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Abstract 

 

Molecular dynamics simulations have been carried out in order to examine the 

mechanism of diffusion of molecules in amorphous polymer matrix. PDMS model 

was folded in to a periodic cell, generated by rotational isomeric state (RIS) method at 

a prescribed temperature and density. Molecular dynamics was used to study transport 

properties of cyclic PDMS oligomers (hexa-methylcyclotrisiloxane (D3), octa-

methylcyclotetrasiloxane (D4) and deca-methylcyclopentasiloxane (D5) using 

Dreiding and COMPASS force fields. Diffusion coefficients were calculated from the 

Einstein relation. Only D3 penetrant reached the long time limit from which the 

Einstein relation is satisfied. Analysis of displacement versus time for all the 

penetrants in PDMS matrix indicates that the penetrant motion is characterized by 

relatively long periods interspersed with fairly long and small jumps. Transport of 

solvent molecules occurs by jumps between individual sections of free volume 

(cavity/hole) through temporarily open channels. 
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CHAPTER 1 

INTRODUCTION 

In this chapter emphasis will be on the historical background of insulators and the 

literature review on the diffusion in polymer materials 

 

1.1 General introduction 

One of the challenges facing the electric utility industry over the years is maintaining 

a cost-efficient and reliable network that will last for a long time. Perhaps the most 

critical components in this regard are the insulators, arresters and bushings. Electrical 

insulators are very important in the electrical power system such as sub-station and 

distribution and transmission lines. Traditionally high voltage insulation was 

dominated by ceramics insulators. 

 

1.2 Historical background 

High voltage outdoor insulation are exposed to a multitude of extreme mechanical, 

electrical and environmental (humidity, acidity, etc.) stresses. Early electrical 

insulation was made from glass and porcelain (ceramics material), and these have 

dominated the insulation market for many years. The performance of this type of 

insulator has been the subject of many research projects, and application principles 

are well established.   

 

1.2.1 Porcelain insulator 

Porcelain has been the dominant, exclusive technology on distribution and high 

voltage transmission line application since the development of high voltage electrical 

power lines at the beginning of the 20
th

 century. Porcelain technology kept pace with 
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increasing strength requirements (demand by higher voltage levels, span length and 

building of conductors) with continued development in porcelain composition and 

strength. 

Annealed glass insulators were limited to low voltage application as they were not 

strong to meet the mechanical strength requirement for suspension insulators 

application. The development of annealed glass insulator by the process of toughening 

in the 1930’strenghtened them and by the end of World War II they were applied in 

high voltage insulation [1]. They quickly gained popularity in Europe and spread 

throughout the world. Their popularity was mainly due to the fact that 

      -    they are lightweight as compared to porcelain insulators 

- last for a long time because they don’t age from micro crack propagation 

- and they are easy to inspect, and safe to handle 

 

1.2.2 Polymer insulators 

The problem with ceramic insulators in high voltage outdoor insulation is that they 

are prone to very high surface leakage currents and flashovers when installed in 

polluted and humid environmental conditions, e.g. sea coast environment and near 

cement, fertilizer and chemical plants. They have a low strength-to-weight ratio and 

they are brittle in nature which makes them vulnerable to vandalism and can be easily 

damaged during transportation and installation. They are also easily wettable. These 

problems were solved by the introduction of high strength fiberglass composite 

insulators with elastomeric covering or polymer insulators. They were first introduced 

in the late 1950’s with the production of the first polymer insulator called epoxy [2], 

but it suffered from severe tracking and erosion [3]. This caused a layback in polymer 

insulators being used in electric insulation. With the development of technology and 
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extensive research, better polymer insulators were produced. The popularity of this 

brand of polymer was so enormous that it brought about severe slump in porcelain 

and glass insulator usage which led to many ceramic producing plants closing or 

changing to polymer insulators production. The advantage of this type of insulators is 

that they have a high mechanical strength-to-weight ratio as compared to porcelain 

and glass insulators, and comparable or better withstand high voltage than porcelain 

or glass insulators and are easy to handle. Their hydrophobic properties make them 

well suited for outdoor insulation and they typically perform exceptionally well in 

extremely polluted environment [4]. They are also resistant to vandalism, damage 

resulting from installation due to their flexibility [5] and are well suited for 

contaminated environments [6, 7]. However with all the good things about polymers 

insulators, they possess some disadvantages also. Ageing seems to be a real problem 

with polymer insulators and they are easily degraded in inert inorganic materials 

under exposure to discharge and arcing. Under rain and fog conditions, the presence 

of water droplets intensifies the electrical field strength on the surface of a polymer 

insulator, as a consequence the surface corona discharge from water droplets 

accelerates the ageing of the shed material of a polymer insulator. Superficial 

chemical changes caused by weathering and dry band arcing [8], erosion and tracking, 

which may ultimately lead to failure of the insulators [9], difficult to evaluate service 

life, unknown reliability, and difficult to detect faulty insulators [10] are the main 

problems facing polymer insulators. To minimize or eliminate some of these 

disadvantages, a wide range of materials and formulations have been tested in the 

production of polymeric insulators 
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1.3 Literature review 

While computers have increased the range of systems which are possible to study, the 

techniques available have also grown tremendously. The growth has lead to an 

increase in the importance of computer simulations. This means that the calculations, 

which were not possible few years ago, are now trivial to perform. Despite these 

developments, computational techniques such as energy minimization, Molecular 

Dynamics, Molecular Mechanics, Monte Carlo and electronic structure techniques are 

used to fill the informational gap between fundamental materials-science and 

industrial applications. The techniques can be applied to a wide variety of systems. 

Computational techniques can help to understand and design complex materials and 

offer an attractive approach in many fields where experimental data is rare and 

difficult to obtain. As a result, using the computational methods, alone or in 

combination with experiments, it is possible to model and predict structures, 

characterize bonding in solids, model surfaces and interfaces, atomic transport and 

defect structures, chemical reactions, phase transformations, docking or predict 

reaction mechanisms [11] 

In this work molecular dynamics (MD) method is used to study the transport 

properties in amorphous polymer. It was first introduced by Alder and Wainwright in 

the late 1950's [12, 13] to study the interactions of hard spheres. It is one of the 

principal tools in the theoretical study of polymers. This computational method 

calculates the time dependent behavior of a molecular system.  MD simulations 

microscopically provide detailed information on the fluctuations and conformational 

changes in polymer systems. The connection between microscopic simulations and 

macroscopic properties is made via statistical mechanics which provides the rigorous 
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mathematical expressions that relate macroscopic properties to the distribution and 

motion of the atoms and molecules of the N-body system; MD simulations provide 

the means to solve the equation of motion of the particles within the molecular system 

to get thermodynamic and time-dependent (kinetic) properties, eg diffusion. 

Diffusion was studied before and it is generally accepted that the diffusion of small 

molecules in polymers occurs through a hop and jump mechanism. For relatively long 

periods of time (typically 100ps) penetrant stays in a certain small region of space. 

During this quasi-stationary period, the diffusion molecule is reflected by the walls of 

the cavity it resides in, in a short time typically (1-2ps). These quasi-stationary 

periods are interrupted by quick jumps from one cavity to another in a very short 

space of time. This behaviour (penetrant jumping from one cavity to another) is of 

special interest for the examination of diffusion processes. Gusev and Suter [14] tried 

to explain this jumps events by implemented Transition State Theory (TST) in a 3-

dimensional free energy field. They assumed that over the residence time of the 

polymer/penetrant system in a sorption "state", the polymer atoms execute 

uncorrelated harmonic vibrations around their equilibrium positions in the minimum 

energy configuration of the penetrant free polymer matrix. These motions consist of 

small-amplitude vibrations of bond lengths and bond angles and librations of torsion 

angles but could not find any correlation [14-17] The jump event occurs when 

occasional fluctuations in the density of the polymer open a hole in a cage that is large 

enough for a diffusing molecule to permit a considerable displacement, giving rise to 

diffusion [18]. This jump event determines the real diffusion of penetrants [19] and is 

sensitive to penetrant size and temperature. The state of the polymer (crystal or 

amorphous) also has an effect on diffusion.  
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Amorphous polymers have a higher diffusion rate than crystalline polymers, as the 

probability of creating a diffusing channel (from which a molecule can move from 

one cavity to another) is high. This is as a result of high fluctuation of amorphous 

polymers. The effect of penetrant size is such that smaller penetrants  tend to find 

large enough diffusing channel more often than large penetrants; hence more frequent 

jumps than large penetrants [20- 22]. However; Egbo De Bo et al [23] found the 

diffusion coefficient of C2HCl3 to be higher than that of C7H8 and CO2 to be higher 

than that of C2H4 in PDMS. They concluded that penetrant geometry has an influence 

on diffusity in a polymer and that the molecular size effect is less pronounced in 

rubber polymers.  

 

1.4 Choice of polymer material 

Today, a great deal has been learnt about the comparative performance of various 

designs and constructions of these components under different operating conditions. 

Polymers can be synthesized to exhibit electrical properties that can be controlled 

over a wide range from insulator to semiconductor or metal. The choice of a polymer 

material for a specific application is critical. The electrical, physical and chemical 

properties of the surface of the polymer insulator are critical to the reliable 

performance of the insulator throughout its life span. PDMS has shown to be the most 

suitable polymer in this regard. 

 

1.5 PDMS based insulator  

Properties of PDMS 

Silicone rubber used in the area of high voltage insulation is mainly based on PDMS. 

It has distinctive chemical and physical properties which set it apart from glass and 



 7 

porcelain and other materials used for other polymer insulators. It consists of a 

polymer and filler which are vulcanized to give the required solid shape. The polymer 

has a flexible backbone which consists of the alternate Si-O bond with the inert 

methyl groups on the Si atom. The methyl groups are projected outwards and are 

responsible for the hydrophobic properties of the polymer. This polymer is used in 

various applications, where its rheological and interface properties are desired. Some 

key bulk properties of PDMS arise from the high and flexible backbone around the O 

atom in the backbone (135-180
o
) [24] with an energy minimization at 145

o
 [24] which 

makes it easy for –Si(CH3)2- to rotate around the backbone. The ionic character of the 

siloxane bond backbone (43%) [25] explains the high stability [26] of PDMS against 

oxidation and thermal degradation. The O atom act as an electron drain which, in turn, 

increases the stability even in the Si-CH3 bonds, and makes the methyl group slightly 

polarized [25, 27]. However as the siloxane bond is partly ionic it is also susceptible 

to electrophilic or nucleophilic attack. As the attached methyl group only posseses a 

Van der Waals attraction, the intermolecular forces become low. The low 

intermolecular forces, the high flexibility in the siloxane bond together with the large 

internal free volume are reflected in the low glass transition temperature, Tg being 

lower than 120
o
C and high diffusivity.  It is thermally stable over a wide range of 

temperature (-50 to 180
o
C). This is because of the stable Si-O bond. Its elasticity 

makes it resistant to vandalism and less prone to damage caused by installation as 

compared to porcelain and glass 

 

1.6 Rational for studying oil transport in PDMS 

The diffusion of small molecules in polymer has been studied extensively and is of 

considerable practical concern. Knowledge of the diffusion rate is essential in 
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designing equipment for devolatilization, since the molecular diffusion of the volatile 

component is normally the rate –limiting step of the process. The drying of coatings is 

also limited by the ability of solvents to diffuse to the surface, and often physical 

properties of coatings are significantly influenced by the presence of even trace 

amounts of solvents [28].  

 

Electricity plays an important role in our lives. Long lasting reliable and safe means 

of electric supply is a necessity. Introduction of polymeric insulators has proved to be 

a more reliable and safe way of transporting electricity than its counterparts. A worst 

scenario can be when an insulator breaks mechanically and drops a line. Insulators in 

neighbouring towers should be able to take the extra load and survive the mechanical 

impulse associated with the drop event, in order to minimize the maintenance cost. 

Reliable and long lasting insulators are needed. Polysiloxane have been industrially 

exploited for a long time and nowadays they play an important role in different 

applications because of their high thermal stability, low surface tension and 

outstanding dielectric properties [29-31]. Their low surface tension makes them 

hydrophobic which is exploited by the electrical insulation industry. PDMS insulators 

have proved to be some of the best when it comes to reliability. This is mainly due to 

their ability to recover hydrophobicity after losing it, which makes them to retain their 

virgin properties over a long time. The loss and recovery is a key issue also for 

silicone elastomers used in medical applications [32]. The hydrophobic recovery is 

perceived to be as a result of low molecular weight PDMS oligomers (silicone oils) 

migrating from the bulk to the surface of the material [33-35]. It is also able to 

transfer its hydrophobic properties to a polluted layer due to the diffusion of these 

oligomers. Hence the need to study oil transportation in PDMS.  
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1.7 Intentions of the study 

Diffusion of low molecular weight PDMS oligomers through PDMS polymer matrix 

will be studied under Dreiding and COMPASS force fields, using the molecular 

dynamics technique, where: 

- Diffusion of PDMS cyclic oligomer, D3, D4 and D5 with reference to the 

dependence on penetrant (solvent) size, temperature and force-field will be looked in 

to. 

- The results obtained thereof, will be compared to experimental results and the 

available results obtained using computer simulation techniques. 

  

1.8 Outline of the thesis 

Chapter 1 presents a brief overview of electrical insulation and literature review. 

Chapter 2 gives the theoretical models used in the description and prediction of the 

molecules transport through polymer matrix.  

Chapter 3 introduces computer simulation techniques (and in particular molecular 

dynamics simulations) which are essential tools to obtain a more detailed picture of 

the structure.  

Chapter 4 presents results and discussions of the simulation of the penetrant diffusion 

process in the polymer matrix. Twenty penetrants of D3, D4 and D5 are inserted in a 

periodic box with the polymer sample consisting of a chain of 200 monomers. This is 

followed by MD simulation for a period of 5 ns. From these simulations, the diffusion 

coefficients are calculated. All results will be discussed and compared to other 

simulations and experimental data.  

Chapter 5 gives conclusions and some recommendations of the study. 
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CHAPTER 2  

 

COMPUTATIONAL METHODOLOGY 

In this chapter emphasis will be on the method used in simulation of our system. 

There are many approaches of computational chemistry which are popular in 

molecular modelling:  

2.1 Simple comparative and graphical approaches - graphical inspection, 

molecular superposition, overlapping/nonoverlapping volume, topological indices, 

traditional SAR and QSAR, rigid conformational search, ComFA, shape analysis, etc. 

Used as a first step in scanning biologically active molecules and useful in detecting 

characteristic molecular features needed for activity. These methods are not 

quantitative, since they do not consider energetics of receptor-ligand interactions.  

2.2 Quantum approaches - based on explicit consideration of the electronic 

structure. These methods are substantially more computationally demanding than 

comparative and empirical approaches for the molecules of the same size. They can 

be roughly divided into:  

2.2.1 Semi-empirical methods - approximate methods in which some quantities are 

taken from experiment, some small quantities are neglected, and some quantities 

estimated by fitting to experimental data. May only be used for chemical species for 

which they were parameterized. For distorted, uncommon bonding situations produce 

unreliable results.  

2.2.2 Non-empirical methods - do not require empirical parameters and can be used 

for any molecular system.  
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Traditional ab initio - use Hartree-Fock method as a starting point, i.e., wave function 

is used to describe electronic structure.  

Density Functional Methods - electron density as a primary way of describing the 

system. 

2.3. Empirical approaches - molecular mechanics, molecular dynamics. Relatively 

simple interatomic potentials, electrostatic interactions, and dispersion forces, allow 

for basic comparisons of energetics and geometry optimization. Solvent effects can be 

included explicitly or via empirical models. Very useful and fast compared to rigorous 

quantum calculations. Major drawbacks: experimental or theoretically derived 

information is needed to ``standardize'' models and parameters. In principle, these 

approaches are not able to model chemical reactions, bond forming/breaking since 

electronic structure does not enter these models. This is the method that we are using 

in our simulation as it can handle large systems. Emphasis will be on molecular 

dynamics to predict the diffusion coefficients of small molecules in polymer matrix. 

 

2.4 Molecular dynamics 

 

2.4.1 Classical mechanics 

Molecular dynamics is a useful tool in studying computationally the motion of 

individual atoms or molecules in a polymer. Molecular dynamics uses Newton’s 

equation to simulate atomic motion 

 

                                                         iii amF                                                             (1) 
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where iF is the total force experienced by an atom, m is the mass of atom and a is the 

acceleration. Given a potential function )(rV which depends on the position of all 

atoms, equation (1) can be written as  

 

                                                      )(
2

2

rV
dt

rd
m i

i

i                                                 (2) 

 

where r is the cartesian coordinates, t  is the time and m is the mass of atom i . The 

potential energy )(rV describes the Born-Oppenheimer surface for atomic motion. In 

practice the equations of motion cannot be solved exactly and have to be evaluated by 

use of finite difference methods. The simplest and most frequently used method, first 

used by Verlet, is obtained from the Taylor expansion of the coordinates ir  at times 

tt   and tt  about )(tri  
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adding the two expansions lead to the prediction of the position at time tt   
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the velocities  do not appear in this equation but are useful in the calculation of kinetic 

energy and hence the total energy. They can be evaluated from the position by:- 
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Another integration algorithm in which the velocity is incorporated, is the leap-frog 

algorithm. This is essentially equal to the Verlet algorithm and is given by two steps:- 
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where t denotes the time step and iF is the total force acting on the atom. By 

specifying position and velocities of the particle as a function of time, trajectories can 

be processed to extract static and dynamic properties of interest. 

 

2.4.2 Molecular mechanics 

Molecular mechanics is a method which represents molecules as spheres connected 

by springs, observable data is used to parameterize constants based on Hooke’s Law, 

allowing systems to be represented by Classical physics and simple potential energy 

functions. This method ignores the explicit presence of electrons which enables larger 

systems to be calculated but the drawback of this method is that it is only useful the 

description of molecular ground states, making it difficult to follow reaction paths. It 

is a relatively cheap calculation although the accuracy of the calculation is highly 
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dependant on the system used to parameterize the constant and its similarity to the 

system under study. 

 

2.5 The potential energy surface 

The complete mathematical description of a molecule, including both quantum 

mechanical and relativistic effects, is a formidable problem, due to the small scales 

and large velocities. Since no complete relativistic quantum mechanical theory is 

suitable for the description of molecules, this discussion starts with the nonrelativistic, 

time-independent form of the Schrödinger description: 

 

                                                              ),(),( rRErRH                                       (7) 

 

where H  is the Hamiltonian for the system,   is the wave function, and E  is the 

energy. In general,   is a function of the coordinates of the nuclei ( R ) and of the 

electrons ( r ). 

 

The Born-Oppenheimer approximation 

 

If equation (7) is solved for the total wave function   then everything about the 

system will be known. But it is too complex for any practical use, so approximations 

are made. Since the mass of the electrons is very small as compared to that of the 

nuclei, and they (electron) move much faster, Born and Oppenheimer proposed what 

is known as the Born-Oppenheimer approximation: the motion of the electrons can be 

decoupled from that of the nuclei, giving two separate equations.   
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                                                 ),(),( RrERrH eeee                                                (8) 

 

Where   is the electronic wavefunction and it depends upon the nuclear position R . 

This equation defines the potential energy surface )(RE  as a function of the 

coordinates of the nuclei.   

 

                                              )()( RERH NtotNN                                                      (9) 

 

Equation (9) then describes the motion of the nuclei on this potential energy 

surface )(RE . Solving equation (9) is important if you a   re interested in the structure 

or time evolution of a model. In principle equation (8) could be solved for the 

potential energy E , and then equation (9) can be solved. However the effort required 

solving equation 8 is very, large, so usually an empirical fit to the potential energy 

surface, commonly known as force field is used. 

 

2.6 Force fields 

The basis of all molecular simulation methods is a potential energy function )(rV . 

This function gives the potential energy of a system containing N atoms and depends 

on the position ir of each atom. Ideally one would like to obtain this energy quantum 

chemically in which case )(rV would describe the Born-Oppenheimer surface for the 

motion of the nuclei. In practice this would only be feasible for systems containing a 

few atoms whose dynamics could then only be simulated for very short time due to 

the large computational time spent to evaluate )(rV throughout the simulation. With 

the advance of computer hardware, and the introduction of force fields, simulations of 
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larger systems containing thousands up to tens of thousands of atoms can be 

simulated for large times. Today it is possible to develop a more accurate and flexible 

force field that can be used with general computer modelling method to predict 

properties for molecules in different environment. Best parametized force fields are 

able to predict molecular structures, conformational properties, and vibrational 

frequencies for isolated molecules. The force acting on atoms is obtained from the 

derivatives of the interatomic potential )(rV is given by:- 

 

                           
rd

rdV
rVF

)(
)(                                           (10) 

 

The interatomic potential )(rV which is a function of position can be expressed as  

 

                           ...),,,(),,(),()(  
ijkl

lkji

ijk

kji

ij

ji rrrrVrrrVrrVrV             (11) 

 

where the first term refer to the 2-body interaction the second term refers to the 3-

body interactions, etc. In principle this could be continued up to N-body interaction 

term. The series is truncated and the significant terms represents effective interactions 

that incorporate higher terms in an average way. The interatomic potential can be 

written as  

 

              )()()()(),,(     dihedralanglenonbondedbond VVrVrVrV        (12) 

 

The potential depends on the interatomic distance r, the bond angle   and the 

dihedral angle    
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2.6.1 Two body interaction 

The first two terms in equation (12) describe the 2-body, bonded and non bonded 

interaction and depend on distance r between atoms. The bond vibrations are 

described by the harmonic potential 

 

                                                2

0 )(
2

1
)( bbkrV bbond                                        (13) 

 

where bk = force constant for the bond and it controls the stiffness of the bond spring, 

while 0b  defines the equilibrium length.. Unique bk  and 0b  parameters are assigned 

to each pair of bonded atoms based on their types (e.g. C-C, C-H, C=C, C≡C, O-C, 

etc.). This equation estimates the energy associated with vibration about the 

equilibrium bond length and is based on Hooke's law. 

 

2.6.2 Many body interactions 

The third and the fourth term describe the interaction of more than two atoms. The 

angle vibrations are treated by a harmonic potential  

 

                                                    2

0 )(
2

1
)(    kV                                              (14) 

0  is the equilibrium angle, k  is a force constant for bond and vibration. Unique 

parameters for angle bending are assigned to each bonded triplet of atoms based on 

their types (e.g. C-C-C, C-O-C, C-C-H, etc.). The effect of the bk  and k  parameters 

is to broaden or steepen the slope of the parabola. The larger the value of k , the more 
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energy is required to deform an angle (or bond) from its equilibrium value. Shallow 

potentials are achieved for k  values between 0.0 and 1.0. 

 

The 4-body dihedral rotation is described by a potential function of the form:- 

 

                                                 )cos(1[)(    nkV ]                                       (15) 

where k  is a force constant and it controls the amplitude of the curve, n  is the 

multiplicity factor and it controls its periodicity,   shifts the entire curve along the 

rotation angle axis  . The torsion energy in molecular mechanics is primarily used to 

correct the remaining energy terms rather than to represent a physical process. The 

torsional energy represents the amount of energy that must be added to or subtracted 

from the Stretching Energy + Bending Energy + Non-Bonded Interaction Energy 

terms to make the total energy agree with experiment or rigorous quantum mechanical 

calculation for a model dihedral angle (ethane, for example might be used as  a model 

for any H-C-C-H bond). The parameters are determined from curve fitting. Unique 

parameters for torsional rotation are assigned to each bonded quartet of atoms based 

on their types (e.g. C-C-C-C, C-O-C-N, H-C-C-H, H-C=C-H etc.). 

2.6.3 Non-bonded interactions 

Two atoms that are not bonded interact with each other through the non-bonded van 

der Waals’ potential which consist of the Lennard-Jones potential 

 

                                                 ])()[(4)( 612

rr
rV


                                             (16) 
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Where   is the equilibrium distance and   is the well depth of the potential, r is the 

distance between interacting atoms. When the distance is larger than the equilibrium 

distance the r
-6

 term dominates, corresponding to the long range attractive tail of the 

potential between the particles, usually explained as a result of induced dipole 

moment between the atoms. Repulsion occur when the distance between interacting 

atoms becomes even slightly less than the sum of their contact radii. Repulsion is 

modelled by an equation that is designed to rapidly increase at close distances ( 12r  

dependency). The   parameter control the depth and position (interatomic distance) 

of the potential energy well for a given pair of non-bonded interacting atoms (e.g. 

C:C, O:C, O:H, etc.). In effect,   determines the degree of "stickiness and hardness” 

of the Van der Waals attraction of the atoms. The energy term that describes 

attraction/repulsion provides for a smooth transition between these two regimes and 

for charged particle the electrostatic potential is added. 
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rV

ji

04
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
                                                          (17) 

where 0  is the minimum energy of the function. jiqq  are charges on atom i  and j . 

The electrostatic contribution is modeled using a Coulombic potential. The 

electrostatic energy is a function of the charge on the non-bonded atoms, their 

interatomic distance, and a molecular dielectric expression that accounts for the 

attenuation of electrostatic interaction by the environment (e.g. solvent or the 

molecule itself). Often, the molecular dielectric is set to a constant value between 1.0 

and 5.0. A linearly varying distance-dependent dielectric (i.e. 1/r) is sometimes used 

to account for the increase in environmental bulk as the separation distance between 

interacting atoms increases. 
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2.7 Type of force field 

The most important step for molecular dynamics simulation is the choice of the force 

field as it describes approximately the potential energy hypersurface on which the 

atomic nuclei move. There are many force fields available for use, several with 

unique functional forms. The main properties that define the quality of a given force 

field are the functional form and the parameters derived as constants in the potential 

function. It is important to carefully select the form of the potential to suit the type of 

system under study. All force fields consist of bonded and non-bonded interaction 

terms. The difference between the force fields is the exact terms that are used. The 

energy of a molecule is calculated as the sum of these bonded and non-bonded 

interactions where bond, angle, and dihedral (bonded, Coulumbic and Van der Waals 

(non-bonded) term are calculated separately. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic representation of the total energy of a system 
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Equations 10-14 are used by all of the early force fields. In the case of the bond 

stretch equation, later force fields used an extra cubic and sometimes a quartic term to 

more accurately describe the interaction, others use a totally different Morse function. 

Similar changes are made for the other bonded terms. The term which varies the most 

between force fields is the van der Waals term, it is usually a Lennard-Jones (LJ) 12-6 

term but can be LJ 9-6* depending on the force field, in other cases the whole term is 

represented in a different form such as the Buckingham Potential.  

 

2.7.1 COMPASS 

Condensed-phase Optimizes Molecular Potential for Atomic Simulation Study 

(COMPASS) force field was derived from the Polymer Consistent Force Field 

(PCFF) force field using the hybrid approach consisting of both ab initio and 

empirical methods [36]. The nonbonded parameters were modified and consequently 

the valence parameters of PCFF were changed due to the coupling between the 

valence and nonbonded parameters, to construct a force field generally suitable for 

condensed-phase applications. It is a class II ab initio force field as it employs 

complex functional forms and is derived from extensive ab initio data. It is the first ab 

initio force field that was parameterized and validated using condensed phase 

properties (in addition to various ab initio and empirical data for molecules in 

isolation). It is specifically designed for material science application and it enables 

accurate and simultaneous prediction of structural, conformational, vibrational and 

thermophysical properties for a broad range of molecules e.g. most common organic 

molecules, organic  and inorganic polymers, zeolites and metal/transition-metal  

 

 

*LJ 9-6 is the soft Lennard-jones potential, which has a weaker repulsive term than the LJ 12-6   
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oxides. However some of the functional groups required to model energetic materials 

have not until now been parameterized and included in the in the COMPASS force 

field 

Parameterization method. 

For all organic and inorganic covalently bonded molecules, including polymer, the 

Consistent Force Field (CFF) functional form is used. The total energy is written as a 

combination of valence terms including diagonal and off-diagonal cross coupling 

terms. 
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the valence term is formed by Eb, Eθ, Eф and Eχ for bond, angle, torsion and out of 

plane angle coordinates respectively and Ebb
׳
, Ebθ ,Ebф, Eθθ 

׳
and Eθθ

׳
ф for cross-

coupling terms between internal coordinates. Cross-coupling terms are important for 

predicting vibrational frequencies and structural variations associated with 

conformational changes.  

 

Two atoms that are not bonded interact with each other through the non-bonded 

potential which consist of the “soft” Lennard-Jones potential 
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and the Coulombic term  

                                                            
ji ij

ji

elec
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                                              (20) 

 

for the electrostatic interaction. The electrostatic interaction is represented by the 

partial atomic charge model using bond increments, ij  which represents the charge 

separation between two bonded atoms. The net partial charge for atom, i, (qi) is the 

sum of all bond increments over all atoms bonded to this atom 

 

                                                            
j

ijiq                                                     (21) 

 

 elecE  refers to the electrostatic interactions between charged species/particles within a 

system. The two main areas of concern are firstly the description of the charge density 

and secondly the summation of the charge interactions. The interactions between two 

charges iq  and jq  separated by ijr  in a medium characterized with a dielectric 

constant ij . 

 

2.7.2 Dreiding force field 

Dreiding force field [37] is a common method used to speed up MD calculations. It is 

a good, robust, all purpose force field. It uses the concept of united atom where 
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several atoms are modelled as one united atom of a mass equal to the combined mass 

of the atoms in approximation to reduce simulation time. The reason for this is 

twofold. First it reduces the number of atoms to be simulated, second, it enables the 

use of a larger time step in the integration scheme. CH3 group is modeled as one 

united atom and we don’t have to explicitly simulate the fast motions of the H-atom, 

but only at average way. This has an effect of eliminating the calculations of nine 

vibrations at each time step. The use of united atoms induces one artifact. For non-

bonded interaction of united atoms with atoms separated by three covalent bonds 

(third neighbours) the repulsions are too large. In order to avoid this effect the van der 

Waals parameters used in the calculation of the third neighbour interaction are smaller 

than normal. A refinement on the approximation is the `anisotropic’ united atom 

approximation where (for example in the case of polydimethylsiloxane) the center of 

the united atom is shifted away from the center of the carbon atom it is replacing in 

the direction of the two hydrogens and this gives good diffusion results. The 

disadvantage of Dreiding force field is that, it is a general (not a specialized) force 

field so it is less accurate as compared to specialized force field but it allows 

reasonable predictions for a very much larger number of structures, including those 

with novel combinations of elements and those for which there is little or no 

experimental data. It can be used for structure prediction and dynamics calculations 

on organic, biological, and main-group inorganic molecules 

 

2.8 Charge description 

This section deals with the way in which the charge distribution in a system may be 

represented. 
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2.8.1 Formal charges 

Formal charges are atom centered charges of integral value and have been used with a 

great deal of success especially in ionic systems where the assumption of formal 

charges is at its most reasonable, however the more covalent character in a system, the 

less valid such an assumption becomes and although properties such as the structure 

may still be reproducible in such cases due to errors being subsumed in fitting of the 

parameters it may prove difficult to reproduce complex properties which require the 

correct balance between all the terms in the system. 

 

2.8.2 Partial charges 

Partial charges are normally centered and may take any value both integer and non-

integer.  These are described in two ways: fixed charges and bond increment charges.     

 

2.8.2.1 Fixed charges 

In the case of fixed charges the partial charge for a given atom in a given environment 

is uniquely defined. This is perhaps the most accurate of the two models however it 

requires a knowledge of the partial charge of every atom in the every environment; 

making it unwidely and impracticable for large force fields if they are to be used on a 

new systems. 

 

2.8.2.2 Bond increment charges 

This method requires the summation by bond increment in which the effect of a given 

atom type bonding to another atom type may be given. These can then be summed 

over all bonds for a given atom to produce consistent partial charge for an atom. This 

is not perhaps the most accurate as the unique partial charges model but it has the 
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advantage of requiring less parameters and not relying on the specific knowledge of 

the atomic environment. 

 

2.9 Charge summation methods 

The summation of atomic charges in a system is a question that has been studied 

extensively. The interaction of the two single point charges may be summed as 

described by equation (20) and (21). where ij  is the dielectric constant of the 

medium and ijr  is the inter-charge distance However when a system with many 

charges is considered the subject of summation becomes more complex, since the 

simple sum may require complex techniques in order to obtain an accurate value for 

coulombic energy of the system. The most commonly techniques of the summation 

are described in the following sections. 

 

2.9.1 Atom based summation 

Atom based summation of the charges is as the name suggests a simple summation of 

the electrostatic interactions of all the atoms within a given distance of each other. 

This method has the advantage of being computationally inexpensive however the 

answer is only conditionally convergent; the method yield results that fluctuate 

dramatically as the cutoff increases, even at large cutoff values this is because the 

method is conditionally convergent. It is suitable for small systems where a large 

enough cutoff can be use so that the interactions between all atoms in a system can be 

considered.  
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2.9.2 Group based summation 

The grouped based summation method relies upon the definition of neutral groups and 

the switching atoms within these groups. The groups are either included or dispensed 

with depending upon the distance between the switching atoms. The advantage of this 

method is that dipoles are not broken at the cutoff.  

 

2.9.3 Ewald summation 

Ewald summation involves the multiplication of the lattice sum by a convergence 

functions, allowing the convergence to be improved by doing so. In most cases the 

potential is described as a function of the inter-atomic distance ijr . Some of the 

methods are described in the following section. 

  

2.10 Buckingham potential 

The Buckingham potential has been used successfully in many ionic systems. 

The form of the potential is given by: 
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The function includes three parameters A, ρ, and C. A and ρ describe the repulsive of 

the component of the potential, which is an exponential rather than power function 

and gives arguably a better reproduction of the repulsive term. C is the attractive or 

dispersive interaction due to induced dipole interactions. This analytical form is not 

conformal and therefore does not allow for combination of parameters by combining 

rules as do the Lennard-Jones potential. A further disadvantage is that at very short 
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distances the function approaches minus infinity with the catastrophic results for any 

model approaching such short distances. Finally it should be noted that evaluation of 

this exponential form is relatively expensive compared to power laws as the Lennard-

Jones function. 

 

2.11 Lennard-Jones Function 

The Lennard-Jones function/potential has been used in a widely variety of modelling 

techniques and for variety of systems. Its main strength lies in its simplicity of form. 

It is both computationally inexpensive since it is a simple power law and readily 

transferable because it conformal allowing the combining of parameters, allowing the 

production of heteronuclear parameters from homonuclear. There are equally popular 

and identical forms for expressing Lennard-Jones potential. The first form has two 

parameters A  and B  and the second form also has two parameters   and    which 

represent the well-depth and equilibrium distance respectively 
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The conversion between the parameters is given in equations below 
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                                                      ijijijA  12                                                          (24c) 

 

                                                      ijijijB  62                                                        (24d) 

 

Power Rule 

The Lennard-Jones potential was chosen for the analytical simplicity of the function 

and it is characterized into two forms namely: the 12-6 potential is a steep repulsive 

potential and 9-6 potential which shallower repulsive term. The two forms of the 

potential are given below: 
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The conversion between equations 19 and 25 is shown below: 
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                                                          ijijijB  63                                                     (26d) 

 

Combining rules 

One of the advantages of the Lennard-Jones potential is that it is conformal, that it is 

possible to combine the parameters for two atoms to produce those for the interactions 

between the two interacting different atoms. There are three commonly used sets of 

rules for these combinations: arithmetic, geometric, and sixth-power 

 

Arithmetic 
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Geometric 
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Sixth Power 
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Mathematical properties of combining rules are considered and it is shown how to 

reduce combining rule formulas from a two-parameter to a single-parameter problem. 

 

2.12 Calculation of temperature pressure and volume 

Newton’s equation of motion conserves the total energy of a system and therefore it is 

characterized by micro-canonical statistical mechanical ensemble. The temperature of 

the system is calculated using the average kinetic energy of the N  particles with fN  

degrees of freedom 
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where iv  the velocity of particle i  with mass im  the temperature of the simulated 

system is controlled by the use of  a weak temperature and /or pressure coupling to an 

external bath. This means that at each integration step the velocity v  are scaled to v  

with  
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to bring the temperature of the system )( ttT   towards the reference temperature 

( refT ). The time constant T  describe how tight the coupling is. A tight coupling  

 

(
T

t




)  1, means that there is little fluctuation around the refT . The expression for 

pressure of the system is based on the virial theorem of the form: 
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where 
N

V
  denotes the volume per particle in the system,  Tai  is the virial 

coefficient. 
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CHAPTER 3 

COMPUTER SIMULATION 

In this chapter emphasis will be put on structure generation and refinement from 

which molecular dynamics was performed. 

 

Molecular Dynamics reported on this thesis were performed using Amorphous builder 

module of Cerius
2
 package. This uses a standard Monte Carlo method (which is based 

on the use of random numbers and probability statistics to investigate problems) that 

creates the polymer site using energy at specified temperature and density. 

 

3.1 Generation of amorphous structure 

 

3.1.1 Overview  

In order to model penetrant/polymer permeation accurately one must first be able to 

model the polymer itself. Computer simulations have often been used to model small 

regions of liquid in full atomistic detail. The extension of this method to polymers has 

proven difficult due to the wide range of length-scales and relaxation time scales 

present within a polymer that are absent in liquids. A single polymer chain shows 

structures ranging from the chemical bond (Å) to the persistence length (10Å) through 

to the coil radius (100Å). The time-scales range from local conformational 

fluctuations in the nanosecond region to fluctuations of the end-to-end distance that 

are in the order of seconds [38]. Nonetheless, various techniques have been employed 

to create a model of a suitable amorphous polymer, the most common of which are 

discussed below. 
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The methods discussed can be broadly split into three distinct types: 

 

- Structure generation - emphasis is on the generation of the initial structure leaving  

   subsequent refinement to a minimum  

- Structure refinement – emphasis is on the refinement which, ideally, is so good that    

   the starting structure can be arbitrary 

- Coarse graining – mapping the atomistic model on to a lattice model, and then   

   mapping back after relaxation of the coarse grain model. 

 

It is difficult to state which of the following methods can be described as the ‘best’ 

since all have particular advantages and disadvantages. 

 

3.1.2 Structure generation methods  

One common method of producing an amorphous polymer is the self avoiding 

random walk. This employs sequential site-by-site generation of the chain, including 

the effects of excluded volume and intramolecular potentials. The co-ordinates of 

successive polymer units are calculated using the equilibrium bond length and valence 

angles but at random dihedral angles. The energy change caused by the introduction 

of the new site is calculated and the move is accepted or rejected by a Monte Carlo 

type criterion. This method has been criticized for its simplistic approach to the 

problem [39]. One objection is that the initial chain configurations are generated in 

vacuo such that no interactions between chain are taken into account. The subsequent 

minimization techniques used cannot be expected to overcome this in the time 

available due to large relaxation times present within the polymer as mentioned 

previously. Also, this method is not practical to generate polymer at high densities 
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since the probability of finding a suitable site tends to zero as the simulation cell 

become increasingly full.  

 

An improvement is phantom chain growth without excluded density, which was 

devised to create higher density polymer [40, 41]. Here all excluded volume effects 

are ignored apart from those separated by three sites since, following Flory’s theory 

[42], the assumption is made that the polymer melt chain structure is largely 

determined by the localised intramolecular interections. A consequence of this 

method is large number of overlapping atoms. Energy minimization would remove 

these overlaps but this effectively means that the structure is quenched to 0K and this 

could potentially cause a shift in the distribution of conformers. Instead molecular 

dynamics techniques are preferred whereby van der Waals potentials are introduced 

and the structure undergoes molecular dynamic simulation. However, if the full 

Lennard-Jones potential is used at this stage, enormous forces are generated between 

atoms that can cause the integration algorithm to breakdown. To avoid this situation, 

the Lennard-Jones potential is modified to be constant below some critical separation. 

This ensures that overlaping atoms are pushed apart gently and that the forces are not 

excessive. It has been reported that, despite this precaution, the sudden introduction of 

the forces can cause significant perturbations in the chain dimensions. Once all the 

pairs of atoms are separated by distance greater than a critical separation, the full 

Lennard-Jones potential is invoked. 

 

A method that has proved to be more popular is based on rotational isomeric state 

(RIS) theory [43] whereby the initial structure is generated such that it satisfies the 

known probability of dihedral angles within the chain at a given temperature. Unlike 
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the above methods, RIS takes in to account the long-range interactions (separated by 5 

or more atoms) which are thought to have important effects in polymers of high 

densities. This tends to produce an initial guess configuration that is of significantly 

lower energy than those of previous methods. The model is then relaxed by 

minimising the potential energy. This method of producing the polymer configuration 

has been used extensively within the literature, though it is usually in its modified 

form of having periodic boundary conditions. 

 

A common problem of the RIS method occurs when large monomers are used. Severe 

overlaps of atoms occur during the initial guess configurations which results in a great 

deal of energy minimisation needed to relax the structure. A novel solution to this is 

the method of in-situ polymerization [44]. Here the configuration of monomers is 

generated in the small box. Molecular dynamics at the elevated temperature is used to 

randomly orientate the monomers after which adjacent monomers are joint and the 

resulting polymer undergoes energy minimisation. This does ensure that no atoms 

overlap but cannot guarantee a statistically accurate distribution of dihedral angles 

[45]. Further complications arise when a desired tacticity or monomer sequence is 

required. 

 

A recent implementation of a Monte Carlo algorithm is “look-head” method [46] 

which, before allowing a particular placement of the next atom, calculates what the 

energies several steps ahead would be averted a few step earlier than when a “look-

head” is not used. Obviously, a too large a look-head will result in a very high 

computational time. A typical value for the look-head is between two and four bonds. 
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3.1.3 Structure refinement methods  

Instead of trying to produce a realistic amorphous polymer immediately, one can use 

structure refinement techniques to turn an arbitrary starting configuration into a 

realistically amorphous one. One such method is that of reptation Monte Carlo [47] 

where a chain reptation movement is mimicked by removing a monomer unit from 

one end of a chain and attaching it to the other end. Choosing a dihedral angle at 

random and using equilibrium bond length and valence angle generates the new site 

for the monomer unit. The change in energy is calculated and the Monte Carlo rules 

are used to accept or reject the new site. 

Another structure refinement method is that using standard molecular dynamic 

techniques but with non-physical force field [48, 49]. The starting configuration is of 

dilute chains contained in a periodic box interacting through normal bonded forces. A 

soft core repulsive potential is then used during molecular dynamics whilst the 

simulation box is compressed to experimental density. This has the effect of allowing 

atoms to pass each other, thus enabling the chains to become entangled. If van der 

Waals forces were included at this point the chains would merely be pressed together. 

When the required density is reached conventional energy minimization is used with 

the full force field. 

 

3.2 Coarse-graining method 

The general idea of a coarse grain method is to map the initial structure onto a lattice 

model, mapping back to the atomistic level once the correct structure has been 

generated. An example [45] guarantees Gaussian chain statistics, enables control of 

chain tacticity and monomer sequence and avoids severe atomic overlap. A trajectory 

is generated by self avoiding walk on completely occupied lattice model. This 
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trajectory becomes the polymer backbone and is then populated by the desired atoms 

according to the specific chemical structure of the polymer. Correct placement and 

orientation of the atoms avoid atomic overlap and sequence in which the atoms are 

placed on the lattice determined monomer sequence and tacticity. Only brief energy 

minimization is needed to relax the structure and molecular dynamics is used to 

remove the lattice periodicity, resulting in a structure that has been shown to 

reproduce experimental x-ray scattering patterns.      

 

3.3 Simulation of amorphous polydimethylsiloxane 

All polymer systems were generated using the Amorphous Polymer Builder of 

Cerius2, which implements the RIS theory to select the torsional distributions from 

specified gauche-trans barriers. A cell that contains a PDMS chain of 200 monomers 

with cubic periodic boundary conditions has been used to investigate the diffusivity of 

twenty PDMS cyclic oligomer D3, D4 and D5 as shown in figure 2 at prescribed 

temperatures.  The building procedure was followed by energy minimization of 3000 

steps to remove occasional bad contacts which lead to non bonded energies between 

atoms that happen to be close. Then the structure was equilibrated for 200ps. The 

equilibration process was followed by 5000ps of production. 

3.4 Structures 

 

 

 

 

 

Figure 2, hexa-methylcyclotrisiloxane (D3) 
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Figure 3, octa-methylcyclotetrasiloxane (D4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4, deca-methylcyclopentasiloxane (D5)  
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Figure 5, PDMS chain consisting of 10 monomers 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6, 3D periodic system containing 20 D4 penetrants and a PDMS polymer 

chain consisting of 200 monomers. 
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3.5 Energy minimization 

The most common way of refining a structure is by energy minimization. It is a useful 

method in bringing a molecule close to its equilibrium conformation. It can repair 

distorted geometries by moving atoms to remove internal constrains. The aim of 

energy minimization is to find a local energy minimization, i.e., the bottom of the 

energy well occupied by the initial conformation. The local energy minimization 

locates the nearest point of stability on the potential energy surface. At such a point, 

the net force on each atom given by the derivative of the energy function, is zero. For 

small molecules, a global minimum energy configuration can often be found; for large 

macromolecular systems, energy minimization allows one to examine the local 

minimum around a particular conformation. Energy minimization is often performed 

in order to relieve strain in experimentally obtained or averaged structures. In 

addition, barrier crossing or internal rearrangement in very large macromolecules may 

be studied through a combination of minimization techniques and coordinate 

constraints. 
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3.6 Molecular dynamics 

Molecular dynamics (MD) is a convenient way to shake a molecule from one local 

energy minimum to another. It applies the laws of classical mechanics to compute the 

motion of the particles in a molecular system. This allows the study of molecular and 

conformational stability, the likely effects of flexibility on reactions or properties, the 

thermally averaged molecular structure, and any other property dependent upon 

molecular motion - examples include diffusion, permeability, binding mechanisms, 

and vibrational modes. Molecular dynamics alters the intramolecular degrees of 

freedom in a step-wise fashion, analogous to energy minimization. The individual 

steps in energy minimization are directed at establishing a down-hill direction to a 

minimum. The steps in molecular dynamics, on the other hand, represent the changes 

in atomic position, ri, over time (i.e. velocity) [37].  

 

MD is mostly suitable to study transport of small molecules in a material matrix. 

However if jump events of larger molecules can occur within time frames 

accommodated by MD, it could be applicable as well. 

 

3.7 Calculation of the diffusion  

Diffusion in polymeric systems is passive, the driving force is purely a Brownian 

molecular motion, but diffusion can also be activated by external effects, either by the 

influence of the release medium by swelling or biodegradation, or by the effects of 

physical forces as electrical, osmotic or convective forces. The fundamental of 

diffusion is based on Fick's laws which describe the macroscopic transport of 

molecules by a concentration gradient.  
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dx

dC
DJ                                                      (33) 

 

where J  is the flux of particle, D  is the diffusion coefficient, C  is the concentration. 

This law holds in case of thermal and mechanical equilibrium. The first Fick's law is a 

pertinent modelisation for a steady state diffusional release. Fick's model is adapted to 

passive diffusional systems where the diffusion coefficient (D) may be supposed to be 

constant, without modification of the physico-chemical properties of the polymer 

during the release. Such systems are so-called Fickian systems [50].  

 

 Diffusion in polymers 

In a microscopic picture, the diffusion coefficient is related to the autocorrelation 

function of the particle current by  
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the sum extend over all N particles, i , in the system, and the angle brackets imply the 

ensemble average. If the concentration of the diffusing species is low and the 

interaction between these particles is short-range, then one can approximate that the 

velocities of two different particles, i  and j , are uncorrelated, i.e. 0)0()(  ji vtv . 

Hence equation (34) becomes  

                                                



0

)0()(
3

1
dtvtvD ii                                             (35) 

this equation is known as the Green Kubo relation for the diffusion coefficient and it 

states that the diffusion coefficient is given by the time integral of  a single-particle 
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centre of mass velocity autocorrelation function. If the simulation is long enough for 

the hydrodynamic limit (long time limit) to be reached, equation (35) can be shown to 

be equivalent to the Einstein equation 

                                                    
2

)(6 ii RtRDt                                            (36) 

2

)()( tRtR ii   is the centre-of-mass mean-square displacement (MSD) which is the 

square displacement a particle has moved from time  0t  to t . The particle’s 

cartesian position vector is denoted by iR . Equation (36) implies that in the long-time 

limit the MSD is proportional to the time elapsed. Equations (34), (35) and (36) are 

completely equivalent in the calculation of the diffusion coefficients from the 

microscopic motion of individual particles. The resulting diffusion coefficients are 

often called tracer diffusion coefficients. Einstein equation (36) holds only in the case 

that the observation time is large enough to allow the particle to show completely 

uncorrelated motion, i.e. the particle has no memory of previous steps. This means 

that MSD is linear with time. However at shorter time scales, the motion might be 

correlated, which implies that equation (36) is not valid, hence the diffusion 

coefficient cannot be defined. Different cases can be summarized as follows: 

- the MSD is  quadratic in time 22

)( tRtR ii  . This is equivalent to the 

displacement being linear in time which is the signature of free flight. In a 

dense system, it occurs only at very short time scales (<1ps) while the particle 

is moving freely within a cavity until it hits the cage wall. 

- MSD is linear in time tRtR ii 
2

)( . The motion of a particle is 

uncorrelated, satisfies equation (36) 



 45 

- 1,)(
2

 ntRtR n

ii  . This is the case of anomalous diffusion. It is 

caused by some environmental features which prevents the particle from 

perfoming an uncorrelated motion. 

- 1,)(
2

 ntRtR n

ii   , this is called superdiffusion, can occur if some 

other transport mechanism such as convective flux is superposed to the 

diffusion.                                                                                              
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CHAPTER 4 

 

RESULTS AND DISCUSSIONS 

This chapter the results obtained from simulations will be analyzed and discussed, 

where applicable, the results will be compared with those available. 

 

4.1 Diffusion in polymer 

The study of the dynamics of small molecules in polymer melts has focused to a large 

extent on the calculation of diffusion coefficients D of these molecules. The diffusion 

coefficients are obtained from the mean square displacement 
2

)( ii RtR of these 

molecules or the time integral of the velocity auto-correlation function obtained from 

the trajectories. In low molecular weight liquid, the diffusion regime characterised by  

                    

                                            
2

)(6 ii RtRDt  

 

sets in after a few picoseconds. In polymer melts however a small molecule diffuses 

by a completely different mechanism namely by performing a jump-like motion 

between low free energy sorption sites.  

The mean square displacement method is preferred over the velocity autocorrelation 

function because the latter tends to become noisy at larger t  and it is often necessary 

to make assumptions about the analytical form of its long time tail in order to 

calculate the integral unless excessive simulation time is spent [52]. The Einstein 

relation avoids such ambiguity, secondly in the leap-frog integration scheme, the atom 

velocities are first calculated at time, tt 
2

1
 , these are used to calculate the positions, 
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r , at time, tt  . The mean square displacement is not determined by the short time 

behaviour as is the Green-Kubo relation and trajectory frames have to be saved to disk 

less often. Finally to verify if the hydrodynamic limit has been reached or if 

anomalous diffusion prevails, the graph of log MSD versus log time is plotted and the 

slope of the graph will give the value of n  as discussed in section 3.7. 

 

4.2 Analysis 

 

4.2.1 Motion of penetrant  

As a first step in molecular dynamics evaluation, the movement of simulated 

penetrant molecules through the polymer is usually characterised quantitatively and 

qualitatively [19, 39, 53-58]. The simplest way of studying the diffusion of an 

individual penetrant is to look at its path through space. This can be done by analysing 

the displacement versus time graph which reveals much about the motion of penetrant 

as shown in figures 7-9. From theses graphs, the motion of small molecules in a 

polymer can be characterised into two categories, penetrants hopping in a cavity, and 

penetrant jumping from one cavity to another [59] 

 

4.2.1.1 Hopping mechanism 

Penetrants spend larger part of time in cavities. These residence period do not 

contribute to diffusion but they are quite interesting in their own right. The motion of 

penetrants trapped in a cavity is dominated by short time scales [60], typically less 

than 0.5ns. During this quasi-stationary period, penetrant are reflected by the polymer 

matrix [61]. In this mode of motion, the penetrant molecules also act as probes for the 

shape of visited free volume [59]. After this time, most of the correlation of molecular 
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motion is lost due to frequent collision with the polymer atoms forming the cavity 

walls.  

 

4.2.1.2 Jump event 

During a jump event, a penetrant moves from a cavity it resides in, to a neighbouring 

cavity in a very short time compared with the residence time. Looking at the 

displacement vs time graph (figure 7-9), it reveals some difference in motion patterns 

which are mainly related to the size of the penetrants, D3-D5. Figure 7 shows the 

motion of a D3 penetrant diffusing through a PDMS polymer. The hop and jump kind 

of motion is not clear as compared to that in figure 8 and 9.The penetrant seems to 

spend less time in a cavity, compared to that of figure 8 and 9. The diffusion seems 

not limited by the number of cavities available to the penetrant in a polymer matrix 

and their distribution but seems to be limited by the mobility of the polymer matrix. 

However in figure 8, which shows the motion of D4 penetrant in PDMS, the step like-

jump motion is clear. The penetrant seems to spend more time (compare to figure7) 

oscillating in a cavity, approximately 0.5ns, as can be clearly seen in the intervals, 

3000-3500ps; 3500-4000ps and 4000-4500ps. From time to time the penetrant finds a 

channel big enough to jump to the adjacent cavity in a very short time compared to 

the residence time. This jump event can be clearly seen at approximately 4000ps and 

4500ps. In figure 9 which shows the motion of a D5 penetrant in PDMS polymer, the 

step-like motion is also clear. The penetrant spent more time in a cavity it resides in, 

approximately 1ns, as can be clearly seen in the intervals 2000-3000ps and 3000-

4000ps. From time to time a penetrant jumps from one cavity to another in a very 

short space of time as can be seen at 2000ps, 3000ps and 4000ps. The analysis of the 

penetrant trajectory thus demonstrates a variation in the diffusion with respect to 
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penetrant size. For larger penetrants the more pronounced events are the step-like 

hops and jumps as can be seen in figure 8 and 9. Penetrants (D4) hop within a cavity 

for approximately 0.5ns and after that it jumps to the next cavity. However, for D3 

penetrant, which is the smallest; these step-like hops appear to be blurred to some 

extent. One may wonder, if penetrants smaller than D3 would have displacement 

curves completely without steps, which would be indicative of a diffusion mechanism 

without discrete jump events. The residence time also differs with respect to penetrant 

size; for larger penetrants the residence time is longer and this is shown in figures 8 

and 9. The time spent by D5 penetrant in one cavity is approximately 1ns where as for 

D4 is approximately 0.5ns. This confirms that diffusion in polymers is determined by 

jump events. 

 

The question arises, what atomic motions are involved in the jump events, and, in 

particular, how does the polymer matrix participate in the event or even facilitate it.  

F. Muller-Plathe [39] repeatedly attempted to relate jump events to sudden 

conformational changes in the polymer and also to the major torsional angle changes 

and ring flips but could not find any correlation. It appeared rather that many degrees 

of freedom of the polymer are involved in a distributed fashion. The thermal 

vibrations of the polymer matrix do then, from time to time, permit the formation of 

temporary channels between adjacent cavities. These connections can under suitable 

conditions be utilized for jumps of a diffusing particle from one hole to a 

neighbouring one.  

As discussed above, one can clearly identify the very fast oscillations inside one and 

the same cavity as can be seen in time interval 3500-4000ps (figure 8) and the 

distinctive jumps between different cavities in a very short space of time. The short 
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frequency oscillations with amplitudes of less than 0.3 Å (figure 8) correspond to 

movements inside a given void in a polymer matrix, while larger once, more than 0.3 

Å can be related with the jump event between two adjacent holes. At about 4100 and 

4500ps, the jumps are so high that the diffusing particle might have jumped more than 

one cavity. 

 

 

 

 

 

 

 

Figure 7, The variation of the displacement with time for a D3 penetrant at 300K 

using Dreiding force field 
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Figure 8, The variation of the displacement with time for a D4 penetrant at 300K 

using Dreiding force field 
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Figure 9, The variation of the displacement with time for a D5 penetrant at 300K 

using Dreiding force field 
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4.2.2 Effect of temperature on displacement 

 

At higher temperatures, the penetrant trajectory is considerably different. Figure 10 

shows the diffusion mechanism of D4 penetrant at 350K using Dreiding force field. 

There is no significant difference between figure 8 (300K) and figure 10 (350K). The 

residence time seems more or less the same in both figures, but in figure 10, from 

3000ps to 5000ps, the residence time has doubled compared that in figure 8. This can 

be attributed to the density not being evenly distributed in figure 10. It looks like from 

3000ps, the penetrant entered a region of high density. The magnitude of the 

displacement looks the same for both figures, despite the difference in temperature. In 

figure 11 which shows the type of motion the D4 penetrant undertook at 400K, the 

step like motion is not clearly visible as it was at 300K (figure 8). There is a 

significant decrease in residence time compared to figure 8. The channels for 

diffusive jumps seem to occur more often than in figure 8. The magnitude of the 

displacement has also increased (double that in figure 8 and 10). This is believed to be 

due to the higher thermal fluctuations of the polymer due to higher temperature. It 

appears the residence time is approximately the same throughout the diffusion 

process. This is quite clear in figure 8, where residence time is about 0.5 ns and in 

figure 9 it is approximately 1ns. However in figure 10 the residence time from 3000ps 

to 5000ps is about 1ns which is more than double that before 3000ps. Also towards 

the end of the simulation the jump event seems too long compared to jump event at 

the beginning, and in the middle of the simulation as can be seen in figures 8, 9, 10 

and 11. This might be attributed to statistical errors. The analysis of the penetrant 

trajectories demonstrates a variation in the diffusion process with respect to 

temperature. At low temperature (300K) such as in figure 8, the penetrant diffuse 
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entirely by the hop and jump mechanism, the penetrant spent a longer time in a cavity, 

exploring the cavity, and in a short space of time the penetrant jump from one cavity 

to another. Diffusion at lower temperatures therefore seems to be limited by the 

number of cavities available to the penetrant in a polymer matrix and their 

distribution. At higher temperatures the residence time decreases as can be seen in 

figure 11. This is because at higher temperatures, the polymer is more mobile. The 

penetrant is no longer trapped in cavities. Therefore the diffusion at higher 

temperatures seems to be limited by the mobility of the polymer matrix. The 

magnitude of the diffusion also seems to be affected. There seems to be an increase in 

the mobility with an increase in temperature. This can be clearly seen in figure 8 

(300K) and figure 11 (400K), the magnitude of the displacement is higher in figure 11 

than in figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10, The variation of the displacement with time for a D4 penetrant at 350K 

using Dreiding force field 
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Figure 11, The variation of the displacement with time for a D4 penetrant at 400K 

using Dreiding force field 
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4.2.3 Mean squared displacement analysis 

 

From the displacement graphs the mean square displacement of a molecule averaged 

over all simulated diffusing molecules can be calculated. It does not contain a more or 

less extended linear portion and has a noisy part at longer times. The non-linear 

portion of the curve is caused by statistical problems. From the linear part, the 

diffusion constant (D) is calculated using the Einstein equation. This equation relies 

on the assumption of a random walk for each penetrant through the polymer matrix. 

That means that the jump of a molecule between individual cavities determines the 

mean square displacement behaviour. The still rather short possible duration of MD 

simulation does, however, sometimes result in a non-negligible influence of very fast 

movement of permeate molecules inside the individual cavities. This in cavity motion 

is determined by the shape of the cavity and is therefore no random walk; is called 

anomalous diffusion that was first reported by Muller- Plathe [39]. The usual effect of 

anomalous diffusion is to create a somewhat smaller slope of the mean square 

displacement at lower time values. The type of diffusion taking place can be 

determined by the log (MSD) vs log (time) plot, as discussed in chapter 3.  

 

Figure 12 shows the MSD vs time graph of D3 penetrant at 300K using Dreiding 

force field with the straight line starting from zero indicating the region on the graph 

where diffusion satisfies Einstein diffusion. The graph shows two types of diffusion, 

from the beginning to approximately 2800ps the motion was purely anomalous and 

from 2800ps to approximately 3700ps the graph shows real diffusive motion. This is 

indicated by figure 13 (the plot of log (MSD) vs log (time) graph) with the slope of 

less than unity for anomalous diffusion, and the slope of unity for real diffusion as 
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discussed in section 3.7. After 3700ps the diffusion deviate from normal diffusion, 

which is mainly due to statistical errors 

 

Figure 14 shows the MSD vs time graph of D4 penetrant at 300K using Dreiding 

force field, with the straight line representing the region where normal diffusion took 

place. The graph shows two regions of linearity. The first region which is from 

approximately 500ps to 3500ps shows that the diffusion was purely anomalous. This 

was followed by a super diffusive motion [39, 62-66] which is linear from 

approximately 4200ps. The interval at which the straight line touches the graph or 

where random walk seems to be achieved is not linear. This can only be taken as a 

transition from anomalous diffusion to super diffusion. The same behaviour is seen in 

figure 15 which shows the MSD vs time graph of D5 penetrant at 300K using 

Dreiding force field, with the straight line representing the region where Einstein 

diffusion took place. For the most part of the simulation, the motion of D5 penetrant 

was purely anomalous from approximately 200ps to 3500ps and after that it was 

followed by super diffusive motion. 

 

One might notice that for the smallest penetrant (D3), figure 12, the normal diffusion 

was reached at longer times, whereas for larger penetrants D4 and D5 the simulation 

time was not enough for normal diffusion to take place. 
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Figure 12, the MSD of D3 penetrant at 300K using Dreiding force field, with the 

straight line starting from zero showing the region where Einstein diffusion took 

place. The short straight lines 0.35 and 0.21 showing the region where anomalous 

diffusion took place, based on the log MSD vs log time graph 
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Figure 13 shows the log MSD vs log time graph of D3 penetrant using Dreiding force 

field, with the straight line, 0.35 and 0.21 showing anomalous diffusion and, 1.00 

showing where Einstein diffusion took place. 
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Figure 14 the MSD of D4 penetrant at 300K using Dreiding force field, with the 

straight line representing the region where Einstein diffusion took place. 
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Figure 15 the MSD of D5 penetrant at 300K using Dreiding force field, with the 

straight line representing the region where Einstein diffusion took place. 
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Figures 16, 17 and 18 show the MSD vs time graphs of D3, D4 and D5 penetrants 

obtained using COMPASS force field at 300K respectively. All the graphs show 

anomalous diffusion prevailing throughout the simulation time. This is believed to be 

as a result of the outward projected hydrogen atoms that inhibit the diffusion of the 

penetrant as compared to the united atom approach used in Dreiding force field. It 

takes more time for normal diffusion to prevail for COMPASS force field simulations 

than for Dreiding force field as COMPASS force field uses the all atom approach. 

This is validated in figure 12 (D3 penetrant using Dreiding force field), where normal 

diffusion was achieved at longer times approximately 2800ps to 3700ps, whereas in 

figure16 (D3 using COMPASS force field), normal diffusion was never achieved for 

the same simulation time. 

 

Figure 16 MSD graph of D3 penetrant at 300K using COMPASS force field 
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Figure 17 MSD graph of D4 penetrant at 300K using COMPASS force field 
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Figure 18 MSD graph of D5 penetrant at 300K using COMPASS force field 
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4.2.4 Calculated diffusion coefficients 

The average diffusion coefficient in table 1 were taken over the entire simulation 

time, whereas the Einstein diffusion coefficients were taken in the interval where the 

log (MSD) vs log (time) graph gives the slope of unity and anomalous diffusion 

coefficient were taken from the linear part where it was found that the log (MSD) vs 

log (time) gives the slope of less than unity. Based on the discussion in section 4.2.2, 

the Einstein diffusion never occurred for all the systems for the entire simulation time 

except for D3 system. So the Einstein diffusion coefficients for D3 penetrant can be 

taken as the true diffusion coefficient, but for D4 and D5 penetrants the calculated 

diffusion coefficient are just the rough estimation of the real diffusion coefficient 

since the interval where the log (MSD) vs log (time) gives the slope of unity is not 

linear. The anomalous diffusion coefficients for Dreiding force field were calculated 

in order to compare with those obtained using COMPASS force field. For D3 

penetrant (figure 12) the linear part where anomalous diffusion took place gives 

diffusion which is one order of magnitude higher than when using COMPASS force 

field (figure 16).  

For D4 and D5 penetrant the diffusion coefficient is of the same order of magnitude 

for both COMPASS and Dreiding force field, but the magnitudes calculated using 

Dreiding force field are higher than those obtained using COMPASS force field as 

noted in table 1. This is due to the united atom approximation used in Dreiding force 

field as compared to the all atom approximation employed in COMPASS force field. 

The diffusion coefficient (anomalous) seems to fluctuate with increasing penetrant 

size as shown in table 1. The diffusion coefficient (anomalous) for both Dreiding and 

COMPASS force field follow the same trend (D3>D5>D4), contrary to the expected 
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trend of D3>D4>D5 as smaller penetrant are expected to diffuse faster than larger 

penetrants.   

In table 2 an increase in temperature seems to increase the rate of diffusion of 

penetrants through the polymer. This is caused by the increase in mobility of the 

polymer at higher temperatures. The order of magnitude for D5 penetrant is the same 

as the one obtained by Hillborg et al who found the diffusion coefficient of D5 

penetrant to vary from 1-20 x 10
-8

cm
2
.s

-1
 depending on the extraction depth [67].  

 

Table 1, Diffusion coefficients of cyclic PDMS oligomers in PDMS polymer, with the 

average being taken from the entire simulation time, Einstein diffusion coefficient 

taken where the slope satisfies Einstein equation and Anomalous taken from the linear 

part of the graph. The simulation time was 5000ps.  

 

Table 2, Diffusion coefficient coefficients of D4 penetrant in PDMS polymer, with the 

Einstein diffusion coefficient taken where the slope satisfies Einstein equation  

 

Diffusion coefficients ( x 10
-8

 cm
2
/s ) at 300K 

Silicone oils 

20 Penetrant 

Dreiding  COMPASS 

 

Average Einstein Anomalous Anomalous 

 

D3 1.551 2.515 1.190 0.234 

D4 0.972 1.229 0.556 0.169 

D5 0.962 1.655 0.641 0.196 

D4 Diffusion coefficient (D) x 10
-8

 cm
2
/s 

300 1.229 

350 1.748 

400 3.918 
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As discussed in section 4.2.2 a change in temperature will affect both the penetrant 

and the polymer dynamics. The penetrant will have an increased energy and so will be 

able to jump to cavities that are blocked by higher energy barriers. The temperature 

effect on the polymer is to increase the segmental motion, which results in the 

redistribution of the cavities. This redistribution of cavities often results in inter-

connection of cavities, and if a penetrant has enough energy to overcome the potential 

barrier it will jump to the next cavity.  This temperature dependency of a diffusion 

process can be determined by the Arrhenius equation of the form  

 

                                                    
RT

Ea

eDD


 *                                             (37) 

 

where *D  is the pre-exponential factor, R is the gas constant, aE  is the activation 

energy, that is the energy a diffusing particle must posses for a successful jump from 

one cavity to another. Taking the natural logarithm of the Arrhenius equation yields 

 

                                           
TR

E
DD a 1

*lnln                                                    (38)     

For a process to obey Arrhenius equation, a plot of Dln  versus 
T

1
, must give a 

straight line, whose slope and intercept can be used to determine aE  and *D .  aE  

was calculated and found to be 11.27KJ/mol. Not enough data was sampled to 

accurately predict unambiguously the values of the activation energy ( aE ), as can be 

seen from the Arrhenius plot. More points must be plotted for the graph to clearly 

show whether Arrhenius behaviour was obeyed or not.     
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Figure 19 the Arrhenius plot of log Diffusion coefficient versus inverse Temperature 

for D4 penetrant using Dreiding force field 
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4.3 Validation  

DMol3 is a unique, accurate and reliable density functional theory (DFT) quantum 

mechanical code for research in the chemicals and pharmaceutical industries. It 

combines computational speed with the accuracy of quantum mechanical methods to 

predict materials properties both reliably and quickly. It is highly versatile and can be 

applied to research problems in the gas phase, solvent solid state, in chemistry, 

materials science, chemical engineering, and solid state physics.  

The density functional theory methods are based on a variety of functionals. The first 

of these is the local density approximation (LDA), for which the exchange-correlation 

functional consists of the Dirac-Slater exchange and the Vosko, Wilks and Nadir 

(VWN) correlation terms. Note that the correlation term is the VWN fitting of the 

electron gas simulations of Ceperlay and Alder and not the VWN RPA result, which 

is an approximation to the correlation energy. The other functionals are all 'gradient 

corrected' (sometimes called non-local) functionals (GGA). The the first of these 

functionals, denoted BLYP, is obtained by adding gradient corrections to the LDA 

method - specifically the exchange correction of Becke and the correlation function of 

Lee, Yang and Parr. The BLYP functional has been widely used in theoretical 

chemistry. Further information about DFT can be found in the references [68-73]  

Calculation of structural properties was performed on silicone oil (cyclic PDMS 

oligomers) to determine which of the two force field best describe our system. The 

results obtained from calculations using COMPASS and Dreiding force field were 

compared with those obtained from Dmol calculation which uses Density Functional 

Theory (DFT).  
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Polysiloxane are extremely flexible molecules due to the free rotation about the Si-O 

and the Si-C bond with PDMS exhibiting the most flexibility. The Si-O-Si bond angle 

for a linear chain has been shown to vary as a function of measurement technique [75] 

as can be seen in table 3. A generally accepted value for the Si-O-Si bond angle is 

143° and C-Si-C bond angle is 111° [75]. 

 

Bond Angles Gromos FF[48] PCFF[61] 

Si-O-Si 144 157 

O-Si-O 109.5 110.7 

O-Si-C 109.5 114.9 

C-Si-C 109.5 114.9 

Si-C-H  111.5 

 

Table 3, shows the bond angles of a PDMS linear chain 

In table 4, 5 and 6, the bond angles and bond length are shown. The values obtained in 

all the tables seem to be in good agreement except for the Si-O-Si angle when using 

Dreiding force field in all the tables. Dreiding force field seems to underestimate the 

Si-O-Si angle. 

 

In table 4 which shows the bond angles of D3 penetrant, the Si-O-Si bond angles 

values are low as compared to Table 3, 5 and 6. The Si-O-Si bond angles in table 4 for 

a D3 penetrant are very low as compared to those in table 3 (for a linear chain). This 

is in agreement with what Mechan [75] found. This is an indication that the D3 

molecule is highly strained. Furthermore Flory et al [74] found that the O-Si-O is 

some what low (104°) compared to the typical O-Si-O bond angle. COMPASS force 
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field seems to confirm his findings, with the other generating a slightly higher angle. 

This further confirms that the D3 molecule is strained, hence unstable. In table 5 and 

6 the bond angles compare reasonably with those of a linear chain. The bond length in 

all the penetrants D3, D4 and D5 seems not to be affected by the size of the penetrant. 

They all compare reasonably with those of the linear chain. Although Dreiding force 

field seems to underestimate the bond length.  

 

It looks like Dreiding force field somehow generate a smaller molecule due to shorter 

bond angles and bond length which might the reason why the MSD obtained using 

Dreiding force field shows region of normal diffusion in our simulation whereas for 

COMPASS force field there is no region where normal diffusion took place. 

 

 

 

 

 (a) 

Bond Angles (°) 

 COMPASS
a
 COMPASS

b
 Dreiding Dmol exp 

LDA GGA 

Si-O-Si 131.901 131.901 114.866 132.624 132.519 136 

[74,75] 

O-Si-O 105.076 105.076 113.974 107.344 107.480 104 

[74,75] 

O-Si-C 109.610 109.610 108.605 109.254 109.335  

C-Si-C 113.010 113.010 108.132 112.354 111.890  

Si-C-H 111.432 111.432 109.880 110.934 111.026  

H-C-H 107.441 107.441 109.059 108.080 107.845  
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(b) 

 

 Table 4 (a) and (b) The bond angle and bond length of D3 penetrant respectively 

 

 

(a) 

 

 

(b) 

 

Table 5 (a) and (b) The bond angle and bond length of D4 penetrant respectively 

 

Bond Length b0  (Å) 

 COMPASS 
a
 COMPASS

b
 Dreiding Dmol 

LDA GGA 

Si-O 1.644 1.644 1.604 1.649 1.666 

Si-C 1.886 1.886 1.705 1.844 1.867 

C-H 1.100  1.100 1.090 1.103 1.099 

O-O 2.610 2.610 2.690 2.657 2.687 

Si-Si 3.003 3.003 2.704 3.020 3.050 

Bond Angles (°) 

 COMPASS
a
  COMPASS

b
 Dreiding  DMol 

LDA GGA 

Si-O-Si 145.712 145.569 122.292 139.462 148.729 

O-Si-O 107.627 107.630 113.146 109.529 110.140 

O-Si-C 109.380 109.296 109.120 108.545 108.610 

C-Si-C 111.848 111.927 105.943 113.096 112.234 

Si-C-H 111.699 111.422 110.035 110.982 111.085 

H-C-H 107.364 107.452 108.900 107.918 107.810 

Bond Length (Å) 

 COMPASS
a
 COMPASS

b
 Dreiding DMol 

LDA GGA 

Si-O 1.634 1.634 1.605 1.642 1.654 

Si-C 1.888 1.888 1.708 1.846 1.869 

C-H 1.101 1.100 1.090 1.103 1.099 

O-O 1.638 2.638 2.676 2.673 2.714 

Si-Si 3.123 3.122 2.812 3.082 3.186 
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(a) 

 

 (b) 

Table 6 (a) and (b) The bond angle and bond length of D5 penetrant respectively 

a
 Materials Studio calculations using Discover code  

b
 Cerius2 calculations using Off-methods code 

 

4.4 Limitations of molecular dynamics 

MD is a computationaly intensive procedure [76] with simulations of several 

nanoseconds taking a few months in cpu time on a modern workstation. In these 

simulations it took two months for Dreiding force field simulations of 5ns and almost 

Bond Angles (°) 

 COMPASS
a
 COMPASS

b
 Dreiding DMol 

LDA GGA 

Si-O-Si 149.480 144.919 123.903 138.894 148.318 

O-Si-O 108.042 107.285 108.795 108.890 109.112 

O-Si-C 109.335 109.099 110.017 108.585 108.860 

C-Si-C 111.388 112.280 107.279 113.519 112.221 

Si-C-H 111.474 111.401 110.107 110.915 111.082 

H-C-H 107.395 107.463 108.711 107.998 107.812 

Bond length (Å) 

 COMPASS
a
 COMPASS

b
 Dreiding         DMol 

LDA GGA 

Si-O 1.632 1.634 1.610 1.644 1.653 

Si-C 1.889 1.887 1.708 1.844 1.870 

C-H 1.101 1.100 1.089 1.103 1.099 

O-O 2.641 2.632 2.613 2.675 2.693 

Si-Si 3.144 3.113 2.841 3.077 3.177 
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3 months when using COMPASS force field for the same simulation time. Some of 

the factors that cause MD to be so intensive are the size of the system, rate of 

diffusion of the penetrant through the polymer, and force field used. 

 

The polymer simulated must be large enough to ensure distribution of free volume 

and polymer configurations that reasonably match those found in reality. Even with 

quite small monomer unit this can often mean thousands of atoms being used. 

 

To obtain real values of diffusion coefficient, it is necessary to sample a sufficient 

number of jump events during simulation. With a small penetrant in a relatively 

permeable polymer this is easily achieved within few hundreds pico seconds of 

simulation. But as the size of the penetrant increases as is the case in our simulation 

(all the penetrants used, D3, D4 and D5 are large), the number of jump events 

decreases significantly and so to sample sufficient number of jumps for accurate 

diffusion coefficient calculation the simulation must be run for a long time. 

 

 When using force fields that uses a united atom approach, the number of interactions 

in the polymer and penetrant are reduced and it turns to speed up the rate of 

simulation, however for all atom force fields, all interactions are calculated including 

the hydrogen interactions and furthermore, the outwards projected atoms turn to form 

obstacles in the jump events and hence reduces the number of jump sufficient for 

accurate prediction of diffusion coefficient. This will lead to longer simulation time 

needed for sufficient jumps for accurate prediction of diffusion coefficient and it will 

take more time to compute all interactions. This is indicated by the shorter time spent 

to simulate a D3 penetrant system using Dreiding force field (which uses a united 
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atom approach) to reach the long time limit than that of COMPASS force field (which 

uses an all atom approach). 
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CHAPTER 5   

 

CONCLUSION AND RECOMMENDATIONS 

Conclusions are drawn based on the results and discussion and recommendations will 

be made. 

 

5.1 Conclusion 

 

Diffusion of PDMS oligomer in PDMS polymer matrix has been studied using 

molecular dynamics. The study has brought about useful information on how 

diffusion in PDMS is influenced by penetrant size, temperature and force fields. 

Molecular dynamics has confirmed, from penetrant displacement against time curves, 

that diffusion of PDMS oligomer through PDMS polymer matrix occurs by hop and 

jump mechanism with the permeates spending long periods of time trapped within one 

void and occasionally jumping between voids. It has been further noted that the jumps 

1longer time in one cavity than smaller penetrants and hence diffuse slower than 

smaller penetrant. This further confirms that the jump event determines the diffusion 

in polymer, not the motion of a penetrant in a cavity. An increase in temperature 

results in an increase in diffusion coefficient. This allows increased mobility of 

PDMS oligomers which will result in faster recovery of PDMS based insulators.  

The magnitude of diffusion coefficient using Dreiding force field for D5 is of the 

same order of magnitude as the experimental values [67]. The results of Dreiding 

force field are generally higher than those of COMPASS force field. This might be 

ascribed to the united atom approach used in Dreiding force field as discussed in 

section 4.3, it generated a somewhat smaller penetrant compared to COMPASS force 
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field. Generally, owing to the united atom approach, Dreiding force field is expected 

to produce diffusion coefficients which are slightly higher compared to COMPASS 

force field which uses an all atom approach. Furthermore when using COMPASS 

force field much longer simulation time is needed as compared with Dreiding force 

field which is as a result of the united atom approximation applied in Dreiding force 

field. However from the tables of bond length and bond angles, COMPASS force 

field seems to describe our system better.  

 

Molecular dynamics is a useful tool for studying diffusion of small molecules, but for 

larger molecules the time scale is not long enough for molecules to reach the long 

time limit for normal diffusion to take place. It needs to be developed, to be able to 

simulate well in to the ms region or more. However from the results generated, MD 

managed to predict how the large penetrants move in a polymer matrix.  

 

5.2 Recommendations   

Extensive research need to be done on experimental work on the diffusion of PDMS 

oligomers at various temperatures.  There is a need to study types of filler that can 

strengthen the material and not impede too much on the diffusion of low molecular 

weights to the surface.   
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