r) +

Z
ρ(r0)
|r − r0|dr

0 +
δExc

δρ(r)
}ψλ(r) = �λψλ(r) (2.42)

where �λ is the energy eigenvalue of the λth state. This equation is called the

Kohn-Sham equation and the eigenvalues are usually identified as the one-electron

energy levels (this is an approximation due to LDA’s deviation from the real result

for states far below the Fermi level [34]. If equation (2.11) is solved self-consistently

then the solutions, ψλ, will be related to the electron charge density and kinetic en-

ergy density via equations (2.8) and (2.9), but the Slater determinant constructed

from ψλ is not the true many-electron HF wavefunction. ψλ are not the same as the

one-electron wavefunctions in the Hartree-Fock approximation, but are more directly

related to the true electronic charge density.
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Generalized Gradient Approximation

Many modern codes using DFT now use more advanced approximations to im-

prove accuracy for certain physical properties. The DFT calculations in this study

have been made using the Generalized Gradient Approximation (GGA) [35], [36].

As stated above, the LDA uses the exchange-correlation energy for the uniform elec-

tron gas at every point in the system regardless of the homogeneity of the real charge

density. For nonuniform charge densities the exchange-correlation energy can devi-

ate significantly from the uniform result. This deviation can be expressed in terms of

the gradient and higher spatial derivatives of the total charge density. The GGA uses

the gradient of the charge density to correct for this deviation. For systems where

the charge density is slowly varying, the GGA has proved to be an improvement over

LDA.

2.5 DFT implimentation

Density functional theory is a general approach to the ab initio description of quan-

tum many particle systems, in which the original many body problem is rigorously

recast in the form of an auxiliary single particle problem [37]. For the most simple

case of stationary problems, DFT is based on the fact that any ground state observ-

able is uniquely determined by the corresponding ground state density ρ, i.e. can be

understood as a functional of ρ. This statement applies in particular to the ground

state energy, which allows representing the effects of the particle-particle interaction
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Figure 2.3: The density functional theory implementation[41]

in an indirect form via a density-dependent single-particle potential. In addition to

the Hartree (direct) contribution this potential contains an exchange-correlation (xc)

component, which is obtained from the so-called xc-energy functional. The exact

density functional representation of this crucial quantity of DFT is not known, the

derivation of suitable approximations being the major task in DFT.

Extensions of this scheme to relativistic [38] and time-dependent [39] systems,

utilizing the four current and the time-dependent density as basic variables, are also

available. Furthermore, a DFT approach to quantum hydrodynamics (as a model for

the relativistic description of nuclei) has been developed [40].
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DFT is an extremely successful approach for the description of ground state

properties of metals, semiconductors, and insulators. The success of DFT not only

encompasses standard bulk materials but also complex materials such as proteins [42]

and carbon nanotubes [43].

The main idea of DFT is to describe an interacting system, its density and not

via its many-body wave function. For N electrons in a solid, which obey the Pauli

principle and repel each other via the Coulomb potential, this means that the basic

variable of the system depends only on three spatial coordinates x, y, and z rather

than 3N degrees of freedom.

The major choices for DFT calculations are shown in the Figure 2.3. The center

of this figure shows the Kohn-Sham equations, which are the effective one-electron

Schrödinger equations of density functional theory. The solutions of these equations

give access to the total energy as a functional of nuclear position as well as all prop-

erties that can be derived from this theory. The three terms in the square bracket (see

Figure 2.3) represent the kinetic energy of electrons, the Coulomb potential due to all

charges in the system, and the exchange-correlation potential. The definition of the

system and the level of the theoretical approach are given by these three terms. The

one-particle wave functions are labeled according to the number of electron level.

In a periodic system, the wave functions are characterized by an additional quantum

number, k, which corresponds to the momentum of the electron in the crystal. The

one-electron eigenvalues carry the same labels. DFT calculations for systems with
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lighter elements (up to about Z=54) are usually done non-relativistically. It is pos-

sible to include relativistic effects through a scalar-relativistic or a fully relativistic

description. Scalar relativistic treatment means that the important kinematics effects

due to the high kinetic energy of electrons near heavy nuclei are taken into account,

but that one averages over the spin-orbit splitting of the electronic levels [45] the

Coulomb potential term.

DFT calculations are possible for non-periodic systems. The chemical and

structural definition of a system is contained in a collection of atoms such as clus-

ters and molecules and for systems with one, two, and three dimensional periodicity.

The use of point or space group symmetry can lead to significant reduction in com-

putational cost as well as to a clear interpretation of the resulting wave functions that

reflect this symmetry.

In all electron full potential calculations, the Coulomb singularities arising

from the nuclear charges and the full three-dimensional structure of the potential

are being taken into account without any approximations. In densely packed systems

such as metals and alloys, the effective potential is quite well represented by a muf-

fin tin shaped potential. Around each atom the potential is assumed to be completely

spherical up to a certain radius, which is typically about 1 Å. Between these atomic

spheres the potential is assumed to be constant. In this approximation, the Coulomb

singularities at the atomic positions as well as the steep variation of the potential near

the nuclei are still present. Another shape approximation to the potential has become
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widely used in the form of pseudopotentials [46]; [47]; [48]; [49]. The objective of

pseudopotentials is the elimination of the Coulomb singularities at the nuclear po-

sitions and the smoothening of the potential near these singularities. However, no

other shape approximations such as constant potentials between the atoms are made

in pseudopotential calculations.

2.5.1 Plane-wave (PW) pseudopotential method

The cornerstone of the plane wave pseudopotential method is the expansion of the

electronic wavefunctions with the plane wave basis. The computational task is to

minimize total energy functional, derived from the DFT, with respect to the coeffi-

cients of the plane wave basis set. The success of the PW pseudopotential method

originates from iterative diagonalization method [50], [48] which reduce the compu-

tational cost of the minimization procedure significantly. For a typical system with

100 basis states and 10000 plane-waves per state this means a reduction of the com-

putational operations by a factor of 100 000, when compared with the conventional

direct diagonalization of the Hamiltonian matrix.

It is practical to calculate some of the terms of the total energy functional in real

space (r-space) and some of them in the momentum space (k-space). For instance,

consider the calculation of the Laplacian in the plane wave basis where the terms in-

volving gradients are easily evaluated in the k-space while in r-space their calculation

is not straightforward. The charge density, on the other hand, is easily calculated in
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real space, since it is just a square of the magnitude of the wavefunction. The two

representations are connected to each other via the Fourier transformation. We have

used Fast Fourier Transformation because the transformation between the two spaces

is cheap to compute.

The plane wave basis is well suited for the expansion of the smooth valence-

electron wavefunctions. In contrast, the core electron wavefunctions (electronic

states close to the atomic nucleus) are often sharp and therefore would need a huge

amount of plane waves to be expanded properly. However, the effect of the core

electrons to the properties of the material does not change significantly as the atom

is transferred from one chemical environment to another. Therefore, the obvious so-

lution is to replace the nucleus and the inert core electrons with a pseudopotential

which is usually derived from a free atom all electron calculation. The validity of

this approximation is well established in a large amount of studies[51].

A further essential part of the PW pseudopotential calculations is the applica-

tion of supercells, where the system including the defect is enclosed in a so-called

supercell satisfying the periodic boundary conditions. If the supercell size is chosen

large enough, an approximation of an isolated defect in an infinite lattice is obtained.

For further details of the PW pseudopotentials method the reader is asked to see for

example the excellent review article by Payne et al. [48].
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2.5.2 Bloch’s theorem and plane wave basis sets

As yet there has been no mention of how to handle the infinite number of interacting

electrons moving in the static field of an infinite number of ions. Essentially, there

are two difficulties to overcome: a wavefunction has to be calculated for each of the

infinite number of electrons which will extend over the entire space of the solid and

the basis set in which the wavefunction will be expressed will be infinite.

The ions in a perfect crystal are arranged in a regular periodic way (at 0K).

Therefore the external potential felt by the electrons will also be periodic, and it as

being same as the length of the unit cell. That is, the external potential on an electron

can be expressed as

V (r) = V (r + 1) (2.43)

This is the requirement needed for the use of Bloch’s theorem.

Bloch’s theorem uses the periodicity of a crystal to reduce the infinite number

of one electron wavefunctions to be calculated to simply the number of electrons in

the unit cell of the crystal (or half that number if the electronic orbitals are assumed

to be doubly occupied, that is spin degenerate). The wavefunction is written as the

product of a cell periodic part and a wavelike part

ψki(r) = exp(ik.r)fi(r) (2.44)

The first term is the wavelike part which will be discussed below. The second

term is the cell periodic part of the wavefunction. This can be expressed by expand-

ing it into a finite number of plane waves whose wave vectors are reciprocal lattice
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vectors of the crystal

fi(r) =
X
G

CiG exp(iG.r) (2.45)

where are the reciprocal lattice vectors which are defined by for all where is a

lattice vector of the crystal. Therefore each electronic wavefunction is written as a

sum of plane waves

ψi(r) =
X
G

Ck+G
i exp[i(k +G).r] (2.46)

By the use of Bloch’s theorem, the problem of the infinite number of electrons

has now been mapped onto the problem of expressing the wavefunction in terms of

an infinite number of reciprocal space vectors within the first Brillouin zone of the

periodic cell, . This problem is dealt with by sampling the Brillouin zone at special

sets of k-points

The electronic wavefunctions at each k-point are now expressed in terms of a

discrete plane wave basis set. In principle this Fourier series is infinite. However, the

coefficients for the plane waves, Ci, K+G, each have a kinetic energy (Ke)

Ke =
}2

2m
|K+G|2 (2.47)

The plane waves with a smaller kinetic energy typically have a more important role

than those with a very high kinetic energy. The introduction of a plane wave energy

cutoff reduces the basis set to a finite size.

This kinetic energy cutoff will lead to an error in the total energy of the system

but in principle it is possible to make this error arbitrarily small by increasing the size
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of the basis set by allowing a larger energy cutoff. The cutoff that is used in practice

depends on the system under investigation.

Another advantage of expanding the electronic wavefunctions in terms of a basis

set of plane waves is that the Kohn-Sham equations take a particularly simple

form. Substitution of equation (3.24) in to the Kohn-Sham equations, (3.17), gives

KS =
X
G0
{ }2
2m

|K+G| δ0GG + Vion(G−G0)

+Velec(G−G0) + Vex(G−G0)}X Ci, K +G0 = ςiCi,K+G
0

(2.48)

It can be seen in this form that the reciprocal space representation of the ki-

netic energy is diagonal and the various potentials can be described in terms of

their Fourier components. Usual methods of solving the plane wave expansion of

the Kohn-Sham equations is by diagonalisation of the Hamiltonian matrix whose

elements are given by the term in curly brackets. It follows that the size of the

Hamiltonian matrix is determined by the energy cutoff (Kc)

We would show that it is not necessary to solve this by conventional matrix

diagonalisation techniques, but a more computationally efficient method exists where

the plane wave coefficients are treated as dynamical variables.
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2.6 CASTEP

CASTEP (Cambridge Serial Total Energy Package) is a software package [52] which

uses density functional theory (DFT) to provide a good atomic-level description of

all manner of materials and molecules. CASTEP can give information about total

energies, forces and stresses on an atomic system, as well as calculating optimum

geometries, band structures, optical spectra and much more. It can also perform

molecular dynamics simulations.

CASTEP is an ab initio (first principle) quantum mechanical program employ-

ing DFT to simulate the properties of solids, interfaces, and surfaces for a wide range

of materials classes including ceramics, semiconductors, and metals. First principle

calculations allow researchers to investigate the nature and origin of the electronic,

optical, and structural properties of a system without the need for any experimental

input other than the atomic number of mass of the constituent atoms. CASTEP is

a computational programme package well suited to research problems in solid-state

physics, materials science, chemistry, and chemical engineering where researchers

can employ computer simulations to perform virtual experiments, which can lead to

tremendous savings in costly experiments and shorter developmental cycles.

2.7 GULP

GULP(General Utility Lattice Program) [53] is a program for performing a variety

of types of simulation on 3D periodic solids, gas phase clusters and isolated defects
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in a bulk material. In particular it is designed to handle both molecular solids and

ionic materials through the use of the shell model. One difference between GULP

and other similar programs is that symmetry is used for solids to accelerate the cal-

culations and to simplify the input. This can lead to up to an order of magnitude

improvement in computational efficiency. This features subsequently allows for a

simultaneous multi structural fit routine.

2.7.1 MARVIN

MARVIN (Minimization And Relaxation of Vacancies and Interfaces for Neutral

Surfaces) program was developed at Royal Institution of Great Britain for studying

surfaces and interfaces. MARVIN is based upon a similar code MIDAS developed

by Taser in the late 1970’s. It has capability of calculating the surfaces energies and

also allows the introduction of ions and molecules to the surfaces, which is important

in modeling crystal growth and catalysis. This code considers a simulation cell of a

finite number of atoms, which are repeated in two dimensions. The cell consist of a

region I and II. In this regard Marvin relax region I atoms explicitly whereas those in

Region II remain fixed. The total energy of the system defined as the energy of all

the regions I structural units, all the regions II structural units and periodic image of

both.
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Chapter 3
Prediction of crystal structures

In this chapter we will focus on the prediction of structural parameters, e.g.

testing the potentials of CaS in atomistic simulation since they were never used

before, sampling the K-point mesh, determining cutoff energy in DFT calculation,

determining the radii size using Mott-Littleton technique involving atomistic calcu-

lations, determining the surface stability of different surfaces in both DFT and atom-

istic calculations.

3.1 Bulk structure and properties

CaS and CaO have cubic rock salt structure as shown in figures 3.1 and 3.2 respec-

tively, with eight atoms per unit cell. The lattice parameters of CaO and CaS are

predicted and compared with experiments and previous calculations. As shown in

Figure 3.1, Oxygen (red colour) and Calcium (blue colour) are the building blocks

of CaO, and for CaS there is Calcium and Sulphur (yellow). These compounds are

insulators, and that means they have a sufficiently large bandgap as compared to

other semiconductors and metals. The densities of CaO and CaS are 3340 kg/m3 and

2600 kg/m3 respectively, and the melting point of CaO is 29000C, and that for CaS

is 24000C. The high melting points of these compounds show clearly that they have

high heat resistivity and consequently they can be applied at a very high tempera-
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ture in industrial applications. The structural optimization of CaO and CaS systems

has been performed in both ab initio (DFT) and atomistic simulations. Lattice para-

meters have been varied and the most stable value has been calculated to be 4.805Å

and 5.747Å for CaO and CaS respectively as shown in Figure 3.3. Both values of

CaO and CaS lattice parameters compare well with experimental values 4.810Å [55],

4.165Å [56] for CaO and 5.690Å for CaS [55]. These values have been obtained by

using atomistic simulation method. For DFT calculations where done on default and

GGA functional has been applied in all calculations. Structural optimizations were

performed at absolute zero temperature (0K) for DFT and atomistic simulation calcu-

lations. Using the same lattice constant we have managed to calculate bulk modulus.

The bulk modulus is given by the ratio of pressure to the relative decrease in volume.

The bulk moduli of CaO and CaS obtained using atomistic simulation at equilibrium

values are 81.2 GPa and 56.0 GPa respectively. These values are compared with the

results obtained using DFT calculations at 100 GPa and 128 GPa for both CaO and

CaS bulk modulus, where 56.12 GPa [56] and 62.12 GPa [58] were obtained respec-

tively.
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Figure 3.1: The graphs of energy vs lattice parameter of CaO and CaS (Atomistic
simulation method).
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Table A - Short-range potentials

Interaction of ions A(eV) r(Å) C(eVÅ6) Potential cutoff (Å)
O shel O 22764.0000 0.149000 27.8800 12.000
O shel Ca 1228.9000 0.3372 0.0000 12.000
Ca charges = 2.0000
S core = 0.848190
S at shell = -2.848190
Spring constant = 74.720380

Table B

Ca core S 704.71153 0.430154 0.0000 12.000
O shel S 9398.0000 0.149.0000 120.80827 12.000
Ca charges = 2.0000
S core = 0.568500
S at shell = -2.568500
Spring constant = 13.838260

Table 3.1: The Potential parameter derived by Lewis and Catlow in table A and K
Wright in table B (Unpublished.)

3.2 Atomistic calculations

3.2.1 Potential parameter used in this study

The atomistic simulations for this study used Buckingham potentials type that was

fitted to experimental values. These potentials were used in various structural cal-

culations, and have proven to be valid since they reproduce experimental values and

those from other computational methods as well. Potential parameters used in this

study have been derived by Catlow and Lewis (CaO) [69] and Wright (CaS) unpub-

lished. Since CaS potentials were never used before, they will be tested in this study

for validity of yielding the necessary thermodynamic properties. Study for validity

of yielding the necessary thermodynamic properties.
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3.2.2 K-points sampling

In the atomistic method we sampled 4x4x4, 6x6x6, 8x8x8 and 10x10x10 k-points.

We have chosen 10x10x10 k-points since it is more accurate and can be handled by

the supercomputer. These k-point values will be applied in all atomistic calculations

to investigate other structural properties. This k-point sampling will help in simulat-

ing the material so that it gives results that are comparable with other experimental

and computational methods.

3.2.3 Radii variation in atomistic simulation

The region size sampling method in the Mott-Littleton approach helps to control the

interaction around the defect centre (region one) without introducing major effect on

region two. When the defect is introduced in the crystal structure, it causes disruption

of the system. By varying the region one size, we attempt to ensure that the disruption

caused by introduction of the defect occurs in this region (region one) only. We

further carried out a convergence test to ascertain that defect energies will not change

by more than a small amount as shown in Figure 3.4, that the size of region one

is increased. The calculated results in Figure 3.4 show that the region 1 size that

gives the lowest energies is 9Å. The values obtained were applied in all systems to

investigate other structural properties in this study.
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Figure 3.2: Energy (eV) vs region size variation (Å)
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Figure 3.3: Bulk modulus vs temperature in CaS systems

3.2.4 Dependence of potential parameters on the crystal structures
of CaS

CaS potentials derived by Wright (unpublished) have been tested in this study since

they were never used before. The potentials were fitted using the atomistic simula-

tion methods and the calculations were performed to yield various thermodynamic

parameters, e.g. temperature, bulk modulus and volume etc.. Generally, the calcu-

lated values agree reasonably with the experimental thermodynamic quantities. The

equilibrium lattice parameter of CaS obtained from this calculation is 5.667Å (fig-

ure 3.2), and it compares well with 5.689Å from the experiment [66].The calculated

lattice parameter, from this study, using DFT is 5.747Å. The bulk modulus of CaS
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Figure 3.4: Volume of a unit cell vs temperature in CaS system
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obtained using the atomistic method is 62.12 GPa and this value compares well with

64.00 GPa from experiment by [66]. All graphs shown in this study depict similar

trends as those predicted by Cortona et al [67]. Figure 3.5 shows the variation of the

bulk modulus of CaS with temperature, and as expected it becomes softer as the tem-

perature increases. The bulk modulus of CaO obtained from this study is 137.1 GPa.

This compares reasonably well with 109.0 GPa from DFT calculations [69]. The cal-

culated lattice parameter of CaO is 4.805 Å and this also compares well with 4.810Å

[55] and 4.8163Å [68] from experiment. Figure 3.6 shows the relationship between

volume and temperature at zero pressure, and all predictions were carried out using

the potentials derived by Lewis and Catlow [69] listed in table 3.1. We have, gener-

ally, confirmed the reliability of the CaS and CaO potentials by reproducing certain

experimental thermodynamic properties. We are consequently confident to extend

atomistic simulation studies to other structural properties using these potentials.

3.3 CASTEP calculations

3.3.1 K-points sampling

Calculations can be done at a finite number of k-points shown in Figure 3.7. Owing

to time limitations, it is necessary for the structure to converge within a reasonable

time, and consequently a reasonable number of k-points values are needed. An in-

crease in k-points on the system, results in the system requiring more memory. Due
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Figure 3.5: Kinetic energy vs K-Points sampling of CaS and CaO systems
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to the memory limitation, we have tried to determine the lowest values of k-points

that can perform accurate calculations in a supercomputer. The results obtained show

clearly how we sample the k-point mesh in the system. Ultrasoft pseudopotential, in

DFT, would determine the accuracy of k-points sampling. For calculations in the cur-

rent study, we have used Monkhorst and Pack (1976 k-points sampling [70]. In DFT

calculation, k-points were determined using chosen energy cutoff (250 eV). Several

calculations were done using single point energy minimization to sample k-points

values that give good structural prediction of the results and that will compare well

with the experiment. In DFT, we have obtained 3X3X3 k-points values as shown in

Figure 3.7 for both CaO and CaS systems. The same parameters were used to pre-

dict other structural properties. In surface application we have used 3X3X1 k-points

sampling to reproduce similar results because we found that the lattice parameter of

a = b, however, c is much larger than in the bulk.

3.3.2 Cutoff energy for convergent calculations

Using the k-points sampling determined from the previous subsection 3.2.2, the cut-

off energy was determined by performing a series of calculations as shown in Figure

3.8. From this minimum energy cutoff, we have investigated other structural proper-

ties that would give us the most comparable results with experiment. As shown in the

Figure 3.8, it can be deduced that the convergence is achieved as from 350eV; hence

we will consider 450eV as our cutoff energy in this study. The energy cutoff deter-
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Figure 3.6: Total energy of CaO vs energy cut-off

mined, as indicated in the graph will be used to predict other structural properties in

this study.

3.4 Comparing the two methods

3.4 In the Table 3.2, we compare the DFT and atomistic calculations. The results

obtained show the correlation of these two methods. Lattice parameters for both

Crystal structure Lattice parameter (Å) Bulk Modulus (GPa) Lattice.parameter Exp. (Å)
DFT Atomistic DFT Atomistic Ref[55] Ref[56]

CaO 4.805 4.805 100 128 4.810 4.165
CaS 5.747 5.667 56 62 5.690

Table 3.2: The Table comparing results for DFT and atomistic calculations
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methods are comparable with other cited results for both CaS and CaO [55], and

CaO [56]. These results give us confidence in investigating other structural properties

using this method.

3.5 Surface calculations

3.5.1 Convergent test for the (100) surfaces layers

In our previous atomistic study the planewave pseudopotential calculations for both

bulk CaS and CaO showed good agreement of the lattice parameters with other

calculations [68]. The planewave pseudopotential method was further used to de-

termine the number of layers to be considered in surface energy studies. Geometry

optimization was performed for several numbers of layers and corresponding surface

energies were calculated. The CaO (100) surface, as shown in Figure 3.9 indicates

that we can consider at least three layers. Since on this study we want the orientation

of oxygen atom on the top layer to be at the centre of Ca’s, then we will add extra

layer that will make three and half layers (seven layers). The adsorption of molecules

would be done on three and half layers of both CaO (100) and CaS (100) surfaces,

where each layer consists of two atoms. The stability of these surfaces agrees well

with similar work done by de Leeuw et al [4] using a different computational method

(Metadise code).
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Figure 3.7: The convergence of the surface energy with the number of layers of CaO
(100)
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Surfaces DFT Calculation (KJ/mol Atomistic Calculations KJ/mol METADISE(KJ/mol)[4]
CaO (100) 0.949 0.750 0.770
CaO (110) 1.188 1.970 1.950
CaO (111) 3.945 4.830 2.470
CaO (140) 0.983 1.035
CaO (130) 1.016 1.148 1.150
CaS (100) 0.796 0.437
CaS (110) 1.012 1.109
CaS (111) 1.897 1.536

Table 3.3: Table that indicates the stability of different surfaces of both CaO and CaS.

3.5.2 Stability of surfaces layers for DFT and atomistic
calculations

The surface energies of the low index surfaces (100), (110) in (111) and table 3.3

suggests that the (100) surface layer is the most stable surface and (111) is the least

stable surface for both CaO and CaS using both methods of calculation. This predic-

tion is in agreement with other previous interatomic potentials calculations [4]. This

agreement also gives us confidence in working with surfaces to investigate other sur-

face properties. We shall use DFT method to study the (100) surface for adsorption

of molecules and atomistic calculation shall be employed to investigate all surfaces.

3.6 Summary

The prediction of structural properties using both DFT and semi atomistic methods

show that the most stable surfaces are CaO (100) and CaS (100). We have therefore

decided, from these results, to consider investigation of the adsorption behaviour of

molecules at different coverage’s on such surfaces. In the testing of Wright’s poten-
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tials, employed in this study, expected thermodynamic parameters (e.g. temperature,

volume and bulk modulus) have been well reproduced. According to the results, we

have to consider CaO (100) and CaS (100) to investigate the adsorption behaviour of

molecules in DFT calculations.
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Chapter 4
Atomistic simulation calculations of CaO

and CaS

4.1 Introduction

Atomistic simulations are well suited for calculations of the structure and relative

stability of a whole range of metal oxides. However, the high temperatures and pres-

sures found within the earth make the use of simulation even more appealing because

experiments are often difficult and subject to a high degree of error. It is always en-

sured that CaO and CaS systems are handled with care so that they can represent real

existing system. In this case we even calculated the radius variation of both region

one and region two on the bulk crystals of both CaS and CaO structures. The detailed

information of this approach will be given and defect energies will be calculated by

applying Mott-Littleton method in GULP code. Migration of atoms from lattice po-

sition to vacant position will be explained in this chapter. The activation energy will

be determined from graphs shown in this chapter. Surface energy is the energy re-

quired to cleave the surfaces of a bulk system. As explained in the previous chapter,

different surfaces layers will be considered. The number of surface layers required to

achieve convergence will also be considered. The introduction of foreign atoms on

the surface and their impact will be discussed in this chapter.
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4.2 Introduction of defects and diffusion

Table 4.1 and Figures 4.1- 4.4 show the migration path of atoms within the crystal

structures of CaS and CaO systems. This migration path has been obtained by mov-

ing an atom from lattice site via interstitial site to an adjacent lattice vacancy. This

describes the simplest path preferred by an atom when migrating from one vacant

position to the other with a minimum interacting energy with the surrounding atoms.

The activation energy is defined as the energy required for overcoming the barrier for

the diffusion process to occur as shown in Figures 4.1- 4.4. On the graph we have de-

termined the activation energy as the difference in minimum and maximum energies

on the plotted graphs, where we have the energy at the saddle point, and the energy

at initial configuration, with one site vacant. In Figure 4.4, we note the differ-

ence from other related plots, (Figures 4.1-4.3), and this, we attribute to the fact that

oxygen atom does not migrate smoothly in CaO as other atoms do (i.e. S in CaO, S

in CaS and O in CaS bulk crystals). The trend of activation energies of O and S in

both CaO and CaS crystals obtained in this study does not have direct comparison

with either experiment or

other computational calculations. The only comparison can be with diffu-

sion of other molecules in the same systems. Activation energies of O in CaO, S

in CaO, O in CaS and S in CaS are 176.737kJ/mol, 116.049kJ/mol, 86.340kJ/mol

and 124.930kJ/mol respectively. The activation energy from experiments, was ob-

tained when the migration of H2S and SO2 molecules occurred in the bulk crystal
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Figure 4.1: The diffusion of S in CaO bulk crystal
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Figure 4.2: The diffusion of S in CaS bulk crystal
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Figure 4.3: The diffusion of O in CaS bulk crystal
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Figure 4.4: The diffusion of O in CaO bulk crystal
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Defects Type CaO (eV) CaS (eV)
Ca Interstitial -9.88 -8.88

Vacancy 21.45 17.19
Schottky -22.70 -24.10
Frenkel 11.57 8.31

Interstitial -10.39
O Vacancy 21.84

Impurity -5.19
Frenkel 11.45

Interstitial -9.62
S Vacancy 17.03

Impurity 7.86
Frenkel 7.45

Table 4.1: Calculation of defects energies using atomistic technique.

of calcined limestone, ranging between 25 (104.67 ) to 43 kcal/mol (180 kJ/mol).

Borgwardt et al [2] obtained the activation energy of 42 kcal/mol in the study of the

reaction of H2S and sulphur with the limestone. The results were obtained at the

temperature of 7500 C, with the particle size in the range 1.6-1.00μm. Even though

the comparison does not pertain to the same crystal, it gives a good idea since they

belongs to the same category of oxides.

4.3 Defects formation in CaO and CaS crystals

A defect is created during the removal or addition of an extra atom in the crystal

and the total energy of the system are altered. After the addition of defects, the

system experiences structural relaxation. The defect formation (Vacancy, Interstitial

and impurity) are calculated according to equation 4.1 on the relaxed bulk systems

given by:
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Edefects = Ewith−defects − Ewithout−defects (4.1)

where Edefects it the total defect energy of the relaxed system, Ewith−defectsDEp

is the total energy of the relaxed system without defect and Ewithiout−defects is the

total energy of the relaxed system with defect.

The formulae defined in equation 4.1 were used to calculate defect (Vacancies,

interstitilas and impurities) energies shown in CaO and CaS are shown in the table

4.1, and for Schottky and Frenkel Defects were calculated by equation 4.2 and 4.3

respectively. The equations are given by:

Schottky_Def = E(total_energy_of_V ac) + E(Latt_Energy) (4.2)

Frenkel_Def = E(V ac) + E(Inter) (4.3)

The results in table 4.1 reflect the energies required to form a defined defect in CaO

and CaS.

The formation of vacancies in the CaO and CaS bulk crystal as shown in table

4.1 is energetically less demanding compared to the addition of atoms at the intersti-

tial site in the same bulk crystals of CaO and CaS. Addition of foreign atoms in the

crystals constituted impurities, e.g. addition of oxygen atom in CaS bulk crystal and

sulphur atom in the CaO bulk crystal. The formation of an impurity in the mentioned

bulk crystal is less demanding compared to the formation of defects on the interstitial

site. We have also calculated the Schottky and Frenkel using equations 4.2 and 4.3
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Surface energy of CaS (100) and CaS (100) with defect(s) on the surface layer
Quantity of Defects CaO (100) kJ/mol) Quantity of Defects CaS (100) kJ/mol)
0 S 0.823 0 Ox 0.437
1 S -12.891 1 Ox -0.110
2 S -29.428 2 Ox -0.726
3 S -39.819 3 Ox -1.173
4 S -43.112 4 Ox -1.924
5 S -50.612 5 Ox -2.959
6 S -63.172 6 Ox -3.307
7 S -89.554 7 Ox -3.923
8 S -105.91 8 Ox -9.344

Table 4.2: The surface energies of CaO (100) and CaS (100) and how they are af-
fected by an increase in coverages of both Oxygen and Sulphur on the surfaces.

respectively to justify our discussion of defects. As shown on Table 4.1, the results

suggests same predictions given by the vacancies and intestinals results as discussed

above.

4.4 Doped surfaces of CaS (100) and CaO (100)

Doped surface layers of CaS (100) show similar trends when compared to the doped

surface layers of CaO (100) in Table 4.2. The surface energies of both surfaces de-

crease with an increase in the percentage coverage on the surface layers. It is apparent

that the CaO (100) surface energies became negative as the coverage of S increases.

Similarly, CaS (100) surface energies follow the same trend as the oxygen coverage

increases. According to de Leeuw et al [4], when the surface energy changes to neg-

ative values, as shown in Table 4.2, the bulk crystal becomes unstable. The negative

stability suggests that the surface collapses as the coverage of atoms increases on the

surface. Consequently, the formations of both CaO and CaS on the surfaces
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Surface energy of CaS with defect(s) at edge position(s)
Quantity of defects on the layer CaS (110) kJ/mol CaS (510) kJ/mol

1 Ox 0.636 0.419
2 Ox 0.172 0.297
3 Ox -0.376 0.179
4 Ox -0.847 0.058
5 Ox -1.233 -0.061
6 Ox -1.817 -0.181
7 Ox -2.147
8 Ox -2.917

Table 4.3: The surface energies of CaS and how they one affected by an increase in
coverage of Oxgen on the edge position.

were formed spontaneously. The atom-atom exchange of O with S is more

exothermically favourable since the surface energy becomes more negative as the

coverage increases on both CaO (100) and CaS (100) surface layers. From the results

obtained in this work, we deduce that the surface became more stable than the bulk,

and as a result it predicts the spontaneous formation of CaS on the surface. Similarly

spontaneous formation of CaO occurs on the surface of CaS (100), since they follow a

similar trend of negative surface energies. This implies that the atom-atom exchange

of O and S is more exothermically favourable.

4.5 Doped surfaces of CaO (110) and CaS (110) on both
edge and valley

The surface energies of CaO (110) on the edge position in Table 4.4 give opposite

trends as compared to CaS (110) on the edge position in Table 4.3. The oxygen

percentage coverage on surface layers of CaS is favourable up to 25%, as from 37.5%
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Quantity of defects Surface energy of CaO with defect(s) at the edge position(s)
CaO (110) KJ/mol CaO (510) KJ/mol

1 S 2.674 1.212
2 S 3.426 1.420
3 S 4.059 1.592
4 S 4.837 1.801
5 S 5.559 1.975
6 S 6.443 2.184
7 S 7.183 2.358
8 S 8.082 2.568

Table 4.4: The surface energies of CaO and how they are affected by an increase in
sulphur coverage on the edge position.

Surface energy of CaS with defects at the valley positions
Quantity defects on the layer CaS (110) KJ/mol CaS (510)KJ/mol
1 Ox 0.645 0.419
2 Ox 0.114 0.317
3 Ox -0.376 0.179
4 Ox -0.727 0.099
5 Ox -0.077
6 Ox -1.514
7 Ox
8 Ox -2.547

Table 4.5: The surface energies of CaS and how they are affected by an increase in
Ox coverage on the valley position.

Surface energy of CaO with defects at the valley positions
Quantity defects on the layer CaO (110) kJ/mol CaO (510)kJ/mol
1 S 0.855 1.280
2 S 1.145 1.420
3 S 1.443 1.759
4 S 1.342 1.998
5 S 1.542 2.246
6 S 2.301 2.494
7 S 2.583 2.743
8 S 2.874 2.992

Table 4.6: The surface energies of CaO and how they are affected by an increase in
S coverage on the valley position.
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Surface energy of CaS (111) for the terminated surfaces
Qunatity of defects on the layer CaS (111)Ca kJ/mol CaS (111)S kJ/mol
0 Ox 1.412 1.375
1 Ox 0.032 0.912
2 Ox 0.477 0.470
3 Ox 0.032 0.019
4 Ox -0.399 -0.412
5 Ox -0.820 -0.812
6 Ox -1.245 -1.175
7 Ox -1.633 -1.562
8 Ox -2.025 -1.913

Table 4.7: The surface energies of CaS (111) and how they are affected by an increase
in coverage of both Calcium, Sulphur with Ca for Calcium terminated surface and S
for Sulphur terminated surface

the formation of CaO starts to be favourable like the formation of CaS on the CaO

(100) surfaces layers. On CaS (110) surface layers, the coverage became more stable

on the valley than on the edge. This implies that the formation of CaO is favoured on

the valley than on the edge. On doping at both edge and valley positions (Table 4.4

and 4.6), theCaO (110) becomes unstable as the sulphur coverage increases, while the

stability increases on the CaS (110) with the increase in the oxygen coverage up to

certain percentages. An increase in the instability of the CaO (110) surface decreases

the formation of CaS on the surfaces. From this we deduce that the formation of CaS

on the CaO (110) is not favoured.

4.6 Doped surface of CaO (111) and CaS (111)

The instability of CaO (111) surfaces as shown in Table 4.8 increases as the percent-

age of S coverage increases. This implies that the formation of CaS on CaO (111)
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Qunatity of defects on the layer Surface energy of CaO (111) for the terminated surfaces
CaO (111)Ca KJ/mol CaO (111)Ox KJ/mol

0S 2.778 2.741
1S 3.026 3.391
2S 3.723 4.044
3S 4.057 4.210
4S 4.864 5.129
5S 5.273 5.166
6S 6.107 5.578
7S 6.651 6.540
8S 7.801 8.588

Table 4.8: The surface energies of CaO (111) how they are affected by an increase in
coverage on both Calcium, Oxygen with Ca for Calcium terminated surface and Ox
for Oxygen terminated surface
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surface is not favoured. Table 4.7 depicts how the stability of CaS (111) increases

as the percentage coverage of O increases. This shows that the CaO is likely to be

formed on the S-vacancy of CaS (111). In comparison, the formation of CaS on CaO

(111) surfaces is preferable on the Ca-terminated surface than on the O-terminated

surface up to 50% coverage. Above such percentage coverage, the formation of CaS

appears to be favourable on the O terminated surface. However, the percentage cov-

erage of O on the CaS increases up to 50%, after which the surface collapses. This

implies that the formation of CaO on the CaS (111) surface layers is favoured in the

bulk crystal than on surfaces. On the CaO (111), the stability is not favoured for

both Ca-terminated and O-terminated surfaces at all indicated S coverage’s. This im-

plies that the formation of CaS on the CaO (111) surfaces is not favoured on the two

terminations.

4.7 Doped surface CaO (510) and CaS (510)

Figures 4.5 and 4.6 show the structures of CaO (510) with the sulphur (S) located at

the valley and edge positions respectively. The same figures will be used to explain

the CaS (510) surface since the crystal structures are similar. In the same way as CaO

(110) and CaS (110) surface layers, the stability of the CaO (510) surface (Table 4.4)

decreases as the S coverage on the edge increases. Similarly the stability of CaS (510)

(Table 4.6) reduces at the S coverage in the valley increases. However in table 4.5

the stability of CaS (510) surface is enhanced with the increase of oxygen coverage,
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Figure 4.5: The CaO (510) surface layers of CaO where S is doped at the valley
positions

Figure 4.6: The CaO (510) surface layers of CaO where S is doped at the edge
positions
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in the valley position, up to 50%; at 62.5% the surface collapses. As in both CaS

(110) and CaO (110) surface layers, the stability became more favoured on the valley

than on the edge CaO (510) and CaS (510) calculated surfaces energies show the

same trends as CaO (110) and CaS (110). The instability of the CaO (510) surface

increases with sulphur coverage on both edges and valleys; where the edge doping

is more favourable. On the contrary, the stability of CaS (510) is enhanced with

increasing oxygen coverage at both edges and valleys. Beyond certain coverage, the

surface energies become negative, implying that the surface collapses as additional

oxygen atoms are introduced to the slab. The blank space in Table 4.3 and Table 4.5

on the CaS (110) and CaS (510) shows that the calculations exploded, consequently

we don’t have calculated surface energies.

4.8 Summary

In this chapter, we have shown how the migration of atoms in a crystal is calculated

using Mott-Littleton method. Atoms move from lattice a position via the chosen in-

terstitial path to another. The activation energies were determined and trends were

compared with similar study where the molecules diffuse in crystal material. The

defect energy calculations were also carried out, including Schottky and Frenkel de-

fects. We have studied introduction of S and O on the CaO (100) and CaS (100)

surfaces respectively. It was noted that these stable surfaces collapse as the percent-

age coverage of atoms increases. Surface energies, where S and O were located at
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edges and valleys on both (110) and (510) surfaces of CaO and CaS, were calculated

and depicted trends of stability. Studies of CaO (111) and CaS (111) with increasing

S and O coverage respectively have also been carried out.
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Chapter 5
Surface studies of CaO and CaS by Density

Functional Theory

In this chapter we will discuss the adsorption of the molecules, H2O, H2S,

HS and S2 on the CaS (100) and CaO (100) surfaces, studied by the DFT method

(CASTEP code). Only H2O will be adsorbed on the 2x2 and 1x1 unit cell surfaces

and other molecules will be adsorbed on the 1x1 surfaces of both CaS and CaO sys-

tems. The adsorption energies associated with different coverages of the molecules

will be calculated.

5.1 Adsorption of the molecules on CaO (100) and CaS
(100) surface slabs

5.1.1 Water molecule on the CaO (100) surface

Table 5.1 gives the adsorption energy of various molecules that are attached to the

CaO surfaces. On the CaO (100) surface, H2O molecules are likely to be intact, and

are attached to the monolayer as indicated in Figure 5.1. The calculated adsorption

energies at 25 %, 50 % , 75 % and 100 % coverages are -37.1 kJ/mol, -57.9 kJ/mol

-58.0 kJ/mol and -59.5 kJ/mol respectively. Hence at 25 % coverage H2O is least

adsorbed as compared to 50 % to 100 % coverages and the latter are very close to

each other. The adsorption energy results give similar trends as those of other DFT
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Figure 5.1: CaO (100) surface with 25% of H2O attached on both surfaces.
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methods [44], as demonstrated by -69.9 kJ/mol and -71.5 kJ/mol for 50 % and 100

% coverage respectively.

As shown in figure 5.1, the H2O molecules are located at the surface slabs.

The 25% coverage corresponds to one molecule attached to the surface. The distance

from oxygen of CaO surface to hydrogen of the H2O molecule is 1.043 Å . In the

case of 50 % coverage, two molecules are attached to the slab and the distances

between oxygen of CaO and hydrogen of H2O ranges from 1.051 Å and 1.078 Å.

For 75 % coverage, three molecules are located on the surfaces and the adsorption

energy is -58.0 kJ/mol and the distance of the nearest oxygen atoms on the top layer

and the H2O molecules distances are 1.042 Å, 1.122Å and 1.137Å. In all coverages,

we used the 2x2 supercell for calculations of adsorption energies, except for the 100

% coverage where the 1x1 surface was invoked. The latter coverage is made of

one molecule attached to each side of the surface slab. The adsorption energy of

this coverage is -59.8 kJ/mol and the nearest distance of the oxygen of CaO and

hydrogen of the H2O molecule was calculated as 1.465 Å. The short distance shows

that H2O molecules prefer to interact strongly with the surface. The attachment of

the molecule on surfaces, also has an impact on other layers below the surface. The

distance between oxygen and calcium, after relaxation, changed from 2.371 Å to

2.368 Å and from 2.409 Å to 2.270 Å.
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5.1.2 H2O molecule on the CaS (100) surface

The calculated adsorption energies of H2O molecules on CaS are -44.4, -30.1, -47.4

and -47.4 kJ/mol for 25%, 50%, 75% and 100% coverages respectively, and do not

reflect similar trends as those on the CaO surface (Table 5.1). The least adsorption

of H2O occurs at 50% coverage, unlike in CaO where it was noted at 25%. Simi-

larities in CaO and CaS are observed at high coverages, i.e. 75 % and 100%, where

adsorption appears to saturate. In the 25% coverage of CaS (100) surface, one H2O

molecule is attached to the each side of the slab. The distance between hydrogen of

H2O molecules and sulphur of CaS (100) surface on top layer is 2.277 Å At 50 %

coverage, where two H2O molecules are located on the surface slab, the nearest dis-

tances of hydrogen of H2O molecule and sulphur of CaS (100) on the surface are

2.215 Å, 2.212 Å. 75% coverage is associated with three molecules attached to the

top surface and the corresponding distances of H2O molecules at 75% coverage are

2.370 Å, 2.189 Å, 2.218 Å. The 100 % coverage were done on 1x1 surface and its

distance of hydrogen of H2O molecule and sulphur of CaS (100) surfaces is 2.358

Å. There are currently no experimental results or previous calculations available to

compare with our values for CaS.

5.1.3 Adsorption of H2S, HS and S2 on both CaO (100) and CaS
(100) surface slabs

The adsorptions of all molecules mentioned in this section were simulated on the

1x1 surfaces of CaO (100) and CaS (100). Table 5.1 gives the adsorption energies
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Surfaces Molecules Percentage coverage Energy in kJ/mol
CaO H2O 25 −37.1
CaO H2O 50 −59.9
CaO H2O 75 −58.0
CaO H2O 100 -59.8
CaO H2S 100 -4.34
CaO HS 100 -21.3
CaO S2 100 -113.0

CaS H2O 25 -44.4
CaS H2O 50 -30.1
CaS H2O 75 -47.4
CaS H2O 100 -47.4
CaS H2S 100 -141.0
CaS HS 100 not properly converged
CaS S2 100 -127.0

Table 5.1: The adsorption energy of molecules attached on both (100) surface layers
of CaO and CaS super cells.
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for 100% coverage of H2S, HS and S2 on CaO (100) as -4.34, -21.3 and -113.0

kJ/mol respectively. It is apparent that S2 is the most adsorbed molecule whilst H2S

is the least adsorbed. Reversed adsorption trends are reflected on the CaS (100)

surface, where H2S is the most adsorbed molecule (-141.0 kJ/mol) and S2 is the

least (-127.0 kJ/mol). The nearest distance of Ca on the CaO (100) surface and

the S of S2 molecule is 2.987 Å. In case of the H2S adsorption on the CaO (100)

surface, the nearest distance of S on the H2S molecule and O in the top centre of CaO

(100) surface is 1.05 Å. In comaparisson, H2S on the CaS (100) surface, the nearest

distance of hydrogen of H2S molecule and S at the centre of the top layer of CaS

(100) surface is 1.050 Å . The adsorption of S2 on the CaS (100) surface resulted in

the nearest distance from S of S2 molecule and Ca of CaS (100) surface as 3.472 Å.

5.2 Summary

In this chapter we have considered the adsorption of molecules on the CaS (100) and

CaO (100) surfaces. The adsorptions were done on 2x2 slab for H2O molecules and

1x1 slab for all other molecules both CaS (100) and CaO (100) surfaces, which were

helpful in varying surface coverage.

The adsorption results predict that H2S is the least adsorbed molecules on CaO

(100) surface and S2 is most adsorbed. For CaS (100) surfaces H2O is the least

adsorbed on all coverages in comaparisson with all other mentioned molecules and
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H2S is most adsorbed. Note that HS is out of comparison since is not propertly

converged.
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Chapter 6
Conclusion

In the current study, atomistic simulations and DFT methods have been used to

study defect and surface properties of CaO and CaS. Structural properties were cal-

culated and converged surface energies determined the most stable surfaces, which

also helped investigation of molecule adsorption on CaO and CaS systems. In atom-

istic simulations, region size variations were carried out for bulk systems in order to

determine defect formation energies; and some of these defects are, vacancies, in-

terstitials, impurities Schottky and Frenkel defects. The migrations paths of defects

from one lattice position via interstitial path to the other vacant positions were estab-

lished, and the activation energies of different types of defects were determined.

The contribution of O atoms on the CaS (100) surface and S on the CaO (100)

surface were studied by atomistic simulations. The surface energy calculations indi-

cated that the surface collapses as the coverage of the mentioned atoms is increased.

The negative values show that the mentioned atoms prefer to be in the bulk than on

the surfaces. In the case of CaO (110) and CaS (110) surfaces, an approach similar to

that of (100) surfaces was followed. The surfaces on the edge are stable as compared

to the surface energy on the valley. When we compare the overall surfaces energy

calculations of (110) and (100) surfaces, the latter are more stable. Such a conclusion

was reached by other previous calculations. It has further been shown that the for-
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mation of CaS on top of the CaO surface ( in atomistic calculations ) is not favoured.

CaO formation on the CaS surface is destabilizing the surface of CaS; as such the

formation is favoured on the bulk than on the surfaces

The adsorption of molecules on both CaS (100) and CaO (100) surfaces were

simulated at different surface coverages, using DFT calculations. A reduction of

H2O adsorption on the CaS (100) surface is noted from 25 to 50% coverage, which

is followed by an increase and saturation between 75 and 100%. H2O adsorption

on the CaO (100) surface is enhanced from 25 to 50% and remains almost constant

up to 100% coverage. In the case of the HS, H2S and S2 molecules, all calculations

were carried out at 100 % coverage on CaO (100) and CaS (100) surfaces. S2 and

H2S are respectively the most and least adsorbed molecules on CaO (100) surface.

With converged results, the H2S is the most adsorbed molecule on the CaS surface.

It is recommended that adsorption experiments be conducted on surfaces of CaO and

CaS, which will be useful for validating our predictions.
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Appendix A

Presented papers at the conferences

M.J Ramusi and P.E Ngoepe , "Computational studies of electronic and structural

properties of the first principle studies of CaO surfaces", presented at South African

Institute of Physics (SAIP) 24 -27 September 2002 held at Potchefstroom University.

M.J Ramusi and P.E Ngoepe , "Computational studies of structural properties of

CaO and CaS" presented at South African Institute of Physics (SAIP) 30 June 2004

held at the University of Free State.

M.J Ramusi and P.E Ngoepe , "Computational studies of structural properties of

CaO and CaS" presented at Material Modelling Meeting (MMM) 31 March 2004 at

University of Limpopo ( Turloop Campus ).
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