Show simple item record

dc.contributor.advisor Dippenaar, S. M.
dc.contributor.author Lebepe, Modjadji Concelia
dc.date.accessioned 2013-11-20T08:22:02Z
dc.date.available 2013-11-20T08:22:02Z
dc.date.issued 2013
dc.identifier.uri http://hdl.handle.net/10386/1006
dc.description.abstract Considering South Africa’s richness in aquatic species, very little knowledge exists regarding copepods that are symbiotic on hosts ranging from invertebrates to marine mammals. In order to have any indication of the existing biodiversity of this group of organisms in South African waters, a thorough investigation of all possible hosts needs to be conducted, which in turn will most likely increase the number of recorded symbiotic copepods considerably. The current descriptive study was done in an effort to contribute to a larger study of metazoan parasites of elasmobranch hosts along the KwaZulu-Natal coast of South Africa. A total of 40 (31 Mobula kuhlii; two Mobula eregoodootenkee and seven Manta alfredi) mobulids were examined for infection by symbiotic copepods at the KwaZulu-Natal Sharks Board (KZNSB). More than 90% of all examined hosts were infected with different types of symbiotic siphonostomatoids. Collected copepod specimens were fixed and preserved in 70% ethanol and studied with both the stereo- and light microscopes using the wooden slide technique. Some selected specimens were further studied using Scanning Electron Microscopy (SEM) to elaborate on ill-defined features. A total of 13 different species of the order Siphonostomatoida distributed over five families were identified. The five families include Eudactylinidae (Eudactylina oliveri, Eudactylina diabolophila and Nemesis sp.); Caligidae (Caligus crysophrysi, Pupulina sp. 1, Pupulina sp. 2; Pupulina sp. 3, Unidentified sp. 1, Unidentified sp. 2 and Unidentified sp. 3); Kroyeriidae (Kroeyerina mobulae); Dichelesthiidae (Anthosoma crassum) and Cecropidae (Entepherus laminipes). Two of the 13 species (E. laminipes and A. crassum) are monotypic and were therefore easily identified. Eudactylina oliveri exhibited a prevalence of 75% and 100%; mean intensity of 42 and 130 parasites per host and a mean abundance of 32 and 130 individuals per host while Pupulina sp. 1 exhibited a prevalence of 61.29% and 100%; mean intensity of 41 and 5 individuals per host and a mean abundance of 2 and 5 individuals per host on M. kuhlii and M. eregoodootenkee respectively. Component populations of E. oliveri and Pupulina sp. 1 exhibited an aggregated distribution pattern on their examined hosts. The phylogenetic relationship between nine caligid species (three known Pupulina species, three collected Pupulina species and three Unidentified sp. species as ingroup) with Caligus glandifer as out-group was determined and analysed using a morphological dataset (40 characters) from previous and current descriptions. The ii exhaustive search with PAUP* retained a single most parsimonious tree with a tree length (TL) = 85; consistency index (CI) = 0.7; retention index (RI) = 0.7; homoplasy index (HI) = 0.3 and a rescaled consistency index (RCI) = 0.5. Bootstrap support for the estimated clades was mostly low with values less than 95%. The phylogenetic hypothesis of the 10 caligid species presented in the current study was derived from the phylogenetic analysis of the information for adult females and is therefore not intended to be a definitive theory but should be treated as a testable hypothesis that can be further analysed using more data. The current study provides the first record of C. chrysophrysi, Pupulina sp. 1, Pupulina sp. 2, K. mobulae and E. laminipes on M. kuhlii; E. oliveri, Pupulina sp. 1, Pupulina sp. 2 and Pupulina sp. 3 on M. eregoodootenkee; and E. diabolophila, Nemesis sp., C. chrysophrysi, E laminipes, A. crassum and the three Unidentified species on M. alfredi frequenting the east coast of South Africa and thus contributes to the knowledge of our marine biodiversity. Mobulid hosts were not carefully studied for copepod infection previously and the copepods that were reported from the mobulids were probably found by chance. Therefore future investigation into the symbiotic siphonostomatoids of more mobulid hosts and other host species may result in more reports of symbiotic Copepoda from South African waters. en_US
dc.description.sponsorship Thesis (MSc. (Zoology)) -- University of Limpopo, 2013 en_US
dc.format.extent xiv, 164 leaves : ill. en_US
dc.language.iso en en_US
dc.relation.requires thesis en_US
dc.subject Copepods en_US
dc.subject Aquatic species en_US
dc.subject.lcsh Copepoda en_US
dc.subject.lcsh Marine species diversity en_US
dc.title Siphonostomatoids infecting selected mobulids (rajiformes: mobulidae) off the Kwazulu-Natal Coast en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search ULSpace


Browse

My Account