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ABSTRACT 

The thermodynamic irreversibility in any fluid flow process can be quantified through 

entropy analysis. The first law of thermodynamics is simply an expression of the 

conservation of energy principle. The second law of thermodynamics states that all real 

processes are irreversible. Entropy generation is a measure of the account of 

irreversibility associated with the real processes. As entropy generation takes place, the 

quality of energy (i.e. exergy) decreases. In order to preserve the quality of energy in a 

fluid flow process or at least to reduce the entropy generation, it is important to study the 

distribution of the entropy generation within the fluid volume. In this dissertation, the 

inherent irreversibility in the flow of a variable viscosity fluid in both a closed channel 

and an open channel is investigated. The channel is assumed to be narrow, so that the 

lubrication approximation may be applied and the fluid viscosity is assumed to vary 

linearly with temperature. Both the lower and the upper surfaces of the channel are 

maintained at different temperature. The simplified form of governing equations is 

obtained and solved analytically using a perturbation technique. Expressions for fluid 

velocity and temperature are derived which essentially expedite to obtain expressions for 

volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan 

number in the flow field.  

In chapter 1, a historic background of the study is highlighted. Both closed and open 

channels problem are investigated in chapters 2 and 3. In chapter 4, generally discussion 



 XII 

on the overall results obtained from the investigation is displayed together with possible 

areas of future research work.  
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    CHAPTER 1   
 


1.1. INTRODUCTION 


 


1.1.1.The First law of thermodynamics (FLT) 


 


The FLT stands for the first law of conservation of energy. This is stated as energy can be 


neither created nor destroyed; it just changes form. The FLT defines internal energy as a 


state function and provides a formal statement of the conservation of energy. However, it 


provides no information about the direction in which processes can spontaneously occur, 


that is, the reversibility aspects of thermodynamic processes. For example, it cannot say 


how cells can perform work while existing in an isothermal environment. It gives no 


information about the in inability of any thermodynamic processes to convert heat into 


mechanical work with full efficiency, or any insight into why mixtures cannot 


spontaneously separate or unmix themselves. An experimentally derived principle to 


characterize the availability of energy is required to do this. This is precisely the role of 


the second law of thermodynamics that we will explain later. 


 


1.1.2.The Second Law of Thermodynamics (SLT) 


 


Although a spontaneous process can proceed only in a definite direction, the FLT gives 


no information about direction; it merely states that when one form of energy is 


converted into another, identical quantities of energy are involved regardless of feasibility 


of the process. In this regard, events could be envisioned that would not violate the FLT, 


e.g., transfer of certain quantity of heat from a low-temperature body to a high-


temperature body, without expenditure of work. However, the reality shows that this is 


impossible and FLT becomes inadequate in picturizing the complete energy transfer. 
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Furthermore, experiments indicated that when energy in the form of heat is transferred to 


a system, only a portion of heat could be converted into work. 


The SLT establishes the difference in quality between different forms of energy and 


explains why some processes can spontaneously occur, whereas other cannot. It indicated 


a trend of change and is usually expressed as an inequality. The SLT has been confirmed 


by experimental evidences like other physical laws of nature. 


The SLT defines the fundamental physical quantity entropy as randomized energy state 


unavailable for direct conversion to work. It also states that all spontaneous processes, 


both physical and chemical, proceed to maximize entropy, that is, to become more 


randomized and convert energy into a less available form. A direct consequence of 


fundamental importance is the implication that at thermodynamic equilibrium the entropy 


of a system is at a relative maximum; that is, no further increase in disorder is possible 


without changing by some external means (such as adding heat) the thermodynamic state 


of the system. A basic corollary of the SLT is the statement that the sum of the entropy 


changes of a system and that of its surroundings must always be positive, that is, the 


universe (the sum of all systems and surroundings) is constrained to become forever more 


disordered and to proceed towards thermodynamic equilibrium with some absolute 


maximum value of entropy. From a biological standpoint this is certainly a reasonable 


concept, since unless gradients in concentration and temperature are forcibly maintained 


by the consumption of energy, organisms proceed spontaneously towards the biological 


equivalent of equilibrium-death. 


The SLT is quite general. However, when intermolecular forces are long range, as in the 


case of particles interacting through gravitation, there are difficulties because our 
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classification into extensive variables (proportional to volume) and intensive variables 


(independent of volume) does not apply. The total energy is no longer proportional to the 


volume. Fortunately gravitational forces are very weak as compared to the short-range 


intermolecular forces. It is only on the astrophysical scale that this problem becomes 


important. The generality of the SLT gives us a powerful means to understand the 


thermodynamic aspects of real systems through the usage of ideal systems. A classical 


example is Planck’s analysis of radiation in thermodynamic equilibrium with matter 


(blackbody radiation) in which Planck considered idealized simple harmonic oscillators 


interacting with radiation. Planck considered simple harmonic oscillators not merely 


because they are good approximations of molecules but because the properties of 


radiation in thermal equilibrium with matter are universal, regardless of the particular 


nature of the matter with which the radiation interacts. The conclusions one arrives at 


using idealized oscillators and the laws of thermodynamics must also be valid for all 


other forms of matter, however complex. What makes this new statement of the SLT 


valuable as a guide to energy policy is the relationship between entropy and the 


usefulness of energy. Energy is most useful to us when we can get it to flow from one 


substance to another, e.g., to warm a house and we can use it to do work. Useful energy 


thus must have low entropy so that the SLT will allow transfer or conversions to occur 


spontaneously. 


  


1.1.3. ENTROPY 


 


Within the past 50 years our view of nature has changed drastically. Classical science 


emphasized equilibrium and stability. Now we see fluctuations, in stability, evolutionary 
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processes on all levels from chemistry and biology to cosmology. Everywhere we 


observe irreversible processes in which time symmetry is broken. The distinction 


between reversible and irreversible processes was first introduced in thermodynamics 


through the concept of “entropy”. 


In the modern context the formulation of entropy is fundamental for understanding 


thermodynamic aspects of self-organization, evolution of order and life that we see in 


Nature. When a system is isolated, energy increase will be zero. In this case the entropy 


of the system will continue to increase due to irreversible processes and reach the 


maximum possible value, which is the state of thermodynamic equilibrium. In the state of 


equilibrium, all irreversible processes cease. When a system begins to exchange entropy 


with the exterior then, in general, it is driven away from equilibrium, and the entropy 


producing irreversible processes begins to operate. The exchange of entropy is due to 


exchange of heat and matter. The entropy flowing out of an adiabatic system is always 


larger than the entropy flowing into the system, the difference arising due to entropy 


produced by irreversible processes within the system. As we shall see in the following 


chapters, systems that exchange entropy with their exterior do not simply increase the 


entropy of the exterior, but may undergo dramatic spontaneous transformation to “self-


organization.” The irreversible processes that produce entropy create these organized 


states. Such self-organized states range from convection patterns in fluids to life. 


Irreversible processes are the driving forces that create disorder. 


Much of the internal energy of a substance is randomly distributed as kinetic energy at 


the molecular and sub molecular levels and as energy associated with attractive or 


repulsive forces between molecular and sub molecular entities, which are moving closer 
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together or further apart in relation to their mean separation. This energy is sometimes 


described as being ‘disordered’ as it is not accessible as work at the macroscopic level in 


the same way as is the kinetic energy or gravitational potential energy that an entire 


system possesses owing to its velocity or position in the gravitational field. Although 


energy is the capacity to do work, it is not possible directly to access the minute 


quantities of disordered energy possessed at a given instant by the various modes of 


energy possession of the entities so as to yield mechanical shaft work on the macroscopic 


scale. The term ‘disorder’ refers to the lack of information about exactly how much 


energy is associated at any moment with each mode of energy possession of each 


molecular or sub molecular entity within the system. 


 At the molecular and sub molecular level there is also ‘ordered energy’ associated with 


attractive or repulsive forces between entities that have fixed mean relative positions. Part 


of this energy is, in principle, accessible as work at the macroscopic level under very 


special conditions, which are beyond the scope of this manuscript. Temperature is the 


property that determines whether a system that is in equilibrium will experience any 


decrease or increase in its disordered energy if it is brought into contact with another 


system that is in equilibrium. If the systems do not have the same temperature, disordered 


energy will be redistributed from the system at the higher temperature to the one at the 


lower temperature. There is then less information about precisely where that energy 


resides, as it is now dispersed over the two systems. 


Heat transfer to a system increases the disordered energy of the system. Heat transfer 


from a system reduces the disordered energy. Reversible heat transfer is characterized by 


both the amount of energy transferred to or from the system and the temperature level at 
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which this occurs. The property entropy, whose change between the states is defined as 


the integral of the ratio of the reversible heat transfer to the absolute temperature, is a 


measure of the state of disorder of the system. This ‘state of disorder’ is characterized by 


the amount of disordered energy and its temperature level. When reversible heat transfer 


occurs from one system to another, both systems have the same temperature and the 


increase in the disorder of is exactly matched by the decrease in disorder of the other. 


When reversible adiabatic work is done on or by a system its ordered energy increases or 


decreases by exactly the amount of the work and the temperature level changes in a way 


that depends on the substances involved. Reversible work is characterized by the amount 


of energy transferred to or from the system, irrespective of the temperature of the system. 


Irreversible work, such as stirring work or friction work, involves a change in the 


disorder of the system and, like heat transfer to a system, has the effect of increasing the 


entropy. 


 


Entropy Aspects  


 


It is now important to introduce a new thermodynamic property, entropy, that is simply 


the amount of molecular disorder within a system. In this regard, a system possessing a 


high degree of molecular disorder (such as a high temperature gas) has a very high 


entropy value and vice versa. It is important to note that numerical values for specific 


entropy are commonly listed in thermodynamic tables along with values for specific 


volume, specific internal energy, and specific enthalpy. Therefore, entropy is known as 


the core of the second law of thermodynamics. Here, we have to highlight the following 


facts: 
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 The entropy of a system is a measure of the amount of molecular disorder within 


the system. 


 A system can only generate, not destroy, entropy. 


 The entropy of a system can be increased or decreased by energy transports 


across the system boundary. 


Heat and work are mechanisms of energy transfer. They are measures of the change in 


the internal energy in one body as energy is transferred to it or from it to another. Work is 


accomplished by force acting through a distance. Heat requires a difference in 


temperature for its transfer. The definition of heat energy can broadened to include the 


energy stored in a hot gas as the average kinetic energy of randomly moving molecules. 


This description enabled us to understand the natural flow of heat energy from a hot to a 


cooler substance. The concept of random motion was translated into a notion of order and 


disorder. The key linkage of order/disorder with probability followed. Energy transfers or 


conversions are changes of the state of a system. The natural direction of a change in 


state of a system is from state of low probability to one of higher probability. That is what 


probability means. And disordered states are more probable than ordered ones. Thus the 


natural direction of change of state of a system is from order to disorder. This is the 


“something” that is changing in all the energy transfers and conversions we have 


described. Finally, we gave that something a name-entropy. The entropy of a state of a 


system is proportional to (depends on) its probability. Thus the SLT can be expressed 


more broadly in terms of entropy in the following way: 


In any transfer or conversion of energy within a closed system, the entropy of the system 


increases. The consequences of the second law can thus be stated positively as the 
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spontaneous or natural direction energy transfer or conversion is toward increasing 


entropy, or negatively as all energy transfers or conversions are irreversible. Or, in 


keeping with our paraphrasing of the FLT as “You can’t get something for nothing,” the 


SLT asserts: You can’t even get all you pay for. 


It is low entropy energy sources that are being used up, and low entropy energy is 


“useful” energy. The energy sources in the universe were rated on an entropy/usefulness 


scale from the zero entropy, highly useful mechanical forms such as gravitational 


potential energy, which are easily converted to work, to the high entropy, unusable heat 


of our surroundings. In summary, this broader interpretation of the SLT suggest that real 


“energy conservation” should include the practice of thermodynamic economy. Each 


energy transfer or conversion, all else being equal, should be arranged so that the total 


change in entropy (entropy generation) is a minimum. This requires that energy sources 


be matched in entropy to energy end use.  


 


Significance of Entropy 


 


The “entropy” of the state of a system is a measure of the probability of its occurrence. 


States of low probability have low entropy; States of high probability have high entropy. 


With this definition we see, from the previous discussion and examples, that in any 


transfer or conversion of energy, because the spontaneous direction of the change of state 


of a closed system is from a less to a more probable state, the entropy of the system must 


increase. That is the broader statement we have been seeking for the second law, “In any 


energy transfer or conversion within an isolated closed system, the entropy of that system 


increases.” 
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Energy conversions can proceed so that the entropy of a part of a system is decreased. 


Charging a storage battery, freezing ice cubes, and even the processes of life and growth 


are examples. In each of these examples, order has been won from disorder and entropy 


has decreased. If the total system is considered, however, the total effect has been an 


increase in disorder. To charge a battery we must provide energy above and beyond that 


necessary to re-form the chemical combinations in the battery plates. Some of this low-


entropy electrical energy is changed into high-entropy heat energy in the current-carrying 


wires. In freezing ice we increase the order and thus decrease the entropy of the water in 


the ice cube trays by removing heat from it. The heat energy removed, however, has to 


flow into a substance that is at a lower temperature than the surroundings. Thus, the 


entropy and the disorder of this gas are increased. Moreover, we put low-entropy 


electrical energy into the refrigerator through the motor, and this energy is degraded to 


heat. The overall change in entropy is positive. In the life process, highly ordered 


structures are built from the much simpler structures of various chemicals, but to 


accomplish this, life takes in relatively low-entropy energy-sunlight and chemical energy-


and gives off high-entropy heat energy. The entropy of the total system again increases. 


The following figure illustrates a heat transfer process from the entropy point of view. 


 


 


Figure 1. Illustration of entropy increase and decrease for cold and hot bodies. 
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We point out from Fig. 1, that during a heat transfer process, the net entropy increases. 


As a matter of fact, the increase in entropy of the cold body more than offsets the 


decrease in the entropy of the hot body. The SLT requires that the increase in entropy of 


the cold body be greater than the decrease in entropy of the hot body. The conclusion is 


that processes can occur only in the direction of increased overall entropy or molecular 


disorder. That is, the entire universe is getting more and more chaotic every day. 


Another way of stating the consequence of the SLT is to say that all energy transfers or 


conversions are irreversible. They will go spontaneously in the direction of increasing 


entropy. They will not go spontaneously toward a state of lower entropy. For example, in 


a power plant some of the losses, as we have said earlier, can be minimized, but none of 


them can be eliminated. Entropy must increase. The usual mechanism is for some low-


entropy energy to be converted, through friction or electrical resistance, for instance, or 


through leakage of high-temperature, low-entropy heat energy and its degradation to 


high-entropy heat energy at the lower environmental temperature.     


 


Literature review 


 


Flow through pipes and conjugate heat transfer find wide applications in industry. In the 


flow system, the hydrodynamic losses can be attributed to the frictional and local losses 


associated with the flow path changes. The hydrodynamic losses are irreversible and 


result in entropy generation in the flow system. Consequently, entropy generation gives 


insight into the amount of losses, which take places in the flow system. Considerable 


research studies were carried out to investigate the flow through pipes. Bilir [1] studied a 


thermally developing laminar flow in pipes due to conjugate heating. He observed that 
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the Peclet number considerably influenced on heat transfer characteristics. The 


simultaneous wall and fluid axial conduction in laminar pipe flow heat transfer were 


studied by Faghri and sparrow [2]. They showed that the Nusselt number exhibited fully 


developed values in the upstream region as well as the downstream region (directly 


heated region). A low temperature variation method was introduced by gariban et al [3] 


to calculate pressure drop and heat transfer for turbulent flow in ducts. The analysis led to 


development of Green’s function, which was useful for solving a variety of conjugate 


heat transfer problems. The transient conjugated heat transfer in developing laminar pipe 


flow was investigated by Al-Nimr and Hader [4]. They showed that increasing the 


conductivity and the diffusivity ratios increased the thermal entrance length of the tube. 


The quasi-steady turbulence modeling of unsteady flows was studied by Mankabadi and 


Mobarak [5]. They indicated that the rapid distribution theory provided by Reynolds 


stresses without use of the eddy-viscosity concept. The channel and the boundary layer 


flows were investigated by Chein [6] introducing a low Reynolds-number turbulence 


method. He showed that the model proposed compared well with the measurements and 


yielded better predictions of the peak kinetic energy than the standard two-equation 


method. The behavior of friction and heat transfer coeeficients of water flowing 


turbulently in a large circular pipe was investigated by Choi and Cho [7]. The introduced 


a new turbulent heat transfer correlation for the prediction of the local Nusselt number. 


The heat transfer in the thermally developing region of a pulsating channel flow was 


studied by Young et al [8]. They indicated that dominant contribution to the change in 


Nusselt number stem from the additional axial transient effect. The numerical simulation 


of transitional flow and heat transfer in a smooth pipe were studied by Huiren and 
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Songling [9]. They showed that in the fully developed region flow and heat transfer were 


not affected by inlet temperature and the agreement between the results and data for the 


friction coefficient was good. Al-Zaharnah et al [10] studied the conjugate heat transfer in 


fully developed laminar pipe flow and thermally induced stresses. They showed that the 


thermal stresses amplified as heat flow on the wall increased. Al-Zaharnah et al [11] 


investigated pulsating flow in circular pipes. They indicated that the effect of pulse 


frequency on the temperature distribution became insignificant as the Reynolds number 


was lowered. 


 


Thermodynamic irreversibility occurs in the flow system due to fluid friction and heat 


transfer. The amount of thermodynamic irreversibility gives insight into the losses 


associated within the thermal system. Moreover, entropy production rate provides 


information on the amount if thermodynamic irreversibility in the system. Consequently, 


prediction of entropy generation due to different flow conditions ennobles to determine 


the flow system with minimized losses. Considerable research work was carried out to 


investigate the importance of entropy generation in the thermal systems [12, 13, 14 and 


15]. Entropy generation and minimization were investigated extensively by Bejan [16]. 


He showed the fundamental importance of entropy minimization for efficient processing. 


The second law analysis of combined heat and mass transfer in internal and external 


flows was considered by Carrington and Sun [17]. They introduced the entropy 


correlation, which could be used for internal and external flows. Heat transfer and 


entropy generation for a transparent gas flow were considered by Gbadebo et al [18]. 


They indicated that the maximum volumetric entropy generation became independent of 


tube length for high heat transfer coefficients. The local entropy generation due to 
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impinging jet was investigated by Shuja et al [19]. They showed that the minimum 


entropy generation concept alone might not be used to evaluate turbulence models, in 


which case, the experimental measurements were accompanied with the results of 


entropy analysis. 


 


The entropy generation in the flow and heat transferring systems gives the amount of 


thermodynamic irreversibility associated with thermal systems. Consequently, an 


investigation into entropy generation in the flow and heat transferring system is fruitful.  


Tasmin and Mahmud [34] investigated the entropy generation in a vertical concentric 


channel with temperature dependent viscosity. They mainly focus on the nature of 


irreversibility, in terms of entropy generation, inside a vertical cylindrical annulus. They 


further asserted that a laminar mixed convective flow of Newtonian fluid is considered 


with variable (temperature dependent) viscosity. The temperature dependent nature of 


viscosity is assumed to follow an exponential model.   


 


 


 


1.1.5. VISCOSITY 


 


Another transport phenomenon that holds for fluids in general is viscosity or internal 


friction. It is associated with collective currents that carry momentum from one region of 


the fluid to another. Consider a fluid where there is, in addition to thermal agitation of the 


molecules, a collective movement or current of the whole fluid for example, water 


running in a canal or pipe under a pressure difference.  
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Traditionally viscosity is regarded, as the most important material property and any 


practical study that requires the knowledge of fluid response would automatically turn to 


the basic understanding of viscosity. In general, the Newtonian model describes the 


rheological behavior of fluids. The Newtonian model is simply a special case with a 


constant viscosity. However, viscosity is a strong function of the rate of deformation of 


fluids. It is the key factor in determining the amount of fluid flowing in channels. It also 


helps to determine whether the flow regime is laminar, transitional or turbulent. Accurate 


knowledge of viscosity is very useful for computation of the pressure, velocity and 


temperature within channels. Viscosity also helps to describe the flow behavior of shear 


stress with respect to the rate of deformation of the fluid. In general the application of 


viscosity includes reservoir modeling, in which production rates and mobility for water 


flooding plays a major role. Factors that affect viscosity will be discussed in the next 


section. 


 


 


 


 


Factors affecting viscosity 


 


A material viscosity can significantly be affected by variables such as shear rate, 


temperature, pressure and time of shearing. It is important in this section to briefly 


discuss how viscosity is influenced by these parameters. 


 


 Temperature: some materials are quite sensitive to temperature. A relatively 


small variation may result in a significant change in viscosity. In most fluids 
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an increase in temperature results in a decrease in viscosity. The effect of 


temperature on viscosity is essential for material that will be subjected to 


temperature variations in use, or processing, such as motor oils, grease and 


hot-melt adhesives. 


 Shear rate: for shear thinning fluids, their viscosity decrease with an increase 


in shear rate and for shear thickening fluids the viscosity decreases at a 


constant shear rate. 


 Pressure: viscosity normally does not depend on pressure, but fluids subjected 


to extremely high pressure tend to increase the viscosity of such fluids. It is 


the property of the fluid at that point in time. 


 Factors like molecular weight and molecular distribution also affect the 


behavior of fluids. However, their consequences are less significant and will 


not be considered in this study.  


 


1.1.6. CHANNEL FLOW 


 


Channel flow constitutes a very important class of flows in fluid mechanics due to its 


numerous applications in biological and engineering systems. As a result it is important 


that we study the characteristics of this flow. We are particularly interested in how the 


flow pattern is modified by the effects of changing viscosity. The viscosity of many 


fluids varies with temperature e.g. physiological fluids such as blood, various lubricants 


used in engineering systems like polymer solutions, mineral oils with polymer additives, 


etc. this variation in the fluid viscosity due to temperature is certainly going to affect the 


flow characteristics. In this respect we shall consider two types of channel flow, namely 
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Poiseuille flow and Couette flow. Poiseuille flow normally occurs between parallel 


stationary planes due to an imposed constant axial pressure gradient. Its general 


characteristic is a parabolic axial velocity profile. Couette flow is concerned with the 


effect of viscosity due to temperature changes on the lubrication that occurs between two 


moving plates or between a fixed plate and a moving one. 


 


Hessami et al [35] analyzed laminar mixed convection flow pattern and heat transfer for 


air inside a vertical, cylindrical annular space. For symmetric heating, Sathyamurthy et al 


[36] and for symmetric heating, Yan and Tsay[37] analyzed the fully developed heat 


transfer performances inside an annular channel. Sathyamurthy et al [36] also considered 


the case of eccentric channel. EI-Shaarawi and Sarhan [38] and Islam et al [39] 


considered the case of mixed convection heat transfer at developing flow regime and also 


analyzed the entrance effect. For unsteady case, Mai et al [40] presented transient nature 


of mixed convection flow and heat transfer in a vertical pipe and HO and TU [41] studied 


laminar transition to oscillary convection of cold water in a vertical annulus of aspect 


ratio 8 and radius ratio 2. For heated inner cylinder, Choi and Kulacki [42] analyzed 


mixed convection heat transfer and fluid flow in a cylindrical annular space packed with 


porous medium. In the presence of other body forces (except buoyancy force), Al-Nimr 


and Alkam [43] figured out the transient nature of free convection inside an open ended 


vertical annulus. 


 


 1.2. AIM OF THE STUDY: This study aims to investigate theoretically the rate of 


heat transfer and entropy generation in a channel flow with temperature-dependent 


viscosity.  
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1.3. SPECIFIC OBJECTIVES OF THE STUDY: 


i. To develop a mathematical model for entropy generation in variable viscosity 


channel flow. 


ii. To determine the contribution of various flow characteristics to entropy 


generation rate. 


iii. To determine the effects of viscosity variation on fluid velocity, fluid temperature 


and the rate of heat transfer. 


iv. To provide a theoretical base for optimizing the efficiency of engineering devices 


whose operation relies on channel flow system. 
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CHAPTER 2 
 


CLOSED CHANNEL FLOW IRREVERSIBILITY ANALYSIS 
 


 


2.1 SUMMARY: This chapter investigates the inherent irreversibility in the flow of a 


variable viscosity fluid through a closed channel. The channel is narrow, so that the 


lubrication approximation may be applied and the fluid viscosity varies linearly with 


temperature. It is assumed that the lower and the upper walls of the channel are 


maintained at different temperature. We seek for the closed form of analytical solutions 


by solving the simplified governing equations. Analytical expressions for fluid velocity 


and temperature are derived which essentially expedite to obtain expressions for 


volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan 


number in the flow field.  


 


 


2.2. INTRODUCTION 


        The phenomenon of the flow and heat transfer in a channel has been analyzed by a 


number of authors [34-49] due to its important applications in the fields related to thermal 


power plants, heat exchangers, electronic cooling devices,  fluidization, combustion, 


petroleum industry, physiological flow system, polymer technology, etc. However, most 


fluids used in engineering and industrial systems can be subjected to extreme conditions, 


such as high temperature, pressure and shear rate. External heating and high shear rates 


can lead to high temperature being generated within the fluid. This may have a significant 


effect on the fluid properties. It is well known that the most sensitive fluid property to 
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temperature rise is the viscosity. For example, when the temperature increases from 10 
o
C 


(  = 0.0131g/cm s) to 50
o
C ( = 0.00548 g/cm s), the viscosity of water decreases by 


240% [53].  


          Meanwhile lubrication theory is defined as the process in which substances are 


added to a system in order to reduce the friction or wear between two surfaces in relative 


motion. In real situation machinery joints are lubricated by viscous, non-Newtonian fluid 


(e.g., grease or oil) such that, at high rate of relative motion, the fluid film separates the 


surfaces. Researchers proposed different methods for lubrication theory, for example 


joint lubrication is based on friction measurement. Hydrodynamic lubrication theory is 


based on high rates of relative motion. Under certain conditions such as shock loading, 


high temperatures and critically low viscosity, the lubrication system may change its 


original form. This process is known as boundary lubrication. Viscosity of lubricants is 


the most important factor to determine friction and wear. It affects heat generation in 


bearings, cylinders and gears due to internal friction. Lubrication theory is one of the 


powerful techniques, which helps to reduce the equations governing the flow. The 


equations governing viscous flow have been known for more than a century. In their 


complete form, they are very difficult to solve, even on modern computers. Nevertheless, 


it is very instructive to derive and discuss these fundamental equations because they give 


many insights, yield several solutions and can be examined for modeling laws. The 


lubrication approximation is based on an asymptotic simplification of continuity, Navier-


Stokes and energy equations and their associated boundary conditions. The usual model 


of flow using the Navier-Stokes and the energy equations, aiming to solve for the 


velocity and temperature profiles, turns them into non-linear equations only for the film 
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thickness. Physical parameters such as pressure, velocity, flux and the temperature can be 


expressed as a function of the film height. This method is valid when the film is thin and 


the flow regime is laminar [53]. 


           Furthermore, the inclusion of entropy generation calculations in computational 


fluid dynamics problems allows the evaluation of local entropy generation in more 


complicated thermal phenomena. One theoretically correct measure of thermodynamic 


performance is the magnitude of thermodynamic irreversibilities associated with a 


component or process. It can be shown that the minimization of entropy generation also 


results in the maximum reduction of irreversibility. The development of improved 


thermal designs is enhanced by the ability to identify clearly the source and location of 


entropy generation. Many studies have been published to assess the sources of 


irreversibility in components and systems. Bejan [46] studied the entropy generation for 


forced convective heat transfer due to temperature gradient and viscosity effect in a fluid. 


Bejan [22] also presented various reasons behind entropy generation in applied thermal 


engineering where the generation of entropy destroys the available work, called exergy, 


of a system. Entropy generation in a vertical concentric isothermal channel with 


temperature dependent viscosity is presented by Tasnim and Mahmud [34]. The inherent 


irreversibility for a gravity driven non-Newtonian Ostwald-de Waele power law liquid 


film along an inclined isothermal plate is discussed in Makinde [48]. The 


thermodynamics second law characteristics for thermal design of radial fin geometry by 


convection are discussed by Taufiq et al. [49]. Other applications of second law analysis 


for some steady flow devices can be found in references [47-52].  
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          Considering the importance of variable viscosity effects on entropy generation rate, 


the problem of inherent irreversibility in the flow of a variable viscosity fluid through a 


closed channel with parallel walls that is subjected to non-uniform temperature is studied. 


The plan of this chapter is as follows; in sections 2.3 and 2.4 we describe the theoretical 


analysis of the problem with respect to the fluid velocity and temperature fields. Section 


2.5 describes the volumetric entropy generation rate, irreversibility distribution ratio and 


the Bejan number. The results are presented graphically and discussed quantitatively in 


section 2.6.   


 


2.3   MATHEMATICAL MODEL  


        The configuration of the problem studied in this paper is depicted in Fig. 2.3.1. The 


flow is considered to be steady in the x -direction under the action of a constant pressure 


gradient through a closed channel of width H and length L. The fluid is incompressible 


and the temperature dependent viscosity (  ) can be expressed as  


)](1[0 iTT   .                                   (2.3.1) 


where 0 is the fluid dynamic viscosity at the lower wall temperature Ti . In most fluids 


the greater the viscosity, the stronger is the temperature dependence. Equation (2.3.1) has 


a wide range of practical applications in the industry for heat and mass transfer problems 


and is also valid for reacting fluids [53]. 
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Fig. 2.3.1: Schematic diagram of the problem 


 


Under these conditions the continuity, momentum and energy equations governing the 


problem in dimensionless form may be written as [53]; 
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We have employed the following non-dimensional quantities in Eqs. (2.3.2)-(2.3.6): 
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  (2.3.7) 


where  is the fluid density, k is the thermal conductivity, T is the fluid temperature, Tf is 


the upper wall temperature, U is the velocity scale,  is the viscosity variation parameter, 


wall temperature, u  is the axial velocity, v  is  the normal velocity, cp is the specific heat 


at constant pressure, P  is the pressure, Pe is the Peclet number, Br is the Brinkman 


number, Re is the Reynolds number, x  and y are distances measured in streamwise and 


normal direction respectively.  


        Since the channel is narrow and the aspect ratio 0 < ε <<1, the lubrication 


approximation based on an asymptotic simplification of the governing equations (2.3.2) –


(2.3.6) is invoked and we obtain, 
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where T 1 .  The appropriate boundary conditions in dimensionless form are given 


as follows: the upper wall of the channel surface is fixed, impermeable and maintained at 


a given temperature: 


u = 0, 1T       at    y  =  1,                  (2.3.11) 
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and the channel lower wall is also fixed, impermeable and maintained at a temperature 


different from that of the upper wall i.e.  


u = 0, 0T       at    y  =  0,                   (2.3.12) 


 


 


2.4  SOLUTION METHOD 


In order to solve Eqs.(2.3.8)–(2.3.10) subject to the boundary conditions in Eqs.(2.3.11)-


(2.3.12), we assumed that the variation in the fluid viscosity is very small (0<  <<1) and 


seek an asymptotic solutions for the fluid velocity and temperature of the form: 


1010    , TTTuuu    .                      (2.4.1) 


Substituting Eq. (2.4.1) into Eqs. (2.3.8)-(2.3.12), we obtain the following equations; 
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where xPG   is the constant pressure gradient. Eqs. (2.4.2)-(2.4.7) are solved in 


order to obtain successively the coefficients of the solution series in Eq. (2.4.1) and we 


have the solutions for fluid velocity and temperature profiles as;  
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2.5  ENTROPY GENERATION RATE 


Flow and heat transfer processes inside a narrow closed channel are irreversible. 


The non-equilibrium conditions arise due to the exchange of energy and momentum 


within the fluid and at solid boundaries, thus resulting in entropy generation. Apart of the 


entropy production is due to the heat transfer in the direction of finite temperature 


gradients and the other part of entropy production arises due to the fluid friction. The 


general equation for the entropy generation per unit volume is given by [46]; 
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The first term in Eq. (2.5.1) is the irreversibility due to heat transfer and the second term 


is the entropy generation due to viscous dissipation. Using Eq. (2.5.1), we express the 


entropy generation number in dimensionless form as, 
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where fif TTT /)(   is the temperature difference parameter. In Eq. (2.5.2), the first 


term can be assigned as N1 and the second term due to viscous dissipation as N2, i.e. 
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In order to have an idea whether fluid friction dominates over heat transfer irreversibility 


or vice-versa, Bejan [46] defined the irreversibility distribution ratio as  = N2/N1.  Heat 


transfer dominates for 0   < 1 and fluid friction dominates when  > 1. The 


contribution of both heat transfer and fluid friction to entropy generation are equal when 


 = 1. In many engineering designs and energy optimisation problems, the contribution 


of heat transfer entropy N1 to overall entropy generation rate Ns is needed. As an 


alternative to irreversibility parameter, the Bejan number (Be) is define mathematically as  
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Clearly, the Bejan number ranges from 0 to 1.  Be = 0 is the limit where the irreversibility 


is dominated by fluid friction effects and Be = 1 corresponds to the limit where the 


irreversibility due to heat transfer by virtue of finite temperature differences dominates. 


The contribution of both heat transfer and fluid friction to entropy generation are equal 


when Be = 1/2. It is important to note that using Eqs.(2.4.8)-(2.4.9), the explicit 


expressions for Eqs.(2.5.2)-(2.5.4) can be easily obtained as shown in the appendix. 
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2.6 GRAPHICAL RESULTS AND DISCUSSION 


For the numerical validation of our results we have chosen physically meaningful values 


for the parameters in the problem. Unless otherwise stated we have taken G=1, 2, 3; Br=1, 


5, 10, 100;  = 0, 0.1, 0.3; 
 
= 1, 5, 10.  In Figs. 2.6.1-2.6.3, the velocity profiles are 


reported for increasing values of viscosity variation parameter (), Brinkman number 


(Br) and axial pressure gradient parameter (G). Generally a parabolic velocity profile is 


observed with maximum value along the channel centerline and minimum at the walls. 


Increasing values of Brinkman number and a decrease in fluid viscosity due to an 


increase in  result into an increase in the fluid velocity as illustrated. The same result is 


observed with an increase in the value of axial pressure gradient parameter. Typical 


variations of the fluid temperature profiles in the normal direction are shown in Figs. 


2.6.4-2.6.6. It is observed that the fluid temperature increases with increasing parametric 


values of , Br  and G. Meanwhile, minimum temperature is generally observed at the 


lover wall, followed by a transverse increase to its maximum value and then decreases 


gradually to the prescribed value at the upper wall. Figs. 2.6.7-2.6.10 display results for 


the entropy generation rate versus the channel width for various parametric values. 


Generally, entropy generation rate is at the lowest in the region around the channel 


centerline and increases quite rapidly to its maximum values at the lower wall of the 


channel. We note that increasing values of , Br and G result into a further increase in the 


entropy generation rate while an increase in the temperature difference parameter () 


results into a decrease entropy generation rate. Figs. 2.6.11-2.6.13 display the Bejan (Be) 


number versus the channel width. We observed that heat transfer irreversibility dominates 
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around the centreline region of the channel while at the walls fluid friction irreversibility 


dominates. It is interesting to note that increasing values of , Br and G  result into an 


increase in the dominant effect of fluid friction irreversibility near the walls while 


increasing value of  results into a decrease in the dominant effect of fluid friction 


irreversibility near the walls. 


 


 


 


 


 


 


 
Fig. 2.6.1: Velocity profile: G=1; Br=10; ______ = 0; ooooo  = 0.1; ++++  = 0.3.  
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Fig.2.6.2: Velocity profile: G=1; = 0.1; ______Br = 10; ooooo Br = 500; ++++ Br = 1000. 


 


 


 


 


 


 


 


 


 


 
Fig.2.6.3: Velocity profile: Br=10; = 0.1; ______G = 1; ooooo G = 2; ++++G = 3. 
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Fig.2.6.4: Temperature profile: G=1; Br=100; ______ = 0; ooooo  = 0.1; ++++  = 0.3.   


 


 


 


 


 


 


 


 


 


 
Fig.2.6.5: Temperature profile: G=1; = 0.1; ______Br = 10; ooooo Br = 50; ++++ Br = 100. 
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Fig.2.6.6: Temperature profile: Br=10; = 0.1; ______G = 1; oooooG = 2; ++++G = 3. 


 


 


 


 


 


 


 


 


 


 
 


Fig. 2.6.7: Entropy generation rate:G =1; Br = 10; = 1; ______ = 0; ooooo = 0.1; ++++ = 


0.3. 


 


 


 


 







 32 


 


 


 


 


 
Fig. 2.6.8: Entropy generation rate: =0.1; G = 1; = 1; ______Br = 1; oooooBr= 5; ++++Br = 


10. 


 


 


 


 


 


 


 


 


 


 
 


Fig.2.6.9: Entropy generation rate:  = 0.1; Br = 10; = 1; ______G = 1; oooooG= 2; ++++G = 


3. 
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Fig. 2.6.10: Entropy generation rate: G = 1;  = 0.1; Br = 10; = 1; ______ = 1; ooooo = 5; 


++++ = 10. 


 


 


 


 


 


 


 


 


 


 


 
 


Fig. 2.6.11: Bejan number :G =1; Br = 10; = 1; ______ = 0; ooooo = 0.1; ++++ = 0.3. 
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Fig. 2.6.12: Bejan number: =0.1; G = 1; = 1; ______Br = 1; oooooBr= 5; ++++Br = 10. 


 


 


 


 


 


 


 


 


 


 


 


 
Fig. 2.6.13: Bejan number:  = 0.1; Br = 10; = 1; ______G = 1; oooooG= 2; ++++G = 3. 







 35 


 


 


 


 


 


 


 


 


 


 


 


 
 


Fig. 2.6.14: Bejan number: G = 1;  = 0.1; Br = 10; = 1; ______ = 1; ooooo = 5; ++++ = 


10. 
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CHAPTER 3 
 


OPEN CHANNEL FLOW IRREVERSIBILITY ANALYSIS 
 


 


3.1 SUMMARY: In this chapter, we extend the irreversibility analysis for a variable 


viscosity fluid to include open channel flow. The channel aspect ratio is very small, so 


that the lubrication approximation may be applied and the fluid viscosity varies linearly 


with temperature. It is assumed that the channel lower wall and the fluid free surface are 


maintained at different temperature. We seek for the closed form of analytical solutions 


by solving the simplified governing equations. Analytical expressions for fluid velocity 


and temperature are derived which essentially expedite to obtain expressions for 


volumetric entropy generation numbers, irreversibility distribution ratio and the Bejan 


number in the flow field.  


 


3.2   INTRODUCTION 


Open channel flow is the flow of fluids in a conduit with a free surface, such as canals or 


rivers. The flow in open channels is classified as uniform if the fluid depth does not vary 


along the channel. Conversely, it is said to be non-uniform flow or varied flow if the 


depth varies with the distance [54]. The principal forces at work are those of inertia, 


gravity and viscosity. In practical situations open channels concern all types of fluids, 


Newtonian and non-Newtonian. The conditions in open channels are complex due to the 


position of the free surface, which may change with time, space, fluid depth, the 


discharge and the slope. However, in this chapter, the focus will be on steady flows. 


Our objective is to investigate the flow behaviour and the inherent irreversibility of a 


fluid in a uniform open channel subject to temperature-dependent viscosity as detailed in 
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chapter 2. Some materials are quite sensitive to temperature. A relatively small variation 


may result in a significant change in viscosity. In most fluids an increase in temperature 


results in a decrease in viscosity. The effect of temperature on viscosity is essential for 


material that will be subjected to temperature variations in use, or processing, such as 


motor oils, grease and hot-melt adhesives. The plan of this chapter is as follows; in 


sections 3.3 and 3.4 we describe the theoretical analysis of the problem with respect to 


the fluid velocity and temperature fields. Section 3.5 describes the volumetric entropy 


generation rate, irreversibility distribution ratio and the Bejan number. The results are 


presented graphically and discussed quantitatively in section 3.6.   


 


3.3   MATHEMATICAL MODEL  


Fig. 3.3.1. shows the geometric representation of the problem, for a uniform open channel 


of typical length L in the x -direction and height H. The driving force for the flow is a 


constant axial pressure gradient gravity. The fluid is incompressible and the temperature 


dependent viscosity (  ) can be expressed as  


)](1[0 iTT   .                                   (3.3.1) 


where 0 is the fluid dynamic viscosity at the lower wall temperature Ti . In most fluids 


the greater the viscosity, the stronger is the temperature dependence. Equation (3.3.1) has 


a wide range of practical applications in the industry for heat and mass transfer problems 


and is also valid for reacting fluids [53]. 
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Fig. 3.3.1: Schematic diagram of the problem 


 


Under these conditions the governing equations of continuity, momentum and energy for 


the flow in open channels in dimensionless form may be written as [53]; 
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We have employed the following non-dimensional quantities in Eqs. (3.3.2)-(3.3.6): 
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  (3.3.7) 


where  is the fluid density, k is the thermal conductivity, T is the fluid temperature, Tf is 


the upper wall temperature, U is the velocity scale,  is the viscosity variation parameter, 


wall temperature, u  is the axial velocity, v  is  the normal velocity, cp is the specific heat 


at constant pressure, P  is the pressure, Pe is the Peclet number, Br is the Brinkman 


number, Re is the Reynolds number, x  and y are distances measured in streamwise and 


normal direction respectively.  


        Since the channel aspect ratio is very small (i.e. 0 < ε <<1), the lubrication 


approximation based on an asymptotic simplification of the governing equations (3.3.2) –


(3.3.6) is invoked and we obtain, 
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where T 1 . The appropriate boundary conditions in dimensionless form are given 


as follows: the fluid free surface is maintained at a given temperature together with a zero 


shear stress i.e. 
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and the channel lower wall is fixed, impermeable and maintained at a temperature 


different from that of the fluid free surface;  


u = 0, 0T       at    y  =  0,                   (3.3.12) 


 


 


3.4.  SOLUTION METHOD 


In order to solve Eqs.(3.3.8)–(3.3.10) subject to the boundary conditions in Eqs.(3.3.11)-


(3.3.12), we assumed that the variation in the fluid viscosity is very small (0<  <<1) and 


seek an asymptotic solutions for the fluid velocity and temperature of the form: 


1010    , TTTuuu    .                     (3.4.1) 


Substituting Eq. (3.4.1) into Eqs. (3.3.8)-(3.3.12), we obtain the following equations; 
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where xPG   is the constant pressure gradient. Eqs. (3.4.2)-(3.4.7) are solved in 


order to obtain successively the coefficients of the solution series in Eq. (3.4.1) and we 


have the solutions for fluid velocity and temperature profiles as;  
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3.5. ENTROPY GENERATION RATE 


The general equation for the entropy generation per unit volume is given by [46]; 
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The first term in Eq. (3.5.1) is the irreversibility due to heat transfer and the second term 


is the entropy generation due to viscous dissipation. Using Eq. (3.5.1), we express the 


entropy generation number in dimensionless form as, 
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where fif TTT /)(   is the temperature difference parameter. In Eq. (3.5.2), the first 


term can be assigned as N1 and the second term due to viscous dissipation as N2, i.e. 
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In order to have an idea whether fluid friction dominates over heat transfer irreversibility 


or vice-versa, Bejan [46] defined the irreversibility distribution ratio as  = N2/N1.  Heat 


transfer dominates for 0   < 1 and fluid friction dominates when  > 1. The 


contribution of both heat transfer and fluid friction to entropy generation are equal when 


 = 1. In many engineering designs and energy optimisation problems, the contribution 


of heat transfer entropy N1 to overall entropy generation rate Ns is needed. As an 


alternative to irreversibility parameter, the Bejan number (Be) is define mathematically as  
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Be  .             (3.5.4) 


Clearly, the Bejan number ranges from 0 to 1.  Be = 0 is the limit where the irreversibility 


is dominated by fluid friction effects and Be = 1 corresponds to the limit where the 


irreversibility due to heat transfer by virtue of finite temperature differences dominates. 


The contribution of both heat transfer and fluid friction to entropy generation are equal 


when Be = 1/2. It is important to note that using Eqs.(3.4.8)-(3.4.9), the explicit 


expressions for Eqs.(3.5.2)-(3.5.4) can be easily obtained as shown in the appendix. 
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3.6 GRAPHICAL RESULTS AND DISCUSSION 


For the numerical validation of our results we have chosen physically meaningful values 


for the parameters in the problem. Unless otherwise stated we have taken G=1, 2, 3; Br=1, 


5, 10, 100;  = 0, 0.1, 0.3; 
 
= 1, 5, 10. In Figs. 3.6.1-3.6.3, the velocity profiles are reported 


for increasing values of viscosity variation parameter (), Brinkman number (Br) and 


axial pressure gradient parameter (G). Generally, a transverse increase in the velocity 


profile is observed from the channel lower wall to maximum value at the fluid free 


surface. A decrease in fluid viscosity due to an increase in  and an increase in Brinkman 


number result into a further increase in the fluid velocity. The same result is observed 


with an increase in the value of axial pressure gradient parameter. Typical variations of 


the fluid temperature profiles in the normal direction are shown in Figs. 3.6.4-3.6.6. 


Minimum temperature is generally observed at the channel lower wall, followed by a 


transverse increase to its maximum value and then decreases gradually to the prescribed 


value at the fluid free surface. It is noteworthy that the fluid temperature further increases 


with increasing parametric values of , Br  and G. Figs. 3.6.7-3.6.10 display results for 


the entropy generation rate versus the channel width for various parametric values. 


Generally, entropy generation rate decreases transversely with maximum value at the 


channel lower wall and minimum value at the fluid free surface for all parametric values. 


However, increasing values of , Br and G result into a further increase in the entropy 


generation rate while an increase in the temperature difference parameter () results into 


a decrease entropy generation rate. Figs. 3.6.11-3.6.13 illustrates the Bejan (Be) number 


versus the channel width. We observed that heat transfer irreversibility dominates at the 


fluid free surface for all parametric values while the dominance effect of fluid friction 
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irreversibility increases transversely from the channel lower wall, reaching its maximum 


effect at a distance close to the free surface. It is interesting to note that increasing values 


of , Br and G result into an increase in the dominant effect of fluid friction 


irreversibility near the in the region close to the channel lower wall while increasing 


value of  results into a decrease in the dominant effect of fluid friction irreversibility 


near the channel lower wall. 


 


 


 


 


 


 


 
Fig. 3.6.1: Velocity profile: G=1; Br=10; ______ = 0; ooooo  = 0.1; ++++  = 0.3.  
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Fig.3.6.2: Velocity profile: G=1; = 0.1; ______Br = 10; ooooo Br = 50; ++++ Br = 100. 


 


 


 


 


 


 


 


 


 


 
Fig.3.6.3: Velocity profile: Br=10; = 0.1; ______G = 1; ooooo G = 2; ++++G = 3. 
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Fig.3.6.4: Temperature profile: G=1; Br=100; ______ = 0; ooooo  = 0.1; ++++  = 0.3.   


 


 


 


 
Fig.3.6.5: Temperature profile: G=1; = 0.1; ______Br = 10; ooooo Br = 50; ++++ Br = 100. 
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Fig.3.6.6: Temperature profile: Br=10; = 0.1; ______G = 1; oooooG = 2; ++++G = 3. 


 


 


 


 


 
 


Fig.3.6.7: Entropy generation rate: G =1; Br = 10; = 1; ______ = 0; ooooo = 0.1; ++++ = 


0.3. 
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Fig.3.6.8: Entropy generation rate: =0.1; G = 1; = 1; ______Br = 1; oooooBr= 5; ++++Br = 


10. 


 


 


 


 


 


 
 


 


Fig.3.6.9: Entropy generation rate:  = 0.1; Br = 10; = 1; ______G = 0.5; oooooG= 0.8; ++++G 


= 1. 
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Fig. 3.6.10: Entropy generation rate: G = 1;  = 0.1; Br = 10;  ______ = 1; ooooo = 2; 


++++ = 5. 


 


 


 


 


 


 
 


Fig. 3.6.11: Bejan number :G =1; Br = 10; = 1; ______ = 0; ooooo = 0.1; ++++ = 0.3. 
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Fig. 3.6.12: Bejan number: =0.1; G = 1; = 1; ______Br = 1; oooooBr= 5; ++++Br = 10. 


 


 


 


 


 


 


 


 
Fig. 3.6.13: Bejan number:  = 0.1; Br = 10; = 1; ______G = 0.5; oooooG= 0.8; ++++G = 1. 
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Fig. 3.6.14: Bejan number: G = 1;  = 0.1; Br = 10; ______ = 1; ooooo= 2; ++++ = 5. 
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CHAPTER 4 
 
   CONCLUSION AND FUTURE WORK 


 


In this study, the nature of irreversibility in a variable viscosity channel flow is 


investigated using the continuity, Navier-Stokes and the energy equations together with 


the equation for entropy generation rate. The main objective was to develop a thin film 


mathematical model that governs the flow in open and closed channels. The governing 


equations were reduced in line with the lubrication theory, further associated with their 


appropriate governing equations to solve for the velocity and temperature profiles. In 


chapter one, the historical background of this work is presented with respect to the first 


and second law of thermodynamics and their applications in science, engineering and 


industries, especially for both open and closed channels flow. 


         In chapter two, the entropy generation rate in a closed channel flow with 


temperature-dependent viscosity is studied. The channel lower and the upper walls were 


maintained at different temperature and both velocity and temperature profiles were 


obtained analytically using perturbation method. It is observed that the fluid temperature 


increases with increasing parametric values of Br, , and G. Minimum temperature is 


generally observed at the lower wall, followed by a transverse increase to its maximum 


value and then decreases gradually to the prescribed value at the upper wall. The heat 


transfer irreversibility dominates around the centerline region of the channel while at the 


walls fluid friction irreversibility dominates. Generally, entropy generation rate is lowest 


in the region around the channel centerline and increases quite rapidly to its maximum 


values at the lower wall of the channel.  
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         In chapter three, the nature of inherent irreversibility in a temperature-dependent 


open channel flow is investigated. The channel lower wall and the fluid free surface are 


maintained at different temperature and both the velocity and temperature profiles were 


obtained using an asymptotic technique. A transverse increase in the velocity profile is 


observed from the channel lower wall to maximum value at the fluid free surface. A 


decrease in fluid viscosity and an increase in Brinkman number due to viscous heating 


result into further increase in the fluid velocity. Similar result is observed for the 


temperature profile with minimum value at the channel lower wall, followed by a 


transverse increase to its maximum value at the fluid free surface. Generally, entropy 


generation rate decreases transversely with maximum value at the fluid free surface for 


all parametric values. Increasing values of Br,  and G result into further increase in the 


temperature difference parameter ( ) results into a decrease entropy generation. 


        Finally, models developed to carry out this work provide sufficient insight into the 


nature of the inherent irreversibility in a variable viscosity channel flow. However, as a 


matter of future consideration, this study could be investigated further as follows: It will 


be interesting to investigate the temperature depended viscosity model in a cylindrical co-


ordinate systems and monitor the flow characteristics and its inherent irreversibility. 


Furthermore, the temperature dependent viscosity model with respect to both open and 


close channel flow model will be improved to cater for the case of constant heat flux at 


the walls and adiabatic free surface. Moreover, it will be interesting to investigate 


inherent irreversibility in the shear rate dependent viscosity models in both channel and 


cylindrical pipe.  
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