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Abstract 

We present first principles structural, electronic and optical properties investigation of 

PdS, which are carried out using density functional theory under plane wave 

pseudopotential method within the local density approximation. We used ultrasoft-

pseudopotentials to carry out our calculations. Calculated lattice parameters of the system 

show excellent agreement with the experimental values. The lattice parameters were 

observed to decrease linearly with increasing pressure. The density of states and optical 

properties of PdS have been computed under hydrostatic pressure. The actual size of the 

band gap remains constant with increasing pressure, whilst the peaks just below and 

above the Fermi energy moves to the left and to the right respectively. We also 

investigated the effect of compositional variation on our reflectance by calculating the 

reflectivity of Pd4-xPtxS4 and Pd4-xNixS4. Since we have different positions for the same 

concentration, we used the heats of formation to determine the most stable structures and 

these structures were used to study the effect of compositional variation on our 

reflectance spectrum. We studied the equation of state (EOS), structure under hydrostatic 

pressure, and deduced the bulk modulus. It is important to study these properties under 

such extreme conditions of pressure and temperature as they tend to occur below the 

earth's surface. Investigation of stability and mechanical properties of binary and ternary 

compounds from PtS to PdS have been carried out, were the presence of the miscibility 
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gap is still uncertain. We investigate stability of these compounds by studying the heats 

of formation, elasticity and electronic properties. Our results show no miscibility gap but 

continuum solid solution between these compounds. A shift of the Fermi energy towards 

the conduction band is observed at a 50% concentration of Pd and Pt. All the information 

obtained on PdS is intended to assist in fitting interatomic potentials to enable studies of 

systems with many atoms. 
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Chapter 1 

Introduction 

1.1  General introduction 

Vysotskite (PdS) is one of the precious metal sulphides such as cooperite (PtS), braggite 

(Pt, Pd, Ni)S and sperrylite (PtAs2). These minerals are an important source of platinum 

and palladium in the world's largest deposits of platinum-group minerals (PGM) [1] which 

also contain the sulfides of other transition metals such as Os, Ir, Ru, Pd, Fe, Ni and Cu [2]. 

The binary and higher sulphides of the platinum family metals have high potential for 

various technological applications (catalyst, acid-resistant high-temperature electrode, etc.) 

because of their special physicochemical properties. The enthalpy of formation of the 

binary palladium sulphides is important for the preparation and industrial application [3]. 

PdS shows new potential applications (lithographic films and plates, photographic films, 

catalytic photoelectrodes and solar cells) due to its electronic properties [4]. Folmer et al 

[5] reported some preliminary results about the photoelectrochemical properties of PdS 

single crystal. A Japanese patent has also reported PdS in a polymer matrix for solar cells 

[6]. Platinum group metals (particularly Pd and Pt) are used for low resistance ohmic 

contacts in semiconducting electron devices [7]. The mining industry is interested in 

electronic, magnetic, optical, structural and thermodynamic properties of platinum group 
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minerals since these affect ore formation, mineral processing and environmental 

mineralogy. However, as far as we know, little experimental work has been carried out on 

the behavior of PGM compounds. The formation of a deep pseudogap at the Fermi level is 

argued to be the driving electronic mechanism for the stabilization of Pt and Pd 

monosulphides. [8]. They play an important role as catalysts in the petroleum refining 

industry and recently, the plane-wave pseudopotential method has been used to study 

cohesion and electronic properties of a wide range of transition metal sulfides including the 

(Pt, Pd, Ni) sulphides. PGM represent the only known class of stable catalytic active phases 

for strongly sulpho-reduction hydroprocessing conditions. There is a correlation between 

the electronic structure and the catalytic activity for hydro-desulphurization: all TMS with 

a high HDS activity are semiconductors and tend to have a high degree of t2g character in 

the highest occupied orbital [9]. These PGMs are an excellent hydrogenation and 

dehydrogenation catalyst. They can be alloyed and used in jewellery. The metal is used in 

dentistry, electrical contacts and in making surgical instruments. 

 

1.2 Structural Aspects 

The crystal structure of PdS is tetragonal with a space group P42/m, it has lattice 

parameters 429.6=a Å, 611.6=c  and γβα ==  = 90° and a density of ρ  = 6.728g/cm³. 

Atom Pd(1) sits in a slightly ruffled square of S atoms, while a rectangular plane 

coordinates atom Pd(2), and atom Pd(3) is both bent out of the plane and coordinate 

rectangular ( see figure 1.1). Four Pd atoms in a distorted tetrahedron coordinate each S 
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atom [10]. It forms a complex tetragonal structure in which the Pd atoms form hexagon-

triangle nets alternating with triangle-square nets occupied by the S atoms. The structure is 

usually thought to be controlled by high coordination [11]. Table 1.1 lists fractional 

coordinates, atom positions (Wyckoff notation) and equivalent isotropic thermal 

parameters of this mineral. 

 

 

PowderCell 2.0

Pd

S

�����

�����

�����

�����

�����

�����

�����

��

 

Figure 1.1 Crystal structure of PdS along [001] direction. 
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Table 1.1 Fractional coordinates atom position and equivalent isotropic thermal 
parameters for PdS  
Atoms                  Positions                 x             y            z             Beq (Å²) 
Pd(1)                       2a                    (1/2)             0            0             0.35 
Pd(2)                       2e                       0             0          (1/4)              0.33 
Pd(3)                       4j                  0.257132      0.467792            0                     0.33 
S(1)                       8k                 0.307540      0.193610         0.22904             0.37 
 
 

1.3 Literature Review 

1.3.1 Structural Properties 

 In 1962, Genkin and Zvyagintsev [12] reported the mineral vysotskite, for which they 

indicated the formula (Pd,Ni)S, though they did not consider Ni to be an essential 

constituent. They found the mineral to be tetragonal with a  = 6.371 Å and c  = 6.540 Å, 

and the powder pattern was very similar to that reported for braggite. The powder pattern 

was also similar to that of synthetic PdS (Gaskell [13]) with lattice parameters a  = 6.43 Å 

and c  = 6.63 Å. A miscibility gap between cooperite and braggite [which is best described 

as (Pt,Pd ± Ni)S] was first documented by Cabri et al. [14]. A miscibility gap was proposed 

between braggite and vysotskite as well, which led to the redefinition of vysotskite as the 

Pt-Pd sulphides containing less that 10 mol% PtS [14]. This data suggested strongly that 

braggite and vysotskite were members of an isomorphous series, with PdS as an end-

member. Figure 1.2 shows the PtS-PdS-NiS composition triangle. 

Brese et al. [10] indicated that the square-planar coordination geometries about the Pd 

atoms are more regular than those reported in the classic structure of Gaskell [13]. The 
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geometry about atom Pd(2) is similar to that proposed by Childs and Hall [15] for the Pd 

site in braggite (Pt,Pd,Ni)S, although the Pd(2)-S distance at 2.318 Å is significantly longer 

than that of 2.26 Å in braggite. 

 
Figure 1.2 Cooperite, braggite, and vysotskite analyses plotted in the PtS-PdS-NiS 

composition triangle [14]. 
 

1.3.2 Electronic and Optical Properties 

Electronic properties of a material help us to categorize the material within three main 

groups, namely, metals, semiconductors and insulator. The existence and the size of the gap 

between the highest occupied and the lowest unoccupied orbitals (energy gap) determine 
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the type of material. In case of a metal there is no band gap as there is an overlap of the 

orbitals, however for semiconductors and insulators a band gap exists which tends to be 

larger in insulators. 

Semiconducting properties of PdS have been studied by various researchers and the band 

gap ranges between 0.05 eV and 2.0 eV [4, 7, 9]. Raybaud et al. [9] have shown that 

semiconducting transition metal sulphides, such as PdS, PtS, Rh2S3, Ir2S3 and RuS2, have 

higher catalytic activity than the metallic sulphides. PdS and PtS have been employed as 

light receiving materials with silver halides [16, 17]. The reflectance of PdS is not lower 

than that of chalcopyrite as reported by Genkin [18], it is slightly higher, but nowhere near 

as high as reported by Vyalsov [19]. The dispersion of his reflectance spectrum for 

vysotskite is similar to that of Criddle and Stanley [1] but is inexplicably 7-8% higher. In 

plane-polarized light, in air and in oil, vysotskite has a slightly higher reflectance than 

braggite and is a slightly creamier white [1]. 

 

1.4 Intentions of the Study 

The intention of the study is to use ab initio methods to study PdS. The density functional 

theory, within the local density approximation, will be used to callibrate the system by 

establishing kinetic energy cut-off, which will give accurate wave functions and hence 

electron charge distribution. The structural properties, which are lattice parameters, volume 

and bond lengths of the system will be determined. The electronic properties (density of 

state), optical properties (reflectivity and absorption), as well as the elastic properties 
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(elastic constant and bulk modulus etc.) will be calculated. The effect of pressure on 

electronic, optical and structural properties will be studied. Stability and mechanical 

properties of binary and ternary compounds from PtS to PdS will be investigated, where the 

presence of the miscibility gap is still uncertain. The stability of these compounds is 

investigated by studying the heats of formation, elasticity and electronic properties. 

 

1.5 Outline of the Study 

 In this study, the density functional approach will be followed, using the ultrasoft-

pseudopotential within the local density approximation (LDA). 

Chapter 1, we introduce the topic and the content of this dissertation with the background 

of PdS and the motivation of the study. 

Chapter 2, we explain the methods used in our study in details i.e. the classical, and 

quantum mechanics. These methods include plane-wave, pseudopotential approach. 

Chapter 3, we discuss in details the results of our work on electronic, structural and optical 

properties. These results are compared to available experimental results. 

Chapter 4, we discuss the issue of miscibility gap by looking at stability and mechanical 

properties of binary and ternary compounds from PtS to PdS. 

Chapter 5, we make conclusion and recommendation. Finally, the bibliography which 

helps in giving the insight to the analysis of the work listed. 
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Chapter 2 

Methodology 

2.1 Introduction 

Computational modeling offers another methodology of investigating properties of 

materials alongside experiments and theory. This approach is rapidly being broadly used in 

solid-state physics, chemistry, and material science. It presents physical systems as models, 

which are then simulated by computers to predict real situations. Availability of high 

performance computers has made modeling of systems with thousands of atoms possible. 

There are two types of computational approaches used for the prediction of material 

properties, namely, the quantum mechanical method ( Density functional theory or Hartree-

Fock theory) and empirical potential methods (atomistic method). The quantum mechanical 

methods take into account the motion and the interaction of electrons in a material whereas 

the empirical potential methods avoid the details of electronic structure and consider the 

interaction of atoms in a quasi-classical form. 

In this work we have based our approach on quantum mechanical calculations, namely the 

density functional theory. Quantum mechanical methods are widely used as they can be 

used to study the structure, chemical, electrical, optical and magnetic properties of a 

material. 
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2.2 Ab Initio Methods 

Ab initio, simply means first principle. Methods that require no empirical data but only 

specification of the ion present (by their atomic number) and the value of the fundamental 

physical constants such as mass and charge of electron, that is, it uses no experimental 

parameters in the computations. In these methods, molecules can be calculated using 

nothing but Schrödinger equation. Ab initio methods provide quality prediction for a wide 

range of systems, that is, metal, insulator, and semiconductors. The prediction of electronic 

and geometric structure requires the calculation of the quantum mechanical total energy of 

the system and minimization of that energy with respect to the electronic and nuclear 

coordinates. We require the solution of the time independent, non relativistic Schrödinger 

equation to calculate the total energy, electronic structure, and ground state properties of a 

system, 

 

                                                        ψψ EH =     (2.1) 

 

Where H is the Hamiltonian and ψ  is the wavefunction. However further simplification 

can be introduced to allow the energy to be calculated accurately. The methods include 

density functional theory, Hartree-Fork methods, etc, but we fully described density 

functional theory as it is the method we used in our study. The Hartree-Fork and Density 

Functional Theory are shown in figure 2.1 
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Figure 2.1 The Hartree-Fork and Density Functional Theory (DFT) schemes [20, 21]. 
The DFT leads to the Kohn-Sham equation. 
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2.2.1 Density Functional Theory 

Density functional theory (DFT) is based on concept by Thomas [22] and Fermi [23], they 

introduced an idea of expressing the total energy of a system as a functional of the total 

electron density. Due to the crude treatment of the kinetic energy term, that is, the absence 

of molecular orbitals, the accuracy of these early attempts was far from satisfactory. 

Density functional theory has been developed by Hohenberg and Kohn [24], and Kohn and 

Sham [25], who proved that the total energy including the exchange and correlation of an 

electron gas is a unique functional of the electron density. Earlier, motivated by the search 

for practical electronic structure calculations, Slater [26] had developed an approach, later 

to become the X� method [27], which originally intended as an approximation to Hartree-

Fock theory [28, 29]. Today, the X� method is generally viewed as a simplified form or 

precursor of density functional theory. 

For the past 30 years density functional theory has been the dominating method for the 

quantum mechanical simulation of periodic systems. Recently it has also been adopted by 

quantum chemist and it is widely used for the simulation of energy surfaces in molecules. 

This theory is used to study the structure, chemical, electrical, optical and magnetic 

properties of a material. An important advance in the calculation of the energy of electron 

of atoms and the force of each atom was made by Hohenberg and Kohn [24], who showed 

how a mean field theory could be applied to this problem. They proved that the total 

ground state energy of a many-electron body is a functional of the electron density ),(r�ρ  

which in turn depends on the positions of atoms. 
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                                          ]),([ αρ RrEE
��=      (2.2)                                             

αR
�

 denotes the positions of all atoms � in the system under consideration. The Born-

Oppenheimer approximation amounts to saying that we can separate the electronic and 

nuclear degree of freedom because the electronic mass is so much smaller than that of the 

nuclei the electrons respond almost instantaneously to the changes in the positions of the 

nuclei. It is then a good approximation to say the electrons are always in their ground state 

as the atoms of a solid vibrate thermally. This means that the positions of the nuclei are 

parameters that appear in the potential of the Schrödinger equation defining the wave 

functions of the electrons. This allowed Kohn and Sham [25] to derive an effective one-

electron Schrödinger equation by comparing the functional as the sum of three terms 

written as 

    ][][][][ 0 ρρρρ XCEUTE ++=    (2.3) 

where T  is the kinetic energy, U is the coulomb energy due to a classical electrostatic 

interactions among all charged particles in the system and E is the exchange correlation 

energy. The coulomb energy U which is purely classical contains the electrostatic energy 

arising from the coulombic attraction between electrons and nuclei, the repulsion between 

all electronic charges, and the repulsion between nuclei. It can be written as 

    ionioneeen UUUU −++= ][][][ ρρρ    (2.4) 

The Hohenberg-Kohn-Sham theorem, states that the total energy is at its minimum value 

for the ground state density and that the total energy is stationary with respect to first-order 
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variations in the density, that is 0
][

0

=
∂
∂

=ρρρ
ρE

  

In conjunction with the kinetic energy, one-particle wave function )(ri
�ψ is introduced that 

generate the electron density  

                                             
2

)( �=
i

iinr ψρ �                                                   (2.5) 

It is therefore necessary to determine the set of wave functions iψ  that minimizes the Kohn-

Sham energy function which is given by a self-consistent solution of the equation: 

    )()()()()(
2

2
2

rrrVrVrV
m iiiXCHion

������ ψεψ =��

�
��

	 +++∇− , (2.6) 

where iψ  is the wave function of the electronic state i  and iε  is the Kohn-Sham 

eigenvalue, ionV  is the static total electron-ion potential and HV  is the Hartree potential of 

the electron which is given by 

     � ′
′−

′
= rd

rr
r

eVH
�

��

�

32 )(ρ
    (2.7) 

and the exchange-correlation potential, XCV  is given by the functional derivative 

     
)(

)]([
)(

r
rE

rV XC
XC �

�
�

δρ
ρδ

=       (2.8) 

the electron density )(r�ρ is given by 

     ��=
i

i rr
2

)(2)( �� ψρ      (2.9) 

Hence, the Kohn-Sham total energy functional is written as 
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The exchange-correlation potential cannot be obtained explicitly because the exact 

exchange-correlation energy is unknown; therefore we need approximation methods to 

solve the problem. The commonly known approximation methods are LDA and GGA. We 

explain them in detail in sections 2.2.2 and 2.2.3 respectively. Figure 2.2 compares the 

methodology for solving the Schrödinger equation and the DFT Kohn-Sham equation 

respectively.     

 

 

Figure 2.2 A comparison of the methodology for solving the many-body Schrödinger 
equation and effective one-electron Kohn-Sham equation [30] 
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2.2.2 Local Density Approximation 

A common approximation is the so-called local density approximation (LDA) [24, 25], 

which locally substitutes the exchange-correlation energy density of an inhomogeneous 

system by that of an electron gas evaluated at the local density. The exchange-correlation 

energy depends only on the local electron density around each volume element rd� . The 

LDA rests on two basic assumptions: (i) the exchange and correlation effects come 

predominantly from the immediate vicinity of point r�  and (ii) these exchange and 

correlation effects do not depend strongly on the variations of the electron density in the 

vicinity of r� . If these two conditions are well fulfilled, then the contribution from volume 

element rd�  would be the same as if this volume element were surrounded by a constant 

electron density )(r�ρ  of the same value as within rd� . Within LDA, the expression for the 

exchange-correlation energy can be written as 

    �= rdrrE XC
LDA
XC

3)]([)(][ �� ρερρ    (2.11) 

and 
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with 

     )]([)( rr XCXC
�� ρεε =     (2.13) 

where )]([ rXC
�ρε  is the exchange and correlation energy per electron of a uniform electron 

gas. Splitting this quantity into two parts we get: 

    )]([)]([)]([ rrr CXXC
��� ρερερε +=    (2.14) 



 16

The exchange part )]([ rX
�ρε  can be derived analytically with the Hartree-Fork expression 

and be expressed as 

     3
)(3

4
3

)]([
π

ρρε r
rX

�
� =          (2.15) 

The correlation part cannot be derived analytically, but can be calculated numerically with 

high accuracy by means of Monte Carlo simulations [31]. Figure 2.3 illustrates the basic 

idea. When performing the calculation LDA is known to underestimate the bond length in 

molecules and cell parameters in crystals [32]. The LDA uses the exchange-correlation 

energy for the uniform electron gas at every point in the system regardless of the 

inhomogeneity of the real charge density. 

 

Figure 2.3 Illustration of the local density approximation (LDA). The solid dots 
represent positions of atomic nuclei; �1 and �2 denote the electron density in volume 
elements dr1 and dr2 respectively. In the LDA, it is assumed that for the evaluation of the 
exchange correlation effects, the real electron density surrounding each volume element 
can be replaced by a constant electron density of the same value as at the reference point. 
Note that this constant electron density is different for each point in space [20]. 
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2.2.3 Generalized Gradient Approximation 

For nonuniform charge densities the exchange-correlation energy can deviate significantly 

from the uniform result. This deviation can be expressed in terms of the gradient and higher 

spatial derivatives of the total charge density. The generalized gradient approximation 

(GGA) by Perdew [33], Becke [32], Perdew and Wang [34] and Perdew et al. [35] uses the 

gradient of the charge density, )(r�ρ∇ , to correct this deviation. The basic idea of GGAs is 

to express the exchange-correlation energy in the following form: 

  � � ∇+= rdrrFdrrrE XCXC
GGA
XC

����� )](),([)]([)(][ ρρρερρ   (2.16) 

where the function XCF  is asked to satisfy a number of formal conditions for the exchange 

correlation hole, such as sum rules, long-range decay and so on. The form suggested by 

Becke [32] for the exchange part is: 
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where 

   �−= rdrCE X
LDA
X

�� 33
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ρ∇=X , and � denotes either � or � electron spin. The constant � is 

a parameter fitted to obtain the correct exchange energy of the noble gas atoms. For 

systems where the charge density is slowly varying, the GGA has proved to be an 

improvement over LDA. Gradient corrected density functionals have been studied 
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extensively for molecular systems, for example by Andzelm and Wimmer [36]. The 

following correlation functional as proposed by Perdew and Wang [34] predicts correlation 

energies of useful accuracy for an electron gas with slowly varying density: 

  � �
∇
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ρρρζ /)( ↓↑ −=  and )(ρCC  is a rational polynomial of the density that contains seven 

fitting parameters. The correlation energy per particle of the uniform electron gas, 

),( ↓↑= ρρε C , is taken from a parametrization by Perdew and Zunger [37] of the Cerperly-

Alder [38] Monte Carlo results. Perdew-Burke-Ernzerhof writes the exchange functional in 

the form that contains an explicit enhancement factor F_{x} over the local exchange factor, 

this is normally known as GGA-PBE, is of the form: 

   �=↓↑ rdsFrrE XC
LDA
X

PBE
X

��� ),,()]([)(],[ ξρρερρρ ,  (2.22) 

where � is the local density, � is the relative spin polarization, and )2/()( ρρ Fkrs �∇=  is 

the dimensionless density gradient. The enhancement factor is given by: 
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where 21951.0
3
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�

�
= πβµ  with � = 0.066725. The correlation energy on the other hand 

is written in the form: 

   [ ]� +=↓↑ rdtHrE LDA
C

PBE
C
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Here, )2/()( ρρ skrt �∇=  is the dimensionless density gradient, 
2
1
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ks  is the TF 

screening wave number and ( ) ( ) ��

�−+��

	 += 3
2

3
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11)( ζζζφ  is a spin-scaling factor. The 

quantity � is the same for the exchange term � = 0.066725, and � = 0.031091. The function 

A is of the form: 
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The iterative, self-consistent procedure for solving the Kohn-Sham equation is shown in 

figure 2.4 and the electronic structure methods are also summarized in figure 2.5. 
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Figure 2.4 Scheme of typical electronic structure calculations. The outer cycle 
represents the geometry optimization or other manipulation of the geometry such as energy 
minimization, simulated annealing, dynamic trajectories or Monte Carlo procedures. The 
inner cycle is the self-consistent procedure to solve the Kohn-Sham equations [20] 
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Figure 2.5 Overview of electronic structure methods for solving the Kohn-Sham 
equation [39] 
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2.3 Plane-Wave Pseudopotential Method 

 The plane-wave pseudopotential method is a technique that can be used to calculate with 

accuracy the variation self-consistent solution to the density functional theory. In this 

technique the wave function is expanded in terms of the plane-wave basis. The plane-wave 

pseudopotential method deals with weak pseudopotentials and performs full geometry 

optimization, particularly the internal parameters relaxation and it is capable of simulating 

electronic ground states for metals, insulators or semiconductors. Hence predicting with 

accuracy the forces acting on atoms and the stress on unit cells. 

 

2.3.1 Plane-wave Basis 

Since there are an infinite number of electrons, a wave function is needed for each. 

However, the basis set that is required to expand each wave function is infinite. These 

problems can be handled by performing calculations on periodic systems applying the 

Bloch's theorem which allows the electronic wave function to be expanded in terms of a 

discrete set of plane waves. The electronic wave functions of a periodic solid can be written 

as 

    )(].exp[)( rfrkir ii
���� =ψ     (2.27) 

From this we can write the planewave whose wave vectors are reciprocal lattice vectors of 

the crystal as 

    �=
G

G�

�
��� ].exp[)( , rGiCrf ii     (2.28) 
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where G
�

 is the reciprocal lattice vector of the periodic cell. G
�

 is required for the 

resolution of rapid variations in the wavefunctions and charge density. Hence each 

electronic wave function can be written as a sum of plane waves, 

    ]).(exp[)( ,� += +
G

Gkii rGkiCr ����
��ψ ,   (2.29) 

where GkiC ��
+,  are the coefficients for the plane waves. These coefficients depend on the 

specific kinetic energy, 
22

2
Gk

m

��� + . The plane wave basis set is limited by including all 

plane waves whose kinetic energies are less than some particular energy cutoff, cutE . Thus 

only the plane waves that obey 

     cutEGk
m

<+
22

2

���
    (2.30) 

are included in the basis. The plane wave set at a finite cutoff energy will lead to an error in 

the computed total energy; therefore the energy cutoff should be increased until the 

calculated energy has converged. It will be wise to use as much denser set of k-points to 

reduce errors and ensure convergence. Now substituting equation 2.29 into 2.6, the Kohn-

Sham equation then takes the form 

� ++ =��

�
��

	 −+−+−++ GkiiGkiXCHionGG CCGGVGGVGGVGk
m

����

���������

,','

22

)'()'()'(
2

εδ  (2.31) 

The kinetic energy is diagonal, whereas the various potential contributions are given by 

their Fourier transforms. Solution of equation 2.31 proceeds by diagonalization of a 

Hamiltonian matrix whose matrix elements ', GkGkH ����
++  are given by the terms in brackets 
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above. The size of the matrix is determined by the choice of cutoff energy 
2

2
2

cGk
m

��� + , 

and will be intractably large for the systems that contain both valence and core electrons. 

 

2.3.2 Pseudopotentials 

It has been shown by the use of Bloch's theorem, that a plane wave energy cut-off in the 

expansion of the wavefunction and careful k-points sampling that the solution to the Kohn-

Sham equations for infinite crystalline systems is now tractable. Unfortunately a plane 

wave basis set is usually very poorly suited to expanding the electronic wavefunctions 

because a very large number are required to accurately describe the rapidly oscillating 

wavefunctions of electrons in the core region. 

It is well known that most physical properties of solids are much dependable on the valence 

electrons than that of the tightly bound core electrons, that it why the pseudopotential 

approximation [41, 42, 43] is introduced. This approximation uses this fact to remove the 

core electrons and the strong nuclear potential and replace them with a weaker 

pseudopotential which acts on a set of pseudo wavefunctions rather than the true valence 

wavefunctions. In fact, the pseudopotential can be optimized so that, in practice, it is even 

weaker than the frozen core potential [44]. 

The schematic diagram in Figure 2.6 shows these quantities. The valence wavefunctions 

oscillate rapidly in the region occupied by the core electrons because of the strong ionic 

potential. These oscillations maintain the orthogonality between the core and valence 

electrons. The pseudopotential is constructed in such a way that there are no radial nodes in 
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the pseudo wavefunction in the core region and that the pseudo wavefunctions and 

pseudopotential are identical to the all electron wavefunction and potential outside a radius 

cut-off.  

 

Figure 2.6 Schematic illustration of all-electron (solid lines) and pseudoelectron 
(dashed lines) potentials and their corresponding wavefunctions [40] 
 

This condition has to be carefully checked for as it is possible for the pseudopotential to 

introduce new non-physical states (so called ghost states) into the calculation. The general 

form of pseudopotential is 

     �= lmVlmV lNL     (2.32) 

where lm  are spherical harmonics and lV  is the pseudopotential for angular momentum l 
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[45]. The majority of the pseudopotentials currently used in electronic structure are 

generated from all electron atomic calculations. However, a pseudopotential that uses the 

same potentials for all the angular momentum components of the wavefunction is called a 

local pseudopotential. The norm conserving pseudopotentials, are an example of the non-

local pseudopotential, and use a different potential for each angular momentum 

components of the wavefunction. Local pseudopotentials are computationally much more 

efficient than non-local ones. 

     

2.3.3 Norm conserving pseudopotential 

If the exchange-correlation energy is to be desired accurately, the pseudo wavefunction and 

the real wavefunction outside the core region must be identical in both their spatial 

dependence and absolute magnitude for two wavefunctions to generate identical charge 

densities. In the attempt to construct pseudopotential of this type, Starkloff and 

Joannopoulos [46, 47] introduced class of local pseudopotentials that described the valance 

energies and wavefunctions of many heavy atoms accurately. 

Generally, the non-local pseudopotential best describes the scattering from the ion core, 

this non-local pseudopotential uses a different potential for angular momentum component 

of the wavefunction. A match of pseudo and real wavefunction outside the core region also 

assures that the first-order energy dependence of the scattering is accurately described over 

a wide range of energy. Recently, Shirley et al [48] introduced a method to construct 

pseudopotentials that correct even the higher-order energy dependence of the scattering. 
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2.3.4 Ultrasoft Pseudopotentials 

Vanderbilt [49] suggested a more radical approach, the ultrasoft pseudopotentials (USP). 

This involves relaxing the norm-conserving requirement in order to generate much “softer” 

pseudopotentials. In the USP scheme, the pseudo wavefunction are allowed to be as weak 

as possible within the core region, so that the cutoff energy can be reduced dramatically. 

This is achieved by introducing a generalized orthonormality condition. The electron 

density has to be augmented in the core region in order to recover the full electronic charge. 

The electron density is thus subdivided into (i) a smooth part that extends throughout the 

unit cell and (ii) a hard part localized in the core region. Ultrasoft pseudopotentials have 

another advantage besides being much softer than their norm-conserving counterparts. The 

generation algorithm guarantees good scattering properties over a pre-specified energy 

range, which results in much better transferability and accuracy of the pseudopotentials.  

 

2.3.5 CASTEP Code 

CASTEP (Cambridge Sequential Total Energy Package) [50, 51] is a software package 

which uses density functional theory to provide a good atomic-level description of all 

manner of materials and molecules. CASTEP can give information about total energies, 

forces and stresses on an atomic system, as well as calculating optimum geometries, band 

structures, optical spectra, phonon spectra and much more. It can also perform molecular 

dynamics simulations. In essence, however, it uses density functional theory (specifically, 

using planewaves and pseudopotentials) to solve approximately the Schrödinger equation 
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for periodic systems of atoms, yielding the total energy, atomic forces and internal stresses 

in the system, as well as interesting electronic properties (the electron wavefunction, charge 

density distribution, density of electronic states, etc.). The electronic relaxation is achieved 

by minimization of the total energy. This minimization is achieved using the technique 

called band-by-band, where each wave function is optimized independently, or by modern 

all band method. 

CASTEP uses special k-points sampling for integration over the Brillouin zone [52, 53, 54, 

55], and Fast Fourier Transforms (FFT) to evaluate matrix elements. It also uses wave 

function symmetrization for a crystal with point group symmetry higher than 1P  and for 

metallic systems it introduces partial occupancies for levels close to the Fermi energy. It 

uses both the local density approximation and the generalized gradient approximation for 

the exchange correlation energy functional and it also uses ultrasoft pseudopotential as put 

forward by Vanderbilt [49] as well as norm conserving potential. 

 

2.3.6 VASP Code 

VASP (Vienna Ab-initio Simulation Package) is a code designed to perform ab initio 

quantum mechanical molecular dynamics (MD) simulation using ultrasoft pseudopotentials 

[49] or projector-augmented wave (PAW) method [56] and a plane-wave basis set. The 

approach implemented in VASP is based on the (finite-temperature) [57] local density 

approximation with free energy as a variational quantity and an exact evaluation of the 

instantaneous electronic ground state at each MD time step. It uses efficient matrix 
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diagonalization schemes and efficient Pulay [58]/Broyden [59] charge density mixing. 

These techniques avoid most problems possibly occurring in the original Car-Parrinello 

method [60], which is based on the simultaneous integration of electronic and ionic 

equations of motion. The interaction between ions and electrons is described by ultrasoft 

Vanderbilt pseudopotentials or by the PAW method. 

VASP has the same root as CASTEP/CETEP code, but branched this root at very early 

stage. The version of CASTEP upon which VASP is based, supported only the local 

pseudopotential and Car-Parrinello algorithm. In September 1991 work on VASP code 

started. Years later VASP was rewritten by G. Kresse and J. Furthmüller [61, 62, 63]. 

 

2.4 Theoretical Background of Calculated Properties 

2.4.1 Optical Properties 

Generally, the difference in the propagation of an electromagnetic wave through vacuum 

and some other material can be described by a complex refractive index 

     iknN +=      (2.33) 

since n is just the usual index of refraction in the regions where the crystal is non-

absorbing, the velocity of propagation in a crystal, n
c  ( c  is velocity of light in a vacuum), 

is slower than in a vacuum. In vacuum, N is real and equal to unity. For transparent 

materials it is purely real, the imaginary part being related to absorption coefficient by 

     
c
kωη 2=      (2.34) 
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the fraction of energy lost by the wave on passing through a unit thickness of the material 

concerned (ω  is frequency of the incident wave and k  is attenuation index). This is 

derived by considering the rate of production of Joule heat in the sample. The reflection 

coefficient can be obtained for the simple case of normal incidence on a plane surface by 

matching both the electric and magnetic fields at the surface, 
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222
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kn
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R
++
+−=

+
−=                (2.35) 

However, when performing calculations of optical properties it is common to evaluate the 

complex dielectric constant, and then express other properties in terms of it. The complex 

dielectric constant 

           2
21 Ni =+= εεε     (2.36) 

and hence the relation between the real and imaginary parts of the refractive index and 

dielectric constant is 

                     nkkn 22
2

1 =−= εε     (2.37) 

A further useful form for the expression of optical properties is the optical conductivity, 

                    ( )1
421 −−=+= ε
π

ωσσσ ii    (2.38) 

However, this is most useful for metals, which are not treated in the current study. A 

further property that may be calculated from the complex dielectric constant is the loss 

function. It describes the energy lost by a point electron passing through a homogeneous 

dielectric material, and is given by, 
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Experimentally, the most accessible optical parameters are the absorption )(ωη , and the 

reflection )(ωR  coefficients. In principle, given the knowledge of both, the real and the 

imaginary parts of N can be determined, through equations 2.34 and 2.35. Equation 2.36 

allows expression in terms of the complex dielectric constant. However, in practice 

experiments are more complicated than the case of normal incidence considered above. 

Polarization effects must be accounted for, and the geometry can become quite involved 

(for example, transmission through multi-layered films or incidence at a general angle). 

Only transitions between properly selected bands are allowed, i.e., only the bands with the 

same sign of spin. 

 The interaction of a photon with the electrons in the system under study is described in 

terms of the time dependent pertubations of the ground state electronic states. Transitions 

are caused between occupied and unoccupied states by the electric field of the photon (the 

magnetic field effect is weaker by a factor �/c). When these excitations are collective they 

are known as plasmons (which are most easily observed by the passing of a fast electron 

through the system rather than a photon, in a technique known as Electron Energy Loss 

Spectroscopy (EELS), described by equation 2.38, since transverse photons do not excite 

longitudinal plasmons). When the transitions are independent they are known as single 

particle excitations. The spectra resulting from these excitations can be thought of as a joint 

density of states (JDOS) between the valence and the conduction bands, weighted by 

approximate matrix elements. 
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2.4.2 Elasticity 

 Elastic properties of a solid are important because they relate to various fundamentals 

solid-state properties, such as equation of state, phonon spectra, etc. [64]. The elastic 

constant ijC  contains some of the more important information that can be obtained from 

ground-state total-energy calculations. Elastic constant for most pure metals are reported 

over a wide range of temperature [65, 66]. The bulk modulus is often calculated, 

calculations of the other elastic constant are relatively scarce [67]. 

The elastic constants of a material describe its response to externally applied strain or, the 

stress required to maintain a given deformation. For small deformations we expect a 

quadratic dependence of the crystal energy E on the strain (Hooke's law). Stress and strain 

have three tensile and three shear components, giving six components in total. The linear 

elastic constants form a 6×6 symmetric matrix, having 27 different components, such that 

jiji C εσ =  for small stresses, σ , and strains, ε  [66], where i and j are the indices attaining 

values from 1, 2, 3,…,6. Any symmetry in the structure can make some of these 

components equal, and/or some strictly zero. A cubic crystal has only three different 

symmetry elements ( 11C , 12C  and 44C ) with each representing three equal elastic 

constants( 332211 CCC == , 312312 CCC ==  and 665544 CCC == ). A single strain with non-

zero first and fourth components can give stresses relating to all three of these coefficients, 

yielding a very efficient method of obtaining elastic constant for the cubic system. Nye [68] 

gives a full account of the symmetry of stress, strain and elastic constant. Elasticity 

describes the response of a crystal under external strain and provides key information of the 
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strength of the material, as characterized by bulk modulus (B), shear modulus (C´), Young's 

modulus (E), Poisson's ratio (�) and shear anisotropy factor (A) [64]. These elastic moduli 

are defined as follow: 
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The requirements for mechanical stability in a cubic crystal lead to the following 

restrictions on the elastic constants [69]: 

    01211 >− CC , ,011 >C 044 >C , 02 1211 >+ CC . 

The single crystal shear moduli for the {100} plane along the [010] direction and for the 

{110} plane along the [110] direction in a cubic crystal are given by 44C  and C ′ , 

respectively. Orthorhombic deformation is related to the shear constant 44C  , whereas the 

tetragonal deformation is related to C ′  and its size reflects the degree of stability of the 

crystal with respect to a tetragonal shear [70]. 

 There are six independent elastic constants in the contracted matrix notation, 11C , 12C , 

13C , 33C , 44C  and 66C , for a crystal with tetragonal structure. The elastic moduli that can 

be derived from these elastic constant are: 
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The requirement for a crystal to be stable under any homogeneous elastic deformation 

places restrictions on the elastic constants. The stability restrictions are as follow [69] 

01211 >− CC , ,02 133311 >−+ CCC  011 >C ,  033 >C ,  ,044 >C  066 >C , 

0422 13123311 >+++ CCCC . 

 A hexagonal crystal has six different symmetry elements 11C , 12C , 13C , 33C , 44C  and 66C , 

only five of them are independent since ( )121166 2
1

CCC −= . The stability restrictions do 

not tell us anything further about the relative magnitude of various elastic constants. For 

polycrystalline phase as a measure of fracture or toughness in metal, Pugh [71] introduced 

the quotient of bulk modulus and shear modulus, C
B

′ . In metals and alloys behaving like 

isotropic media, the Young's modulus is proportional to the bulk modulus when the 

Poisson's ratio is close to 
3
1

. 
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Chapter 3 

Electronic and Structural Properties 

3.1 Introduction 

 This chapter presents results based on ab initio calculations performed on PdS, and in 

particular the structural (lattice parameters, equation of state (EOS) and bond lengths), 

electronic (density of state and band structure) and optical properties (reflectivity and 

absorption). The effect of pressure on the system is discussed, particularly the equation of 

state (EOS), lattice parameter, density of state, reflectivity and absorption, at different 

pressures ranging from -10 GPa to 50 GPa. We also give a summary of the methods used. 

Geometry optimization calculations were performed using the computer code CASTEP, 

which is discussed in detail in chapter 2. 

 

3.2 Methodology 

The plane-wave pseudopotential (PWP) method is used to perform calculations on PdS 

structure. Plane-wave basis set is used for expanding the electronic state. The chemically 

inactive core electrons are replaced with ultrasoft pseudopotential [49, 72] (USP) which 

were obtained in the CASTEP database. To obtain accurate results, it is necessary to 
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perform the kinetic energy cutoff, which determines the number of plane waves in the 

expansion and the k-points used for the Brillouin zone integration. It is therefore imperative 

to ensure that appropriate energy cutoff and k-points are determined. 

 

3.2.1 Plane-Wave Pseudopotential Method 

This method is fully discussed in chapter 2 and we use it to predict the equilibrium lattice 

parameters, equation of state, bond lengths and internal parameters of PdS structure. In this 

method geometry optimization is achieved by varying the hydrostatic pressure and 

allowing the lattice to relax using the Broyden-Fletcher-Goldfard-Shanno (BFGS) 

minimization method to obtain the equilibrium geometry [73, 74, 75, 76]. Electronic 

minimization was performed through band-by-band conjugate gradient (CG) minimization 

technique. 

 

3.2.2 Kinetic Energy Cutoff 

Convergence test for the energy cutoff is important, since it determines the number of plane 

waves required in a calculation. Different values of energy cutoff were chosen until a 

constant energy was obtained, and the energy cutoff that corresponds to the minimum total 

energy is then used for all calculations. For PdS, the appropriate energy cutoff obtained is 

500 eV. The graph of total energy versus energy cutoff is shown in figure 3.1. This cutoff 

energy corresponds to Fast Fourier Transformation (FFT) grid of 45×45×45 and the 

corresponding number of plane waves used is 7021. Pullay correction on forces was 
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included to compensate the energy cutoff. In all optimizations, the tolerance in total energy 

and pressure change before self-consistency was 2×10  eV/atom and 0.1 GPa 

respectively. The RMS tolerance for the atoms displacement was restricted to 0.001 Å. 
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Figure 3.1 Total energy versus kinetic energy cutoff for PdS 

 

3.2.3 K-points sampling 

It is crucial for one to determine a reasonable number of k-points to use in PWP 

calculations for speedy convergence coupled with the accuracy of the total energy. Several 

methods have been suggested for special k-points sampling in the Brillouin zone [52, 53, 
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54, 55]. These methods help in obtaining the accurate approximation for the total energy by 

calculating the electronic state at a very small number of k-points. 

The Monkhorst-Pack scheme of the k-points sampling was used to select an optimal set of 

special k-points of the Brillouin zone such that the greatest possible accuracy is achieved 

from the number of k-points used [24, 25]. Different values of k-points mesh parameters 

were varied from 3×3×3 to 8×8×8 until total energy change is within 1 meV. Our k-points 

mesh parameter was found to be 6×6×6 which corresponds to 27 number of k-points and 

figure 3.2 shows the k-points convergence of PdS 
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Figure 3.2 Variation of number of k-points against total energy. 
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3.3 Structural Properties 

Geometry optimization gives the equilibrium lattice parameters and relaxed internal 

parameters which can be compared with experimental results. As figure 3.3 indicates, it is 

possible to predict the lattice parameter (volume) of a system being studied. In figure 3.3 it 

is apparent that the minimum of the total energy occurs at the volume of 264.1 Å3 and 

figures 3.4 and 3.5 indicate, the minimum total energy is at lattice a = 6.350 Å and c = 

6.550 Å, respectively. The deviation between the experimental results and our calculated 

results is 1.2%, 0.3% and 1.3% for lattice parameter a. For lattice parameter c the deviation 

is 0.9%, 0.2% and 1.2%, and the deviation for volume is 3.4%, 0.5% and 3.7% for Brese 

[10], Genkin and Zvyagintsev [12] and Gaskell [13], respectively. Table 3.1 shows the 

tabulated results of this calculation and the results are compared with experimental results. 

Comparison is again done on the volume and the axial ratio of the calculated system and 

the theoretical values obtained from literature (see table 3.2). 

PdS was optimized at several pressures from 0 to 50 GPa enforcing its tetragonal symmetry 

throughout the simulation. Table 3.3 shows pressure dependence of the structural 

parameters of PdS. Figure 3.6 shows the decrease of lattice parameter a  and c  with 

applied pressure. The calculated pressure-volume data were fit to the third-order Birch-

Murnaghan [77] equation of state (see figure 3.7). The deduced bulk modulus is B = 153.3 

GPa, which will be compared to the calculated bulk modulus from VASP later in one of the 

following chapter 4.  

 



 40

Volume (Å3)

200 220 240 260 280 300

T
ot

al
 e

ne
rg

y 
(e

V
/a

to
m

)

-540.1

-540.0

-539.9

-539.8

-539.7

V0 = 264.112 (Å3)

 

Figure 3.3 Total energy versus volume at zero pressure (0 GPa). 
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Figure 3.4 Total energy versus the a  lattice parameter at zero pressure (0 GPa). 
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Figure 3.5 Total energy versus the c  lattice parameter at zero pressure (0 GPa). 

 

Table 3.1 Calculated and experimental structural parameters of PdS. 
                                                              a (Å)                        c (Å)                    V (Å3) 
 Calc. (This work)                           6.350                        6.550                      264.112 
Expt. [10]                                              6.429                        6.611                   273.246 
Expt. [12]                                              6.371                        6.540                   265.456 
Expt. [13]                                              6.430                        6.630                   274.117 
 
 

Table 3.2 Comparison of present and previous calculated structural parameters of PdS. 
                                   VLDA/Vexp VGGA/Vexp (c/a)exp     (c/a)GGA       (c/a)LDA 

Calc. (This work)               0.97                   -                           -                1.03 
Calc. (Pseudopotential) [11]   0.97                 1.04              1.03       1.03              1.04 
 

 Currently, there is no experimental value for bulk modulus of PdS available in literature. 

The one dimensional analog of the Murnaghan equation provides an approximation for 
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describing the nonlinear relation between normalized lattice parameters and pressure P, 
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Here, c  is the c-axis lattice constant and 0c  is the c-axis lattice constant at pressure 0P . 

 

Table 3.3 Pressure dependence of the structural parameters of PdS 
Pressure (GPa)       a (Å) 0aa           c (Å)       0cc ca V (Å3) 0VV

0                   6.350       1           6.550      1      1.031     264.112      1 
         10        6.221    0.980          6.442   0.984      1.036     249.311   0.944 
         20        6.111    0.962          6.384   0.975      1.045     238.359   0.903 
         30        6.028    0.949          6.320   0.965      1.048     229.675   0.870 
         40        5.954    0.938          6.275   0.958      1.054     222.455   0.842 
         50        5.897    0.929          6.220   0.950      1.055     216.256   0.819 
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Figure 3.6 Lattice constants for PdS as a function of pressure 
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Figure 3.7 The calculated equation of state for PdS. The black circle represents the 
calculated values and the red solid line represents the curve fit. 
 

The pressure variations of the normalized lattice parameters 0aa , 0cc  and ca  were 

computed, and are displayed in figure 3.8. They are observed to be decreasing with 

increasing pressure and the parameter ca , which increases with pressure. The relative 

lattice constants are plotted and fitted to the Murnaghan equation of state from which we 

obtain the bulk moduli aB , cB  the derivative of the bulk moduli ( aB′  and cB′ ) at ambient 

pressure (0 GPa) and the compressibility ( ak  and ck ). The results are shown in table 3.4 

and are compared with the calculated value of braggite (PdPt3S4) since they have the same 

crystal structure, symmetry and space group. The calculated and experimental bond lengths 

of PdS at ambient pressure (0 GPa) are shown in table 3.5, and compare reasonably. 
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Figure 3.8 The relative lattice constant 0aa , 0cc  and ca  of PdS as a function of 
pressure. 
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Table 3.4 First-and-second-order axial compression coefficients of PdS calculated 
using USP pseudopotentials, compared with those of braggite. 
                                aB GPa     cB GPa  aB′ cB′ ak  10-3GPa-1

ck 10-3GPa-1 

Calc. (This work)     409.64      586.60      12.51     19.14         2.44                 1.71 
Calc. [78]          370.30      874.77      16.20 12.80         2.70         1.14 
 

Table 3.5 Calculated and experimental bond lengths of PdS at equilibrium volume 
       Bond Length (Å)    Calc.   Expt. [10] 

       Pd(1)-4S(1)    2.313   2.341 
       Pd(2)-4S(1)    2.294   2.318 
       Pd(3)-2S(1)    2.309   2.337 
       Pd(3)-2S(1)    2.325   2.346 
       Pd(3)-Pd(3)    3.089   3.150 
       Pd(1)-2Pd(1)    3.281   3.306 
       Pd(1)-4Pd(2)    3.572   3.615 
       Pd(1)-4Pd(3)    3.788   3.809 
       Pd(2)-2Pd(3)    3.361   3.389 
       Pd(2)-4Pd(3)    3.671   3.702 
       Pd(3)-4Pd(3)    3.942   3.986 
       Pd(1)-4Pd(3)    4.081   4.144 
       S(1)-S(1)     2.995   3.029 
       S(1)-2S(1)    3.255   3.302 
       S(1)-2S(1)    3.272   3.316 
       S(1)-S(1)     3.566   3.510 
 

 

3.4 Electronic Properties 

3.4.1 Density of States 

The density of states (DOS) shows the contribution of states from palladium (Pd) and 

sulphur (S) atoms, and these contributions are analyzed from the partial density of states. 

The total DOS of PdS is the contribution of both the Pd-states and S-states; hence it is 
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important to understand the way electrons are allocated for individual atoms in the system. 

Figure 3.9 gives the total (DOS) and the partial density of states (PDOS) of PdS. The 

calculations were carried out at fully relaxed atomic positions and unit cell parameters. At 

ambient pressure 0 GPa, PdS has an indirect band gap of 0.6 eV which is in agreement with 

other measured energy gaps, which range from 0.02 eV to 2 eV [4, 7, 9]. Folmer et al. [5] 

reports the upper limit for PdS band gap as 2 eV, since the photoresponse of the lock-in 

amplifier decreased to the noise level at approximately 2 eV. 

The valance part of the DOS consists of three isolated peaks positioned from -14.3 eV to -

12.2 eV, and a broader distribution extending from -7 eV up to the valance band maximum 

(VBM). The lower part of the conduction band consists of a continuous distribution of 

states. The partial density of states shown in figure 3.9 sheds useful insights. Three peaks 

ranging from -14.3 eV to -12.2 eV correspond mainly to the S (3s) states. The broader 

distribution between -7 eV and VBM emanate predominantly from the S(3p) and Pd(4d) 

states. In the conduction band, the peaks from 0.6 eV to 3.2 eV correspond to the S(3p) and 

the Pd(4d) states. A continuous distribution of peaks is noted from the Pd(4s and 4p) and a 

small contribution of the S(3p) states. In figure 3.10 the density of states of PdS were 

studied under hydrostatic pressure and the actual size of the band gap remains constant, 

whilst the peaks just below and above the Fermi energy move to the left and to the right 

respectively. Even though PdS and PdPt3S4 have the same crystal structure, symmetry and 

space group, the behaviour of the band gap differs. The band gap of PdPt3S4 increases with 

increasing pressure [78]. 
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Figure 3.9 Total and partial density of states of PdS at zero pressure (0 GPa). 
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Figure 3.10 Total density of states of PdS projected around the Fermi energy at different 
pressures (0, 30, 50GPa). 
 

3.4.2 Charge Density Difference 

The charge density differences are of immense interest since they depict the nature of 

bonding between palladium (Pd) and sulphur (S) atoms. They are calculated from the 

charge density differences by subtracting pseudocharge distributions for individual atoms 

from that of a compound. Figure 3.11, shows the charge density differences of PdS at 

pressure 0 GPa and 50 GPa, respectively on the (0 0 1) slice. The red colour in this figure 

indicates a charge gain, green shows a neutral region between the atoms whilst the blue  
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Figure 3.11 The electronic charge density differences of PdS determined at (a) 0 GPa 
and (b) 50 GPa. The red colour indicates a charge gain, green shows a neutral region 
between the atoms whilst the blue colour depicts the charge loss. 
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colour signifies the charge loss. Upon analysis of Pd-Pd, Pd-S and S-S bondings, at 0 GPa, 

it is evident that high concentration of charge is located between Pd and S atoms, hence 

reflecting covalent bonding. The Pd-Pd and S-S interactions are minimal. However at 50 

GPa, the sharing of charge between S atoms appears to be emerging. 

 

3.5 Optical Properties 

In chapter 2, under section 2.4 we have explained in detail the method for calculating the 

optical properties. Our calculations are based on the Kohn-Sham DFT eigenvalues. 

However the exact Kohn-Sham DFT does not provide direct information on excitation 

energies and any calculation of optical properties based on Kohn-Sham DFT is only a first 

order approximation. We used the norm conserving potentials, with a cutoff of 800 eV 

within the CASTEP code. Reflectance spectra of PdS, under different pressures are shown 

in figure 3.12. Reflectance is the easiest optical property to measure experimentally, but in 

most cases reflectance (R) is rather a slow varying function of wavelength and this makes it 

very difficult to locate the exact energies of interband transitions. The reflectance spectrum 

of PdS at ambient pressure shows a maximum reflectance peak of magnitude 0.39 at 2 eV. 

A noticeable reduction of this reflectance peak and its shift to the right is observed as 

pressure increases. Above 5 eV most distinct peaks are enhanced in magnitude and are 

displayed to higher energies with increasing pressure. 

 The absorption spectra of PdS under high pressure are shown in figure 3.13. In view of the 

band gap, semiconductors are unable to absorb and reflect lower energies. Absorption and 
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reflection start to occur at frequency 0ω , given by gE=0
2ω� , and at this frequency we 

notice the so-called absorption edge. The absorption edge is responsible for the width of the 

band gap. The absorption of PdS was calculated up to 30 eV. We observe the main spectral 

absorption at around 3.5, 11, 15 and 17 eV. There could also be transitions between the 

valence and the conduction band (intraband transitions) for both occupied and unoccupied 

orbitals. The calculated absorption edge commences at 0.6 eV, which is comparable to the 

energy gap of 0.6 eV determined by density of states (DOS). We also observe a decrease in 

the intensity of the peak at lower energy but rapid increment at higher energies as pressure 

increases. Absorption is enhanced under pressure, and spectral features are shifted to higher 

energies. 
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Figure 3.12 The calculated reflectivity spectra of PdS at different pressures. 
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Figure 3.13 The calculated absorption spectra of PdS at different pressures  

 

3.5.1 Comparison with the experiments 

Figure 3.14 shows calculated reflectance spectra of PdS, platinum (Pt) and nickel (Ni) 

ternaries along with the experimental results of Criddle and Stanley [1]. The measurements 

were done within the visible region ranging from 400 nm to 700 nm. At lower energy 

range, where the measurement of reflectivity is direct and band structure underlying the 

calculation is more accurate, the calculated reflectivity of PdS (vysotskite) is more than 

44.4 % at 400 nm as compared to 42 % of experimental value, which is a deviation of 

approximately 5.6 % but at 700 nm the deviation between the calculated and experimental 
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value is approximately 2.6 %. The difference can be attributed to their compositional 

variation, since the PdS sample contains fractions of platinum and nickel, whereas our 

model has neither traces of platinum (Pt) nor nickel (Ni). However, the shape of the 

calculated reflectance curve resembles the experimental measurements. The reflectivity 

increases between 400 nm and 600 nm and tends to a constant value beyond this range. In 

order to investigate if compositional variation and atom positions affect our reflectance, we 

calculated the reflectivity of Pd4-xPtxS4 and Pd4-xNixS4. When investigating the effect of 

atom positions, atom Pd(1) with atomic position 2a is replaced with Pt or Ni and we name 

the structure Pd3PtS4_Pt or Pd3NiS4_Ni for nickel; when Pd(2) with atomic position 2e is  

replaced with Pt or Ni the structure is labeled Pd3PtS4_Pd or Pd3NiS4_Pd.  

In figure 3.14, we observe that, when we have 25 % of platinum (Pt) for the system 

Pd3PtS4_Pt the reflectance spectrum reduces to 43.4 % at 400 nm. It then becomes 

equivalent to the experimental spectrum between 540 and 570 nm, however, between 590 

nm and 680 nm the reflectance deviates by approximately 0.2 % and above 680 nm the 

spectrum tends to the experimental curve. For the system Pd3PtS4_Pd the reflectance 

reduces to 41.4 %, and increases towards the experimental values between 420 and 660 nm, 

but above 660 nm the spectrum reverts to the experimental curve. Hence the position of 

atoms in the unit cell affects the magnitude of reflectance considerably. With 25 % of 

nickel (Ni) in the system Pd3NiS4_Ni, the reflectance reduces to 42.4 % at 400 nm which is 

equivalent to that of the experimental spectrum. However between 430 and 660 nm the 

reflectance is below the experimental value by 0.6 %, and becomes equivalent to the 

spectrum of Pd3PtS4_Pt between 630 and 690 nm, both spectra are nearly equivalent to the 
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experimental PdS spectrum between 680 and 700 nm. In regard to Pd3NiS4_Pd, the 

reflectance increases to 44.6 % at 400 nm and 48.8 % at 700 nm. We generally note that 

locating Pt and Ni at 2a position in the PdS unit cell, yields a good agreement between the 

calculated and experimental reflectance, whereas the 2e position introduces significant 

deviations. Such agreements suggests the presence of Pt and Ni in the samples that were 

used in measurements, and further proposes where these impurities are likely to be located 

in the unit cell.     
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Figure 3.14 Comparison of calculated reflectivity of Pd4-xPtxS4 and Pd4-xNixS4 with 
experimental result. 
Figure 3.15 shows the calculated absorption coefficient of PdS along with the experimental 
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results of Ferrer et al. [4]. Ferrer observed values of absorption coefficient (�) higher than 

2.0×105 cm ¹ at h� > 2.0 eV, but at we observe values of � higher than 0.6×105 cm ¹ at h� 

> 2.0 eV but less that 1.3×105 cm ¹ at 3.0 eV. Although these magnitudes are different, the 

shape of the calculated absorption coefficient curve nearly resembles the experimental 

measurement. 
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Figure 3.15 Calculated and experimental optical absorption coefficient of PdS. 
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Chapter 4 

Miscibility Gap 

4.1 Introduction 

In this chapter, we discuss a possibility of miscibility gap between cooperite, braggite and 

vysotskite. Recently experimental investigations of the PtS-PdS-NiS system [79, 80] 

confirmed the presence of miscibility gap between cooperite and braggite and a continuous 

solid solution series between braggite and vysotskite. Contrary to the experimentally 

confirmed miscibility gap between cooperite and braggite, a compilation of analyses 

reported in the literature from worldwide occurrences [81] seems to imply a continuum of 

compositions between vysotskite and cooperite with no obvious gap as shown in figure 4.1. 

We study the stability of binary and ternary compounds from PtS to PdS by investigating 

the heats of formation, elasticity and electronic properties (especially pseudogap). 

Consequent results are then discussed and correlated to the stability of binary to ternary 

compounds from PdS to PtS, which in turn will help us understand if a miscibility gap 

between these compounds exists. 
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Figure 4.1 Compilation of analyses reported in the literature from worldwide 
occurrences [81]. 
 

4.1 Concentrations 

Since PdS has three distinct sublattices of Pd, we generated five different concentrations of 

Pd and Pt from this structure. The common thing about these structures is that, they have 

the same symmetry. In order to obtain different concentrations we had to change certain 

atoms from Pd to Pt. We also used the PtS structure in our study, which has only one Pt 

sublattice. From PtS structure, we managed to generate two different concentrations, that is 

pure PdS and PtS which have different symmetries from ternary. All structures are shown 

in figure 4.2. 
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Figure 4.2 Structures with PdS symmetry but different concentrations of Pd and Pt (a) 
100% Pd (PdS), (b) 25% Pd (PdPt3S4), (c) 50% Pd (Pd2Pt2S4), (d) 75% Pd (Pd3PtS4) and 
(e) 0% Pd (PtS). We also have two structures with PtS symmetry (f) 100% Pd and (g) 
100% Pt).  
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4.3 Stability 

4.3.1 Elastic Properties 

A given crystal cannot exist in a stable or metastable phase unless its elastic constant ijC  

obeys certain relationships. Elastic constants also determine the response of a crystal to 

external forces and play an important role in determining the strength of the material. The 

ijC  can also be used to check phase stability of proposed compounds [83, 84]. First-

principles calculations that use periodic boundary conditions assume the existence of a 

single crystal; hence all elastic constants can be determined by direct computations. 

 We calculated elastic moduli of binary and ternary compounds from PtS to PdS using the 

VASP code. Practically, elastic coefficients from first-principle methods are determined by 

setting either the stress or the strain to a small finite value, optimize any free parameters of 

the structure, and calculate the strain or stress. With a careful choice of the applied 

deformations, the elastic moduli can be determined. The elastic properties were calculated 

using the method developed by Nielsen and Martin [85]. In section 2.4, we discussed the 

criteria that have to be satisfied by elastic constants for compounds to be stable. We first 

present the structural parameters of these compounds (see table 4.1) which were calculated 

by VASP code using LDA and ultrasoft pseudopotentials. The calculated structural 

parameters compare well with experimental results. The calculated elastic properties of 

binary and ternary compounds from PtS to PdS are displayed in table 4.2. 
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Table 4.1 Calculated and experimental structural parameters of binary and ternary 
compounds, from PtS to PdS. 
Compounds    Concentration  Space group              Calc.                      Exp.  
                     (% Pd)                              a (Å)      c (Å)      a (Å)        c (Å) 
PtS            0      P42/m     6.380     6.566 -               - 
PdPt3S4           25                 P42/m     6.370     6.563     6.370a     6.540a 
Pd2Pt2S4           50                 P42/m     6.375     6.571 -     - 
Pd3PtS4           75                 P42/m     6.391     6.538 -     - 
PdS                       100                 P42/m     6.381     6.565     6.429b 6.611b 
PtS                           0                 P42/mmc     3.450     6.091     3.470c 6.110c 
PdS                       100                 P42/mmc     3.445     6.122  -      - 
a Childs and Hall [15]       
b N. E. Brese et al. [10]       
c D. J. Vaughan et al. [86]       
 

 

Table 4.2 Calculated elastic constants of binary and ternary compounds from PtS to 
PdS. 
Compounds   Concentration    Space         11C          12C          13C        33C        44C       66C                                                                                                                                                     
             (% Pd)              group         GPa        GPa        GPa      GPa       GPa      GPa 
PtS      0             P42/m      237.50     142.20    132.35    274.80   48.80   64.40 
PdPt3S4     25             P42/m      232.70     139.00    130.90    266.70   41.80   56.80 
Pd2Pt2S4     50             P42/m      207.20     133.30    122.40    260.70   37.00   53.00 
Pd3PtS4     75             P42/m      210.80     120.00    118.00    233.30   31.60   45.60 
PdS                 100             P42/m      185.00     119.70    113.65    215.80   22.40   38.60 
PtS                 0             P42/mmc  211.20     72.30      146.65    339.60   29.00   12.00 
PdS                 100             P42/mmc  159.70     61.70      122.60    266.20   12.40   6.80 
 

 

All compounds meet the requirements for a crystal to be stable under any homogeneous 

elastic deformation, the requirements are as follow 01211 >− CC , 02 133311 >−+ CCC , 

011 >C , 033 >C , 044 >C , 066 >C , 0422 13123311 >+++ CCCC . Figure 4.3 shows the 

variation of elastic constants of Pd4-xPtxS4 with Pd content. We generally notice a decrease 
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in all elastic constants as the Pd concentration increases. In the case of 11C , we observe a 

departure from linearity and a fluctuating trend between 25% and 100% Pd concentration. 

12C  and 33C , reflect constant decrease from 0% to 50% followed by a steeper reduction 

from 50% to 100% Pd concentration. On the contrary 12C  depicts a reduced slope above 

50% Pd concentration. A linear decrease of 44C  and 66C  occurs as Pd content is increased. 
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Figure 4.3 Variation of elastic constants of Pd4-xPtxS4 versus Pd concentration. 

 

The calculated bulk, shear and Young's moduli of Pd4-xPtxS4 are presented in table 4.3. PtS, 

with vysotskite structure, has the highest bulk, shear and Young's moduli. It can therefore 
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be summarized that PtS (P42/m) is much harder than all other concentrations, with the 

trend of the hardness suggested as: PtS (P42/m) > PdPt3S4 (P42/m) > PtS (P42/mmc) > 

Pd2Pt2S4 (P42/m) > Pd3PtS4 (P42/m) > PdS (P42/m) > PdS (P42/mmc). Our calculated bulk 

moduli are comparable with those obtained by Ntoahae [78]. Figure 4.4 shows the variation 

of different calculated moduli with Pd concentration. We note that as Pd concentration 

increases, the moduli decrease. The moduli vary linearly with Pd concentration up to 50%, 

and slopes change above this concentration. 

  

 
Table 4.3 Bulk, shear and Young's modulus for binary and ternary compounds from 
PtS to PdS. 
Compounds  PtS    PdPt3S4 Pd2Pt2S4 Pd3PtS4 PdS PtS PdS 
Concentration   0%      25% 50%     75%              100%          0%   100% 
      (%Pd)  
Space group   P42/m     P42/m         P42/m      P42/m         P42/m     P42/mmc    P42/mmc 

Bulk modulus (GPa) 
Voigt           173.73  170.41         159.03      151.88 142.20      165.91 133.27 
Reuss           173.31  170.02         157.95      151.59 141.72      141.62 109.62 
Hill           173.52  170.22         158.49      151.73 141.92      153.77 121.45 
Calc.               -  184.22a    -           -             153.29b       141.12a       - 

Shear modulus (GPa) 
Voigt            55.26   50.17          45.20       41.69 32.60       40.43 24.90 
Reuss            49.12   43.98          38.05       37.00 27.77       26.96 14.01 
Hill            52.22   47.07          41.62       39.34 30.19       33.69 19.45 

Young's modulus (GPa) 
Voigt            149.89   137.05        123.87      114.58 90.86      112.17 70.32 
Reuss            134.79   121.46        105.66      102.65 78.20      76.05 40.30 
Hill            142.34   129.26        114.76      108.61 84.53      94.11 55.31 
a P. S. Ntoahae [78]        
b This work (equation of state from CASTEP calculation) 
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Figure 4.4 Variation of Pd concentration on bulk, shear and Young's modulus. 

 

4.3.2 Heats of Formation 

The heat of formation is the heat released or absorbed (enthalpy change) during the 

formation of a pure substance from its elements. It is one of the prime thermodynamic 

ingredient in the free energy to determine phase diagrams, the other being entropy. Hence 

studying the relative stability of binary and ternary compounds, it is convenient to consider 

the formation energy ( formE ) of each structure. The formation energy is responsible for the 

relative stability of the phases at low temperatures where entropic contributions are not 
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important. These relative stabilities of different phases are determined through the well-

known common tangent rule [82]. The heat of formation may be calculated by subtracting 

the total energies of the elemental systems from that of the compound. That is, the heat of 

formation per atom of a compound 88),( SNM  is given by 

  [ ])(8)()8()()8(
16
1

(),((

8

8888

SENExMxESNME

SNMHSNMH

xx

xxff

−−−−=

∆≡∆

−

−

  (4.1) 

where NM ,  are chosen from Pd or Pt elements and, x  and )8( x−  refer to the 

concentrations of constituent elements. Heats of formation have been computed to probe 

the presence of miscibility gap. Experimental heats of formation have been reported for 

PdS only by Zubkov et al. [3]. The current ab initio calculated heats of formation is -78.93 

kJ/mol and compares very well with the experimental value of  -78.1 kJ/mol. The 

calculated heats of formation of other binary and ternary compounds are displayed in table 

4.4. Although PtS (cooperite) is an experimentally known structure, our calculations 

predict that PtS with vysotskite (PdS) structure is more stable. 

 

Table 4.4 Heats of formation for binary and ternary compounds from PtS to PdS. 

Compounds        Concentration     Space group           Calc. fH∆            Exp. [3] fH∆  

                           %Pd                                        kJ/mol                   kJ/mol 
PtS                             0                        P42/m              -82.92                         - 
PdPt3S4                 25                           P42/m              -332.31                       - 
Pd2Pt2S4                 50                P42/m              -163.84                       - 
Pd3PtS4                 75                           P42/m              -323.26                       - 
PdS                             100                        P42/m              -78.93                     -78.1 
PtS                             0                        P42/mmc  -82.42                         - 
PdS                             100                        P42/mmc  -71.41                         - 
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Figure 4.5 shows the variation of heats of formation with Pd concentrations. No miscibility 

gap is noted between PtS (cooperite) and PdS (vysotskite) however, a continuum solid 

composition exists, which is in agreement with the experimental results by Merkle and 

Verryn [81]. We further observe that PtS (P42/m) has a lower energy as compared to PtS 

(P42/mmc), which suggests that PtS may also adopt a PdS structure. Additional 

experiments are needed to confirm our prediction. 
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Figure 4.5 Heats of formation ( fH∆ ) Pd4-xPtxS4 as a function of Pd concentration 
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4.3.3 Pseudogap at the Fermi Energy 

Raybaud et al. [9] reported that the formation of a deep pseudogap at the Fermi level is the 

driving electronic mechanism for stabilization of the PdS and PtS monosulphides. Hence it 

is important for us to study the electronic properties of these binary and ternary compounds 

from PdS to PtS and check if there is a formation of deep pseudogap at the Fermi level. The 

total densities of states for binary and ternary compounds are plotted in figure 4.6 and the 

Fermi energy has been taken as the energy zero. This pseudogap can be clearly observed 

with respect to the Fermi energy. It is noted that the Fermi level falls at a deep pseudogap 

for PtS (P42/m), PdPt3S4 (P42/m), Pd3PtS4 (P42/m), PdS (P42/m), PtS (P42/mmc) and PdS 

(P42/mmc). However, the Fermi level for Pd2Pt2S4 (P42/m) is slightly shifted owing to the 

pseudogap moving to lower energy. We extend our discussion by comparing the total and 

partial density of states of PdS (P42/m) with PdS (P42/mmc) and PtS (P42/m) with PtS 

(P42/mmc), which appear in figure 4.7. It is clear from the total density of states that they 

all have a deep pseudogap at the Fermi level. Looking at the partial density of states for 

PdS (P42/m and P42/mmc), peaks ranging from -15 eV to -12 eV corresponds mainly to S 

(3s) states. The broader distribution between -7 eV and valance band maximum (VBM) 

emanate predominantly from the S (3p) and Pd (4d) states. In the conduction band, the 

peaks from 0.25 eV to 1.55 eV for PdS (P42/mmc) and peaks from 0.25 eV to 3.2 eV 

corresponds to S (3p) and Pd (4d). For PtS (P42/m and P42/mmc), peaks ranging from -

15.5 eV to -14.25 eV correspond to the S (3s). The broader distribution between -9 eV and 

VBM emanate predominantly from the S (3p) and Pt (5d) states. 
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Figure 4.6 Total density of states for binary and ternary compounds from PtS to PdS. 
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In the conduction band, peaks from 0.5 eV to 5 eV for PtS (P42/m) and peaks from 0.5 eV 

to 6 eV for PtS (P42/mmc) corresponds to S (3p) and Pt (5d). The electronic partial 

densities of states of sulphur S (3p) orbital for the structure with space group P42/m has a 

soft hump but for the structure with space group P42/mmc there is sharp hump. This could 

be due to the structure differences. 
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Figure 4.7 Total and partial density of states for PdS. (a) PdS (P42/m), (b) PdS 
(P42/mmc), (c) PtS (P42/mmc) and (d) PtS (P42/m). 



 70

Chapter 5 

Conclusion and Recommendations 

5.1 Conclusion 

Density functional methods have been successfully used to investigate structural, electronic 

and optical properties of binary and ternary compounds from PtS to PdS. Our results are in 

good agreement with the available experimental results. Structural properties are 

comparable with the experimental values, since the predicted values are within 97% of 

accuracy. When pressure increases the lattice parameters decreases. We note a good 

correlation between calculated electronic and optical properties. Both of them predicts 

energy gap of 0.6 eV which is within the experimentally measured value of 0.02 eV and 2 

eV     [4, 5, 7, 9]. The band gap remained constant under variation of pressure, whilst the 

peaks just below and above the Fermi energy move. From the charge density differences of 

PdS, we noted covalent bonding between palladium and sulphur, and most charge transfer 

is from palladium to sulphur. Interpretation of the calculated reflectivity spectra is assisted 

by comparison with the experimental data which are in agreement and a deviation of 

approximately 5.5 % is noted at lower wavelengths, but at higher wavelengths the deviation 

is about 2.5 %. The compositional variation shows that both platinum and nickel, when 

located at 2a position in PdS unit cell, reduces the reflectance towards the experimental 
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value with nickel giving a better correlation. We have investigated the miscibility gap 

between binary and ternary compounds from PtS to PdS. Our results show no obvious gap 

but a continuum solid solution between these compounds, which is in agreement with the 

results compiled by Merkle and Verryn [81]. We have studied stability of the compound by 

computing heats of formations, elastic properties and densities of states. Most importantly, 

our first principle heat of formation of PdS (-78.93 kJ/mol) is in agreement with the 

experimental results of PdS (-78.1 kJ/mol) by Zubkov et al. [3]. Elastic constants for binary 

and ternary compounds, from PtS to PdS, meet the stability requirement for a tetragonal 

crystal under any homogeneous elastic deformation [69]. Our calculated bulk modulus 

(VASP) for PdS compare well with that obtained from the equation of state (CASTEP), 

unfortunately no experimental results are available for comparison. We observe that our 

calculated moduli (bulk, shear and Young's) decrease with increasing pressure. The density 

of states reflects a deep pseudo gap at the Fermi level, which is a driving force for stability 

of these monosulphides compounds [9] except for Pd2Pt2S4 which is less stable. 

 

5.2 Recommendations. 

Structural, electronic and optical properties of PGMs have been studied extensively using 

ab initio methods. However, we would like to put forward some recommendations 

emanating from the current study. We have calculated bulk moduli and elastic constants 

which are of great interest, since such properties will contribute significantly in the 

development of inter-atomic potentials, which could initiate studies of pressure and 
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temperature dependence of thermodynamic properties of these compounds. We hope that 

our calculations will stimulate more experimental work on elastic constants and bulk 

moduli. The availability of such results will enable a meaningful validation of our 

predictions. 
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Appendix A 
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N. O Monama and P. E. Ngoepe., Pressure dependence studies of structural, electronic and 

optical properties of PdS., to be submitted. 

 

 N. O. Monama and P. E. Ngoepe., Stability and mechanical properties of binary and 

ternary compounds from PtS to PdS., to be submitted. 
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held at the University of the Free State, in July 2004. 

 

 N. O. Monama et al., "Computational studies of Palladium sulphide"., Presented at 

Materials Modelling Meeting (MMM) 9th  Annual Meeting, held at University of the North 

(S.A), in March 2005. 

     

 N. O. Monama et al., "Computational study of structural and electronic properties of 

Palladium sulphide"., Presented at South African Institute of Physics (SAIP) 50th  Annual 

Conference, held at the University of Pretoria, in July 2005. 

     

N. O. Monama et al., "Pressure dependence of structural and electronic properties of 

Palladium sulphide (PdS)"., Presented at Materials Modelling Meeting (MMM) 10th  

Annual Meeting, held at University of the North (S.A), in April 2006. 
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