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Abstract

Topological structures called Yosida frames and related algebraic frames
are studied in the realm of Pointfree Topology. It is shown that in
algebraic frames regular elements are those for which compact elements
are rather below the regular elements, and algebraic frames are regular if
and only if every compact element is rather below itself if and only if the
frame has the Finite Intersection Property (FIP) and each prime element

is minimal.

We also show that Yosida frames are those algebraic frames with the
Finite Intersection Property and are finitely subfit; that these frames are
also those semi-simple algebraic frames with FIP and a disjointification
where dim (L)< 1; and we prove that in an algebraic frame with FIP, it
holds that dom (L) = dim (L). In relation to normality in Yosida frames,
we show that in a coherent normal Yosida frame L, the frame is subfit if
and only if it is regular if and only if it is zero- dimensional if and only if

every compact element is complemented.



Min(L)
Max(L)

L

Max (L)

Max"(x)

dom(L)
dim(L)

ChFrm

List of symbols

The collection of minimal primes of L
The set of all elements x<e in L that are maximal

The set of all meet of maximal elements
A{meMax(L) | m> x|

The collection of all nuclei on a frame L
xeL|j(x)=x|
ViyeL|xay=0}.

The collection of prime elements of L is denoted

The collection of all regular elements of L

The join of the lengths of dominance chains of L.
The maximum of the lengths of chains of primes.

The category of all coherent frames and coherent

frame Homomorphisms.



Introduction

This dissertation is an exposition of the interplay of mathematical
structures in General Topology and Algebra on the one hand, with those
in Pointfree Topology on the other. It is based on three related research

articles of Martinez and Zenk, namely:

» Yosida frames, Jour. of Pure and Appl. Alg. 204 (2006), 473-492.

» When an algebraic frame is regular, Algebra Univers. 50 (2003),
231-257.

» Regularity in algebraic frames, Jour. of Pure and Appl. Alg.211
(2007), 566 — 580.

In this study, we selected results whose proofs are sketchy but are
related to Yosida or algebraic frames in general and organised them into

three chapters.

In Chapter 1 (Regularity in algebraic frames), we study algebraic frames
(those frames that are generated by compact elements). It must be
recalled that frames are generalised complete lattices that are closed
under finite meets and arbitrary joins in which the Generalised
Distributive Law holds. We prove properties of compact and regular
elements, the rather below relation and other frame-theoretic concepts in
algebraic frames. We also study relative notions of regularity, namely,
Reg(1l), Reg(2), Reg(3) and Reg(4), in relation to pseudo-complements

and complemented elements.



Chapter 2 deals with Yosida frames. These frames are not so well-known
in the family of “Pointfree topologists” but enjoy very interesting

properties.

For instance, these frames are precisely those algebraic frames with the
Finite Intersection Property that are finitely subfit. In fact, it is proved
that if L is a semi-simple algebraic frame with the Finite Intersection
Property and disjointification with dim(L)< 1 is a Yosida frame. Thus there
are new concepts such as semi-simple, disjointification, subfitness, Finite
Intersection Property, the Compact Splitting Property and zero-

dimensionality that we found enriching to study.

In the last Chapter, we bring a collection of results from one of the most
familiar authorities in Pointfree Topology Bernhard Banaschewski
alongside those of Martinez and Zenk. We succeeded in showing that
compact normal frames are related to regular frames and that,
importantly, in a normal coherent frame, the frame is subfit if and only if
it is regular if and only if it is a zero-dimensional if and only if every

compact element is complemented.

The approach, methods and techniques we used in this mini-dissertation
are standard: many results are established from basic principles (i.e.
definitions) and known techniques used in common (standard). There are
no new results in the dissertation but some of the proofs constructed
provide insight into the beauty of pointless thinking — and, indeed, as
Peter Johnstone would say, there is a “point” in studying Pointless

Topology.

Vi



Chapter 1

Regularity in algebraic frames

In this chapter we study the relationship between regularity, compactness,
the rather-below relation, denseness and pseudo-complements in frames.
We show how (pointless) regularity relates to d-elements, pseudo-
complements and compact elements in an algebraic frame L. Some of the

results we prove in this chapter are the following:

i) Suppose that L is an algebraic frame. Then xeL is regular if and only

if every compact element c<x is rather below x (Propositionl.2.4).

ii) An algebraic frame L is regular if and only if for each CGC’(L), it holds

that cvc*=e if and only if L has the Finite Intersection Property
(FIP) and each prime of Lis minimal (Theorem1.2.6).

iii) In algebraic frame in which the rather below relation interpolates, the

collection of its regular elements is regular (Theorem1.2.12).

iv) In an algebraic frame L with FIP, the element x~ is regular if and only if

it is complemented, for every compact x e L (Theorem 1.3.6).

v) An algebraic frame L satisfies Reg (1) if and only if it has the Compact

Splitting Property (Theorem1.3.7).



vi) In an algebraic frameL possessing a unit ue L and satisfying Reg(4),

every complemented element is of the form a” for some compact xeL

(Proposition 1.3.13).

1.1 Preliminary Concepts

We call a complete latticeL a frame if the following generalised distributive

law holds:
b/\(VS) = V{b/\s, SeS},

for eachbelL and any Sc L .The bottom (respectively, top) element of L is
denoted by 0 (respectively, e). A frame homomorphism h:M — L is a map
between frames preserving finite meets (including e) and arbitrary joins
(including 0). Frame homomorphisms are closed under composition, and
therefore we have the category FArm of frames and frame homomorphisms

(see Johnstone [6]).

Many of the concepts we use in this dissertation have their origin in

“pointful” topology. Given a topological space (X,z,) and denoting by O(X)

the set 7, of open subsets of X, we know that

i) ¢, X €0O(X)

ii) UNV eO(X),forall U,V € O(X) and (ﬂuijo e O(X) foreach {U [i e 1}cO(X).

iel

iii) | JU, eO(X), foreach U fi e 1}c O(X).

iel



iv) U NV, = U NV,) foreach U €O(X ) and {]i e 1} O(X).

iel iel

Therefore with ¢ representing the bottom element and X the top element,
N andU representing meet and join, respectively, the pair (X,0(X)) is an

example of a frame.

Definition 1.1.1 (Martinez [12])

A frame homomorphism is a map h:L—> M between frames satisfying the

following properties:

i) h(0)=0; h(e)=e.
i) h(x A y)=h(x)Ah(y),forall x,y e L.

ii) h(_\/ xi):_\/ h(x,), forall {xfiel}cL.

el iel

The preimage f* of any continuous function f:(X,z,)—(Y,7,) between

topological spaces satisfies (see Willard [16])
i) f1(Y)=Xand f *(g)=g.

i) fruNv)=f*U)Nf*V) foralluV ex,.

i) £ UV = U W)
V,ery Viery
Therefore, with N and U representing meet and join, respectively, and X and ¢

being the top and bottom elements, respectively, the function

O(f):0(Y)—>O(X) defined by O(f)U)=f"*({U)foreachUez is a “perfect’



example of frame homomorphism as it preserves finite intersections and

arbitrary unions.

Definition 1.1.2 (See e.g. Simmons [14])

Given a frame L, a nucleus on L is a function j:L — L satisfying:

i) x< j(x), forall x e L.
i) j(j(x)) = j(x) forallx e L.

iii) j(xAy)=j(x)a j(y) forall xy e L.

The collection of all nuclei on a frame L will be denoted by N(L).

Proposition 1.1.3

For any subset S < N(L), the function AS:L — L defined by
s(X)=A{j(x)xeL|jes}

is a nucleus on L.



Proof:

i) Let jeS and xelL. Then since j is a nucleus on L, we have that
X< j(x)
= x<A{j(x) xeL|jes]

= X < AS(x)

i) Take x,yelL and jeS. Then since j is a nucleus on L, it follows that
i(xay)= )~ ily)
= Mikxay)|jesi=Ali()n i(y)] ies]
=Ai]ies tanali(y)|ies)
= AS(xAY) = AS(x) A AS(y).

i) Finally, we have that



Recall (see e.g. Banaschewski [2]) that a frame homomorphism h: M — L is

dense if whenever h(x)=0 impliesx=0. Dually,h is said to be codense if

whenever h(x)=e then x=e. Denoting by jL the set
Fix(j) = jL = {ce L] ()= x}

we now have the following relationship between a nucleus j on L and its

denseness.

Observation 1.1.4 (Martinez [12])

The nucleus j is dense if and only if 0e jL={xeL|j(x)=x}.

Proof:

(:>): Suppose that j is dense andO¢ jL. Thenj(O);éO, so j is not dense, a

contradiction. Thus Oe jL.

(<): On the other hand, if 0e jL and j(x)=0, then x< j(x)=0, proving that

x=0. [ ]

A closure operator on L is a mapj:L— L which satisfies (i) and (ii) of
Definition 1.1.2. Suppose j,j,:L— Lare closure operators on L and that
j;(x)< j,(x) and take se j,L. Then, by definition, we have that s < j,(s), for all
seL. Now if sejL then s=j,(s)>j(s) so that j(s)=s which means that

se jL. Hence j,Lc jL. These calculations prove that



Observation 1.1.5 (Martinez [12])

Closure operators on L are partially ordered by j, < j, if and only if j,L c j,L.

Following Martinez and Zenk [11], we define the pseudo-complementof xelL

to be
x'= ViyeL|xay=0}.

We say that y is rather below x (and writey < x) if there exists an element

ze L satisfying xAz=0 and zvy=e. Itis immediate that x AXx =0 because
xax =V xay|xay=0}= vo=o0.

However, xv x #e, in general. The frame L is complemented if xvx =e for

eachxel.

The following equivalent notion of a pseudo-complement is used to prove

Lemma 1.1.7.

Remark 1.1.6

a) For each xel, if zax=0, then z<x". This follows since then
ze{yel|yax=0
so that zgv{yeL|y/\x=0}:x*.

b) y<x ifand only if y"vx=e: If y<x, then yaz=0 and zvx=e for some



zelL.By a), z<y sothat e=zvx<y vx.Thus y vx=e.

On the other hand, if y"vx=¢e, then yay =0and y vx=e gives y<x.

Lemma 1.1.7

For any elements x,y in a frame L, the following hold:
i) x<x".

i) If x<y, then y" <x".

i) X =x".

iv) If x<ythen x" <y.

v) If x<y in L, then x<y.

vi) If a<x<y<b, then a<b.

vii) If a<c and b<c, then avb=<c.

Proof:

i) Since X" Ax=0 andx” Ax" =0, it follows from Remark 1.1.6. that x <x”.
i) Sincexay<"yay =0, it follows that xAy" =0. But xAx =0,
so from Remark 1.1.6 we find that y" <x".

i) Since x<x™, then x™ <x". Again x" <x™ byi), thus x" =x"".



iv) We only need to show that x™ = x" Ay . We proceed as follows:

X" =x" e
—x"A(xvy)  (sincex=<y)
6 el n)
=0v(x" Ay)
~(x" Ay)

v) Suppose that x <y in L. Then there exists zeL such that xAz=0
and yvz=e. So we have
x=xA(yvz)
=(xAy)v(xaz)
=(xAy)vO

=(xry)

vi) Suppose that a<x<y<b in L. Find zeL such that
XAz=0and yvz=e.

Then a < x implies



anz<xanz=0,sothat anz=0.

On the other hand, y<b implies that bvz>yvz=e and hence

bvz=e.Thus a<bhb.

vii) Given a<c and b<c. Find w,t such that waa=0,tvc=e.
Also, there exist p,qeL such that pAb=0,qvc=e. Now we have that
(wa p)a(avb)
:(W/\ p/\a)v(W/\ p/\b)
=0vO0
=0
and

(tvag)vz
:(tvz)v(qu)
=€eve

=€

On the basis of these equations, we conclude that avb=<c.

10



1.2 Algebraic frames

Let Y be a subset of a topological space X ; then a cover of Y is a collection
of subsets of X whose union contains Y . Classically, a topological space X is
compact if each open cover of X has a finite subcover. (See, for example,

Willard [16].) That is, for every arbitrary collection {U,} , of open subsets of X

ieA

such that X = JU;, there is a finite subset B of A such that X =| JU,. We

icA ieB

now have

Definition 1.2.1 (Martinez [10])

Let L be a frame.

i) An element xel is said to be compact if whenever x< /s for any

Sc L it holds that x < [/F for some finite subset F of S. A frame L is said

to be compact if its top element e is compact. The set of all compact

elements of L will be denoted by ¢(L). In addition, a frame L is algebraic if

every element of L is a join of compact elements.

i) An element x of a frame L is said to be regular if
x=WyeL|y=<x}.

A frame L is said to be reqgular if each xe L is regular.

Pseudo-complementation and complementation are related as follows:

11



Proposition 1.2.2 (See also Birkhoff [4])

In a frame L, the pseudo-complement is complemented if and only if for any
x,y €L, it holds that x" vy =(xay) .

Proof:

(=): Since xay<x and xay<y, it follows from Lemma 1.1.7 that

x"vy <(xay). It remains to show that (xAy) <x"vy".

By assumption, the element (x A y)* is complemented and so

Sk

(xAy) vixay) =e.

Therefore, we need only show that
(X vy v (xay) e
to prove that (xAy) =x" vy To this end we have
Ay Vv y)z(ay)v(c vy

=[x ay)vx vy
= [V x)alyvx)lvy’
“falyvxvy
=yvx vy

:evx*

12



(<): Suppose x" vy =(xay) =(xay), for any x,yeL. We need only show

that x v x™ =e. In the equationx” vy =(xAy), we set y=x" and find that

=x vy
=(xAy) (By assumption)

= (X/\ x*)*

and so the pseudo-complement X is complemented. [

We need the following result to prove one of our main results, namely

Theorem 1.2.6.

Lemma 1.2.3
If Y<Z and Z<X in L, then Yy =<X.

Proof:

Suppose that Y<Z and Z<X. Then €=2 vX<y vX, whence Y VX=€ so

that y <X, ]

13



The following result gives a necessary and sufficient condition for the

regularity of an element in an algebraic frame.

Proposition 1.2.4 (Martinez [12])

An element x in an algebraic frame L is regular if and only if every compact

element c < x satisfies c< x.
Proof:

(=): Suppose that xeL is regular and that c < x is compact. We must show

that c < x. By regularity, we have

x= VaeLla<x].
But ¢ <x is compact with c¢< [/{a el |a < x}, so compactness implies that

c<ViaeLl]a <x i=12..n}.

From this observation, it follows that a, va,v...va, <x and so Lemma 1.2.3

ensures that c< x.

(<:): Conversely, suppose that any compact c < x satisfies c<x. Since L is

regular, we must have that
x=\/{celLl|ce cL)}.
But each ce C(L)with c<x satisfies ¢ < x by hypothesis, so

x=\/{ceL|c=xce L)},

making x regular as was to be proved. [

14



Definition 1.2.5 (Martinez [12])

i) A frame L is said to have the finite Intersection Property (FIP) if for
a,be ¢(L) itholds that aabe €(L).

ii) An element p in L is said to be prime if whenever xAy<p and p<e
implies that x< p and y < p. The collection of prime elements of L is
denoted by Spec(L) and is called the spectrum of the frame. A typical

Zorn’s Lemma argument guarantees that when primes exist then so do
minimal primes. We denote the collection of minimal primes of L
by Min(L).

iii) An element acL is said to be a d -element if it is expressible in the form

a= [/{ ¢” | c<a cec(L) }

iv) In an algebraic frame L with the FIP, we denote by Max(L) the set of all

elements x<e in L that are maximal and by L the set of all meet of

Max (L)
maximal elements. Moreover,
Max"(x)= A{me Max(L) | m> x}
v) Let L be an algebraic frame. Then L is said to have the Compact

Splitting Property (CSP) if each compact element of L is complemented.

15



Theorem 1.2.6 (Characterization of Algebraic Regular Frames)
In an algebraic frame L, the following are equivalent.

i) Lis regular.

i) Each compact element xeC(L) satisfies xvx" =e, that is each compact
element is rather below itself.

iii) L has the FIP and each prime element is minimal.

Proof:

i)= ii):Assume that L is regular and take a compact xec(L). To see

that xvx =e, we need only show that x<x. To this end, it follows from

regularity that (since L is algebraic)
x=\ {xeL|x<xxec(L)}
Since x is compact, we must have that
x=V{xecll)|x <x, i=12..n}.

Since each x, <x for i1=12,...,n, the observation in first part of the

proof of Proposition 1.2.4 ensures
X=a va,v..va, <X

which means that

16



ii)=iii): Assume that x < x and take x,yec(L).
We will show that x Ay e (L). To this end, we assume (without loss of
generality, (since L is algebraic)) that
xAy< V/x (xc(L)).

Since x=xv(xAYy), we have that

x<x \/ (\V x (x e c(L)).
But x eé‘(L), so (by re-arrangement if necessary) we find that

x<x IV (Vi |i=12,...,n}).
And since xAy=<x we must have that xAy< |/{xi |i =1,2,...,n}, which proves
that xAye(L).

iii): i) Suppose that L has the FIP and that each prime element is minimal.

This is equivalent to the Compact Splitting Property (Martinez and Zenk [10,

Definition & Remarks 2.1 (i)]), so for each compact element x we will have

X" =x=<Xx.Now given xeL, we have that ( since L is algebraic)

x< /% (x <xx €c(L)).

It follows then that x; < x; <x, hence x, <x (Lemma 1.2.3), showing that x is

regular. Consequently, L is regular and i) follows. |

17



Definition 1.2.7 (Martinez [12])

Let L be an algebraic frame. We say that L has a disjointification (or simply,

That L is a frame with disjointification) if for each pair of compact elements

a,b e L there exists disjoint c,d e &(L) such that
i)c<aand d <b, and

ii) avb=avd=cvb

Definition 1.2.8 (Banaschewski [1])

A subset F c L with 0¢F is called a filter if the following conditions hold:
i)ecF.
ii)aabeF, whenevera,beF.

iii) ae F foranya>b whereb e F.

Definition 1.2.9 (Martinez [12])

Suppose that L is an algebraic frame with the FIP. For pe Spec(L), define

o(p)= |/4ga ‘ ael(L), agp}.

18



Theorem 1.2.10 (Martinez [12])

Suppose that L is an algebraic frame with the FIP. Let p e Spec(L).
a) 1f P<d, then O(a)<O(p)

b) O(p) is a d —element.

c) deMin(L) and 9<P imply that O(P)<4q.

d) 1f O(p)<d and 9 is a minimal element over O(P) then A< P

Proof:
a) Suppose p<gq. Then
O(g)= Vv{a" ‘ aec C(L), a%xq}
<v{a’ \ acC(L), atp }
=0(p).
b) O(p) is a d - element since in the definition above a” could be replaced by
(a*)** (by Lemma 1.1.7). In its new form, then, O(p) is a d - element.
¢) Assume that qe Min(L) and q< p. Note that in the definition of O(p)
the join in question is over an upward directed set. Thus if O(p)iq,
there exist disjoint compact elements a and b such that a£ pand b<q.
But then a%q as well because a<qg would imply a<p, a contradiction,
so O(p)<q.

d) Suppose O(p)<q and g is minimal over O(p). Suppose also that there is

19



a compact element ¢ <q such that c< p. For each pair of compact
elements a£gand b< p, we have that 0<aab. This implies that such

aand b generate a filter F of compact elements, which is contained in

the ultra-filter U (say). If we set
m = V{a* ‘ an},
we find a minimal prime m satisfying O(p)s m<q. By assumption, since

ce F cU, we therefore conclude thatq< p, as required. [

Returning to regular elements in L, we denote by Reg(L) the collection of all
regular elements of L and note that there is a natural inclusion |:Reg(L)— L
such that I(r)=r, for each r eReg(L) and Reg(L) is a sbframe of L. There is
then a right adjoint I.:L — Reg(L) of | defined by

L.(x)= V{yeReg(L) | y<x}.

Proposition 1.2.11

For an algebraic frame L with the FIP it holds that I*(x):q, for each xelL

where
q= V{yeL|y<x, ye (L)}

Proof:

By definition, each y in the definition of I.(x) is a regular element. But then
Proposition 1.2.4 implies that every compact element y<x satisfies y<x,

hence L(x)<q.

20



For the reverse inequality, suppose that ZEL’(L) and z<q. Then there are

finitely many y,,v,,...,y, €Z(L) such that y, <x for i=12,...,n and

X<y, vYy,v...vy=<Xx so that z<x by Proposition 1.2.4. This means that z <x

is a compact element satisfying z<x, so (by the same result) z must be

regular, hence z<cReg(L) and so L(x)>q. m

Theorem 1.2.12

In an algebraic frame L, if < interpolates then the subframe Reg(L) is

regular.

Proof:

Suppose that xe Reg(L). We will show that there exists an element yel
satisfying y<x. Since L is an algebraic frame, we may (and do) choose

ze (L) such that z < x. By Proposition 1.2.4, we know that z < x.

But < interpolates, so some element yelL exists such that z<y=<x. In

addition, we find that
z=<L(y)<y=<x

showing that
x= |AL(y)|y<x interpolates}.

Hence Reg(L) is regular. n

21



In relation to regular elements in L, we have

Theorem 1.2.13

An element x e L is regular if and only if whenever x < p then x sO(p).

Proof:

(=): Suppose that xel is regular such that x<p, where peSpec(L).
Suppose, for a contradiction, that x £ O(p). Then regularity of x ensures
the existence of some compact yelL such that y<x (compactness stems
from the fact that L is algebraic) and x £ O(p). By definition, we also have

xvy =e whereas y % O(p) implies that y" <O(p), a contradiction to
y £ O(p). Hence x<0O(p).

(<): Conversely, suppose that whenever x<p then x<O(p). Since L is
algebraic, we pick some yef(L) such that y<x. We claim that
y<xie, xvy =e. For, if xvy <e were true, then there would be a prime
element pel such that xvy <p and so yx O(p), a contradiction to
y<x<0(p). We also have that x<p (as xvy <p) so that x<0O(p), which
does not make sense either. Therefore, we must have xvy =e or y<x, as

desired. -

22



1.3 Relative notions of regularity

Definition 1.3.1

Given an algebraic frame L in which the FIP holds, we define the following

concepts relating to regularity:

i) satisfies Reg(l) if L is regular.

ii) satisfies Reg(2) if each d —element is regular.

iii) L satisfies Reg(3) if each pseudo-complement in L is regular.

iv) L satisfies Reg(4) if, for each compact x, the pseudo-complement

X is regular.

Remark 1.3.2

Since every regular element is a d —element and each pseudo-complement

is regular, it easily follows that Reg(l)= Reg(2)= Reg(3)= Reg(4).
In the following result, we characterize the equivalent conditions Reg(2) and

Reg(3).

Observation 1.3.3
Reg(2) < Reg(3)

Proof:
We need only show that Reg(3) = Reg(2). Suppose then that Reg(3) holds

and take a d -element yelL, say
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y=V{ x”‘XSy,XGC(L)}.

By Reg(3), the pseudo-complement x°, and in particular x™, is regular; so
there exists a zeL such that that x<x" . But each x~ satisfies x~ <y, so

Lemma 1.2.3 ensures that x <y ; thus y is regular and Reg (2) follows. =

Proposition 1.3.4
Suppose that L is algebraic with the FIP. Then L satisfies Reg (2) if and only

if every x” is regular for every compact xeL.

Proof:
Let L be algebraic with FIP.
(=): Suppose that L satisfies Reg(2) and let xec(L). We must show that

x" v x™ =e. By Proposition 1.3.4, if xeC(L) then x™ is regular. Thus
x<x"=Vi{yeL|y=<x}

Since x iscompact, x<y, vy, v...vy with y. <x~ some i=12,...,n. Since

Y, <X, x<V,, "y, <x sothat x<x . Hence x vx =e.

(<): Conversely, suppose that every x” is regular for a compact xeL and

let y be a d-element so that

y=y= [/{x“‘zgy, zeC(L)}

By assumption, each z~ in the equation is regular (as each z is compact).

Therefore, the d-element vy is a join of regular elements, so (by definition)

y must be regular. [ ]
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Lemma 1.3.5

Suppose that L is an algebraic frame with FIP. Then L satisfies Reg(2) if

and only if every x” is complemented for each compact xe L.

Proof:
Let L be an algebraic frame with FIP.

(=): Suppose that L satisfies Reg(2) and let x e &(L). We must x™ vx™ =e.

By Proposition 1.3.4, if xe(L),then x™ is regular. Thus
xgx”:V{yeL|y<x**}.
Since x is compact, x<y, vy, v..vy with y, <x~ for some i=12,...,n. Since

n
y, <X, x<\/y; <x" sothat x<x".Hence xvx~ =e.
i=1

(<):Take a d-element xeL and assume that the condition is satisfied. Then
we have that
x=W{y"|y<x yecl)},
with each y~ complemented. Then y" vy~ =e, so that
y<y <x and thus y=<x. Hence x= V{y € L|y < x}, which shows that, x is

regular. |

Combining the above two propositions, we have the following

characterisation.

Theorem 1.3.6
In an algebraic frame L with FIP, the element x~ is regular if and only if it

is complemented, for every compact xe L [ ]
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Theorem 1.3.7

Let L be an algebraic frame. Then L satisfies Reg (1) if and only if it has the

Compact Splitting Property.

Proof:

(=): If L is regular, then each element of L is a d-element. This means that
c=c", for each ceC(L). Moreover, Reg(2) holds and, therefore, Lemma 1.3.5.

Then it is clear that each compact element is complemented. Hence L has
the CSP.

(<) Follows from Theorem 1.2.6. .

We will now state without proof the following result:

Lemma 1.3.8 (Martinez and Zenk [10, Lemma 2.2])

Suppose that L is an algebraic frame possessing the FIP. Then pe Spec(L) is

minimal if and only if

p=V{ C*‘CEC’(L), ct p}

Theorem 1.3.9 (Knox and McGovern [8, Lemma 3.1])
Suppose L is an algebraic frame.

i) The frame L satisfies Reg (4) if and only if for any disjoint a,b (L),
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a"vb =e.
ii) If L has the FIPand satisfies Reg(4) then pvq=e for all distinct

p,q e Min(L).

Proof:

i) Suppose Reg(4) holds and let a and b be compact elements with

anb=0. Then since a" is regular, we have from Proposition 1.2.4 that
b<a", hence a"vb =e. Conversely, suppose the condition holds and let

xe(L). We need to show that x” is regular. To this end, take y<x". In view

of Proposition 1.2.4, we need only show that y<x', that is, that x vy =e.

But this follows from the fact that
Since ye C(L) with y<x",yax<xax =0. Thus yAax=0. Since x,ye C(L) are
disjoint, by the hypothesisy v x =e. Thus y<x so that by Proposition

1.2.4, xis regular.

ii) Suppose that L has the FIP and satisfies Reg(4), and consider distinct

minimal primes p and q. By Lemma 1.3.8,

p= I/{C*‘CE c(L),c £ p Fand q= /¢ C*‘CE clL), c £q}.

Thus there exist disjoint compact elements a and b such that b <q and

a’<p, sothat e=a"vb <pvq, hence pvqg=e, as claimed. m
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Definition 1.3.10 (Knox and McGovern [8])

a) An element xe L is said to zero-dimensional if it is a join of

complemented elements, that is,
x=Vc (c is complemented).

b) A frame L is said to be zero-dimensional when every element is zero

dimensional. Equivalently, L is a zero dimensional if every compact

element is complemented.

Theorem 1.3.11

A compact algebraic frame L is regular if and only if it is zero-dimensional.

Proof:

This follows from the equivalence of each of these statements to the CSP.

See Martinez and Zenk [10, Theorem 2.4]. .

Definition 1.3.12 (Knox and McGovern [8])

If x € ¢(L) has the property that x* = 0O, then x is called a unit and the frame

L is said to be possessing a unit.
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Proposition 1.3.13

Suppose that L is an algebraic frame possessing a unit, say u € L. If L
satisfies Reg(4), then every complemented element is of the form a** for

some a € C(L).

Proof:
Suppose x <L is a complemented element and let y=x". Now,
u=(xAu)v(yvu)

and since L is algebraic we can write each of the components of u as a join
of compact elements. Since u is a unit, it is compact and thus we can write

u=svt where s<xt<y, and s;te ¢(L). We claim that s™ = x. Clearly, s™ <x.

Since sAt=0 it follows that t<s”, thus t~ <s". Again,
(s" At )au=(s" At )a(svt)
=(s" At As)v(s" At AL)
=0A0
=0

from which it follows that s At=0, thus <t™. We therefore conclude

S*
that s” =t”. By assumption, L satisfies Reg (4) and since both s and t are

compact it follows that s" vt =e, thus s” and t~ is a complementary pair.

Since x<x <t =s"<x, s =x. =
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Chapter 2

Yosida frames

In this chapter, we study the relationship between complementation,
completeness, Boolean Algebra, and subfitness in frames. We introduce
Yosida frames and study how they relate to finite subfitness. Some of the

results we prove are:

i) Yosida frames are precisely those algebraic frames with the Finite

Intersection Property that are finitely subfit (Theorem 2.9).

ii) A semi-simple algebraic frame L with the Finite Intersection Property and
disjointification with dim(L)<1 is a Yosida frame (Theorem 2.11).

iii) Suppose that L is an algebraic complete lattice and j is a closure
operator. Then ¢(jL)=j (L) (Theorem 26).

iv) In an algebraic frame L with the Finite Intersection Property, it holds

that dom(L)=dim(L) (Theorem 2.13).

Definition 2.1 (Martinez and Zenk [11])

An algebraic frame L is a Yosida frame if every xe (L) is a meet of maximal

elements, thus, L is a Yosida frame if L=1L,-
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Notation: An element yelL is a complement of an element xelL if xAy=0
and xvy=e in which case y is denoted by ~x. We recall that a frame in

which every element has a complement is called a complemented frame.

In addition, a Boolean algebra is a distributive lattice in which every element
is complemented and a complete Boolean algebra is a Boolean algebra which

is complete as a partially ordered set. See Johnstone [6]

Note that one of the important properties of complementation on a Boolean

algebra L is the fact that

XAY<Z&X<~YyvVvzZ for any x,y,zeL.

Proposition 2.2

Each complete Boolean algebra is a frame.

Proof:

Suppose that L is a complete Boolean algebra. Since L is a complete lattice,

we need only show that

ya VX =Vyax|xex]

for any yeL and X cL. Since yaAx<ya V/x for any yelL and xe X, we

must have that

ly A x | xe Xi<yn VX.
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On the other hand, for each yeL we find that
xAy<V(ynax)
=x<~yv][ V{y/\x | XGX}]

=Vx<~-yv[ V{y/\x | xe X}]

So that
yAVX<ya(~yv[Viyax|xex|])
=(yr~y)v(yalVyax | xex])
=0v(ya[Viyax | xex{])
—y AV {yax | xeX|]
<V{yax|xeX}
Thus
yAaVx<Viyax|xexj<syaVx
So that

yAV X =V{yax|xeX}
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Proposition 2.3

The map j:L— L on aframe L defined by j(x)=x" is a nucleus.

Proof:

i) Since x<x”(Lemmal.1.7). it follows thatx < j(x).
i) Note that
(xAy)sx=x"<(xay)  sothat (xay) <x”
and, similarly, (xAy) <y™ hence (xAy)" <x”™ Ay”. It remains to show
that (xay)" >x" Ay™. But this follows from the calculations:
(AT AGAY) =" Ay )alC v y')
= Al vy Al Al vy
=0 Ax W O Ay A lly™ ax v (™ Ay
=fov (< Ay A lly™ ax)v o]
=( Ay )Aly” ax)

=0.

Thus x" Ay” <(xay)” sothat x“ Ay~ =(xay) . Therefore,

JXAy)=(xay) =x"Ay" = j(x)A jly).
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iii) To prove that (j(x))= j(x), we have

Hence j is a nucleus.

Remark 2.4 (See Vickers [17])

For any x,y in a frame L, we define
x>y=laeL | xrna<y}

It is immediate that

x —»0=x-0={aeL|xra<0}=x

and

(Lemmal.1.7)

xa(x—>y)=xa Va | xra<y}

= Vixra | xna<y}

<y.

34



Observation: From this definition, we note that

(x> y)alxo2)=VipeL | xapsyia (VieL [ tax<z))

= seL | XAS<YAZ}

=x—(yAaz),

which helps in the proof of the following

Proposition 2.5 (Martinez and Zenk [9])

If the operator j:L — L is a nucleus and y e jL = Fix(j) then x> ye jL.

Proof:

Suppose that j:L—L is a nucleus and take ye jL. Then j(y)=y. We must
prove that j(x > y)=x—y. Since x— y< j(x—>y), we only need to show that

Xy > j(x— y). But this follows from
y=i(y)
=y jly)=ily)
= x> j(y)=x—>(yrily)
=(x=>y)alx—i(y)

= x> jly)<x—>y.
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Theorem 2.6

Suppose that L is an algebraic complete lattice and j is a closure operator.

Then &(jL)= jc(L).
Proof:

i) To show that &(jL)c j (L), take xe(jL). Then x is compact and x € j(L),

thus j(x)=x. We have j(x)= l/j(a), where aec(L) and a<x, so that
X€E | C“'(L).
ii) On the other hand we will show that jc(L)c c(jL). Take xe j&(L). Then

x = j(y) with ye(L). To see that x € jL, we note that

= i(y) (j isclosure operator)

To see that x is compact with this property, suppose that xg_\/I X;. Since
x=j(y) and y< j(y), we must have that y<Vx. But y e (L), we must have
ys\/Fxi for some finite Fcl. We then take {X/\xi |ieF} and note that

x<\/{xAx | ieF}; thus x is compact. n

Prime elements in L are related to Fix(j)= jL={xAL | j(x)=x} as follows:

36



Proposition 2.7

For a frame L and a nucleus j:L — L it holds that

Spec(Fix(j)) = Fix(j)N Spec(L).
Proof:

Let p e Spec(Fix(j)). Then p is prime in L.To see this, suppose that x,yel
and  xays<p. Thenj(x)nj(y)=i(xay)<ij(p)=p. since j(j(x))=i(x) and
i(i(y))=i(y), both j(x) and j(y) are elements of Fix(j). Since pis prime in
Fix(j) and j(x)A j(y)< p, we have x< j(x)<p and y< j(y)< p so that x< p and
y<p.Hence peSpec(L). Thus p e Fix(j)N Spec(L) so that
Spec(Fix(j)) < Fix(j)N Spec(L).

On the otherhand, if p e Fix(j)NSpec(L), then j(p)=p and p is prime in L.
Now let x,y e Fix(j) and xAy<p. Since p is prime in L we immediately have
that x< p and y< p. Consequently, p e Spec(Fix(j)). Thus

Fix(j)N Spec(L) < Spec(Fix(j)). m

Definition 2.8

Following Martinez and Zenk [11], we say that a frame L is subfit if whenever
X<y in L there exists a xelL satisfying xvz<y<z=e An algebraic frame
L is said to be finitely subfit if whenever x<y in L with both x,y eC(L) there

exists a ze L satisfying xvz<yvz=e.

In relation to finite subfitness, we have the following characterization
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Theorem 2.9 (Yosida Characterization Theorem)

An algebraic frame L with the Finite Intersection Property is a Yosida frame

if and only if it is finitely subfit.
Proof:

(=):Suppose that L is Yosida frame and take x,yec(L) such that x<y. By

definition, we have x=/l{zelL:zeMax(L)} and so there exists some

me Max(L) for which x<m and yvm=e which shows that such m satisfies

finite subfitness.

(<):Conversely, suppose that L is finitely subfit and take x,yec(L) with
x<y. Then by finite subfitness, we find ze L satisfying xvz=e and yvz=e.

We also have that
yv(xvz)=xv(yvz)=xve=e

But then y < xvy, so by compactness of ye(L) and appealing to Zorn’s

Lemma we infer that xv z is maximal with respect to the conditions

x<xvz<eandyv(xvz)=e.

For, suppose that k e L satisfies the condition that x<k<e and y<k<e.

With xvz<k, we claim that k=xv z. This follows from the calculations:
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kK=kne
Kk alyv(xvz)]
=(kny)vka(xvz)]
~(kny)v(xv ) (since x v k <K)
=[kv (xvz)lalyvixvz)]
_(xvz)ne

This argument is enough to conclude that for each compact element

xe (L) it holds that x= Max*(x) and, therefore, L is a Yosida frame. u

To prove another characterization of Yosida frames, we need to define the

dimension of an algebraic frame L which is given in (Martinez [10]).

A chain of primes p,<p,<p,<...<p, Is said to be of length k, and the
dimension dim(L) of L is the maximum of the lengths of chains of primes. In

addition, we mention without proof the following (Martinez [11]).

Theorem 2.10 (“Prime-free” Criterion for dim(L)<k)

In a Yosida Frame L, dim(L)<k if and only if for each chain
Po <P, <P, <...<P,y; OFf nonzero compact elements of L there exists

01,9, 0s:---,0y € C(L) such that
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p,vQ,, =P, foreach i=012...k, and p,AQ,AqQ,,=0.

Recalling Martinez [11], we say a frame L is semi-simple if /imax(L)=0 which

we need in the following

Theorem 2.11

If L is semi-simple algebraic frame with the FIP and disjointification with

dim(L)<1, then L is a Yosida frame.

Proof:

In view of the Characterization Theorem 2.9, we need only prove that L is

finitely subfit. Assume then that x,y e (L) with x<y.

Note that if y=e, then L is finitely subfit and the result follows.

We therefore assume without loss of generality that y<e. Then, by the
“Prime—free” Criterion Theorem, we find compact elements z,tec(L)
satisfying:

XAzZAat=0, xvz=y and yvt=e.

If xvt<e, then L is finitely subfit and the result follows. Therefore, we

assume that xvt=e. Then (easily from the above equations)
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XvZ/\t=(XvZ)/\(th)
=(xvz)ae
=XVvlZ

=y.

Thus xA(zAt)=0 and xv(zAt)=y making zAt a complement of x in {y.

On the other hand, we also have that

X\/(y/\t)=(Xv y)/\(th)
=(xvy)ae
=XVYy

=Yy
and, similarly,

X/\(y/\t):(X/\ y)/\(X/\t)
:(X/\ y)/\O

=0.
Since complements are unique (if they exist), it follows that zAt=yAat.
Since xvt=e (by assumption) and xat=0, it follows that x is
complemented. Since T (x)={yeL | > x|, it follows that
A(Max[t (x)]) = x,
and so T(x) is also semi-simple, hence x is the meet of maximal

elements. Since x<y, we conclude that maximal elements m e Max[™ (x)|
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exist with m>x such that y £m, giving rise to yvm=e. Thus, L is

finitely subfit. |

Definition 2.12 (Martinez [10])

a) Suppose that L is an algebraic frame and a, <a, <a, <...<a, is a chain of

compact elements of . We say that it is a dominance chain of length if
there is a prime element of such that, in T p ,
p<a,vp<..<a Vvp<..
The dominance of L, denoted dom(L), is the join of the lengths of

dominance chains of L.

b) A chain a,<a <a, <...<a, <... is an ascending dominance chain if there is
a prime element p such that
p<a,vp<..<avp
If Po<P,<P,<...<p, Is a chain of primes, we may find, for each
i=012,...,k, a compact element a  such that a; < Py for each
i=012,...,k-1, and a, ¥p,; for each i=012,...,k. Without loss of generality we
may assume that a, <a, <a, <...<a,. Itis easy to see that

Pp <8,V Py <...<q VP,

and so
a,<a <a,<..<3a,

is a dominance chain. Thus, dim(L)< dom(L).

We now provide a condition for the reverse inequality to hold.
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Theorem 2.13

If L is an algebraic frame with disjointification, then dim(L)=dom(L).

Proof:

We only need to show that dom(L)<dim(L). To this end suppose that
a,<a <a, <...<a, Is a dominance chain. As p<a, v p, we may select a prime
p, 2 p which is maximal with respect to a,,vp<p, and a v p<£p (for each
i=12,....,k) and a,vp£p, . Since T p is a chain, we have

P<pP,<a,vpsp <...<p, <a Vvp.
In particular, p,<p, <p,<...<p,, Which proves that dom(L)<dim(L), as

claimed. ]
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Chapter 3

Coherent normal Yosida frames

This chapter is concerned with the relationship between normality,
codenseness and coherent frames. We also show how normal subfitness
relates to regularity. Some of the results we prove in this chapter are the

following:
i) A normal subfit frame is regular (Proposition 3.1.6)
ii) The following statements are equivalent for a normal coherent frame L
Theorem 3.1.11)
a) L=SL.

b) L is subfit.

c) L isregular.

d) L is a zero- dimensional.

)
)
)
)

e) Every compact element of L is complemented.

3.1 Normality in Yosida Frames
Motivating Example:

Recall that a topological space (X,z) is normal if whenever A B are disjoint
closed subsets of X with AUB=X then there exists disjoint open subsets
U,V such that AcU and BcV. It follows then that X —A, X-B are open
subsets of X satisfying

BcX-A AcXB and (X-AU(X-B)=X.
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In particular, it holds (easily) that for the open subsets X -A X-B the

disjoint open subsets U,V satisfy
UU(X-A)=X =V U(X -B)

which paves way for the following Pointfree version of normality.
Definition 3.1.1 (Banaschewski [3])

a) A frame L is normal if whenever xvy=e in L then there exist s,ite L

such that svx=e=yvt and sAt=0.

b) Given a distributive lattice B, with top e and bottom 0, we call a subset
jc B an ideal of B if it satisfies the following two conditions (see
Johnstone [6]:

i)xayej forall x,yej.

i) If x<y and yej then xej.

For an algebraic frame L with the FIP, normality and O(p) for p e Spec(L) are

related as follows:

Theorem 3.1.2

Suppose that L is normal and let m,n.e Max(L).
a) If m,nare distinct, then O(m)v O(n)=e.
b) O(m) is regular.

a) By normality, we have a<m and b<n with anb=0and avn=bvm=e.
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Clearly, a<n, which means that b<O(n) so that e=bvm<0O(n)vm. Since e is
the top element, we must have mvO(n)=e. Now, if O(m)vO(n)<e, there is a

maximal g>0(m)vO(n). Then q=m, and similarly, g=n, making m=n,
a contradiction to the fact that m,n are distinct, hence O(m)vO(n)=e.

a) If peSpec(L) and O(m)< p, then p<n, for a suitable maximal n. By a) it
follows that n=m, and thus, O(m)<0O(p), which proves that O(m) is

regular. |

Definition 3.1.3 (See also Banaschewski [3])

A frame L is said to be coherent if and only if it is an algebraic frame and

satisfies the finite Intersection Property.

There is one- one relationship between coherent frames and distributive

lattices in the sense that

Theorem 3.1.4 (See Siweya [15])

i) If L is acoherent frame, then ¢(L) is a distributive lattice with top e
And bottom 0.

ii) Given a distributive lattice B with top e and bottom 0, then the lattice
J(B) of all ideals of B is a coherent frame.
In fact, we can say more and do better about this relationship as follows:

Now, denote by D the category of all distributive lattices with top e and bottom

46



0 and by ChFrm the category of all coherent frames and coherent frame

homomorphisms.

Theorem 3.1.5

There is a categorical equivalence

D# ChFrm between categories D and ChFrm.

Proof:

For J;: D—ChFrm, if B eOb(D) then J(B) is the lattice of all ideals of B which

is known to be coherent by the Theorem 3.1.4. For a D-morphism B——D

we have that
J(B——-D)=3(B)—">3(D)
a frame morphism between coherent frames, where

I(ENb, [ien)]=(art@) | iet)

Here (b, | i< 1) denotes the ideal of B that is generated by
(b |iel)cB Since f(b)eD, it follows that (f(b) |iel) is the ideal of D that

is generated by {f(b,) |ieljcD.

On the other hand, given a ChFrm-object of L we define (L) to be the

distributive lattice (with top e and bottom 0) consisting of all compact
elements of L. If L——M is a ChFrm-morphism, then

AL—>M)=c(L)—5 a(M) where for each xe (L) we have
(D (x)=e/f(x)]
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which is compact. To complete the proof, given a D-morphism B—-D e

find that

C[3(B—— D)) =C[I(B)]—L>C[I(D,)]
—CoJ(f)

so that Co/ = Ip, the identity functor on the category D. On the other hand, if

L——>M is a ChFrm-morphism, then
JIE(L)—0— c(M)] = Joc(L) =2 [oc](M)
= [JoCl(D

giving rise to JoC = Ienrrm , the identity functor on ChFrm. Then the

equivalence follows. |

In the following result, we provide a “weak partial converse” to the result of

the well known teacher J. Isbell [5, Theorem 2.3]).

Proposition 3.1.6 (Banaschewski [3, Lemma 1.1])

Any normal subfit frame is regular.

Proof:

Let L be a normal subfit frame and take xe L. Suppose, for a contradiction,

that
z=Vyel |yex
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Now, if z<x then by subfithness there is some welL for which

zvw<e=XxvWw. Since L is normal, there exists a disjoint pair s,teL such

that

Xvs=e=wvt.
But then sAt=0 and xvs=e is the same as t<x and so t<z (by Lemma
1.1.7(v)), giving rise to

e=tvwzvw

Hence zvw=e, a contradiction. ]

In the following result we show that normality is preserved by condense

homomorphisms.

Proposition 3.1.7 (Banaschewski [3])

Any codense image of normal frame is normal.

Proof:

Suppose that L:M — L is a codense onto frame homomorphism and that M

is a normal frame. We will show that L is also normal.

To this end, take x,yelL such that xvy=e. Since M is onto, we pick

mneM such that f (m)=x,f(n)=y. By xvy=e we have that
f(mvn)=f(m)v f(n)=xvy=e,

so codenseness of f ensures that mvn=e in M. By normality of M, there

exist disjoint s,t e M such that:

mvs=e=nvt.
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In particular, we also find that
f(s)A f(t)= f(sat)= f(0),
and
xv f(s)=f(m)v f(s)

= f(mvs)

= f(nvt)

=yv f(t).

Thus, f(s) and f(t)eL satisfy the normality condition and L is therefore

normal. ]

Definition 3.1.8 (Banaschewski [3])

In a compact frame L, an element xeL is said to be a-small for any aelL

if whenever xvy=e,then avy=e forall yelL.

Remark 3.1.9

We observe that the set J ={xeL|x is a-small} is an ideal and V] is also a-
small containing the element aeL. In fact, it is the largest a-small element
of L, which is denoted by S(a)= V{xelL|x is a-small}. The resulting map

s:L—>L, given by s(a)=S(a), is a codense nucleus such that, for
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SL:Fix(s),s:L—>SL is the wunique smallest codense quotient of L

(Banaschewski [3]).

Proof:

We show that J = {x el |x isasmall} is an ideal for each a< L. Note that
e=(xry)vz
=(xvy)alyve)
<(xvz).

Thus xvz=e. Since x is a-small, avz=e. Thus xAy is a-small.

b) Suppose that x<y and yeJ. We claim that x is also a-small. To this

end, suppose that xvz=e. We will show that avz=e. But this follows from

the fact that

e=Xvz<yvi=yvi=e

and since y is a-small, we must have avy=e. On the basis of a) and b), we

conclude that J is an ideal. ]
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Proposition 3.1.10

A compact frame L is normal if and only if SL is regular.

Proof:

(=):Suppose that Lis compact and normal. Then SLis subfit (Banaschewski

[3, Lemma 1.2]) and since s:L—>SLis a codense quotient of L, it
follows from Proposition 3.1.7 that SL is normal. But a normal subfit

frame is regular, so Proposition 3.1.6 ensures that SL is regular.

: Conversely, suppose that L is compact and SL is regular. We must

show that L is normal. To this end, pick x,yeL such that x,y=e in L.

Applying s:L— L, we have s(x)vs(y)=e in SL.

Note that SL is compact since s is codense, so there exist p< s(x) and

q=< s(y) in SL, by regularity, such that pvg=e in SL which implies that

s(pva)=s(p)vs(a)=e.

But s is codense, so we must have pvqg=e in L. Now, if u,teSL are

such that
pAu=0, s(x)vu=e, gat=0 and s(y)vt=e in SL

from which it follows that
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s(xvu)=s(x)vs(u)

=s(yvt)
and, by codenseness of s, we arrive at

Xvu=e=yvt
On the other hand, we also have
unt=ea(uat)
=(pva)v(unt)
=(pAaunt)v(gaunt)
=0vO0
-0,

proving that L is normal as desired.

Our main result is
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Theorem 3.1.11

The following statements are equivalent for a normal coherent frame L

i) L=SL.

ii) L is subfit.

i) L is regular.

iv) L is a zero-dimensional.

v) Every compact element of L is complemented.

Proof:
i)=ii): Since SL is known to be subfit (Banaschewski [3, Lemma 1.2]), it

follows that if L=SL then L is subfit as well.

ii)=iii): Suppose that L is subfit. Then regularity of L is immediate since L

is normal (Proposition 3.1.7)

iii):>iv): Suppose that L is regular. By coherence, every element of L is a
joint of compact elements. Given a compact element xeL , we have that

(by regularity)
x=WyeL | y=<x|

n

since x is compact, x= _\/{yi el]y, < x}.

n

However, y. <x for each i=12,...,n givesx= _\/1{yi el]y, <x}<x so thatx < x.

Hence xv x =e which shows that x is complemented and hence L is zero

dimensional.
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iv):> v): Suppose L is zero-dimensional and take a compact element xelL.

By coherence and zero- dimensionality of L, the compact element xelL is a

join of finitely many complemented elements, so it is complemented.

v)=i): Suppose every compact element of L is complemented and let x<y
in L. Since L is coherent, there is a compact z<y such that zza. Now, we

have (since z is complemented)

yvi 2zvi =e=yvi =e.

But xvz <yvz =e, so we must have s(x)=x, establishing the result that

L:SL ]
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