THE ANTI-PROLIFERATIVE, ANTIOXIDATIVE AND ANTI-INFLAMMATORY PROPERTIES OF THE D2 FRACTION AND HPLC SEMI-PURIFIED SUB-FRACTIONS OF *DICEROCARYUM SENECIOIDES*

by

PIRWANA KHOLOFELO CHOKOE

Dissertation

Submitted in fulfillment of the requirements for the degree of

Master of Science

in

Biochemistry

in the

Faculty of Science and Agriculture (School of Molecular and Life Sciences)

at the

University of Limpopo (Turfloop Campus)

SUPERVISOR:Prof. L.J MampuruCO-SUPERVISOR:Dr M.P Mokgotho

September 2011

DECLARATION

I declare that the dissertation hereby submitted to the University of Limpopo for the degree of Master of Science in Biochemistry has not been previously submitted by me for a degree at this or any other University, that it is my work in design and execution, and that all material contained herein has been duly acknowledged.

P.K Chokoe (Ms) Initials and Surname (Title) September 2011 Date

Signature: _____

DEDICATION

This work is dedicated to my son, Phuti, who has brought so much joy to his mommy's life; and to my late brother, Lekgau, whose encouragement I will forever cherish.

ACKNOWLEDGEMENTS

Firstly, I have to thank God for being my fountain of strength through the years. I am grateful that He has seen me through, even when I was on the brink of giving up on this work.

My family; Papa, Mama, Lefase, Lekgau and Thibe, and my son, Phuti, you have always put up with my dedication to my studies. Thank you so much for understanding the type of person that I am.

Andriena, Lerato, Sewela and Omphile you guys have been great friends and first-rate cheerleaders in both my academic and personal life. Thank you ladies.

My supervisor, Prof. Mampuru, you are one of the people who believe that I can perform miracles, and because of that belief, I am where I am today.

Dr Matsebatlela, Dr Mbazima and Dr Mokgotho, you invested a lot of your own time to help me complete this project. I am forever indebted to you.

I also acknowledge and thank the Bioprospecting team under Dr Maharaj at CSIR (Pretoria), specifically Dr Fouche, Mr Senabe and Mr Harding for their involvement in part of this project.

Thank you to the National Research Foundation and the University of Limpopo research office for their financial support.

Lastly, all the BMBT staff members, you helped me keep my sanity with your carefree personalities. I have never met such a cheerful team. You guys were great throughout.

TABLE OF CONTENTS

	Page
Title	i
Declaration	ii
Dedication	
Acknowledgements	iv
Table of Contents	V
List of Figures	
List of Tables	Х
List of Abbreviations	xi
Abstract	xiv
Chapter 1: Introduction	1
1.1 Introduction	1
1.2.2 Literature Review	2
1.2.1 The Inflammatory Response	2
1.2.2 NADPH Oxidase	2
1.2.2.1 Stimulation of NADPH Oxidase	4
1.2.2.2 Oxidase Activity	5
1.2.2.3 ROS Production	6
1.2.2.4 Chronic Granulomatous Disease	6
1.2.2.5 Inhibition of NADPH Oxidase	7
1.2.3 Nitric Oxide Synthases	9
1.2.3.1 NOS Structure	10
1.2.3.2 Reactive Nitrogen and Oxygen Species Production	10
1.2.3.3 Beneficial Effects of NO	10
1.2.4 Cyclooxygenases	12
1.2.4.1 Variations Between COX-1 and COX-2	12
1.2.4.2 Non-Steroidal Anti-Inflammatory Drugs	13
1.2.5 Antioxidants	14
1.2.6 The Liaison Between Free Radicals and Cancer	14
1.2.7 COX-2 and Cancer	16
1.2.8 Apoptosis	16

		Page
1.2.8.1	The Extrinsic Pathway	17
1.2.8.2	The Intrinsic Pathway	17
1.2.8.3	Caspases	18
1.2.9	Plants as Sources of Drugs	19
1.2.10	Rationale and Aim of the Study	20
Chante	er 2: Materials and Methods	22
2.1	Materials	22
2.1.1	Equipment	22
2.1.2	Chemicals, Cells and Culture Media	22
2.2	Methods	23
2.2.1	Plant Collection and Extraction	23
2.2.2	Cell Culture	24
2.2.3	MTT Cytotoxicity Assay	25
2.2.4	Real Time Cell Analysis	25
2.2.5	Morphological Evaluation of Apoptosis	25
2.2.6	DCFH-DA Oxidation Assay	26
2.2.7	Fluorimetric DCFH-DA Oxidation Assay	26
2.2.8	iNOS Activity Assay	27
2.2.9	Semi-Preparative High Performance Liquid Chromatography	27
2.2.10	Phytochemical Analysis by Thin Layer Chromatography	27
2.2.11	TLC-DPPH Antioxidant Screening	28
2.2.12	DPPH Radical-Scavenging Activity Assay	28
2.2.13	Ferric Reduction Antioxidant Potential Assay	28
2.2.14	Statistical Analysis	29
Chapte	er 3: Results	30
3.1	Anti-Proliferative Effect of D2 Fraction on RAW 264.7 Cells	30
3.2	Effect of D2 Fraction on ROS and NO Production in RAW 264.7	
	Cells	34
3.3	Semi-Preparative HPLC of D2 Fraction	38
3.4	TLC-DPPH Antioxidant Screening of D2 HPLC Sub-fractions	39
3.5	DPPH Radical Scavenging Assay of D2 HPLC Sub-fractions	41

		Page
3.6	FRAP Assay of D2 HPLC Sub-fractions	44
Chap	oter 4: Discussion and Conclusion	47
Refe	rences	53

LIST OF FIGURES

		Page
Figure 1.1	Simplified diagram of the inactive NADPH oxidase	
	complex	4
Figure 1.2	Simplified diagram of the activated NADPH oxidase	
	complex	5
Figure 1.3	Diagram showing the chronological order of morphological	
	and biochemical changes during apoptosis	17
Figure 1.4	A schematic representation of the intrinsic and extrinsic	
	apoptotic pathways	18
Figure 1.5	Image of Dicerocaryum senecioides in bloom	20
Figure 2.1	Fractionation scheme of D. senecioides leaves to obtain	
	the D2 fraction	24
Figure 3.1	The effect of D2 fraction on viability of RAW 264.7 cells	31
Figure 3.2	Real time cell analysis plot of RAW 246.7 cells treated with	
	the D2 fraction	32
Figure 3.3	DAPI nucleic acid staining showing apoptotic morphology	
	in RAW 264.7 cells	33
Figure 3.4	DCFH-DA fluorescence of RAW 246.7 cells treated with	
	various concentrations of D2 fraction	35
Figure 3.5	D2-induced inhibition on ROS production in RAW 264.7	
	cells	36
Figure 3.6	D2-induced inhibition of NO production in RAW 264.7 cells	37
Figure 3.7	Semi-preparative HPLC fingerprint of D2 fraction	38
Figure 3.8	Thin layer chromatography profiles of HPLC sub-fractions	
	of the D2 fraction	40
Figure 3.9	DPPH radical scavenging activity profile of 96 HPLC	
	sub-fractions of D2 fraction	41
Figure 3.10	DPPH radical scavenging activity of D2 HPLC sub-fractions	
	1-7 and 34-39	42
Figure 3.11	DPPH radical scavenging activity of D2 and HPLC	
-	sub-fractions 1, 35 and 39	43

		Page
Figure 3.12	Ferric ion reducing power profile of 96 HPLC sub-fractions	
	of D2 fraction	44
Figure 3.13	Ferric ion reducing power profile HPLC sub-fractions 1-7	
	and 34-39	45
Figure 3.14	Ferric ion reducing power profile HPLC sub-fractions 1,	
	35 and 39	46

LIST OF TABLES

		Page
Table 1:	Common examples of antioxidant compounds	14

ABBREVIATIONS

°C	Degrees Celsius
Apaf-1	Apoptosis protease activating factor-1
ATCC	American Type Culture Collection
Bax	Bcl-2-associated protein X
BH ₄	Tetrahydrobiopteine
Bcl-2	B-cell leukemia-2
CGD	Chronic granulomatous disease
CO ₂	Carbon dioxide
COX	Cyclooxygenase
Coxibs	COX-2 specific inhibitors
D1	n-Hexane fraction
D2	Dichloromethane fraction
D3	Water fraction
DCM	Dichloromethane
DCF	Dichlorofluorescein
DCFH	Dichlorofluorescin
DCFH-DA	Dichlorofluorescin diacetate
dH ₂ O	Distilled water
DMSO	Dimethylsulfoxide
DP	Dual plate
DPI	Diphenylene iodonium
DPPH	2,2-Diphenyl-1-picrylhydrazyl
DNA	Deoxyribonucleic acid
EMW	Ethyl acetate: methanol: water
eNOS	Endothelial nitric oxide synthase
FAD	Flavin adenine dinucleotide (oxidized)
FADD	Fas-associated death domain
FBS	Fetal bovine albumin
Fe ²⁺	Ferrous ion
Fe ³⁺	Ferric ion
FeCl ₃	Ferric chloride
FMN	Flavin mononucleotide

GDPGuanosine diphosphateGSNOS-nitrosoglutathioneGTPGuanosine triphosphateH2HydrogenH2OWaterH2O2Hydrogen peroxideH3PO4Phosphoric acidHOCIHypochlorous acidHPLCHigh performance liquid chromatographyIDPIodonium diphenylIgGImmunoglobulin GINF-γInterferon gamma	
GTPGuanosine triphosphateH2HydrogenH2OWaterH2O2Hydrogen peroxideH3PO4Phosphoric acidHGEHuman granulocytic ehrlichiosisHOCIHypochlorous acidHPLCHigh performance liquid chromatographyIDPIodonium diphenylIgGImmunoglobulin G	
H2HydrogenH2OWaterH2O2Hydrogen peroxideH3PO4Phosphoric acidHGEHuman granulocytic ehrlichiosisHOCIHypochlorous acidHPLCHigh performance liquid chromatographyIDPIodonium diphenylIgGImmunoglobulin G	
H2OWaterH2O2Hydrogen peroxideH3PO4Phosphoric acidHGEHuman granulocytic ehrlichiosisHOCIHypochlorous acidHPLCHigh performance liquid chromatographyIDPIodonium diphenylIgGImmunoglobulin G	
H2O2Hydrogen peroxideH2O2Hydrogen peroxideH3PO4Phosphoric acidHGEHuman granulocytic ehrlichiosisHOCIHypochlorous acidHPLCHigh performance liquid chromatographyIDPIodonium diphenylIgGImmunoglobulin G	
H3PO4Phosphoric acidHGEHuman granulocytic ehrlichiosisHOCIHypochlorous acidHPLCHigh performance liquid chromatographyIDPIodonium diphenylIgGImmunoglobulin G	
HGEHuman granulocytic ehrlichiosisHOCIHypochlorous acidHPLCHigh performance liquid chromatographyIDPIodonium diphenylIgGImmunoglobulin G	
HOCIHypochlorous acidHPLCHigh performance liquid chromatographyIDPIodonium diphenylIgGImmunoglobulin G	
HPLCHigh performance liquid chromatographyIDPIodonium diphenylIgGImmunoglobulin G	
IDP Iodonium diphenyl IgG Immunoglobulin G	
IgG Immunoglobulin G	
INF-γ Interferon gamma	
iNOS Inducible nitric oxide synthase	
K ₃ Fe(CN) ₆ Potassium ferricyanide	
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium	
bromide	
NADPH Nicotinamide adenine dinucleotide phosphate (reduced)
NaNO ₂ Sodium nitrite	
nNOS Neuronal nitric oxide synthase	
NO Nitric oxide	
NOS Nitric oxide synthase	
NSAID Non-steroidal anti-inflammatory drug	
¹ O ₂ Singlet oxygen	
O ₂ Molecular oxygen	
O ₂ Superoxide anion	
OH Hydroxyl radical	
ONOO ⁻ Peroxynitrite	
PBS Phosphate-buffered saline	
PDE Phosphodiesterases	
PHOX Phagocyte oxidase	
PMA Phorbol 12-myristate 13-acetate	
PMN Polymorphonuclear neutrophils	

PSN	Penicillin, streptomycin and neomycin
RNA	Ribonucleic acid
RNOS	Reactive nitrogen and oxygen species
ROS	Reactive oxygen species
RPMI	Roswell Park Memorial Institute
RTCA	Real time cell analysis
SH	Sulfhydryl/ thiol
ТСА	Trichloroacetic acid
TLC	Thin layer chromatography
TNF1	Tumour necrosis factor 1
Tris	Tris(hydroxymethyl)aminomethane
UV	Ultraviolet
Zn ²⁺	Zinc ion

ABSTRACT

Dicerocaryum senecioides is a crawling herb that is found growing mostly in sandy areas of southern and south-eastern Africa and its small, hairy leaves have been used over the years as food, shampoo, and for treatment of various ailments. In this study, the dichloromethane (D2) fraction was prepared from a crude methanol extract of D. senecoides leaves, and its effect on the proliferation of RAW 264.7 murine macrophages was investigated. Treatment of the macrophages with the extract resulted in a dose- and time-dependent decrease in cell viability as determined by the MTT assay and real time cell analysis. Cytotoxicity of the D2 fraction on the macrophages was demonstrated to be due to apoptosis by staining the cells with DAPI nucleic acid stain. Anti-inflammatory activity of D2 fraction on RAW cells was determined by evaluating intracellular ROS production by the DCFH-DA fluorescent assay. Cells treated with the D2 fraction and stimulated with PMA were found to have a lower fluorescence intensity compared to untreated, stimulated cells; thus mimicking the response observed in the resting cells. The percentage fluorescence in untreated, stimulated cells doubled, while no significant change was observed in the D2-treated cells. The effect of the D2 fraction on iNOS activity was also assessed. The fraction reduced the NO synthesised by iNOS in cells treated with the D2 fraction and stimulated with LPS dose-dependently. The D2 fraction was further fractionated by semi-preparative HPLC; and thin layer chromatography was used to analyse phytocompounds of the 96 HPLC sub-fractions as well as to screen these sub-fractions for anti-oxidative activity. Sub-fractions 1-7 and 33-39 showed an intensely pronounced DPPH-scavenging compound and this scavenging ability was confirmed by a quantitative DPPH assay that provided parallel results. The reducing potential of the sub-fractions was assessed by evaluating their Fe³⁺-reducing ability through the FRAP assay. Sub-fractions 1-7 and 33-39 displayed remarkable reducing potential. Taken together with the DPPH-scavenging activity, these findings suggest that HPLC sub-fractions 1-7 and 33-39 possess a compound(s) with impressive antioxidant activity. These findings merit the D2 fraction as an extract that can be used to control chronic inflammation as it does not only inhibit free radical production, but also

scavenges excessive ROS and has the ability to induce apoptosis in the macrophages responsible for dysregulated production of the free radicals. The extract also has commendable chemoprotective and chemotherapeutic potential as it demonstrated pro-apoptotic activity along with prevention of excess free-radical production.